
SPHINCS+C: Compressing SPHINCS+ With (Almost) No Cost

Eyal Ronen
eyal.ronen@cs.tau.ac.il

TAU

Eylon Yogev
eylon.yogev@biu.ac.il

Bar-Ilan University

June 16, 2022

Abstract

The SPHINCS+ [CCS ’19] proposal is one of the alternate candidates for digital signatures
in NIST’s post-quantum standardization process. The scheme is a hash-based signature and is
considered one of the most secure and robust proposals. The proposal includes a fast (but large)
variant and a small (but costly) variant for each security level. The main problem that might
hinder its adoption is its large signature size. Although SPHICS+ supports a tradeoff between
signature size and the computational cost of the signature, further reducing the signature size
(below the small variants) results in a prohibitively high computational cost for the signer (as
well as the verification cost).

This paper presents several novel methods for further compressing the signature size while
requiring negligible added computational costs for the signer and faster verification time. More-
over, our approach enables a much more efficient tradeoff curve between signature size and the
computational costs of the signer. In many parameter settings, we achieve small signatures and
faster running times simultaneously. For example, for 128-bit security, the small signature variant
of SPHINCS+ is 7856 bytes long, while our variant is only 6304 bytes long: a compression of
approximately 20% while still reducing the signer’s running time.

The main insight behind our scheme is that there are predefined specific subsets of messages
for which the WOTS+ and FORS signatures (that SPHINCS+ uses) can be compressed and
made faster (while maintaining the same security guarantees). Although most messages will not
come from these subsets, we can search for suitable hashed values to sign. We sign a hash of
the message concatenated with a counter that was chosen such that the hashed value is in the
subset. The resulting signature is both smaller and faster to sign and verify.

Our schemes are simple to describe and implement. We provide an implementation and
benchmark results.

Keywords: hash based signatures;post-quantum security

Contents

1 Introduction 1
1.1 Our results . 1

2 Background 3
2.1 WOTS and WOTS+ . 3
2.2 FORS . 3
2.3 SPHINCS+ . 4

3 WOTS+C 4
3.1 Proof of security . 5

4 FORS+C 7
4.1 Removing trees from the forest . 7
4.2 Interleaving trees . 9

5 SPHINCS+C 10
5.1 Parameters choice . 11
5.2 Cost of finding valid counter for WOTS+C . 12
5.3 Using different values of w . 12

6 Implementation 13
6.1 Implementing FORS+C . 13
6.2 Implementing WOTS+C . 13
6.3 Benchmark . 14

7 Discussion 14
7.1 Non-constant signing time . 15
7.2 Constant verification time . 16
7.3 WOTS+C public key vs. signature generation time trade-off 16
7.4 Signature time vs. signature size and verification time tradeoff 16
7.5 Proof-of-work . 16
7.6 Future work . 17

A Parameter-evaluation Sage script 20

1 Introduction

Hash-based signatures are among the most secure digital signature scheme proposals today. They
are believed to resist quantum computer-aided attacks, and breaking a hash-based signature scheme
would imply devastating and unlikely attacks in large areas of cryptography. They have solid and
well-understood security guarantees, flexibility in choosing the underlying hash functions, and enjoy
fast signature generation and verification times. The major drawback of hash-based signatures, and
what is slowing wide deployment, is the signature size, which is large compared to other alternatives.
Other signature schemes are either not post-quantum secure (e.g., discrete-log based), have large
signatures (e.g., lattice-based), or rely on assumptions that have not been studied and are often
prone to new attacks [Beu22]. Thus, as digital signatures are a crucial cryptographic tool in practice,
reducing the size of hash-based signatures is of the utmost importance.

Hash-based signature has a long history starting from the one-time signatures (OTS) proposed
by Lamport [Lam79] and improved by Winternitz [Mer89]. In 2015, Bernstein et al. presented a
stateless hash-based signature scheme called SPHINCS [Ber+15]. Their proposal had a significant
impact on the area of hash-based signatures. Their scheme combined several known and novel
techniques that managed to get a fast digital signature candidate and a reasonably small signature
size. The SPHINCS scheme is a practical take on Goldreich’s proposal to turn stateful schemes
into stateless schemes [Gol86]. Goldreich suggested using a binary authentication tree of one-time
signatures, which removed the need to maintain a local state but practically yields prohibitively large
signatures. The SPHINCS scheme combines a (hyper) tree of one-time signatures while replacing
the one-time signatures in the leaves of the tree with few-time signatures [RR02a]. This modification
allowed reducing the size of the tree, resulting in a significantly smaller signature size.

Since this proposal, hash-based signatures have received renewed interest and various improve-
ments and variations have been suggested [PZCMP21; ZCY22; AE18; GM17; RR02b; AE17; Hül17].
Most notable is the suggested proposal SPHINCS+ [BHKNRS19], which is one of the finalist (as an
alternative candidate) in NIST’s post-quantum standardization process for digital signatures. The
SPHINCS+ scheme introduces a new few-time signature scheme called FORS, uses WOTS+ [Hül17]
as the one-time signature component, and a new security analysis framework that uses “tweakable
hash function”. The SPHINCS+ scheme is generally considered the current state-of-the-art of
stateless hash-based signatures. It supports a tradeoff between signature size and the computational
cost of the signature. The proposal includes a fast (but larger) variant and a small (but slower)
variant for each security level. For example, for 192 bits of security, it has signatures of size ≈ 16KB
for the small variant and ≈ 35KB for the fast variant. Unfortunately, further reduction in the
signature size is not consider practical due to prohibitively high computational cost for the signer.

1.1 Our results

In this paper, we propose SPHINCS+C, a stateless hash based signature scheme based on SPHINCS+,
which improves the best-known results for stateless hash-based signatures. Our goal is to reduce
the signature size, while maintaining (and in some cases even improving) the running-time of the
signature generation. Furthermore, our scheme does not introduce complicated security analysis,
and the security reduces back to the security of each component of the original SPHINCS+ scheme.

Our main contributions and new techniques are summarized in the following fronts:

• Improved one-time signatures (WOTS): We introduce a new variant of the Winternitz one-time
signature scheme, which we refer to as WOTS+C. The scheme reduces the number of chains in

1

Small Signature Size Fast Signature Size

Security Level SPHINCS+ SPHINCS+C SPHINCS+ SPHINCS+C

128-bit 7856 6304 (−20%) 17088 14904 (−13%)
192-bit 16224 13776 (−16%) 35664 33016 (−8%)
256-bit 29792 26096 (−13%) 49856 46884 (−6%)

Table 1: Comparison of signature sizes (in bytes) between SPHINCS+ and SPHINCS+C (our scheme).
The table compares all three security levels, and for each it compares the small and fast variants.
The reduction percentages in size is shown in the parenthesis. The running-times of the signers are
(approximately) the same in both scheme for all parameter settings.

the WOTS, which reduces the signature size and the running time of the verifier without increasing
the running time of the signer (or the key-generation time). The scheme is given in Section 3.

• Improved few-time signatures (FORS): We introduce a new variant of the FORS scheme, called
FORS+C. As in the WOTS case, our variant reduces the signature size and (slightly) reduces the
verification time while maintaining the same signing time (and key-generation time). The scheme
is given in Section 4.

• Improved state-less hash signature scheme: We propose a novel variant of SPHINCS+, called
SPHINCS+C that uses WOTS+C and FORS+C. The new one-time and few-time signatures we
use (along with additional improvements) allow for reducing the signature size of each component
and a more comprehensive range of tradeoffs for the whole signature scheme. This enable us
to find for better tradeoffs and reduce the overall size of the signature, while maintaining the
signature generation time. This is described in Section 5.

We provide a security proof of our scheme, a reference implementation based on the code of
SPHINCS+,1 and propose several variants of recommended parameters sets that we benchmarked.
Table 1 provides a comparison for the signature sizes of between the SPHINCS+ variants submitted to
round 3 of the NIST competition [Aum+22], and our proposed variants that maintain a comparable
(and sometimes slightly better) signature generation time.

For example, for 128-bit security, the small signature variant of the SPHINCS+ signature is 7856
bytes long, while our variant is only 6304 bytes long: a compression of approximately 20% while
additionally slightly improving the signature generation time (see benchmark at Table 3).

Paper organization

The organization of the rest of the paper is as follows.
In Section 2, we give the relevant background on the SPHINCS+ signature scheme and its

components. In Section 3, we describe WOTS+C, our new variant of WOTS+, a one-time signature
scheme, along with its security analysis. In Section 4, we describe our FORS+C scheme, a new
variant of the FORS few-time signature, along with its security analysis. In Section 5, we describe
SPHINCS+C, which assembles the former two building blocks into the SPHINCS+ scheme while
finding the optimal tradeoff of parameters. In Section 6, we describe our implementation and

1https://github.com/eyalr0/sphincsplusc

2

provide a comparison with the SPHINCS+ scheme (in terms of running-time and signature size). In
Section 7 we provide a general discussion of further considerations that are relevant to our scheme,
and directions for future work.

The Sage script we used for parameter-evaluation for the SPHINCS+C variants is provided in
Appendix A.

2 Background

In this subsection, we provide relevant background on the SPHINCS+ signature scheme, before we
describe our improvements.

2.1 WOTS and WOTS+

The Winternitz signature scheme (WOTS) and its variants (e.g., WOTS+) are one-time signature
scheme [Hül13]. The core idea of WOTS (and its variants) is to use w function chains starting from
random inputs. These random inputs together act as the secret key. The public key consists of all of
the ends of each chain. The signature is computed by mapping the message to one intermediate
value of each function chain. The WOTS+ scheme use a special mode of iteration which enables
tight security proof (without the need of collision resistant).

In more detail, WOTS has two parameters n and w. The parameter n is the security parameter
and the length of the message. The parameter w is the Winternitz parameter, which defined the
length of the chains, and is usually set to 4, 16 or 256. Define

len1 =

⌈
n

log(w)

⌉
and len2 =

⌊
log(len1(w − 1))

log(w)

⌋
+ 1 .

Moreover, let len = len1 + len2, which represents the number of n-bit values in an uncompressed
WOTS+ private key, public key, and signature.

To sign a message m, we interpret m as len1 integers ai each between 0 and w − 1. We compute
a checksum C =

∑len1
i=1(w − 1− a1), represented as string of len2 base-w values C = (C1, . . . , Clen2).

This checksum is also signed and is what provides security of the scheme. Using these len integers as
chain lengths, the chaining hash function H is applied to the private key elements. The result is a
len values, each is a n-bit string that consist of the signature. The verifier recomputes the checksum,
and chain lengths, and then applies H to complete each chain. This leads to the chain heads, which
are hashed together to provide a single n bit string serving as the public-key.

The WOTS+ has a similar structure to WOTS, where the main difference is in how the chain is
computed. Instead of iterating over the same hash function, WOTS+ defines a new chaining function
which involves random masking values r and a family of hash functions fk. In every iteration, the
function first takes the bitwise xor of the intermediate value and bitmask r and evaluates fk on the
result afterwards. This enables them to get tight security analysis using weak (inversion) properties
of the hash functions. See [Hül17] for more details and the security proofs.

2.2 FORS

While one-time signature schemes lose all security after more than one signature, few-time signatures
(FTS) can maintain some level of security even after a small number of signatures are signed. The
security of the of the scheme (usually) deteriorates with each added signature.

3

The FORS (Forest of Random Subsets) signature scheme is the few-time signature scheme used
in SPHINS+[BHKNRS19], introduced as an improvement to HORST [Ber+15]. The FORS scheme
is defined in terms of integers k and t = 2b, and can be used to sign strings of k · b bits. The private
key contains k · t random n-bit values (for security parameter n). These values are viewed as the
leaves of k trees, each with t leaves. A Merkle tree is computed for each tree, resulting in k roots.
The public-key consists of the hash of all these roots together. Given a message of k · b bits, the
signature algorithm extracts k strings of b bits. Each of these bit strings is interpreted as the index
of leaf in each of the k FORS trees. The signature contains the authentication path for each leaf. As
each index is used in a different tree, FORS solves the problem of weak messages in HORST [AE17],
that is due to collision of two or more indices in the single tree used by HORST.

2.3 SPHINCS+

The SPHINCS+ [BHKNRS19] scheme is a stateless hash-based signature improving upon the previous
version called SPHINCS [Ber+15]. It uses a hyper-tree structure where each tree is a Merkle tree of
the public keys of WOTS+ signature. The WOTS+ signatures in the leaves of the lowest layer of
the trees are used to sign the roots of FORS signature.

When signing a message, one part of the digest of the message determines the exact leaf of the
hyper-tree to be used. The FORS signature that corresponds to that leaf is used to sign the second
part of the digest. The root of the FORS signature is signed by the WOTS+ signature of that leaf.
The root of each Merkle tree in the bottom layer is then signed by one of the WOTS+ signatures
in the leaves of the tree in the layer above it. This continues until we reach the root of the top
level tree, which is also the public key. Then SPHINCS+ signature includes all of the used FORS
and WOTS+ signatures and the authentication paths of the Merkle trees that are required for the
verifier to compute the root of the hyper-tree. See [BHKNRS19] for more details and security proofs.

3 WOTS+C

In this section, we present a variant of the WOTS+ [Hül13] constructions (which can be applied also
to other variants). Our construction reduced the size of the signature, without making the chains
longer and without increasing the running-time of the verification (indeed the verification times are
actually reduced).

Our modification works for any WOTS-like scheme that has the chaining structure, and does
not depend on how the chain is computed and which functions are used for chaining. Thus, for
simplicity of presentation here, we describe our modification as a variant of the simpler WOTS
scheme. However, we stress that our implementation and experimental results are with the WOTS+
scheme. The description below uses WOTS solely for ease of presentation.

Recall that the WOTS scheme has two parameters n and w. The parameter n is the security
parameter and the length of the message. The parameter w is the Winternitz parameter, which
defined the length of the chains, and is usually set to 4, 16 or 256.

Our scheme introduces two additional parameter Sw,n, z ∈ N. Instead of signing the message m,
we sign d = H(m‖r) where r is a short random bit string (a salt). We choose r such that the resulting
bit string d satisfies the following property: d is mapped to len1 chain locations a1, . . . , alen1 ∈ [w]
with:

1. Fixed sum:
∑len1

i=1 ai = Sw,n.

4

2. Additional zero-chains: ∀i ∈ [z] : ai = 0 .

The signing algorithm is tasked with finding such a suitable salt r. This is done by enumerating
over r until the two conditions holds. We analyze the cost of process in the next subsection, but
first we describe the benefits we gain:

• The first conditions means the the sum of all words is always equal to a fixed value (that might
depend on w and n). As this sum is a fixed parameter of the scheme and can be easily checked by
the verifier, we do not need to sign its value, which is what is done in WOTS(+). This significantly
reduced the size of the signature, as well as the verification time.

• The second condition allows us to further compress the signature size, by not signing the first z.
Again, z is a parameter of the scheme and this condition can be checked by the verifier.

Our scheme can be viewed as a variant of WOTS or WOTS+ (or other variants as well), where
we have less chains to sign and verify. Instead of having len = len1 + len2 chains, we only need to
sign and verify len1 − z chains. See an illustration in Figure 1.

Let ` = len1 − z. Then, our scheme is implemented as follows:

• KeyGen(1n): The secret key is random strings sk = (sk1, . . . , sk`). The public key is pk =
(pk1, . . . , pk`), where pki = Hw(ski).

• Sign(m, sk): Find r that satisfies the two conditions. Compute d = H(m‖r). Map d to len1 chain
locations a1, . . . , alen1 ∈ [w]. For i ∈ [`] compute σi = Hai(λi). Output σ = (σ1, . . . , σ`, r).

• V(1n,m, σ, pk): Parse σ as (σ1, . . . , σ`, r). Parse pk = (pk1, . . . , pk`). Compute d = H(m‖r). Map
d to len1 chain locations a1, . . . , alen1 ∈ [w]. Verify that for all i ∈ [`], it holds that pki = Hw−ai(σi).

Once we remove the checksum chains, the running time of the verification becomes much faster
(as it does not need to computes hashes for these chains). The signing time has the additional step
of finding the right counter value, but this is compensated with the smaller number of chains it
needs to compute. Overall, the new scheme allows for smaller signature size, faster verification, and
keeping the signature generation time (almost) the same.

Choosing to further compress the signature by also requiring z > 0 additional zero-chains can
increase the overall signature generation time. However, as we discuss in Section 7.3, it can decrease
the overall time for SPHINCS+C signature generation.

3.1 Proof of security

We will now show a tight reduction from the EU-CMA security of our WOTS+C scheme to the
WOTS+ [Hül17] scheme. The EU-CMA security is defined using the following experiment (where
DSS(1

n)) denote denote a signature scheme with security parameter n.

Experiment ExpEU-CMA
Dss(1n) (A):

• (sk, pk)← KeyGen(1n).
• (m∗, σ)← ASign(sk,·)(pk).
• Let {(mi, σi)}i∈[q] be the query-answer pairs of Sign(sk, ·).
• Return 1 iff Verify(pk,m∗, σ∗) = 1 and m∗ /∈ {mi}i∈[q].
For the success probability of an adversary A in the above experiment we write

SuccEU-CMA
Dss(1n) (A) = Pr[ExpEU-CMA

Dss(1n) (A) = 1] .

Using this, we define EU-CMA the following way.

5

pk1
a1

sk1

alen1
pklen1

a2
sk2

sklen1

pk2

alen1+1
sklen1+1

alen2
sklen2

pklen1+1

pklen2

Removed in SPHICS+C

Figure 1: An illustration of the WOTS+ chains that are removed in the WOTS+C scheme.

Definition 3.1. Let n, t, q ∈ N, t, q = poly(n), Dss(1n) a digital signature scheme. We call Dss(1n)
EU-CMA-secure, if for any adversary A with running time t, making at most q queries to Sign in
the above experiment, the success probability SuccEU-CMA

Dss(1n) (A) is negligible in n.

An EU-CMA secure one-time signature scheme (OTS) is a Dss(1n) that is EU-CMA secure as
long as the number of oracle queries of the adversary is limited to one, i.e. q = 1. This is the case
with WOTS and WOTS+.

Our security reduction. To prove the security of our new scheme, we show how to reduce its
security to the original security of WOTS. Denote the WOTS+ scheme by (KeyGen,Sign,V) and
our scheme by (KeyGen′, Sign′,V′). Let A′ be an adversary for our scheme. Assume, without loss of
generality, that A′ requests to see at least one signature. We build A, an adversary for WOTS, as
follows.

1. Given (sk, pk)← KeyGen(1n) (generated by the WOTS+ scheme), A′ takes pk = (pk1, . . . , pklen)
and creates a public key pk′ = (pk1, . . . , pklen1−z) for our scheme by removing the len2 words
encoding the sum and to the first z words.

2. The adversary A runs A′ with pk′.
3. For each request to sign a message m:

(a) Find a random bitstring r such that d = H(m‖r) is valid for our signature (satisfies that
two requirements).

(b) Send d to the WOTS signing oracle Sign(sk, ·) to get σ = (σ1, . . . , σlen) (and store the
signature).

(c) Set σ′ = (σ1, . . . , σlen1−z, r) send the signature σ′ to the adversary A′.
4. Finally, A′ outputs (m∗, σ′).
5. Take σ′ = (σ1, . . . , σlen1−z, r) and create σ = (σ1, . . . , σlen) by adding the truncated parts from

the signature we received from the WOTS challenger. Note that as the sum is always fixed and
the first z words are always zero, the corresponding parts in the WOTS signature will always be
the same. Output (d, σ) to the WOTS challneges.

6

The success probability of our adversary A is identical to that of A′. Thus, the only cost of the
reduction is the running of the adversary. We note that during our reduction, we need to find a
suitable r value which require work. However, this is only a fixed additive amount of work that not
related to the security parameter. Therefore, for reasonable security parameter and signature costs,
this cost is negligible compare to expected running time of the adversary so our reduction is tight.

The tweakable WOTS (WOTS-TW) variant used in SPHINCS+ was formally proved in [HK22]
in the non-adaptive chosen message attacks (EU-naCMA) where the adversary receives the public key
only after it made its signature query. The process of creating our tweakable variant of WOTS+C
from WOTS-TW and proving the reduction to the EU-naCMA of WOTS-TW is identical as the
adversary in our reduction does not require the public-key for the signature oracle.

4 FORS+C

In this section, we present the FORS+C scheme, as an improved variant to the FORS few-time
signature scheme (see Section 2.2 for an overview of the original FORS). Recall that the FORS scheme
uses k trees, where each tree contains t = 2b leaves. The signature is a collection of authentication
paths, one for each tree. The main idea behind the security of FORS, is that the best strategy of an
attacker, is to find a message/salt pair that hashes to a set of leaves that were already revealed as
part of the previous signatures. The amount of required hash function evaluations is related to the
probability that such event happens for a single message/salt pair.

4.1 Removing trees from the forest

The first improvement of FORS+C over FORS is to reduce the number of authentication paths,
while maintaining the same level of security (and the same running-time of all algorithms). The
idea is to force the hash for the last tree to always open the first leaf (leaf with index 0). This is
equivalent to requiring that the last b bits of the digest of the message that is signed by FORS are
all zeros. How can this be enforced? We hash a concatenation of a counter i and the message we
want to sign. The signer then enumerates over values of i until it finds one where the digest of the
message with the counter ends with b bits of zero and sign it.

Once this is enforced, the verifier knows that only signatures that reveal leaf 0 in the last tree
are valid, and she can check it directly in the resulting digest value. Thus, the signature itself does
not require the actual authentication path. This means that we now only need to store the counter in
the signature instead of the whole authentication path of the last tree. Moreover, there is no need
for the signer to compute the last tree. See an illustration in Figure 2.

On average, this will require trying 2b hash function evaluations before finding a suitable counter
and digest. However, as we mentioned, the signing process saves back the 2b hashes since it does not
need to generate the last tree thus keeping the running time of the signer approximately the same.
Moreover, as a result, verification is also (slightly) faster, as it has one less tree to verify. This results
in signatures that are strictly better, allowing us to generate smaller signatures that are faster to
verify with the same signature time.

To get further gains, we can make the last tree bigger before we remove it. Equivalently, this
means finding an index i where its hash (with the message) begins with b′ 0’s, for some b′ > b. This
increases the amount of work needed for signing, but reduces the signature size. When considering
different trade-offs of parameters (in the overall hyper-tree of the SPHINCS+C scheme), this will be

7

useful.

Last tree removed
in SPHICS+C

Figure 2: An illustration of the FORS tree that is removed in the FORS+C scheme.

4.1.1 Security

The security reduction is the same as the security analysis of FORS. One can (virtually) imagine
that all k trees exists, where in the last tree we always open the same leaf. The probability of the
attacker to find a message/salt pair that hashes to k leaves that are all opened is not higher in
our scheme. To the contrary, we gain better security guarantees since in the last tree, the attacker
always has only a single leaf open, regardless of the number of signatures provided. There is no
degradation in security for the tree.

In more detail, the security analysis of FORS shows that the overall success probability of the
attacker is the product of the success probability for each separate tree. The probability depends
only on the number of opened leaves per tree, and not which leaves are opened. Thus, the security
of our scheme follows verbatim.

Moreover, the analysis remains the same if not all trees are the same size. This mean that we
can choose a different tree size t′ = 2b

′ for the last tree that is not t = 2b. We will now describe the
security analysis.

We begin by describing the security analysis of FORS. Assume that the adversary has seen γ
signatures. We use the analysis from [BHKNRS19] to bound the probability that a new message
digest selects FORS positions that are covered by the positions already revealed in previous signatures
in a specific tree i. In [BHKNRS19], the probability is denoted by DarkSideγ . The probability that a
digest hits all covered positions can be computed as follows. The probability that all the γ messages
miss the location of the message digest is (1− 1

t)
γ . Thus, as shown in [BHKNRS19], we have that

DarkSideγ = 1−
(
1− 1

t

)γ
.

The probability of being covered in all k trees is:

(DarkSideγ)
k =

(
1−

(
1− 1

t

)γ)k
.

In the case of FORS+C, the analysis is similar, where we can squeeze out more security by
leveraging the fact that for the last tree, all previous γ signatures collide. For the first k − 1 trees,

8

the probability is the same as above. For the last tree, the probability of choosing the first leaf is
merely 1/t′ (where t′ is the size of the last tree), which is independent of γ. Thus, we get that the
probability of the digest to be all covered is

(DarkSideγ)
(k−1) · 1

t′
=

(
1−

(
1− 1

t

)γ)(k−1)
· 1
t′
.

This improved security probability is later used in the SPHINCS+C schemes for the overall security
analysis.

4.2 Interleaving trees

The main advantage of the FORS scheme compared to schemes with a single tree (HORS,HORST)
is the simple and tight security analysis. The message is mapped to k leaves, each leaf in a different
tree. Thus, we know these leaves will never collide: a signature will always contain k distinct leaves.
This is important as an attacker can use duplicate leaves to gain an advantage [AE17].2 Thus, in
the FORS scheme, it suffices to analyze the security of a single tree and then conclude with overall
security that is exponential in k, as the trees are independent.

While the FORS is simple and straightforward to analyze, one downside is that it does not enjoy
the “path pruning” method to reduce the signature size that was suggested in [AE18] as “Octopus”.
In this method, one can significantly save in the authentication paths for opening leaves close to
each other. For example, if one is to open the first leaf and the 4th leaf, then after two layers, their
authentication paths are aligned and can be added to the signature only once. In HORS(T), there is
one large tree and openings of k leaves that share some of the authentication paths, depending on
the (random) location of the leaves. In FORS, all the paths are always disjoint, as each path in a
different leaf.

We introduce a variant of FORS, which is able to enjoy both worlds at no computational or
security cost. It enjoys the simple analysis of the FORS scheme and the path pruning method of
the HORS(T) scheme. The idea is to take the k trees of the FORS, each with t leaves, and arrange
them in an interleaving order before computing the Merkle tree. That is, in our variant, we still
have k independent arrays of leaves, each of size t. Each message is mapped to a single leaf in each
array. However, before we compute the Merkle tree, we permute the leaves order as follows: the i-th
node of the j-th FORS tree is mapped to location (i− 1) · k + j. For example, in the new order, the
first k leaves correspond to the first leaves of each of the k trees.

As currently described, this variant suffers from the same limitation as previous suggestions,
such as Octopus [AE18]. It will reduce the size of the FORS signature on average, but not by much.
Furthermore, this will result in a variable signature size, and we still need to support the worst-case
signature size, which is the same as without “path pruning”.

We overcome the above limitations. We can again employ the same counter technique we use
for tree removal. That is, the signer will use incrementing counter values until it finds a digest
where the resulting FORS signature after “pruning” is under some pre-defined size. For example, for
the parameter set log(t) = 15, k = 13 used in our proposed small variant for 192-bit security (see
Section 5), after 25 hashes, we expect to reduce the size of the FORS signature from 208 ∗ 24 = 4992

2Note that we can use a similar approach with a counter to both compress HORST and make sure there are no
duplicate leaves. However, we choose to base our solution on the FORS signature to minimize the changes from
SPHINCS+.

9

bytes to 194 ∗ 24 = 4656 bytes. A reduction of about 7% in the FORS signature size or 2.4% of
the total signature size. Again, as we provide the counter to the verifier, the added run time cost
is only in the signature generation phase. With this modification, we take the event of a having a
relatively small signature, which happens with small probability, and make sure it always happens.
This results with a signature with a fixed pre-defined (small) size.

The cost of using both the tree removal and path pruning is the product of the costs. As in
our small variant for 192-bit security, by removing a tree of size 212, the total cost is 212 · 25 = 217.
This is still very small compared to the total signature time of this variant. Note that although
calculating the authentication paths pruning is more costly than hash calculation, we only need to
do it if all the bits of the tree removal are indeed zeros. This means that in our example, it only
needs to be checked 25 times which is negligible compared to the total signature generation time.

Practical consideration. We note that this variant gives a reduced signature size over the original
FORS construction. However, when we compare it against our variant with the removed tree (and
with WOTS+C), for the specific trade-off point we use for our parameter sets, the savings are less
significant (approximately 1% extra reduction in signature size). Thus, our implementation does
not currently support this improvement, and all experiments shown in this paper are without it. In
other contexts, this improvement could be significant, which is why we described it here and hope it
will be helpful for others.

4.2.1 Security

The security analysis of this variant is exactly the same as in the original FORS scheme. The security
relies on analyzing the probability of the adversary hitting all opened leaves and is not affected by
the order of the leaves. The main advantage is that now we can exploit the path pruning technique
to reduce the signature size. For example, suppose a signature contains the first leaf from the first
two trees. In the original FORS scheme, this would lead to two disjoint paths. In our new scheme,
these leaves sit adjacent to each other, and thus their combined authentication path is the same as a
single authentication path.

5 SPHINCS+C

At its simplest form, our proposed SPHINCS+C is the SPHINCS+ where we use WOTS+C instead
of WOTS+ and FORS+C instead of FORS (later we describe additional optimizations). As we can
reduce the security of our compressed variants to the original ones, the original security proof of
SPHINCS+ holds also for SPHINCS+C.

Recall, that for each security level, SPHINCS+ provides two instantiations or sets of parameters
that give us a trade-off between faster and smaller signatures. This allows us to sign on low-resources
devices with one set, and to use the other set when the signer computational power is larger, but we
want to reduce the size of the signature. Following this rational, we also provide two such options,
while using the fact that SPHINCS+C gives us a better trade-off curve between signature size and
the running time of the signer.

10

Figure 3: Hash rate (computational cost) to signature size in bytes trade-off curves for SPHINCS+
and our various compression options for (WOTS+C, FORS+C, and the full SPHINCS+C).

5.1 Parameters choice

For our concrete parameter choices, we searched for parameters that will minimize the signature size,
while maintaining the signer running time and security level of the original variants proposed in the
NIST submission of SPHINCS+ [Aum+22]. We note that in our “small” variants the verification
time is (slightly) longer than in SPHINCS+. Nevertheless, we consider this to be acceptable, as in
these “small” variants the major bottleneck is the run time of the signer which is more than two
orders of magnitude larger than the verification time. Moreover, further optimizations that are not
yet implemented will plausibly remedy the situation.

To search for the best parameters, we follow the example of SPHINCS+. We edited the latest
sage script published by the SPHINCS+ team3 and modified it to support SPHINCS+C.

We recall the parameters notation from SPHINCS+:

n: the security parameter in bytes.
w: the Winternitz parameter.
h: the height of the hypertree as defined in Section.
d: the number of layers in the hypertree.
k: the number of trees in FORS.
t: the number of leaves of a FORS tree.

For our scheme we add a parameter:

t’: the number of leaves of the extra FORS tree we remove.

3http://sphincs.org/data/spx_parameter_exploration.sage

11

n h d log(t) k w log(t’) bitsec sig bytes

SPHINCS+C-128s 16 66 11 13 9 128 18 128 6304 (−20%)
SPHINCS+C-128f 16 63 21 9 19 16 8 128 14904 (−13%)
SPHINCS+C-192s 24 66 11 15 13 128 12 192 13776 (−16%)
SPHINCS+C-192f 24 63 21 9 30 16 13 192 33016 (−8%)
SPHINCS+C-256s 32 66 11 14 19 64 19 256 26096 (−13%)
SPHINCS+C-256f 32 64 16 10 34 16 10 256 46884 (−6%)

Table 2: Example parameter sets for SPHINCS+C targeting different security levels and different
tradeoffs between size and speed. The signer running time for each variant is better than the ones in
the SPHINCS+ NIST submission, and the size reduction in percentages is shown in the parenthesis. We
note that k described the number of FORS+C trees authentication paths included in the signature, not
including the last tree of size t′ that is signed implicitly by the zero bits in the signature.

Figure 3 shows part of the trade-off curve between the computational cost (approximated by the
number of calls to the hash function) and the signature size. It can be seen that at times we are able
to get more than a 20% improvement over in size over the original SPHINCS+ scheme for the same
computational cost. As expected, most of our gain comes from the WOTS+C compression, but
adding FORS+C for the full SPHINCS+C still gives us a significant improvement. The script used
to find the trade-off curve can be found in Appendix A. To simplify the script and implementation,
we did not incorporate the relatively complex interleaving trees optimization.

In Table 2 we provide a summary of the concert parameters of our proposed variants. For
each variant, the signature generation time is similar to its counterpart in the SPHINCS+ NIST
submission, while resulting in a smaller signature size.

5.2 Cost of finding valid counter for WOTS+C

In WOTS+C, we search for a counter where the resulting checksum of the digest is the expected
value Sw,n. Moreover, when the number of bits (N ∗ 8) is not dividable by log(w), the last chain
encodes less than log(w)-bits, it is more effective to require it to have a zero value instead of including
it in the signature.

We use an auxiliary script that for each possible values of n and w, tries a large number of
random messages, and checks what is the probability of getting the expected average checksum (and
the last zero chain when applicable). It stores the expected number of trials, the number of digits,
the required number of hash calls for signature, and signature size. These values are then used in
our script for finding the best parameters for the overall SPHINCS+C scheme.

We note that our WOTS+C algorithm ensures a constant time verification process, while incurring
(small) variability in the cost of signing.

5.3 Using different values of w

The SPHINCS+ scheme uses only w values of 16 and 256 as the resulting encoding is of 4 and 8 bits
per chain. Otherwise, the last chain will not be “wasteful” and will encode less than log(w). We
note that in WOTS+C we support a wider range of w values, and some of our variants also use w
values of 64 and 128. This is because we can simply zero out last chain.

12

As a further optimization, we can use multiple values of w in out signature (e.g., combination of
w = 16 and w = 64). As the value of w is essentially a trade-off between signature size and running
time, this will give us more options on the curve.

6 Implementation

We based our implementation on the latest official version of the SPHINCS+ code.4 We modified
the original code to add our optimizations and to allow for performance comparison with the original
version. We will make the full code available with the publication of this paper.

6.1 Implementing FORS+C

To implement FORS+C we simply added an extra 4 bytes counter value at the end of the first
hashing of the message to be signed. We try different values of the counter, until the first t′ bits of
the resulting messages to be signed by FORS+C are zero. We store the counter value that we found
as part of the signature. This means that the verifier can simply read the counter value and check
that the resulting bits are zero, instead of searching for the counter value again. If the resulting bits
are not zero, the validation fails.

The counter value can be replaced with a different one that results in zero bits (the whole
computation only requires public parameters). However, we use SPHINCS+C to sign a message
that is simply the concatenation of the counter and the original message, and forging either the
counter or the message is as hard as forging the message in the original SPHINCS+ scheme.

6.2 Implementing WOTS+C

Implementing WOTS+C is a bit more involved, and is tailored to the implementation of SPHINCS+
and its “tweaked” hash functions. To minimize the modification to the existing code and maintain the
size of the input to the hash functions (larger input may reduce performance), we encode counters
for WOTS+C inside the address structure used in SPHINCS+. Recall that in SPHINCS+, each
“tweaked” hash call includes a unique “address” to make each call in virtual tree structure independent
from each other. We refer the reader to the SPHINCS+ [BHKNRS19] paper for more details on how
tweaked hash function and the address structures are defined and implemented.

In each WOTS+C in the virtual tree, we need to hash the message we want to sign (the root of a
Merkle tree) together with a counter. As we want the hashes of the different WOTS+C signatures in
the tree to be independent, we use an address structure that is unique for each WOTS+C signature.
We add a new address structure “WOTS+C message compression address” with type values 7 to
separate it from all other address types. It is similar to the WOTS+ public key compression address
in that it is unique for each WOTS+C signature, but we also add a 4-bytes counter. As in the
WOTS+ public key compression address, the resulting structure has 32-bit layer address field, 72-bit
tree address field, 32-bit type field (with value 7), and 32-bit key pair address. To this we now add a
32-bit counter field and the remaining 64-bits are padded with zeros.

To save computation time, the unique bitmask used in the tweaked hash function is generated
once with a counter value of zero. After that we try incremented values of the counter, until the
resulting digest of the addresses concatenated with the masked message have the required checksum

4https://github.com/sphincs/sphincsplus/

13

value. Again we refer the reader to the SPHINCS+ paper for more details on how the bitmask is
generated and used.

Similarly to what we did in FORS+C, the counter value for each WOTS+C signature is stored
as part of the signature to speed up the running time of the verifier. The verifier reads the counter
value, and validate that the checksum is correct. If not, the public key of the WOTS+C signature is
set to all zeros. This will result in a generation of an incorrect root of the Merkle tree, and at the
end generation of an incorrect public root of the SPHINCS+C signature. As the calculated root is
compared with the public key, this will cause the signature to fail.

6.3 Benchmark

The script we used for searching parameters gives us only an approximation of the running time of
the signer. To test the actual running time, the official code of SPHINCS+ includes a framework
for benchmarking the code. We use this framework to benchmark both the original SPHINCS+
code with the parameters sets submitted to NIST, and our modified SPHINCS+C code with the
parameters sets we chose.

The tests were run on a Intel(R) Core(TM) i7-8550U CPU 1.80GHz with 16GB of RAM, running
Ubuntu 20.04.4 LTS. SPHINCS+ support 3 different underlining hash constructions, we chose to
benchmarked the reference code for the “robust” SHAKE [Dwo15] variant that is based on the
Keccak permutation [BDPVA09]. Our main goal is to compare the running time of SPHINCS+C
with SPHINCS+ [BHKNRS19]. For each parameter set we ran the key generation, randomized
signature generation and verification procedure, for 100 times.

Table 3 shows the average results of our benchmark. In all parameter regimes, our new
SPHINCS+C variant has smaller signature size compared to its corresponding SPHINCS+ variant,
while the signature generation time is approximately the same. Note that although we increase the
verification time for our new “small” variants, it is still more than two orders of magnitude faster
than the signature generation time.

Key Generation Signature Verification

SPHINCS+ SPHINCS+C SPHINCS+ SPHINCS+C SPHINCS+ SPHINCS+C

SHAKE-128s 721.4 360.1 (−50%) 5398.0 4839.0 (−10%) 5.0 31.4 (+530%)
SHAKE-128f 10.8 9.5 (−12%) 256.3 262.2 (+2%) 16.4 13.2 (−20%)
SHAKE-192s 1068.6 599.4 (−44%) 9133.3 9339.0 (+2%) 8.5 51.1 (+502%)
SHAKE-192f 15.1 13.6 (−10%) 380.6 401.2 (+5%) 22.0 19.6 (−11%)
SHAKE-256s 652.6 396.1 (−39%) 7573.0 7323.2 (−3%) 11.4 37.9 (+234%)
SHAKE-256f 44.4 43.2 (−3%) 860.3 919.5 (+7%) 24.1 22.2 (−8%)

Table 3: Comparison of average running time in millions of cycles for the various variants between the
original SPHINCS+ NIST submission and variants and our new SPHINCS+C variants.

7 Discussion

We discuss several properties of our schemes that are somewhat different that in SPHINCS+, and
suggest future work.

14

Figure 4: Comparison of variability in signature generation time between different SPHINCS+ and
SPHINCS+C variants. The results of each variant include 100 repeated runs of randomized signatures
and are normalized to the median of the SPHINCS+ variant.

7.1 Non-constant signing time

Our proposed signature scheme does not run in constant-time, which may raise questions regarding
possible vulnerabilities to side-channel attacks. However, we note that the vulnerability depends
only on the message and public values (i.e., the public key and public roots of the Merkle trees).
This means that any variability in the running time of the signer is completely independent of any
secret values and does not leak any information about them.

Another related concern is that some signatures might take longer to run than the average. In an
unfortunate event, one of the WOTS+C or FORS+C signatures will take longer than the average
to find a suitable counter. Although theoretically possible, this is not a genuine concern for our
parameter sets in practice. The reason is that the expected amount of work for finding a suitable
counter is usually several orders of magnitude less than the total amount of work. This means that
even when we are very unlucky, the total change in the run time is minimal. This is because running
10 times the expected running time happens with a probability of e−10 ≈ 2−15. For most parameter
sets, even such an order of magnitude increase in the running time of the valid counter search phase
is negligible compared to the total running time of the signature generation.

We benchmarked the run-time variability of our SPHINCS+C implementations compared to the
original SPHINCS+ over 100 measurements. As the results in Figure 4 show, although the variability
in the signature generation time of the SPHINCS+C variants is larger than the SPHINCS+ variants,
it is not very big. In all our experiments, the longest signature generation time was at most 40%
slower than the median of the SPHINCS+ variant. Most use cases can handle a small number of
somewhat slower signatures. We note that at the same time, the average values that determine the
total signature generation throughput are very similar (see Table 3).

15

7.2 Constant verification time

Similar to [PZCMP21; ZCY22] our WOTS+C variant also ensures a constant verification time.
The number of hash calls required by the verifier is determined by the checksum. As in WOTS+C
signatures the value of the checksum is always the same, the verification time is constant. We note
that the counters for both WOTS+C and FORS+C are stored inside the signature and provided to
the verifier. This means the the running time for the verifier is constant for a fixed set of parameters
for every signature.

7.3 WOTS+C public key vs. signature generation time trade-off

In WOTS+C, merely removing the checksum keeps the signature run time approximately the same
while reducing the signature size and verification time. In addition, it also reduces the key generation
time. Trying to find additional zero chains will increase the overall run time of the signer. However,
in SPHINCS+ and SPHINCS+C we calculate Merkle trees of WOTS+C signatures. For each tree
in the signature, we need to generate only one signature but a large number of public keys for all the
other WOTS+C signatures in the tree. This means that in SPHINCS+C, there is a tradeoff between
the WOTS+C public key and the signature generation times. In some cases, it may be better to try
and find additional zero chains, as this will decrease the total signature time of SPHINCS+C while
also reducing the signature size.

7.4 Signature time vs. signature size and verification time tradeoff

Our scheme allows a server to create smaller signatures that are also faster to verify with the cost of
increasing the signing time. This tradeoff can be especially useful for CAs, that sign a relatively
small number of certificates, but their signatures are a part of a very large number of certificates
and are verified in a large number of connections. For these servers, it may be possible to find other
parameter sets even with a very large signature generation time.

As mentioned in [AE18], a signing server can batch together several signatures. This is done
by first calculating a Merkle tree on all of the batched signatures and then signing the root of the
Merkle tree. Moreover, the current parameter sets can support up to 264 signatures. As batching
(and longer signature generation time) can reduce the total number of possible signatures, it might
also be possible to use smaller tree sizes that will lead to smaller signatures.

There are many use cases (e.g., CAs, Certificates for IoT devices) where we want to have smaller
signatures and may be willing to pay the price of extra computational cost for the signer or a smaller
number of possible signatures. Exploring the potential tradeoffs and parameter sets for these use
cases may help to facilitate the deployment of hash-based signature schemes.

7.5 Proof-of-work

Part of our optimizations require enumerating over and index i, in order to find a value with a
digest of a specific format. For example, in our FORS+C scheme, the signer search for adigest that
begins with b zeros. Only when such a digest is found is the signer allowed to continue creating the
signature. This optimization can be interpreted as a proof-of-work [DN92].

We replaced the security that stems from the last tree with an equivalent proof-of-work. Any
adversary has first to solve the proof-of-work and then can continue to try to attack the scheme.
Without a solution to the proof-of-work, the verification algorithm will reject the signature. The

16

advantage is that the solution for the proof-of-work is tiny (roughly b bits), much smaller than an
entire authentication path (which is roughly b · n bits).

7.6 Future work

In this work, we explored new trade-offs opened up by our optimizations. We were able to reduce
up to 20% of the signature size, but there are still opportunities to reduce the remaining 80%. We
believe there is room for further exploration, which can exploit additional optimizations we described
but did not implement. For example, we did not implement the interleaved trees, but this could be
useful in some settings of parameters. Furthermore, one can look at other working points (e.g., higher
signature generation time, a smaller number of supported signatures) and find novel approaches for
further compression.

As we believe that the main factor limiting the wide deployment of hash-based signatures is
the signature size, any advance in this direction can have a big impact on the practicality of these
schemes.

17

Acknowledgments

We thank Ofek Bransky for his contribution to the implementation and benchmark of the code.
Eyal Ronen is supported in part by Len Blavatnik and the Blavatnik Family foundation, the

Blavatnik ICRC, and Robert Bosch Technologies Israel Ltd. He is a member of CPIIS.
Eylon Yogev is supported in part by the BIU Center for Research in Applied Cryptography and

Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office,
and by the Alter Family Foundation.

References

[AE17] Jean-Philippe Aumasson and Guillaume Endignoux. “Clarifying the subset-resilience problem”.
In: IACR Cryptol. ePrint Arch. (2017), p. 909 (cit. on pp. 1, 4, 9).

[AE18] Jean-Philippe Aumasson and Guillaume Endignoux. “Improving stateless hash-based signa-
tures”. In: Cryptographers’ Track at the RSA Conference. Springer. 2018, pp. 219–242 (cit. on
pp. 1, 9, 16).

[Aum+22] Jean-Philippe Aumasson et al. “SPHINCS+ Submission to the NIST post-quantum project,
v.3.1”. In: (2022). url: http://sphincs.org/data/sphincs+-r3.1-specification.pdf
(cit. on pp. 2, 11).

[BDPVA09] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “Keccak sponge
function family main document”. In: Submission to NIST (Round 2) 3.30 (2009), pp. 320–337
(cit. on p. 14).

[BHKNRS19] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost Rijneveld, and
Peter Schwabe. “The SPHINCS+ Signature Framework”. In: CCS. ACM, 2019, pp. 2129–2146
(cit. on pp. 1, 4, 8, 13, 14).

[Ber+15] Daniel J. Bernstein et al. “SPHINCS: Practical Stateless Hash-Based Signatures”. In: EU-
ROCRYPT (1). Vol. 9056. Lecture Notes in Computer Science. Springer, 2015, pp. 368–397
(cit. on pp. 1, 4).

[Beu22] Ward Beullens. “Breaking Rainbow Takes a Weekend on a Laptop”. In: IACR Cryptol. ePrint
Arch. (2022), p. 214. url: https://eprint.iacr.org/2022/214 (cit. on p. 1).

[DN92] Cynthia Dwork and Moni Naor. “Pricing via Processing or Combatting Junk Mail”. In:
Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 16-20, 1992, Proceedings. 1992, pp. 139–147 (cit. on
p. 16).

[Dwo15] Morris J Dworkin. “SHA-3 standard: Permutation-based hash and extendable-output func-
tions”. In: (2015) (cit. on p. 14).

[GM17] Shay Gueron and Nicky Mouha. “SPHINCS-Simpira: Fast Stateless Hash-based Signatures
with Post-quantum Security”. In: IACR Cryptol. ePrint Arch. (2017), p. 645 (cit. on p. 1).

[Gol86] Oded Goldreich. “Two Remarks Concerning the Goldwasser-Micali-Rivest Signature Scheme”.
In: Advances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings.
1986, pp. 104–110 (cit. on p. 1).

[HK22] Andreas Hülsing and Mikhail A. Kudinov. “Recovering the tight security proof of SPHINCS+”.
In: IACR Cryptol. ePrint Arch. (2022), p. 346 (cit. on p. 7).

[Hül13] Andreas Hülsing. “W-OTS+ - Shorter Signatures for Hash-Based Signature Schemes”. In:
Progress in Cryptology - AFRICACRYPT 2013, 6th International Conference on Cryptology
in Africa, Cairo, Egypt, June 22-24, 2013. Proceedings. 2013, pp. 173–188 (cit. on pp. 3, 4).

18

[Hül17] Andreas Hülsing. “WOTS+ - Shorter Signatures for Hash-Based Signature Schemes”. In:
IACR Cryptol. ePrint Arch. (2017), p. 965 (cit. on pp. 1, 3, 5).

[Lam79] Leslie Lamport. Constructing Digital Signatures from a One Way Function. Tech. rep. This
paper was published by IEEE in the Proceedings of HICSS-43 in January, 2010. 1979 (cit. on
p. 1).

[Mer89] Ralph C. Merkle. “A Certified Digital Signature”. In: Advances in Cryptology - CRYPTO ’89,
9th Annual International Cryptology Conference, Santa Barbara, California, USA, August
20-24, 1989, Proceedings. 1989, pp. 218–238 (cit. on p. 1).

[PZCMP21] Lucas Pandolfo Perin, Gustavo Zambonin, Ricardo Custódio, Lucia Moura, and Daniel Panario.
“Improved constant-sum encodings for hash-based signatures”. In: Journal of Cryptographic
Engineering 11.4 (2021), pp. 329–351 (cit. on pp. 1, 16).

[RR02a] Leonid Reyzin and Natan Reyzin. “Better than BiBa: Short One-Time Signatures with Fast
Signing and Verifying”. In: Information Security and Privacy, 7th Australian Conference,
ACISP 2002, Melbourne, Australia, July 3-5, 2002, Proceedings. 2002, pp. 144–153 (cit. on
p. 1).

[RR02b] Leonid Reyzin and Natan Reyzin. “Better than BiBa: Short One-Time Signatures with Fast
Signing and Verifying”. In: ACISP. Vol. 2384. Lecture Notes in Computer Science. Springer,
2002, pp. 144–153 (cit. on p. 1).

[ZCY22] Kaiyi Zhang, Hongrui Cui, and Yu Yu. “SPHINCS-α: A Compact Stateless Hash-Based
Signature Scheme”. In: IACR Cryptol. ePrint Arch. (2022), p. 59 (cit. on pp. 1, 16).

19

A Parameter-evaluation Sage script

#This script is based on the paramter finding script
#of SPHINCS+ from http://sphincs.org/data/spx_parameter_exploration.sage

import collections
tsec = 128
#tsec = 192
#tsec = 256
maxsigs = 2 ^ 64 # at most 2^72
if tsec == 128:

maxsigbytes = 18000 # Don’t print parameters if signature size is larger
else:

maxsigbytes = 64000
MaxHash = 23
CounterBytes = 4

USE_WOTS_CHECKSUM_COMPRESS = False
USE_WOTS_DIGITS_COMPRESS = False
USE_FORS_COMPRESS = False

Don’t edit below this line
Generic caching layer to save time

def get_file_name():
file_str = ’Results’
if USE_WOTS_CHECKSUM_COMPRESS:

file_str += ’ChecksumWOTS’
if USE_WOTS_DIGITS_COMPRESS:

file_str += ’DigitsWOTS’
if USE_FORS_COMPRESS:

file_str += ’CompressFORS’
return file_str

class memoized(object):
def __init__(self, func):
self.func = func
self.cache = {}
self.__name__ = ’memoized:’ + func.__name__

def __call__(self, *args):
if not isinstance(args, collections.Hashable):
return self.func(*args)

if not args in self.cache:
self.cache[args] = self.func(*args)

return self.cache[args]

#Precomputed cost of work to find the expected sum and zeroized remaining bits
if log(w) is not 4 or 8, number of chains, work to compute PK, and the expected sum
cost_wots_cs = {}
cost_wots_cs[(16, 4)] = (4.500985, 64, 8.000000, 96)

20

cost_wots_cs[(16, 8)] = (7.228422, 42, 8.392317, 147)
cost_wots_cs[(16, 16)] = (6.041304, 32, 9.000000, 240)
cost_wots_cs[(16, 32)] = (9.871210, 25, 9.643856, 387)
cost_wots_cs[(16, 64)] = (9.722725, 21, 10.392317, 661)
cost_wots_cs[(16, 128)] = (10.602894, 18, 11.169925, 1143)
cost_wots_cs[(16, 256)] = (9.580629, 16, 12.000000, 2040)
cost_wots_cs[(24, 4)] = (4.775446, 96, 8.584963, 144)
cost_wots_cs[(24, 8)] = (5.550769, 64, 9.000000, 224)
cost_wots_cs[(24, 16)] = (6.347193, 48, 9.584963, 360)
cost_wots_cs[(24, 32)] = (9.137762, 38, 10.247928, 589)
cost_wots_cs[(24, 64)] = (8.038267, 32, 11.000000, 1008)
cost_wots_cs[(24, 128)] = (11.947862, 27, 11.754888, 1714)
cost_wots_cs[(24, 256)] = (9.828281, 24, 12.584963, 3060)
cost_wots_cs[(32, 4)] = (4.978009, 128, 9.000000, 192)
cost_wots_cs[(32, 8)] = (6.737043, 85, 9.409391, 297)
cost_wots_cs[(32, 16)] = (6.533493, 64, 10.000000, 480)
cost_wots_cs[(32, 32)] = (8.367181, 51, 10.672425, 790)
cost_wots_cs[(32, 64)] = (12.252528, 42, 11.392317, 1323)
cost_wots_cs[(32, 128)] = (13.118589, 36, 12.169925, 2286)
cost_wots_cs[(32, 256)] = (10.027687, 32, 13.000000, 4080)

SPHINCS+ analysis
Pr[exactly r sigs hit the leaf targeted by this forgery attempt]
@memoized
def qhitprob(leaves, qs, r):

p = 1/F(leaves)
return binomial(qs, r)*p ^ r*(1-p) ^ (qs-r)

Pr[FORS forgery given that exactly r sigs hit the leaf] = (1-(1-1/F(2^b))^r)^k
@memoized
def forgeryprob(b, r, k):

if k == 1:
return 1-(1-1/F(2 ^ b)) ^ r

return forgeryprob(b, r, 1)*forgeryprob(b, r, k-1)
#return min(1,F((r/F(2**b)))**k)

Number of WOTS chains
@memoized
def wotschains(m, w):

la = ceil(m / log(w, 2))
return la + floor(log(la*(w-1), 2) / log(w, 2)) + 1

def cost_wots_zero_chain(w):
return log(w, 2)

def ld(r):
return F(log(r)/log2)

def run_script():
hashbytes = ceil(tsec/8) # length of hashes in bytes
w_list = [16, 256]

21

if USE_WOTS_CHECKSUM_COMPRESS:
w_list = [16, 32, 64, 128, 256]

filename = get_file_name() + ’%d’ % hashbytes
f = open(filename, ’wt’)
global F
global FDef
F = RealIntervalField(tsec+100)
FDef = RealField()
if USE_FORS_COMPRESS:

sigmalimit = F(2 ^ (-tsec+MaxHash))
donelimit = 1-sigmalimit/2 ^ (20+MaxHash)

else:
sigmalimit = F(2 ^ (-tsec))
donelimit = 1-sigmalimit/2 ^ 20

sigmaLowerLimit = F(2 ^ (-tsec-MaxHash))

s = log(maxsigs, 2)
Iterate over total tree height
for h in range(s-8, s+20):

print(’#starting-H %d’ % (h))
leaves = 2 ^ h
Iterate over height of FORS trees
for b in range(3, 24):

Iterate over number of FORS trees
for k in range(1, 64):

sigma = 0
r = 1
done = qhitprob(leaves, maxsigs, 0)
while done < donelimit:

t = qhitprob(leaves, maxsigs, r)
sigma += t*forgeryprob(b, r, k)
if sigma > sigmalimit:

break
done += t
r += 1

sigma += min(0, 1-done)
if sigma > sigmalimit:

continue
means we have more efficent options with smaller tree
if sigma < sigmaLowerLimit: continue
sec = ceil(log(sigma, 2))
remove_tree_fors_bit = FDef(max(tsec+log(sigma, 2), 0))
fors_work = (k*2 ^ (b+1)) # cost of FORS
if fors_work > 2 ^ MaxHash:

break
for d in range(3, floor(h/2)):

if (h) % d == 0 and h <= 64+(h/d):
wots_tree_levels = (h)/d
for w in w_list: # Try different Winternitz parameters

compress_wots_cs_cost, wots_digits, wots_work_bit,
target_sum = \

22

cost_wots_cs[(hashbytes, w)]
max_wots_zero_chain = ceil(

(MaxHash-compress_wots_cs_cost)/cost_wots_zero_chain(w))
wots_work = 2 ^ wots_work_bit
if not USE_WOTS_CHECKSUM_COMPRESS:

wots_digits = wotschains(8*hashbytes, w)
wots_work = (wots_digits*w)
compress_wots_cs_cost = 0
max_wots_zero_chain = 0

if not USE_WOTS_DIGITS_COMPRESS:
max_wots_zero_chain = 0

for wots_zero_chain in range(max_wots_zero_chain + 1):
wots_compress_cost_bit = compress_wots_cs_cost + \

wots_zero_chain * \
cost_wots_zero_chain(w)

wots = wots_digits-wots_zero_chain
sigsize = ((b+1)*k+h+wots*d+1)*hashbytes
if USE_WOTS_CHECKSUM_COMPRESS:

sigsize += CounterBytes*(d)
if USE_FORS_COMPRESS:

sigsize += CounterBytes
Rough speed estimate based on #hashes
speed = fors_work + d * \

(2 ^ (wots_tree_levels)*(wots_work+1)) + d * \
2**wots_compress_cost_bit + 2**remove_tree_fors_bit

hash_count = ld(speed)
if(sigsize < maxsigbytes and hash_count < MaxHash):

f.write(’h: %d, d: %d, log(t): %d, k: %d, w: %d, \
sigsize: %d, hashbit: %f, sigma %f,

wots_compress_cost_bit: %d, \
remove_tree_fors_bit: %f, fors_bit: %f\n’ % (

h, d, b, k, w, sigsize, hash_count, \
FDef(ld(sigma))-remove_tree_fors_bit,

wots_compress_cost_bit, \
remove_tree_fors_bit, ld(fors_work)))

f.close()

for tsec in [128, 192, 256]:
if tsec == 128:

maxsigbytes = 18000 # Don’t print parameters if signature size is larger
else:

maxsigbytes = 64000
MaxHash = 23
for USE_WOTS_CHECKSUM_COMPRESS in [False, True]:

for USE_WOTS_DIGITS_COMPRESS in [False, True]:
for USE_FORS_COMPRESS in [False, True]:

if USE_WOTS_DIGITS_COMPRESS and not USE_WOTS_CHECKSUM_COMPRESS:
continue

print(’Start ’, tsec, USE_WOTS_CHECKSUM_COMPRESS,
USE_WOTS_DIGITS_COMPRESS, USE_FORS_COMPRESS)

run_script()

23

