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Abstract

In the first part of the paper, we show a generic compiler that transforms any oracle
algorithm that can query multiple oracles adaptively, i.e., can decide on which oracle to query
at what point dependent on previous oracle responses, into a static algorithm that fixes these
choices at the beginning of the execution. Compared to naive ways of achieving this, our
compiler controls the blow-up in query complexity for each oracle individually, and causes a
very mild blow-up only.

In the second part of the paper, we use our compiler to show the security of the very
efficient hash-based split-key PRF proposed by Giacon, Heuer and Poettering (PKC 2018), in
the quantum random-oracle model. Using a split-key PRF as the key-derivation function gives
rise to a secure KEM combiner. Thus, our result shows that the hash-based construction of
Giacon et al. can be safely used in the context of quantum attacks, for instance to combine
a well-established but only classically-secure KEM with a candidate KEM that is believed to
be quantum-secure.

Our security proof for the split-key PRF crucially relies on our adaptive-to-static compiler,
but we expect our compiler to be useful beyond this particular application. Indeed, we discuss a
couple of other, known results from the literature that would have profitted from our compiler,
in that these works had to go though serious complications in oder to deal with adaptivity.

1 Introduction

This paper offers two main contributions. In a first part, we show a generic reduction from adaptive
to static multi-oracle algorithms, with a mild increase of the query complexity for each oracle
individually, and in the second part, exploiting the reduction from the first part, we prove quantum
security of the hash–based split-key pseudorandom function (skPRF) proposed in [GHP18]. We
now discuss these two contributions in more detail.

Adaptive versus Static Multi-Oracle Algorithms. In certain cryptographic security games,
the attacker A is an oracle algorithm that is given query access to multiple oracles. This is in
particular the case when considering the design of a cryptographic scheme in an idealized setting.
Consider for instance the security definitions of public-key encryption and signature schemes in the
(quantum) random-oracle model, where the attacker is given oracle access to both: the random-
oracle and to a decryption/signing oracle.

By default, such an attackerA can then choose adaptively, i.e., depending on answers to previous
queries, at what point to query which oracle. This is in contrast to a static A that has a predefined
order of when it queries which oracle.1 In certain cases, proving security for a static attacker
is easier than proving security for a full fledged adaptive attacker, or taking care of adaptivity
(naively) results in an unnecessary blow-up in the error term (see later).

In this light, it seems to be desirable to have a generic compiler that transforms any adaptive
attacker A into a static attacker Ā that is equally successful in the attack. And there is actually a

1In either case, we allow A to decide adaptively what input to query, when having decided (adaptively or statically)
on which oracle to query.
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simple, naive solution for that. Indeed, let A be an arbitrary oracle algorithm that makes adaptive
queries to n oracles O1, . . . ,On, and consider the static oracle algorithm Ā defined as follows: Ā
simply runs A, and at every point in time when A makes a query to one of O1, . . . ,On (but due to
the adaptivity it will only become clear at the time of the query which Oi is to be queried then),
the algorithm Ā makes n queries, one to every Oi, and it relays A’s query to the right oracle, while
making dummy queries to the other oracles.

At first glance, this simple solution is not too bad. It certainly transforms any adaptive A into
a static Ā that will be equally successful, and the blow-up in the total query complexity is a factor
n only, which is mild given that the typical case is n = 2. However, it turns out that in many
situations, considering the blow-up in the total query complexity is not good enough.

For example, consider again the case of an attacker against a public-key encryption scheme in
the random-oracle model. In this example, it is typically assumed that A may make many more
queries to the random-oracle than to the decryption oracle, i.e., qH � qD. But then, applying
the above simple compiler, Ā makes the same number of queries to the random-oracle and to the
decryption oracle; namely q̄H = q̄D = qH +qD. Furthermore, the actual figure of merit, namely the
advantage of an attacker Ā, is typically not (bounded by) a function of the total query complexity,
but a function of the two respective query complexities qH and qD individually. For example, if
one can show that the advantage of any static attacker Ā with respective query complexities q̄H
and q̄D is bounded by, say, q̄H q̄

2
D, then the above compiler gives a bound on the advantage of

any adaptive attacker A with respective query complexities qH and qD of q3
H + 2q2

HqD + qHq
2
D. If

qH � qD then this is significantly worse than ≈ qHq2
D, which one might hope for given the bound

for static Ā.
Our first result is a compiler that transforms any adaptive oracle algorithm A that makes at

most qi queries to oracle Oi for i = 1, . . . , n into a static oracle algorithm Ā that makes at most
q̄i = nqi queries to oracle Oi for i = 1, . . . , n. Thus, rather than controling the blow-up in the total
number of queries, we can control the blow-up in the number of queries for each oracle individually,
yet still with the same factor n. Our result applies for any vector q = (q1, . . . , qn) ∈ Nn and contains
no hidden constants. Our compiler naturally depends on q (or, alternatively, needs q as input)
but otherwise only requires straight-line black-box access to A, and it preserves efficiency: the run
time of Ā is polynomial in Q = q1 + · · · + qn, plus the time needed to run A. Furthermore, the
compiler is applicable to any classical or quantum oracle algorithm A, where in the latter case
the queries to the oracles O1, . . . ,On may be classical or quantum as well; however, the choice of
the oracle for each query is assumed to be classical (so that individual query complexities are well
defined).

In the above made-up example of a public-key encryption scheme with advantage bounded by
q̄H q̄

2
D for any static Ā with respective query complexities q̄H and q̄D, we now get the bound 8qHq

2
D

for any adaptive A with respective query complexities qH and qD.
We show the usefulness of our adaptive-to-static compiler by discussing two example results

from the literature. One is the security proof by Alkim et al. [ABB+17] of the qTESLA signature
scheme [ABB+20] in the quantum random-oracle model; the other is the recent work by Alagic,
Bai, Katz and Majenz [ABKM21] on the quantum security of the famous Even-Mansour cipher.
In both these works, the adaptivity of the attacker was a serious obstacle and caused a significant
overhead and additional complications in the proof. With our results, these complications could
have been avoided without sacrificing much in the security loss (as would be the case with using a
naive compiler). We also exploit our adaptive-to-static compiler in our second main contribution,
discussed below.

Interestingly, all three example applications are in the realm of quantum security (of a classical
scheme). This seems to suggest that the kind of adaptivity we consider here is not such much of a
hurdle in the case of classical queries. Indeed, in that case, a typical argument works by inspecting
the entire query transcript and identifying an event with the property that conditioned on this
event, whatever needs to be shown holds with certainty, and then it remains to show that this
event is very likely to occur. In the case of quantum queries, this kind of reasoning does not apply
since one cannot “inspect” the query transcript anymore; instead, one then typically resorts to
some sort of hybrid argument where queries are replaced one-by-one, and then adaptivity of the
queries may — and sometimes does, as we discuss — form a serious obstacle.
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Quantum-security of a Split-key PRF. In the upcoming transition to post-quantum secure
cryptographic standards, combiners may play an important role. A combiner can be used compile
several crypographic schemes into a new, “combined” scheme, which offers the same (or a similar)
functionality, and so that the new scheme is secure as long as at least one of the original schemes is
secure. For example, combining a well-established but quantum-insecure scheme with a believed-
to-be quantum-secure (but less well studied) scheme then offers the best of both worlds: it offers
security against quantum attacks, should there really be a quantum computer in the future, but it
also offers some protection in case the latter scheme turns out to be insecure (or less secure than
expected) even against classical attacks. In other words, using a combiner in this context ensures
that we are not making things less secure by trying to aim for quantum security.

In [GHP18], Giacon, Heuer and Poettering showed that any split-key PRF (skPRF) gives rise
to a secure KEM combiner. In more detail, they show that if a skPRF is used in the (rather)
obvious way as a key-derivation function in a KEM combiner, then the resulting combined KEM
is IND-CCA secure if at least one of the component KEMs is IND-CCA secure. They also suggest
a few candidates for skPRFs. The most efficient of the proposed constructions is a hash-based
skPRF, which is proven secure in [GHP18] in the random-oracle model. However, in the context of
a quantum attack, which is in particularly relevant in the above example application of a combiner,
it is crucial to prove security in the quantum random-oracle model [BDF+11]. Here, we close this
gap by proving security of the hash-based skPRF construction proposed by Giacon et al. in the
quantum random-oracle model.

Our security proof crucially exploits our adaptive-to-static compiler to reduce a general, adap-
tive attacker/distinguisher to a static one. Namely, in spirit, our security proof is a typical hybrid
proof, where we replace, one by one, the queries to the (sk)PRF by queries to a truly random
function; however, the crux is that for each hybrid, corresponding to a particular function query
that is to be replaced, the closeness of the current to the previous hybrid depends on the number of
hash queries between the current and the previously replaced function query. In case of an adaptive
A, each such “window” of hash queries between two function queries could be as large as the total
number of hash queries in the worst case, giving rise to a huge multiplicative blow-up when using
this naive bound. Instead, for a static A, each such window is bounded by a fixed number, with
the sum of these numbers being the total number of hash queries.

By means of our compiler, we can turn the possibly adaptive A into a static one (almost) for
free, and this way avoid an unnecessary blow-up, respectively bypass additional complications that
arise by trying to avoid this blow-up by other means.

2 Preliminaries

We consider oracle algorithmsAO1,...,On that make queries to (possibly unspecified) oraclesO1, . . . ,On,
see Fig. 1 (left). Sometimes, and in particular when the oracles are not specified, we just write
A and leave it implicit that A makes oracle calls. We allow A to be classical or quantum, and
in the latter case we may also allow the queries (to some of the oracles) to be quantum; how-
ever, the choice of which oracle is queried is always classical. For the purpose of our work, we
may assume A to have no input; any potential input could be hardwired into A. For a vector
q = (q1, . . . , qn) ∈ Nn, we say that A is a q-query oracle algorithm if it makes at most qi queries
to the oracle Oi.

In general, such an oracle algorithm A may decide adaptively which oracle to query at what
step, dependent on previous oracle responses. In contrast to this, a static oracle algorithm has an
arbitrary but pre-defined order in querying the oracles.

Our goal will be to transform any adaptive oracle algorithm A into a static oracle algorithm Ā
that is functionally equivalent, while keeping the blow-up in query complexity for each individual
oracle, i.e., the blow-up for each individual qi, small. By functionally equivalent (for certain oracle
instantiations) we mean the respective executions of AO1,...,On and ĀO1,...,On give rise to the same
output distribution for all (the considered) instantiations O1, . . . , On of the oracles O1, . . . ,On. In
case of quantum oracle algorithms, we require the output state to be the same.

For this purpose, we declare that an interactive oracle algorithm B is an interactive algorithm
with two distinct interaction interfaces, one for the interaction with A (we call this the simulation
interface), and one for the oracle queries (we call this the oracle interface), see Fig. 1 (middle).
For any oracle algorithm A, we then denote by B[A] the oracle algorithm that is obtained by
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Figure 1: An oracle algorithm A (left), an interactive oracle algorithm B (middle), and the oracle
algorithm B[A] obtained by composing A and B (right).

composing A and B in the obvious way. In other words, B[A] runs A and answers all of A’s oracle
queries using its simulation interface; furthermore, B[A] outputs whatever A outputs at the end
of this run of A, see Fig. 1 (right).2

In contrast to A (where, for our purpose, any input could be hardwired), we explicitly allow
an interactive oracle algorithm B to obtain an input. Indeed, our transformation, which turns any
adaptive oracle algorithm A into a static oracle algorithm Ā, needs to “know” q, i.e., the number
of queries A makes to the different oracles. Thus, this will be provided in the form of an input to
B; for reasons to be clear, it be provided in unary, i.e., as 1q := (1q1 , . . . , 1qn).

We stress that we do not put any computational restriction on the oracle algorithms A (beyond
bounding the queries to the individual oracles); however, we do want our transformation to preserve
efficiency. Therefore, we say that an interactive oracle algorithm B is polynomial-time if the number
of local computation steps it performs is bounded to be polynomial in its input size, and where
we declare that copying an incoming message on the simulation interface to an outgoing message
on the oracle interface, and vice versa, is unit cost (irrespectively of the size of the message). By
providing q in unary, we thus ensure that B is polynomial-time in q1 + · · ·+ qn.

3 A General Adaptive-to-static Reduction for Multi-oracle
Algorithms

3.1 Our Result

Let n ∈ N be an arbitrary positive integer. We present here a generic adaptiv-to-static compiler
B that, on input a vector q ∈ Nn, turns any adaptive q-query oracle algorithm AO1,...,On into a
static nq-query algorithm.

Theorem 1. There exists a polynomial-time interactive oracle algorithm B, such that for any
q ∈ Nn and any adaptive q-query oracle algorithm AO1,...,On , the oracle algorithm B[A](1q) is a
static nq-query oracle algorithm that is functionally equivalent to A for all stateless instantiations
of the oracles O1, . . . ,On.

Remark 1. As phrased, Theorem 1 applies to oracle algorithms A that have no input. This is
merely for simplicity. In case of an oracle algorithm A that takes an input, we can simply apply
the statement to the algorithm A(x) that has the input x hardwired, and so argue that Theorem 1
also applies in that case.

Remark 2. B[A] is guaranteed to behave the same way as A for stateless (instantiations of the)
oracles only. This is become most of the queries that B[A] makes are actually dummy queries (i.e.,
queries on a default input and with the response ignored), which have no effect in case of stateless
oracles, but may mess up things in case of stateful oracles. Theorem 1 extends to arbitrary stateful
oracles if we allow B[A] to skip queries instead of making dummy queries (but the skipped queries
would still count towards the query complexity).

2Note, we silently assume consistency between A and B, i.e. A should send a message when B expects one and
the format of these messages should match the format of the messages that B expects (and vice versa), so that the
above composition makes sense. Should B encounter some inconsistency, it will abort.
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= 2/qσ2
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Figure 2: Constructing the string s by distributing the different symbols evenly within the interval
(0, n] (here with 3/qσ1

= 2/qσ2
), and then collecting them from left to right.

Given the vector q = (q1, . . . , qn) ∈ Nn, the core of the problem is to find a fixed sequence of
Oi’s in which each individual Oi occurs at most nqi times, and so that every sequence of Oi’s that
contains each individual Oi at most qi times can be embedded into the former. We consider and
solve this abstract problem in the following section, and then we wrap up the proof of Theorem 1
in Section 3.3.

3.2 The Technical Core

Let Σ be an non-empty finite set of cardinality n. We refer to Σ as the alphabet. As is common,
Σ∗ denotes the set of finite strings over the alphabet Σ. In other words, the elements of Σ∗ are the
strings/sequences s = (s1, . . . , s`) ∈ Σ` with arbitrary ` ∈ N (including ` = 0).

Following standard terminology, for s = (s1, . . . , s`) and s′ = (s′1, . . . , s
′
m) in Σ∗, the concate-

nation of s and s′ is the string s‖s′ = (s1, . . . , s`, s
′
1, . . . , s

′
m), and s′ is a subsequence of s, denoted

s′ v s if there exist integers 1 ≤ j1 < . . . < jm ≤ ` with (sj1 , . . . , sjm) = (s′1, . . . , s
′
m). Such an

integer sequence (j1, . . . , jm) is then called an embedding of s′ into s.3

Finally, for a function q : Σ → N, σ 7→ qσ, we say that s = (s1, . . . , s`) ∈ Σ∗ has characteristic
(at most) q if #{i | si = σ} = qσ (≤ qσ) for any σ ∈ Σ.

Lemma 1 (Embedding Lemma). Let Σ be an alphabet of size n, and let q : Σ → N, σ 7→ qσ.
Then, there exists a string s ∈ Σ∗ with characteristic n · q : σ 7→ n · qσ such that any string s′ ∈ Σ∗

with characteristic at most q is a subsequence of s, i.e., s′ v s.

The idea of the construction of the sequence s is quite simple: First, we evenly distribute n · qσ
copies of σ within the interval (0, n] by “attaching” one copy of σ to every point in (0, n] that
is an integer multiple of 1/qσ (see Fig. 2). Note that it may happen that different symbols are
“attached” to the same point. Then, we walk along the interval from 0 and n and, one by one,
collect the symbols we encounter in order to build up s′ from left to right; in case we encounter a
point with multiple symbols “attached” to it, we collect them in an arbitrary order.

It is then not too hard to convince yourself that this s indeed satisfies the claim. Namely, for
any s′ = (s′1, . . . , s

′
m) as considered, we can again walk along the interval from 0 and n, and we

will then encounter all the symbols of s′, one by one: we will encounter the symbol s′1 within the
walk from 0 to 1/qs′1 , the symbol s′2 then within the walk from 1/qs′1 to 1/qs′1 + 1/qs′2 , etc.

Putting this idea into a formal proof is somewhat tedious, but in the end not too difficult. In
order to formalize things properly, we generalize the standard notion of a sequence s ∈ Σ∗ in a
way that allows us to talk about “attaching” a symbol to a point on R, etc., in a rigorous way.
Formally, we define a line sequence to be an arbitrary finite (possibly empty) subset S ⊆ R × Σ,
i.e.,

S = {(t1, s1), . . . , (t`, s`)} ∈ P<∞(R×Σ) ,

where w.l.o.g. we will always assume that t1 ≤ . . . ≤ t`. We may think of the symbol si to “occur
at the time” ti.

4 For a subset T ⊂ R, the set P<∞(T×Σ) then obviously denotes the set of line
sequences with t1, . . . , t` ∈ T .

Assuming that the alphabet Σ is equipped with a total order ≤, any line sequence S =
{(t1, s1), . . . , (t`, s`)} is naturally associated with the ordinary sequence

π(S) := (s1, . . . , s`) ∈ Σ∗ ,

3We use string and sequence interchangeably; however, following standard terminology, there is a difference
between a substring and subsequence: namely, a substring is a subsequence that admits an embedding with ji+1 =
ji + 1.

4Note that we allow ti = tj for i 6= j while the definition prohibits (ti, si) = (tj , sj). If desired, one could allow
the latter by letting S be a multi-set, but this is not necessary for us.
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which is uniquely determined by the convention t1 ≤ . . . ≤ t` and insisting on si ≤ sj whenever
ti = tj for i < j.

This projection π : P<∞(R×Σ) → Σ∗ preserves the characteristic of the sequence, i.e., if
s = (s1, . . . , s`) = π(S) then

#{t | (t, σ) ∈ S} = #{i | si = σ} (1)

for any σ ∈ Σ. Furthermore, for T, T ′ ⊂ R with T < T ′ point-wise, and for S ∈ P<∞(T×Σ) and
S′ ∈ P<∞(T ′×Σ), it is easy to see that π(S ∪ S′) = π(S)‖π(S′) , from which it then follows that
for ordinary sequences s, s′ ∈ Σ∗

s v π(S) ∧ s′ v π(S′) =⇒ s‖s′ v π(S)‖π(S′) = π(S ∪ S′) . (2)

A final, simple observation, which follows directly from the definitions, is that for σ ∈ Σ, i.e. a
sequence of length m = 1, σ v π(S) holds if and only if there exists a time t ∈ R such that
(t, σ) ∈ S.

Proof of Lemma 1. For any symbol σ ∈ Σ let Sσ be a line sequence

Sσ :=
{

1
qσ
, ..., nqσqσ

}
× {σ} ∈ P<∞((0, n]×Σ) ,

and set S :=
⋃
σ∈Σ Sσ. We will show that s := π(S) is as claimed.

The claim on the characteristic of s follows from the preservation of the characteristic under π,
i.e. (1), and from #{t | (t, σ) ∈ S} = #Sσ = n · qσ, which holds by construction of S.

Let s′ = (s′1, . . . , s
′
m) ∈ Σ∗ be arbitrary with characteristic bounded by q. We consider the

times τj := 1/qs′1 + · · ·+ 1/qs′j for j ∈ {1, . . . ,m}, and we let Tj be the interval

Tj :=
(
τj−1, τj

]
=
(
τj−1, τj−1+ 1

q′j

]
⊂ R ,

and decompose S = S1 ∪ . . . ∪ Sm with Sj := S ∩ (Tj×Σ) ∈ P<∞(Tj×Σ). Here, we exploit that

τm =
∑
σ∈Σ

#{i | s′i = σ}
qσ

≤
∑
σ∈Σ

qσ
qσ

= n ,

and so the Sj ’s indeed cover all of S ∈ P<∞((0, n]×Σ). Given that the interval Tj ⊂ (0, n] has size
1/qs′j , there exists a time tj ∈ Tj ∩

{
1
qσ
, ..., nqσqσ

}
. But then, (tj , s

′
j) ∈ Sj by construction of S, and

therefore s′j v π(Sj). Finally, since Tj−1 < Tj , property (2) implies that

s′ = s′1‖ · · · ‖s′m v π(S1 ∪ . . . ∪ Sm) = s

which was to be shown.

While Lemma 1 above settles the existence question, the following two observations settle the
corresponding efficiency questions. For concreteness, we assume Σ = {1, . . . , n} below, and thus
can identify the function q : Σ→ N, σ 7→ qσ with the vector q = (q1, . . . , qn).

First, we observe that the line sequence S defined in the proof above, as well as its projection
s = π(S), can be computed in polynomial time in q1 + · · ·+ qn; thus, we have the following.

Lemma 2. There exists a polynomial-time algorithm that, on input 1q, computes a string s ∈ Σ∗

as specified in the proof of Lemma 1.

Furthermore, for any s′ ∈ Σ∗ with characteristic at most q, for which we then know by Lemma 1
that s′ can be embedded into s, the following ensures that this embedding can be computed
efficiently and on the fly.

Lemma 3. There exists a polynomial-time algorithm E such that for every string s ∈ Σ∗ and every
subsequence s′ = (s′1, . . . , s

′
m) v s, the following holds. Computing inductively ji ← E(s, s′i, ji−1)

for every i ∈ [m], where j0 := 0, results in an increasing sequence j1 < · · · < jm with

s′ = (sj1 , . . . , sjm) .

The algorithm E simply follows the obvious greedy strategy: for each s′i it looks for the next ji
for which s′i = sji . More formally:
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Proof. The algorithm E(s, s′i, ji−1) computes

ji := min {k ∈ N | ji−1 < k ≤ m, sk = s′i} . (3)

It can be easily shown that the minimum is well-defined, i.e. taken over a non-empty set for each
i by the assumption that s′ is a subsequence of s, and thus by construction, every ji is such that
s′i = sji while keeping j1 < · · · < jn increasing. This concludes the proof.

3.3 Wrapping up the Proof of Theorem 1

The claimed interactive oracle algorithm B now works in the obvious way. On input q (provided
in unary) and for any A, B[A] will make static oracle queries to Os1 ,Os2 , . . . ,OsnQ , where s =
(s1, . . . , snQ) ∈ {1, . . . , n}∗ is the string promised to exist by Lemma 1, with Q = q1 + · · ·+ qn. In
more detail, it first computes s using the algorithm from Lemma 2. Then, for the i-th oracle query
that B receives from A (starting with i = 1), and which consists of the identifier s′i ∈ {1, . . . , n}
of which oracle to query now and of the actual input to the oracle Os′i , the algorithm B does the
following: it computes ji ← E(s, s′i, ji−1) using the algorithm from Lemma 3, makes dummy queries
to Osji−1+1

, . . . ,Osji−1
, and forwards A’s query input to Osji = Os′i . The fact that (j1, . . . , jQ)

computed this way forms an embedding of s′ = (s′1, . . . , s
′
Q) into s ensures that B is able to forward

all the queries that A makes to the right oracle, and so A will produce its output as in an ordinary
run with direct adaptive access to the oracles.

3.4 Applications

To demonstrate the usefulness of our adaptive-to-static compiler, we briefly discuss two results
from the literature, where the adaptivity of the attacker was explicitly declared as an obstacle in
the security proof, and where dealing with it complicated the proof substantially. In both cases,
these complications could be avoided/removed by means of our adaptive-to-static compiler.

3.4.1 Quantum Security of qTESLA.

Our first application is in the context of qTESLA [ABB+20], which is a signature scheme that
made it into the second round of the NIST post-quantum competition. Its security is based on the
Ring-LWE problem, to which the authors of [ABB+17] give a reduction in the quantum random-
oracle model (QROM).5 In the reduction, which starts from the security notion of Unforgeability
under Chosen Message Attack (UF-CMA), the adversary can query a random-oracle H as well as
a signing oracle, where the order of oracle queries may be adaptive.

The reduction strategy of [ABB+17] applies only to a static adversary, with a fixed query
pattern. Thus, the authors first compile the adaptive into a naive static attacker by letting it
do qH (the number of H-queries of the original adaptive adversary) H-queries between any two
signing queries. Leaving it with this would blow up the number of H-queries to qSqH . In order
to avoid that, they give the attacker a “live-switch”, meaning that each query to H may be in
superposition of making the query and not making the query, and the total “query magnitude”
on actual H-queries is still restricted to qH . Not so surprising, adding even more “quantumness”
to the problem in this way, makes the analysis more complicated (compared to using standard
“all-or-nothing” static queries and a standard classical bound on the query complexity), but it
allows the authors to avoid the above blow-up in the (classical) query complexity to transpire into
the security loss. The overall loss they obtain in the end is O((qSq

2
H + q3

S + q2
SqH) · ε) for small ε

determined by the parameters of the scheme.
Since the security reduction in [ABB+17] intertwines the adaptive to static hurdle with other

aspects of the proof, we cannot simply insert our Theorem 1 and then continue the proof as is.
Still, by applying our result, we could obtain a static adversary with almost no cost in the number
of H-queries, avoiding the need for the rather complicated “live-switch superposition” attacker,
thus simplifying the overall proof significantly. Furthermore, looking ahead at Section 4, our result
allows us to obtain the much better O(

√
qOq2

Hε +
√
q2
OqHε) loss in a similar context — similar in

5We note that some versions of qTESLA have been broken [LS19], but the attack only applies to an optimized
variant that was developed for the NIST-competition, and does not apply to the scheme in [ABB+17] that we
discuss here.
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the sense that it also involves two oracles where one reprograms the other at some high-entropy
input. The adaptive to static reduction there allows us to apply some additional QROM tools
that could potentially also be applied in the setting of qTESLA to improve the bound. However,
actually doing this would require us to rewrite the entire proof of [ABB+17], which we consider
outside the scope of this work.

3.4.2 Quantum Security of the Even-Mansour Cipher.

The recent work [ABKM21] considers the post-quantum security of the Even-Mansour cipher,
which turns a public permutation into a keyed permutation, and it proves it secure in the post-
quantum setting where an attacker has quantum superposition access to the public permutation,
but only classical access to the keyed cipher.

Also here, the fact that the attacker can choose adaptively whether to query the public permu-
tation of the cipher complicates the proof. Indeed, as is explained on page 3 in [ABKM21], this
adaptivity issue forces the authors to extend the blinding lemma of Alagic et al. to a variant that
gives a bound in terms of the expected number of queries. While the authors succeed in providing
such an extended version of the blinding lemma (Lemma 3 in [ABKM21]), it further increases the
complexity of an already involved proof.6

Thus, again, our Theorem 1 could be used to simplify the given proof by bypassing the com-
plications that arise due to the attacker choosing adaptively which oracle to query at what point.

4 Quantum Security of a Split-key PRF

4.1 Hybrid Security and skPRFs

A split-key pseudorandom function (skPRF), as introduced in [GHP18], is a polynomial-time com-
putable function F : K1 × · · · × Kn × X → Y that is a pseudorandom function (PRF) in the
standard sense for every i ∈ [n] when considered as a keyed function with key space Ki and
message space K1 × · · · × Ki−1 × Ki+1 × · · · × Kn × X , with the additional restriction that the
distinguisher A (in the standard PRF security definition) must use a fresh x ∈ X in every query
(k1, . . . , ki−1, ki+1, . . . , kn, x).

This restriction on the PRF distinguisher may look artificial, but is motivated by this definition
of a skPRF being good enough for the intended purpose of a skPRF, namely to give rise to a
secure KEM combiner. Indeed, [GHP18] shows that the naturally combined KEM, obtained by
concatenating the individual ciphertexts to C = (c1, . . . , cn), and combining the individual session
keys k1, . . . , kn using the above mentioned skPRF as

K = F (k1, . . . , kn, C) ,

is IND-CCA secure if at least one of the individual KEM’s is IND-CCA secure.
The paper [GHP18] also proposes a particularly efficient hash-based construction, given by

F (k1, . . . , kn, x) := H(g(k1, . . . , kn), x) (4)

where g : K1×· · ·×Kn →W is a polynomial-time mapping with the property that, for some small
ε,

Pr
ki←Ki

[g(k1, . . . , kn) = w] ≤ ε , (5)

for every i ∈ [n] and for every k1, . . . , ki−1, ki+1, . . . , kn and every w; furthermore, H : W → Y is
a cryptographic hash function. Simple choices for the function g are g(k1, . . . , kn) = (k1, . . . , kn)
and g(k1, . . . , kn) = k1 + · · ·+ kn.

It is shown in [GHP18] that this construction is a skPRF when H is modelled as a random-
oracle; indeed, it is shown that the distinguishing advantage is upper-bounded by qHε, where qH
is the number of queries to the random-oracle H.

6To be fully precise, Lemma 3 in [ABKM21] also generalizes the original blinding lemma in a different direction
by allowing to reprogram to an arbitrary value instead of a uniformly random one; however, this generalization
comes for free in that the original proof still applies up to obvious changes, while allowing an expected number of
queries, which is needed to deal with the adaptivity issue, requires a new proof.
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Given the natural use of combiners in the context of the upcoming transition to post-quantum
cryptography, it is natural — and well-motivated — to ask whether F can be proven to be a skPRF
in the presence of a quantum attacker, i.e., when H is modeled as a quantum random-oracle. Below,
we answer this in the affirmative.

4.2 Quantum-security of the skPRF

The goal of this section is to show the security of the skPRF (4) in the quantum random-oracle
model. In essence, this requires proving that F is a PRF (in the quantum random-oracle model)
with respect to any of the ki’s being the key, subject to the restriction of asking a fresh x in each
query.

To simplify the notation, we fix the index i ∈ [n] and simply write k for ki and x for
(k1, . . . , ki−1, ki+1, . . . , kn, x), and we abstract away the properties of the function g as follows.
We let

F (k, x) := H(h(k, x)) ,

where h : K ×X →W is an arbitrary function with the property that, for some parameter ε > 0,

Pr
k←K

[h(k, x) = w] ≤ ε (6)

for all w ∈ W and x ∈ X . Furthermore, in the PRF security game, we restrict the attacker/distinguisher
A to queries x with a fresh value of h(k, x), no matter what k is.

More formally, let AH,O be an arbitrary quantum oracle algorithm, making quantum superpo-
sition queries to an oracle H and classical queries to another oracle O, with the restriction that
for every query x to O it holds that

h(κ, x) 6= h(κ, x′) , (7)

for any prior query x′ to O and all κ ∈ K. For any such oracle algorithm AH,O, we consider the
standard PRF security games

PR1 := AH,F and PR0 := AH,R ,

obtained by instantiating H with a random function H (the random-oracle) in both games, and
in one game we instantiate O with the pseudorandom function F , which we understand to return
F (k, x) on query x for a random k ← K, chosen once and for all queries, and in the other we
instantiate O with a truly random function R instead.

We show that the distinguishing advantage for these two games is bounded as follows.

Theorem 2. Let AH,O be a (qH, qO)-query oracle algorithm satisfying (7). Then∣∣Pr
[
1← PR1

]
− Pr

[
1← PR0

]∣∣ ≤ 4
√

2q2
OqHε+ 4

√
2q2
HqOε .

We can now apply Theorem 2 to the function h(k, x) := (g(k1, . . . , kn), x̃), where k := ki
and x := (k1, . . . , ki−1, ki+1, . . . , kn, x̃). Indeed, the condition (5) on g implies the corresponding
condition (7) on h, and the restriction on x̃ being fresh in the original skPRF definition implies
the above restriction on h(k, x) being fresh not matter what k is, i.e., 6). Thus, we obtain the
following.

Corollary 1. For any function g satisfying (5) for a given ε > 0, the function F (k1, . . . , kn, x) :=
H(g(k1, . . . , kn), x) is a skPRF in the quantum random-oracle model with distinguishing advantage
at most 4

√
2q2
OqHε+ 4

√
2q2
HqOε.

4.3 Proof of Theorem 2

Proof (of Theorem 2). Let AH,O be an oracle algorithm as considered in the previous subsection.
Thanks to Theorem 1, taking a factor-2 blow-up in the query complexity into account, we may
assume A to be a static (qH, qO)-query oracle algorithm. It will be convenient to write such a
static algorithm as

A[H0OH1OH2...OHqO ] ,
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where each block Hi = H · · ·H consists of a (possibly empty) sequence of symbols H of length
qHi = |Hi|, and with the understanding that A first makes qH0 queries to H, then a query to O,
then qH1 queries to H, etc., where, obviously, qH0 + · · · + qHqO = qH then. Instantiating H with H,
and O with F and R, respectively, we can then write

PR0 = A[H0RH1...RHqO ] and PR1 = A[H0FH1...FHqO ] .

For the proof, we introduce certain hybrid games. For this purpose, we introduce the following
alternative (stateful and R-dependent) instantiation H ′ of H. To start with, H ′ is set to be equal
to H, but whenever R is queried on some input x, H ′ is reprogrammed at the point h(k, x) to the
value H ′(h(k, x)) := R(x). For any i, we now define the two hybrid games

PR2
i :=A[H0R...RHiFH′i+1F...FH′qO

]

P̃R
2

i :=A[H0R...RHiRH′i+1F...FH′qO
]

and also spell out

PR2
i+1 =A[H0R...RHiRHi+1F...FH′qO

]

to emphasize its relation to P̃R
2

i . We note that in all of the above, the first occurrences of H and
O are instantiated with R and H, respectively, but at some point we switch to R and H ′ instead.

The extreme cases match up the games we are interested in. Indeed,

PR2
0 = A[H0FH′1...FH′qO

] = A[H0FH1...FHqO ] = PR1 ,

where we exploit that there are no queries to R and thus H ′ remains equal to H, and, by definition,

PR2
qO = A[H0RH1...RHqO ] = PR0 .

Our goal is to prove the closeness of the following games

PR1 = PR2
0 ≈ P̃R2

0 ≈ PR2
1 · · · ≈ PR2

qO−1 ≈ P̃R
2

qO−1 ≈ PR2
qO = PR0 .

We do this by means of applying Lemma 4 and 5, which we state here and prove further down.

Lemma 4. For each 0 ≤ i < qO,∣∣∣Pr
[
1← PR2

i

]
− Pr

[
1← P̃R

2

i

]∣∣∣ ≤ 2

√ ∑
1≤j≤i

qHj ε .

Lemma 5. For each 0 ≤ i < qO,∣∣∣Pr
[
1← P̃R

2

i

]
− Pr

[
1← PR2

i+1

]∣∣∣ ≤ 2qHi+1

√
qOε .

Indeed, by repeated applications of these lemmas, and additionally using that qH0 +· · ·+qHi ≤ qH
for all 0 ≤ i ≤ qO, we obtain

∣∣Pr
[
1← PR1

]
− Pr

[
1← PR0

]∣∣ ≤ 2

qO∑
i=0

√ ∑
1≤j≤i

qHj ε+ 2

qO∑
i=0

qHi+1

√
qOε

≤ 2
√
q2
OqHε+ 2

√
q2
HqOε

which concludes the claim of Theorem 2 when incorporating the factor-2 increase in qH and qO
due to switching to a static A.

It remains to prove Lemma 4 and 5, which we do below. In both proofs, we use the gentle
measurement lemma [Wil11, Lemma 9.4.1], which states that if a projective measurement has a very
likely outcome then the measurement causes only little disturbance on the state. More formally,
for any density operator ρ and any projector P , where p := tr(PρP ) then is the probability to
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observe the outcome associated with P when measured using the measurement {P, I−P}, the trace
distance between the original state ρ and the post-measurement state ρ′ := PρP/p is bounded by√

1− p. This in turn implies that ρ and ρ′ can be distinguished with an advantage
√

1− p only.
The proof of Lemma 4 additionally makes use of Zhandry’s compressed oracle technique [Zha19].

It is out of scope of this work to give a self-contained description of this technique; we refer to the
original work [Zha19] instead, or to [CFHL21], which offers an alternative concise description. At
the core is the observation that one can purify the random choice of the function H and then, by
switching to the Fourier basis and doing a suitable measurement, one can check whether a certain
input x has been “recorded” in the database (mind though that such a measurement disturbs
the state). If the outcome is negative then the oracle is still in a uniform superposition over all
possible hash values for x, and as a consequence, when removing the purification by doing a full
measurement of H (in the computational basis), H(x) is ensured to be a “fresh” uniformly random
value, with no information on H(x) having been leaked in prior queries.

In the proof of Lemma 4, we use this technique to check whether prior to the crucial query,
which is to F in one and to R in the other game, there was a query to H that would reveal
the difference, and we use (6) to argue that it is unlikely that such a query occurred. Since this
measurement has a likely outcome, it is also ensured by the gentle measurement lemma that this
measurement causes little disturbance.

Proof (of Lemma 4). For convenience, we refer to the crucial query as the respective query to F
and R that differs between

PR2
i = A[H0R...RHiFH′i+1F...FH′qO

] and P̃R
2

i = A[H0R...RHiRH′i+1F...FH′qO
] .

Furthermore, we let x be the input to that query, and we set w := h(k, x), with k being the key
chosen and used by F . Note that up to this very query, the two games are identical. Also, by (7)
it is ensured that for any prior query x′ to R it holds that h(k, x′) 6= w.

First, we consider the games G1 and G̃1 that work exactly as PR2
i and P̃R

2

i , respectively, except
that, at the beginning of the games we set up the compressed oracle and answer all queries made
to H prior to the crucial query using the compressed oracle. Then, once x is received during
the crucial query, we do a full measurement of the purified (i.e. uncompressed) oracle in order
to obtain the function H, which is then to be used in the remainder of the games. We note
that setting up the function H ′ is then necessarily also deferred to after this measurement, where
H ′ is then set to be equal to H, except that for any prior query x′ to R it is reprogrammed to
H ′(h(k, x′)) := R(x′). Only once H has been measured and H ′ set up as above, is the crucial
query then actually answered.

It follows from basic properties of the compressed oracle that the respective output distributions
of G1 and G̃1 match with those of PR2

i and P̃R
2

i .

Then, we define G2 and G̃2 from G1 and G̃1, respectively, by introducing one more measure-
ment. Namely, right after x is sent by A and before H is measured, we measure in the compressed
oracle whether the input w = h(k, x) has been recorded in the database, and in case of a positive
outcome, the game aborts. By the gentle measurement lemma (and basic properties of the trace
distance), ∣∣Pr

[
1← G1

]
− Pr

[
1← G2

]∣∣ ≤√Pr [G2 aborts]

and similarly for G̃1 and G̃2, where G̃2 aborts with the same probability as G2.
By basic properties, after t := qH0 + · · · + qHi queries to the compressed oracle, no more than

t values have been recorded. I.e., if we were to measure, for the sake of the argument, the entire
compressed oracle to obtain the full database D, it would hold that supp(D) := {u |D(u) 6=⊥} has
cardinality at most t. Since k has not been used yet and so is still freshly random (i.e., independent
of x and D), the high-entropy condition (6) then ensures that

Pr
[
G̃2 abort

]
= Pr

[
G2 abort

]
= Pr

[
w ∈ supp(D)

]
≤
∑
j<i

qHj ε .

It remains to show that G2 and G̃2 behave identically conditioned on not aborting. The only
difference between the two games is that in G2 the crucial query is answered with y := H(h(k, x)) =
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H(w) and H ′ is not reprogrammed at the point w, while in G̃2 the crucial query is answered with
y := R(x) and H ′ is reprogrammed at the point w to H ′(w) := R(x). We argue that this difference
is not noticable by A.

First, we note that y is a fresh random value in both games. In the former game it is because,
conditioned on not aborting, the compressed oracle at the register h(k, x) is ⊥, and so when
uncompressing and measuring to obtain H, the hash value H(w) will be a fresh random value.
In the latter game it is because R(x) is a truly random function and, due to (7), x has not been
queried to R before.

Second, we observe that y = H ′(w) in both games. Indeed, in G̃2 this holds by definition; in
G2 it holds because H ′(w) = H(w), which follows from the fact that H ′ is reprogrammed only at
points w′ = h(k, x′) with x′ being a prior query to R, but then (7) ensures that w′ 6= w.

Thus, in both games, from A’s perspective, the tuple (k, y,H ′, H\w) of random variables has
the same distribution, where H\w refers to the function (table of) H but with the value at the
point w removed. The only difference is that in one game H ′(w) = H(w) and in the other not
(necessarily). However, the future behavior of A in both games only depends on (k, y,H ′, H\w),
and thus A behaves the same way in both games. Here we are exploiting that the future hash
queries by A are to H ′ (and not to H anymore), and, once more, we are using the restriction
(7), here to ensure that for any future F -query x′ by A, it holds that h(k, x′) 6= w, and thus the
response does not depend on H(w). Thus, H(w) does indeed not affect A’s behavior after the
crucial query.

Exploiting that PR2
i = G1 ≈ G2 = G̃2 ≈ G̃1 = P̃R

2

i , with the approximations bounded as
discussed further up, we obtain the claimed closeness claim. This concludes the proof.

Proof of Lemma 5. In order to show the closeness between P̃R
2

i and PR2
i+1, we define the interme-

diate games

Gi,j := A[H0R...HiRH′i,jHi,jF...FH′qO
]

for 0 ≤ j ≤ m := qHi+1, where H′i,j and Hi,j consists of j and m−j copies of H ′ and H respectively.
Note that for the extrame cases we have

Gi,0 = P̃R
2

i and Gi,m = PR2
i+1 .

Thus, it suffices to show closeness between Gi,j and Gi,j+1 for any 0 ≤ j < m. Note that they
only differ at one query, which is either to H ′ or to H, which we will refer to as the crucial query
for convenience. In the remainder, i and j are arbitrary (in the considered ranges) but fixed.

Define the games G̃1 and G1 from Gi,j and Gi,j+1 respectively as follows. Let X be the set of
queries x made to R prior to the crucial query, and set S := {h(k, x) |x∈X}. We then measure the
crucial query, which may be in a superposition, with the binary measurement that checks whether
the crucial query is an element of S, and we abort if this is the case.

In case of a negative outcome, i.e., the crucial query is not in S, there is no difference between
the reply provided by H and by H ′, and thus there is no difference between the two games — and
in case of a positive outcome, they both abort. In order to argue that this measurement causes
little disturbance, we again use the gentle measurement lemma to argue that∣∣Pr

[
1← G1

]
− Pr [1← Gi,j+1]

∣∣ ≤√Pr [G1 abort] ,

and correspondingly for Gi,j and G̃1. So it remains to bound the abort probability. For the
purpose of the argument, let us do a full measurement of the query, and let w be the outcome. We
note that k has not been used yet, and thus remains a fresh random key, independent of w and X.
Thus, using (6),

Pr
[
G1 abort

]
= Pr

[
G̃1 abort

]
= Pr [w ∈ S] ≤

∑
x∈X

Pr [w = h(k, x)] ≤ qOε .

Adding up this error term over the sequence Gi,0 ≈ · · · ≈ Gi,m of approximations, the proof is
concluded.
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