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Abstract

Orbis Labs presents a method for compiling (“arithmetizing”) relations, expressed as Σ1
1 formulas

in the language of rings, into Halo 2 arithmetic circuits. This method offers the possibility of creating
arithmetic circuits without laborious and error-prone manual circuit design and implementation, by
instead expressing the relation to be arithmetized in a concise mathematical notation and generating
the circuit based on that expression.
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6 The other direction 54

1 Introduction

Halo 2 [1, 2, 3] is a mathematical theory and Rust library for creating and verifying zk-SNARKs. A
zk-SNARK is a succint message which probabilistically proves that some statement is true, meaning that
it shows that there is at most a negligible probability that the statement is not true. A zk-SNARK is
zero-knowledge, meaning it does not reveal any additional information which does not follow logically from
the statement being proven.

The process of creating and verifying zk-SNARKs using Halo 2 starts with defining some class of
statements to generate zk-SNARKs for. The definition takes the form of a “circuit.” The name “circuit”
comes from an analogy with hardware circuits, as in the integrated circuits (ICs) used to build digital
computers. A Halo 2 circuit is really an abstract object which bears only a loose resemblance to a hardware
circuit layout.

Hardware circuits in modern computers typically use boolean or binary circuits, where each gate has two
possible states: on and off, also known as true and false, or 1 and 0. Halo 2 circuits use instead the elements
of some finite field F as the possible gate states. The gate states are represented as variables ranging over
F, and the connections between the gates are represented as a system of polynomial constraints with a
particular structure, consisting of custom gate constraints, lookup constraints, and equality constraints.
Section 2 provides more detail on the structure of Halo 2 circuits.

A Halo 2 circuit takes as input a matrix of values, elements of the field F. This matrix is known as an
“instance.” For a given instance, the circuit either is or is not satisfiable. The circuit is satisfiable if and
only if there is a matrix of values, known as a “witness,” which together with the instance satisfies all of
the system’s constraints.

A zk-SNARK proves that a circuit is satisfiable on a given instance. Producing such a zk-SNARK
requires a witness satisfying the circuit together with the instance. Having such a zk-SNARK does not
help to deduce a witness which shows that the instance is satisfiable; that is a consequence of the zero
knowledge property.

Creating and verifying zk-SNARKs using Halo 2 involves creating Rust code which constructs a circuit.
It also involves creating Rust code which, given a satisfiable instance and possibly some additional private
information, produces a witness satisfying the circuit together with the instance. Also, it is necessary to
design some encoding as instances of the objects represented by the instances, and to create some Rust
code which performs the encoding.

You can think of the process of creating Rust code to construct a circuit and instances and witnesses as
the process of “arithmetizing” a relation. The result is a circuit which is satisfiable on some instances and
not others. This circuit expresses a relation, the relation which is true of all and only the objects encoded
as instances where the circuit is satisfiable. If the circuit is correct, then it expresses the relation which
was to be arithmetized.

The process of arithmetizing a relation is rather laborious and error prone when the relation to be
arithmetized is complex. That is when the process is done by hand. It would be helpful to be able to
automate the process, so that from a high level description of a relation in a math-like notation, it would
be possible to generate Rust code which creates a circuit. Such a process also would need to create code
which encodes objects in the domain of the relation as instances of that circuit, and code which generates
witnesses satisfying the circuit together with any given instance encoding an object for which the relation
is true.

The goal of this research is to describe (and prove the correctness of) a process for compiling a relation
defined in a high-level math-like notation into an arithmetization of that relation. It is hoped that this
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research will lead to a compiler which generates practical, efficient Rust code for creating and verifying zk-
SNARKs using Halo 2. This paper does not contain a full correctness proof for the provided constructions.
Rather, it sketches a proof approach. There is work underway to formally prove the same results claimed
in the proof sketch.

The high-level math-like notation for defining relations is Σ1
1 formulas over the language of rings. This

notation is defined in Section 3. The arithmetization process is described in Section 4, and proven correct
in Section 5.

2 Halo 2 circuits

The following definition of Halo 2 circuits does not correspond exactly with the current implementation
of Halo 2. As of this writing, Halo 2 does not support lookup tables with advice or instance columns,
whereas this definition assumes that it does. Work on support for lookup tables with advice columns is
underway, and there are no plans to support lookup tables with instance columns, but this is without loss
of generality, because instance columns in lookup tables can be emulated by adding an advice column to
use in the lookup table which is constrained to be equal to the corresponding instance column at all rows.

Another notable difference between Halo 2 in reality and Halo 2 as it is idealized in this paper is that
in reality, Halo 2 requires some extra rows to be present and filled with random data. This paper ignores
this detail, but accounting for this detail would not add much extra complexity.

For a positive integer x, let [x] denote the set {1, ..., x}.
By definition, a “circuit” is a tuple

C = (F, c⃗, d, p⃗, ℓ⃗, r, e⃗, X), (1)

where:

1. F is a finite field. F is called the underlying field.

2. c⃗ = c1, ..., cn, where for all i ∈ [n],

ci ∈ {F,A, I} × {E,N}. (2)

Here F,A, I, E,N are distinct constants with the following interpretations:

F Fixed column
A Advice column
I Instance column
E Equality constrainable column
N Non equality constrainable column
c⃗ is called the column type vector.

3. d is a positive integer. d is called the polynomial degree bound.

4. p⃗ = p1, ..., pm, where for all i ∈ [m], pi is a polynomial of degree ≤ d with coefficients in F, where
variable names are pairs (j, k) ∈ [n] × Z where j is a column index and k is a relative row reference.
k = 0 refers to the current row, and in general, k refers to the row whose index is the index of the
current row plus k (with wraparound, modulo r).
p⃗ is called the sequence of polynomial constraints.

5. ℓ⃗ = ℓ1, ..., ℓk, where for all i ∈ [k], ℓi is a tuple of the form (x⃗, a⃗) where for some positive integer q:
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(a) x⃗ = x1, ..., xq, where for all j ∈ [q], xj is a polynomial of degree ≤ d with coefficients in F, where
variables are pairs (k, l) ∈ [n] ×Z where k is a column index and l is a relative row reference. x⃗
is called the input expression.

(b) a⃗ = a1, ..., aq, where for all j ∈ [q], aj is a column index (aj ∈ [n]). a⃗ is called the vector of table
columns.

l⃗ is called the sequence of lookup arguments.

6. r is a positive integer. r is called the number of rows.

7. e⃗ = e1, ..., et, where for all i ∈ [t], ei ∈ ([n] × [r])2 is a pair of pairs of indices, representing an equality
constraint in the form of a pair of absolute cell references.

8. X ∈ F[u]×[r], where u is the number of fixed columns, contains the values of each fixed column in
each row. 1

A circuit C = (F, c⃗, d, p⃗, ℓ⃗, r, e⃗, X) arithmetizes a relation over matrices in Fv×r, where v is the number
of instance columns in c⃗:

v = |{i ∈ [n] | π1(ci) = I}|. (3)

Similarly, u is the number of fixed columns and w is the number of advice columns:

u = |{i ∈ [n] | π1(ci) = F}|. (4)

w = |{i ∈ [n] | π1(ci) = A}|. (5)

The next goal is to define what it means for a circuit to arithmetize a relation, or in other words, to
define what relation a given circuit arithmetizes.

Without loss of generality, consider only circuits whose columns are ordered such that all fixed columns
come before all non-fixed columns and all instance columns come before all advice columns. This is without
loss of generality because the columns in a circuit can be permuted without changing the meaning. This
restriction offers some notational convenience in what follows.

The relation which C arithmetizes can be defined as the set of instances Y ∈ F[v]×[r] such that there
exists a witness Z ∈ F[w]×[r] such that the matrix

M = [XY Z] ∈ F[n]×[r] (6)

satisfies the constraints of C. By definition, the constraints of C are the following conditions, which are
defined for any matrix M ∈ F[n]×[r]:

1. For all i ∈ [u], j ∈ [r], Mi,j = Xi,j . That is to say, the first u columns of M are the fixed columns
enumerated in X.

2. For all i ∈ [m], j ∈ [r],

0 =
∑
k∈[s]

ak ·
∏
l∈[dk]

Mbk,l+(0,j)

 , (7)

where

pi =
∑
k∈[s]

ak ·
∏
l∈[dk]

bk,l

 , (8)

1Matrices are written in column major notation in this paper, meaning the column index comes first and the row index
second.
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where for all i ∈ [s], di ≤ d and ai ∈ F and for all j ∈ [di], bi,j ∈ [n] × Z.
That is to say, the polynomial constraints are satisfied at each row.

3. For all i ∈ [k], ρ ∈ [r],
y⃗ ∈ {(Ma1,λ, ...,Maq ,λ) | λ ∈ [r]}, (9)

where
(x⃗, a⃗) = ℓi, (10)

x⃗ = x1, ..., xq, (11)

a⃗ = a1, ..., aq, (12)

y⃗ = y1, ..., yq, (13)

and for each j ∈ [q],

yj =
∑
k∈[s]

ak ·
∏
l∈[dk]

Mbk,l+(0,ρ)

 , (14)

where

xj =
∑
k∈[s]

ak ·
∏
l∈[dk]

bk,l

 , (15)

where dk ≤ d for all k ∈ [s].
That is to say, the lookup argument constraints are satisfied.

4. For all i ∈ [t], Ma = Mb, where (a, b) = ei. That is to say, the equality constraints are satisfied.

5. For all i ∈ [t], where (a, b) = ei, a, b ∈ EQCs, where

EQCs = {i ∈ [n] | π2(ci) = E}. (16)

That is to say, the equality constraints refer only to cells in the equality constrainable columns.

In practice, the domain of the relation to be arithmetized is not always isomorphic to a matrix over a
finite field. It is helpful to define also what it means to arithmetize a relation in these cases.

Let D be a set, the domain of the relation to be arithmetized. Let R ⊆ D be the relation to be
arithmetized. Assume that R is the projection of another relation Q ⊆ D × W , where W is another set,
the witness set. To say that R is the projection of Q means that R = π1(Q), or in other words

R = {x ∈ D | (x,w) ∈ Q for some w ∈ W}. (17)

In this general setting, a relation is a set R ⊆ D, where D is another set, called the domain. By
definition, an “arithmetization” of R is a pair (C, f), where C is a circuit

C = (F, c⃗, d, p⃗, l⃗, r, e⃗, X) (18)

which arithmetizes a relation R′ ⊆ Fv×r, and f is a computable function f : D → Fv×r, such that for all
x ∈ D, x ∈ R iff f(x) ∈ R′.
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3 Σ1
1 formulas over the language of rings

The goal of this research is to be able to arithmetize relations into Halo 2 by describing them in a high-level
math-like notation and running a compiler which translates the notation into circuits. What is a good
notation for describing relations which can be arithmetized into Halo 2 circuits? Perhaps unsurprisingly,
Halo 2 circuits turn out to have a close relationship with a certain class of logic formulas, namely Σ1

1
formulas over the language of rings (not in the usual sense but in a specialized sense defined in this
section).

Section 4 shows how to arithmetize an arbitrary Σ1
1 formula over the language of rings, as a Halo

2 circuit. Section 5 proves that the arithmetization is correct, in the sense that the resulting circuit is
satisfiable on only the instances which satisfy the relation, and all instances which satisfy the relation and
the numeric size limits of the circuit. Each circuit can accept only finitely many instances. An infinite
relation (i.e., a relation true of infinitely many different things) can be arithmetized as the limit of an
infinite sequence of circuits, each recognizing progressively larger subsets of the relation.

What are Σ1
1 formulas over the language of rings? In general, they are formulas of second-order logic,

where the only second-order quantifiers are zero or more existential second-order quantifiers on the outside
of the statement, before any other quantifiers. The language of rings is {·,+, 0, 1,−1}, where · and + are
binary operations and 0, 1, and −1 are constant symbols. Σ1

1 is one of the first levels of the analytical
hierarchy, which is the second-order extension of the arithmetical hierarchy of first-order formulas.

In the following presentation of Σ1
1 formulas over the language of rings, quantifiers are always bounded

by constants. This is different from other presentations. This is more than a cosmetic difference, meaning
that the definition of Σ1

1 formulas found here is not a substitute for definitions found elsewhere.
Think of a formula as defining a relation over integers, that is, a subset of Zi for some positive integer i.

The effect of the modification of the definition of Σ1
1 formulas, to require constant bounds on all quantifiers,

is that the truth or falsehood of a formula can be evaluated in a finite amount of time. This picture is
spelled out in more detail in Section 4. In short, bounding quantifiers by constants allows for all (thusly
restricted) Σ1

1 formulas over the language of rings to be arithmetized into circuits.
The following presentation will use de Bruijn indices for variable names. A de Bruijn index is a positive

integer representing a reference to an enclosing scope, with 1 referring to the variable declared in the
innermost scope. Consider a formula with three existential quantifiers:

∃x < a. ∃y < b. ∃z < c. ϕ(x, y, z). (19)

Here ϕ(x, y, z) denotes some formula with the free variables x, y, z. Replacing the variable names with de
Bruijn indices, this formula becomes:

∃ < a. ∃ < b. ∃ < c. ϕ(3, 2, 1). (20)

To avoid confusion in formulas featuring both numeric constants and de Bruijn indices, let xi denote the
de Bruijn index i, so the example formula gets written:

∃ < a. ∃ < b. ∃ < c. ϕ(x3, x2, x1). (21)

Variables in Σ1
1 formulas are of two kinds: first-order variables which denote numbers, and second-

order variables which denote functions of one or more arguments. An n-ary function variable denotes a
function which takes n numbers as input and outputs a number. Second-order variables may denote partial
functions, which are not defined on all inputs.

First-order and second-order variables are in two different namespaces. The de Bruijn index i may,
depending on the context in which it appears, denote either a first-order variable (in which case the index
is written as xi) or a second-order variable (in which case the index is written as fi).
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The first step in defining Σ1
1 formulas (over the language of rings) is to define a language of terms. A

term is a syntactic object which denotes a number, given a context which bestows values to the variables
it contains. Terms are defined by the following recursive definition.

1. For each positive integer i, xi is a term. xi is called a first-order variable.

2. For each positive integer i and all sequences of terms τ1, ..., τn, fi(τ1, ..., τn) is a term, if fi has arity
n. fi(τ1, ..., τn) is called a function application.

3. For all terms τ, µ, (τ + µ) is a term and (τ · µ) is a term.

4. 0 is a term. 1 is a term. −1 is a term. These are called constant symbols.

The arity of a second order variable is implicitly defined by its occurrences in a term or formula. All
of the occurrences of a second order variable must have the same arity in a syntactically valid term or
formula.

In addition, it is useful to define positive constant terms, which can be done with the following recursive
definition.

1. 1 is a positive constant term.

2. For all positive constant terms τ, µ, (τ + µ) is a positive constant term.

This recursive definition of positive constant terms includes closure under addition. It could also include
closure under multiplication, but it does not for the reason that multiplication is not needed; without loss
of generality, multiplication can be omitted.

First-order formulas (over the language of rings) are defined by the following recursive definition.

1. For all terms τ, µ,
(τ = µ) (22)

is a first-order formula. τ = µ is called an atomic formula or an equation.

2. For all first-order formulas ϕ,
¬ϕ (23)

is a first-order formula. ¬ϕ is called a negation.

3. For all first-order formulas ϕ, ψ,
(ϕ ∧ ψ) (24)

is a first-order formula. (ϕ ∧ ψ) is called a conjunction.

4. For all first-order formulas ϕ, ψ,
(ϕ ∨ ψ) (25)

is a first-order formula. (ϕ ∨ ψ) is called a disjunction.

5. For all first-order formulas ϕ, ψ,
(ϕ → ψ) (26)

is a first-order formula. (ϕ → ψ) is called an implication.
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6. For all first-order formulas ϕ and positive constant terms β,

∀ < β. ϕ (27)

is a first-order formula. ∀ is called the universal quantifier. β is called the upper bound.

7. For all first-order formulas ϕ and positive constant terms β,

∃ < β. ϕ (28)

is a first-order formula. ∃ is called the first-order existential quantifier. β is called the upper bound.

Σ1
1 formulas (over the language of rings) are defined by the following recursive definition.

1. Every first-order formula is a Σ1
1 formula.

2. For all Σ1
1 formulas ϕ and positive constant terms γ and non-empty sequences of positive constant

terms β1, ..., βn,
∃f < γ(< β1, ..., < βn). ϕ (29)

is a Σ1
1 formula. ∃f is called the second-order existential quantifier. n is called the arity of the

function. β1, ..., βn are called the upper bounds of the dimensions of the domain of the function. γ
is called the upper bound of the codomain of the function.

It is often useful to know the set of variables which are free in a given formula. How is this set defined
when variables are denoted by de Bruijn indices, which can denote different variables in different contexts?
Even two free occurrences of the same de Bruijn index in the same formula can denote different variables
if they are in different contexts with different levels of quantifier nesting. The trick here is to define the
set of free variables as the de Bruijn indices, relative to the outermost scope of the formula (outside of all
the quantifiers), of all the free variables referenced in the program, regardless of which de Bruijn indices
denote those variables in the context(s) in which those variables are referenced. The following recursive
equations define the set of free variables in a Σ1

1 formula or a term.

free : {ϕ | ϕ is a Σ1
1 formula} ⊕ {τ | τ is a term} → {xi}i∈Z+ ⊕ {fi}i∈Z+ (30)

free(xi) = {xi} (31)

free(fi(τ1, ..., τn)) = {fi} ∪
⋃
i∈[n]

free(τi) (32)

free(τ + µ) = free(τ) ∪ free(µ) (33)

free(τ · µ) = free(τ) ∪ free(µ) (34)

free(0) = free(1) = free(−1) = ∅ (35)

free(τ = µ) = free(τ) ∪ free(µ) (36)

free(¬ϕ) = free(ϕ) (37)
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free(ϕ ∧ ψ) = free(ϕ) ∪ free(ψ) (38)

free(ϕ ∨ ψ) = free(ϕ) ∪ free(ψ) (39)

free(ϕ → ψ) = free(ϕ) ∪ free(ψ) (40)

free(∀ < β. ϕ) = {xi | xi+1 ∈ free(ϕ)} ∪ {fi | fi ∈ free(ϕ)} (41)

free(∃ < β. ϕ) = {xi | xi+1 ∈ free(ϕ)} ∪ {fi | fi ∈ free(ϕ)} (42)

free(∃f < γ(< β⃗). ϕ) = {xi | xi ∈ free(ϕ)} ∪ {fi | fi+1 ∈ free(ϕ)} (43)

Relative to a suitable model, it is possible to define whether any given Σ1
1 formula is true or false. For

this context, a model, by definition, is a tuple

M = (R, ·,+, 0, 1,−1, <, F, S), (44)

where:

1. (R, ·,+, 0, 1,−1) is a ring:

(a) R is a set.
(b) · : R×R → R is a binary operation.
(c) + : R×R → R is a binary operation.
(d) 0, 1,−1 ∈ R.
(e) + is associative and commutative, meaning, for all x, y, z ∈ R,

(x+ y) + z = x+ (y + z), (45)

x+ y = y + x. (46)

(f) Each element of R has an additive inverse, meaning, for each x ∈ R there is y ∈ R such that
x+ y = 0.

(g) · is associative, meaning, for all x, y, z ∈ R,

(x · y) · z = x · (y · z) (47)

(h) 0 is the additive identity, meaning, for each x ∈ R,

x+ 0 = x = 0 + x. (48)

(i) 1 is the multiplicative identity, meaning, for each x ∈ R,

x · 1 = x = 1 · x. (49)

(j) −1 is the additive inverse of 1, meaning 1 + (−1) = 0.
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(k) The distributive law holds, meaning, for all x, y, z ∈ R,

x · (y + z) = (x · y) + (x · z), (50)

(y + z) · x = (y · x) + (z · x). (51)

2. < ⊆ R×R is a strict total ordering relation on R with a least element:

(a) < is antisymmetric, meaning there is no x ∈ R such that x < x.
(b) < is transitive, meaning for all x, y, z ∈ R, if x < y and y < z then x < z.
(c) < is connected, meaning for all x, y ∈ R, if x ̸= y then either x < y or y < x.
(d) < has a least element, meaning there exists a z ∈ R such that for all x ∈ R, if x ̸= z then z < x.

(Such a z is necessarily unique.)

3. F : Z+ → R is a partial function mapping de Bruijn indices naming first-order variables to their
corresponding values (if any).

4. S : Z+ →
∑
i∈Z+(Ri → R) is a partial function mapping de Bruijn indices naming second-order

variables to their corresponding values (if any). The values are partial functions of variable arity
from R to R. Here

∑
i∈Z+ denotes the indexed coproduct or disjoint union operation with i ranging

over the positive integers.

By definition, M is an “integral model” when

(R,+, 0, 1,−1) = (Z,+, 0, 1,−1) (52)

is the standard ring of integers and < puts the integers into the following order:

1, 2, ..., 0,−1,−2, ... (53)

Let M = (R, ·,+, 0, 1,−1, <, F, S) be a model. Let y ∈ R. Define the model

M [x1 7→ y] = (R, ·,+, 0, 1, <, F ′, S) (54)

by letting

F ′(1) = y,
F ′(n+ 1) = F (n). (55)

Let n be a positive integer. Let g : Rn → R be a partial function. Define the model

M [f1 7→ g] = (R, ·,+, 0, 1, F, S′) (56)

by letting

S′(1) = g,
S′(n+ 1) = S(n). (57)

The definitions just given of M [x1 7→ y] and M [f1 7→ g] explain how to update a model with a new
variable mapping at the least de Bruijn index, pushing up all the existing de Bruijn index mappings. These
operations are useful for dealing with quantification in the denotational semantics which follows below.

Also helpful for defining the denotational semantics will be an extension of the [i] notation previously
defined. Previously, [i] was defined as {1, ..., i} for a positive integer i. Generalizing this to a ring R for an
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arbitrary model M , let [i] be defined as {x ∈ R | z ≤ x ≤ i}, where z is the least element of R under <
and ≤ is the non-strict version of <.

Given a model,

M = (R, ·,+, 0, 1,−1, <, F, S), (58)

it is possible to define the denotations of terms and formulas, such as by the following recursive def-
inition. The denotation of a term is an element of R, whereas the denotation of a formula is a truth
value. The set of truth values is the set {0, 1}, where 0 represents false and 1 represents true. Due to the
partiality of F , S, and the functions in the codomain of S, not every term or formula has a denotation
in every model. The following recursive clauses define the denotation δM (τ) for each term τ which has a
denotation in M and the denotation δM (ϕ) for each term ϕ which has a denotation in M .

1. For all positive integers i,
δM (xi) = F (i), (59)

if F (i) is defined.

2. For all positive integers i and non-empty sequences of terms τ1, ..., τn,

δM (fi(τ1, ..., τn)) = S(i)(δM (τ1), ..., δM (τn)), (60)

if S(i) is defined, and δM (τi) is defined for each i, and

S(i)(δM (τ1), ..., δM (τn)) (61)

is defined.

3. For all terms τ, µ,
δM (τ + µ) = δM (τ) + δM (µ), (62)

if δM (τ) and δM (µ) are defined.

4. For all terms τ, µ,
δM (τ · µ) = δM (τ) · δM (µ), (63)

if δM (τ) and δM (µ) are defined.

5. δM (0) = 0.

6. δM (1) = 1.

7. δM (−1) = −1.

8. For all terms τ, µ,
δM (τ = µ) = 1 (64)

if δM (τ) and δM (µ) are defined and
δM (τ) = δM (µ). (65)

9. For all terms τ, µ,
δM (τ = µ) = 0 (66)

if δM (τ) and δM (µ) are defined and
δM (τ) ̸= δM (µ). (67)
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10. For all first-order formulas ϕ,
δM (¬ϕ) = 1 − δM (ϕ), (68)

if δM (ϕ) is defined.

11. For all first-order formulas ϕ, ψ,

δM (ϕ ∧ ψ) = min{δM (ϕ), δM (ψ)}, (69)

if δM (ϕ) and δM (ψ) are defined.

12. For all first-order formulas ϕ, ψ,

δM (ϕ ∨ ψ) = max{δM (ϕ), δM (ψ)}. (70)

13. For all positive constant terms β and first-order formulas ϕ,

δM (∀ < β. ϕ) = min
i∈[δM (β)]

δM [x1 7→i](ϕ), (71)

if δM [x1 7→i](ϕ) is defined for each i.

14. For all positive constant terms β and first-order formulas ϕ,

δM (∃ < β. ϕ) = max
i∈[δM (β)]

δM [x1 7→i](ϕ), (72)

if δM [x1 7→i](ϕ) is defined for each i.

15. For all positive constant terms γ and non-empty sequences of positive constant terms β1, ..., βn and
Σ1

1 formulas ϕ,

δM (∃f < γ(< β1, ..., < βn). ϕ) = max
g∈[δM (γ)]

∏
j∈[n][δM (βj )]

δM [f1 7→g](ϕ), (73)

if δM [f1 7→g](ϕ) is defined for each g.

4 Arithmetizing Σ1
1 formulas over the language of rings

The primary goal of this section is: given a relation presented as a Σ1
1 formula, find an arithmetization of

the relation. This section presents a scheme for doing so, proven correct in Section 5.
Let Φ be a Σ1

1 formula to be arithmetized. Without loss of generality, assume that Φ is of the form

Φ = Σ∆Ψ, (74)

where Σ is a string of n ≥ 0 second-order quantifiers,2

Σ = ∃f < γ1(< β⃗1). · · · ∃f < γn(< β⃗n)., (75)

∆ is a string of m ≥ 0 first-order quantifiers,

∆ = ∆1 < ϵ1. · · · ∆m < ϵm., (76)
2In (75), (< β⃗i) is a shorthand for (< βi,1, ..., < βi,ki ).
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where ∆i ∈ {∃,∀} for all i ∈ [m], and Ψ is a first-order formula without quantifiers. This assumption
is without loss of generality because for any first-order formula, there is an equivalent formula in prenex
normal form, meaning, with all quantifiers brought to the outside of the formula.

The arithmetization of Φ proceeds as follows.
Choose a power of two, 2W . W is called the word size. Let W = BN . B is called the number of

bits in a byte. N is called the number of bytes in a word. Choose these numbers such that the following
inequalities hold.

γi ≤ 2W , (77)

for all i ∈ [n].

βi,j ≤ 2W , (78)

for all i ∈ [n], j ∈ [ki].

ϵi ≤ 2W , (79)

for all i ∈ [m].
Choose a finite field F such that |F|, the cardinality or number of elements of F, is greater than 2Mδ,

where Mδ is the largest integer which is the denotation of any subterm of any term occurring in Φ in any
integral model which satisfies Φ, wherein the free first-order variables assume integer values in the open
interval (−2W , 2W ) and each n-ary free second-order variable assumes a value in the function space

(−2W , 2W )(−2W ,2W )n (80)

with cardinality no greater than some chosen maximum MF . This means that the number of possible
values for a free n-ary function variable, in this arithmetization, is less than

2(W+1)·MF ·n, (81)

which represents the number of ways of making MF · n choices (with repetition allowed) out of 2W+1

options.
If this scheme results in too many possible instance values, then each of the free first-order variables

and each argument place and each of the outputs of each free second-order function variable can have their
own individual bounds for the purposes of the arithmetization, with relatively straightforward changes to
what follows. The solution presented here economizes on the number of columns in the circuit with the
tradeoff of allowing for more possible instance values than might be needed.

What follows is, first, a high-level description of the arithmetization, and then a detailed, rigorous
description.

Each row of the circuit’s input matrix checks one possible combination of values of the universally
quantified variables. It is not always necessary for the matrix to include rows for all possible combinations
of values of the universally quantified variables. It is sufficient to include a falsifying set of combinations
of values. A falsifying set is one such that for each unsatisfiable combination of instance values, and each
possible combination of advice values, there is a combination of universally quantified variable values in
the falsifying set which witnesses the falsehood of the statement.

The combinations of values of universally quantified variables are expressed in fixed columns. There
are advice columns containing, in each row, the values of the first-order existentially quantified variables
corresponding to the values of the universally quantified variables in the row. There are instance columns
containing the values of the free variables. There are advice columns containing the values of the second-
order existentially quantified variables. There are advice columns containing the values of all function
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application subterms. There are advice columns containing the truth values of all equality subformulas.
Bytewise decompositions help to implement bounds checks, and there are fixed columns and advice columns
which help to implement bytewise decompositions and (in)equality tests.

Bytewise decomposition of a non-negative (unsigned) integer uses N bytes, where a byte is an integer
in the closed interval [0, 2B − 1]. The integer x to be decomposed must be in the closed interval [0, 2W − 1].
The bytewise decomposition is a sequence of bytes x1, ..., xN such that

x =
N∑
i=1

2B·(i−1) · xi. (82)

Bytewise decomposition of a signed integer uses N bytes and a sign bit. The integer x to be decomposed
must be in the open interval (−2W , 2W ). The bytewise decomposition consists of a sign bit s ∈ {1,−1}
and a sequence of bytes x1, ..., xN such that

x = s ·
N∑
i=1

2B·(i−1) · xi. (83)

What follows is a description of each column in the input matrix, including a name for the column
vector.

The instance columns are as follows.

1. For each first-order variable xi ∈ free(Φ), an instance column x⃗i. This column holds, in each row,
the (same) value assigned to xi.

2. For each second-order variable fi ∈ free(Φ) with arity n,3 instance columns

f⃗i, w⃗i,1, ..., w⃗i,n. (84)

f⃗i holds the value of fi( ⃗⃗wi) in each row. w⃗i,1, ..., w⃗i,n hold the values of ⃗⃗wi in each row.

There are five fixed columns which are present in all cases. These five “fixed fixed” columns are depicted
in Figure 1. These five fixed columns help with checking bytewise decompositions and creating truth tables
for equality and inequality statements.

There are additional fixed columns which are some subset of zero or more of the columns depicted in
Figure 2.

There are additional fixed columns, one for each universally quantified first-order variable, whose rows
contain a falsifying set of combinations of values of the universally quantified first-order variables.

Setting aside bytewise decompositions and advice columns based on the bytewise decompositions, the
advice columns are as follows:

1. 2n advice columns per second-order n-ary function variable free in Φ, used to track the deltas between
inputs of adjacent table rows and the truth values of inequality statements about inputs of adjacent
rows.

2. 3n+1 advice columns per existentially quantified (second-order) n-ary function variable: n+1 columns
are used to define the witness function as a lookup table, n columns track the deltas between inputs
of adjacent rows, and n columns track the truth values of inequality statements about inputs of
adjacent rows.

3The arity of a free second-order variable is determined by the arity of an occurrence of the variable at the head of a
function application. The arity of the variable must be the same in all occurrences for the formula to be interpretable.
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1 0 1 0 0
0 1 1 1 1
0 2 1 1 2
0 3 1 1 3
...

...
...

...
...

0 N 1 1 N
0 N + 1 0 0 1
0 N + 2 0 0 2
0 N + 3 0 0 3
...

...
...

...
...

0 2N 0 0 N
0 2N + 1 0 0 N
0 2N + 2 0 0 N
0 2N + 3 0 0 N
...

...
...

...
...

0 2B − 1 0 0 N
0 2B − 1 0 0 N
0 2B − 1 0 0 N
...

...
...

...
...

(85)

Figure 1: The five fixed columns featuring in all arithmetizations. The first column has value 1 in row 1
and 0 in all other rows. The second column has value 0 in row 1, and montonically increasing values up
to the maximum value 2B − 1 which is repeated until the final row. The third column consists of N + 1
ones followed by zeroes. The fourth column consists of a zero followed by N ones followed by zeroes. The
fifth column consists of a zero followed by two copies of the sequence 1, ..., N , followed by copies of N up
to the number of rows.
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0 1 1 1 · · · 1 1 1 1
0 0 1 1 · · · 1 1 1 1
0 0 0 1 · · · 1 1 1 1
0 0 0 0 · · · 1 1 1 1
0 0 0 0 · · · 1 1 1 1
0 0 0 0 · · · 1 1 1 1
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · 1 1 1 1
0 0 0 0 · · · 0 1 1 1
0 0 0 0 · · · 0 0 1 1
0 0 0 0 · · · 0 0 0 1
0 0 0 0 · · · 0 0 0 1
0 0 0 0 · · · 0 0 0 1
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · 0 0 0 1
0 0 0 0 · · · 0 0 0 1
0 0 0 0 · · · 0 0 0 1
...

...
...

...
...

...
...

...
...

(86)

Figure 2: The additional fixed columns, any of which may be present to help with bounds checking. These
columns respectively contain the output columns of the indicator functions of each non-empty downward
closed subset of the open interval (0, 2B) which is not the whole set. The related input column is the fixed
column b⃗ in each case.
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3. One advice column per existentially quantified first-order variable, used to define the value witnessing
the truth of the statement Ψ in each row.

4. Two advice columns per equality subformula τi = µi in Φ, one column δ⃗i containing the difference
τi − µi in each row, and one column ϵ⃗i containing the truth value of the equality claim;

ϵi,j =
{

0 if δi,j ̸= 0,
1 if δi,j = 0.

(87)

5. n+ 1 advice columns per n-ary function application subterm in Φ, containing the inputs and output
of the subterm at each row.

Each bytewise decomposition of an unsigned number takes up N advice columns. Each bytewise
decomposition of a signed number takes up N + 1 advice columns. The following bytewise decompositions
are included in the circuit:

1. n+ 1 unsigned and n signed bytewise decompositions per (second-order) n-ary function variable free
in Φ, used to decompose the values in the function lookup table provided in the instance and the
deltas between inputs in adjacent rows, respectively.

2. One unsigned bytewise decomposition per first-order variable free in Φ, used to decompose the value
provided in the instance.

3. n+1 unsigned and n signed bytewise decompositions per existentially quantified (second-order) n-ary
function variable, used to decompose the values in the witness function lookup table and the deltas
between the input values in adjacent rows, respectively.

4. One unsigned bytewise decomposition per existentially quantified first-order variable, used to decom-
pose the witness values in each row.

5. One signed bytewise decomposition per equality subformula τi = µi in Φ, used to decompose the
difference δi = τi − µi.

In addition, N advice columns per equality subformula are needed to check the truth value of the
equality subformula based on the bytewise decomposition. Also, N · n advice columns per second-order
n-ary function variable are needed to check the truth values of the “delta is positive” statements used in
checking the lexicographical ordering of function tables (discussed below). Up to 2N · (n + 1) additional
advice columns per second-order n-ary function variable are needed to check the quantifier bounds. Finally,
(up to) N advice columns per first-order existential quantifier are needed to check the quantifier bounds.

Here is an informal summary of the circuit constraints and how they are checked or expressed.

1. Each element of a bytewise decomposition is a byte, or in the case of a sign bit, a bit. This is checked
using a lookup argument.

2. Each bytewise decomposition adds up to the number it is supposed to be a decomposition of. This
is checked using a polynomial constraint.

3. Each truth value ϵ⃗i of an equality subformula is computed correctly from δ⃗i. This is checked using
lookup arguments to verify the truth values of whether or not each element of the bytewise decom-
position is zero, and a polynomial constraint to verify the truth value of δi = 0 for each row based
on the truth values for the bytewise decompositions.
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4. Each delta column δ⃗i is computed correctly using addition and multiplication from the values of free
and quantified variables and function application terms in each row. This is checked using polynomial
constraints.

5. Each function application term input advice column is computed correctly using addition and multi-
plication from the values of free and quantified variables and function application terms in each row.
This is checked using polynomial constraints.

6. Each function application term output advice column is computed correctly using the function ap-
plication input advice columns and a lookup into a function table either in advice columns (if the
function is existentially quantified) or in instance columns (if the function is a free variable). This is
checked using lookup arguments.4

7. All quantifier bounds are satisfied. This is checked using bytewise decompositions and lookup ar-
guments. The number of lookup arguments required depends on the divisibility of the quantifier
bounds.

8. The truth value of the statement Ψ is 1 (true) in each row. This is checked using a polynomial
constraint based on the truth values of the equality subformulas.

9. The values in first-order existential quantifier advice columns are equal across different rows when
required for consistency of the description of the witness to Φ according to the quantifier ordering.
This is checked using equality constraints.

10. The values in any one first-order free variable instance column are all equal to each other. This is
checked using equality constraints.

11. The lookup tables for free and existentially quantified second-order variables each define a function,
meaning that if fi is an n-ary function variable and L ⊆ Fn+1 is its lookup table, then for all x ∈ Fn
and y, y′ ∈ F, if (x, y) ∈ L and (x, y′) ∈ L then y = y′. This is checked using the following steps.

(a) The rows of each lookup table are lexicographically ordered. This is checked using polynomial
constraints and the truth values of inequality statements about inputs of adjacent rows. To say
that x⃗ < y⃗ in lexicographical ordering, where x⃗ and y⃗ are vectors of non-negative integers of
length n, is to say that for some 1 ≤ i ≤ n, xi < yi, and xj = yj for all 0 ≤ j < i.

(b) In adjacent rows with equal input column values, the output column values are the same. This
is checked using a polynomial constraint.

4.1 Circuit columns

Next up, a more detailed description of the circuit just outlined, beginning with how to compute the
number of columns of each of the three column types (fixed, advice, and instance), and how to refer to
each column.

The number of fixed columns is no less than u+ 2, where u is the number of universal quantifiers in Φ.
The number of fixed columns is no more than u+ 1 + 2B. The number of fixed columns depends on how
many lookup tables are required in order to implement the quantifier bounds checks, as follows.

Let B ⊂ Z+ be the set of quantifier bounds plus the set of numbers i + 1 where i is the bound of
a first-order existential quantifier or the bound on an input or the output of a second-order existential

4Being able to have free function variables in Φ requires Halo 2 to allow for instance columns to be used in the lookup
table of a lookup argument.
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u is the number of universal quantifiers in Φ.
χ is the number of byte lookup tables required to check the quantifier bounds in Φ.
k is the number of first-order variables appearing free in Φ.
n is the number of second-order variables appearing free in Φ.
ai is the arity of the ith second-order variable appearing free in Φ.
N is the number of bytes per word.
m is the number of second-order existential quantifiers in Φ.
bi is the arity of the ith second-order existential quantifier in Φ.
e is the number of first-order existential quantifiers in Φ.
u is the number of first-order universal quantifiers in Φ.
s is the number of equality subformulas in Φ.
t is the number of function application subterms in Φ.
ci is the arity of the ith function application subterm in Φ.
r is the number of rows.
θi is the upper bound on the ith first-order existential quantifier.

λi,j is the upper bound on the jth input of the ith second-order existential quantifier.
ηi,ℓ is the ℓth byte of the byte decomposition of the upper bound on the output of

the ith second-order existential quantifier.

Figure 3: Names of numbers used in the column naming scheme.

quantifier. Let b ∈ B. b is a word; that is, 0 ≤ b < 2W . Let b1, ..., bN be a binary decomposition of b; that
is, let

b =
N∑
i=1

2B·(i−1) · bi (88)

while bi ∈ [0, 2B−1] for all i ∈ [N ]. Each nonzero bi gives the upper bound of one of the sets to be captured
by a fixed column. The number of these nonzero bi over all b ∈ B (without double counting) is the number
χ in the formula

χ+ u+ 5 (89)

which gives the number of fixed columns.
Figure 3 gives the names of various numbers used in the column naming scheme, defining the variables

in the formula below.
The number of instance columns is

k +
n∑
i=1

(ai + 1), (90)

where k is the number of first-order variables appearing free in Φ, n is the number of second-order variables
appearing free in Φ, and ai is the arity of the ith free second-order variable.

The number of advice columns is

kN + (
∑n
i=1 3ai(2 +N) +N)

+ (
∑m
i=1 1 + 4bi +N(4bi + 2))

+ N(2n+ 1) + (3N + 1)e+ (3 + 2N)s
+

(∑t
i=1 ci + 1

)
.

(91)

In order to concisely describe the circuit constraints, it is helpful to have a naming scheme for the cells
in the circuit. The following naming scheme assigns names to each column vector, whereby each cell in a
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Fixed
z⃗ {0} indicator function range.
b⃗ Byte domain.
b⃗i Subset of bytes closed downward with max i.
ψ⃗i ith column of x > 0 truth table.
v⃗i Value of ith universally quantified variable.

Figure 4: Summary of fixed column vector naming scheme.

Instance
x⃗i Value of ith free first-order variable.
f⃗i Output column of lookup table for ith free second-order variable.
a⃗i,j Input column j of lookup table for ith free second-order variable.

Figure 5: Summary of instance column vector naming scheme.

column vector v⃗ in row i is implicitly assigned the name vi. See also Figures 4, 5, 6 for a summary of the
naming scheme.

The following names name fixed column vectors:

z⃗ = ⟨1 0 0 0 · · · ⟩ (92)

b⃗ = ⟨0 1 2 · · · (2B − 1) (2B − 1) (2B − 1) · · · ⟩ (93)

The following names:
ψ⃗1, ψ⃗2, ψ⃗3 (94)

name fixed column vectors which are respectively equal to the columns of the matrix depicted in Figure 7.
For any i ∈ [2B],

b⃗i (96)

is a fixed column vector containing i ones followed by 2B − i zeroes. (Only the subset of these column
vectors which are actually used are included in the circuit.)

For any i ∈ [u], u the number of universal quantifiers in Φ,

v⃗i (97)

names a fixed column which holds the value of the ith universally quantified (first-order) variable.
For any i ∈ [k], k the number of first-order variables appearing free in Φ,

x⃗i (98)

names an instance column which holds the value of the ith free first-order variable.
For any i ∈ [n], n the number of second-order variables appearing free in Φ,

f⃗i (99)

names an instance column which is the output column of the function lookup table representing the value
of the ith second-order variable appearing free in Φ.
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Advice
σ⃗i,j = a⃗i,j − ⟨0 ai,j,1 · · · ai,j,ai−1⟩.
τ⃗i,j,π Truth value of σ⃗i,j ≥ π.
g⃗i Output column of lookup table for ith second-order

existentially quantified variable.
c⃗i,j Input column j of lookup table for ith second-order

existentially quantified variable.
ρ⃗i,j = c⃗i,j − ⟨0 ci,j,1 · · · ci,j,r−1⟩.

υ⃗i,j,π Truth value of ρ⃗i,j ≥ π.
w⃗i Witness for ith first-order existentially quantified variable.
δ⃗i Difference between term values for ith equality subformula.
ϵ⃗i Truth value of ith equality subformula.
h⃗i Output of ith application subterm.
y⃗i,j jth input value of ith application subterm.
x⃗i,ℓ ℓth byte of x⃗i.
f⃗i,ℓ ℓth byte of f⃗i.
a⃗i,j,ℓ ℓth byte of a⃗i,j .
σ⃗

+/−
i,j Sign of σ⃗i,j .
σ⃗i,j,ℓ ℓth byte of unsigned part of σ⃗i,j .
g⃗i,ℓ ℓth byte of g⃗i.
c⃗i,j,ℓ ℓth byte of c⃗i,j .
ρ⃗

+/−
i,j Sign of ρ⃗i,j .
ρ⃗i,j,ℓ ℓth byte of ρ⃗i,j .
w⃗i,ℓ ℓth byte of w⃗i.
δ⃗

+/−
i Sign of δ⃗i.
δ⃗i,ℓ ℓth byte of δ⃗i.
υ⃗′
i,j,ℓ Truth value of ρ⃗i,j,ℓ > 0.
τ⃗ ′
i,j,ℓ Truth value of σ⃗i,j,ℓ > 0.
ϵ⃗i,ℓ Truth value of δ⃗i,ℓ = 0.

ω⃗i,ℓ,π Truth value of w⃗i,ℓ ∈ b⃗θi+π.
γ⃗i,j,ℓ,π Truth value of c⃗i,j,ℓ ∈ b⃗λi,j,ℓ+π.
κ⃗i,ℓ,π Truth value of g⃗i,j,ℓ ∈ b⃗ηi,ℓ+π.

Figure 6: Summary of advice column vector naming scheme.
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[
ψ⃗1 ψ⃗2 ψ⃗3

]
=



1 0 0
1 1 1
1 1 2
1 1 3
...

...
...

1 1 N
0 0 1
0 0 2
0 0 3
...

...
...

0 0 N



(95)

Figure 7: The fixed columns ψ⃗1, ψ⃗2, and ψ⃗3 constitute the truth table for checking the truth values of
statements of the form x > 0 based on a byte decomposition of x.

For any i ∈ [n] and j ∈ [ai], ai the arity of the ith second-order variable appearing free in Φ,

a⃗i,j (100)

names an instance column which is the jth input column of the function lookup table representing the
value of the ith second-order variable appearing free in Φ.

For any i ∈ [n] and j ∈ [ai],
σ⃗i,j = a⃗i,j − ⟨0 ai,j,1 · · · ai,j,ai−1⟩ (101)

names an advice column holding the differences between successive values of a⃗i,j , and for any π ∈ {0, 1},

τ⃗i,j,π (102)

names an advice column such that for all k ∈ [r],

τi,j,π,k =
{

1 if σ⃗i,j,k ≥ π,

0 otherwise.
(103)

For any i ∈ [m],
g⃗i (104)

names an advice column which is the output column of the lookup table definition of the witness value for
the ith existentially quantified second-order variable.

For any i ∈ [m], j ∈ bi,
c⃗i,j (105)

names an advice column which is the input column of the lookup table definition of the witness value for
the ith existentially quantified second-order variable.

For any i ∈ [m], j ∈ bi,
ρ⃗i,j = c⃗i,j − ⟨0 c⃗i,j,1 · · · ci,j,r−1⟩ (106)

names an advice column which holds the differences between successive rows of c⃗i,j , and π ∈ {0, 1},

υ⃗i,j,π (107)
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names an advice column such that for all π ∈ {0, 1}, k ∈ [r],

υ⃗i,j,π,k =
{

1 if ρi,j,k ≥ π,

0 otherwise.
(108)

For all i ∈ [e],
w⃗i (109)

names an advice column containing the witness for the ith first-order existentially quantified variable.
The witness consists of one value for each checked value of the first-order universally quantified variables.
For any universal quantifier which appears after the ith existential quantifier, the values of w⃗i must be
independent of the value of the universally quantified variable. So for example, if the ith first-order
existential quantifier does not appear inside a universal quantifier, then the values of w⃗i must all be equal.

For all i ∈ [s],
δ⃗i (110)

names an advice column containing the values of the difference τi − µi, where τi = µi is the ith equality
subformula in Φ, and

ϵ⃗i (111)

names an advice column such that for all j ∈ [r],

ϵi,j =
{

1 if δi,j = 0,
0 otherwise.

(112)

For all i ∈ [t],
h⃗i (113)

names an advice column which contains the output values at each row of the ith function application term
in Φ.

For all i ∈ [t], j ∈ ci,
c⃗i,j (114)

names an advice column which contains the input values at each row of the jth argument of the ith function
application subterm in Φ.

The following names name advice columns which are parts of byte decompositions of the values in the
columns with coordinated names:

1. x⃗i,ℓ, for all i ∈ [k], ℓ ∈ [N ]. (They decompose x⃗i.)

2. f⃗i,ℓ, for all i ∈ [n], ℓ ∈ [N ]. (They decompose f⃗i.)

3. a⃗i,j,ℓ, for all i ∈ [n], j ∈ [ai], ℓ ∈ [N ]. (They decompose a⃗i,j .)

4. σ⃗+/−
i,j , σ⃗i,j,ℓ, for all i ∈ [n], j ∈ [ai], ℓ ∈ [N ]. (They decompose σ⃗i,j .)

5. g⃗i,ℓ, for all i ∈ [m], ℓ ∈ [N ]. (They decompose g⃗i,ℓ.)

6. c⃗i,j,ℓ, for all i ∈ [m], j ∈ bi, ℓ ∈ [N ]. (They decompose c⃗i,j .)

7. ρ⃗+/−
i,j , ρ⃗i,j,ℓ, for all i ∈ [m], j ∈ bi, ℓ ∈ [N ]. (They decompose ρ⃗i,j .)

8. w⃗i,ℓ, for all i ∈ [e]. (They decompose w⃗i.)
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9. δ⃗+/−
i , δi,ℓ, for all i ∈ [s]. (They decompose δ⃗i.)

For all i ∈ [m], j ∈ [bi], ℓ ∈ [N ],
v⃗i,j,ℓ (115)

names an advice column such that for each k ∈ [r], vi,j,ℓ,k is the truth value of the formula

ρi,j,ℓ,k > 0. (116)

For all i ∈ [s], ℓ ∈ [N ],
ϵi,ℓ (117)

names an advice column such that for each k ∈ [r], ϵi,ℓ,k is the truth value of the formula

δi,ℓ,k = 0. (118)

For all i ∈ [n], j ∈ [ai], and ℓ ∈ [N ],
τ⃗ ′
i,j,ℓ (119)

names an advice column such that for each k ∈ [r], τ ′
i,j,ℓ,k is the truth value of the formula

σi,j,ℓ,k > 0. (120)

For all i ∈ [m], j ∈ [bi], and ℓ ∈ [N ],
υ⃗′
i,j,ℓ (121)

names an advice column such that for all k ∈ [r], υ′
i,j,ℓ,k is the truth value of the formula

ρi,j,ℓ,k > 0. (122)

For all i ∈ [e], ℓ ∈ [N ], π ∈ {0, 1},
ω⃗i,ℓ,π (123)

names an advice column such that for each k ∈ [r], ωi,ℓ,k is the truth value of the formula

wi,ℓ,k ∈ b⃗θi,ℓ+π. (124)

For all i ∈ [m], j ∈ [bi], ℓ ∈ [N ], π ∈ {0, 1},
γ⃗i,j,ℓ,π (125)

names an advice column such that for each k ∈ [r], γi,j,ℓ,k is the truth value of the formula

ci,j,ℓ,k ∈ b⃗λi,j+π. (126)

For all i ∈ [m], ℓ ∈ [N ], π ∈ {0, 1},
κ⃗i,ℓ,π (127)

names an advice column such that for each k ∈ [r], κi,ℓ,k is the truth value of the formula

gi,ℓ,k ∈ b⃗ηi+π,ℓ (128)

That completes the description of the columns which the circuit of the arithmetization of Φ has. The
next step in defining the circuit is to state the constraints of the circuit, which ensure that the values in
the circuit matrix have their intended interpretations and the circuit arithmetizes the intended relation.
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4.2 Circuit constraints

The circuit arithmetizing Φ expresses the following constraints on the input matrix. For definitions of the
names referenced in the constraint statements, see Subsection 4.1 and in particular Figures 3, 4, 5, and 6.

Constraints are of three types: lookup constraints, equality constraints, and polynomial constraints.
Polynomial constraints apply at each row and use cell references with relative row indices. Equality
constraints apply between individual cells and use absolute cell references. Lookup constraints apply
between subsets of the columns, asserting that every subrow in a subset of the columns is a subrow in
another subset of the columns. Lookup constraints will be expressed in the form (x1, ..., xn) ∈ (v⃗1, · · · , v⃗n),
where (x1, ..., xn) is a tuple of elements of F and v⃗1, ..., v⃗n is a same-length tuple of column vectors. This
notation means that there is some row in the table with columns v⃗1, ..., v⃗n which is equal to (x1, ..., xn).

Each byte element of a bytewise decomposition is a byte and each sign element is 0 or 1.
This constraint is expressed by the following statements.

1. For all i ∈ [k], ℓ ∈ [N ], j ∈ [r],
xi,ℓ,j ∈ b⃗. (129)

2. For all i ∈ [n], j ∈ [ai], ℓ ∈ [N ], k ∈ [r],
fi,ℓ,j ∈ b⃗, (130)

ai,j,ℓ,k ∈ b⃗, (131)

σ
+/−
i,j,k ∈ z⃗, (132)

σi,j,ℓ,k ∈ b⃗. (133)

3. For all i ∈ [m], j ∈ [bi], ℓ ∈ [N ], k ∈ [r],
gi,ℓ,k ∈ b⃗, (134)

ci,j,ℓ,k ∈ b⃗, (135)

ρ
+/−
i,j,k ∈ z⃗, (136)

ρi,j,ℓ,k ∈ b⃗. (137)

4. For all i ∈ [e], ℓ ∈ [N ], k ∈ [r],
w⃗i,ℓ,k ∈ b⃗. (138)

5. For all i ∈ [s], ℓ ∈ [N ], k ∈ [r],
δ

+/−
i,k ∈ z⃗, (139)

δi,ℓ,k ∈ b⃗. (140)
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Each bytewise decomposition adds up to the value it decomposes. This constraint is expressed
by the following statements.

1. For all i ∈ [k], j ∈ [r],

xi,j =
N∑
ℓ=1

2B·(ℓ−1) · xi,ℓ,j . (141)

2. For all i ∈ [n], j ∈ [ai], k ∈ [r],

fi,k =
N∑
ℓ=1

2B·(ℓ−1) · fi,ℓ,k, (142)

ai,j,k =
N∑
ℓ=1

2B·(ℓ−1) · ai,j,ℓ,k, (143)

σi,j,k = (2 · σ+/−
i,j,k − 1) ·

N∑
ℓ=1

2B·(ℓ−1) · σi,j,ℓ,k. (144)

3. For all i ∈ [m], j ∈ [bi], k ∈ [r],

gi,k =
N∑
ℓ=1

2B·(ℓ−1) · gi,ℓ,k, (145)

ci,j,k =
N∑
ℓ=1

2B·(ℓ−1) · ci,j,ℓ,k, (146)

ρi,j,k = (2 · ρ+/−
i,j,k − 1) ·

N∑
ℓ=1

2B·(ℓ−1) · ρi,j,ℓ,k. (147)

4. For all i ∈ [e], k ∈ [r],

wi,k =
N∑
ℓ=1

2B·(ℓ−1) · wi,ℓ,k. (148)

5. For all i ∈ [s], k ∈ [r],

δi,k = (2 · δ+/−
i,k − 1) ·

N∑
ℓ=1

2B·(ℓ−1) · δi,ℓ,k. (149)

Each equality statement truth value is evaluated properly with respect to the correlated δ⃗i
advice column. This constraint is expressed by checking that each δ⃗i advice column decomposes into
all zeroes at all and only the rows where ϵ⃗i is zero, as follows.

For all i ∈ [s], ℓ ∈ [N ], k ∈ [r],
(δi,ℓ,k, ϵi,ℓ,k) ∈ (⃗b, z⃗), (150)

ϵi,k =
N∏
ℓ=1

ϵi,ℓ,k. (151)
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Each δ⃗i advice column is equal to the differences between the values of the terms in the cor-
related equality subformula. This constraint is expressed by the following s polynomial constraints.

For all i ∈ [s],
δ⃗i = eval(τi) − eval(µi), (152)

where τi = µi is the ith equality subformula in Φ, and eval is a partial function from terms to column
vectors, defined as follows:

1. eval(0) = 0[r], where 0[r] denotes the column vector consisting of r zeroes.

2. eval(1) = 1[r], similarly.

3. If xj is the ith first-order variable occurring free in Φ, then

eval(xj) = x⃗i. (153)

4. If τi is the ith function application subterm occurring in Φ, then

eval(τi) = h⃗i. (154)

5. For all terms τ, µ and column vectors α⃗, β⃗, if

eval(τ) = α⃗ and (155)

eval(µ) = β⃗, (156)

then
eval(τ · µ) = α⃗ · β⃗, (157)

where · is the Hadamard (elementwise) product of column vectors, and

eval(τ + µ) = α⃗+ β⃗. (158)

For these constraints to be well defined, it must be the case that eval(τi) and eval(µi) are defined for each
i ∈ [s]. This can easily be seen to be the case by the construction of eval.

Each function application term input column is equal to the evaluation of the input term.
This constraint is expressed by the following

∑t
i=1 ci polynomial constraints.

For all i ∈ [t], let τ1, ..., τci be the input terms of the ith function application subterm appearing in Φ.
For each j ∈ [ci],

y⃗i,j = eval(τj). (159)

Each function application term output column is equal to the function applied to the inputs.
This constraint is expressed by the following lookup constraints.

Let i ∈ [t]. Suppose that the ith function application subterm head is the jth second-order variable
occurring free in Φ. That variable has arity ci. For all k ∈ [r],

(hi,k, yi,1,k, ..., yi,ai,k) ∈ (f⃗j , a⃗j,1, ..., a⃗j,ai). (160)

Let i ∈ [t]. Suppose that the ith function application subterm head is the variable quantified over by
the jth second-order existential quantifier occurring in Φ. That variable has arity ci. For all k ∈ [r],

(hi,k, yi,1,k, ..., yi,ai,k) ∈ (g⃗i, c⃗i,1, ..., c⃗i,ai). (161)
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Each quantifier bound is satisfied. For universal quantifiers, this constraint is satisfied by virtue of the
fact that the universally quantified variable values are fixed. For first-order and second-order existential
quantifiers, this constraint is expressed by performing the comparisons between the witness values and
the bounds using the lexicographical ordering of their respective byte decompositions. This is expressed
precisely as follows.

1. Each truth value in ω⃗i,ℓ, γ⃗i,j,ℓ, and κ⃗i,ℓ is accurate. That is,

(a) For all i ∈ [e], ℓ ∈ [N ], k ∈ [r],
(wi,ℓ,k, ωi,ℓ,k) ∈ (⃗b, b⃗ηi,ℓ). (162)

(b) For all i ∈ [m], j ∈ [bi], ℓ ∈ [N ], k ∈ [r],

(ci,j,ℓ,k, γi,j,ℓ,k) ∈ (⃗b, b⃗λi,j
). (163)

(c) For all i ∈ [m], ℓ ∈ [N ], k ∈ [r],
(gi,j,ℓ,k, κi,ℓ,k) ∈ (⃗b, b⃗ηi,ℓ

). (164)

2. The byte decompositions of w⃗i, c⃗i,j and g⃗i are less than the bounds in lexicographical
ordering, as indicated by the truth values ω⃗i,ℓ, γ⃗i,j,ℓ, and κ⃗i,ℓ. That is,

(a) For all i ∈ [e], k ∈ [r],
Lex<(w⃗i,−,k, b⃗ηi,−) = 1. (165)

The function
Lex< : [2]N × [2]N → [2] (166)

is defined by the following recursive clauses.

Lex<,1(p⃗, q⃗) = pN (167)

Lex<,i+1(p⃗, q⃗) = qN−i ∧ (pN−i ∨ Lexi(p⃗, q⃗)) (168)

Lex< = Lex<,N (169)

In 168, the logical connectives ∧ and ∨ are interpreted as the arithmetized boolean operations:

x ∧ y = x · y (170)

x ∨ y = x+ y − x · y (171)

The vectors
w⃗i,−,k, b⃗ηi,− ∈ [2]N (172)

are defined as:
w⃗i,−,k = ⟨wi,1,k, ..., wi,N,k⟩ (173)

b⃗ηi,− = ⟨bηi,1, ..., bηi,N ⟩ (174)

This expresses a set of polynomial constraints.
The remaining constraints are expressed using these same notations.

(b) For all i ∈ [m], j ∈ [bi], k ∈ [r],
Lex(c⃗i,j,−,k, b⃗λi,j) = 1. (175)

(c) For all i ∈ [m], k ∈ [r],
Lex(g⃗i,j,−,k, κ⃗i,−,k) = 1. (176)
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The statement Ψ is true at each row. This constraint is expressed as follows. Extend the eval partial
function from terms to column vectors to a partial function from formulas to column vectors, using the
following recursive clauses.

1. For all terms τ, µ and column vectors α⃗, β⃗, if

eval(τ) = α⃗ and (177)

eval(µ) = β⃗ (178)

then
eval(τ = µ) = ι0(α⃗− β⃗), (179)

where ι0 is the zero indicator function defined on scalars by

ι0(x) =
{

1 if x = 0,
0 otherwise,

(180)

and extended to vectors by applying it pointwise.

2. For all quantifier-free formulas ϕ, if eval(ϕ) is defined then

eval(¬ϕ) = 1 − eval(ϕ). (181)

3. For all quantifier-free formulas ϕ, ψ, if eval(ϕ) is defined and eval(ψ) is defined then:

eval(ϕ ∧ ψ) = eval(ϕ) · eval(ψ) (182)

eval(ϕ ∨ ψ) = eval(ϕ) + eval(ψ) − eval(ϕ) · eval(ψ) (183)

The values in first-order existential quantifier advice columns are equal across different rows
when required for consistency of the description of the witness to Φ according to the quantifier
ordering. In other words, for any two rows, if all universally quantified variable values in the row are
equal for all universal quantifiers preceding the ith first-order existential quantifier, then the values for the
ith first-order existentially quantifier variable must be equal in those two rows. This is expressed precisely
as follows.

Let
∆ = ∆1 < β1. · · · ∆n < βΠ. (184)

be the first-order quantifier string of Φ (which is assumed to be in prenex normal form). ∆i ∈ {∀, ∃} for
each i ∈ [Π]. Also, each βi (for i ∈ [Π]) is assumed to be a positive constant term denoting a value less
than 2W . (For any given Φ, there is some choice of W which makes these assumptions true.)

Let
ι : [e] → [Π] (185)

be the function defined by the following recursive clauses:

ι(1) = the least i such that ∆i = ∃
ι(j + 1) = the least i such that ∆i = ∃ and i > ι(j) (186)

The fact that this function is total follows from the definition of e as the number of first-order existential
quantifiers in Φ.
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Similarly, let
ζ : [u] → [Π] (187)

be the function defined by the following recursive clauses:

ζ(1) = the least i such that ∆i = ∀
ζ(j + 1) = the least i such that ∆i = ∀ and i > ζ(j) (188)

The fact that this function is total follows from the definition of u as the number of first-order universal
quantifiers in Φ.

For all i ∈ [e] and k, k′ ∈ [r], if k and k′ are i-compatible then

wi,k = wi,k′ , (189)

where k and k′ are said to be i-compatible iff for all j ∈ [u], if ζ(j) < ι(i) then vj,k = vj,k′ .

The values in any first-order variable value instance column are all equal to each other. In
other words, for all i ∈ [k] and j, j′ ∈ [r],

xi,j = xi,j′ . (190)

The lookup tables for free and existentially quantified second-order variables each define a
function. This is checked using the following constraints.

1. The truth values of inequality statements about bytes of deltas of elements of adjacent
input row vectors are correct. The truth values checked by these constraints are τ⃗ ′

i,j,ℓ for all
i ∈ [n], j ∈ [ai], and ℓ ∈ [N ], and υ⃗′

i,j,ℓ for all i ∈ [m], j ∈ [bi], and ℓ ∈ [N ]. The constraints are as
follows.

(a) For all i ∈ [n], j ∈ [ai], ℓ ∈ [N ], and k ∈ [r],

(σi,j,ℓ,k, 1 − τ ′
i,j,ℓ,k) ∈ (⃗b, z⃗). (191)

(b) For all i ∈ [m], j ∈ [bi], and ℓ ∈ [N ],

(ρi,j,ℓ,k, 1 − υ′
i,j,ℓ,k) ∈ (⃗b, z⃗). (192)

2. The truth values of inequality statements about deltas of elements of adjacent input row
vectors are correct. The truth values checked by these constraints are τ⃗i,j,π for all i ∈ [n], j ∈ [ai],
and π ∈ {0, 1}, and υ⃗i,j,π for all i ∈ [m], j ∈ [bi], and π ∈ {0, 1}. The constraints are as follows.

(a) For all i ∈ [n], j ∈ [ai], k ∈ [r],
τi,j,0,k = 1

2
(
σ

+/−
i,j,k + 1

)
. (193)

1
2 denotes the multiplicative inverse of two in F.

(b) For all i ∈ [m], jin[bi], k ∈ [r],
υi,j,0,k = 1

2
(
ρ

+/−
i,j,k

)
. (194)

(c) For all i ∈ [n], j ∈ [ai], k ∈ [r],(
τi,j,0,k, τi,j,1,k,

(
N∑
ℓ=1

σi,j,ℓ,k

))
∈ (ψ⃗1, ψ⃗2, ψ⃗3). (195)
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(d) For all i ∈ [m], j ∈ [bi], k ∈ [r],(
υi,j,0,k, υi,j,1,k,

(
N∑
ℓ=1

υi,j,ℓ,k

))
∈ (ψ⃗1, ψ⃗2, ψ⃗3 + 1). (196)

3. The rows of each lookup table are lexicographically ordered. This is expressed precisely as
follows.

(a) For all i ∈ [n], k ∈ [r],
Lex≤(τ⃗i,−,1,k, τ⃗i,−,0,k) = 1. (197)

The function
Lex≤ : [2]ai → [2] (198)

is defined by the following recursive clauses:

Lex≤,1(p⃗, q⃗) = qai (199)

Lex≤,j+1(p⃗, q⃗) = qai−j ∧ (pai−j ∨ Lexi(p⃗, q⃗)) (200)

Lex≤ = Lex≤,ai (201)

The vectors
τ⃗i,−,0,k, τ⃗i,−,1,k ∈ [2]N (202)

are defined as
τ⃗i,−,π,k = ⟨τi,1,π,k, ..., τi,N,π,k⟩, (203)

for all π ∈ {0, 1}. The next constraint is expressed using these same notations, with appropriate
variable substitutions.

(b) For all i ∈ [m], k ∈ [r],
Lex≤(υ⃗i,−,1,k, υ⃗i,−,0,k) = 1. (204)

4. In adjacent rows with equal input column values, the output column values are the
same. This is expressed precisely as follows.

(a) For all i ∈ [n], k ∈ [r],

0 =

 ai∏
j=1

(1 − τi,j,1,k)

 · (fi,k − fi,k+1). (205)

(b) For all i ∈ [m], k ∈ [r],

0 =

 bi∏
j=1

(1 − υi,j,1,k)

 · (gi,k − gi,k+1). (206)

In these formulas, the subscripts k + 1 are computed with wraparound modulo r.
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4.3 The circuit itself

In order to assemble the foregoing information into a circuit, some additional information needs to be
provided. The information provided thus far is the column types, the constraints, and the fixed column
values. The unspecified information thus far is the underlying finite field F, the polynomial degree bound
d, and the row count r.

Beyond the constraints imposed by the proving system itself, the only constraint on F is that its order
must be greater than 2M , where M is the maximum absolute value of an intermediate result obtained in
an evaluation of the truth value of Φ in some integral model wherein the values interpreting free variables
are integers in the range [0, 2W ) (for first-order variables) and functions in [0, 2W )[0,2W )n (for n-ary function
variables).

M is efficiently computable from Φ using the quantifier bounds and the terms of Φ. This is because
all intermediate results are obtained from calculations using only addition and multiplication of instance
values, witness values, and constants, and all instance and witness values are bounded by constants.

The only constraint on d imposed by the construction is that d must be no smaller than each of the
degrees of the polynomial constraints. Therefore the minimum value of d is efficiently computable from Φ
by generating the polynomial constraints and counting their degrees.

The only constraint on r imposed by the construction is that r must be no less than one and no less
than

∏u
i=1 βi, where u is the number of universal quantifiers and βi is the bound on the ith universal

quantifier in Φ.

4.4 Variations on this construction

The polynomial degree bound d can be reduced in some cases by increasing the number of advice columns,
by adding advice columns to store intermediate results of calculations of the values of terms and subfor-
mulas, resulting in simpler constraints. Increasing the number of columns while decreasing the polynomial
degree bound may impact various metrics of efficiency in various ways, and thus some experimentation may
be helpful to find a variation on this construction which is more optimized in general or for a particular
formula.

5 Proof sketch of correctness of the arithmetization

What it means for this arithmetization to be correct is that the resulting circuit arithmetizes the relation
defined by the formula Φ. What it means for a circuit to be an arithmetization of a relation is defined in
Section 2. In order to define what it means for the arithmetization to be correct, it suffices to define what
is the relation defined by a formula Φ.

The “domain of Φ,” dom(Φ), is a set, of which the relation defined by Φ is a subset,

dom(Φ) = [0, 2W )k ×
n∏
i=1

{x ∈ P([0, 2W )ai × [0, 2W )) | x is a function and |x| ≤ r}, (207)

where P is the power set operator, |x| is the cardinality of x, k is the number of first-order variables free in
Φ, n is the number of second-order variables free in Φ, and ai is the arity of the ith second-order variable
occurring free in Φ. An element of dom(Φ) contains a value for each free variable in Φ.

Each x ∈ dom(Φ) yields an integral model, Mx, defined as

Mx = (Z, ·,+, 1,−1, F, S), (208)
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where

F (i) =
{
πi(π1(x)) if i ∈ [1, k],
0 otherwise.

(209)

S(i) =
{
πi(π2(x)) if i ∈ [1, n],
const(0) otherwise.

(210)

The relation defined by Φ is the set

{x ∈ dom(Φ) | δMx(Φ) = 1}. (211)

Let Φ be a formula. Let C be the circuit arithmetizing Φ as defined in Section 4. Let f : dom(Φ) → Fv×r,
where v is the number of instance columns of C and r is the row count, be defined as

f(x) =

x1 · · · xk y1,1,1 · · · y1,a1,1 z1,1 · · · yn,1,1 · · · yn,an,1 zn,1
... · · ·

...
... · · ·

...
... · · ·

... ·
...

...
x1 · · · xk y1,1,r · · · y1,a1,r z1,r · · · yn,1,r · · · yn,an,r zn,r

 (212)

where
xi = h(πi(π1(x))), (213)

yi,j,ℓ = h(πj(π1(eℓ(πi(π2(x)))))), (214)

zi,ℓ = h(π2(eℓ(πi(π2(x))))). (215)

The function ei goes from a well-ordered finite set to the ith element of the set in the implied well-ordering,
or if i is greater than the cardinality of the input set, then ei returns the last element of the set.

The function h : Z → F is the unique ring homomorphism from Z to F. The unique existence of h
follows from the fact that Z is the zero object in the category of rings.

This is the core correctness claim:

Theorem 1. (C, f) is an arithmetization of the relation defined by Φ.

The strategy for proving the correctness claim for the construction of C is to first prove the correctness
claim for a different construction which is less efficient but simpler to prove the claim for, and then proving
that the construction of C is equivalent to the simpler construction. The simpler construction is described
in category theory terms, using the operations of a Cartesian closed category, namely products, coproducts,
and exponentials.

5.1 Categories of circuits

In order to define a category of circuits usable for the present purposes, it is necessary to redefine cir-
cuits with some additional data and assumptions. These redefined circuits will be called “composable
circuits.” Not every circuit can be made into a composable circuit, but all of the circuits resulting from
the arithmetization construction can be made into composable circuits.

By definition, a “composable circuit” is a tuple

C = (F, c⃗, d, p⃗, ℓ⃗, r, e⃗, X, τ, f), (216)

where:

1. F is a finite field. F is called the underlying field.
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2. c⃗ = c1, ..., cn, where for all i ∈ [n],

ci ∈ {F,D,O, I} × {E,N}. (217)

Here F,D,O, I, E,N are distinct constants with the following interpretations:

F Fixed column
D Deterministic advice column
O Nondeterministic advice column
I Instance column
E Equality constrainable column
N Non equality constrainable column
c⃗ is called the column type vector.

3. d is a positive integer. d is called the polynomial degree bound.

4. p⃗ = p1, ..., pm, where for all i ∈ [m], pi is a polynomial of degree ≤ d with coefficients in F, where
variable names are pairs (j, k) ∈ [n] × Z where j is a column index and k is a relative row reference.
k = 0 refers to the current row, and in general, k refers to the row whose index is the index of the
current row plus k (with wraparound, modulo r).
p⃗ is called the sequence of polynomial constraints.

5. ℓ⃗ = ℓ1, ..., ℓk, where for all i ∈ [k], ℓi is a tuple of the form (x⃗, a⃗) where for some positive integer q:

(a) x⃗ = x1, ..., xq, where for all j ∈ [q], xj is a polynomial of degree ≤ d with coefficients in F, where
variables are pairs (k, l) ∈ [n] ×Z where k is a column index and l is a relative row reference. x⃗
is called the input expression.

(b) a⃗ = a1, ..., aq, where for all j ∈ [q], aj is a column index (aj ∈ [n]). a⃗ is called the vector of table
columns.

l⃗ is called the sequence of lookup arguments.

6. r is a positive integer. r is called the number of rows.

7. e⃗ = e1, ..., et, where for all i ∈ [t], ei ∈ ([n] × [r])2 is a pair of pairs of indices, representing an equality
constraint in the form of a pair of absolute cell references.

8. X ∈ F[u]×[r], where u is the number of fixed columns, contains the values of each fixed column in
each row.

9. τ ∈ [n], where π1(cτ ) = D. τ is the index of the column containing all ones when the statement
expressed by the circuit is true, and otherwise contains some combination of ones and/or zeroes.

10. f : F[nI+nO]×[r] → F[nD]×[r] is a function, where for all X ∈ {I,O,D},

nX = |{i ∈ [n] | ci = X}|. (218)

f is called the deterministic advice computer.

11. For all Y ∈ F[nI+nO]×[r], if there exists Z ∈ F[nD]×[r] such that [XY Z] satisfies C, then [XY f(Y )]
satisfies C, and f(Y ) is the unique such Z. (Satisfaction of a composable circuit is defined the same
way as satisfaction of a circuit.)
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12. C includes the following constraints. In these constraints, t⃗ denotes the value of the τth column.

(a) t⃗ = 1r.
(b) For all i ∈ [r], ti ∈ {0, 1}.

13. If the constraint t⃗ = 1r is removed from C, the resulting circuit D is uniquely satisfiable for all
combinations of instance and nondeterministic advice values. In other words, for all Y ∈ F[nI+nO]×[r],
[XY f(Y )] satisfies D, and f(Y ) is the unique Z such that [XY Z] satisfies D.

For any finite field F, positive integer r ≥ |F|+1,5 and non-negative integer nI , let Circ(F, nI , r) denote
a category. The objects are composable circuits with field F, row count r, and nI instance columns. A
morphism g : C → D is a function

g : F[nI+nC,O]×[r] → F[nD,O]×[r], (219)

where nX ,O denotes the number of nondeterministic advice columns of the circuit X , such that for all
X ∈ F[nI ]×[r] and Y ∈ F[nC,O]×[r], if [XY fC([XY ])] satisfies C, then [Xg([XY ])fD([Xg([XY ])])] satisfies D.
Here fX denotes the deterministic advice computer of X .

Equality of morphisms is the maximal equality relation, meaning that for any objects C,D and mor-
phisms f, g ∈ hom(C,D), f = g. This can be contrasted with the extensional equality relation, where
things are equal only to themselves. In the categories Circ(F, nI , r), all elements of a hom-set are consid-
ered formally equal. This renders all morphism equality assertions in category theoretic properties trivially
true. This approach works because for the present purposes, the distinctions between morphisms and the
characteristics of hom-sets are not relevant. What is relevant is whether a hom-set is empty or nonempty,
because this determines whether or not one circuit implies another when the circuits are considered as
propositions.

Given morphisms f : C → D and g : D → E , the morphism g ◦ f is defined, for all X ∈ F[nI ]×[r] and
Y ∈ F[nC,O]×[r], by

(g ◦ f)([XY ]) = g([Xf([XY ])]). (220)

It is straightforward to check that g◦f is a morphism. The composition law is made trivial by the maximal
equality relation, but also holds true for extensional equality.

Given an object C, the morphism idC is defined, for all X ∈ F[nI ]×[r] and Y ∈ F[nC,O]×[r], by

idC([XY ]) = Y. (221)

It is straightforward to check that this is a morphism. The composition identity laws are made trivial by
the maximal equality relation, but also hold true for extensional equality.

5.1.1 Initial objects (⊥)

Let Circ(F, nI , r) be a category of composable circuits. In this category, find a composable circuit ⊥ with
one deterministic advice column (denoted t⃗), no other advice columns, and the following constraints:

1. t⃗ = 1r.

2. t⃗ = 0r.

3. For all i ∈ [r], ti ∈ {0, 1}.
5The condition r ≥ |F + 1| is required for the lookup arguments in the coproduct construction.
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The deterministic advice computer is const(0r). Since this circuit is never satisfied, condition 11 of the
composable circuit definition is satisfied trivially. Conditions 12 and 13 are also satisfied trivially.

Theorem 2. ⊥ is an initial object.

Proof. Let C be a circuit. Define a morphism f : ⊥ → C by

f = const(0[nC,O]×[r]). (222)

This is trivially a morphism because ⊥ is never satisfied. It is trivially unique because of the maximal
equality relation.

5.1.2 Products (×)

Let Circ(F, nI , r) be a category of composable circuits. Let C and D be objects in this category. In this
category, find a circuit C × D with the following characteristics:

1. C × D has the following numbers of deterministic and nondeterministic advice columns:

nC×D,O = nC,O + nD,O (223)

nC×D,D = nC,D + nD,D + 1 (224)

All but one of these advice columns correspond to those in C and D. The one deterministic advice
column beyond those in C and D is the truth value column, denoted t⃗. In addition, the truth value
columns of C and D are present, and denoted u⃗ and v⃗, respectively.

2. All of the constraints of C and D are present, except for u⃗ = 1r and v⃗ = 1r.

3. The following constraints are present:

(a) For all i ∈ [r], ti ∈ {0, 1}.
(b) t⃗ = 1r.
(c) t⃗ = u⃗ · r⃗, where · is the Hadamard product.

4. The deterministic advice computer, fC×D, is defined as follows, in terms of the deterministic advice
computers fC of C and fD of D. For all X ∈ F[nI ]×[r], Y ∈ F[nC,O]×[r], Z ∈ F[nD,O]×[r],

fC×D([XY Z]) = [fC([XY ])fD([XZ])]. (225)

Define morphisms
π1 : (C × D) → C, (226)

π2 : (C × D) → D, (227)

as follows. For all X ∈ F[nI ]×[r], Y ∈ F[nC,O]×[r], and Z ∈ F[nD,O]×[r],

π1([XY Z]) = Y, (228)

π2([XY Z]) = Z. (229)

It is straightforward to check that these are morphisms.

Theorem 3. C × D, π1, and π2 are a product of C and D.
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Proof. Let X be an object. Let f : X → C and g : X → D be morphisms. Define the morphism
f × g : X → (C × D) as follows. For all X ∈ F[nI ]×[r] and Y ∈ F[nC,X ]×[r],

(f × g)([XY ]) = [f([XY ])g([XY ])]. (230)

It is straightforward to check that this is a morphism. The diagram

X

C C × D D
f

g
f×g

π1

π2

(231)

commutes trivially in that all diagrams commute in a category with maximal morphism equality. For the
same reason, f × g is the unique morphism (up to the equality relation) making this diagram commute.

5.1.3 Coproducts (⊕)

Let Circ(F, nI , r) be a category of composable circuits. Let C and D be objects in this category. Without
loss of generality, assume that C and D have the same numbers of nondeterministic advice columns,
i.e. nC,O = nD,O. This is without loss of generality because if nC,O ̸= nD,O, then we can pad one of
the circuits with extra unused nondeterministic advice columns, resulting in an isomorphic circuit. Let
nO = nC,O = nD,O.

In this category, find a circuit C ⊕ D with the following characteristics:

1. C ⊕ D has the following numbers of advice columns:

nC⊕D,O = nO + 1 (232)

nC⊕D,D = nC,D + nD,D + 3 (233)

The nondeterministic advice columns of C and D are overlapped, or in other words they share
nondeterministic advice. There is an additional nondeterministic advice column, denoted s⃗, which
selects which of the two circuits is applied at each row. The deterministic advice columns of C and D
are present and separate. Their truth value columns are present and denoted u⃗ and v⃗, respectively.
There are three additional deterministic advice columns. These are the truth value column, denoted
t⃗, the si ∈ {0, 1} truth value column, denoted w⃗, and the si = si−1 truth value column, denoted x⃗.

2. All of the constraints of C and D are present, except for u⃗ = 1r and v⃗ = 1r.

3. The following constraints are present:

(a) For all i ∈ [r], ti ∈ {0, 1}.
(b) t⃗ = 1r.
(c) t⃗ = (s⃗ · u⃗+ (1r − s⃗) · v⃗) · w⃗ · x⃗, where · is the Hadamard product.
(d) For all i ∈ [r], (si, wi) ∈ {(0, 1), (1, 1)} ∪ {(x, 0) | x ∈ F \ {0, 1}}.
(e) For all i ∈ [r], (si − si−1, xi) ∈ {(0, 1)} ∪ {(x, 0) | x ∈ F \ {0}}.

4. The deterministic advice computer, fC⊕D, is defined as follows, in terms of the deterministic advice
computers fC of C and fD of D. For all X ∈ F[nI ]×[r], Y ∈ F[nO]×[r], s⃗ ∈ Fr,

fC⊕D([XY s⃗]) =
{

[fC([XY ])v⃗w⃗x⃗] if s1 = 0,
[fD([XY ])u⃗w⃗x⃗] otherwise,

(234)
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where v⃗ denotes the value of the truth value column in fC([XY ]), and u⃗ denotes the value of the truth
value column in fD([XY ]), and w⃗ and x⃗ are the dependent advice columns defined, for all i ∈ [r], by

wi =
{

1 if si ∈ {0, 1},
0 otherwise,

(235)

xi =
{

1 if si = si−1,

0 otherwise.
(236)

It is straightforward to check that such a circuit exists.
Define morphisms

ι1 : C → (C ⊕ D) (237)

ι2 : D → (D ⊕ D) (238)

as follows. For all X ∈ F[nI ]×[r] and Y ∈ F[nO]×[r],

ι1([XY ]) = [Y 0r], (239)

ι2([XY ]) = [Y 1r]. (240)

It is straightforward to check that these are morphisms.

Theorem 4. C ⊕ D, ι1, and ι2 are a coproduct of C and D.

Proof. Let X be an object. Let f : C → X and g : D → X be morphisms. Define the morphism
f ⊕ g : (C ⊕ D) → X as follows. For all X ∈ F[nI ]×[r] and Y ∈ F[nO]×[r] and s⃗ ∈ Fr,

(f ⊕ g)([XY s⃗]) =
{
f([XY ]) if s⃗ = 0r,
g([XY ]) otherwise.

(241)

It is straightforward to check that this is a morphism. The diagram

X

C C ⊕ D D

f

ι1

f⊕g
g

ι2

(242)

commutes because morphism equality is maximal, and f ⊕ g is unique for the same reason.

5.1.4 Negations (⊥C)

Let Circ(F, nI , r) be a category of composable circuits. Let C be an object of this category. Find an object
⊥C with the following characteristics.

1. The numbers of advice columns are as follows:

n⊥C ,O = nC,O (243)

n⊥C ,D = nC,D + 1 (244)

The advice columns of C are present. The additional deterministic advice column, denoted t⃗, is the
truth value column. The truth value column of C is present and denoted u⃗.
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2. All of the constraints of C are present except for u⃗ = 1r.

3. The following constraints are present:

(a) For all i ∈ [r], ti ∈ {0, 1}.
(b) t⃗ = 1r − u⃗.

4. The deterministic advice computer, f⊥C , is defined in terms of the deterministic advice computer fC
of C, as follows. For all X ∈ F[nI+nC,O]×[r],

f⊥C (X) = [fC(X)(1r − u⃗)], (245)

where u⃗ denotes the value of the truth value column in fC(X).

⊥C is a circuit which is satisfied exactly in the cases when C is not satisfied.
It is unclear if this negation construction can be characterized by a universal property. A first thought

is that it would be an exponential object with domain C and codomain ⊥. However, this thought doesn’t
seem to pan out. The morphism

eval : (⊥C × C) → ⊥ (246)

required for an exponential object would necessarily be extensionally equal to const(()). Here () denotes
the empty tuple () ∈ F0, since ⊥ has no nondeterministic advice. For this to be a morphism, it would
have to be the case that ⊥C × C is not satisfiable. If C has no nondeterministic advice, then ⊥C × C is not
satisfiable and eval is a morphism, and the universal property of exponential objects holds. This is not
necessarily the case if C has nondeterministic advice, however. In nondeterministic advice for ⊥C × C, ⊥C

and C may receive different nondeterministic advice, making them both true at the same time.

5.2 Functorial arithmetization

The categories of composable arithmetic circuits yield a simple arithmetization of Σ1
1 formulas which can

be described as a functor from the category of Σ1
1 formulas to a category of composable circuits.

The first step in the arithmetization is to eliminate quantifiers. This can be done because all quantifiers
are bounded. Quantifier elimination is defined over all Σ1

1 formulas by the following recursive clauses.

elim(τ1 = τ2) = (τ1 = τ2) (247)

elim(ϕ ∧ ψ) = elim(ϕ) ∧ elim(ψ) (248)

elim(ϕ ∨ ψ) = elim(ϕ) ∨ elim(ψ) (249)

elim(¬ϕ) = ¬elim(ϕ) (250)

elim(∃ < 0. ϕ) = ⊥ (251)

elim(∃ < (β + 1). ϕ) = elim(ϕ[x1 7→ β]) ∨ elim(∃ < β. ϕ) (252)

elim(∀ < 0. ϕ) = ¬⊥ (253)

elim(∀ < (β + 1). ϕ) = elim(ϕ[x1 7→ β]) ∧ elim(∀ < β. ϕ) (254)

elim(∃f < γ(< β1, ..., < βn). ϕ) =
∨

f∈[γ][β1]×···×[βn]

elim(ϕ[f1 7→ f ]) (255)
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The notation ϕ[f1 7→ f ] is defined by

ϕ[f1 7→ f ] =
∨

x⃗∈[β1]×···×[βn]

 ∧
i∈[n]

τi = xi

 ∧ ϕ[f1(τ1, ..., τn) 7→ f(x⃗)], (256)

where ϕ[f1(τ1, ..., τn) 7→ f(x⃗)] denotes the formula resulting from replacing all occurrences of the term
f1(τ1, ..., τn) in ϕ with the constant f(x⃗), and f1(τ1, ..., τn) ranges over all function application terms
occurring in ϕ which have f1 as the function application head, so that potentially many substitutions are
implied by this notation.

It is straightforward to check that quantifier elimination is semantics preserving, meaning for all models
M , δM (ϕ) = δM (elim(ϕ)). This means in other words that ϕ and elim(ϕ) define the same relation.
Therefore, any arithmetization of the relation defined by elim(ϕ) is an arithmetization of the relation
defined by ϕ.

The codomain of elim is the set of quantifier-free second-order formulas over the language of rings.
These formulas may contain free first-order and second-order variables. Because there are no quantifiers,
all variables are free. Call this set QF. Call the elements of this set QF formulas.

QF formulas form a category, where the objects are all QF formulas, and there is at most one morphism
in each hom-set, and there is a morphism in hom(ϕ, ψ) iff for all models M , δM (ϕ) ≤ δM (ψ) (or in other
words, ϕ logically entails ψ). Refer to this category as QF.

QF has all products and coproducts. ϕ ∧ ψ is the product of ϕ and ψ. ϕ ∨ ψ is the coproduct of ϕ
and ψ. The universal properties of products and coproducts correspond to the conjunction and disjunction
introduction and elimination rules of logic, which are as follows:

ϕ,ψ
ϕ∧ψ

ϕ∧ψ
ϕ

ϕ∧ψ
ψ (257)

ϕ
ϕ∨ψ

ψ
ϕ∨ψ

ϕ⊢ζ,ψ⊢ζ
ϕ∧ψ⊢ζ (258)

In these rules, A
B means that the set of premises A entail the conclusion B, and the premise A ⊢ B

means that the set of premises A entails the conclusion B.
These rules can be phrased differently, as statements about morphism existence in QF:

1. If there are morphisms ζ → ϕ and ζ → ψ, then there is a morphism ζ → (ϕ ∧ ψ).

2. There are morphisms (ϕ ∧ ψ) → ϕ and (ϕ ∧ ψ) → ψ.

3. There are morphisms ϕ → (ϕ ∨ ψ) and ψ → (ϕ ∨ ψ).

4. If there are morphisms ϕ → ζ and ψ → ζ, then there is a morphism (ϕ ∨ ψ) → ζ.

These rules may be quickly recognized as the universal properties of product and coproduct as applied to
QF.

It is also straightforward to see that ⊥ is the initial object of QF, and ¬⊥ is the terminal object. ⊥
being the initial object corresponds to the following rule:

⊥
ϕ

(259)

The negation introduction and elimination rules of logic are as follows:
ϕ ⊢⊥

¬ϕ
ϕ∧¬ϕ

⊥ (260)

As statements about morphism existence, these rules say:
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1. If there is a morphism (ϕ ∧ ψ) → ⊥, then there is a morphism ψ → ¬ϕ.

2. There is a morphism (ϕ ∧ ¬ϕ) → ⊥.

These rules may be quickly recognized as the universal property of the exponential object ⊥ϕ as applied
to Σ1

1.
To say categorically that ϕ is a tautology, we can say in other words that there is a morphism ¬⊥ → ϕ.

For example, there is a morphism ¬⊥ → (ϕ ∨ ¬ϕ), which fact corresponds to the following rule of logic:

ϕ ∨ ¬ϕ
(261)

Every tautology is itself a terminal object, as it is straightforward to see.
The following formulas, which state axioms for equality, are tautologies in this category, for all de

Bruijn indices a, b, c:

1. xa = xa.

2. ¬(xa = xb) ∨ xb = xa.

3. ¬(xa = xb ∧ xb = xc) ∨ xa = xc.

4. For all formulas ϕ and terms τ :
xa = τ → ϕ[xa 7→ τ ]. (262)

The following formulas, corresponding to the ring axioms, are tautologies in this category, for all de
Bruijn indices a, b, c:

1. (a+ b) + c = a+ (b+ c).

2. a+ b = b+ a.

3. a+ 0 = a.

4. a+ (−1 · a) = 0.

5. (a · b) · c = a · (b · c).

6. a · 1 = a.

7. 1 · a = a.

8. a · (b+ c) = (a · b) + (a · c).

9. (a+ b) · c = (a · c) + (b · c).

All morphisms in QF can be generated by applications of function composition and the universal
properties of products, coproducts, and exponential objects ⊥ϕ, starting from the identity morphisms, the
initial morphisms from ⊥, and the tautologies enumerated above (law of excluded middle, equality axioms,
and ring axioms). This statement merits some further explanation.

The applications of the universal property of products give us the projection morphisms π1 : (ϕ∧ψ) → ϕ
and π2 : (ϕ ∧ ψ) → ψ, and for each pair of morphisms f : ζ → ϕ and g : ζ → ψ, the morphism
f × g : ζ → (ϕ ∧ ψ).
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The applications of the universal property of coproducts give us the injection morphisms ι1 : ϕ → (ϕ∨ψ)
and ι2 : ψ → (ϕ ∨ ψ), and for each pair of morphisms f : (ϕ ∧ η) → ζ and g : (ψ ∧ η) → ζ, the morphism
f ⊕ g : (ϕ ∨ ψ) ∧ η → ζ.

The applications of the universal property of exponential objects ⊥ϕ give us the evaluation morphisms
eval : (¬ϕ ∧ ϕ) → ⊥ and for each morphism g : (ψ ∧ ϕ) → ⊥ the morphism λg : ψ → ¬ϕ.

These universal properties, together with function composition, identity morphisms, initial morphisms,
and basic tautologies, can be used to freely generate a category of QF formulas, here called QFP (“QF
with proofs”), where the morphisms are all and only the morphisms generated by the following clauses:

1. For all QF formulas ϕ, idϕ ∈ hom(ϕ, ϕ).

2. For all QF formulas ϕ, initϕ ∈ hom(⊥, ϕ).

3. For all basic tautologies ϕ, axiomϕ ∈ hom(¬⊥, ϕ). The basic tautologies are the ring axioms, the
equality axioms, and each instance of the law of the excluded middle.

4. For all QF formulas ϕ, ψ, π1,ϕ,ψ ∈ hom(ϕ ∧ ψ, ϕ), and π2,ϕ,ψ ∈ hom(ϕ ∧ ψ,ψ). (The indices may be
elided when context makes it clear.)

5. For all QF formulas ϕ, ψ, ζ and morphisms g ∈ hom(ζ, ϕ) and h ∈ hom(ζ, ψ), g × h ∈ hom(ζ, ϕ ∧ ψ).

6. For all QF formulas ϕ, ψ, ι1,ϕ,ψ ∈ hom(ϕ, ϕ ∨ ψ), and ι2,ϕ,ψ ∈ hom(ψ, ϕ ∨ ψ).

7. For all QF formulas ϕ, ψ, ζ, η and morphisms g ∈ hom(ϕ ∧ η, ζ) and h ∈ hom(ψ ∧ η, ζ), g ⊕ h ∈
hom((ϕ ∨ ψ) ∧ η, ζ).

8. For all QF formulas ϕ, evalϕ ∈ hom(¬ϕ ∧ ϕ,⊥).

9. For all QF formulas ϕ, ψ and morphisms g ∈ hom(ψ ∧ ϕ,⊥), λg ∈ hom(ψ,¬ϕ).

10. For all QF formulas ϕ, ψ, ζ, and morphisms f ∈ hom(ϕ, ψ) and g ∈ hom(ψ, ζ), g ◦ f ∈ hom(ϕ, ζ).

A morphism in QFP is generated by a finite number of applications of ×,⊕, ◦, and λ to the primitive
morphisms idϕ, initϕ, axiomϕ, πi,ϕ,ψ, ιi,ϕ,ψ, and eval(ϕ). Here are some examples:

id¬⊥ × axiomx1=x1 : ¬⊥ → (¬⊥ ∧ x1 = x1). (263)

π1 ◦ π1 : ((x1 = x2 ∧ x1 = x3) ∧ x1 = x4) → x1 = x2. (264)

For any QF formulas ϕ, ψ, ζ,

(ι1 ◦ π1) ⊕ (ι2 ◦ π1) : (ϕ ∨ ψ) ∧ ζ → ϕ ∨ ψ. (265)

For any QF formula ϕ,
λπ2,ϕ,⊥ : ϕ → ¬⊥. (266)

(π1,ϕ,ϕ ⊕ (initϕ ◦ evalϕ)) ◦ ((axiomϕ∨¬ϕ ◦ λπ2,¬¬ϕ,⊥) × id¬¬ϕ) : ¬¬ϕ → ϕ. (267)

In QFP, morphism equality is the maximal equality relation; i.e., all morphisms in a hom-set are considered
as formally equal for the purposes of categorical axioms and definitions.

It is straightforward to check that QFP has products, coproducts, and exponential objects of the form
⊥ϕ, which are defined as expected, and that ⊥ is an initial object and ¬⊥ is a terminal object.

Here is the more precise statement of the notion that the morphisms in QF are generated by the
mentioned primitives and constructions.
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Theorem 5. There is a functor QF → QFP. This functor preserves products, coproducts, and exponential
objects of the form ⊥ϕ.

This theorem is a form of completeness theorem. Thinking of the morphism construction rules in QFP
as rules of a proof system, this theorem states that these categorical constructions are sufficient to prove
every entailment which is semantically true.

Proof. This proof relies on the following lemma.

Lemma 1. Let ϕ be a QF formula. Suppose that hom(ϕ,⊥) = ∅ in QFP. Then there is a model M such
that δM (ϕ) = 1.

First let us see how the lemma implies the theorem. All that is required to prove that there is a functor
QF → QFP is to prove that whenever there is a morphism ϕ → ψ in QF, there is a morphism ϕ → ψ
in QFP. Preservation of products, coproducts, and exponentials ⊥ϕ follows straightforwardly due to the
maximal morphism equality of both categories. For a proof by contrapositive, suppose that there is no
morphism ϕ → ψ in QFP. Then there is no morphism (ϕ ∧ ¬ψ) → ⊥ in QFP, since if there was such
a morphism, call it f , then λf : ϕ → ¬¬ψ would be a morphism in QFP, and then there would be a
morphism ϕ → ψ by composing λf with the morphism ¬¬ψ → ψ defined in (267). Then, applying the
lemma, there is a model M such that δM (ϕ∧ ¬ψ) = 1. This means δM (ϕ) = 1 and δM (ψ) = 0. This means
that there is no morphism ϕ → ψ in QF, because M provides a counterexample to the statement that for
all models M , δM (ϕ) ≤ δM (ψ). Thus, the lemma implies the theorem.

Proof of Lemma 1. This proof is in two steps. First, construct a complete, consistent theory which
satisfies the provided formula. Second, construct a model which satisfies the theory. A “theory,” by
definition, is a set of formulas wherein all second order function variables have consistent arities across all
formulas. A theory T is “consistent,” by definition, iff for all finite U ⊆ T , hom (

∧
U,⊥) = ∅. Here

∧
U

denotes a formula which is a conjunction of the elements of U (in some arbitrary order). A theory T is
“complete,” by definition, iff for all formulas ϕ, either ϕ ∈ T or ¬ϕ ∈ T . A model M satisfies a theory T ,
by definition, iff for all ϕ ∈ M , δM (ϕ) = 1. These steps rely on the following lemmas.

Lemma 2. Let T be a consistent theory. There is a complete, consistent theory T ′ ⊇ T .

Lemma 3. Let T be a complete, consistent theory. There is a model M such that M satisfies T .

These lemmas imply Lemma 1 by the following steps. Let ϕ be a formula such that hom(ϕ,⊥) = ∅ in
QFP. Then {ϕ} is consistent. Let T ⊇ {ϕ} be a complete, consistent theory. Let M be a model satisfying
T . Then δM (ϕ) = 1.

Proof of Lemma 2. Let T be a consistent theory. If T is complete, then we can let T ′ = T and be done.
So suppose T is not complete. Choose a formula ϕ such that ϕ /∈ T and ¬ϕ /∈ T . By Lemma 4, either
T ∪ {ϕ} is consistent or T ∪ {¬ϕ} is consistent. So choose either T1 = T ∪ {ϕ} or T1 = T ∪ {¬ϕ}, whichever
one is consistent (or pick one arbitrarily if they are both consistent). Construct an infinite sequence

T ⊇ T1 ⊇ T2 ⊇ · · · (268)

by repeating this procedure. Precisely, this works as follows. Let ϕ1, ϕ2, ... be an enumeration of all
formulas. Given Ti, if Ti is complete then let Ti+1 = Ti, or if Ti is not complete then let j ∈ Z+ be the least
j such that ϕj /∈ Ti and ¬ϕj /∈ Ti, and let Ti+1 = T ∪ {ϕj} if T ∪ {ϕj} is consistent, or let Ti+1 = T ∪ {¬ϕj}
otherwise. By Lemma 4, Ti+1 is consistent. Let T ′ =

⋃
i∈N Ti. Evidently T ′ is consistent, because each

finite subset of T ′ is contained in some Ti and each Ti is consistent. Evidently T ′ ⊇ T .
T ′ is complete, by the following reasoning. Let ψ be a formula. For some j ∈ Z+, ψ = ϕj . By induction

on j, there is some i ∈ Z+ such that for all j′ ≤ j, ϕj′ ∈ Ti or ¬ϕj′ ∈ Ti. When j = 1, this is true because
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there is no j′ < j and therefore either ϕ1 or ¬ϕ1 had to be added at T1 if one of them was not already
present. When j = k + 1, applying the inductive hypothesis gives that for all j′ < j, ϕj′ ∈ Ti or ¬ϕj′ ∈ Ti
for some i, and then Ti+1 must contain ϕj or ¬ϕj because if one of them is not already present in Ti then
one of them must be added in Ti+1. Therefore, the inductive argument is done. Therefore, T ′ is complete.
□

Lemma 4. Let T be a consistent theory. Let ϕ be a formula. Either T ∪ {ϕ} is consistent or T ∪ {¬ϕ} is
consistent.

Proof. Suppose that T ∪ {ϕ} is not consistent and T ∪ {¬ϕ} is not consistent. Want to show a
contradiction, that T is not consistent. Let U ⊆ T ∪ {¬ϕ} be a finite subset of T ∪ {¬ϕ} such that
hom (

∧
U,⊥) ̸= ∅ in QFP. Since T is consistent, ¬ϕ ∈ U . Choose a conjunction of the formulas in U and

call it ψ. Let f ∈ hom (ψ ∧ ¬ϕ,⊥) be a morphism in QFP. Then λf : ψ → ¬¬ϕ. Let g : ¬¬ϕ → ϕ be a
morphism in QFP as defined in (267). Then g ◦ λf : ψ → ϕ. Since T ∪ {ϕ} is not consistent, there is a
finite V ⊆ T ∪ {ϕ} such that hom (

∧
V,⊥) ̸= ∅ in QFP. Since T is consistent, ϕ ∈ V . Choose a conjunction

of the formulas in V ∩ T and call it ζ. Let h : ζ ∧ ϕ → ⊥ be a morphism. Then

h ◦ (idζ × (g ◦ λf)) : ζ ∧ ψ → ⊥ (269)

is a morphism in QFP. Since ζ and ψ are conjunctions of formulas in T , this contradicts the fact that T is
consistent. □

Proof of Lemma 3. Let T be a complete theory. Define an equivalence relation over all terms as follows:
τ1 ≡ τ2 iff there exists a formula ψ ∈ T such that there is a morphism ψ → τ1 = τ2 in QFP. This is an
equivalence relation because the equality axioms hold over all first-order variables.

Let R be the set of equivalence classes of ≡. Define the operations ·,+ to be the unique operations
consistent with T . In other words, letting JτK denote the equivalence class of τ , if T contains τi · τj = τk
and τi′ ≡ τi and xj′ ≡ xj and xk′ ≡ xk, then τi′ · τj′ = τk′ is in T . This means that this definition is
coherent:

JτiK · JτjK = JτkK (270)

Similarly, this definition is coherent:
JτiK + JτjK = JτkK (271)

Let < denote any strict total ordering relation over R. The choice of < does not matter because we are
only using the model we are building to evaluate quantifier-free formulas, and their truth values do not
depend on the choice of <.

Define a function F : Z+ → R by: F (i) = JxiK. Define a function S : Z+ →
∑
i∈Z+(Ri → R) as follows.

Let i ∈ Z+. Let n be the arity of fi in the formulas in T . For all x⃗ ∈ Ri, define

S(i)(x⃗) = Jfi(τ1, ..., τn)K (272)

where x⃗ = (Jτ1K, ..., JτnK). This definition can be seen to be coherent by applying the substitution axiom
for equality, which holds in T . Now let

M = (R, ·,+, J0K, J1K, J−1K, <, F, S). (273)

It is straightforward to check that M is a model and that M satisfies T . □
That completes the proof of Theorem 5. □
The next step in defining functorial arithmetization is to define a functor from a subcategory of QFP

to Circ(F, nI , r). The subcategory of QFP is a full subcategory, meaning the set of objects is restricted
but all morphisms between the restricted set of objects are included in the subcategory. QFP needs to be
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restricted to limit the numbers of free variables, so that they can fit into the number of instance columns
nI .

A “free variable signature,” by definition, is an element of

S = N ×
∑
n∈N

(Z+)n. (274)

A free variable signature is a Cartesian pair where the first element specifies the number of free first-order
variables, and the second element specifies the number of free second-order variables and the arity of each.

For all (n, (k1, ..., km)) ∈ S, let QF(n, k⃗) and QFP(n, k⃗) respectively denote the full subcategories of
QF and QFP which include in their objects a formula ϕ iff

free(ϕ) ⊆ {x1, ..., xn} ∪ {f1, ..., fm} (275)

and for each i ∈ [m], the arity of fi in ϕ is ki if fi occurs in ϕ.
It is straightforward to see that the functor QF → QFP can be restricted to a functor QF(n, k⃗) →

QFP(n, k⃗) for all (n, k⃗) ∈ S.

Theorem 6. Let s = (n, (k1, ..., km)) ∈ S. Let F be a finite field. Let nI = n +
∑
i∈[m](ki + 1). Let

r ≥ |F| + 1. There is a functor QFP(s) → Circ(F, nI , r). This functor preserves products, coproducts, and
exponentials of the form ⊥ϕ.

Proof. Call the functor F . F is defined on objects by recursion on the structure of QF formulas, as
follows.

F (⊥) = ⊥. (276)

F (ϕ ∧ ψ) = F (ϕ) × F (ψ). (277)

F (ϕ ∨ ψ) = F (ϕ) ⊕ F (ψ). (278)

F (¬ϕ) = ⊥F (ϕ). (279)

The only case that remains to be defined is the base case F (τ1 = τ2). Let τ1 = τ2 be a formula in QFP(s).
Find a circuit C in Circ(F, nI , r) with the following characteristics:

1. There are no nondeterministic advice columns.

2. For each subterm fi(υ1, ..., υki
) in τ1 = τ2, there are n+1 deterministic advice columns. These columns

are determined by the following constraints. In these constraints, x⃗i denotes the instance columns
representing the first-order variable xi. y⃗i denotes the (instance) output column for fi. z⃗i,j denotes
the jth (instance) input column for fi. u⃗ denotes the (advice) output column for fi(υ1, ..., υki

). v⃗j
denotes the value of υj . These constraints are defined in terms of a partial function val from terms
to polynomials over column vectors, defined recursively as follows:

val(0) = 0 (280)

val(1) = 1 (281)

val(−1) = −1 (282)

Here −1 denotes the additive inverse of 1 ∈ F.

val(ρ+ σ) = val(ρ) + val(σ). (283)

val(ρ · σ) = val(ρ) · val(σ). (284)
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val(fi(τ1, ..., τki
)) = u⃗. (285)

Since τ1, ..., τki
may contain function application terms, val must be defined in this manner over all

subterms of τ1 = τ2, which could be said more explicitly if we had distinct names for all of the
deterministic advice columns in play. The constraints are as follows.

(a) For all j ∈ [ki],
v⃗j = val(τj). (286)

(b) For all j ∈ [r], (uj , v1,j , ..., vki,j) ∈ (y⃗i, z⃗1, ..., z⃗ki
).

3. There is a deterministic advice column, the truth value column, denoted t⃗. The following constraints
are present.

(a) t⃗ = 1r.
(b) For all i ∈ [r],

(ti, val(τ1) − val(τ2)) ∈ {(1, 0)} ∪ {(0, x) | x ∈ F \ {0}}. (287)

4. There are additional advice columns and constraints which ensure that each provided lookup table
in the instance and advice columns defines a function, by ensuring that the input rows are lexico-
graphically ordered and adjacent rows with the same input values have the same output values. This
requires deterministic advice columns giving the deltas between each pair of adjacent input cells in
the same column and the truth values of the statements that those deltas are positive. This is done
similarly to the process laid out in Section 4, except that checking that the deltas are non-negative
is done directly using a lookup table instead of using bytewise decompositions.

It is straightforward to check that there is such a circuit C. That completes the definition of F on objects.
F is defined on morphisms by recursion on their structure, as follows.

1. F (idϕ) = idF (ϕ).

2. F (initϕ) = const(0[nF (ϕ),O]×[r]). Here nF (ϕ),O denotes the number of nondeterministic advice columns
of F (ϕ).

3. F (axiomϕ) = const(0[nF (ϕ),O]×[r]). For this to define a morphism, it suffices to know that F (ϕ)
is satisfiable for all possible combinations of instance and nondeterministic advice values. This is
straightforward to check for all basic tautologies ϕ.

4. F (π1,ϕ,ψ) = (π1 : F (ϕ ∧ ψ) → F (ϕ)).

5. F (π2,ϕ,ψ) = (π2 : F (ϕ ∧ ψ) → F (ψ)).

6. F (f × g) = F (f) × F (g).

7. F (ι1,ϕ,ψ) = (ι1 : F (ϕ) → F (ϕ ∨ ψ)).

8. F (ι2,ϕ,ψ) = (ι2 : F (ψ) → F (ϕ ∨ ψ)).

9. F (f ⊕ g) = F (f) ⊕ F (g).

10. F (evalϕ) = const(()). This is a morphism F (¬ϕ ∧ ϕ) → ⊥. It is a morphism because the circuit
F (¬ϕ ∧ ϕ) is unsatisfiable.

11. F (λg) = λF (g).
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12. F (g ◦ f) = F (g) ◦ F (f).

It is straightforward to see that F is a functor which preserves products, coproducts, and exponentials
of the form ⊥ϕ. □

By composing the functors from Theorem 5 and Theorem 6, we obtain a functor QF(s) → Circ(F, nI , r).
This completes the definition of functorial arithmetization, but not yet the proof that it is correct. The final
step is to define denotation functors from each of the three categories involved and prove that the functors
preserve denotations. The denotations of objects are relations (represented as sets) and the denotations
of morphisms are functions. The overall goal is to define functors F,G,H such that the following diagram
commutes, where K is the functor from Theorem 5 and J is the functor from Theorem 6:

QF(s) QFP(s) Circ(F, nI , r)

Set

J

F
G

K

H

(288)

The commutativity of this diagram will straightforwardly imply the correctness of the arithmetization.
Let s = (n, (k1, ..., km)) ∈ S. Let F be a finite field. Let r = |F| + 1. Let

nI = n+
∑
i∈[m]

ki + 1. (289)

The denotation functor F : QF(s) → Set is defined as follows. Let ϕ be a formula in QF(s). F (ϕ) is a
relation, a subset of

D = Fn ×
∏
i∈[m]

FFki , (290)

specifically:
F (ϕ) = {(G,S) ∈ D | δM(G,S)(ϕ) = 1}, (291)

where by definition
M(G,S) = (F, ·F,+F, 0F, 1F,−1F, <F, G, S). (292)

Here ·F denotes the multiplication operation of F, and so forth. <F denotes the usual ordering on F, namely
0, 1, 1 + 1, 1 + 1 + 1, ... (but it could be any arbitrary strict total ordering, since it is unused for evaluating
quantifier-free formulas).

Let f : ϕ → ψ be a morphism in QF. Define F (f) to be the embedding x 7→ x. This works because the
existence of f implies that in every model where ϕ is true, ψ is also true. It is straightforward to check
that identities and composition are preserved, making F a functor.

The denotation functor G : QFP(s) → Set is defined the same way as F : QF(s) → Set.
The denotation functor H : Circ(F, nI , r) → Set is defined on objects by:

H(C) = {(G,S) ∈ D | (inst(G,S),W ) satisfies C for some W ∈ F[nC,O]×[r]}, (293)

where
inst((x1, ..., xn), (f1, ..., fm)) = (xr1 · · · xrn tab(f1) · · · tab(fm)), (294)

where xri denotes the column vector with r rows equal to xi at each row, and fi denotes the lookup table
of fi, i.e.,

tab(fi) = {(f(z1, ..., zki
) z1 · · · zki

)}. (295)
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This is a slight abuse of notation in that it denotes a matrix as the set of its rows (without specifying the
order, which can be any arbitrary order).

Let f : C → D be a morphism in Circ(F, nI , r). f is a function

f : F[nI+nC,O]×[r] → F[nI+nD,O]×[r]. (296)

We can therefore define H(f) as f restricted to H(C), because f is already a function D → D, and
H(C) ⊆ D, H(D) ⊆ D, and f maps tables satisfying C to tables satisfying D. Evidently G preserves
identities and function composition, and therefore H is a functor.

It is straightforward to check, using induction on the structure of formulas, that the diagram (288)
commutes. That completes the construction of functorial arithmetization for QF formulas. Here is the
statement that the construction is correct.

Theorem 7. Let F be a finite field. Let s = (n, (k1, ..., km)) ∈ S. Let nI = n+
∑
i∈[m] ki + 1. Let

D = Fn ×
∏
i∈[m]

FFki . (297)

Let
r ≥ max({|F| + 1} ∪ {|FFki | | i ∈ [m]}). (298)

Let F be the composition of the functors from Theorem 5 and Theorem 6:

F : QF(s) → Circ(F, nI , r). (299)

Define a function f : D → F[nI ]×[r] by

f((x1 · · · xn), (g1 · · · gm)) = (xr1 · · · xrn g1 · · · gm). (300)

Here xri denotes a column vector with r rows and xi as the value at each row. gi denotes the tabular
representation of the function gi.

Let ϕ be a formula in QF(s). (F (ϕ), f) is an arithmetization of the relation

{(G,S) ∈ D | δM(G,S)(ϕ) = 1}, (301)

where
M(G,S) = (F, ·F,+F, 0F, 1F,−1F, <F, G, S). (302)

This is a corollary of the statement that (288) commutes.

5.3 Byte decompositions

The functorial arithmetization given so far is relatively simple to define and prove correct, but the resulting
circuits are not efficient; they have far more rows and columns than necessary. The remaining steps of the
proof bridge the gap between the functorial arithmetization of QF formulas and the arithmetization of Σ1

1
formulas defined explicitly in Section 4, proving that these are equivalent. The step covered in this section
is reducing the required number of rows in the circuit by using byte decompositions to reduce the sizes of
lookup tables. This step also reduces the domain of the circuit, so that rather than being correct for all
instance values in F, the circuit is only correct for all instance values in [2NB] for B the number of bits
per byte and N the number of bytes per word. This step increases the number of columns, which will be
decreased in the next step after this, in Subsection 5.4.

Let B and N be positive integers. By definition, an “(N,B)-composable circuit” is a tuple

C = (F, c⃗, d, p⃗, ℓ⃗, r, e⃗, X), (303)

where:
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1. Conditions 1-9 and 12 of the definition of composable circuits are satisified.

2. f : [2NB][nI+nO]×[r] → [2NB][nD]×[r] is a function, where for all X ∈ {I,O,D},

nX = |{i ∈ [n] | ci = X}|. (304)

f is called the deterministic advice computer.

3. For all Y ∈ [2NB][nI+nO]×[r], if there exists Z ∈ F[nD]×[r] such that [XY Z] satisfies C, then [XY f([XY ])]
satisfies C, and f([XY ]) is the unique such Z.

4. If the constraint t⃗ = 1r is removed from C, the resulting circuit D is uniquely satisfiable for all
combinations of instance and nondeterministic advice values in [2NB]. In other words, for all Y ∈
[2NB][nI+nO]×[r], [XY f([XY ])] satisfies D, and f([XY ]) is the unique Z such that [XY Z] satisfies D.

This is the same as the definition of composable circuits except that the coherence conditions do not
apply over all possible instance values, but only those in 2[NB].

(N,B)-composable circuits also form categories. Let F be a finite field such that |F| > 2NB+1. Let r
be a positive integer, r ≥ 2B. Let nI be a positive integer. Let Circ(N,B,F, nI , r) denote a category. The
objects are (N,B)-composable circuits with field F, row count r, and nI instance columns. A morphism
g : C → D is a function

g : [2NB][nI+nC,O]×[r] → [2NB][nD,O]×[r], (305)

where nX ,O denotes the number of nondeterministic advice columns of the circuit X , such that for all
X ∈ [2NB][nI ]×[r] and Y ∈ [2NB][nC,O]×[r], if [XY fC([XY ])] satisfies C, then [Xg([XY ])fD([Xg([XY ])])]
satisfies D. Here fX denotes the deterministic advice computer of X .

Equality and composition of morphisms, and identity morphisms, are defined the same as for categories
of composable circuits. Initial objects, products, and exponential objects of the form ⊥ϕ are defined the
same as for categories of composable circuits. The definition of coproducts is different.

5.3.1 Coproducts (⊕)

Let Circ(N,B,F, nI , r) be a category of (N,B)-composable circuits. Let C and D be objects of this
category. Without loss of generality, assume that C and D have the same numbers of nondeterministic
advice columns. Find a circuit C ⊕ D with the following characteristics:

1. C ⊕ D has the following numbers of advice columns:

nC⊕D,O = nO + 1 (306)

nC⊕D,D = nC,D + nD,D + 3 + 2N (307)

The nondeterministic advice columns of C and D are overlapped, or in other words they share
nondeterministic advice. There is an additional nondeterministic advice column, denoted s⃗, which
selects which of the two circuits is applied at each row. The deterministic advice columns of C and D
are present and separate. Their truth value columns are present and denoted u⃗ and v⃗, respectively.
There are 3 + 2N additional deterministic advice columns. N of them are the elements of the byte
decomposition of the selector column s⃗, denoted b⃗1, ..., b⃗N . N of them are related truth value columns.
c⃗1 is the truth value column for the statements b1,i ∈ {0, 1}. For i ∈ [N ] \ {1}, c⃗i is the truth value
for the statement bi,j = 0. The other three are the truth value column, denoted t⃗, the si ∈ {0, 1}
truth value column, denoted w⃗, and the si = si−1 truth value column, denoted x⃗.

2. All of the constraints of C and D are present, except for u⃗ = 1r and v⃗ = 1r.

49



3. The following constraints are present:

(a) For all i ∈ [r], ti ∈ {0, 1}.
(b) t⃗ = 1r.
(c) t⃗ = (s⃗ · u⃗+ (1r − s⃗) · v⃗) · w⃗ · x⃗, where · is the Hadamard product.
(d) s⃗ =

∑N
i=1 2W (i−1) · b⃗i.

(e) For all i ∈ [r],
(b1,i, c1,i) ∈ {(0, 1), (1, 1)} ∪ {(x, 0) | x ∈ [2W ] \ {0, 1}}. (308)

(f) For all ℓ ∈ [N ] \ {1}, i ∈ [r],

(bℓ,i, cℓ,i) ∈ {(0, 1)} ∪ {(x, 0) | x ∈ [2W ] \ {0}}. (309)

(g) w⃗ =
∏N
ℓ=1 c⃗ℓ.

(h) For all i ∈ [r],

(xi, 1 − (b1,i − b1,i−1)) ∈ {(1, 0)} ∪ {(0, x) | x ∈ [2W ] \ {0}}. (310)

4. The deterministic advice computer, fC⊕D, is defined as follows, in terms of the deterministic advice
computers fC of C and fD of D. For all X ∈ [2NW ][nI ]×[r], Y ∈ [2NW ][nO]×[r], s⃗ ∈ [2NW ]r,

fC⊕D([XY s⃗]) =
{

[fC([XY ])v⃗w⃗x⃗] if s1 = 0,
[fD([XY ])u⃗w⃗x⃗] otherwise,

(311)

where v⃗ denotes the value of the truth value column in fC([XY ]), and u⃗ denotes the value of the truth
value column in fD([XY ]), and w⃗ and x⃗ are the dependent advice columns defined, for all i ∈ [r], by

wi =
{

1 if si ∈ {0, 1},
0 otherwise,

(312)

xi =
{

1 if si = si−1,

0 otherwise.
(313)

5.3.2 Functorial arithmetization

Theorem 8. Let s = (n, (k1, ..., km)) ∈ S. Let nI = n +
∑m
i=1(1 + ki). Let N , B be positive integers.

Let F be a finite field such that |F| > 2NB+1. Let r ≥ 2B be an integer. There is a functor QFP(s) →
Circ(N,W,F, nI , r). This functor preserves products, coproducts, and exponentials of the form ⊥ϕ.

Proof. Call the functor F . F is defined on objects by recursion on the structure of QF formulas, as
follows.

F (⊥) = ⊥. (314)

F (ϕ ∧ ψ) = F (ϕ) × F (ψ). (315)

F (ϕ ∨ ψ) = F (ϕ) ⊕ F (ψ). (316)

F (¬ϕ) = ⊥F (ϕ). (317)

The only case that remains to be defined is the base case F (τ1 = τ2). Let τ1 = τ2 be a formula in
QFP(s). Find a circuit C in Circ(N,B,F, nI , r) with the following characteristics:
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1. There are no nondeterministic advice columns.

2. For each subterm fi(υ1, ..., υki
) in τ1 = τ2, there are n+1 deterministic advice columns. These columns

are determined by the following constraints. In these constraints, x⃗i denotes the instance columns
representing the first-order variable xi. y⃗i denotes the (instance) output column for fi. z⃗i,j denotes
the jth (instance) input column for fi. u⃗ denotes the (advice) output column for fi(υ1, ..., υki

). v⃗j
denotes the value of υj , a deterministic advice column.
The constraints are defined in terms of a partial function val from terms to polynomials over column
vectors, defined recursively as follows:

val(0) = 0 (318)

val(1) = 1 (319)

val(−1) = −1 (320)

Here −1 denotes the additive inverse of 1 ∈ F.

val(ρ+ σ) = val(ρ) + val(σ). (321)

val(ρ · σ) = val(ρ) · val(σ). (322)

val(fi(ρ1, ..., ρki
)) = u⃗. (323)

Since ρ1, ..., ρki
may contain function application terms, val must be defined in this manner over

all subterms of τ1 = τ2, which could be said more explicitly if we had distinct names for all of the
deterministic advice columns in play. The constraints are as follows.

(a) For all j ∈ [ki],
v⃗j = val(υj). (324)

(b) For all j ∈ [r],
(uj , v1,j , ..., vki,j) ∈ (y⃗i, z⃗1, ..., z⃗ki

). (325)

3. For each ℓ ∈ [N ], b⃗ℓ denotes the deterministic advice column containing the ℓth byte of the byte
decomposition of the values of τ1 − τ2 at each row. b⃗+/− denotes the deterministic advice column
containing the sign of the byte decomposition of the values of τ1 − τ2 at each row. The following
constraints apply.

(a) For all i ∈ [r], ℓ ∈ [N ], bℓ,i ∈ [2W ].

(b) For all i ∈ [r], b+/−
i ∈ {0, 1}.

(c) val(τ1 − τ2) = (2 · b⃗+/−) ·
∑N
ℓ=1 2Wℓ · b⃗ℓ.

4. For each ℓ ∈ [N ], t⃗ℓ denotes the deterministic advice column containing the truth value at each row
i of the statement bℓ,i = 0. The following constraint applies. For all i ∈ [r], ℓ ∈ [N ],

(bℓ,i, tℓ,i) ∈ {(0, 1)} ∪ {(x, 0) | x ∈ [2W ] \ {0}} (326)

5. There is a deterministic advice column, the truth value column, denoted t⃗. The following constraints
are present.

(a) t⃗ = 1r.
(b) t⃗ =

∏N
i=1 t⃗ℓ,i, where

∏
denotes a Hadamard product of column vectors.
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6. There are additional advice columns and constraints which ensure that each provided lookup table
in the instance and advice columns defines a function, by ensuring that the input rows are lexico-
graphically ordered and adjacent rows with the same input values have the same output values. This
requires deterministic advice columns giving the deltas between each pair of adjacent input cells in
the same column and the truth values of the statements that those deltas are positive. The process
is broken down in more detail in Section 4.

7. The deterministic advice computer is defined in a straightforward manner which computes the nec-
essary values of all the deterministic advice columns as determined by the above constraints.

That completes the definition of the functor F on objects. The definition of F on morphisms is by
recursion on the structure of morphisms. The definition is identical to the definition of F on morphisms
given in the proof of Theorem 6. F preserves identity, composition, products, coproducts, and exponentials
trivially by definition. □

The denotation functor H : Circ(N,W,F, nI , r) → Set is defined on objects by:

H(C) = {(G,S) ∈ D | (inst(G,S), Y ) satisfies C for some Y ∈ [2NW ][nC,O]×[r]}, (327)

where
D = [2NW ]n ×

m∏
i=1

[2NW ][2NW ]ki (328)

and
inst((x1, ..., xn), (f1, ..., fm)) = (xr1 · · · xrn tab(f1) · · · tab(fm)), (329)

where xri denotes the column vector with r rows equal to xi at each row, and fi denotes the lookup table
of fi, i.e.,

tab(fi) = {(f(z1, ..., zki
) z1 · · · zki

)}. (330)

This is a slight abuse of notation in that it denotes a matrix as the set of its rows (without specifying the
order, which can be any arbitrary order).

Let F : QF(s) → Set be the denotation functor for QF(s). Let G : QFP(s) → Set be the denotation
functor for QFP(s). Let J : QF(s) → QFP(s) be the functor defined in Theorem 5. Let K : QFP(s) →
Circ(N,W,F, nI , r) be the functor defined in Theorem 8. It is straightforward to check using induction on
the structure of formulas that the following diagram commutes:

QF(s) QFP(s) Circ(N,W,F, nI , r)

Set

J

F

K

G
H

(331)

From this it follows as a corollary that:

Theorem 9. Let N and B be positive integers. Let F be a finite field, such that |F| > 2NB+1. Let
s = (n, (k1, ..., km)) ∈ S. Let nI = n+

∑
i∈[m] ki + 1. Let

D = [2NB]n ×
∏
i∈[m]

[2NB][2NB ]ki . (332)

Let r ≥ 2B. Let F be the composition of the functors from Theorem 5 and Theorem 8:

F : QF(s) → Circ(N,B,F, nI , r). (333)
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Define a function f : D → F[nI ]×[r] by

f((x1 · · · xn), (g1 · · · gm)) = (xr1 · · · xrn g1 · · · gm). (334)

Here xri denotes a column vector with r rows and xi as the value at each row. gi denotes the tabular
representation of the function gi.

Let ϕ be a formula in QF(s). (F (ϕ), f) is an arithmetization of the relation

{(G,S) ∈ D | δM(G,S)(ϕ) = 1 and for all f ∈ im(S), |f | ≤ r}, (335)

where
M(G,S) = (F, ·F,+F, 0F, 1F,−1F, <F, G, S), (336)

and im(f) denotes the image of the (partial) function f .

5.4 Quantified formulas

Overall, the goal is to prove:

Theorem 10. Let n and m be non-negative integers. Let k1, ..., km be positive integers. Let ϕ be a Σ1
1

formula with n free first-order variables x1, ..., xn and m free second-order variables f1, ..., fm, where fi has
arity ki for each i ∈ [m]. Let nI =

∑
i∈m ki + 1.

Let N and B be positive integers. Let

D = [2NB]n ×
∏
i∈[m]

[2NB][2NB ]ki . (337)

Let C be a circuit arithmetizing ϕ as defined in Section 4, using byte decompositions of N bits per byte
and B bytes per word. Note that nI is equal to the number of instance columns of C. Let r be the number
of rows C. Define a function f : D → F[nI ]×[r] by

f((x1 · · · xn), (g1 · · · gm)) = (xr1 · · · xrn g1 · · · gm). (338)

Here xri denotes a column vector with r rows and xi as the value at each row. gi denotes the tabular
representation of the function gi.

Then (C, f) is an arithmetization of the relation

{(G,S) ∈ D | δM(G,S)(ϕ) = 1 and for all f ∈ im(S), |f | ≤ r}, (339)

where
M(G,S) = (Z, ·,+, 0, 1,−1, <,G, S), (340)

and im(f) denotes the image of the (partial) function f .

This is a more precise restatement of Theorem 1.
Proof sketch. The reasons why this is true are straightforward but not simple. Lacking language to

describe the reasons succinctly and rigorously, I have opted for a description of the reasons which is succinct
but not rigorous. Work is underway to formalize this proof sketch, to resolve any doubts and uncover any
errors which may remain in the construction.

The proof strategy so far has been to prove the correctness of an arithmetization which is simple to
define and simple to prove correct (Subsection 5.2), but which has an astronomical number of rows and
columns, and then to prove its equivalence to an arithmetization which has an astronomical number of
columns but a small number of rows (Subsection 5.3). The desired goal is to prove these arithmetizations
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equivalent to the more efficient arithmetization given explicitly in Section 4, which is harder to describe
but has a more reasonable number of columns as well as a reasonable number of rows.

The reason these circuits are equivalent is that the circuit of Subsection 5.3 can be turned into the
circuit of Section 4 for the same formula (prior to applying quantifier elimination), by applying a series of
semantics preserving circuit transformations. The transformations are semantics preserving in the sense
that they do not change the set of instance values on which the circuit is satisfiable.

The first transformation undoes the quantifier elimination done on the input formula ϕ, by applying a
transformation to the circuit matrix so that values spread across multiple columns in the input circuit are
consolidated into rows in the output circuit. Quantifier elimination turns universally quantified formulas
∀ < β. ϕ into conjunctions

∧
i∈[β] ϕ[x1 7→ i]. Quantifier elimination turns existentially quantified formulas

∃ < β.ϕ into disjunctions
∨
i∈[β] ϕ[x1 7→ i]. This results in a whole bunch of advice columns handling

each of these conjuncts or disjuncts. These advice columns encode constraints which are encoded in the
output circuit using multiple rows with the same constraints. Each existential quantifier generates one or
more nondeterministic advice columns in the output circuit (one for a first-order quantifier, or more than
one for a second-order quantifier). Each universal quantifier generates a fixed column. These universal
quantifier fixed columns enumerate a falsifying set of values of the universally quantified variables. For
each such combination, the nondeterministic existential advice columns provide witness values. These
witness values are subject to equality constraints to ensure consistency with the quantifier ordering in
ϕ. The transformation from many columns from the quantifier-eliminated formula, to fewer columns and
more rows, correlates to a transformation of the circuit input matrices. The key steps are to define this
transformation and prove that the circuit constraints are preserved by this transformation and its inverse.
From this it follows that the circuit transformation is semantics preserving.

The next transformation further reduces the number of advice columns by consolidating truth value
computations. It is not necessary to have advice columns for the truth values of all subformulas, but only
for the truth values of atomic formulas (equality statements) and the truth value of the overall formula.
All of the truth value computations for subformulas leading to the final truth value computation can be
collapsed into a single constraint. This is another semantics preserving transformation of the circuit input
matrix.

The next transformation further reduces the number of advice columns by discarding redundant advice
columns. There will potentially be redundant deterministic advice columns which always contain the
same values as each other, resulting from the base case of the functorial arithmetization of Subsection 5.3.
These redundant advice columns help to check that each function lookup table defines a function. For each
redundant advice column, only one of the redundant copies needs to be kept and the rest can be discarded.
This is another semantics preserving transformation of the circuit input matrix.

That completes this admittedly sketchy definition and correctness proof sketch of arithmetizing Σ1
1

formulas in Halo 2.

6 The other direction

This research has shown how arbitrary Σ1
1 formulas can be arithmetized in Halo 2. The author conjectures

that the other direction is also true: that arbitrary Halo 2 circuits can be expressed as Σ1
1 formulas. In

other words, for every circuit C, there exists a Σ1
1 formula ϕ such that the set of values for the free variables

which satisfy ϕ is equal to the set of instance values for which C is satisfiable. This conjecture should be
straightforward to define more precisely and then prove, by defining a Σ1

1 formula which encodes all the
constraints of a given Halo 2 circuit. If true, this conjecture together with Σ1

1 arithmetization show that
Σ1

1 formulas have the same expressive power (i.e. can express the same relations) as Halo 2 circuits.
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