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Abstract. We propose and implement a multiparty homomorphic en-
cryption (MHE) scheme with a t-out-of-N -threshold access-structure
that is efficient and does not require a trusted dealer in the common
reference-string model. We construct this scheme from the ring-learning-
with-error (RLWE) assumptions, and as an extension of the MHE scheme
of Mouchet et al. (PETS 21). By means of a specially adapted share-
resharing procedure, this extension can be used to relax the N -out-of-
N -threshold access structure of the original scheme into a t-out-of-N -
threshold one. This procedure introduces only a single round of commu-
nication during the setup phase to instantiate the t-out-of-N -threshold
access structure. Then, the procedure requires only local operations for
any set of t parties to compute a t-out-of-t additive sharing of the secret
key; this sharing can be used directly in the scheme of Mouchet et al.

We show that, by performing the re-sharing over the MHE ciphertext-
space with a carefully chosen exceptional set, this reconstruction pro-
cedure can be made secure and has negligible memory and CPU-time
overhead. Hence, in addition to fault tolerance, lowering the corruption
threshold also yields considerable efficiency benefits, by enabling the dis-
tribution of batched secret-key operations among the online parties. We
implemented and open-sourced our scheme in the Lattigo library.
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1 Introduction

Multiparty Homomorphic Encryption (MHE) enables computations on encrypted
data provided by multiple users, without requiring decryption. By generalizing
traditional single-party homomorphic encryption (HE) to multiple users, MHE
techniques constitute a promising family of solutions for the secure multiparty
computation setting (MPC), where N parties aim to compute a function value
over their joint inputs while keeping these inputs private. Notably, these MHE-
based solutions have a low number of interaction rounds and low communica-
tion complexity, and they are compatible with the paradigms of cloud-computing
[MTPBH21,AJLA+12] such as light-client/powerful-server types of architecture.



Several generations of MHE schemes were proposed over the years, gener-
ally following the advances of single-party HE constructions. As the most re-
cent generation of HE schemes, based on ring-learning-with-errors (RLWE), has
now reached several application domains and is being implemented and stan-
dardized, recent works have also brought multiparty variants of these schemes
[MTPBH21]. Among these multiparty schemes, threshold schemes [MTPBH21]
have been demonstrated as particularly efficient and are already included in
several open-source implementations [MBTPH20,pal].

MHE-based MPC. Multiparty homomorphic encryption techniques can be used
to construct efficient secure multiparty computation protocols, commonly re-
ferred to as two-round MPC. These MHE-based MPC protocols consist in a
one-time Setup phase, after which any number of function evaluations can be
performed in a two-round online phase [AJLA+12].

In the Setup phase, the parties make use of a special-purpose multiparty
protocol in order to generate a collective public key that supports encryption and
homomorphic evaluation, and for which the corresponding secret-key is securely
distributed among the parties. The online, input-dependent phase consists in
three steps: Input, Evaluation, and Output. During the Input phase, the parties
use the collective public encryption key to encrypt their inputs and disclose
the resulting ciphertexts to the other parties. Then, the desired computation is
carried out (non-interactively), by using the homomorphic operations of the HE
scheme. Finally, the parties take part in a multiparty protocol to decrypt the
result ciphertext(s) in the Output phase. Contrary to their counterparts based on
linear secret-sharing schemes (LSSS) or garbled circuits, the offline Setup phase
of MHE-based MPC solutions produces public keys that can be reused for an
unlimited number of function evaluations.

Mouchet et al. propose a RLWE-based MHE scheme in which the secret key
is additively shared between the parties and for which the threshold-decryption
protocol requires a single round of interaction [MTPBH21]. They show that, as
for its precursor based on learning-with-errors (LWE) [AJLA+12], this scheme
has a fully public transcript and can support MPC tasks over any public au-
thenticated channel. As a result, this scheme can support computation among
a large number of resource-limited parties by using a third-party honest-but-
curious cloud provider that acts as a share aggregator (for the setup and output
protocols) and homomorphic evaluator (for the input and evaluation phases).

Access Structures. For a secret-sharing scheme over a set of parties P, we refer to
a subset S ⊂ P of parties that can reconstruct the secret as a qualifying set and
to the set A ⊂ Powerset(P) of all qualifying sets as the access structure of the
scheme. The access structure to the secret key of an MHE scheme determines the
access structure to the encrypted inputs which, in turn, determines the security
properties of the corresponding MPC protocol instance. The scheme of Mouchet
et al. uses an additive structure for its secret key, which instantiates an N -out-of-
N -threshold access-structure: all parties have to collaborate for the decryption
protocol to succeed. Although this enforces the strictest access-structure (only
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one qualifying set) hence provides strong security guarantees, this also requires
more stringent availability requirements on the protocol participants. In practical
systems involving many parties, we would typically want to extend the semi-
honest model with the case of parties going offline for an undetermined amount
of time (e.g., due to technical issues). For scenarios in which a fraction t

N of
honest participants can be guaranteed, t-out-of-N -threshold access-structures
can relax this requirement by enabling decryption (and other types of secret-key
operations) to be performed among subgroups of at least t parties.

1.1 Our Results

In this work, we introduce a t-out-of-N -threshold homomorphic encryption scheme
based on RLWE. We contribute our scheme as a simple and efficient extension to
the N -out-of-N -threshold scheme of Mouchet et al. [MTPBH21] that relaxes its
access structure to a t-out-of-N -threshold one. We also contribute its implemen-
tation in the Lattigo library [lat22,MBTPH20] and evaluate its performance.

The t-out-of-N -Threshold Scheme. We propose a set of procedures that extend,
in a natural and efficient way, the scheme of Mouchet et al. to a t-out-of-N -
threshold access structure. We follow the known approach of re-sharing the
secret-key shares with the Shamir secret-sharing scheme [Sha79], but with a
specially adapted instance of the Shamir secret-sharing that we define over the
ciphertext-space ring. This enables us to take advantage of the linearity of the
MHE scheme’s secret-key operations to pre-aggregate the shares, which makes
the re-sharing scheme compact and efficient. The resulting procedure adds a
single round of interaction during the offline setup phase and a simple non-
interactive pre-computation step in the MHE operations that depend on the
shares of the secret-key. Our construction is generic and can be used to instan-
tiate multiparty variants of the BGV, BFV and CKKS schemes.

Implementation and Benchmarks. We implemented our construction using Lat-
tigo [MBTPH20], an open-source library for multiparty homomorphic encryp-
tion. We report on the benchmark performance for our implementation and
analyze the results in the context of MHE-based MPC. Furthermore, we show
how to harness the t-out-of-N -threshold access-structure to accelerate the exe-
cution of batches of secret-key operations in both the offline-setup and online
phases. We exemplify this through the task of generating a public bootstrap-
ping key for the multiparty CKKS scheme, which requires generating a batch
of more than one hundred rotation keys to support the necessary automorphisms.

The remainder of this paper is organized as follows: We review the exist-
ing works on threshold encryption for lattice-based construction in Section 1.2,
and provide the necessary background in RLWE-based MHE and secret-sharing
techniques in Section 2. Then, we develop the main technique, in Section 3, and
its implementation and evaluation, in Section 4.
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1.2 Related Work

Bendlin and Damg̊ard considered the case where the parties obtain Shamir
secret-shares of a secret-key by means of pseudo-random secret sharing (PRSS)
techniques [BD10]. This results in a non-interactive secret-key-generation proce-
dure, but it is non-compact as it requires one key per possible subset of adver-
sarial parties. Due to this factorial expansion, this scheme would not be practical
for large number of parties.

Asharov et al. noticed that share-re-sharing could be used to achieve a t-out-
of-N -threshold access structure in (the extended version of) their seminal work
on LWE-based multiparty homomorphic encryption [AJLA+12]. However, they
did not specify the concrete secret-sharing scheme and assumed an extra round
of interaction, prior to the decryption round, to reconstruct a failing party’s
share. Additionally, directly reconstructing the shares is undesirable in practice,
as it would reveal the failing party’s share to the parties. We show that this is
not needed in practice, as reconstruction can be performed within the secure
decryption protocol directly.

Boneh et al. propose a t-out-of-N -threshold homomorphic encryption scheme
based on learning-with-errors that also relies on re-sharing the secret-key shares
yet in a stronger setting where parties are unable, at the time of generating their
decryption shares, to determine which other parties are online [BGG+18]. This
additional constraint is necessary for the composability of their scheme, that they
use as a building-block for higher-level cryptographic primitives in their work.
However, it comes with a significant complexity and performance overhead, and
their setup phase requires a trusted dealer to perform the sharing. We elaborate
on these differences in Section 4.1, where we provide a comparison between their
construction and our scheme.

In their work, Boneh et al. observe that enabling the parties to determine,
before the decryption phase, which parties are online would lead to a simpler
scheme. We confirm this observation by showing that, in the semi-honest model
with failures, there indeed exists a much simpler and more efficient scheme that
does not require a trusted dealer.

2 Preliminaries

We first present our system and adversary model, as well as the main system
goals. Then, we present the main building blocks of our solution.

2.1 Adversary Model and System Goals

We consider a set P ofN parties {P1, ..., PN} (the system) in a secure-multiparty-
computation setting, where an adversary A is able to corrupt up to t−1 parties.
We assume that the adversary is static and passive, yet we further enable the ad-
versary to take the corrupted parties offline for an arbitrary amount of time. The
parties can communicate through private authenticated channels and through a
public, synchronous, authenticated channel. Finally, we assume that the parties
have access to a public Common Reference String (CRS).
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System Goals. Let xi ∈ M be the private input of party Pi in some message
space M, and f : MN →M be a public arithmetic function over the message
space. We formulate the following system goals:

Functionality. The system must compute y = f(x1, ..., xN ) through a multi-
party protocol.

Privacy. There must exist a simulator program SIMf that can simulate all
the interactions between the parties, when provided only with the output y and
the inputs from the adversary. For an attacker to distinguish between the real
and simulated interaction, the success probability must be lower than 2−128.

Fault Tolerance. After the inputs are received for all parties, the output y
should be delivered to the honest parties as long as at least t parties are online
and active.

Efficiency. The space, time, and communication complexity must be at most
quadratic in the number of parties for the setup phase; and the parties should
be able to perform any number of function evaluations after it is complete. For
a single evaluation of the function in the online phase, we require that the time
and communication complexity do not exceed those of an equivalent plaintext
multiparty circuit by more than a linear term in the number of parties.

Informally, the protocol execution should not reveal anything more about the
inputs than that which can be deduced from the output y alone. We also observe
that the fault-tolerance requirement, guaranteed output-delivery, is limited to
the case where faulty parties provided their inputs before going offline. This is
because not all functions can be successfully computed under partial inputs.

We now briefly introduce the building blocks of our construction: the scheme
of Mouchet et al. [MTPBH21], its instantiation as an MPC protocol, and the
secret-sharing scheme of Shamir [Sha79].

2.2 N-out-of-N-Threshold Encryption for RLWE

We recall the notation and core procedures of the RLWE N -out-of-N -threshold
Encryption scheme (MHE Scheme) [MTPBH21] that we extend in Section 3.
Its ciphertext space is a polynomial quotient ring Rq = Zq[X]/(Xn + 1) where
the polynomial degree n is a power of two and where the polynomial-coefficient
modulus q is a product of L different primes q1, ..., qL. Hence, we can use the iso-
morphism Rq ∼= Rq1×...×RqL provided by the Chinese remainder theorem (CRT)
to perform the operations in the residue rings, without resorting to arbitrary-
precision integer arithmetic. Moreover, we chose each qi such that qi≡1 mod 2n,
which enables the existence of a number-theoretic transform (NTT), under which
both ring operations can be performed coefficient-wise. We denote a ← D the
sampling of a according to a distribution D. We simplify this notation for the
case of uniform sampling of a ring element that we denote a← Rq. Let Key(Rq)
be a secret-key distribution over Rq for which the coefficients are sampled uni-
formly in {−1, 0, 1}, let Err(Rq) be an error distribution where the coefficients
are sampled from a discrete Gaussian distribution of small variance σ2, and let
Smudge(Rq) be a suitable smudging distribution for the noise flooding technique
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[AJLA+12,MTPBH21] (typically, a discrete Gaussian distribution of large vari-
ance). Finally, let CRS(Rq) be the uniform distribution according to the common
reference string (i.e., elements sampled from this distribution are the same for
all parties).

Scheme: MHE

– MHE.Setup: The parties agree on the public parameters (n, q, σ,Key,Err).
– MHE.SecKeyGen: Each party Pi samples si←Key(Rq).
– MHE.PubKeyGen(s1, ..., sN ):

1. Each party Pi samples p1←CRS(Rq), e←Err(Rq) and discloses p0,i=−sip1+e.
2. Each party computes p0 =

∑
p0,i and sets pk = (p0, p1).

– MHE.Encrypt(pk, m): Sample u ← Key(Rq), e0, e1 ← Err(Rq) and output ct =
(c0, c1) = (m+ up0 + e0, up1 + e1).

– MHE.Decrypt(ct, s1, ..., sN ):
1. Each party Pi samples ei ← Smudge(Rq) and discloses hi = c1si + ei.
2. Each party can then compute m ≈ c0 +

∑
hi.

We refer to s =
∑N
i=1 si as the ideal secret-key for the scheme. As the full

collective knowledge of s is required to decrypt ciphertexts, the MHE scheme
implements an N -out-of-N -threshold access-structure over its ciphertexts. More
generally, we refer to the secret-key-dependent operations of the scheme as secret-
key operations. Note that we omitted the MHE.Eval procedure as it depends on
the specific plaintext-encoding strategy of the RLWE scheme in use and as it
is independent of the access structure (we briefly discuss the encoding strategy
below).

Plaintext Encoding and Homomorphic Evaluation. Note that, in RLWE HE
schemes, the decryption procedure yields an approximate message, due to the
inherent ciphertext error. The way to encode a plaintext into a message m and
to decode it back after decryption is specific to the scheme in use. Common
strategies include scaling the plaintext up by a factor ∆ and rely on quantization
and roundings for the decoding [CKKS17,FV12]. Furthermore, it is common
to apply FFT-like transforms to the plaintext polynomials in order to enable
coefficient-wise encrypted arithmetic. Such techniques, often referred to as packed
encoding, enable users to encode Zq messages into up to n independent slots,
where n is the polynomial degree. The chosen encoding strategy defines how the
homomorphic operations are performed (i.e., the specific Eval algorithm). Yet,
these considerations are independent of the secret key and the core MHE scheme
can be used to instantiate multiparty variants of the BFV [Bra12,FV12], CKKS
[CKKS17] or BGV schemes [BGV14]. Our t-out-of-N -threshold access-structure
will preserve this property.

Evaluation Keys Some homomorphic operations require the evaluator to be pro-
vided with operation-specific public-keys, often referred to as evaluation keys.
For example, compact multiplication involves a relinearization operation [FV12]
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which requires a so-called relinearization key. Likewise, plaintext slots rotation
can be operated as an homomorphic automorphism which requires a rotation-key
per rotation amount. Although generating a single key for a one-slot rotation
would suffice to operate any rotation in theory, it is more efficient to generate
keys for all (or most) of the rotations required by the circuit, in order to oper-
ate all (or most) rotations in constant-time. We refer the reader to the original
scheme [MTPBH21] for details about the generation of evaluation keys (they
are straightforward adaptation of the MHE.PubKeyGen procedure). In the scope
of this work, suffice to observe that these procedures are secret-key operations
and that generating many rotation-keys (e.g., as required by the bootstrapping
operation) represents a significant cost. In Section 3.5, we observe that this cost
can be efficiently distributed among the parties by taking advantage of the t-
out-of-N -threshold access-structure.

Secure Multiparty Computation. The MHE scheme directly yields a generic
secure multiparty computation protocol in the two-rounds MPC model. This
model often comprises two phases, the first being input-independent and optional
in the PKI setting (hence is usually not counted as one of the two rounds).

In the offline Setup phase, the parties run the MHE.Setup, MHE.SecKeyGen
and MHE.PubKeyGen procedures. The output of this phase are the parties’ indi-
vidual secret-keys and a set of collective public encryption- and evaluation-keys
that can be used for an unlimited number of iterations of the second phase.

In the Online phase, the parties use the MHE.Encrypt to encrypt their pri-
vate inputs to the computation and send the resulting ciphertexts to the other
parties. Then, the function evaluation is performed under encryption by using
the Eval algorithm of the scheme in use. Finally, the parties use the MHE.Decrypt
procedure to output the final result.

Within our system model, the MHE-based MPC protocol satisfies the func-
tionality, privacy, and efficiency system goals of Section 2.1, but not the fault
tolerance one.

Fault Tolerance. The MHE-MPC protocol naturally provides some fault toler-
ance against parties going offline for a finite amount of time. As opposed to its
LSSS-based counterparts, a party that goes offline after providing its inputs does
not prevent the computation from making progress, as the homomorphic evalu-
ation is performed non-interactively. The same is true for a party that crashes
after the Offline phase, except that, similarly to the plaintext case, the party’s
input will not be available to the computation. In both cases, the main drawback
is that all parties need to connect eventually (to participate in the decryption
protocol of the output phase) for the output to be delivered. This might be
problematic in settings where a group of parties seek to tolerate a fraction of
them going offline for an undetermined amount of time. In our construction, we
use the Shamir secret-sharing scheme to solve this problem.
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2.3 Shamir Secret-Sharing

We recall the secret-sharing scheme of Shamir that implements a t-out-of-N -
threshold access-structure on its secrets, based on polynomial interpolation in
a finite field. For the sake of notation, we consider the reconstruction from the
first t shares. Indeed, the procedure generalizes to any set of at least t shares.

– Shamir.Setup: The parties agree on a field K and each party Pi ∈ P is
associated with a non-zero element αi ∈ K such that for i 6= j then αi 6= αj .

– Shamir.Share(s, t, α1, ..., αN ): To share a message s ∈ K among N parties
such that t shares are needed to reconstruct s, sample c1, ..., ct−1 ← K and
sends si = s+

∑t−1
k=1 ckα

k
i to party Pi.

– Shamir.Combine(s1, ..., st, α1, ..., αt): To reconstruct a message s from shares
s1, ..., st, compute

s =

t∑
i=1

si

t∏
j=1,j 6=i

αj
αj − αi

. (1)

We observe that the Shamir.Share procedure samples a degree-(t−1) polyno-
mial S(X) ∈ K[X] such that S(0) = s and distributes S(αi) to party Pi, and the
Shamir.Combine procedure computes the Lagrange interpolation at point X = 0
to reconstruct the secret. We refer to the sequence of public points (α1, ..., αN )
as the Shamir public-points.

3 t-out-of-N -Threshold Encryption for RLWE

We now present our main contribution. We provide an overview of the main
ideas behind the scheme in Section 3.1. Then, we present the secret-sharing
scheme that we use for the share re-sharing in Section 3.2. Finally, we present
our t-out-of-N -Threshold Encryption for RLWE in Section 3.3.

3.1 Overview

The idea is to apply the Shamir secret-sharing scheme to the additive shares of
the ideal secret-key s of the MHE scheme. Intuitively, this technique, often re-
ferred to as share re-sharing, enables any set of at least t parties to reconstruct
the shares of the missing parties and to take their place in the decryption pro-
cedure. However, a naive instantiation of this idea that would use an arbitrary
secret-sharing space would be inefficient: It would require the non-failing par-
ties to either reconstruct the shares of the failing parties (which would forever
remove them from the access structure and add a communication round) or to
compute their shares by running a secure computation over the secret-sharing
space (which would require to emulate Rq arithmetic over this space). Also, it
would require each party to store all N re-shares throughout the entire protocol.

Instead, we perform Shamir re-sharing directly over the ring Rq. In this
way, we can exploit the linearity of both the ideal secret-key and the re-sharing
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scheme to obtain a much more compact and communication-efficient scheme.
More specifically, assuming Rq is our Shamir secret-sharing space, we denote
Si ∈ Rq[X] the secret degree-(t−1) polynomial sampled by party Pi during the

Shamir.Share procedure, and λi =
∏t
j=1,j 6=i

αj

αj−αi
be the i-th Lagrange coeffi-

cient in the reconstruction using the Shamir public-points α1, ..., αt. Then, the
Shamir.Combine operation commutes with the ideal-secret-key reconstruction:

s =

N∑
i=1

si =

N∑
i=1

t∑
j=1

Si(αj)λj =

t∑
j=1

λj

N∑
i=1

Si(αj) =

t∑
j=1

s′j . (2)

Remark 1. The Shamir secret-sharing scheme is usually defined over an arbitrary
field, which guarantees the correctness and security of the Lagrange interpolation
for enforcing the access structure. However, there are no such guarantees over
arbitrary rings. For Eq. (2) to be correct and the resulting scheme to be secure,
we need to show that these properties hold in the ring Rq.

Remark 2. By rearranging the terms in Eq. (1), we observe that the new sharing
over t parties has an additive structure for which the j-th term can be locally
(pre-)computed by each Pj ∈ Pt if the set of participating parties is known
before performing the secret-key operation.

Remark 3. The newly computed t-out-of-N share s′i can be seen as a new ad-
ditive sharing of s and can simply be used by the parties instead of si, their
N -out-of-N counterpart, in the usual MHE decryption protocol.

We present the concrete Shamir secret-sharing scheme in Section 3.2 and
show that it satisfies the requirements of a secret-sharing scheme (as per Re-
mark 1). Then, we present our t-out-of-N -threshold scheme; we can formulate it
as a direct extension of the N -out-of-N -threshold MHE scheme for RLWE (due
to Remarks 2 and 3).

3.2 Shamir Secret-Sharing in Rq

We begin by detailing how Shamir secret-sharing can be instantiated over Rq.
Then, we define the concrete scheme that we use for share re-sharing.

Shamir Secret-Sharing in a Ring. The usual Shamir secret-sharing scheme is
instantiated over a field. This guarantees that all non-zero elements are units
hence that Lagrange coefficients exist. Indeed, computing a Lagrange coefficient
requires inverting elements of the form αi − αj where αi and αj are the Shamir
public-points.

However, working in a field is not a requirement. In fact, it is a known result
that using a ring is possible, as long as the set of Shamir public-points form an
exceptional sequence [ACD+19,CDN15]. We now briefly present this result that
is a direct translation of the result of [ACD+19] in our notation and terminology.
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Definition 1. (From [ACD+19]) For a ring R, the sequence α1, ..., αN of ele-
ments of R is an exceptional sequence if αi − αj is a unit in R for all i 6= j.

Theorem 1. (From [ACD+19]) Let R be a commutative ring and α1, ..., αN be
an exceptional sequence in R. Then, a Shamir secret-sharing scheme instantiated
in R with Shamir public-points, α1, ..., αN , is correct and secure.

Let us assume that α1, ..., αN is an exceptional sequence for Rq. Then, by
instantiating a t-out-of-N Shamir secret-sharing scheme that uses the elements of
this exceptional sequence as the Shamir public-points, we obtain from Theorem 1
that our secret-sharing scheme for Rq is correct and secure for a threshold access-
structure. Intuitively, the inversion of the elements αi−αj was the only operation
of the Shamir secret-sharing scheme that was not guaranteed to work in a ring.
By restricting our choice of Shamir public-points, we obtain a correct and secure
variation of the Shamir secret-sharing scheme in a ring.

It remains to define a way of sampling Shamir public-points from Rq that
would guarantee that the obtained elements form an exceptional sequence.

Choice of Shamir public-points. We first observe that checking whether an ar-
bitrary sequence of Rq elements form an exceptional sequence is easy: For each
non-zero pairwise differences, it suffices to check that all coefficients of the differ-
ence polynomial under the CRT and NTT representation is non-zero. This holds
because the inverse of each non-zero coefficient can be computed individually by
the little Fermat theorem. However, computing these inverses for arbitrary ele-
ments of Rq would represent a costly operation that would result in an inefficient
Combine operation.

Instead, we propose to restrict the choice of Shamir public-points to constant
polynomials in Rq = Zq[X]/(Xn + 1) (i.e., polynomials of the form αX0 for α ∈
Z∗q). On the one hand, it yields a huge performance boost as the multiplications
are reduced to a single scalar computation in Zq. On the other hand, this provides
us with a simple procedure for choosing Shamir public-points that guarantee an
exceptional sequence. Let qmin = min(q1, ..., qL) with q1, ..., qL the prime factors
of q. We observe that for N < qmin, choosing N distinct values in Zqmin as the
Shamir public-points will guarantee an exceptional sequence. Indeed, for any
i 6= j, −qmin < αi − αj < qmin, αi − αj 6= 0 and the residue modqk is non-zero
for any prime factor qk of q. Then, a simple application of the CRT on Rq is
enough to prove that αi − αj is a unit in Rq.

Therefore, any mapping from P onto Zqmin can be used, including the textbook
Shamir secret-sharing one that commonly uses i for party Pi, when i > 0. We
observe that it is critical for implementations to check that Shamir public-points
are non-zero.

3.3 Scheme Extension

We present our t-out-of-N -threshold scheme for RLWE, which we formulate as
an extension of the N -out-of-N -threshold scheme of Mouchet et al. [MTPBH21].
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We first present the re-sharing scheme, which uses the Shamir sharing over Rq
that we introduced in Section 3.2. Then, we show how to combine the re-sharing
scheme with the MHE scheme of Section 2.2.

Share Re-sharing Scheme. For a set of parties P in the MHE scheme where Pi ∈
P holds secret-key share si, we define our re-sharing scheme as the three-tuple
of procedures (Setup,Thresholdize,Combine) defined in Scheme T. Informally,
Scheme T applies our Shamir secret-sharing scheme over Rq to the parties’ key,
which relaxes the N -out-of-N access-structure of the MHE scheme of Section 2.2
to a t-out-of-N -threshold one.

Scheme: T

– T.Setup: Each party Pi ∈ P is associated with a public point αi ∈ Rq such that
αi − αj is a unit for all i, j, i 6= j.

– T.Thresholdize(t, s1, ..., sN , α1, ..., αN ):
1. Each party Pi samples ci,1, ..., ci,t−1 ← Rq.
2. Each party Pi sends s̃i,j = si +

∑t−1
k=1 ci,kα

k
j to each party Pj .

3. Each party Pi receives s̃j,i from each party Pj and computes s̃i =
∑N
j=1 s̃j,i.

– T.Combine(s̃1, ..., s̃t, α1, ..., αt): Each party Pi ∈ Ponline where Ponline ⊆ P and
|Ponline| ≥ t computes s′i = s̃i

∏t
j=1,i 6=j

αj

αj−αi
.

We observe that the output of the T.Thresholdize is only one ring element per
party, due to the re-share being aggregatable. This is formalized as Remark 4.

Remark 4. The summation in N on the right-hand side of Eq. (2) does not
depend on which t of the N parties participate in the reconstruction and can be
pre-computed by each party Pi, after it receives all the Sj(αi) from its peers.

We also observe that only the T.Thresholdize procedure is interactive and
that it requires a single round of pairwise interactions between the parties over
confidential channels. Once performed, the parties have access to Shamir shares
(s̃1, ..., s̃N ), from which each party Pi can locally compute its share s′i in an
additive sharing (s′1, ...s

′
t) of s among any subgroup of at least t parties in P

(as per remark 2). Consequently, each party Pi can simply use its new share s′i
directly in the MHE procedures. This is the main idea for our next construction.

t-out-of-N -Threshold MHE scheme. As per Remark 2, the T.Combine procedure
requires each party to obtain the set of participating parties from the environ-
ment. We formalize this requirement by providing the parties with an oracle
access to the set of online parties. We denote Ponline ← Env such an oracle
query where Ponline ⊆ P is the set of online parties. In our model, this oracle
can be realized with a simple broadcast round of communication to gather the
identities of online parties, yet with the small caveat that, after this broadcast
round, the parties might fail. In Section 3.4, we discuss how to deal with faulty
oracles that return an incorrect set of online parties.
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The resulting t-out-of-N -threshold encryption scheme can be expressed as
the union tuple MHE ∪ T, which we now detail as TMHE.

Scheme: TMHE

– TMHE.Setup: run the MHE.Setup and T.Setup procedures.
– TMHE.SecKeyGen:

1. run (s1, ..., sN )← MHE.SecKeyGen.
2. run T.Thresholdize(t, s1, ..., sN , α1, ..., αN ).

– TMHE.PubKeyGen(s̃1, ..., s̃t):
1. obtain Ponline ← Env
2. if |Ponline| < t, return ⊥
3. choose t parties Ponline and run (s′1, ..., s

′
t)← T.Combine

4. execute the MHE.PubKeyGen(s′1, ..., s
′
t) protocol.

– TMHE.Encrypt(pk, m): run the MHE.Encrypt procedure.
– TMHE.Decrypt(ct, s̃1, ..., s̃t):

1. obtain Ponline ← Env
2. if |Ponline| < t, return ⊥
3. choose t parties Ponline and run (s′1, ..., s

′
t)← T.Combine

4. execute the MHE.Decrypt(ct, s′1, ..., s
′
t) protocol.

TMHE-based MPC protocol. The instantiation of an MPC protocol from our
scheme is the same as for the MHE scheme of Mouchet et al., yet it satisfies the
fault tolerance requirement of Section 2.1. This is, it tolerates up to N−t parties
going offline for an undetermined amount of time, as long as the failing parties
completed the TMHE.SecKeyGen procedure and provided their encrypted inputs
to the computation. We elaborate on the differences between the TMHE and
MHE instantiations in Section 4.1.

3.4 Dealing with Faulty Oracles

Our model does not exclude the possibility of a party crashing after the oracle
response. In such a case, step 4 of the TMHE.Decrypt cannot be completed due to
missing share(s) in the disclose phase of the MHE.Decrypt protocol. In practice,
such a failure is generally detected and resolved by setting a time limit (timeout)
for the parties to provide their decryption shares, and by defining the parties’
behaviour in the case of such timeouts. Whereas the exact values for the timeout
are indeed application dependant, we now discuss how parties can react to such
timeouts to guarantee the eventual decryption of a ciphertext in a secure way.

Let Ptimeout be the set of parties for which a timeout occurred; a partial yet
insecure solution is to repeat the steps 3 and 4 with P ′online ← Ponline \ Ptimeout

where \ denotes the set difference. As such, this solution is insecure because
the underlying MHE.Decrypt procedure is not secure under the composition of
several decryptions of the same ciphertext ct = (c0, c1) (informally, (sc1 + e1,
sc1+e2) leaks information about sc1 when e1 and e2 are sampled independently).
However, the key observation is that obtaining a new ciphertext ct′ such that

12



Dec(ct) = Dec(ct′) is easy with any additive homomorphic scheme. Hence, we
propose to add a re-randomization step by adding a fresh encryption of zero to
the target ciphertext before repeating the MHE.Decrypt step.

We observe that, if Ponline ∩ P ′online 6= ∅, the parties in the intersection can
efficiently update their local share s′i from the previous iteration by computing

s′i ← s′i
∏

Pj∈Ptimeout

αj − αi
αj

∏
Pj∈P′

online\Ponline

αj
αj − αi

,

which is more efficient than running the full T.Combine procedure when the
size of the intersection is larger than one. Indeed, as computing the Lagrange
coefficient is a scalar function, the acceleration would be noticeable for only large
values of the N

|Ptimeout| ratio.

3.5 Accelerating Batched Multiparty Secret-Key Operations

The t-out-of-N -Threshold access-structure also enables the group of key-share
holders to efficiently parallelize batches of secret-key operations, when more than
t participants are online. Performing batches of secret-key operations is common
in MHE-based MPC protocols:

– At the Setup phase - when the parties have to generate a number of key-
switching keys (often referred to as evaluation key) to support non-linear
operations such as ciphertext-ciphertext multiplication and ciphertext-slot
rotations.

– At the Evaluation phase - if the parties rely on interactive protocols to
reduce the noise or to raise the level of ciphertexts as a part of the circuit in
order to avoid the overhead of using bootstrapping [MTPBH21,SPTP+20].
These protocols usually perform masked decryption and re-encryption on
each ciphertext that is required to continue the evaluation.

– At the Output phase - when the function’s output consists in multiple ci-
phertexts. This could be by design or because the encryption parameters do
not enable packing enough values in one ciphertext.

Let k be the number of secret-key operations to be performed (e.g., the
number of rotation keys to be generated), and let Pon be the set of online parties.
The parties in Pon can be organized into k subgroups of t distinct parties, and
the work can be distributed among the subgroups. Mouchet et al. show that
the overhead of running one MHE secret-key operation protocols within each
subgroup of size t can be made constant in t for each party, by relying on tree-
based share aggregation patterns [MTPBH21]. Hence, the total overhead for each
party in performing the k secret-key operations can be reduced to (kt)/Ponline,
which is t/Ponline times the overhead of performing these same k operations in
the N -out-of-N -threshold scheme. We evaluate the effect of using this technique
on the task of generating a public bootstrapping key for the CKKS scheme, in
Section 4.3.
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4 Evaluation

We now discuss our proposed construction from the theoretical and practical
standpoints.

4.1 Theoretical Evaluation

We provide a theoretical comparison between our proposed TMHE scheme and
the existing constructions. We first study the overhead and additional assump-
tions of the threshold scheme, with respect to the original MHE scheme. Then,
we discuss the main differences between the threshold scheme of Boneh et al.
and our proposed construction.

Comparison with the Base MHE Scheme. From the system-model standpoint,
the main difference between the TMHE scheme, and the base MHE scheme of
Mouchet et al. [MTPBH21] is indeed that our construction enables t-out-of-
N access structures. Hence, instantiating the MHE-based MPC protocol with
our scheme satisfies the fault tolerance requirement of Section 2.1. Moreover, the
TMHE-based instantiation retains most of the features from the MHE-based one:
(a) Its offline phase is re-usable and has to be performed only once for a given
set of parties and encryption parameters. (b) Its online phase has a fully public
transcript and consists in only two rounds of interaction among the parties.
However, the TMHE.SecKeyGen relies on confidential communication channels
between the parties (to execute the T.Thresholdize re-sharing procedure), which
is not the case for the original MHE.SecKeyGen procedure. In other words, the
TMHE-based MHE-MPC protocol does not have a fully public transcript in its
offline phase, whereas the MHE-based one does. However, private communication
is required for only a single round of communication and is not a major obstacle
in many peer-to-peer and cloud-assisted models.

From the computational-cost standpoint, the threshold extension requires
additional state to be stored and exchanged by each party. We summarize the
related costs in Table 1. The TMHE.SecKeyGen is the only operation where
this overhead is not negligible: It requires each party to store a degree-(t−1)
polynomial in Rq[X], to evaluate this polynomial N times (for X a degree-0
polynomial), and to send and receive N − 1 Shamir secret shares. Whereas, the
base scheme does not require any interaction to generate the secret-key. The fact
that the key-generation phase is only a one-time offline phase that is re-usable
for any number of circuit-evaluation enables the amortization of this step in
many applications. Regarding secret-key operations (PubKeyGen and Decrypt),
the only overhead is the local computation of the Combine procedure that is
O(t). This overhead, however, is close to negligible in practice. This is because
the computation of the Lagrange coefficient, which is done over Zq thanks to the
compact Shamir public-points, is the only part of this computation that depends
on t. We demonstrate this by benchmarking our implementation, in Section 4.2.
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Table 1. Threshold extension costs, measured in number of Rq elements per-party
for the internal state and network communication, and in asymptotic function of
N and t for the per-party computational cost. We distinguish between the costs
associated with the generation (SecKeyGen) operation and the usage (SecKeyOp ∈
{PubKeyGen,Decrypt}) of the secret-key.

Party’s state Network cost per party Comp. cost
SecKeyGen SecKeyOp SecKeyGen SecKeyOp SecKeyGen SecKeyOp

MHE 1 1 0 1 O(1) O(1)
TMHE t 1 2(N − 1) 1 O(t+Nt+N) O(t)

Comparison with the Related Work. The threshold MHE scheme of Boneh et al.
[BGG+18] assumes a more general setting, where parties do not have to know the
set of online parties before generating their shares during secret-key operations.
This is necessary to achieve their goal of building a universal thresholdizer for
cryptographic primitives, for which the security properties of the thresholdized
primitive depend on the composability of the MPC protocol. Their solution is
essentially to homomorphically perform the Lagrange interpolation, when ag-
gregating the shares. But such an aggregation can only be performed when the
Lagrange coefficients are small with respect to q. Therefore, their first solution
consists in using a {0, 1}-LSSS to share the secret key of the scheme. For t-
out-of-N -threshold access-structure, this implies a per-party state in O

(
N4.2

)
to store the secret-key shares. Their second solution consists in using Shamir
secret-sharing, which requires only a O(1) storage for the secret-key shares (as-
suming a trusted setup). However, this requires increasing the size of the modulus
q by a O

(
N !3

)
multiplicative factor, thus rendering the encryption scheme non-

compact and more difficult to parametrize (increasing the coefficient modulus
while keeping the other parameters fixed reduces the security of RLWE).

Our scheme requires a O(1) storage for the secret-key shares without requir-
ing a trusted dealer. It is also conceptually simple, which enabled its implemen-
tation in an existing library. Hence, it can be seen as trading-off composability
for efficiency and simplicity. We now elaborate on this trade-off and on how to
pick the right scheme for a given MPC application.

Applications. To map an MPC application to the correct side of the composability-
versus-efficiency trade-off, we propose to distinguish between two categories
of applications based on their ideal functionality. In the first category, non-
cryptographic functionalities, the protocol is instantiated in a standalone way
to compute non-cryptographic functions such as image processing or machine-
learning model training and inference. In this category of applications, the pri-
mary requirement is for the MHE scheme to be cost efficient in terms of computation-
time and network-load. In the second category, cryptographic functionalities, the
protocol is instantiated as a building block to construct a higher-level crypto-
graphic primitive. The composability of the MHE scheme is crucial for this
category of applications, in order to prove the security of the resulting primitive,
which is often at the cost of performance. Under this classification, we can easily
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Table 2. Benchmarked HE Parameters. The polynomial degree n and coefficient mod-
ulus q size in bits are taken from the standardization document [ACC+18]. L is the
number of prime factors of q.

Set Pol. deg. (n) Coeff. size (L) Coeff. size (log2 q)

I 213 4 218
II 214 8 438
III 215 15 881

Table 3. Threshold extension benchmarks in milliseconds for the TMHE.SecKeyGen
and TMHE.Decrypt (i.e., Thresholdize) procedures for N = 20 parties. These values
represent the per-party CPU time.

Param. I II III
t 7 14 19 7 14 19 7 14 19

SecKeyGen

Step 1 6.1 13.0 18.1 26.4 57.5 79.4 92.9 201.3 278.0
Step 2 4.4 8.9 12.0 17.6 35.4 48.6 69.8 148.1 201.8
Step 3 0.2 0.2 0.2 0.9 0.9 0.9 3.4 3.4 3.4
Total 10.7 22.1 30.4 44.9 93.8 128.9 166.2 352.8 483.2

Decrypt
T.Combine <0.1 <0.1 <0.1 0.1 0.1 0.1 0.3 0.4 0.4
MHE.Decrypt 0.8 2.8 11.6
Total 0.8 0.8 0.9 2.9 2.9 2.9 11.9 12.0 12.0

characterize the scheme of Boneh et al., that targets the construction of a general
thresholdizer for cryptographic primitive, as being particularly adapted to cryp-
tographic functionalities, due to its strong composability guarantees. Whereas
our scheme lacks such composability, it satisfies the security and efficiency re-
quirements of non-cryptographic functionalities that represent the end-user side
of any cryptographic construction.

4.2 Basic Operations Benchmarks

We implemented the scheme extension T in the Lattigo library [MBTPH20], that
implements the basic RLWE-based MHE scheme. We report on the performance
figures for the T.Thresholdize and T.Combine for several common choices of en-
cryption parameters (summarized in Table 2) and several values of the threshold
t in Table 3. The benchmarks were conducted on an AMD Ryzen 9 5900X CPU
(3.7GHz clock, 6M of L2-cache). We observe that the Thresholdize algorithm
is the most expensive operation, with a consistently higher network cost. We
also observe that the cost of the procedure grows in O(Nt) as expected. Hence,
for adversarial models admitting a fixed fraction (t − 1)/N of dishonest par-
ties, the per-party CPU-cost of the setup will be quadratic in the number of
participants. Due to the compact Shamir public-point technique described in
Section 3, the Combine step is very efficient and its cost is significantly lower
than the operations of the MHE scheme to which it is a pre-processing (in the
TMHE scheme). For example, the cost of generating a party’s decryption share
in the TMHE scheme for parameter set III with N = 20, t = 7 is 12.0 ms, only
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Table 4. Threshold MHE Setup cost for N = 8 parties, t = 8, 6, 4, k = 130 switching
keys and 4 ≤ |Ponline| ≤ 8. The per-party costs are the maximum values measured
among all parties. The values represent the cumulative CPU-time and network volume
for the execution of the bootstrapping-key setup.

t 8 (MHE) 6 (TMHE) 4 (TMHE)

|Ponline| 8 6 7 8 4 5 6 7 8

Party
CPU time [s] 7.4 7.4 6.4 5.6 7.4 5.9 4.9 4.3 3.7
Net. Sent [GB] 3.8 3.8 3.3 2.9 3.8 3.1 2.6 2.2 1.9

Cloud
CPU time [s] 2.2 1.8 1.3
Net. Recvd. [GB] 30.5 22.9 15.3

0.4 ms of which are spent on the Combine operation. We conclude that, from a
CPU-time perspective, the threshold access-structure comes at an almost neg-
ligible cost with respect to the non-threshold scheme. Consequently, the main
overhead of the scheme remains the pairwise exchange of Shamir secret-shares
during the key-generation phase.

4.3 TMHE Setup for Bootstrapping Key Generation

We used our implementation to simulate a scenario where N = 8 parties seek to
generate k = 130 switching-keys, for t = 4, 6, 8, for several values of |Ponline|. The
scheme was parametrized with a ring-degree d = 215 and a modulus q of 768 bits
(L = 16 primes), which supports the bootstrapping operation [CCS19,HK20,BMTPH21].
We chose k = 130 as the number of rotation-keys required to support the boot-
strapping operation of Bossuat et al. when using a sparse secret-key and with
full packing (214 plaintext slots) [BMTPH21]; this represents a bootstrapping-
key size of 7.6 GB. The case of t = 8 uses the N -out-of-N -Threshold scheme
(MHE) that we use as a baseline. For simplicity, we consider the cloud-assisted
model where parties use a central server to centralize and aggregate their shares.
Our simulation measures the per-party CPU time needed to compute all its
shares on an AMD Ryzen 9 5900X CPU and the network load of sending these
shares to the cloud server. We also report on the CPU time and network load
associated with the reception and aggregation of the shares on the cloud server
side. Our simulation does not account for network introduced delays or other
implementation-related variables such as serialization of the shares to and from
the network. The results are summarized in Table 4.

The simulation confirms that, as the number of online parties grows, the
cost of generating the keys can be distributed among the parties. For example,
with N = |Ponline| = 8 and t = 4, the per-party CPU time and network cost is
effectively divided by 2, reducing from 7.4s to 3.7s and 3.8 GB to 1.9 GB. More-
over, the cost associated with share aggregation now depends on the threshold t
and no longer on N . Hence, the simulation confirms that, when failures are rare
events, the costs associated with the TMHE setup is linear in t.

17



5 Conclusion

In this work, we have extended the multiparty-homomorphic encryption scheme
over ring learning-with-errors with a t-out-of-N -threshold access-structure. We
have demonstrated that the approach of re-sharing the secret-key shares com-
poses well with the most recent approach limited toN -out-of-N -threshold access-
structures, and that this yields an elegant and efficient solution. Notably, the ex-
tension introduces additional interaction at the key-generation phase only and,
due to our technique for compact Shamir public-points, has only a negligible
memory and CPU-time overhead with respect to the base scheme. Finally, we
demonstrated how t-out-of-N -threshold access-structure brings many opportu-
nities to capture an application’s trust model and opens several new possibilities
in reducing the cost of the offline phase of MHE-based MPC protocols. We im-
plemented our scheme and open-sourced it in the Lattigo open-source multiparty
homomorphic encryption library.
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