
Complexity Analysis of the SAT Attack on Logic
Locking

Yadi Zhong and Ujjwal Guin

Dept. of Electrical and Computer Engineering, Auburn University, City, Country,
yadi@auburn.edu,ujjwal.guin@auburn.edu

Abstract. Due to the adoption of the horizontal business model with the globalization
of semiconductor manufacturing, the overproduction of integrated circuits (ICs)
and the piracy of intellectual properties (IPs) have become a significant threat to
the semiconductor supply chain. Logic locking has emerged as a primary design-
for-security measure to counter these threats. In logic locking, ICs become fully
functional after fabrication only when unlocked with the correct key. However,
Boolean satisfiability-based attacks have rendered most locking schemes ineffective.
This gives rise to the numerous defenses and new locking methods to achieve SAT
resiliency. This paper provides a unique perspective on the SAT attack efficiency
based on conjunctive normal form (CNF) stored in the SAT solver. First, we show
that the attack learns a new relation between key bits upon every distinguishing
pattern. After each iteration, these additional clauses appended to the solver could
significantly decrease the key search complexity. Second, we demonstrate that the
SAT attack can break the locking scheme within the linear complexity of key size.
The deviation away from linear search can be explained by the oracle’s output and
different logic gate types. This helps to answer how different distinguishing input
eliminates fewer or more incorrect keys. Moreover, we show how key constraints on
point functions affect the complexity of SAT attack. The proper key constraint on
AntiSAT locking can effectively reduce the SAT attack complexity to constant 1. The
same constraint minimizes the complexity of breaking CAS-Lock down to the linear
range. Our analysis provides fresh perspectives on the capabilities of SAT attack,
and we offer new directions to achieve SAT resiliency.
Keywords: Logic locking, Boolean satisfiability (SAT), distinguishing input patterns,
conjunctive normal form (CNF), IP piracy

1 Introduction
The integrated circuits (ICs) are fundamental to virtually every technology in the Depart-
ment of Defense (DoD), industrial and commercial spaces. Moore’s Law has guided the
microelectronics industry for decades to enhance the performance of ICs. The continuous
addition of new functionalities in SoCs has forced design houses to adopt newer and lower
technology nodes to increase operational speed, reduce power consumption, overall die
area, and the resultant cost of a chip. This exponential growth becomes feasible due to the
globalization of semiconductor design, manufacturing, and test processes. Building and
maintaining a fabrication unit (foundry) requires a multi-billion dollar investment [Shi22].
As a result, a system-on-a-chip (SoC) design house acquires intellectual properties (IPs)
from many vendors and sends the design to a foundry for manufacturing, typically located
offshore due to the horizontal integration in the semiconductor industry. At present, the
majority of the SoC design houses no longer design the complete SoC and manufacture

mailto:yadi@auburn.edu, ujjwal.guin@auburn.edu

2 Complexity Analysis of the SAT Attack on Logic Locking

(a) (c)(b)

x0

x1

x2

x3

x0

x1

x2

x3

YLocked

Circuit
OutputInput

Key

Locked

Circuit
OutputInput

Key x0

x1

x2

x3

k0

Y

k1

x0

x1

x2

x3

k0

Y

k1

Figure 1: Overview of logic locking, where a circuit functions correctly when the right key is
programmed in a tamper-proof memory. (a) Abstract view of logic locking. (b) Original circuit.
(c) XOR-based locking, where XOR gates are added to lock the functionality.

chips on their own. As a result, the trusted foundry model is no longer assumed for
the production of ICs, where the trustworthiness of microelectronic products is often
questioned.

The underlying hardware in various information systems that were once trusted can
no longer be so due to the outsourced IC design and fabrication. The untrusted chip
fabrication and test facilities represent security threats to the current horizontal integration.
The security threats posed by these entities include: (i) overproduction of ICs, where an
untrusted foundry fabricates more chips without the consent of the SoC design house to
generate revenue by selling them in the market [RKM08,AK07,CB08,AKP07,HL08,BTZ10,
GSFT16], and (ii) piracy of IPs, where an entity in the supply chain can use, modify and/or
sell functional IPs illegally [CMBG+07,TW11,TGF15,BT18]. An untrusted foundry can
have access to all the mask information constructed from the GDSII or OASIS files and then
reconstruct all the layers and the complete netlist with advanced tools [TJ09]. In addition,
reverse engineering (RE) of ICs becomes feasible even for advanced technology nodes due to
the advancement of the tools for the decapsulation of the ICs and imaging. RE is commonly
used in the semiconductor industry to perform failure analysis, defect identification, and
verify intellectual property (IP) infringement [TJ07,TJ11]. Unfortunately, the same RE
can be exploited by an adversary to reconstruct the gate-level netlist from a chip [QCF+16].

One of the best ways to prevent an adversary from copying a netlist (either by an
untrusted foundry or a reverse engineer) is to hide or obfuscate the circuit. The attacker
cannot decode the original functionality even after extracting the netlist from RE. Logic
locking promises to hide the inner details of a circuit by inserting a set of key gates.
The only way to recover the original functionality is by applying a secret key stored in
a tamper-proof memory of the chip. Figure 1 shows an abstract representation of logic
locking. In addition to logic locking, hardware watermarking [Cha98,KLMS+01,QP07]
could identify and prevent copying a netlist to a certain extent; however, it does not offer
a proactive protection mechanism. The initial efforts in logic locking [RKM08, BTZ10,
RPSK12], and hardware watermarking [Cha98,KLMS+01,QP07] was broken by Boolean
Satisfiability (SAT) attack [SRM15]. Subramanyan et al. [SRM15] applies SAT solver for
deriving the correct key value with distinguishing input patterns. Subsequently, novel
logic locking techniques have been proposed to drastically increase the required number
of input patterns in the SAT attack to break the key. These includes Anti-SAT [XS18],
SARLock [YMRS16], SFLL [YSN+17], and CAS-Lock [SXTF20]. Concurrently, multiple
attacks [YMSR17,SLM+17,XSTF17,SZ17,SS19,ZCZG19,JRG20,LPS21,SLS21,APK+21]
against these logic locking arise.

This paper presents two novel aspects to analyze SAT attack complexity. First, we
show a detailed analysis of the SAT attack based on the conjunctive normal form (CNF)
clauses stored in the SAT solver. The SAT attack iteratively finds distinguishing input
patterns (DIP) to eliminate an equivalent class of incorrect keys. We explore what the
attack learned after finding a DIP at each iteration. We show that the SAT tool creates a
relationship between different key bits by applying the DIP to the oracle and observing

Yadi Zhong and Ujjwal Guin 3

the correct response. Principally, the expected goal for any logic locking technique is
to achieve an exponential search complexity for the secret key size so that an adversary
cannot determine the correct key value within the polynomial attack complexity. However,
our analysis points to the linear growth of the required patterns or iterations rather than
the desired exponential increase with keys. Using an example, we show how the attack uses
a DIP to eliminate a class of equivalent keys to make the complexity linear. We also show
that the complexity gets even lower for circuits with multiple logic cones. This motivates
us to analyze the effectiveness of the SAT attack under the single logic cone of one output.
Note that a logic cone can be described as a directed graph where the inputs nodes and
gates are pointing toward the sole output. Second, one interesting observation is that the
complexity of the SAT attack often reduces with the increase of the key size. We provide
detailed explanations of why it takes fewer iterations to find the correct key when we lock
the circuit with a larger key size. Finally, we analyze the SAT attack complexity for a
circuit that is locked using point functions [XS18,SXTF20].

The contributions of this paper are summarized as follows:

• New perspective on SAT attack efficiency: Even though the SAT attack was presented
in 2015, its complexity analysis was not performed to find out why a DIP eliminates
a large number of keys. This paper presents the step-by-step analysis of incorrect
key elimination for each DIP using examples. The inter-dependencies among key
bits are clearly revealed with a DIP and the corresponding oracle’s response. We
further show that the attack requires less number of iterations when keys can be
observed simultaneously at multiple primary outputs.

• SAT attack complexity: The majority of locking schemes focus on an exponential
complexity close to the entire keyspace for ensuring hardness against SAT attack.
However, SAT attack has shown an overall linear trend upon key size. Furthermore,
increasing the number of key gates does not necessarily correlate to more iterations
solving the correct key. Instead, it is common to observe a decrease in search
complexity. To the best of our knowledge, we are the first to show a reduction
in attack complexity with a larger key size. We believe that the findings of this
paper provide the researchers with the necessary information to develop an SAT
resilient solution. To address the reduction in attack complexity with a larger key,
we observe that the response of the oracle after applying a DIP plays an important
role in eliminating a large number of incorrect keys. A response 0 at the OR gate
effectively splits the logic cone into two subcones, where the keys inside the subcone
are dependent, but independent from the keys of the other subcone. Such an IO
pair reduces the attack complexity exponentially when keys are evenly distributed
among the two subcones. Similarly, logic 1 at the AND output has a similar effect in
shrinking the search space.

• Insufficiency in the construction of point functions: The point function insertion in
logic locking has shown strictly exponential iterations in complexity against SAT
attack. Unfortunately, they can be broken while properly constraining the SAT
tool. We show why SAT attack needs only 1 IO pair to derive the key value for
AntiSAT if the keys in the block g are held constant. We also demonstrate why
CAS-Lock with fixed key Kg reduces the exponential search complexity to linear
with our contributions to the analysis of SAT attack and its complexity.

The rest of the paper is organized as follows. We briefly introduce the background of
SAT attack and various locking methods in Section 2. The inter-dependency between keys
learned by the SAT solver after each DIP is extensively explored in Section 3. The SAT
attack complexity is further analyzed and explained in Section 4. Analysis of the point
functions is shown in Section 5. The future directions are described in Section 6. Finally,
we conclude the paper in Section 7.

4 Complexity Analysis of the SAT Attack on Logic Locking

2 Background
Logic locking emerges as a promising solution against IC overproduction and IP piracy.
However, the initial efforts [RKM08,BTZ10,RPSK12,RZZ+15] were challenged by SAT
attack [SRM15], a tool that breaks all these locking techniques efficiently. Subsequent
logic locking schemes [XS18,YMRS16,SXTF20,YSS+17,YSN+17,SNL+20] work towards
thwarting this attack. In this section, we revisit the SAT attack algorithm and provide an
overview of the various locking efforts toward SAT resiliency.

2.1 SAT attack on Logic Locking
The entire series of attacks and the solutions thereafter originated from the SAT at-
tack [SRM15]. Subramanyan et al. [SRM15] exploits the idea of combinational equiv-
alence checking with miter circuit and Boolean Satisfiability [KPKG02] to attack logic
locking schemes. It successfully decrypts the secret key from various logic locking tech-
niques [RKM08,BTZ10,RPSK12,RZZ+15] within a short time frame. The SAT attack
requires two circuits, the original circuit, CO(X, Y), and its locked version, C(X, K, Y),
where X, Y , and K are the inputs, outputs, and key, respectively. The correct key Kc

restores the original circuit functionality so that its output response is always consis-
tent with the original circuit (e.g., the oracle) under every possible input combination,
C(X, Kc, Y) = CO(X, Y). An incorrect key programmed in the tamper-proof memory
leads to output mismatch under one or more input vectors. The output discrepancy
between an incorrect key and the correct one is shown on the miter circuit’s output.

Algorithm 1: SAT attack on logic locking [SRM15].
Input : Unlocked circuit, oracle (CO(X, Y)) and locked circuit (C(X, K, Y))
Output : Correct Key (Kc)

1 i← 0 ;
2 F ← [];
3 while (true) do
4 i← i + 1 ;
5 [Xi, Ki, r] = sat[F ∧ (YAi

̸= YBi
)];

6 if (r == false) then
7 break;
8 end
9 Yi = sim_eval(Xi);

10 F ← F ∧ C(Xi, K, Yi);
11 end
12 Kc ← Ki;
13 return Kc ;

The SAT attack derives the correct key value through the following steps:

• Finding the distinguishing input pattern (DIP) from the miter circuit: It
first constructs two locked circuit instances (e.g., C(X, KA, YA) and C(X, KB , YB))
to form a miter construction. Both circuits share the same input except the keys, KA,
KB . Any output mismatch between the two locked circuits can be easily identified
at the miter’s output. In each round (i.e., ith), the tool finds the hypothesis key Ki,
and reports a Boolean indicator r depending on whether a satisfiable assignment for
the miter exists or not, Algorithm 1, Line 5. If SAT is returned, the miter succeeded
in amplifying the mismatched output, r is true, and the corresponding input pattern

Yadi Zhong and Ujjwal Guin 5

Xi is also recorded. If the UNSAT conclusion is generated, the differential output
cannot be observed, r is assigned to false, and Xi is empty.

• Deriving the correct key: Upon obtaining a DIP Xi, the SAT attack acquires
the actual output Yi from oracle simulation, CO(Xi, Yi), Line 9. The input Xi and
the correct output Yi are used in updating the solver assumptions F , Line 10. The
constraints in F help narrow down the valid keyspace until it is left with only the
correct key(s).

The SAT attack repeats the above two steps, where it iteratively checks for satisfiable
assignment of the miter circuit. If r is true at the ith iteration, we know that incorrect
keys still exist in the search space. When the miter circuit becomes UNSAT with the
assumptions F , the Boolean variable r becomes false and it indicates that differential
output does not exist. This means no more incorrect keys can be found as no discrepancy
can be produced. If multiple keys remain in the search space, it must be true that multiple
solutions are valid as the correct key since they all give the same output response. This
holds for a few locking designs [XS18,SXTF20] and certain locking scenarios, e.g., chained
XOR key gates. Returning any one of them can restore the original circuit functionality.
If only one key is left, it must be the right one. Then, the attack exits the while loop,
Lines 6-8, and extracts the last round’s hypothesis key as the correct one, Line 12. The
attack finishes by reporting the correct key to the console, Line 13.

Note that we modify the original program [SRM15] by disabling both preload vectors
(all zeros and all ones) so that the number of distinguishing patterns |P | used to derive
the correct key by the SAT attack is one less than the number of iterations T , |P | = T − 1.
This is because the last iteration does not produce any DIP.

2.2 SAT Resistant Logic Locking Techniques and Attacks
As SAT attack [SRM15] successfully breaks various logic locking techniques [RKM08,BTZ10,
RPSK12], it propels the research community to explore new locking schemes [YMRS16,
XS18,SXTF20,YSS+17,YSN+17,SNL+20] that utilize point functions for achieving the
minimal output corruptibility. SARLock [YMRS16] perturbs only the output of one
input pattern for each incorrect key. AntiSAT [XS18] and CAS-Lock [SXTF20] configure
the point function with two complementary blocks g and g. SFLL [YSS+17, YSN+17]
flips the output for certain input patterns, where the correct key flip back the upset
output and restores the original functionality. Although these techniques guarantee
exponential iterations in SAT attack, various attacks [YMSR17,SLM+17,XSTF17,SZ17,
SS19,ZCZG19,JRG20,LPS21,SLS21,APK+21] have been proposed to exploit the designs’
vulnerabilities, e.g., from structural and functional perspectives, and restore the original
circuit. These attacks can be divided into several categories, SAT-based [SLM+17,XSTF17,
SLS21,SZ17], ATPG-based [JRG20,LPS21], structural-based [YMSR17,SS20,ZCZG19,
APK+21]. For example, SARLock [YMRS16] can be broken by AppSAT [SLM+17] and
Bypass attack [XSTF17] while AntiSAT [XS18] is attacked by signal probability skew
(SPS) [YMSR17], AppSAT [SLM+17], and Bypass attack [XSTF17].

3 SAT Attack Analysis: Pruning of Incorrect Key with
CNF Update

Even though SAT attack has been proposed, the reasons for its efficiency and effectiveness
in breaking various locking schemes and deriving the correct keys have not been thoroughly
analyzed. In this section, we investigate the CNF clauses stored in the SAT solver and
how it gets updated in every iteration with the distinguishing input pattern and output

6 Complexity Analysis of the SAT Attack on Logic Locking

response. The CNF consists of multiple clauses connected with AND (∧). One or more
literals are joined by OR (∨) inside each clause. We use literals, variables, and nodes
interchangeably. Generally, a circuit can have multiple outputs y0, y1, ..., yt−1. We define
a logic cone based on outputs’, where all the inputs and wires (gate’s output) which could
reach an output yi belong to the logic cone of yi. An increased number of primary outputs
usually leads to the propagation of multiple key values reaching different output bits
simultaneously. We begin our analysis with an example circuit with a single output and
show how the SAT attack decrypts the 3-bit key with 3 IO pairs. Then, we describe how
SAT attack can use fewer patterns to determine the secret key under an increased number
of logic cones. This offers new insights on the property of SAT attack.

3.1 SAT Attack for a Locked Cone with One Output
This section examines how SAT attack implicitly removes the incorrect keys from the
entire key search space. As described in Section 2.1, SAT solver finds a valid assignment
to the miter circuit, and the tool records the extracted input vector, along with its output
response obtained from the oracle simulation. The following example shows how SAT
attack learns additional information on the secret keys from each IO pair from the miter
circuit and oracle simulation.

2 x0

3 x1

4 x2

5 x3

y0 13

8 k2

7 k1

6 k0

Gk1Gk1
Gk0Gk0

Gk2Gk2

G1

G2

G3

2 x0

3 x1

4 x2

5 x3

y0 13

8 k2

7 k1

6 k0

Gk1
Gk0

Gk2

G1

G2

G3

x0

x1

x2

x3

y0G3G3

G1G1

G2G2

x0

x1

x2

x3

y0G3

G1

G2

(a) (b)

9

14
10

11

12

0
1
1
0

0

8 k2

7 k1

6 k0

Gk1Gk1
Gk0Gk0

Gk2Gk2

G1

G2

G3

0
1
1
0

0

8 k2

7 k1

6 k0

Gk1
Gk0

Gk2

G1

G2

G3 8 k2

7 k1 k0 68 k2

7 k1 k0 616

17
18

20

19 20

8 k2

7 k1

6 k0

20

20

8 k2

7 k1

6 k0

20

(c)

19

17 18

20

8 k2

7 k1

6 k0

20

(c)

19

17 18

1
1
1
1

1

8 k2

7 k1

6 k0

Gk1Gk1
Gk0Gk0

Gk2Gk2

G1

G2

G3

1
1
1
1

1

8 k2

7 k1

6 k0

Gk1
Gk0

Gk2

G1

G2

G3 8 k2

7 k1 k0 68 k2

7 k1 k0 621

22
23

25

24

0
1
1
1

0

8 k2

7 k1

6 k0

Gk1Gk1
Gk0Gk0

Gk2Gk2

G1

G2

G3

0
1
1
1

0

8 k2

7 k1

6 k0

Gk1
Gk0

Gk2

G1

G2

G326

27
28

30

29

25

8 k2

7 k1

6 k0

25

25

8 k2

7 k1

6 k0

25

(d)

24

22 23

25

8 k2

7 k1

6 k0

25

(d)

24

22 23

30

8 k2

7 k1

6 k0

30

30

8 k2

7 k1

6 k0

30

(e)

29

27 28

30

8 k2

7 k1

6 k0

30

(e)

29

27 28

8 k2

7 k1 k0 68 k2

7 k1 k0 6

Figure 2: Step-by-step SAT attack analysis with different DIPs. Each DIP and the response
observed from the oracle create a relationship among different key bits. (a) Original circuit. (b)
Locked circuit. CNF update with (c) 1st IO pair P1 = {X1; Y1} = {x0, ..., x3; y0} = {0110; 0}, (d)
2nd IO pair P2 = {1111; 1}, and (e) 3rd IO pair P3 = {0111; 0}.

Let us consider a simple circuit with 4 inputs x0, x1, ..., x3 and 1 output y0 of Figure 2(a).
The locked version with 3 key bits, k0, k1, k2, are shown in Figure 2(b) and each logic gate
is mapped to the corresponding CNF clauses. Upon finding of valid assignment to the miter
circuit in the first iteration, the DIP X is extracted, {X1} = {x0, x1, ..., x3} = {0110}.

Yadi Zhong and Ujjwal Guin 7

The correct output response Y1 = 0 is gathered from simulating the oracle with the input
patter X. This IO pair P0 = {X1; Y1} = {x0, x1, ..., x3; y0} = {0110; 0} is then recorded.
We show in detail how the CNF for the locked circuit is updated so that the SAT attack
prunes out half of the search space (4 incorrect keys) with this IO pair. To avoid altering
the locked circuit’s original CNF, the internal nodes are labeled with new variables 17-20,
as shown in Figure 2(c), and its equivalent CNF for C(X1, K, Y1) (abbreviated as C1) is:

C1 =
AND gate G1︷ ︸︸ ︷

(2 ∨ 3 ∨ 16) ∧ (2 ∨ 16) ∧ (3 ∨ 16)∧
AND gate G2︷ ︸︸ ︷

(4 ∨ 17 ∨ 18) ∧ (4 ∨ 18) ∧ (17 ∨ 18)∧
AND gate G3︷ ︸︸ ︷

(18 ∨ 19 ∨ 20) ∧ (18 ∨ 20) ∧ (19 ∨ 20)∧
XOR gate Gk0︷ ︸︸ ︷

(20 ∨ 6 ∨ 13) ∧ (20 ∨ 6 ∨ 13) ∧ (20 ∨ 6 ∨ 13) ∧ (20 ∨ 6 ∨ 13)∧
XOR gate Gk1︷ ︸︸ ︷

(16 ∨ 7 ∨ 19) ∧ (16 ∨ 7 ∨ 19) ∧ (16 ∨ 7 ∨ 19) ∧ (16 ∨ 7 ∨ 19)∧
XOR gate Gk2︷ ︸︸ ︷

(17 ∨ 5 ∨ 8) ∧ (17 ∨ 5 ∨ 8) ∧ (17 ∨ 5 ∨ 8) ∧ (17 ∨ 5 ∨ 8)

With IO pair P1, we know the logic values for input/output, namely literals 2 = 0, 3 =
1, 4 = 1, 5 = 0, 13 = 0, and the C1 is updated as:

C1 = (16) ∧ (17 ∨ 18) ∧ (17 ∨ 18) ∧ (18 ∨ 19 ∨ 20) ∧ (18 ∨ 20) ∧ (19 ∨ 20) ∧ (20 ∨ 6) ∧
(20 ∨ 6) ∧ (16 ∨ 7 ∨ 19) ∧ (16 ∨ 7 ∨ 19) ∧ (16 ∨ 7 ∨ 19) ∧ (16 ∨ 7 ∨ 19) ∧ (17 ∨ 8)
∧ (17 ∨ 8)

This means node 16 has to be logic 0, and F is adjusted to:

C1 = (17 ∨ 18) ∧ (17 ∨ 18) ∧ (18 ∨ 19 ∨ 20) ∧ (18 ∨ 20) ∧ (19 ∨ 20) ∧ (20 ∨ 6) ∧ (20 ∨ 6)
∧ (7 ∨ 19) ∧ (7 ∨ 19) ∧ (17 ∨ 8) ∧ (17 ∨ 8)

This equation indicates that variables 7 and 19 have the same logic value, so are 6 and
20, 8 and 17, 17 and 18. The circuit representation of the above equation is described in
Figure 2(d), which is a function of k0, k1, k2, as described in C(Xi, K, Yi). These are the
clauses appended in the formula F . Equivalently, the SAT attack learned from IO pair P1
is essentially the relation between k0, k1, k2, where k0 = k1 · k2, as shown in Figure 2(e).
With this constraint, the possible key space shrank into half.

In the second iteration, SAT solution of the miter, together with oracle simulation,
returns the IO observation P2 = {X2; Y2} = {1111; 1} as the distinguishing IO pair, as
drawn in Figure 2(d). Similar to the derivation we performed for the first iteration, the
circuit representation of the added CNF clauses is shown in Figure 2(g), which again is
a function between the 3 key bits, as simplified in Figure 2(h). This constraint shrinks
the remaining keyspace in half, which, equivalently, removes another two incorrect key
combinations. Likewise, the tool returns another IO pair P3 = {0111; 0} on the third
iteration, and the appended CNF with its equivalent relation to the key is shown in
Figure 2(e). The relations obtained from these three patterns, P1, P2, P3, Figure 2(c,d,e),
uniquely determines the 3 key bits {k0, k1, k2} = {000}. This is the reason that, on the
fourth iteration, no more distinguishing input can be found for the miter circuit, where r
is false, and the SAT attack is complete.

To summarize, the IO pair provides the attack with additional information on the
unknown key bits, as the locked circuit equation C(Xi, K, Yi) with a fixed IO offers an
equation for the unknown keys. In each iteration, a new equation for the key bits is

8 Complexity Analysis of the SAT Attack on Logic Locking

obtained from the corresponding IO pair, which is independent of the findings derived
from the previous rounds. SAT attack derives the correct key value once the accumulated
system of equations can uniquely determine the unknown key bits.

3.2 SAT Attack against Multiple Overlapping Logic Cones
It is common for a circuit to have multiple primary outputs. In other words, we know the
circuit has multiple logic cones. These outputs are more likely to observe incorrect key
responses than a single output. The reason is that the effect of multiple keys can reach
several outputs, accelerating the removal of incorrect combinations and facilitating the
final decision of the correct key in earlier iterations than the single logic cone where every
key has to pass through the same output port. Keys that reside exclusively in the same
logic cone may or may not be interdependent with each other when trying to propagate
just one of them to the output. This is demonstrated by the example below. The following
example shows that SAT attack needs fewer iterations to derive the correct key under
multiple intersecting logic cones.

x0

x1

x2

x3

x4

x5

y0

y1

G3

G4

G1

G5

G2

x0

x1

x2

x3

x4

x5

y0

y1

G3

G4

G1

G5

G2

(a)

2 x0

3 x1

4 x2

5 x3

6 x4

7 x5

y0 17

y1 15
10 k2

9 k1

8 k0

Gk1Gk1

Gk0Gk0

Gk2Gk2

G1

G2

G4

G5

11

16

12
18

13

14G3G3

(b)

2 x0

3 x1

4 x2

5 x3

6 x4

7 x5

y0 17

y1 15
10 k2

9 k1

8 k0

Gk1

Gk0

Gk2

G1

G2

G4

G5

11

16

12
18

13

14G3

(b)

0
1
1
1

0
1

0

1
10 k2 = 0

9 k1

8 k0 = 0

Gk1Gk1

Gk0Gk0

Gk2Gk2

G1

G2

G4

G5

26

30

27
31

28

29G3G3

(d)

0
1
1
1

0
1

0

1
10 k2 = 0

9 k1

8 k0 = 0

Gk1

Gk0

Gk2

G1

G2

G4

G5

26

30

27
31

28

29G3

(d)

9 k1 = 0

0
1
1
1

0
1

0

1
10 k2 = 0

9 k1

8 k0 = 0

Gk1

Gk0

Gk2

G1

G2

G4

G5

26

30

27
31

28

29G3

(d)

9 k1 = 0

0
1
1
0

0
1

0

0
10 k2

9 k1

8 k0

Gk1Gk1

Gk0Gk0

Gk2Gk2

G1

G2

G4

G5

20

24

21
25

22

23G3G3

(c)

0
1
1
0

0
1

0

0
10 k2

9 k1

8 k0

Gk1

Gk0

Gk2

G1

G2

G4

G5

20

24

21
25

22

23G3

(c)

9 k1 24

8 k0 = 0
10 k2 = 0

9 k1 24

8 k0 = 0
10 k2 = 0

0
1
1
0

0
1

0

0
10 k2

9 k1

8 k0

Gk1

Gk0

Gk2

G1

G2

G4

G5

20

24

21
25

22

23G3

(c)

9 k1 24

8 k0 = 0
10 k2 = 0

Figure 3: SAT attack on 2 intersecting logic cones. (a) original circuit (b) locked circuit (c) 1st

pair P1 = {X1; Y1} = {x0, ..., x5; y0, y1} = {011001; 00} (d) equivalent relation of k0, k1, k2 with
P1, k0 and k2 are solved (e) 2nd IO pair P2 = {011101; 01} (f) k1 is obtained.

Let us consider a circuit with 2 outputs, y0 and y1, as shown in Figure 3(a). The
locked circuit, as shown in Figure 3(b), has 3 key bits, k0, k1, k2, with the same locations
as in Figure 2(b). It differs from the locked circuit in Figure 2(b) with additional gates
G4, G5 and output y1. This circuit has two logic cones; one with output y0, inputs
x0, x1, x2, x3, keys k0, k1, k2 and gates G1, G2, G3, Gk0, Gk1; the other with output y0,
inputs x2, x3, x4, x5, key k2 and gates G2, G4, Gk2. The effect of k2 can be observed from
both outputs, y0 and y1. SAT attack only needs 2 IO pairs to solve the keys, as opposed

Yadi Zhong and Ujjwal Guin 9

to 3 IO observations for the locked circuit with a single output y0 in Figure 2(b). The first
pattern P1 = {X1; Y1} = {x0, ..., x5; y0, y1} = {011001; 00} is shown in Figure 3(c), which
is equivalent to the CNF expression of C(X1, K, Y1) (abbreviated as C1) below.
C1 = (2 ∨ 3 ∨ 20) ∧ (2 ∨ 20) ∧ (20 ∨ 3) ∧ (20 ∨ 9 ∨ 24) ∧ (20 ∨ 9 ∨ 24) ∧ (20 ∨ 9 ∨ 24) ∧

(20 ∨ 9 ∨ 24) ∧ (4 ∨ 25 ∨ 21) ∧ (4 ∨ 21) ∧ (21 ∨ 25) ∧ (21 ∨ 24 ∨ 23) ∧ (21 ∨ 23) ∧
(24 ∨ 23) ∧ (21 ∨ 22 ∨ 15) ∧ (21 ∨ 15) ∧ (22 ∨ 15) ∧ (25 ∨ 5 ∨ 10) ∧ (25 ∨ 5 ∨ 10) ∧
(25 ∨ 5 ∨ 10) ∧ (25 ∨ 5 ∨ 10) ∧ (6 ∨ 7 ∨ 22) ∧ (6 ∨ 22) ∧ (22 ∨ 7) ∧ (23 ∨ 8 ∨ 17) ∧
(23 ∨ 8 ∨ 17) ∧ (23 ∨ 8 ∨ 17) ∧ (23 ∨ 8 ∨ 17)

IO pair P1 determines the logic value for inputs and outputs, where 2 = 0, 3 = 1, 4 =
1, 5 = 0, 6 = 0, 7 = 1, 15 = 0, 17 = 0. The CNF for the locked circuit with P1 is adjusted
analogously to the previous example’s (Figure 2) by plugging in the logic value of these
known literals. It is straightforward that node 20, the output of AND gate G1, has logic 0,
as its inputs are literals 2 = 0 (x0) and 3 = 1 (x1). Similarly, both node 21 and 22 are in
logic 0, since they are the input of OR gate G5, whose output is logic 0 (15 = 0). As literal
21 is the output of AND gate G2, its unknown input, node 25 can be uniquely determined
to be logic 0, since the other input x2 (4) has logic 1 with AND output in logic 0. Literal
23, the output of AND gate G3 must be logic 0 since one of its input, node 21, is 0. Hence,
the CNF clauses added to SAT solver after the first iteration is:

C1 = (9 ∨ 24) ∧ (9 ∨ 24) ∧ (10) ∧ (8)
With C1, SAT attack determines both key k0, that is literal 8, has logic value 0 and k2

of node 10 is logic 0 with 1 IO pair. Key k1 is the only unknown key left in this iteration,
and it has the same logic value as node 24, (9 ∨ 24) ∧ (9 ∨ 24), which can be represented
as a buffer. The findings of k0, k1 and k2 are summarized in Figure 3(d). The IO vector
for the second iteration is P2 = {X2; Y2} = {011101; 01}, as shown in Figure 3(e) and it
uniquely determines the key bit k1 as logic 0. At the third round, SAT attack returns
UNSAT as no more incorrect key needs to be pruned and the program finishes.

In essence, SAT attack learns new relations between the unknown key bits at each
iteration, expressed in CNF clauses. If a key bit can be uniquely determined, its value is
appended as a unit clause. The combined relations help SAT solver decrypt all key bits,
deriving the correct key. Compared with a circuit with a single output, the circuit with
more fanouts could facilitate the breaking of inter-dependency between key bits at earlier
rounds. Having multiple outputs (or logic cones) will reduce the number of iterations for
the SAT attack, making it easier to derive the correct key when multiple key bits can be
observed at the outputs simultaneously. Therefore, in the following discussions, we focus
on the analysis of the SAT attack with a single logic cone.

4 SAT Attack Analysis: Search Complexity
Logic locking perturbs the original functionality of the circuit with additional key gates
so that, unless the correct key is programmed in the chip, the locked circuit behaves
differently from the oracle. The goal of logic locking is to prevent the adversary from
deriving the correct key value either under oracle-less attacks or oracle-guided attacks.
In this section, we focus on the total iterations required for the SAT attack as the SAT
attack complexity. We provide analysis on how the output response of the oracle under of
certain DIPs can trim more incorrect keys than other IO pairs.

4.1 Linear Trend in Total SAT Attack Iterations
As observed from the original SAT attack [SRM15], MUX-based logic locking [RZZ+13]
normally needs fewer IO vectors than its XOR-based counterpart. For LUT-based lock-

10 Complexity Analysis of the SAT Attack on Logic Locking

ing [BTZ10], SAT attack is essentially performing the same procedure as the automatic
test pattern generation (ATPG) tool, as the keys inside one LUT can only be observed one
at a time. The differential output behavior for the miter is guaranteed when the key bit
value, or its complement, reaches the primary output, which is equivalent to having either
a stuck-at 0 or stuck-at 1 placed at the same key line and observing the faulty response
at the output [BA04]. That is to say, the total iterations required to break LUT-based
locking are in the same order of the key size, and could be fewer when multiple logic
cones are present in the circuit (see analysis in Section 3.2). Therefore, the complexity of
LUT-based locking is linear with respect to key size. We instead select XOR-based locking
to show the performance of SAT attack.

0 10 20 30 40 50 60 70 80 90
Key Size (x)

-50

0

50

100

150

200

250

It
er

at
io

ns
 (

y)

c432-N421

0 20 40 60 80 100
Key Size (x)

0

50

100

150

200

It
er

at
io

ns
 (

y)
c880-N878

0 10 20 30 40 50 55
Key Size (x)

0

100

200

300

400

500

600

It
er

at
io

ns
 (

y)

c1355-G1328

0 20 40 60 80 100
Key Size (x)

0

50

100

150

It
er

at
io

ns
 (

y)

c1908-N2811

0 20 40 60 80 100
Key Size (x)

0

100

200

300

400

It
er

at
io

ns
 (

y)

c2670-N3881

0 20 40 60 80 100 120
Key Size (x)

0

20

40

60

80

100
It

er
at

io
ns

 (
y)

c3540-N5360

0 50 100 150 200 250 280
Key Size (x)

0

50

100

150

200

250

300

It
er

at
io

ns
 (

y)

c5315-N8127

0 50 100 150 200 250 280
Key Size (x)

0

50

100

150

200

250

300

It
er

at
io

ns
 (

y)

c5315-N8128

0 20 40 60 80
Key Size (x)

-20

0

20

40

60

80

100

It
er

at
io

ns
 (

y)

c6288-N6288

Figure 4: SAT attack Iterations for ISCAS’85 benchmarks.

SAT attack previously analyzed total observations needed to decrypt various locked
benchmarks with the same overhead. To quantitatively show the overall trend of the
complexity of this attack, we iteratively increase the key size of a circuit so that we could
get a comprehensive view of the relations between key size and complexity within each
locked circuit. The locking is performed with the insertion of XOR/XNOR key gates
before any gate types except XOR/XNOR, inverter (INV), or buffer (BUF) to ensure a
unique solution for the correct key. To remove the potential complexity reduction in the
presence of multiple logic cones, we extract single cones from the ISCAS’85 benchmarks

Yadi Zhong and Ujjwal Guin 11

so that all the locked circuit has a single output, where the response of any incorrect key
combinations is observed through the sole output. In particular, we pick the logic cone with
the largest gate number, where more keys can be inserted than smaller cones. We exclude
benchmark c499 as its largest cone supports only a maximum of 21 keys but includes the
multiplier benchmark c6288. All benchmarks are first synthesized with 32nm technology
libraries in Synopsys Design Compiler [Syn]. Then, each synthesized circuit is converted
to a directed graph with inputs pointing toward the gates’ output and, ultimately, the
primary output. Logic cones are extracted by reversing all the edge direction [MATa] and
performing breadth-search [MATb] from each primary output. The ordered list returned
from the breadth-first search has two uses. First, by comparing the number of nodes in
the list, the largest cone (or cones if a tie) is determined and extracted.. Second, the
breadth-first search traverses all the gates (nodes) within the same layer (the same distance
from the output nodes) before exploring the gates at the subsequent layers. Following
the order of the same nodes as the breadth-first search, we successively add one more
XOR key gate at a time, starting from gates that are closest to the primary output with
increasing proximity, while skipping any XOR/XNOR, INV, and BUF. The original cone
and its locked designs are all converted to the bench format. SAT attack runs through
each and every locked cone, and the total iterations are recorded. Figure 4 shows the SAT
attack complexity (with respect to total iterations) on 9 benchmark cones with increasing
key size. For example, c432-N421 is the logic cone from the c432 benchmark with output
N421. Cone c5315-N8127 and c5315-N8128 both contain the same number of gates, but
there is a significant overlap between them.

60 65 70 75 80
Key Size (x)

80

100

120

140

160

It
er

at
io

ns
 (

y)

c432-N421

60 65 70 75 80
Key Size (x)

60

80

100

120

140

It
er

at
io

ns
 (

y)

c880-N878

20 25 30 35 40
Key Size (x)

0

50

100

150

200

It
er

at
io

ns
 (

y)

c1355-G1328

60 65 70 75 80
Key Size (x)

60

80

100

120

It
er

at
io

ns
 (

y)

c1908-N2811

60 65 70 75 80
Key Size (x)

50

100

150

200

It
er

at
io

ns
 (

y)

c2670-N3881

60 65 70 75 80
Key Size (x)

40

45

50

55

60

It
er

at
io

ns
 (

y)

c3540-N5360

60 65 70 75 80
Key Size (x)

30

40

50

60

It
er

at
io

ns
 (

y)

c5315-N8127

200 205 210 215 220
Key Size (x)

120

140

160

180

It
er

at
io

ns
 (

y)

c5315-N8128

60 65 70 75 80
Key Size (x)

40

50

60

70

80

It
er

at
io

ns
 (

y)

c6288-N6288

Figure 5: The zoomed-in view of SAT attack Iterations for ISCAS’85 benchmarks.

It is clear that there is an overall linear trend in total iterations with increased key size
with single primary output. The best fit line for each cone is shown in a dashed line with
its equation recorded in the legend. It indicates that locking with more key gates does not

12 Complexity Analysis of the SAT Attack on Logic Locking

ensure an exponential complexity increase for the SAT attack. Second, all 9 benchmark
cones do not have a monotonous increase in complexity when more keys are inserted. The
zoomed-in view of the SAT attack complexity for the benchmarks in Figure 4 is shown
in Figure 5. It is evident that the addition of key gates does not lead to an increment in
SAT attack complexity. The zig-zag behavior in SAT attack complexity is observed in all
benchmark cones. The question is, what causes the SAT attack to have such complexity
drops when more keys are present in a locked design? The next section will provide a
qualitative answer to this behavior.

4.2 Exponential Elimination of Keys within an Iteration
From Section 3, we know that, at each round (ith), SAT attack finds DIP (Xi) for the
miter circuit, the oracle output (Yi) and updates CNF with new relations between the
keys C(Xi, K, Yi). As described in Section 4.1, the reduction in SAT attack complexity
can happen with a larger key size. Sometimes, one may notice that C(Xi, K, Yi) clauses
added from an IO pair {Xi, Yi} may put more constraints on keys, which is equivalent to
eliminating more incorrect keys, than other distinguishing IO vectors found by the SAT
attack. We explore how the oracle’s output response could explain the non-monotonous
trend for the SAT attack complexity. We also demonstrate how SAT attack is able to trim
the search space exponentially based on the circuit structure and the IO pair returned.
This answers why SAT attack could use fewer IO observations than the key size to derive
the correct key.

Two possible locking scenarios can happen for a locked circuit when we categorize it
based on its output. One is that the output of the locked cone is directly connected to a
key gate while the other does not. We first explore the locked circuit when one of the key
gates is directly placed at the primary output, and shown in Figure 6. We show that only
one pattern is sufficient to remove half of the keyspace.

Theorem 1. The first IO pair P1 removes 2n−1 incorrect key combinations for any locked
circuit with key gate (XOR) at the primary output.

y

k0

x0

x1

xr-1

k1

k2

kn-1

Locked Cone

...
...

f

Figure 6: The abstract view of a locked circuit with key gate (XOR with key k0 and f as its
input) at the primary output.

Proof. The first IO pair P1 = {X1; Y1} = {x0, ..., xr−1; y} gives a relation between the
keys of C(X1, K, Y1). Specifically, the CNF for the output XOR gates is updated from
(k0 ∨ f ∨ y) ∧ (k0 ∨ f ∨ y) ∧ (k0 ∨ f ∨ y) ∧ (k0 ∨ f ∨ y) to either (k0 ∨ f) ∧ (k0 ∨ f) when
y = 0 or (k0 ∨ f) ∧ (k0 ∨ f) when y = 1. This means that either f and k0 has the
same logic value f = k0 if y = 0, or complementary of each other f = k0 if y = 1.
With the known input vector X1 from P1, we know that the 1-bit f is essentially a
function of the n-1 bit keys {k1, ..., kn−1}. It is equivalent to a mapping from (n-1)-bit
to 1-bit, M := {0, 1}n−1 −→ {0, 1}. Depending on the oracle’s output value y, either
k0 or its complementary logic value is the output of mapping M . In other words, this

Yadi Zhong and Ujjwal Guin 13

mapping M restricts the value of k0 such that it cannot be both 0 and 1 under every
input combination from the (n-1)-bit input, but a definite value. Namely, there are 2n−1

possible key combinations for the n-bit key K as key bit k0 depends on the rest of the
(n-1)-bit keys {k1, ..., kn−1}. Therefore, the mapping M , derived from IO pair P1, removes
2n − 2n−1 = 2n−1 possible key combinations from the search space.

This statement remains true if k0 is the only key bit in the locked circuit, where n = 1.
The construction of the miter circuit ensures that the two copies of the locked circuit have
the opposite logic value for the key bit k0, as they form the entire keyspace. The first IO
pair is sufficient to derive the correct key and prune out the incorrect one, which is the
same as slashing the search space in half.

This proves that the first pattern trims an exponential number of 2n−1 keys from the
entire key search space if the key gate is placed at the output no matter the logic value
of the IO pair. Thus, the security level of the unknown keys is reduced from n-bit to
(n − 1)-bit as the keyspace shrinks from 2n down to 2n−1 after the first IO pair. As a
result, the first IO pair practically removes the security gains of k0 from the locked circuit.
After the first iteration, the complexity of breaking the locked circuit drops to the same
order as when the output gate is not locked - that is, the second locking scenario. However,
for an IO pair, the reduction in complexity might change when all key gates are placed
inside the cone. When no key gates are at the output, we explore how keyspace is pruned
and show that this pruning depends on the IO pair. Note that similar or more incorrect
keys can be pruned under certain IO pairs, but not for all.

x0
x1

x2
x3

x4

y

G1G1

G2G2

G3G3

G5G5

G7G7

x5
x6

G4G4

G6G6

(a)

x0 = 0
x1 = 0

x2 = 0
x3 = 1

x4 = 1

y = 0

G1G1

G2G2

G3G3

G5G5

G7G7

x5 = 0
x6 = 0 G4G4

G6G6

k0

Gk0Gk0

Gk1Gk1

k1

Gk2Gk2k2

Gk3Gk3

k3

0

0

0

0

0

0

1

0

(d)

0

k0 = 0
k1 = 0

k2 k3

x0 = 0
x1 = 0

x2 = 0
x3 = 0

x4 = 0

y = 1

G1G1

G2G2

G3G3

G5G5

G7G7

x5 = 0
x6 = 0 G4G4

G6G6

k0

Gk0Gk0

Gk1Gk1

k1

Gk2Gk2k2

Gk3Gk3

k3

1/0/1

0/1/1

(c)

x0 = 0
x1 = 0

x2 = 0
x3 = 0

x4 = 0

y = 1

G1

G2

G3

G5

G7

x5 = 0
x6 = 0 G4

G6

k0

Gk0

Gk1

k1

Gk2k2

Gk3

k3

1/0/1

0/1/1

(c)

x0
x1

x2
x3

x4

y

G1G1

G2G2

G3G3

G5G5

G7G7

x5
x6

G4G4

G6G6

k0
Gk0Gk0

Gk1Gk1

k1

Gk2Gk2k2

Gk3Gk3

k3
(b)

Figure 7: Key elimination. (a) original circuit (b) the locked circuit with 4 XOR key gates (c)
the 1st IO pair P1 = {X1; Y1} = {x0, ...x6; y} = {0000000;1} from SAT attack (d) the second IO
pair P2 = {0001100;0} and equivalent relation of k0, k1, k2, k3 under P2 only, where k0 and k1 are
determined.

Figure 7 shows an example to clarify the two scenarios, where four keys (k0 − k3)
are added, where the output of the cone results from an OR gate. The 1st IO pair
P1 = {X1; Y1} = {x0, ..., x6; y} = {0000000;1} returned by SAT attack has y = 1 as the
output. As it is the output of the OR gate G7, its two inputs could be any from the 3
combinations {01/10/11}. As the correct key cannot be determined uniquely, we focus on

14 Complexity Analysis of the SAT Attack on Logic Locking

finding the incorrect ones, which are unique and result from {00}. One can simply find
these incorrect ones using logic propagation, and it can be shown that there exist only 2
incorrect keys, as shown in Column 2 of Table 1. Any key combinations that cause an
output mismatch with the oracle’s output are marked with ✗, indicating an incorrect key
value; the key value which produces the same output as the oracle is noted with ✓. From
the 1st iteration, we observe that a small number of incorrect keys (i.e., 2 << 24

2) are
removed due to the logic properties of the OR gate, where no unique conclusion can be
made regarding its inputs (i.e., 10, 01 or 11) if the output is 1.

Table 1: SAT attack uses 2 patterns to eliminate 15 incorrect keys from the search space.
If the output differs from the oracle’s, ✗ is placed, else ✓. The correct key is highlighted
in red.

4-bit key IO Pair 1 (P1) IO Pair 2 (P2)
{k0, ..., k3} {0000000;1} {0001100;0}

0000 ✓ ✓

0001 ✗ ✗

0010 ✓ ✗

0011 ✗ ✓

0100 ✓ ✗

0101 ✓ ✗

0110 ✓ ✗

0111 ✓ ✗

1000 ✓ ✗

1001 ✓ ✗

1010 ✓ ✗

1011 ✓ ✗

1100 ✓ ✗

1101 ✓ ✗

1110 ✓ ✗

1111 ✓ ✗

We now show that it is possible for certain IO pairs that a large number of incorrect keys
(can be more than half of the incorrect keys) can be pruned and is shown in Figure 7(d).
On the second iteration, the tool obtains another IO pair, P2 = {0001100;0}, with 0 at the
output of the OR gate. The rest 13 incorrect key combinations are identified from P2, as
listed in Table 1, Column 3. Here, we are interested in how P2 trims more than half of the
keys in the search space. The locked circuit with the IO pair P2 is shown in Figure 7(b).
With the same derivation for CNF C(X2, K, Y2), we know the outputs of gates G1, G2, G4
are 0, 0, 1, once we get the input. These gates’ outputs are similarly decided with X1. So,
the reason why P2 trims substantially more incorrect keys does not depend on the input
side. Consequently, the reason should be on the output response. With output y = 0 at
OR gate G7, both inputs from this OR gate must be 0. This means both outputs of OR
gate G5 and XOR gate Gk1 are 0, and subsequently, the inputs of OR gate G5 must be 0
as well. This results in the unique solution for k0 and k1 with k0 = 0, k1 = 0.

A similar analysis can be performed on an AND gate, whose inputs are uniquely defined
when the output is 1. In summary, having a response of 0 at the OR gate, or 1 at the
AND gate is effectively splitting the cone into halves, where the keys in one half are
independent of the keys on the other half. This is equivalent to splitting the logic cone
into two subcones based on the inputs of the OR/AND gates and all the keys to these
subcones can be evaluated simultaneously. This exponential reduction of search space
helps to eliminate incorrect keys to linear complexity for the SAT attack, as presented in

Yadi Zhong and Ujjwal Guin 15

Figure 4 of Section 4.1. Therefore, the efficiency of removing incorrect keys depends on IO
pairs. The selection of an IO pair depends on the locked circuit topology that changes
when adding more key bits.

5 Case Study: SAT-Attack Resiliency using Point Functions
As the efficiency of SAT attack is indisputable, the subsequent logic locking proposals
shift the focus toward building an exponential complexity in total iterations against SAT
attack. The common approach is to embed point functions right before the output of
a logic cone, where the primary output response is altered under the designer’s chosen
input combinations. This section presents the theoretical analysis of point functions in
AntiSAT [XS18] and CAS-Lock [SXTF20] and explains why they are breakable with
SAT-based attacks. It is also applicable to any locking design using point functions with
complementary blocks, g and g. Each block has an n-bit key, e.g., Kg for g and Kg for
g, where n is usually the size of the circuit input. The locked circuit is restored only if
the two keys in blocks g and g are the same, Kg = Kg. Anti-SAT [XS18] uses AND tree
(Type-0, p = 1) to construct g and g while CAS-Lock [SXTF20] has a cascaded chain of
AND gates with partial replacement to OR gates. Both approaches maximize the number
of iterations required for SAT attack, where the tool finds an exponential number (2n) of
DIPs before it terminates and reports the correct key.

5.1 Brief Analysis on SAT-resistant Designs with Point Functions
Although the SAT attack takes an exponential number of iterations to prune off the
incorrect keys completely, there is a major shortcoming in these SAT-resistant designs.
The total size of keyspace for these logic locking schemes is 22n, as g and g each require
an n-bit key. However, unlike the traditional logic locking, the correct key is not unique.
Since the locked circuit can be restored when Kg = Kg, there are 2n correct keys. Let us
now consider the ratio between the number of correct keys over the number of keys in
the entire keyspace. For traditional logic locking techniques, the correct-key-ratio rt is
rt = 1

2n for the proper insertion of n-bit key. For the SAT-resistant design like AntiSAT
and CAS-Lock, any locked circuit with the 2n-bit key has the correct-key-ratio rs of

rs = 2n

22n
= 1

2n
= rt (1)

which is the same ratio for any n-bit locking in the traditional logic locking domain. This
indicates that, in theory, having an additional n-bit key does not increase the complexity
of finding the correct key. In practice, there should be an attack (or multiple ones) to
break these SAT-resistant schemes effectively.

Since the correct key is not unique, the attacker can render it ineffective if it is possible
to shrink the key search space drastically. The goal is to trim the entire keyspace of 22n by
order of 2n, an exponential size decrease to reduce it to the equivalent search complexity
of the common n-bit traditional logic locking.

Lemma 1. Keyspace of 22n can be partitioned into 2n subspaces with 2n elements each,
along with single a correct key for each subspace.

Proof. Since Kg can be regarded as the free variable, we can vary the n-bit Kg to any key
assignment in keyspace of 2n so that the number of correct keys is reduced to 1, where
K2 = K1. We partition the entire keyspace 22n based on the n-bit key value of Kg. Each
subspace contains 2n elements, where the n-bit Kg can vary with its 2n combinations. As
there are 2n variations for Kg, there are 2n subspaces. In addition, as the correct keys
satisfy the condition Kg = Kg, each subspace contains only one correct key.

16 Complexity Analysis of the SAT Attack on Logic Locking

1Locked Circuit A

x0

xr-1
..

. Original Cone
x0

xr-1
..

. Original Cone

..
.

x0
kr

x0
kr

xr-1
k2r-1

xr-1
k2r-1

..
. ..
.

x0
kr

xr-1
k2r-1

..
.

..
.

x0
k0

x0
k0

xr-1
kr-1

xr-1
kr-1

..
. ..
.

x0
k0

xr-1
kr-1

..
.

..
.

x0
kr

xr-1
k2r-1

..
.

..
.

x0
k0

xr-1
kr-1

..
.

Locked Circuit A

x0

xr-1
..

. Original Cone

..
.

x0
kr

xr-1
k2r-1

..
.

..
.

x0
k0

xr-1
kr-1

..
.

Locked Circuit B

x0

xr-1

..
. Original Cone

x0

xr-1

..
. Original Cone

..
.

x0
kr

x0
kr

xr-1
k2r-1

xr-1
k2r-1

..
. ..
.

x0
kr

xr-1
k2r-1

..
.

..
.

x0
k0

x0
k0

xr-1
kr-1

xr-1
kr-1

..
. ..
.

x0
k0

xr-1
kr-1

..
.

..
.

x0
kr

xr-1
k2r-1

..
.

..
.

x0
k0

xr-1
kr-1

..
.

Locked Circuit B

x0

xr-1

..
. Original Cone

..
.

x0
kr

xr-1
k2r-1

..
.

..
.

x0
k0

xr-1
kr-1

..
.

0

1

0

0

g = 1

1

g = 1

0

(a)

CNF updateCNF update

(b)

k2r-1 = xr-1 = kr-1

kr = x0 = k0

Locked Circuit

x0

xr-1

..
. Original Cone

x0

xr-1

..
. Original Cone

..
.

x0
kr

x0
kr

xr-1
k2r-1

xr-1
k2r-1

..
. ..
.

x0
kr

xr-1
k2r-1

..
.

..
.

x0
k0

x0
k0

xr-1
kr-1

xr-1
kr-1

..
. ..
.

x0
k0

xr-1
kr-1

..
.

..
.

x0
kr

xr-1
k2r-1

..
.

..
.

x0
k0

xr-1
kr-1

..
.

Locked Circuit

x0

xr-1

..
. Original Cone

..
.

x0
kr

xr-1
k2r-1

..
.

..
.

x0
k0

xr-1
kr-1

..
.

0

0

0

g = 1

g = 0

1

1 Locked Circuit

x0

xr-1

..
. Original Cone

..
.

x0
kr

xr-1
k2r-1

..
.

..
.

x0
k0

xr-1
kr-1

..
.

0

0

0

g = 1

g = 0

1

1

kr+1 = x1 = k1

. . .

CNF update

(b)

k2r-1 = xr-1 = kr-1

kr = x0 = k0

Locked Circuit

x0

xr-1

..
. Original Cone

..
.

x0
kr

xr-1
k2r-1

..
.

..
.

x0
k0

xr-1
kr-1

..
.

0

0

0

g = 1

g = 0

1

1

kr+1 = x1 = k1

. . .

Kg

1

1

g

g

Figure 8: SAT attack on AntiSAT with fixed key Kg (a) SAT attack’s miter construction (b)
Kg = {kr − k2r−1} is uniquely determined with CNF update.

This indicates that the partition of key space based on Kg can effectively prune the
keyspace to 2n. The attacker only needs to focus on one key subspace and find ways to
recover the unique key in that subspace. As for the adversary, the goal is to restore the
locked circuit to its original state. If the attacker can discover one of the correct keys, it is
sufficient to unlock the circuit, and there is no need to explore other correct key potentials.
In essence, if the adversary partition the keyspace strategically, logic locking schemes with
minimal corruptibility are no better than the traditional logic locking.

5.2 Deterministic Property of SAT Attack with Constraints
This section analyzes the SAT attack complexity on the locked circuits with a point
function. Sengupta et al. [SLS21] has shown an effective approach to reduce the exponential
complexity of AntiSAT and CAS-Lock to polynomial only still using the SAT attack. The
proposed key-bit mapping (KBM) & SAT [SLS21] utilizes the connectivity between keys
and inputs to accurately identify the 2r-bit keys Kg and Kg. Then, it applies the SAT
attack with Kg fixed to a constant vector. In the following discussion, we show how SAT
attack can uniquely determine the correct value for Kg with only one IO pair for AntiSAT.
However, we show that constraining Kg to solve for Kg is still required exponential
iteration.

Let us consider a circuit with r-bit input X = {x0, ..., xr−1} and 1-bit output and we
lock it with a total 2r-bit keys with Kg = {k0, k1, ..., kr−1} and Kg = {kr, kr+1, ..., k2r−1}
of r-bit each. We assume the adversary already knows the key bit locations for Kg using
the KBM of [SLS21]. Furthermore, the r-bit Kg = {k0, ..., kr−1} is set to the value of
a constant vector. As the SAT attack is applied next, we show how it finds a DIP and
determines the key bits of Kg from it. The miter construction of the locked circuit is
shown in Figure 8(a), where we highlight the key bits of Kg in red to indicate their values
are fixed. As the miter creates differential output between the locked circuit A and B,
without loss of generality, suppose circuit A has output 0 and circuit B has output 1. Since
both circuits have the same original cone, the cone’s output is the same in both circuit

Yadi Zhong and Ujjwal Guin 17

x0
k0

x1
k1

x2
k2

x3
k3

x0
k4

x1
k5

x2
k6

x3
k7

x0...

x3

 Original Cone
x0...

x3

 Original Cone

(a)

x0
k0

x1
k1

x2
k2

x3
k3

x0
k4

x1
k5

x2
k6

x3
k7

x0

x3

 Original Cone
x0

x3

 Original Cone

Locked Circuit B

Locked Circuit A

1

0

1

0

0

1

1

1

0

...

g

gg

g

gg

1

0

0
k4

1
k5

1
k6

0
k7

0

(b)

k4

k5

k6

k7 1

1

k7 = 1

{x0,x1,x2,x3;y}

= {0110;0}

0/1/1

1/0/1

gg

Figure 9: SAT attack on CAS-Lock with constrained Kg. (a) Miter construction. (b) Learned
CNF relations of keys k4, ..., k7.

A and B as the inputs X is shared among both copies. Again, with loss of generality,
we assume the output of the original cone with respect to the DIP found by the miter is
logic 0. One can also assume to have logic 1 instead. This means that the AntiSAT block
output in circuit A is 0 while 1 for circuit B’s. As the AntiSAT block has AND at the
output, both inputs of this AND gate in circuit B are 1. Within circuit B, we have g = 1,
and all its inputs get logic 1 as well. Then, we know that the DIP X obtained through the
miter must be the complement of Kg, X = Kg to ensure all ones for the AND tree in g.
Following the same procedures as in Section 3, the solver updates its CNF clauses with
DIP X and its output response (logic 0 from the assumption), as shown in Figure 8(b).
When we apply input vector X and its response to the locked circuit, we get a logic 0 at
for the AntiSAT block. Since it is the same input pattern that gives g = 1 for circuit B,
we still have g = 1 for the AntiSAT block. Then, g must be 0, g = 0. As g is the output
of the NAND gate, all its inputs have logic 1. This uniquely determines all the r-bit key
Kg, which is the complement of DIP X, Kg = X, and identical to Kg, Kg = X = Kg.
SAT attack terminates at the second iteration since the unknown r-bit key Kg is already
resolved. Therefore, any constraint on Kg helps the SAT attack finish with 1 IO pair.

If the adversary decides to keep key Kg constant instead, he/she will not get the same
efficiency in key derivation as in constraining Kg. Suppose we fix Kg = {kr, kr+1, ..., k2r−1}
to a constant r-bit vector. When SAT solver tries to find a satisfiable assignment to the
miter circuit, following the same assumption as before, we know that both circuits A
and B have the same logic 1 for the block g. Having an output 1 at the NAND gate is
equivalent to putting logic 0 to AND gate. There are 2r − 1 possible solutions for the r-bit

18 Complexity Analysis of the SAT Attack on Logic Locking

input to get logic 1 at the output of g. Equivalently, there are 2r − 1 choices for the DIP
that satisfies the miter construction. When the tool updates solver’s CNF with DIP and
output response, we get g = 1 for the NAND gate and g = 0 for the AND gate. Since
the unknown key bits are in Kg of block g, a specific IO pair can prune only 1 incorrect
key combination that results in g = 1(̸= 0). The total IO pairs required to remove all
the incorrect keys in the r-bit keyspace for Kg is 2r − 1. The total iterations required for
the SAT attack is 2r. Therefore, by constraining Kg, the adversary can remove only one
incorrect key. The overall SAT attack complexity still remains exponential.

We now provide an explanation of why constraining Kg to solve for Kg requires linear
iterations for the CAS-Lock. We illustrate it with a (2r = 8)-bit CAS-Lock example, where
block g and g have one OR gate each, as shown in Figure 9. The following description
applies to any number of OR gates inside the cascaded AND chain of g and g. When
SAT attack searches for a DIP X to the miter circuit, as shown in Figure 9(a), one copy
has logic 0 while the other has logic 1 for the CAS-Lock block. Suppose locked circuit
B’s CAS-Lock block is 1, where its inputs are g = 1 and g = 1. The DIP X returned
SAT solver must satisfy g = 1 as Kg is constrained. As block g constrains OR gate, the
inputs cannot be uniquely identified as its output in 1 (shown in Figure 9(b). Instead, we
can model this block as a traditional locked circuit, described in Section 3. If we apply
a DIP of 0110, the key bits (K4, . . . , k7) can have the relations shown in Figure 9(b). In
summary, the same analysis can be performed for block g mentioned in Section 3, and
multiple iterations are required to determine the entire key compared to a single iteration
for the AntiSAT locking.

6 Future Directions
Even though SAT attack has demonstrated linear trends in solving the secret key, we
believe it is possible for a logic design to achieve SAT resiliency. Here, we discuss how
future locking schemes should consider the drastical increase in the hardness of their design
against the SAT attack. Besides targeting the exponential iterations required for the SAT
attack, it may be feasible to significantly increase the time for SAT solver to find each
satisfiable assignment for the miter circuit, which result in a longer computation time
within each iteration.

6.1 Computation Time Analysis
As described in SAT attack [SRM15], the authors stated that the multiplier benchmark
c6288 is inherently challenging to SAT solver, which is excluded from the analysis. We
locked its largest cone, N6288, the same way as for other benchmarks in ISCAS’85
as described in Section 4.1. From the perspective of total iterations, the overall SAT
complexity remains linear with key size |K|, which is shown in Figure 4. This suggests that
c6288 behaves identically to other ISCAS’85 benchmarks. In addition, one can also observe
a decrease in complexity when more keys are inserted, as shown in Figure 5. The question
is, what makes the circuit structure of a multiplier challenging to SAT solver? To better
analyze the SAT complexity in breaking c6288_N6288, we record the CPU time spent for
each iteration, including the very last UNSAT round. We exclude the preprocessing time,
i.e., setting up arrays of literals, initializing solver etc. The postprocessing time is also
excluded from the CPU time, i.e., displaying the correct keys and the overall status etc.
Table 2 lists the time duration for SAT solver to derive the correct keys. The first column
shows the key size |K| of the locked c6288_N6288 cones. Column 2 records the total IO
pairs |P | required to derive the correct key. Column 3 is the total time the SAT solver
spent, which we break down into two parts, the time used for generating IO pairs, Column
4, and for checking that no more DIP exists (UNSAT), Column 6. Column 5 gives the

Yadi Zhong and Ujjwal Guin 19

average time SAT solver takes to find each IO pair. Column 7 reports the time ratio SAT
solver needs to reach the UNSAT decision with respect to the total time spent in SAT
solving. The interesting observation is that the major time was not on finding DIPs to
prune the keyspace, but was spent on the last iteration, where SAT solver tries various
backtracking before getting the UNSAT decision. The total time devoted to generating the
IO pairs is negligible compared to with the time spent in the very last iteration (UNSAT).
In particular, the time duration for UNSAT with respect to the total time span is generally
over 90%.

Table 2: SAT attack running time on c6288_N6288 with XOR locking, including the total
time spent on each locked circuit with different key size, total time spent on finding DIPs,
averaged time per DIP, and time to reach the UNSAT conclusion.

|K| |P | CPU time (s) UNSAT
Total (%)Total IO Pairs Average UNSAT

1 1 86.35056 0.09108 0.09108 86.25948 99.89452
2 2 84.43924 0.102893 0.051447 84.33634 99.87815
3 3 86.55111 0.110187 0.036729 86.44092 99.87269
4 4 88.80421 0.11963 0.029908 88.68458 99.86529
5 4 79.61421 0.127045 0.031761 79.48717 99.84042
6 4 62.04783 0.116301 0.029075 61.93153 99.81256
7 4 88.08827 0.118216 0.029554 87.97006 99.86580
8 4 66.76216 0.113295 0.028324 66.64887 99.83030
9 5 78.43435 0.123854 0.024771 78.31049 99.84209
10 7 62.01792 0.147880 0.021126 61.87004 99.76155
11 8 72.61459 0.159248 0.019906 72.45534 99.78069
12 6 66.56000 0.195316 0.032553 66.36468 99.70656
13 9 74.61156 0.221303 0.024589 74.39026 99.70339
14 8 78.49215 0.147602 0.018450 78.34455 99.81195
15 10 77.13255 0.172048 0.017205 76.96051 99.77695
16 11 83.07691 0.237652 0.021605 82.83926 99.71394
17 11 85.08259 5.704183 0.518562 79.37841 93.29571
18 15 72.31732 0.300823 0.020055 72.01650 99.58402
19 15 89.65450 0.346194 0.023080 89.30831 99.61386
20 14 92.58854 0.325860 0.023276 92.26268 99.64806
21 15 67.43085 0.452500 0.030167 66.97835 99.32894
22 12 80.29901 0.266420 0.022202 80.03259 99.66822
23 19 88.22816 0.639116 0.033638 87.58904 99.27561
24 15 76.82473 0.421037 0.028069 76.40369 99.45195
25 20 88.29527 2.484020 0.124201 85.81125 97.18669
30 16 73.06461 0.849540 0.053096 72.21507 98.83728
35 29 86.73668 14.53748 0.501292 72.19920 83.23953
40 27 149.0966 13.34636 0.494310 135.7502 91.04851
45 41 1130.466 18.31241 0.446644 1112.154 98.38010
50 37 84.40455 6.167174 0.166680 78.23738 92.69332
55 45 1188.844 57.14645 1.269921 1131.698 95.19311

Therefore, the possible consideration for SAT-resistant designs is to increase the number
of backtracks and logic reassignment required for SAT solvers so that the time spent in
each iteration is dramatically increased. In addition, the locking designs should provide
sufficient difficulty for the conflict-driven clause learning (CDCL) algorithm [GV20], which

20 Complexity Analysis of the SAT Attack on Logic Locking

is commonly employed in present-day SAT solvers, to learn the correct key value.

7 Conclusion
In this paper, we provide a new perspective to analyze the efficiency of the SAT attack
based on how CNF clauses are updated inside the SAT solver. In each iteration, the
SAT attack records the interdependencies between key bits from the distinguishing input
pattern and its output response. Any locked circuit with multiple logic cones facilitates
the removal of incorrect key combinations as the effect of the keys can be propagated
through multiple outputs. We further investigate the SAT attack complexity with the
same locked cone of increasing key size. We observed a non-monotonous increase in SAT
complexity under more key bits. The insertion of additional key bits does not guarantee a
strict linear growth in the SAT attack complexity. Instead, the dips in complexity happen
to all the ISCAS’85 benchmark cones we locked. We subsequently offer an explanation
of this phenomenon based on the oracle’s response and logic gate types, where more
incorrect keys are eliminated from the search space with an IO pair. In addition, we give
analytical reasoning to show how the constraining of key bits would aggressively reduce the
search complexity of finding the correct key for point-function-based logic locking schemes.
Finally, we furnish our discussion on SAT-resistant designs with interesting observations,
expectations, and future directions.

References
[AK07] Yousra Alkabani and Farinaz Koushanfar. Active Hardware Metering for In-

tellectual Property Protection and Security. In USENIX security symposium,
pages 291–306, 2007.

[AKP07] Yousra Alkabani, Farinaz Koushanfar, and Miodrag Potkonjak. Remote
activation of ICs for piracy prevention and digital right management. In
Proc. of IEEE/ACM int. conf. on Computer-aided design, pages 674–677,
2007.

[APK+21] Lilas Alrahis, Satwik Patnaik, Faiq Khalid, Muhammad Abdullah Hanif,
Hani Saleh, Muhammad Shafique, and Ozgur Sinanoglu. GNNUnlock: Graph
Neural Networks-based Oracle-less Unlocking Scheme for Provably Secure
Logic Locking. In 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 780–785. IEEE, 2021.

[BA04] Michael Bushnell and Vishwani Agrawal. Essentials of Electronic Testing
for Digital, Memory and Mixed-Signal VLSI Circuits, volume 17. Springer
Science & Business Media, 2004.

[BT18] Swarup Bhunia and Mark Tehranipoor. Hardware Security: A Hands-on
Learning Approach. Morgan Kaufmann, 2018.

[BTZ10] Alex Baumgarten, Akhilesh Tyagi, and Joseph Zambreno. Preventing IC
Piracy Using Reconfigurable Logic Barriers. IEEE Design & Test of Com-
puters, 27(1):66–75, 2010.

[CB08] Rajat Subhra Chakraborty and Swarup Bhunia. Hardware protection and
authentication through netlist level obfuscation. In Proc. of IEEE/ACM
International Conference on Computer-Aided Design, pages 674–677, 2008.

Yadi Zhong and Ujjwal Guin 21

[Cha98] Edoardo Charbon. Hierarchical watermarking in IC design. In Proc. of the
IEEE Custom Integrated Circuits Conference, pages 295–298, 1998.

[CMBG+07] Encarnacin Castillo, Uwe Meyer-Baese, Antonio García, Luis Parrilla, and
Antonio Lloris. IPP@HDL: Efficient Intellectual Property Protection Scheme
for IP Cores. IEEE Trans. on VLSI (TVLSI), pages 578–591, 2007.

[GSFT16] Ujjwal Guin, Qihang Shi, Domenic Forte, and Mark M Tehranipoor. FORTIS:
a comprehensive solution for establishing forward trust for protecting IPs and
ICs. Transactions on Design Automation of Electronic Systems (TODAES),
21(4):63, 2016.

[GV20] Vijay Ganesh and Moshe Y Vardi. On the unreasonable effectiveness of sat
solvers., 2020.

[HL08] Jiawei Huang and John Lach. IC activation and user authentication for
security-sensitive systems. In IEEE International Workshop on Hardware-
Oriented Security and Trust, pages 76–80, 2008.

[JRG20] Ayush Jain, Tanjidur Rahman, and Ujjwal Guin. ATPG-Guided Fault Injec-
tion Attacks on Logic Locking. In IEEE Physical Assurance and Inspection
of Electronics (PAINE), pages 1–6, 2020.

[KLMS+01] Andrew B Kahng, John Lach, William H Mangione-Smith, Stefanus Mantik,
Igor L Markov, Miodrag Potkonjak, Paul Tucker, Huijuan Wang, and Gregory
Wolfe. Constraint-based watermarking techniques for design IP protection.
IEEE Transactions on CAD of Integrated Circuits and Systems, pages 1236–
1252, 2001.

[KPKG02] Andreas Kuehlmann, Viresh Paruthi, Florian Krohm, and Malay K Ganai.
Robust Boolean Reasoning for Equivalence Checking and Functional Property
Verification. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 21(12):1377–1394, 2002.

[LPS21] Nimisha Limaye, Satwik Patnaik, and Ozgur Sinanoglu. Fa-SAT: Fault-
aided SAT-based Attack on Compound Logic Locking Techniques. In 2021
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1166–1171. IEEE, 2021.

[MATa] MATLAB. https://www.mathworks.com/help/matlab/ref/digraph.
flipedge.html.

[MATb] MATLAB. https://www.mathworks.com/help/matlab/ref/graph.
bfsearch.html.

[QCF+16] Shahed E Quadir, Junlin Chen, Domenic Forte, Navid Asadizanjani, Sina
Shahbazmohamadi, Lei Wang, John Chandy, and Mark Tehranipoor. A
survey on chip to system reverse engineering. ACM journal on emerging
technologies in computing systems (JETC), 13(1):1–34, 2016.

[QP07] Gang Qu and Miodrag Potkonjak. Intellectual Property Protection in VLSI
Designs: Theory and Practice. Springer Sc. & Business Media, 2007.

[RKM08] Jarrod A Roy, Farinaz Koushanfar, and Igor L Markov. EPIC: Ending
Piracy of Integrated Circuits. In Proceedings of the conference on Design,
automation and test in Europe, pages 1069–1074, 2008.

https://www.mathworks.com/help/matlab/ref/digraph.flipedge.html
https://www.mathworks.com/help/matlab/ref/digraph.flipedge.html
https://www.mathworks.com/help/matlab/ref/graph.bfsearch.html
https://www.mathworks.com/help/matlab/ref/graph.bfsearch.html

22 Complexity Analysis of the SAT Attack on Logic Locking

[RPSK12] Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu, and Ramesh Karri.
Security analysis of logic obfuscation. In Proc. of Annual Design Automation
Conference, pages 83–89, 2012.

[RZZ+13] Jeyavijayan Rajendran, Huan Zhang, Chi Zhang, Garrett S Rose, Youn-
gok Pino, Ozgur Sinanoglu, and Ramesh Karri. Fault analysis-based logic
encryption. IEEE Transactions on computers, 64(2):410–424, 2013.

[RZZ+15] Jeyavijayan Rajendran, Huan Zhang, Chi Zhang, Garrett S Rose, Youngok
Pino, Ozgur Sinanoglu, and Ramesh Karri. Fault Analysis-Based Logic
Encryption. IEEE Transactions on computers, pages 410–424, 2015.

[Shi22] Willy Shih. Intel’s $88 Billion European Expansion Is Part Of A New Phase
In The Globalization Of The Semiconductor Industry. Forbes, Mar 2022.

[SLM+17] Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z Pan, and
Yier Jin. AppSAT: Approximately deobfuscating integrated circuits. In Int.
Symposium on Hardware Oriented Security and Trust (HOST), pages 95–100,
2017.

[SLS21] Abhrajit Sengupta, Nimisha Limaye, and Ozgur Sinanoglu. Breaking cas-
lock and its variants by exploiting structural traces. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 418–440, 2021.

[SNL+20] Abhrajit Sengupta, Mohammed Nabeel, Nimisha Limaye, Mohammed Ashraf,
and Ozgur Sinanoglu. Truly stripping functionality for logic locking: A fault-
based perspective. Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2020.

[SRM15] Pramod Subramanyan, Sayak Ray, and Sharad Malik. Evaluating the secu-
rity of logic encryption algorithms. In IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pages 137–143, 2015.

[SS19] Deepak Sirone and Pramod Subramanyan. Functional analysis attacks on logic
locking. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 936–939, 2019.

[SS20] Deepak Sirone and Pramod Subramanyan. Functional Analysis Attacks on
Logic Locking. IEEE Transactions on Information Forensics and Security,
15:2514–2527, 2020.

[SXTF20] Bicky Shakya, Xiaolin Xu, Mark Tehranipoor, and Domenic Forte. Cas-
lock: A security-corruptibility trade-off resilient logic locking scheme. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages 175–
202, 2020.

[Syn] Synopsys Design Compiler. Synopsys, Inc., 2017.

[SZ17] Yuanqi Shen and Hai Zhou. Double DIP: Re-Evaluating Security of Logic
Encryption Algorithms. In Proceedings of the Great Lakes Symposium on
VLSI, pages 179–184, 2017.

[TGF15] Mark Mohammad Tehranipoor, Ujjwal Guin, and Domenic Forte. Counterfeit
integrated circuits. In Counterfeit Integrated Circuits. Springer, 2015.

[TJ07] Randy Torrance and Dick James. Reverse engineering in the semiconductor
industry. In 2007 IEEE Custom Integrated Circuits Conference, pages 429–
436. IEEE, 2007.

Yadi Zhong and Ujjwal Guin 23

[TJ09] Randy Torrance and Dick James. The State-of-the-Art in IC Reverse Engi-
neering. In International Workshop on Cryptographic Hardware and Embedded
Systems, pages 363–381, 2009.

[TJ11] Randy Torrance and Dick James. The state-of-the-art in semiconductor
reverse engineering. In Proc. of the Design Automation Conference, pages
333–338, 2011.

[TW11] Mohammad Tehranipoor and Cliff Wang. Introduction to Hardware Security
and Trust. Springer Science & Business Media, 2011.

[XS18] Yang Xie and Ankur Srivastava. Anti-sat: Mitigating sat attack on logic
locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 38(2):199–207, 2018.

[XSTF17] Xiaolin Xu, Bicky Shakya, Mark M Tehranipoor, and Domenic Forte. Novel
Bypass Attack and BDD-based Tradeoff Analysis Against All Known Logic
Locking Attacks. In International Conference on Cryptographic Hardware
and Embedded Systems, pages 189–210, 2017.

[YMRS16] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan JV Rajendran, and
Ozgur Sinanoglu. SARLock: SAT attack resistant logic locking. In IEEE
International Symposium on Hardware Oriented Security and Trust (HOST),
pages 236–241, 2016.

[YMSR17] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan
Rajendran. Removal attacks on logic locking and camouflaging techniques.
Transactions on Emerging Topics in Computing, 2017.

[YSN+17] Muhammad Yasin, Abhrajit Sengupta, Mohammed Thari Nabeel, Mo-
hammed Ashraf, Jeyavijayan JV Rajendran, and Ozgur Sinanoglu. Provably-
Secure Logic Locking: From Theory To Practice. In Proceedings of ACM
SIGSAC Conference on Computer and Communications Security, pages
1601–1618, 2017.

[YSS+17] Muhammad Yasin, Abhrajit Sengupta, Benjamin Carrion Schafer, Yiorgos
Makris, Ozgur Sinanoglu, and Jeyavijayan JV Rajendran. What to Lock?:
Functional and Parametric Locking. In Proc. of Great Lakes Symposium on
VLSI, pages 351–356, 2017.

[ZCZG19] Yuqiao Zhang, Pinchen Cui, Ziqi Zhou, and Ujjwal Guin. TGA: An Oracle-
less and Topology-Guided Attack on Logic Locking. In Proceedings of the 3rd
ACM Workshop on Attacks and Solutions in Hardware Security Workshop,
pages 75–83, 2019.

	Introduction
	Background
	SAT attack on Logic Locking
	SAT Resistant Logic Locking Techniques and Attacks

	SAT Attack Analysis: Pruning of Incorrect Key with CNF Update
	SAT Attack for a Locked Cone with One Output
	SAT Attack against Multiple Overlapping Logic Cones

	SAT Attack Analysis: Search Complexity
	Linear Trend in Total SAT Attack Iterations
	Exponential Elimination of Keys within an Iteration

	Case Study: SAT-Attack Resiliency using Point Functions
	Brief Analysis on SAT-resistant Designs with Point Functions
	Deterministic Property of SAT Attack with Constraints

	Future Directions
	Computation Time Analysis

	Conclusion

