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Abstract. In this paper we deepen our understanding of how to apply
Simon’s algorithm to break symmetric cryptographic primitives.

On the one hand, we automate the search for new attacks. Using this
approach we automatically find the first efficient key-recovery attacks
against constructions like 5-round MISTY L-FK or 5-round Feistel-FK
(with internal permutation) using Simon’s algorithm.

On the other hand, we study generalizations of Simon’s algorithm using
non-standard Hadamard matrices, with the aim to expand the quantum
symmetric cryptanalysis toolkit with properties other than the periods.
Our main conclusion here is that none of these generalizations can ac-
complish that, and we conclude that exploiting non-standard Hadamard
matrices with quantum computers to break symmetric primitives will
require fundamentally new attacks.
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1 Introduction

Unlike for many public-key schemes, for which the implications of the availability
of quantum computers of suitable size were clear from the start, the situation is
less well understood for symmetric primitives. The initial general consensus was
essentially that only Grover’s algorithm, which gives a quadratic speed-up for the
problem of exhaustive search [11], is of interest to attack symmetric cryptosys-
tems with quantum resources. This changed after Kuwakado and Morii published
theoretical quantum attacks on two classically provable secure constructions, the
3-round Feistel [16] and Even-Mansour [17], using Simon’s algorithm.

Simon’s algorithm allows to efficiently compute the period of a Boolean func-
tion f , when f is accessible as a quantum oracle, and with the given premise that
f is a 2-1 function having a unique period. The fact that f has to be accessible
by a quantum oracle, often referred to as the Q2 setting, makes those attacks less
relevant in practice for now, but certainly an interesting research topic. More-
over, ideas like the ones presented in [2] show how this class of attacks can have
implications in the Q1 setting, where f can only be queried classically.
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Another closely related algorithm to efficiently compute periods uses the
Bernstein-Vazirani routine [1], as was already observed in [26]. This routine,
see Sect. 2.1 for details, is very similar to the one used in Simon’s algorithm.
It outputs a vector x that belongs to the support of the Walsh-Hadamard (or

Fourier) transformation f̂ of f , defined as

f̂(x) :=
∑
y

(−1)f(y)+〈x,y〉 = (H0φ)x (1)

where (H0φ)x is the x.th component of the multiplication vector between the
standard Hadamard matrix H0 and the vector

φ =
(

(−1)f(0), . . . , (−1)f(2n−1)
)T

.

Therefore, with enough outputs of this routine we can compute the orthogonal
of the support of f̂ , which is the space of linear structures of f . Since the 0-
linear structures of f are exactly the periods, the above algorithm essentially
corresponds to Simon’s algorithm, but highlights better its relation to the Walsh-
Hadamard transformation of f .

The interest sparked by Kuwakado’s and Morii’s work resulted in the pub-
lication of attacks on many other constructions using quantum period finding
[14,25,19], a better understanding of how the algorithm works with a relaxed
premise on f [14], or without quantum oracle access to f [2,3], in the presence of
noise [22], and when trying to minimize the amount of qubits required [21]. The
most recent work in this context is by Bonnetain et al. who introduced Quantum
Linearization attacks in [4].

The idea behind most of these attacks is to build a function f , based on the
target cryptographic scheme E, that has a non-trivial period. So far, by more
and more sophisticated and hand-optimized constructions, this class of attacks
has made possible to come up with distinguishers on many constructions, like
Feistel ciphers up to 6 rounds [16,13,7], MISTY [7,10] or forgery attacks on
different kind of authenticated encryptions [14,24,12]. It should be noted that
some of these attacks are highly non-trivial and can actually look fairly involved,
see e.g. the attack for 6-round Feistel-FK [13]. Searching for new attacks and
understanding the security of new constructions has become a cumbersome and
error-prone task.

Moreover, those improvements and applications build on exploiting the peri-
odicity of the involved construction only. However, other criteria are of interest
as well. As an example, it would be of great value to be able to compute the alge-
braic degree and related properties of Boolean functions efficiently on a quantum
computer. However, the search for efficient quantum algorithms exploiting crite-
ria of Boolean functions other than linear structures has not yet been successful.

One large class of possible algorithms arise naturally from Simon’s algorithm
by replacing H0 in Eq. (1) by any other Hadamard matrix H, which corresponds
to changing the second Hadamard gate H0 in the Bernstein-Vazirani routine with
a gate that computes the unitary transformation H, as we will see in Sect. 4.
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Those algorithms are therefore worth studying. In particular it is of interest to
understand if they could lead to new items in the quantum toolbox of symmetric
cryptanalysis.

Our Contribution

Our contribution is twofold. First, we simplify the search for new applications
of Simon’s algorithm and thereby overcome the increasing complexity of the
attacks in the literature.

Second, we study the usefulness of the natural extensions of Simon’s algo-
rithm mentioned above in the context of symmetric cryptanalysis.

Automatizing. Towards achieving the first goal, introduced in Sect. 3, we propose
to automate the search of such functions. More precisely, we present a generic
algorithm that aims at finding, given a symmetric cryptographic scheme E, non-
trivial periodic functions f , that can then be efficiently computed by a quantum
computer.

Our approach here is to represent those functions f dependent on E by a
class of circuits. Those circuits can make use of oracle gates for E and potentially
further oracle gates for internal parts of the scheme E. We then automatically
examine all circuits up to a certain number of gates and test each of them
for periodicity, by instantiating the respective function on small dimensions. Of
course, this means that many useless circuits, as well as many useless periods,
are generated. The main technical contribution and work is aimed at addressing
this problem, and keeping the process efficient by pruning the search tree. We
discuss the details in Sect. 5.

As a proof of concept, we rediscover many of the attacks already known.
Moreover, and more importantly, our algorithm automatically leads to new at-
tacks. Indeed, it finds new periodic functions for 4-round Feistel-FK and 5-round
Feistel-FK with internal permutation, as well as 4-round MISTY R-FK and 5-
round MISTY L-FK. Those lead to the first known key-recovery attacks on
these constructions in polynomial time. Further, we show that our approach is
also applicable in the Grover-Meets-Simon case. We give new attacks for the
permutation-based Encrypted Davies-Meyer and sum of key alternating ciphers
constructions.

Generalizations. Regarding the generalization of Simon’s algorithm we argue
in Sect. 4 that none of those algorithms is likely to be helpful for speeding-up
known attacks on quantum computers.

We do so by arguing that none of the new algorithms arising from this gener-
alizaion of Simon’s algorithm allow the computation of any property of Boolean
functions that is invariant under linear equivalence. Since most of the properties
used in cryptography, like the algebraic degree, the balancedeness, the nonlinear-
ity (order) or differential uniformity of f are indeed linear invariant, this brings
us to conclude that any property related to this is unlikely to be of relevance for
existing attack vectors.
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While this result might not be surprising, it (i) sheds some light on the lack
of alternative quantum algorithms and (ii) might be of independent interest. In-
deed, it is technically based on a new characterization of the standard Hadamard
matrix, proved using a general result on the structure of the automorphism group
of the general linear group over F2 due to Dieudonné [8].

Outline

We explain preliminaries in Sect. 2, followed by the new attacks in Sect. 3.
Sect. 4 presents our main result regarding the generalization of Simon’s algo-
rithm. Sect. 5 and 6 respectively give more details about our automated search
and the proof of our result on generalized Simon. We conclude our results in
Sect. 7.

2 Preliminaries

Let F2 be the finite field with two elements and Fn2 a vector space of dimension n
over F2. We will often identify the elements of Fn2 with the integers {0, . . . , 2n −
1}, without making it explicit unless required by the context. We denote by
GL(n,F2) the general linear group of invertible matrices of order n over F2. We
will ignore normalization factors for quantum states in order to simplify notation
and concepts. We denote the rising factorial x · (x+ 1) · · · (x+ n− 1) as xn̄.

2.1 Some Generalities on Boolean Functions

A Boolean function is any function f : Fn2 → F2. We denote the set of Boolean
functions by Bn. We may identify the set of Boolean functions over Fn2 with
the set of polynomials F2[X1, . . . , Xn]/(X2

1 , . . . , X
2
n), in which case a Boolean

function f can be written as

f(X) =
∑
u∈Fn

2

auX
u (2)

for some au ∈ F2 and where we have denoted by Xu the monomial Xu1
1 · · ·Xun

n .
Eq. (2) is also known as the Algebraic Normal Form of f .

For a given Boolean function f : Fn2 → F2, the Walsh-Hadamard transform

of f is defined as the function f̂ : Fn2 → Z such that

f̂(α) =
∑
x∈Fn

2

(−1)f(x)+〈α,x〉,

where we indicate with 〈·, ·〉 the scalar product over Fn2 defined by 〈x, y〉 =
x1y1 + . . .+ xnyn for any x = (x1, . . . , xn) and y = (y1, . . . , yn).

Finally, let us denote the support of f̂ by supp(f̂ ) = {α ∈ Fn2 : f̂(α) 6= 0}.
From the perspective of the Fourier transformation, Simon’s algorithm can be

interpreted as using the following relation between the Walsh-Hadamard trans-
formation and the linear structures of a function f .
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Theorem 1 (Proposition 29 in [5]). Let e 6= 0 be an element of Fn2 . We
have that

f(x) + f(x+ e) = 0 ∀x ∈ Fn2
(resp. f(x) + f(x+ e) = 1) if and only if

{0, e} ⊂ supp(f̂ )⊥

(resp. supp(f̂ ) ∩ {0, e}⊥ is the empty set).

We refer to [5] for more background on Boolean functions and in particular
for a discussion of cryptographic criteria. We here limit ourselves to highlight-
ing the fact that most of those criteria are invariant under linear equivalence.
That is, given two Boolean functions f, g ∈ Bn such that for all x ∈ Fn2 it holds
that f(x) = g(L(x)), where L is an isomorphism, then f and g behave iden-
tical with respect to the main criteria. Those criteria that are linear invariant
include the algebraic degree, the non-linearity, the differential uniformity, and
the balancedness of f and g.

2.2 Quantum Period Finding and the Hadamard Gate

We will briefly recall the Hadamard gate which will be in many ways the focus
of the second part of the paper. To this end, we simply remind that the state
of n qubits can be represented as a unitary vector in C2n

and that a quantum
transformation is represented as a unitary transformation. We indicate a basis
for C2n

as |i〉, where i is an integer between 0 and 2n − 1 written in its binary
representation. No further knowledge about quantum computation is necessary
for the purpose of this paper, and we refer to [23] for details.

The Hadamard gate on one qubit is such that

|0〉 7→ (|0〉+ |1〉)
|1〉 7→ (|0〉 − |1〉).

In other words, it is represented by the matrix

H0 =

[
1 1
1 −1

]
.

Applied to an n-qubit vector, it is represented by the matrix H⊗n0 , given by(
H⊗n0

)
x,y

= (−1)〈x,y〉 for all 0 ≤ x, y ≤ 2n − 1,

which will act on the basis vector |x〉 as

|x〉 7→
2n−1∑
y=0

(−1)〈x,y〉 |y〉 .

For the rest of the paper, we will indicate the above transformation simply by
H0, regardless of the dimension n, unless there is possibility for ambiguity.
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Let us now consider the quantum implementation of a Boolean function
f : Fn2 → F2

Uf : |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉 for any x ∈ Fn2 and y ∈ F2.

The unitary transforms just presented are the building blocks for the quan-
tum routine used in Bernstein-Vazirani algorithm (as well as Simon’s), which
allow to efficiently compute the support of the Walsh-Hadamard transforma-
tion, since the state before measurement is

2n−1∑
y=0

(
2n−1∑
x=0

(−1)f(x)+〈x,y〉

)
|y〉 |−〉 =

2n−1∑
y=0

f̂(y) |y〉 |−〉 (3)

where |−〉 = |0〉 − |1〉. Therefore, measuring the first n-qubit register will yield

y with probability proportional to f̂(y)2. With a sufficient number of y, it is
therefore possible to compute the space generated by the support of the Walsh-
Hadamard transform of a random function f , which is exactly the orthogonal of
the space of linear structures for f due to Theorem 1.

From this, it follows that this routine can be used to efficiently compute
periods of a random Boolean function, as was already noted in [27]. More details
about this will be given in Sect. 4.1. Note that this can be extended to find
linear structures in the case where the codomain of f has dimension larger than
1 by considering each component separately, as it is discussed in [27]. A brief
description of Simon’s algorithm and a comparison with Bernstein-Vazirani can
be found in Appendix A.

In this work, we are mostly interested in finding new meaningful crypto-
graphic periods (Sect. 3), and less interested in how they are computed. There-
fore, we always assume that the functions we deal with are random enough
to make the quantum period finding efficient. For a more thorough discussion
about the precise conditions that a function has to satisfy in order for this to be
possible, we refer to [2] and [27].

Furthermore, the way of efficiently computing the Walsh-Hadamard trans-
form of f thanks to Eq. (3) leads to the question of whether it is possible to
generalize the construction in order to efficiently compute other kinds of trans-
form of f that could possibly capture different properties of f (Sect. 6.1). For
this, we recall the definition of the class of Hadamard matrices.

Definition 1. Let H ∈ RN×N be a matrix. We say that H is a Hadamard
matrix of order N if

(H)x,y ∈ {−1, 1} for all 1 ≤ x, y ≤ N and HTH = NIN ,

where IN is the identity matrix and N ∈ N.

2.3 Description of Feistel and MISTY

In this work, we present new attacks on the Feistel and MISTY construction
using quantum period finding. Therefore, we now briefly describe these families
of ciphers.
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Feistel The Feistel cipher, also known as Luby–Rackoff cipher, is a simple way
of turning random functions into a pseudorandom permutation. To do so, given
r round functions F0, F1, . . . , Fr−1 : Fn2 → Fn2 and input (L0, R0) ∈ Fn2 ×Fn2 , one
computes the output (Lr, Rr) by computing

Li+1 = Ri Ri+1 = Fi(Ri)⊕ Li

for i = 0, 1, . . . , r − 1. If we replace the secret random permutations with one
public permutation F and round keys ki which we xor to the output of F , we
obtain the so called Feistel-FK construction which we depict in Fig. 1.

MISTY Matsui [20] proposed the MISTY structure as a way to design block
ciphers with provable security against differential and linear cryptanalysis. In
some ways, MISTY is similar to Feistel. That is, there is a left and a right part
that are altered and swap in every round. But in contrast to Feistel, MISTY
decryption requires the inverse of the round function. Furthermore, there is a
left and a right version of MISTY, which we denote by MISTY L and MISTY
R resp. Let (Li, Ri) be the input to the i-th round of MISTY L-F with round
function Fi. Then the output (Li+1, Ri+1) is defined by

Li+1 = Ri Ri+1 = Fi(Li)⊕Ri.

For MISTY R-F we have

Li+1 = Ri ⊕ Fi(Li) Ri+1 = Fi(Li).

Analogous to Feistel, in practice we might replace the secret round functions Fi
by one public permutation F in combination with round keys ki. We can inject
ki either before we apply F or afterwards. We call the former KF and the latter
FK. In this work, we study 5-round MISTY L-FK and 4-round MISTY R-FK.
For both, one round is depicted in Fig. 1.

Fki

Li Ri

Li+1 Ri+1

(a) Feistel-FK

F

ki

Li Ri

Li+1 Ri+1

(b) MISTY L-FK

F

ki

Li Ri

Li+1 Ri+1

(c) MISTY R-FK

Fig. 1. Feistel and MISTY constructions.
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3 Finding New Applications

In this section, we first briefly describe how new applications of Simon’s algo-
rithm can be found automatically. After that, we present new attacks against
MISTY and Feistel. We found these with a straightforward sage implementation
of our algorithm.1 A more detailed analysis, especially regarding the efficiency
of our approach, is presented in Sect. 5.

3.1 The Idea: Finding Circuits

One goal of this work is to automate the step of searching a suitable periodic
function f for some cryptographic construction E so that f leads to an attack
on E based on Simon’s algorithm. In a nutshell, the idea for this is to simply
test all sensible functions that depend on E, which we denote informally by
FE , for periodicity. Although this idea is simple, it raises two questions. First,
what functions FE do we need to test and second, how can we efficiently check
whether f is periodic or not? The latter is easy to answer. We just instantiate E
with a small input size s.t. we can evaluate f on all possible inputs. The former
is more profound. Our approach is to represent FE by a class of circuits. That
is, we fix the inputs of f and the operations f consists of. We call these gate
functions. Most importantly, the set of gate functions contains oracle gates for
E. Then we can automatically examine all functions that consists of one gate,
all functions that consists of two gates and so on. E.g., consider the quantum
attack on 3-round Feistel from [16] which is based on the function

f(x, b) = ENCL(x, αb)⊕ αb̄ = F1(x⊕ F0(αb))⊕ αb ⊕ αb̄

with period s = (F0(α0) ⊕ F0(α1))||1. Here, α0, α1 ∈ Fn2 are arbitrary distinct
constants. Now consider Fig. 2a which shows a circuit Cf that represents f .
To find this, we start with a circuit that only contains the input nodes X =
{x, αb, αb̄}. Then, we investigate all circuits that consist of one additional node
that represents a function from G = {⊕, ENCL, ENCR} where ENCL and
ENCR correspond to the left and right part of the output of the 3-round Feistel
cipher. After that, we investigate all the circuits that consist of two additional
nodes, and thereby we encounter Cf with period s.

3.2 New Attacks on MISTY and Feistel

We now present new key-recovery attacks on MISTY and Feistel. The corre-
sponding circuits that were found by our implementation are depicted in Fig. 2b
for the first attack and in Fig. 9 for the other attacks. The proofs of periodicity
of the used functions are also presented in Appendix B.

Recall that for the sake of simplicity, we assume that Simon’s algorithm will
always yield the correct period. For rigorous proofs of correctness the strategy in

1 see https://www.doi.org/10.5281/zenodo.6623768

https://www.doi.org/10.5281/zenodo.6623768
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⊕

EncL

αb
αb̄x

2

1

1 2

(a) Circuit Cf .

⊕

ENCL ENCR

⊕

F

x

1 2

2

1

2

1

1

2

3

(b) Circuit Cf1 .

Fig. 2. Circuits for attack against 3-round Feistel cipher from [16] and against 4-round
MISTY R-FK from Sect. 3.2.

[14] can be adopted to argue that either Simon’s promise is sufficiently fulfilled,
or differential-based attacks exist.

Because here the focus is to automatically find periodic functions, we leave
this and other details such as how one can implement the functions on a quantum
computer for future work.

Key-recovery attack on 4-round MISTY R-FK For 4-round MISTY R-FK, Cui
et al. [7] mention a distinguishing attack but they do not give it explicitly. Our
automated search yields

f1(x) = ENCL(x, x⊕ F (x))⊕ ENCR(x, x⊕ F (x)) (4)

with period s1 = k0. This immediately leads to a full key-recovery attack. After
we have recovered k0 using Simon’s algorithm, we can simply uncompute the
first round before we make a query and extend the output of the oracle by an
additional round, i.e., we use

L′0 = F−1(R0 ⊕ k0)

R′0 = L0 ⊕R0

ENC ′R(L0, R0) = F (ENCL(L′0, R
′
0))⊕ k4

ENC ′L(L0, R0) = ENCR(L′0, R
′
0)⊕ ENC ′R(L0, R0)

instead of ENCL and ENCR to recover k1. Here, k4 is of course not a secret key,
but a random value chosen by us to simulate an additional round. We repeat this
procedure to recover k2 and k3. Notice that there may be more efficient ways to
recover the other round keys once k0 is uncovered. But for sake of simplicity, we
will stick to this generic argument.

Key-recovery attack on 5-round MISTY L-FK Cui et al. [7] also give a dis-
tinguisher for 5-round MISTY L-FK. Again, we improve on this and give a
key-recovery attack based on the function

f2(x) = ENCL(F−1(F−1(x)⊕ x), F−1(x))⊕ F (x). (5)
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The corresponding period is s2 = k0. Therefore, we can use the same idea as for
4-round MISTY R-FK to recover all keys.

Key-recovery attack on 4-round Feistel-FK For 4-round Feistel-FK, our auto-
mated search algorithm yields

f3(x) = ENCR(x, α)⊕ F (ENCL(x, α))⊕ F (x) (6)

with period s3 = k0 ⊕ F (α). Here, α ∈ Fn2 is an arbitrary constant. Again, we
can use the same idea as for 4-round MISTY R-FK to recover all keys.

Key recovery attack on 5-round Feistel-FK This time, we use a slightly different
idea for the search. That is, once we have discovered a periodic function whose
period bears some information on the keys, we use this period as a constant in
our next search. Thereby, we find the following functions.

f4(x) = ENCR(F (x), x)⊕ F (ENCL(F (x), x))⊕ F (x) (7)

f5(x) = ENCL(F (F−1(x)⊕ s4), F−1(x)⊕ s4)⊕ F (x)⊕ F−1(x) (8)

The corresponding periods are s4 = F (k0)⊕ k1 and s5 = k0⊕ k2. Notice that f5

uses the inverse of the internal function F , and thus we have to assume that F
is bijective. It is well-known that this is not necessary for Feistel networks, but
we nonetheless believe that our attack is of interest.

The first step of our attack, once again, is to use Simon’s algorithm to find
s4 and s5. After that, we use a classical query to obtain an auxiliary value

h = ENCR(F (s4), s4)⊕ F (ENCL(F (s4), s4))⊕ F (0) = k0 ⊕ k2 ⊕ k4.

Now we can restore k4 = h⊕s5. Thereby, we have learned the last round key and
can continue similarly to the attacks where we learned the first round key, i.e.,
we add a round before we make a query and uncompute the last round afterward
to find k3. We repeat this procedure to learn k2, k1 and k0.

3.3 Grover-Meets-Simon: New Attacks on pEDM and SoKAC

Our approach cannot only be used to find quantum attacks based on Simon’s
algorithm but leads also to attacks based on the Grover-Meets-Simon algo-
rithm [19]. In those attacks, the attacker first makes a guess u for part of the key,
say k1, (the Grover part). Only for the correct guess, i.e., if u = k1, the attacker
gets a periodic function, which is then the detected with Simon’s algorithm.

To find such, we add a second input node u and then check periodicity for
all values of u separately.

Key recovery attack on pEDM In [9], the authors introduced the permutation-
based Encrypted Davies-Meyer construction. For a random permutation P and
secret keys k0 and k1, we have

pEDM(x) = P (P (x⊕ k0)⊕ (x⊕ k0)⊕ k1)⊕ k0.
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Now, it is easy to verify that

f(u, x) = pEDM(x)⊕ P (P (x)⊕ x⊕ u)

has period k0 for u = k1 and thus both keys can be recovered using the Grover-
Meets-Simon attack.

Key recovery attack on SoKAC Similar to the attack on pEDM, for the sum of
key alternating ciphers [6] with two permutations P1, P2 and two keys k0, k1, we
have

SoKAC(x) = P2(P1(x⊕ k0)⊕ k1)⊕ k0 ⊕ P1(x⊕ k0)

and

f(u, x) = SoKAC(x)⊕ P2(P1(x)⊕ u)⊕ P1(x)

has period k0 for u = k1 and thus both keys can be recovered using the Grover-
Meets-Simon attack.

3.4 Applications to Classical Cryptanalysis

Obviously, periodic functions as presented in Sect. 3.2 do not only lead to quan-
tum attacks based on Simon’s algorithm, but also to classical birthday-bound
attacks. Similarly, attacks based on Grover-Meets-Simon can be converted to
classical attacks too. Even more practical classical attacks, polynomial-time at-
tacks, are special cases where one has to find a constant function, i.e. a function
where all elements are periods. However, during our work we have not encoun-
tered any such function, which is not surprising at least for the constructions
with classical security proofs. Nevertheless, we believe that our tool is a valuable
addition to the toolbox of symmetric cryptanalysis. It can be applied to many
more constructions in the future. In particularly, it might be of use already in
the actual design process of a new construction as a tool to quickly rule out
insecure approaches.

4 Generalizing Simon’s Algorithm

There are many properties of Boolean functions that have been found to be
meaningful from a cryptographic point of view, but most of them have not yet
been found to be significantly more easy to compute with quantum resources.

In this section we discuss how we attempted to address this problem by
investigating whether it is possible to generalize Simon’s algorithm, or rather
the Bernstein-Vazirani algorithm, in order to be able to compute other poten-
tially interesting properties of Boolean functions, focusing on linear invariant
properties: we conclude that the generalization we propose does not allow to do
that, by proving that the corresponding generalization of the Walsh-Hadamard
transform is not linear invariant. A more formal discussion of the precise state-
ments and proofs will be given in Sect. 6. Note that we focus on the case of
Walsh-Hadamard or Fourier-transformations over F2 only.
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4.1 The Idea: Using Non-standard Hadamard Matrices

In order to understand our idea for generalizing Simon’s algorithm, we consider
the following small variation of the quantum routine used in Simon’s algorithm,
due to Bernstein-Vazirani [1], where H0 corresponds to the standard Hadamard
transform (H0)x,y = (−1)〈x,y〉.

|0n〉

|−〉

H0
Uf

H0

This circuit outputs a vector x that belongs to the support of the Walsh-
Hadamard (or Fourier) transformation f̂ of f . This is due to the fact that the
state of the n-qubit register before the final application of H0, ignoring the
constant that makes the state unitary, is represented by

φ :=
(

(−1)f(0), . . . , (−1)f(2n−1)
)T

,

and applying H0 to φ yields a vector whose components are

(H0φ)x =
∑
y

(−1)f(y)+〈x,y〉 = f̂(x). (9)

Therefore, since a measurement of such a state results in a x such that f̂(x) 6=
0, with enough measurements of the above circuit, we can compute the space
generated by the support of f̂ and recover the space of the linear structures of f
thanks to Theorem 1. More precisely, the measurement yields x with probability
f̂(x)2

22n . However, for the purpose of this work, we are simply interested in the fact
that the measurement of the state at the end of the circuit is a vector x such
that f̂(x) 6= 0. For a more thorough analysis of the algorithm we refer to [26].

The idea behind our generalization is to consider Hadamard matrices other
than the standard one. More precisely, in this paper we will study the class of
transforms given by

f̂H(x) :=
∑
y

(−1)f(y)+g(x,y) = (Hφ)x

with H being a Hadamard matrix (H)x,y = (−1)g(x,y). This corresponds to
studying the following generalization of the previous circuit, which we call Simon(H).

|0n〉

|−〉

H0
Uf

H

This circuit outputs x such that f̂H(x) 6= 0 and could be used to compute
efficiently (under the hypothesis that H can also be efficiently implemented)

information about f̂H(x). In particular, echoing Simon’s algorithm, the space
generated by its support could be computed and could potentially correspond
to a (cryptographically) relevant property of f (as is the case for H = H0).
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4.2 Results

There are several interesting discussions raising from this perspective. First,
as the number of Hadamard matrices to consider for f̂H(x) (or equivalently
Simon(H)) is huge even for small dimensions, reducing their amount using a
suitable notion of equivalence is of interest. Second, and most importantly, the
question is if computing those transforms can be used to compute anything of
(cryptographic) relevance.

In this paper we discuss those points. We show in Sect. 6.1 that the usual
notion of equivalence for Hadamard matrices2 nicely translates into equivalent
quantum algorithms. More precisely, given two equivalent Hadamard matrices
H and H ′, the Simon(H ′) circuit can be turned into the Simon(H) circuit by
classical pre- and post-processing (Proposition 1).

Regarding the question of whether anything relevant can be computed with
Hadamard matrices that are not equivalent to the standard Hadamard (and
therefore not to the standard Fourier-transform), we argue that this is not the
case for any property that is invariant under linear equivalence. This brings us
to conclude that any property related to this is unlikely to be of relevance for
existing attack vectors (since most of the properties used in cryptography, like
the algebraic degree, the balancedeness, the nonlinearity (order) of f are indeed
linear invariant).

Indeed, we observe that the fact that Simon(H0) allows to compute such a
criterion, i.e. the existence of linear structures, can be seen as a consequence of
the fact that, for any isomorphism A

f̂ ◦A = f̂ ◦B,

where B−1 = AT .
Our main result, stated in the next theorem and proved in Sect. 6.2, is that

this property already classifies the standard Hadamard transformation.

Theorem 2. If for any A ∈ GL(n,F2) there exists B ∈ GL(n,F2) such that for
all Boolean functions f we have

f̂ ◦A
H

= f̂H ◦B

then H is equivalent to H0.

This result implies that, if H is not equivalent to H0, then the transform f̂H

cannot capture any linear invariant property of f , because the transform itself
does not vary linearly.

Note that there is a technical caveat: indeed, we cannot strictly exclude that
the circuit Simon(H) could be used to compute properties that are linear invari-
ant even if H is not equivalent to H0. For example, for the space Vf generated by

2 A list of possible representatives of Hadamard matrices up to dimension 28 is known
and can be found here: http://neilsloane.com/hadamard/

http://neilsloane.com/hadamard/
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supp(f̂H) Theorem 2 does not directly imply that Vf is also not linear invariant.
However, such a behaviour would be very surprising.

Therefore we conclude that, unless H is equivalent to H0, it is unlikely that
the algorithm given by Simon(H) could compute any property of f that is linear
invariant.

5 Constructing Circuits: Efficiency Considerations

We already described the basic idea of finding periodic functions in Sect. 3.1.
In this section, we explain our approach in more detail. We define a notion of
circuits, establish a normal form for these, and work out how many circuits there
are. Furthermore, we describe how we exclude useless and enumerate good cir-
cuits, and also how we filter out trivial periods. After that, we use our algorithm
to rediscover known results automatically. Thereby, we do not only demonstrate
that our approach is indeed sensible, but we also gather valuable experience that
we reuse when we look for novel attacks.

5.1 Circuits

Different variants of circuits are used in a variety of contexts. Our idea of a
circuit is mostly inspired by Boolean circuits used in computational complexity
theory and related fields. Since we are mainly interested in a practical way of
automatically generating circuits, we choose to define circuits from the ground
up. Thereby, we can make sure that our formalism and our implementation are
well-matched.

Definition 2 (Syntax of Circuits). A circuit C = (D,X,G , vout, n) is de-
fined by

– a directed acyclic graph D = (V,E) with labeled nodes and edges,

– a set of input nodes X ⊂ V ,

– a set of gate functions G = {G0, G1, . . . , Gg−1} where Gi : Fn2 × Fn2 → Fn2 ,

– an output node vout ∈ V .

We assume V = {0, 1, . . . , p − 1} and X = {0, 1, . . . , q − 1} for some p, q ∈ N.
Nodes v ∈ V \ X are labeled with gate functions. We denote the gate function
associated with v by vG. For all v ∈ V \X there is a left and a right predecessor
of v which we denote by vL and vR resp. It must hold that vL < v and vR < v.
The edge (vL, v) is labeled with 1 and (vR, v) is labeled with 2. If vL = vR, then
(vL, v) is labeled with 3. There are no other edges. We denote |V \X| as the size
of C.

Throughout this work, we will omit parts of this formal definition if they
are clear from the context. We want to stress that gate functions only take two
inputs and have one output.
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Definition 3 (Semantics of Circuits). For a circuit C = (D,X,G , vout, n)
and an input assignment A : X → Fn2 , the output of a node v is defined as

out(v) =

{
A(v) if v ∈ X
vG(out(vL), out(vR)) if v ∈ V \X.

The output of C is set to out(vout). We denote the function described by C as
Cf .

Of course, in our algorithm, we want to avoid checking the same function
multiple times. Therefore, we want to establish a normal form for circuits next.
To do so, we first define an equivalence relation in a straightforward way. Then
we illustrate a non-normal circuit in Example 1 and formalize the concept of
equivalent nodes, loose ends and ordered circuits. Finally, we define the circuit
normal form in Definition 9.

Definition 4 (Equivalence of Circuits). Two circuits C and C ′ are said to
be equivalent if they correspond to the same function, i.e., if Cf = C ′f . We denote
this as C ∼ C ′.

Example 1. The circuit in Fig. 3a meets Definition 2 and by Definition 3 com-
putes the function f(x, y, z) = G2(G0(x, y), G1(G0(x, y), z)). However, notice
that there are two nodes (marked in blue) that compute the same intermediate
value and another node (marked in green) that is never used. Hence, this is
not a natural way of representing f . In contrast, the circuit in Fig. 3b, which
also computes f , has no useless nodes and therefore, is a more sensible way to
represent f .

G2

G1

G0G0 G0

x y z X

1

2

1

2

1
2 1 2

1 2

(a) Circuit in non-normal form.

G2

G1

G0

x y z X

1
2

1

2
1 2

(b) Circuit in normal form.

Fig. 3. A circuit in (non-)normal form.

Definition 5 (Equivalence of Nodes). All nodes in a circuit C are equivalent
to itself. For all x ∈ X there is no other node than x that is equivalent to x.
We define the equivalence of two nodes u, v ∈ V \X, which we denote by u ∼ v,
inductively by stating that u and v are equivalent if both are assigned with the
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same gate function and uL ∼ vL and uR ∼ vR. We call a circuit onefold if there
are no two distinct nodes that are equivalent.

Definition 6 (Loose End). A node v ∈ V \X in a circuit C is called a loose
end if v 6= vout and there is no edge (v, u, l) ∈ E for some node u and a label l.

Recall that a non-input node v in a circuit C is just a natural number that
is labeled with a gate function, and that we require that v is greater than its
predecessors. In other words, we assert that the order of the natural numbers
< is a topological order of the underlying graph of C. Thereby, starting with
the empty circuit that only contains the input nodes X, < describes an order in
which we can add the gates to obtain the complete circuit C. But notice that
this order is not always unique because C is not required to have a path that
contains all nodes. Of course, we demand uniqueness so that we do not check
the same circuit multiple times. Therefore, we commit to a specific topological
order. As a first step, we formalize the depth of v, i.e., the length of the longest
path from an input node to v.

Definition 7 (Depth of a Node). For a node v in a circuit C we define the
depth d of v as

d(v) = max{d(vL), d(vR)}+ 1

where d(x) = 0 for all x ∈ X.

Now it only remains to sort nodes of the same depth. The input nodes X =
{0, 1, . . . , q − 1} are given, so we simply use < for X. For non-input nodes, we
use the associated gate function and the left and right predecessor. For the gate
functions we assume that G = {G0, G1, . . . , Gg−1} is ordered by G0 < G1 <
· · · < Gg−1. We formalize this in the following definition.

Definition 8 (Order of Nodes and Ordered Circuit). For two nodes u, v ∈
V in a onefold circuit C we have u ≺ v if u 6= v and

– d(u) < d(v) or
– u, v ∈ X and u < v or
– d(u) = d(v) and uG < vG or
– d(u) = d(v) and uG = vG and uL ≺ vL or
– d(u) = d(v) and uG = vG and uL = vL and uR ≺ vR.

We call a circuit ordered if for all pairwise distinct nodes u, v ∈ V it holds that
u < v ⇐⇒ u ≺ v.

Definition 9 (Normal form for Circuits). A circuit C is in normal form
if C is onefold, without loose ends and ordered. We call such circuits normal.

Lemma 1. For every circuit C, there is an equivalent circuit C ′ s.t. C ′ is in
normal form and has at most as many nodes as C.
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Proof. To bring C into normal form, we first make C onefold. To do so, for all
equivalent nodes u, v ∈ V we remove u and replace edges (u,w, l) by (v, w, l).
After that, we remove all loose ends. Last, we make C ordered by permuting the
underlying graph D and its labels accordingly.

Now that we have established our definitions for circuits, we want to study
the number of possible circuits. Recall that our basic approach is to fix X and
G based on the construction we are interested in, and also bound the number
of non-input nodes by some k ∈ N. The essential part here is that there are
gates in G that correspond to oracles an attacker would have access to in the
corresponding security games. For now, we only restrict the size of X and G ,
i.e., we consider the circuit class

C (q, g, k) = {C | |X| = q, |G | = g, |V \X| = k}.

Strictly speaking, we should not only consider circuits of size exactly k but
circuits of size up to k. But as we will see, for our application there are by far
more circuits of size k then there are circuits of size k − 1. So for the sake of
simplicity, in our analysis, we only consider circuits of size exactly k.

Of course, we are mainly interested in the number of normal circuits, i.e., in
the size of

Cnorm(q, g, k) = {C ∈ C (q, g, k) | C is normal}

because from Lemma 1 it immediately follows that they cover all circuits up to
equivalence. Nevertheless, we will first derive the number of all circuits of size k
which we will then use to estimate the number of normal circuits.

To determine the number of all circuits, we consider a tree T with root X
and depth k, where every edge corresponds to adding a new gate. The leaves of
this tree are the circuits in C (q, g, k). We call T the circuit tree of C (q, g, k).
T is diagrammed in Fig. 4. There are g · q2 possible ways to add the first gate.
g · (q + 1)2 for the next and so on. In total, the number of all leaves is

|C (q, g, k)| =
k−1∏
i=0

g · (q + i)2 = gk ·
(
qk
)2

. (10)

Therefore, the circuit size k has the highest impact on the number of all circuits
and the number of input nodes q has a slightly higher impact than the number
of gate functions g.

Now, to estimate the number of normal circuits, we wrote a sage script that
essentially generates random circuits and then checks if they are normal. The
results of this simulation, as well as the number of all circuits, are illustrated in
Fig. 5 for the parameters k ≤ 9 and (q, g) ∈ {(1, 3), (3, 3), (3, 5)}. The choice of
these parameters is motivated by the idea of using X = {x} or X = {x, αb, αb̄}
and G = {⊕, ENC,DEC} where ENC and DEC might be split into a left and
a right half. We can draw two conclusions from Fig. 5. On the one hand, for
small circuit classes, i.e., for circuit of size five or smaller, we might iterate all
normal circuits with moderate computing power. On the other hand, we need
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Fig. 4. Circuit tree T of C (q, g, k). By +(G, l, r) we denote the adding of a node with
gate function G, left predecessor l and right predecessor r.

to reduce the number of circuit further for larger classes. To do so, we establish
a set of rules R that circuits have to comply with. These rules are basically an
expansion of our already set up requirement that circuits must be normal. But
they also include requirements that are based on the concrete choice of X and G .
E.g., one gate function that we always use is the XOR function, and it is natural
to require that the inputs of the XOR are ordered since XOR is commutative.
Thus, we consider the class of circuits

C (X,G , k, R) = {C | C has input nodes X, gate functions G ,

|V \X| = k, ∀r ∈ R : r(C) = 1}.

Notice that here we overload the notation because we are not interested in the
pure size of X and G anymore. In the following, we use R(C) = ∧r∈Rr(C) to
shorten the notation.

5.2 Enumerating Circuits

The most straightforward way of enumerating C (X,G , k, R) is surely to simply
enumerate all circuits of size k with input nodes X and gate functions G . Then,
for each circuit, we can check whether it complies with R. But, as we have seen
in the last section, there are many more circuits than circuits in normal form.
So, this approach is rather inefficient.
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| norm(1, 3, k)|

Fig. 5. Number of circuits for various parameters.

To find a better strategy, we assume that we cannot only test R on a complete
circuit C ∈ C (X,G , k, ∅) but also on every partial circuit

C ′ ∈
⋃

1≤i<k

C (X,G , i, ∅)

in such a way that no partial circuit C ′ with R(C ′) = 0 can be extended to a
circuit C s.t. R(C) = 1. E.g., again consider the XOR gate and observe that
once we added a bad XOR gate, there is no way to get to a good circuit. The
same applies to all other rules we use. Now recall the circuit tree T from Fig. 4.
We are interested in enumerating all leaves C of T for which R(C) = 1 holds.
Let us assume, that we have already identified the first, i.e., the leftmost, circuit
C∗ with this property. Then, we will first check all right siblings of C∗. After
that, we test R(C†) where C† is the first right sibling of the parent of C∗. If
R(C†) = 1 we will check all children of C†. Otherwise, we continue with the
next sibling of C†. At some point, there are no more siblings of C† left. Then,
we continue with the same approach on the level of the parent of C†. As soon
as we hit the root of T we are finished with our search.

Notice that, since the setting is rather vague, neither can we exclude that
there are more efficient ways to enumerate circuits or even find periodic circuits
nor can we give a general runtime analysis of our approach. Instead, we will
analyze the runtime for concrete and practical examples in Sect. 5.4.

One rule that we always want to use is

rnormal(C) =

{
1 if C is in normal form

0 else.

Therefore, we now describe how rnormal can be checked on partial circuits. First,
recall that we call a circuit normal if it is onefold, without loose ends and ordered.
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For loose ends, we observe that with each new node, we can get rid of at most
one loose end. So if

|{v ∈ V \X | @u ∈ V : v = uL ∨ v = uR}| > 1 + (k − (|V | − |X|))

holds for a partial circuit C ′, there is no way of adding k− (|V | − |X|) nodes to
C ′ to obtain a circuit without loose ends. To check whether C ′ is ordered, we
only have to test u ≺ v as defined in Definition 8 where v is the last added and
u is the second but last added node resp. This is because we will check R(C ′)
only if the predecessor of C ′ complied with R. For the same reason, if v is the
last added node, it suffices to check whether the set

{u ∈ V | uG = vG and uL = vL and uR = vR}

is empty to check if C ′ is onefold. This is because if C ′ without v is onefold then

uL ∼ vL ⇐⇒ uL = vL

and the same holds for the right predecessor.

5.3 Testing a Circuit for Periodicity

Testing a circuit C, i.e., the function Cf , for periodicity is fairly simple because
we can evaluate Cf on all inputs and then check whether there are any periods.
When we enumerate circuits, we do not evaluate each circuit from the ground
up. Instead, we store the evaluation of each node s.t. after adding a node and
checking that it complies with all rules, we only have to evaluate the new node.

Aside from that, we want to filter out as much trivial periods as possible. By
trivial periods, we mean periods that bear no useful information. For example,
consider the function

f(x) = E(x)⊕ E(x⊕ α)

where E is an encryption oracle and α is an arbitrary constant. Obviously, f
has a period s = α. But this has nothing to do with the structure of E and in
fact, if we replace E with a truly random function E′, the period persists. Since
our enumeration will encounter functions of this kind, we want to check whether
a period is trivial or not. To do so, we can replace all oracles by their random
version and see whether the period persists. If so, we discard the period. Notice
that the period may change since the period could depend on the oracle gates,
e.g., consider f as above but replace α with E(α). We want to remark that this
essentially matches the definition of a distinguisher, i.e., a non-trivial period is
a property that is present in the real but not in the random case.

Notice, since we instantiate the constructions with a small input size, we
might identify or miss a period accidentally. In practice, this was never a problem
and in case of uncertainty, we can always repeat the search with fresh randomness
or slightly increase the input size.
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5.4 Setup of Our Search

Known Attacks Here, we rediscover known attacks with our automated search
algorithm. Of course, the primary intention here is to identify sound choices for
gates, inputs and rules that we can reuse when we search for novel attacks. Fur-
thermore, we use the occasion to investigate the running time of our algorithm
in a practical scenario.

Recall that the attack on the Even-Mansour cipher [17] is based on the func-
tion

f(x) = ENC(x)⊕ P (x) = P (x⊕ k0)⊕ k1 ⊕ P (x) (11)

with period s = k0. Therefore, our attack requires input nodes X = {x} and
gates G = {⊕, ENC,P}. Notice that, both ENC and P are functions of one
variable, but our definition requires that both are functions of two variables.
Therefore, we set the rule

rSI(C) =

{
1 if ∀v ∈ V : vG ∈ {ENC,P} ⇒ vL = vR

0 else.

We can enforce rSI simply by checking if vG ∈ {ENC,P} ⇒ vL = vR holds for
each node v that we add to a circuit. Furthermore, since for Even-Mansour P is
just a public permutation, only circuits that contain at least one ENC gate are
of interest. Therefore, we add the rule

r1E(C) =

{
1 if ∃v ∈ V : vG = ENC

0 else.

This rule is of course only enforced for complete circuits, i.e., for circuits of size
k. Equivalently, we can say that r1E(C ′) = 1 for all partial circuits C ′. Last, we
add a rule that eliminates some circuits that are equivalent to another circuit
because of the commutative or self inverse properties of the XOR function. That
is, r⊕ excludes all circuits that contain a node v with vG = ⊕ for which vL ≺ vR
does not hold. Again, this can be checked each time we add a new gate. This also
excludes circuits which compute the XOR of a node with itself. In addition, r⊕
shall exclude circuits for which there is a node that contributes twice to a XOR
sum, and also circuits for which there are two nodes that compute the same
XOR sum. To check these, for each node v we store a set Σv that is defined as
follows

Σv =

{
{v} if v ∈ X or vG 6= ⊕
ΣvL ∪ΣvR if vG = ⊕.

Thereby, Σv contains all nodes that contribute to the XOR sum if v is an XOR
gate. So if we add a new node v we only have to check that the intersection
ΣvL ∩ΣvR is empty and that there is no other node u s.t. Σu = Σv.

As we saw in Sect. 3.1, the distinguishing attack by Kuwakado and Morii
against 3-round Feistel cipher uses the function

f(x, b) = ENCL(x, αb)⊕ αb̄ = F1(x⊕ F0(αb))⊕ αb ⊕ αb̄
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with period s = (F0(α0) ⊕ F0(α1))||1 where α0, α1 ∈ Fn2 are arbitrary distinct
constants. To find this f , we useX = {x, αb, αb̄} and set G = {⊕, ENCL, ENCR}.
In terms of rules, we first notice that αb and αb̄ are equivalent for the attack.
Therefore, we demand that αb appears first. Further, the output must depend
on x and at least on one of αb and αb̄ because otherwise there will be trivial
periods. To check this, for complete circuits, we simply check whether there is
a path from x to vout and from αb or αb̄ to vout. All the above rules do not
exclude useful periodic circuits from the search. To decrease the search space
even further, we limit the number of oracle queries to one. Therefore, ENCL
and ENCR each are allowed only once in a circuit. If they both appear in a
circuit, we require them to have the same inputs. Last, we enforce that ENCL
and ENCR depend on x. This, again, can be checked with a reachability test in
the underlying digraph, and excludes circuits that, e.g., compute ENCL(αb, αb̄).
Although the last two rules might exclude useful periodic circuits, based on the
periodic functions from the literature and our experience, we believe that this
are reasonable additions to our set of rules.

Other attacks make also use of decryption queries, e.g., in [13, Section 5]
the authors present a quantum chosen-ciphertext distinguisher against 4-round
Feistel. To find such, we add decryption oracles to the set of gate functions. So,
for Feistel, we have G = {⊕, ENCL, ENCR, DECL, DECR}. Naturally, we add
a rule to exclude circuits that, e.g., decrypt an unaltered ciphertext. Further, we
demand that DEC gates depend on ENC gates.

We now briefly discuss the complexity of the searches on Even-Mansour and
Feistel. Consider Fig. 5 for k up to 6 and compare it with Fig. 6 which shows
the complexity, i.e., the number of tests our algorithm needs. The solid lines
are essentially the same in both plots. A trivial search algorithm would test all
circuits (solid lines) for normality and then test all normal circuits (dotted lines
from Fig. 5) for periodicity. Our algorithm does not only test for normality, but
also for other rules defined by R. But these tests are done in a sophisticated way
on (partial) circuits. Therefore, for our choices of R, a single test is not more
complex than a test for normality. But the number of tests is clearly reduced
(solid vs. dashed lines). And so is the number of tests for periodicity (dotted
lines from Fig. 5 vs dotted lines from Fig. 6).

MISTY Next, we describe how we set up our automated search algorithm to
find periodic functions for 4-round MISTY R-FK and 5-round MISTY L-FK.
Based on our insights from the previous section, we choose gates

G = {⊕, ENCL, ENCR, F, F−1}.

So, we split the encryption gate in the same manner as for our searches on Feistel
structures. In terms of rules, we use rnormal and r⊕ and of course also ensure
that F and F−1 only take a single input and do not uncompute each other. If we
search for large circuits of size k > 5 we also restrict the number of encryption
queries to one, again in the same way as we did for Feistel. For the input nodes
X we either choose only a single input x or x and a constant α. For 5-round
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Fig. 6. Number of circuits and tests in practice.

MISTY L-FK, the search yields not only f2 from Eq. (5) but also the following
additional functions ti with periods ri.

t1(x) = ENCL(F−1(x), α)⊕ x r1 = F (α)⊕ k1

t2(x) = ENCR(F−1(F−1(x)), F−1(x))⊕ x r2 = F (k0)⊕ k2

t3(x) = ENCL(F−1(F−1(x)), F−1(x))⊕ F (x)

⊕ ENCR(F−1(F−1(x)), F−1(x)) r3 = k0 ⊕ k1 ⊕ k2 ⊕ F (k0)

t4(x) = ENCL(F−1(F−1(x)), F−1(x))⊕ F (x)⊕ x r4 = k0 ⊕ k1

Here, α ∈ Fn2 is an arbitrary constant. However, notice that these are of course
our polished results. In reality, we might have encountered some variations first.
For instance, if we choose the circuit size k for t1 too large, we find circuits
where α is permuted first. Furthermore, notice the close connection between t2,
t3 and t4 and their corresponding periods. We have t4(x) = t2(x) ⊕ t3(x) and
r4 = r2 ⊕ r3. This is of course due to the internal structure of MISTY and
nothing we can exploit in general. E.g., consider t1 and t2. It is easy to verify
that t1(x)⊕ t2(x) is not periodic.

For MISTY, the search that yielded the circuit for t3, for which we have
|X| = 1, |G | = 5 and k = 7, was the most expensive one. Our laptop took six
minutes to traverse the circuit tree of size 241 by doing 225 rule tests and 218

periodicity tests.

Feistel For our search on Feistel, we use essentially the same setup as before.
Furthermore, for 4-round Feistel-FK, our search yields not only f3 from Eq. (6)
but also

t5(x) = ENCL(F (x), x)⊕ F (x)
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with period r5 = k1 ⊕ F (k0).
For the second search on 5-rounds Feistel-FK, we add a gate function F−1

and remove ENCL or ENCR to reduce the runtime. This search, for which we
have |X| = 2, |G | = 4 and k = 7, was the most expensive one. Our laptop took
twelve minutes to traverse the circuit tree of size 244 by doing 226 rule tests and
219 periodicity tests.

6 Proofs of the Results in Section 4

In this section we first show that equivalent Hadamard matrices give rise to
essentially equivalent quantum algorithms (Proposition 1). Finally, we give a
proof of Theorem 2, with the exception of a technical result that we prove in
Appendix D.

6.1 Equivalence of Hadamard Transformations

Let us now consider a Hadamard matrix H ∈ R2n×2n

and consider it given as

(H)x,y = (−1)g(x,y),

for a suitable choice of g : Fn2 × Fn2 → F2.
We define the Fourier-like transformation of H as follows

Definition 10. For a Boolean function f : Fn2 → F2, we define

f̂H(x) := (Hφ)x =
∑
y∈Fn

2

(−1)f(y)+g(x,y),

where (Hφ)x is the component x of the vector H0φ, and φ is the vector

φ =
(

(−1)f(0), . . . , (−1)f(2n−1)
)T

.

Hadamard matrices are an interesting research topic on their own, with fun-
damental questions still being unsolved. In particular, it is not even clear for
which dimension N Hadamard matrices exist. A famous conjecture states that
there exists at least one Hadamard matrix if the dimension is divisible by four.
This is still an open problem and, at the time of writing, the smallest such integer
for which no Hadamard matrix is known is N = 668 [15].

However, since we work on vector spaces of dimension 2n for some n ∈ N, we
know that there is at least one Hadamard matrix for each of these dimensions,
and that is indeed H0.

In fact, a related question that is more interesting for our context is under-
standing how many different Hadamard matrices exist in each dimension that
could possibly result in meaningfully different routines Simon(H). To this end,
we consider the following – standard – notion of equivalence.
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Definition 11. Two Hadamard matrices H,H ′ are said to be equivalent if there
exist diagonal matrices D1, D2 whose diagonals take entries in {−1, 1} and per-
mutation matrices P1, P2 such that

H ′ = P1D1HD2P2.

Similarly, we will say that two transformations f̂H and f̂H
′

are equivalent if H
and H ′ are equivalent.

As we prove in Appendix C, two equivalent matrices H and H ′ will result in
the circuits Simon(H) and Simon(H ′) being the same, up to some classical pre-
and post-processing, as we state in the following result.

Proposition 1. Let H and H ′ be two equivalent Hadamard matrices. There
exist functions PRE : Bn → Bn and POST : Fn2 → Fn2 such that, for any f : Fn2 →
F2

Pr(x← Simon(H ′)(f)) = Pr(x← POST(Simon(H)(PRE(f))).

Thus Simon(H), with some classical pre- and post-processing, perfectly sim-
ulates the routine Simon(H ′) for any H ′ equivalent to H. It follows that we can
indeed reduce ourselves to consider only non-equivalent Hadamard matrices.

6.2 Proof of Theorem 2

In this section we provide a proof of Theorem 2. First, we prove that we can
reduce the problem to the simpler case where the matrix B is not arbitrary and
simply consider B = AT (Proposition 2), thanks to a result on the structure of
the group GL(n,F2). After that, we prove that the possibility for H are then
limited (Proposition 3) and conclude the proof.

Let us consider a Hadamard matrix H and let f̂H : Fn2 → Z be its transform

f̂H(i) = (Hφ)i as in Sect. 4.1. Let g : Fn2 × Fn2 → F2 be the (unique) Boolean
function implicitly defined by (−1)g(x,y) = (H)x,y. We will make this relation
explicit by indicating H as Hg. The idea of the proof of Theorem 2 is that, if

f̂Hg satisfies the theorem, then the corresponding Boolean function g is (almost)
the scalar product, and therefore Hg is equivalent to H0 = H〈x,y〉.

Indeed, let for any Boolean function f we have:

f̂ ◦A
Hg

(x) =
∑
y∈Fn

2

(−1)(f◦A)(y)+g(x,y) =
∑
y∈Fn

2

(−1)f(y)+g(x,A−1y)

where we considered A−1 instead of A for ease of notation. On the other hand,

(f̂Hg ◦B)(x) =
∑
y∈Fn

2

(−1)f(y)+g(Bx,y).

Given the arbitrary choice of f , the above quantities are equal for all x ∈ Fn2 if
and only if

g(Bx, y) = g(x,A−1y) (12)
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for all x, y ∈ Fn2 . In fact, if there exist χ, υ ∈ Fn2 for which Eq. (13) does not hold,
then if we consider the Boolean function fχ(y) := g(χ,A−1y) for all y ∈ Fn2 , it is

clear that f̂χ ◦A
Hg

(χ) 6= f̂
Hg
χ ◦B(χ). Furthermore, notice that for the arbitrary

choice of A, Eq. (12) is equivalent to finding B such that

g(x,Ay) = g(B−1x, y). (13)

Therefore proving the theorem is equivalent to solving Eq. (13).
The main difficulty of the proof is the a priori freedom in choosing B for a

given A. We therefore want to first understand what is the dependence of B on
A. To do so, we define the function Fg : GL(n,F2)→ GL(n,F2) such that

Fg(A) = B.

The key observation is that this mapping is actually an automorphism over
GL(n,F2). Indeed, if g is a solution of Eq. (13), Fg is a well-defined function
because if for A ∈ GL(n,F2) there existed two distinct B,B′ ∈ GL(n,F2) such
that Eq. (13) holds, then if we consider z ∈ Fn2 such that B−1z 6= (B′)−1z, we
would have that

g(B−1z, x) = g(z,Ax) = g((B′)−1z, x)

for all x ∈ Fn2 . But this contradicts the fact that HgH
T
g is the identity matrix.

The same reasoning shows that Fg is injective, and therefore bijective. Fur-
thermore, it also holds that Fg(A · A′) = Fg(A) · Fg(A′), from which it follows
that Fg is an automorphism over GL(n,F2). Luckily for us, it is possible to char-
acterize such automorphisms in a nice way, thanks to a result due to Dieudonné
[8], which can be found in a more convenient formulation for our purposes in
[18].

Lemma 2 ([8,18]). For every automorphism F of GL(n,F2), there exists G ∈
GL(n,F2) such that either

F (A) = G−1AG or F (A) = G−1(AT )−1G (14)

for all A ∈ GL(n,F2).

This characterization, together with the considerations above, will allow us
to reduce the proof to the case of Theorem 2 with B = (AT )−1, as is stated by
the following proposition.

Proposition 2. For any g such that Hg is Hadamard and that fulfils Eq. (13),
there exists a matrix G ∈ GL(n,F2) such that g(x, y) = g(Gx, y), where g fulfils

g(x,Ay) = g(ATx, y). (15)

Proof. The result is trivial for n = 1, 2 and thus we assume n ≥ 3 from now on.
Let us suppose that Fg is of the first form, i.e. it exists G ∈ GL(n,F2) such

that Fg(A) = G−1AG for all A ∈ GL(n,F2). Let us prove that this is not
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possible. Let x 6= y ∈ Fn2 \ {0}. Then, since Hg is Hadamard, we have that∑
z∈Fn

2
(−1)g(x,z)+g(z,y) = 0, that is there are exactly 2n−1 values of z for which

g(x, z) 6= g(z, y). This means that for any n ≥ 3 we can find z1, z2 such that
z1 6∈ {0, Gx} and z2 6∈ {0, G−1y} and g(x, z1) 6= g(x, z2). Then, there exits
A ∈ GL(n,F2) such that y = Az1 and x = G−1A−1Gz2 (that is, A is such that
z1 7→A y and Gx 7→A Gz2), so that

g(z2, y) = g(z2, Az1) = g(Fg(A)−1z2, z1) = g(G−1A−1Gz2, z1) = g(x, z1)

which leads to a contradiction.
Let us now suppose that Fg is of the second form, i.e. Fg(A) = G−1(AT )−1G

for some G ∈ GL(n,F2). Consider g such that g(x, y) = g(x, (GT )−1y). Since
(GT )−1 is a permutation, we have that Hg is Hadamard if and only if Hg is
Hadamard and, furthermore, g satisfies Eq. (13) with B = Fg(A)−1 = G−1ATG
if and only if for all x, y ∈ Fn2 and z = GT y

g(x,Az) = g(x,AGT y) = g(x, (GT )−1AGT y) = g(Fg((G
T )−1AGT )−1x, y)

= g(ATx, y) = g(ATx,GT y) = g(ATx, z),

i.e. g satisfies Eq. (13) with B = AT . This is true for any A ∈ GL(n,F2) and
concludes the proof.

In other words, for the proof of Theorem 2 we can consider without loss of
generality the case B = Fg(A) = (AT )−1.

What is now left to conclude is that if Fg(A)−1 = AT , then g is almost the
scalar product 〈x, y〉. This is exactly what the following proposition states. The
rather technical proof of it can be found in Appendix D.

Proposition 3. Let g : Fn2 × Fn2 → Fn2 such that for any A ∈ GL(n,F2)

g(x,Ay) = g(ATx, y) (16)

for all x, y ∈ Fn2 . Then

g(x, y) = ε0 + ε1δ{0}(x) + ε2δ{0}(y) + ε3〈x, y〉+ ε4δ{(0,0)}(x, y)

where δM is the indicator function of a set M and ε0, . . . , ε4 ∈ F2.

Remark 1. The family of functions g of the proposition are the very natural
solutions that are found by observing that we have

1. if g, h are solutions then g + h is also a solution;
2. the scalar product 〈x, y〉 is a solution;
3. if g(x, y) = δM (x, y), where M is either {(0, 0)} or {0} × Fn2 or Fn2 × {0}

or Fn2 × Fn2 , then g is a solution because for any A ∈ GL(n,F2) and any
B ∈ GL(n,F2), g(x,Ay) = g(x, y) = g(Bx, y).

Now we can conclude the proof of Theorem 2.
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Proof of Theorem 2. We restrict to the case of g such that Hg is Hadamard and
fulfils Eq. (16). If g represents a Hadamard matrix Hg, then we know that

(HgH
T
g )α,β =

∑
x∈Fn

2

(−1)g(x,α)+g(x,β)

is zero whenever α 6= β. We can assume the form given in Proposition 3, that is

g(x, y) = ε0 + ε1δ{0}(x) + ε2δ{0}(y) + ε3〈x, y〉+ ε4δ{(0,0)}(x, y).

Then we have

g(x, α) + g(x, β) = ε2(δ{0}(α) + δ{0}(β)) + ε3〈x, α+ β〉+
ε4(δ{(0,0)}(x, α) + δ{(0,0)}(x, β))

so that∑
x∈Fn

2

(−1)g(x,α)+g(x,β) =
∑
x∈Fn

2

(−1)ε3〈x,α+β〉+ε4(δ{(0,0)}(x,α)+δ{(0,0)}(x,β)).

But if α = 0 and β 6= 0, then we must have that

(HgH
T
g )0,β =

∑
x∈Fn

2

(−1)g(x,0)+g(x,β) =
∑
x∈Fn

2

(−1)ε3〈x,β〉+ε4(δ0(x)) = 0

where we have used the fact that Hg is Hadamard. But
∑
x∈Fn

2
(−1)〈x,β〉 = 0, as

β 6= 0. Then, the above equality holds if and only if ε3 = 1 and ε4 = 0. It follows
that if g is Hadamard and satisfies Eq. (16) then

g(x, y) = ε0 + ε1δ{0}(x) + ε2δ{0}(y) + 〈Gx, y〉

which means that Hg = (−1)ε0(Dδ{0})
ε1H0(Dδ{0})

ε2 , where Dh is the diagonal
matrix such that (Dδ{0})z,z = δ{0}(z) for all z ∈ Fn2 . Therefore, we conclude that
Hg is indeed equivalent to H0. Thus concludes the proof of our main result.

7 Conclusion

Motivated by the search for alternative ways to attack symmetric primitives, our
goal was to find new applications of Simon’s algorithm, as well as study possible
generalizations.

On the one hand, we have seen that the standard Hadamard transformation
is the only one that preserves linear equivalence. This result suggests that using
alternative Hadamard transformations will not help in improving known attack
vectors using the well studied linear-invariant cryptographic criteria. However,
it does not exclude the possibility of new attacks based on non linear-invariant
properties, that could profit from Simon(H). Moreover, for exploiting the stan-
dard criteria, our result shows that it is most promising to focus on the standard
Hadamard-transform when searching for new quantum algorithms.
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On the other hand, we have successfully automatized the search of periodic
functions, resulting in new key-recovery attacks. However, our algorithm can be
applied to other targets and can be still improved in order to search for larger
circuits. We leave a more optimized and parallelized implementation or the use
of a different representation of the functions, possibly allowing for the use of
symbolic computation, as interesting future work.
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A Simon’s Algorithm

|0n〉

|−〉

H0

Uf

H0

Fig. 7. Simon’s Algorithm

Let f : Fn2 → Fm2 be a 2-to-1 periodic function, i.e. f(a) = f(b) if and only if
b = a or b = a+ s. Simon’s algorithm consists in iterating the circuit in Fig. 7,
which prepares and then measures the state

|0n〉 |0m〉 H0⊗In−−−−→
∑
x∈Fn

2

|x〉 |0m〉 Uf−−→

∑
x∈Fn

2

|x〉 f(x)


H0⊗In−−−−→

∑
x∈Fn

2

∑
y∈Fn

2

(−1)〈x,y〉 |y〉

 |f(x)〉

which is the same as

∑
y∈Fn

2

|y〉

∑
x∈Fn

2

(−1)〈x,y〉 |f(x)〉

 . (17)

Let X ⊂ Fn2 such that X ∪ (s+X) = Fn2 (where s+X = {y = s+ x, x ∈ X}),
we can rewrite Eq. (17)

∑
y∈Fn

2

|y〉

(∑
x∈X

(−1)〈x,y〉 |f(x)〉+ (−1)〈x+s,y〉 |f(x+ s)〉

)

=
∑
y∈Fn

2

|y〉

(∑
x∈X

(−1)〈x,y〉
(
|f(x)〉+ (−1)〈s,y〉 |f(x)〉

))
,

from which it follows that, upon measurement, y is yielded with probability 0 if
〈s, y〉 = 1. In particular, the measurement results are distributed uniformly over
the space of the orthogonal space of s. Collecting O(n) such y then allows to
compute the space orthogonal to s and, ultimately, s. A more detailed analysis
of the algorithm, as well as a generalization to an f that is not necessarily 2-to-1,
can be found in [14].

Notice that, despite Eq. (17) being very similar to the state computed by the
Bernstein-Vazirani algorithm for the case m = 1 (Eq. (3)), there is an important
difference: in the latter, the dependence on f of the state is in the amplitude
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sign, which determines the correspondence with the Walsh-Hadamard transform.
Notice that this is a consequence of the fact that the Bernstein-Vazirani routine
(Fig. 8) starts with the state |0n〉 |−〉 instead of |0n〉 |0〉 as in the case of Simon’s
algorithm, and which results in obtaining the following state after applying (H0⊗
I1) ◦ Uf∑

x∈Fn
2

(−1)〈x,y〉 |x〉 (|f(x)〉 − |f(x)⊕ 1〉) =
∑
x∈Fn

2

(−1)〈x,y〉(−1)f(x) |x〉 |−〉

since |f(x)〉 − |f(x)⊕ 1〉 = (−1)f(x) |−〉.

|0n〉

|0m〉

H0

Uf

H0

Fig. 8. Bernstein-Vazirani Algorithm

B Periodicity of Functions from Sect. 3.2

In this section, we verify the periods of the functions presented in Sect. 3.2. We
also give corresponding circuits in Fig. 9.

B.1 4-Round MISTY R-FK

Recall f1 from Eq. (4)

f1(x) = ENCL(x, x⊕ F (x))⊕ ENCR(x, x⊕ F (x)).

To prove the correctness of the attack on 4-round MISTY R-FK, we only have
to show that f1 indeed has period k0. To do so, we first notice that, due to
the construction of MISTY R-FK, f1 computes R3. Therefore, we provide the
intermediate values of MISTY R-FK up to R3 as a function of the input (x, x⊕
F (x)).

R1 = k0 ⊕ F (x)

L1 = k0 ⊕ F (x)⊕ F (x)⊕ x = x⊕ k0

R2 = k1 ⊕ F (x⊕ k0)

L2 = k0 ⊕ k1 ⊕ F (x)⊕ F (x⊕ k0)

R3 = k2 ⊕ F (k0 ⊕ k1 ⊕ F (x)⊕ F (x⊕ k0))

= f(x) = f(x⊕ k0)
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B.2 5-Round MISTY L-FK

Recall f2 from Eq. (5)

f2(x) = ENCL(F−1(F−1(x)⊕ x), F−1(x))⊕ F (x).

We now prove that f2 indeed has period k0. To begin with, we provide the
intermediate values and the output of MISTY L-FK depending on the input
(L0, R0) and the keys. We omit the values for Li because Li+1 = Ri holds.

R1 = k0 ⊕R0 ⊕ F (L0)

R2 = k0 ⊕ k1 ⊕R0 ⊕ F (L0)⊕ F (R0)

R3 = k0 ⊕ k1 ⊕ k2 ⊕R0 ⊕ F (L0)⊕ F (R0)⊕ F (k0 ⊕R0 ⊕ F (L0))

R4 = k0 ⊕ k1 ⊕ k2 ⊕ k3 ⊕R0 ⊕ F (L0)⊕ F (R0)

⊕ F (k0 ⊕R0 ⊕ F (L0))⊕ F (k0 ⊕ k1 ⊕R0 ⊕ F (L0)⊕ F (R0))

= ENCL(L0, R0)

R5 = k0 ⊕ k1 ⊕ k2 ⊕ k3 ⊕ k4 ⊕R0 ⊕ F (L0)⊕ F (R0)

⊕ F (k0 ⊕R0 ⊕ F (L0))⊕ F (k0 ⊕ k1 ⊕R0 ⊕ F (L0)⊕ F (R0))

⊕ F (k0 ⊕ k1 ⊕ k2 ⊕R0 ⊕ F (L0)⊕ F (R0)⊕ F (k0 ⊕R0 ⊕ F (L0)))

= ENCR(L0, R0).

Now we have

f2(x) = ENCL(F−1(F−1(x)⊕ x), F−1(x))⊕ F (x)

= k0 ⊕ k1 ⊕ k2 ⊕ k3 ⊕ F (k0 ⊕ x)⊕ F (k0 ⊕ k1)⊕ F (x)

= f2(x⊕ k0).

B.3 4-Round Feistel-FK

Recall f3 from Eq. (6)

f3(x) = ENCR(x, α)⊕ F (ENCL(x, α))⊕ F (x).

To prove the correctness of the attack on 4-round Feistel-FK, we only have to
show that f3 indeed has period k0 ⊕F (α). To do so, we first notice that, due to
the construction of Feistel-FK, f3 computes

R2 ⊕ k3 ⊕ F (x).

Next, we express R2 as a function of the input (x, α):

R2 = k1 ⊕ α⊕ F (x⊕ k0 ⊕ F (α)).

Therefore, we have

f3(x) = k1 ⊕ k3 ⊕ α⊕ F (x⊕ k0 ⊕ F (α))⊕ F (x)

= f3(x⊕ k0 ⊕ F (α)).
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B.4 5-Round Feistel-FK with Internal Permutation

Recall f4 and f5 from Eqs. (7) and (8)

f4(x) = ENCR(F (x), x)⊕ F (ENCL(F (x), x))⊕ F (x)

f5(x) = ENCL(F (F−1(x)⊕ s4), F−1(x)⊕ s4)⊕ F (x)⊕ F−1(x)

as well as the auxiliary value

h = ENCR(F (s4), s4)⊕ F (ENCL(F (s4), s4))⊕ F (0).

To prove the correctness of the attack, we show that f4 and f5 have period s4

and s5 resp. and we show that h = k0⊕ k2⊕ k4 holds. For that purpose, we first
provide the intermediate values and the output of Feistel-FK depending on the
input (L0, R0). We omit the values for Li because Li+1 = Ri holds.

R1 = L0 ⊕ k0 ⊕ F (R0)

R2 = R0 ⊕ k1 ⊕ F (L0 ⊕ k0 ⊕ F (R0))

R3 = L0 ⊕ k0 ⊕ F (R0)⊕ k2 ⊕ F (R0 ⊕ k1 ⊕ F (L0 ⊕ k0 ⊕ F (R0)))

R4 = R0 ⊕ k1 ⊕ F (L0 ⊕ k0 ⊕ F (R0))⊕ k3

⊕ F (L0 ⊕ k0 ⊕ F (R0)⊕ k2 ⊕ F (R0 ⊕ k1 ⊕ F (L0 ⊕ k0 ⊕ F (R0))))

= ENCL(L0, R0)

R5 = L0 ⊕ k0 ⊕ F (R0)⊕ k2 ⊕ F (R0 ⊕ k1 ⊕ F (L0 ⊕ k0 ⊕ F (R0)))⊕ k4

⊕ F (R0 ⊕ k1 ⊕ F (L0 ⊕ k0 ⊕ F (R0))⊕ k3 ⊕ F (L0 ⊕ k0 ⊕ F (R0)⊕ k2

⊕ F (R0 ⊕ k1 ⊕ F (L0 ⊕ k0 ⊕ F (R0)))))

= ENCR(L0, R0)

We notice that, due to the structure of Feistel networks, f4 computes R3⊕ k4⊕
F (x). For this reason,

f4(x) = ENCR(F (x), x)⊕ F (ENCL(F (x), x))⊕ F (x)

= F (x)⊕ k0 ⊕ F (x)⊕ k2 ⊕ F (x⊕ k1 ⊕ F (F (x)⊕ k0 ⊕ F (x)))⊕ k4 ⊕ F (x)

= k0 ⊕ k2 ⊕ k4 ⊕ F (x⊕ k1 ⊕ F (k0))⊕ F (x)

has indeed period s4 = F (k0) ⊕ k1. Notice that h is similar to f4(s4), but
we replace the last F (x) by F (0) s.t. both F terms cancel out and only h =
k0 ⊕ k2 ⊕ k4 remains. For f5 we have

f5(x) = ENCL(F (F−1(x)⊕ s4), F−1(x)⊕ s4)⊕ F (x)⊕ F−1(x)

= s4 ⊕ k1 ⊕ F (k0)⊕ k3 ⊕ F (k0 ⊕ k2 ⊕ F (F−1(x)⊕ s4 ⊕ k1 ⊕ F (k0)))⊕ F (x)

= k3 ⊕ F (x⊕ k0 ⊕ k2)⊕ F (x)

and thus f5 has period s5 = k0⊕ k2. This concludes the proof of the correctness
of our attack on 5-round Feistel-FK with a bijective round function.
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Fig. 9. Circuits for attacks on MISTY and Feistel.
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C Proof of Proposition 1

Proposition 1. Let H and H ′ be two equivalent Hadamard matrices. There exist
functions PRE : Bn → Bn and POST : Fn2 → Fn2 such that, for any f : Fn2 → F2

Pr(x← Simon(H ′)(f)) = Pr(x← POST(Simon(H)(PRE(f))).

Proof. Let D be a diagonal matrix of inputs −1, 1 and let d be the Boolean
function associated to D, i.e. d is such that (D)x,x = (−1)d(x). Let P be a
permutation matrix and π : Fn2 → Fn2 be the permutation associated to P such
that π(x) = y if and only if Pex = ey. We have that

i) if H ′ = DH, then

f̂H
′
(x) = (H ′φ)x = (DHφ)x = (D)x,xf̂

H(x);

ii) if H ′ = HD, then

f̂H
′
(x) = (H ′φ)x = (HDφ)x = f̂ + d

H
(x)

where (Dφ)i := (−1)f(x)+d(x);
iii) if H ′ = HP , then

f̂H
′
(x) = (H ′φ)x = (HPφ)x = ̂f ◦ π−1

H
(x)

since (Pφ)x = (−1)f◦π
−1(x);

Let us now consider the diagonal matrices D1, D2 and permutation matrices
P1, P2 such that

H ′ = P1D1HD2P2,

together with the associated functions, respectively d1, d2 : Fn2 → F2 and π1, π2 :
Fn2 → Fn2 , as defined above. Then from i)-iii) it follows that for any Boolean
function f , we can define g := f ◦ π−1

2 + d2 such that

ĝH(π−1
1 (x)) = (−1)d1(x)f̂H

′
(x)

This shows that for two fixed equivalent Hadamard matrices H and H ′, it
is possible to easily retrieve the same output of Simon(H ′) with access to only
Simon(H) on any f by (classical) pre- and post-processing.

Indeed, an output x of this routine is such that ĝH(π−1
1 (x)) = ±f̂H′(x) 6= 0

and would be returned with a probability
(
ĝH(π−1

1 (x))
)2

. This is exactly the
same as Simon(H ′), which indeed returns such an x with a probability

2−n/2(f̂H
′
(x))2 = 2−n/2

(
ĝH(π−1

1 (x))
)2
.

This concludes the proof with POST(x) = π1(x) and PRE(f(x)) = f(π−1
2 (x))+

d2(x).
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D Proof of Proposition 3

In this section we prove the following result, that is equivalent to Proposition 3.

Proposition 4. Let g : Fn2 × Fn2 → Fn2 such that for any A ∈ GL(n,F2)

g(Ax, y) = g(x,AT y) (18)

for all x, y ∈ Fn2 . Then

g = ε0 + ε1g1 + ε2g2 + ε3g3 + ε4g4

where ε0, . . . , ε4 ∈ F2 and

g1(X,Y ) =
∑

u∈Fn
2 \{0}

Xu

g2(X,Y ) =
∑

v∈Fn
2 \{0}

Y v

g3(X,Y ) = 〈X,Y 〉

g4(X,Y ) =
∑

(u,v)∈Fn
2 \{(0,0)}

XuY v

In order to do so, we will work on the ANF of g. For any boolean function
g : Fn2 × Fn2 → Fn2 , let λu,v for u, v ∈ Fn2 represent its ANF, i.e. g(X,Y ) =∑
u,v λu,vX

uY v. For more clarity, we define the function λ : Fn2 × Fn2 → F2 as

λ(u, v) = λu,v.

Notice that the left multiplication of X = (X1, . . . , Xn) by A defines a func-
tion Fn2 [X]→ Fn2 [X] such that if A = (ai,j)1≤i,j≤n, then

(AX)i =
∑

1≤j≤n

ai,jXj .

A difficulty of the proof of this result is arguably not being able to say much
about AT as an isomorphism for a generic A ∈ GL(n,F2).

However, if we consider a subspace U,W ⊂ Fn2 generated by a subset of the
standard basis of Fn2 and such that Fn2 = W +U , then for any A ∈ GL(n,F2) for
which A|U is the identity, we have that AT |U is also the identity. Therefore, since
U is generated by elements of the standard basis, we will have that (AX)u =
(ATX)u = Xu for any u ∈ U . This, together with the fact that matrices of this
form generate GL(n,F2), will lead to a restriction of the problem to the case
of subspaces of lower dimension, thus allowing to conclude with an inductive
reasoning.

Indeed, in order to show the proposition, we will only consider A as being an
element of the following set of generators for GL(n,F2):
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– A is such that Aei = ei + ej for some i 6= j and Ael = el for l 6= i;
– A is such that it permutes two vectors of the basis, i.e. Aei = ej , Aej = ei

for some i 6= j and Ael = el, l 6= i, j.

Let us now fix one of these A and let now U be the space where A acts as
the identity and W its dual.

Consider first, for some fixed ũ, ṽ ∈ U , the polynomial

h(X,Y ) = X ũY ṽ
∑

w,w′∈W
λw,w′X

wY w
′

(19)

we have that h(AX,Y ) = h(X,ATY ) if and only if∑
w,w′∈W

λw,w′(AX
w)X ũY w

′
=

∑
w,w′∈W

λw,w′X
w(ATY w

′
). (20)

Intuitively, since g is a sum of polynomials of the form of h, in order for g
to satisfy Eq. (18) for a fixed A, each of this h must also satisfy it because they
behave independently. We will see that we can study Eq. (18) by focusing on
the polynomials of the form given by Eq. (19) that compose the ANF of g, that
need to satisfy the somewhat simpler Eq. (20). With the aim of making this
reduction formal, we introduce the following notation that allows us to isolate
such components of the ANF of g.

For any ũ, ṽ in the vector space U that is fixed by A, we introduce the Boolean
functions gũ,ṽ(X,Y ) as

gũ,ṽ(X,Y ) :=
∑

w,w′∈W
λ(ũ+ w, ṽ + w′)XwY w

′

The function gũ,ṽ is the unique (as a consequence of the uniqueness of the
ANF of boolean functions) polynomial that is obtained when grouping by X ũY ṽ

the terms of the ANF of g of the form XuY v, where u ∈ ũ + W, v ∈ ṽ + W . In
fact:

g(X,Y ) =
∑

u,v∈Fn
2

λ(u, v)XuY v =
∑

u,v∈(ũ+W,ṽ+W )

λ(ũ+ w, ṽ + w′)X ũ+wY ṽ+w′

=
∑
ũ,ṽ∈U

X ũY ṽ

 ∑
w,w′∈W

λ(ũ+ w, ṽ + w′)XwY w
′


=
∑
ũ,ṽ∈U

gũ,ṽ(X,Y )X ũY ṽ.

As a concrete example, if we consider the case where

g(X,Y ) = X1X2Y1Y2 +X1X2 + Y1Y2 + 1

and let W = 〈e1〉 and U = 〈e2〉, we have that g0,0(X,Y ) = 1, ge2,0(X,Y ) = X1,
g0,e2(X,Y ) = Y1, ge2,e2(X,Y ) = X1Y1.
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Notice that if g satisfies Eq. (18) for a fixed A ∈ GL(n,F2), then gũ,ṽ must
satisfy it too for any ũ, ṽ ∈ U , because the factor X ũY ṽ is fixed by A and AT .

To show this, we introduce the following notation that will also be useful
later: for any two given functions h and g with ANF, respectively, κuv and λuv
we will say that h � g if and only if κuv ≤ λuv for all u, v ∈ Fn2 .

Consider then, for a g that solves Eq. (18), the function gA : (x, y) 7→
g(Ax, y) = g(x,AT y). Then, since (AX)ũY ṽ = X ũ(ATY )ṽ = X ũY ũ, from the
first equality we have that

gAũ,ṽ(X,Y ) = gũ,ṽ(AX,Y ),

while from the second equality we get

gAũ,ṽ(X,Y ) = gũ,ṽ(X,A
TY ).

But the uniqueness of gAũ,ṽ implies then that

gũ,ṽ(AX,Y ) = gũ,ṽ(X,A
TY ).

This means that we can effectively solve Eq. (18) in lower dimension by looking
at gũ,ṽ. Indeed, we will see that understanding the behaviour of such gũ,ṽ for
ũ, ṽ ∈ U such that dimU ≥ n− 3 (i.e. W is of dimension up to 3) is enough to
conclude for the entire g. Let us therefore solve Eq. (18) in this hypothesis.

Lemma 3. Let 1 ≤ i, j, k ≤ n. Consider U the complement space of W :=
〈ei, ej , ek〉. Let g : Fn2 × Fn2 → Fn2 be a function that satisfies Eq. (18). Then, for
all ũ, ṽ ∈ U we have that

gũ,ṽ(X,Y ) = ε0 + ε1h1 + ε2h2 + ε3h3 + ε4h4

where ε0, . . . , ε4 ∈ F2 and

h1(X,Y ) =
∑

w∈W\{0}

Xw

h2(X,Y ) =
∑

w∈W\{0}

Y w

h3(X,Y ) =
∑

1≤l≤n

XlYl

h4(X,Y ) =
∑

(w,w′)∈W×W\W

XwY w
′

=
∑

(w,w′)∈W×W\{(0,0)}

XwY w
′
+ h1(X,Y ) + h2(X,Y ) + h3(X,Y )

where

W := {(w,w′) ∈W ×W \ {(0, 0)} : w = 0 or w′ = 0} ∪ {(el, el) : 1 ≤ l ≤ n} .
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Proof. We have seen that if g satisfies Eq. (18), then gũ,ṽ also does. Therefore,
we can effectively reduce the problem on g : W ×W → F2, i.e. to Fm2 ' W , for
m = dimW ≤ 3. For these low dimensions, the solution to the equation can be
found with the help of a computer, finally yielding exactly the functions of the
thesis.

We are now ready to prove the final result. The main idea of the proof is to
choose appropriately the space U (or, equivalently, its dual W ) and the ũ, ṽ ∈ U
so that, by looking at the simpler gũ,ṽ of which we know the form thanks to the
previous lemma, we can prove that a certain monomial must appear in the ANF
of a g that solves Eq. (18). We remark that imposing that gũ,ṽ satisfy the above
lemma for a choice of U (or W ) is equivalent to imposing that g solves Eq. (18)
for any A such that A|U is the identity.

Proof of Proposition 4. Let us first remark that g = ε0 +ε1g1 +ε2g2 +ε3g3 +ε4g4

for some εi ∈ F2 if and only if there exist ε′0, . . . , ε
′
4 ∈ F2 such that

g = ε′0 + ε′1g1 + ε′2g2 + ε′3g3 + ε′4g
′
4 (21)

where g′4(X,Y ) = g4(X,Y ) + g1(X,Y ) + g2(X,Y ) + g3(X,Y ). For the rest of
the proof, it will be more convenient to work on this other set of generators
{1, g1, g2, g3, g

′
4} because they have complementary ANF coefficients and we can

divide the proof in four distinct cases.
Indeed, as noticed in Remark 1, if g is of the form of Eq. (21), then it indeed

satisfies the hypothesis. The converse holds if we show that

1) if there exists µ 6= 0 such that Xµ � g, then g1(X,Y ) =
∑
u∈Fn

2 \{0}
Xu � g

2) if there exists ν 6= 0 such that Y ν � g, then g2(X,Y ) =
∑
v∈Fn

2 \{0}
Y v � g

3) if there exists 1 ≤ k ≤ n such that XkY k � g, then g3(X,Y ) =
∑

1≤i≤nXiYi
� g

4) if there exist µ, ν ∈ Fn2 such that for some 1 ≤ i < j ≤ n we have µi = νj = 1
and XµY ν � g, then g′4(X,Y ) � g.

1-2) Consider h(X) := g(X, 0). It is clear that for any A ∈ GL(n,F2)

h(AX) = h(X)

and Xu � g(X,Y ) ⇐⇒ Xu � h(X). Therefore, let us prove that if Xµ � h(X),
then

∑
u∈Fn

2 \{0}
Xu � h. Since h is not the constant function, let u1 6= 0 such

that h(u1) = 1 + h(0). Then for any u ∈ Fn2 \ {0}, we may consider the matrix
Au ∈ GL(n,F2) such that Au1 = u and we have

h(u) = h(Auu1) = h(u1) = 1 + h(0)

for all u 6= 0, i.e. h(X) =
∑
u∈Fn

2 \{0}
Xu+h(0). The same reasoning can be done

for ii), considering h(Y ) := g(0, Y ).
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3) Let j 6= k an integer between 1 and n. Then Lemma 3 with W = 〈ej , ek〉
and ũ = ṽ = 0 implies that, since XkYk � g, then XkYk � g0,0(X,Y ) and g0,0

is of the form h3, i.e. g0,0(X,Y ) = XjYj + XkYk. Therefore XjYj � g for any
j 6= k.

4) We want to show that for all u, v ∈ Fn2 such that ui = vj = 1 for some
i 6= j, then XuY v � g. In particular, we are going to show that

a) if µ = ei and ν = ej for some i 6= j, then XkYj +XiXkYj � g for all k 6= j;
b) if µ = ei and ν = ej for some i 6= j, then XkYh � g for any 1 ≤ k < h ≤ n,

k 6= h.
c) Let wt(u) be the number of non-zero components of u. If 2 ≤ wt(µ) ≤ n− 1,

then XuY ν � g for any u ∈ Fn2 such that wt(u) = wt(µ).
d) Additionally, if 2 ≤ wt(µ) ≤ n − 1, there exist u1, u2 ∈ Fn2 \ {0} such that

Xu1Y ν +Xu2Y ν � g with wt(u1) + 1 = wt(u) = wt(u2)− 1.

From these four facts, it will follow for induction on the weight of u that

– if ν = ej then XuY ν � g for any u 6∈ {0, ej} and
– if ν 6= ej , then XuY ν for any u 6= 0.

The same reasoning applied to XµY v for v ∈ Fn2 \ {0} will conclude the proof.
Therefore, let 1 ≤ k ≤ n (possibly k = i or k = j) and consider W :=

〈ei, ej , ek〉 and the projections of µ, ν onto its dual U , i.e. µ̃ = µ + ei + µjej +
µkek ∈ U and ν̃ = ν + νiei + ej + νkek ∈ U . Then we have that XiYj � gµ̃ν̃ so
that Lemma 3 implies that gµ̃ν̃(X,Y ) = h4(X,Y ) and, in particular,

h4(X,Y )X µ̃Y ν̃ � g(X,Y ) (22)

From Eq. (22), if k 6= i, j and µ = ei, ν = ej (and therefore µ̃ = ν̃ = 0) we
have:

XkYj +XiXkYj � g0,0(X,Y ) � g,

for any k 6= i, j, which proves a).
Furthermore, if we consider, for any h 6= j, W = 〈ej , eh〉, since XiYj � g, we

have that Yj � gei,0, and therefore gei,0 = Yj+Yh+YjYh from the lemma, which
finally implies that XiYh � g. Applying a) to each XiYh for every h, proves that
for any h, XkYh � g for all k 6= h, which proves b).

To prove c) notice that from Eq. (22) it follows that, for any k 6= i, then
XiXkYj � h4(X,Y ), and therefore XiXkX

µ̃Y ν � g for any k 6= i. Furthermore,
for any k 6= i, since XiXkX

µ̃Y ν � g, we can prove that for any h 6= k

XhXkX
µ̃Y ν � g

with the same reasoning applied to W = 〈ei, ek, eh〉. Therefore, this proves that
Xek+eh+µ̃Y ν � g for any 1 ≤ h < k ≤ n. If µ̃ = 0, then we would be finished.
Otherwise, apply the same reasoning for the other i 6= j such that µi = 1 to get
that XuY ν � g for any u such that wt(u) = wt(ν).

For d), we use Eq. (22) and find that, when k 6= i, j, since XiXkYj �
h4(X,Y ), then XiXkX

µ̃Y ν =� g. Therefore, if we choose k such that µk = 0,
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this means that u2 = ek+µ is of greater weight thatn µ and such that Xu2Y ν �
g. On the other hand, if we let l 6= i such that el = 1 and consider W = 〈ei, el, ej〉
and µ̃, ν̃ the projection of µ̃, ν̃ onto W . Then, since XiXlYjY

νl
l � gµ̃,ν̃ , then also

XiYjY
νl
l � gµ̃,ν̃ and conclude because Xµ−µlelY ν � g, so that we have found

u1.
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