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Abstract. Lattice-based digital signature schemes following the hash-and-sign design

paradigm of Gentry, Peikert and Vaikuntanathan (GPV) tend to offer an attractive

level of efficiency, particularly when instantiated with structured compact trapdoors.

In particular, NIST postquantum finalist Falcon is both quite fast for signing and

verification and quite compact: NIST notes that it has the smallest bandwidth (as

measured in combined size of public key and signature) of all round 2 digital signa-

ture candidates. Nevertheless, while Falcon–512, for instance, compares favorably

to ECDSA–384 in terms of speed, its signatures are well over 10 times larger. For

applications that store large number of signatures, or that require signatures to fit in

prescribed packet sizes, this can be a critical limitation.

In this paper, we explore several approaches to further improve the size of hash-

and-sign lattice-based signatures, particularly instantiated over NTRU lattices like

Falcon and its recent variant Mitaka. In particular, while GPV signatures are usu-

ally obtained by sampling lattice points according to some spherical discrete Gaussian

distribution, we show that it can be beneficial to sample instead according to a suitably

chosen ellipsoidal discrete Gaussian: this is because only half of the sampled Gaussian

vector is actually output as the signature, while the other half is recovered during ver-

ification. Making the half that actually occurs in signatures shorter reduces signature

size at essentially no security loss (in a suitable range of parameters). Similarly, we

show that reducing the modulus q with respect to which signatures are computed can

improve signature size as well as verification key size almost “for free”; this is partic-

ularly true for constructions like Falcon and Mitaka that do not make substantial

use of NTT-based multiplication (and rely instead on transcendental FFT). Finally,

we show that the Gaussian vectors in signatures can be represented in a more compact

way with appropriate coding-theoretic techniques, improving signature size by an ad-

ditional 7 to 14%. All in all, we manage to reduce the size of, e.g., Falcon signatures

by 30–40% at the cost of only 4–6 bits of Core-SVP security.

1. Introduction

Currently deployed public-key cryptography is, to a large extent, vulnerable to general-

purpose quantum computers. As the likelihood increases that such computers may be
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built in the coming decades, it appears important to prepare the transition to quantum-

secure primitives instead. Doing so, however, requires postquantum schemes that are not

far below currently deployed ones in terms of efficiency. Selecting and recommending such

schemes is the main goal of the ongoing NIST standardization effort for postquantum

cryptography. As part of that effort, primitives based on algebraic lattices have generally

been strong contenders, with good performance and conservative security analyses: many

of the finalists are in that category.

For digital signatures in particular, two of the three NIST round 3 finalists are lattice-

based: Dilithium [10, 26] and Falcon [33]. The third finalist, Rainbow [8], is a multivariate

scheme that boasts very short signatures and fast signing and verification, but suffers from

very large keys and has seen its security substantially reduced by recent attacks [3]; as a

result, NIST has leaned towards the lattice candidates. Indeed, the lattice-based signatures

are the only “TLS-ready” candidates, in the sense that they are reasonably efficient and

have a relatively small bandwidth requirement (the sum of public key size and signature

size, which is the relevant size metric for TLS and other protocols relying on public key

certificates). Recently, isogeny-based signatures [7] have also emerged as possible options

with even better bandwidth requirements (although they were developed too late for the

current NIST process), but they are considerably slower than lattice-based schemes, and

thus limited in terms of possible applications.

Dilithium and Falcon represent each of the two main paradigms for the construction

of lattice-based signatures: Dilithium follows Lyubashevsky’s Fiat–Shamir with aborts

framework [24, 25], while Falcon uses the hash-and-sign framework of Gentry, Peikert

and Vaikuntanathan [19]. Due to this and several other design choices (such as the de-

liberate avoidance of Gaussian sampling), Dilithium is substantially simpler and easier

to implement. Falcon on the other hand, is the strongest contender in terms of per-

formance: it has signing times on par with Dilithium or better, faster verification times,

and its public key and signature sizes are significantly smaller (by a factor of ≈ 1.5 for

public keys and ≈ 3.5 for signatures at equivalent security levels). In fact, NIST mentions

that Falcon had the best bandwidth requirements of all nine round 2 candidates for

signatures.

In terms of speed, at least on larger CPU architectures, both Dilithium and Fal-

con could replace currenly deployed schemes without much trouble: for example, Fal-

con–512 outperforms OpenSSL’s implementation of ECDSA (as of version 1.1.1l) for

all supported curve parameters in terms of verification time (by far), and all parameters
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except nistp224 and nistp256 for signing. Key and signature sizes, however, are a dif-

ferent story. While ECDSA over a 256-bit curve has 32-byte verification keys and 64-byte

signatures those numbers are 897 and 666 respectively for Falcon–512, and 1312 and 2420

respectively for the smallest round 3 parameters of Dilithium: bandwidth requirements

are thus ≈ 16 times larger with Falcon and ≈ 39 times larger with Dilithium.

These larger key and signature sizes can be a serious impediment for numerous applica-

tions. For example, the DNSSEC protocols transmits verification keys as well as signatures

on DNS records for signed DNS zones, and this information has to fit within a single TCP

DNS packet. ICANN has pointed out [34] how this could cause difficulties for the tran-

sition to postquantum signatures. Similarly, TLS handshakes involve the transmission of

multiple signatures and verification keys, and larger keys and signatures lead to more data

transmission at handshake stage. CloudFlare observed [37] that this caused the handshake

to exceed the initial TCP congestion window of most network infrastructure, leading to

substantial slowdown. DNSSEC and TLS (or routers worldwide) could in principle be up-

dated to mitigate those issues, but the massive coordination needed to do so makes that

unlikely even in the medium term. Finally, some protocols like blockchains also require

storing considerable amounts of digital signatures, and are therefore directly affected by

signature size in terms of storage requirements and communication cost.

In view of these challenges, exploring ways of making lattice-based signatures and keys

shorter is of clear importance.

1.1. Hash-and-sign signatures over lattices. In this paper, we propose several ap-

proaches to reduce the size of lattice-based signatures, with particular emphasis on hash-

and-sign signatures over NTRU lattices: we mainly have Falcon in mind, but our tech-

niques also apply to its recent variant Mitaka [?], as well as to the earlier scheme of

Ducas, Lyubashevsky and Prest [11]. In order to describe these approaches, it is useful to

briefly recall the structure of these schemes.

First, following the framework of Gentry, Peikert and Vaikuntanathan, hash-and-sign

signatures over lattices are constructed as follows: they are defined with respect to a

certain lattice L (a subgroup of Zd, say), which is usually chosen q-ary (i.e., such that

qZd ⊂ L for some integer modulus q). The signing key is a good basis, or trapdoor, for

the lattice L , the knowledge of which makes it possible to solve the approximate closest

vector problem for L within a relatively small factor. In other words, given an arbitrary

vector c ∈ Zd, the trapdoor makes it possible to find x ∈ L such that the distance ‖x−c‖
is relatively small. By carefully randomizing this operation, it also becomes possible to
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do discrete Gaussian sampling : sample a lattice point x ∈ L according to a distribution

statistically close to the discrete Gaussian DL ,σ,c over L centered at c with relatively

small standard deviation σ. On the other hand, the verification key is a “bad” basis of

L , with which one can decide membership to the lattice, but that is not good enough to

enable finding close vectors or sample discrete Gaussians with small standard deviation.

Then, the signing algorithm proceeds as follows. The message to be signed is hashed

to a certain point c ∈ Zdq , and the signer uses its discrete Gaussian sampling algorithm to

sample a vector x ∈ L according to DL ,σ,c. The signature is then the vector s = x− c,

which is relatively short: ‖s‖ ≈ σ
√
d (it can also be seen as a sample from the Gaussian

distribution DL−c,σ supported over the lattice coset L − c). To verify the signature,

one recomputes c by hashing the message, checks that x = s + c belongs to the lattice

L and that s is indeed short. Security relies in a crucial way on the discrete Gaussian

sampling, which ensures that signatures follow a distribution that depend only on the

lattice L and the message, and not on the specific trapdoor used by the signer (contrary

to what happened in early insecure hash-and-sign constructions like NTRUSign and GGH,

in which signatures would leak information on the trapdoor, and therefore ultimately allow

key recovery [30, 12, 38]).1

A standard optimization is the following. Since the lattice L is q-ary, it can be described

by a parity-check matrix A ∈ Zk×dq such that x ∈ L if and only if Ax ≡ 0 mod q. One

can assume without loss of generality (at least for prime q) that A = [A0|Ik] for some

A0 ∈ Zk×(d−k)
q . Thus, for any x = (x0,x1) ∈ Zd−k × Zk, we have x ∈ L if and only if

A0x0 + x1 ≡ 0 mod q. In that setting, if the signature s computed above is written as

(s0, s1) ∈ Zd−k × Zk, one can simply transmit the compressed signature s0. Indeed, the

verifier can then recover s1 using the relation:

0 ≡ Ax ≡ A(s + c) ≡ A0s0 + s1 + Ac mod q

and hence s1 ≡ −A0s0 −Ac mod q. Signature verification then consists in recovering the

s1 component and checking that s is small as expected (if it is, it is a valid signature with

respect to the uncompressed verification algorithm by construction, so compression does

not weaken security).

A further optimization used in practical schemes is as regards to the representation

of the signature vector s0. By construction, it follows a discrete Gaussian distribution:

1This independence of the distribution on the trapdoor could in principle be achieved by distributions

other than Gaussians, and it was recently shown to be feasible [27], albeit with much worse parameters

than can be achieved with Gaussian sampling.
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therefore, its coefficients are far from uniform. They lie in an interval [−B,B] with

B = Θ(σ
√

log(d− k)), but concentrate around 0. Therefore, simply representing them as

numbers in [−B,B] is suboptimal: while the vector s0 has Θ
(
(d−k) log σ

)
bits of entropy,

this naive representation would use Θ
(
(d − k) log log(d − k)

)
more bits. This can be ad-

dressed by coding-theoretic compression techniques: for example, Falcon (following the

Gaussian-sampling based Fiat–Shamir signature scheme BLISS [9]) uses Huffman coding

to reduce the representation size.

1.2. Our contributions. Using the two techniques described above, it may seem that all

the available information on s is used to make the signature smaller: by transmitting only

s0, we fully use the fact that s is in a known lattice coset, and by carrying out Huffman

coding, we also take advantage of its Gaussian distribution. Since those two properties

basically describe the distribution, it does not seem easy to do better.

In this paper, we explore and analyze three further strategies to reduce signature size

(and, in one case, verification key size as well): one on the coding-theoretic side, and two

on the lattice side.

Improved coding of Gaussian vectors. Our first observation (although it is presented last

in the paper) is that the Huffman coding technique used in Falcon is fairly subopti-

mal: in particular, it represents the sign bit of Gaussian samples separately, and carries

out a unary encoding of the absolute value, which follows a folded Gaussian distribution.

Instead, we show that we can represent the whole Gaussian sample more compactly us-

ing batch Golomb-Rice coding with ANS (Asymetric Numeral System), and achieve a

representation size for the full vector very close to the entropy bound without any compu-

tationally expensive technique like arithmetic coding. This allows us to reduce the size of

signatures for Falcon by 7–14% essentially for free, and applies to all Gaussian sampling

techniques in a black-box way.

Ellipsoidal Gaussians. Our second idea is based on the observation that the hardness of

the approximate closest vector problem that underlies the security of a hash-and-sign

based signature is, roughly speaking, determined by the volume of the decoding domain

(the domain around the hashed point c that contains lattice vectors x corresponding to

valid signatures s = x − c). When transmitting the entire vector s, it is thus optimal

to choose the decoding radius as a ball around c, and hence sample x according to a

spherical Gaussian around c, so as to minimize the length of s for a fixed decoding volume.

However, as we have seen, we actually only transmit s0. Therefore, one can try to make

the actually transmitted signature shorter by choosing a different decoding domain making
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the transmitted part s0 shorter, and the recovered part s1 longer, while maintaining the

overall decoding volume constant.

This intuition can be realized by sampling x according to an ellipsoidal discrete Gauss-

ian distribution instead of a spherical one. Indeed, existing lattice Gaussian samplers either

support ellipsoidal Gaussians out-of-the-box (as is the case for the Klein–GPV [19] and

Peikert [31] samplers) or can be fairly easily adapted to do so for our ellipsoids of interest

(as is the case for Prest’s hybrid sampler [32, ?] and the fast Fourier orthogonalization-

based sampler [13] used in Falcon).

There are of course substantial technical difficulties to address in order to fully make

this idea work. To begin with, one needs to verify that it is possible to construct trapdoors

for these ellipsoidal Gaussian samplers that achieve the same decoding volume as the one

we started from; this is experimentally validated in our case. Moreover, while preserving

the decoding volume is a rule of thumb to maintain security, extensive analysis is needed to

evaluate the actual security level of the resulting scheme, at least for practical constructions

like DLP, Falcon and Mitaka whose security is heuristic in nature (it provably reduces

to, e.g., approximate CVP in a certain family of lattices, but the concrete parameters are

too aggressive to support worst-case to average-case reductions in the style of [35, 36]). As

a matter of fact, we find that this approach does cause a mild security loss of a 3–4 bits

for typical parameters, when reducing signature size by 20–30%. Given the comfortable

security margin of lattice-based constructions, this is likely to be an acceptable trade-off

in many contexts.

Using a smaller modulus q. A simpler idea of the same flavor as the previous one is to

simply reduce the modulus q with respect to which the q-ary lattice L is defined. We

focus on NTRU lattices in what follows. The security analysis already carried out for the

NTRU-based schemes DLP, Falcon and Mitaka shows that, at the proposed parameters

for those schemes (and unlike other schemes like ModFalcon [?]), the best attacks are

actually independent of q. As a result, it is possible to increase or decrease q in a certain

range at no security loss, up to the point where other q-dependent attacks start to kick in.

For those lattices, the trapdoor makes it possible to sample signatures s ∼ DL−c,σ with

parameter σ = Θ(
√
q): the transmitted vector s0 ∈ Zd/2 then has coefficients of magnitude

≈ √q (and can be represented by Θ(log(d
√
q)) bits after encoding). Moreover, the module

structure reduces the parity-check matrix (i.e., the verification key of the signature scheme)

to a single ring element h which can be seen as a uniform-looking element of Zd/2q . As

a result, a very simple way to reduce both signature size and verification key size is to
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choose a smaller q: reducing q by a factor of γ should reduce signature size by roughly
d
4 log2 γ bits and verification key by d

2 log2 γ bits.

Falcon parameters (like BLISS, DLP, and Mitaka in the power-of-two setting) are

chosen for the modulus q = 12289, which is the smallest prime with the property that

q ≡ 1 mod 212, making it number theoretic transform-friendly for power-of-two cyclotomics

up to dimension 2048 (and in particular also 512 and 1024). Reducing q loses this property,

and therefore can be seen as a trade-off. Practically speaking, however, this is a fairly minor

trade-off as far as larger CPU architectures are concerned, because Falcon mostly relies

on transcendental FFT instead of NTT for multiplication. NTT is only used for simplicity

in signature verification and a small part of key generation, but it is easy to replace it

by FFT followed by reduction modulo q everywhere, at little performance cost. And the

same holds for variants like Mitaka.

An obvious question, however, is how far we can go. Certainly, arbitrarily small values

of q should be impossible, if only for the fact that signatures would not “fit” anymore (in

the sense that ‖s‖∞ would exceed q/2). But even before that, one encounters q-dependent

attacks that slightly reduce security with respect to forgeries, as well as an issue with the

generation of trapdoors. Normally, the NTRU trapdoor consists of a pair of ring elements

(f ,g) such that h = g/f mod q over the ring. Moreover, f and g have to be sampled

such that ‖(f ,g)‖ ≈ √q. As a result, f and g are normally sampled as discrete Gaussians

with parameter ≈
√
q/d. However, when q becomes small,

√
q/d can go below 1 (or more

precisely, below the so-called “smoothing parameter” of Zd), at which point the discrete

Gaussian vector (f ,g) stops “behaving like” a continuous Gaussian. It becomes ternary

and sparse, with abnormally high probability of very low Hamming weight, giving rise to

weak keys with non-negligible probability.

The correct approach is then to generate (f ,g) directly as sparse ternary vectors of

prescribed Hamming weight in order to reach to target length ≈ √q (and this observation

also applies to the ellipsoidal case for very skewed ellipsoids). This eliminates the abnor-

mal behavior of sub-smoothing discrete Gaussians, but still opens up the possibility of

additional attacks exploiting the small, sparse secret keys. We therefore carefully analyze

those attacks, and find that they allow us to reduce q down to values like q = 257 at little

security loss, and for very substantial gains in terms of key and signature size!

Security analysis. As was apparent from the previous discussion, the security analysis of

our new compression techniques relies on extensive cryptanalytic work. Since there is no

simple way of relating the security of a scheme like Falcon between different values of

q, or between different choices of Gaussian covariance matrices, one has to estimate the
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Table 1. Parameters and classical bit security estimates for Falcon

and Mitaka with q = 257 and ellipsoidal Gaussians with factor γ = 8

compared to the original schemes, in dimension 512 and 1024.

Falcon–512 Mitaka–512

Security Sig Size Key Size Security Sig Size Key Size

Original 123 666 896 102 710 896

Small q = 257 118 425 576 94 475 576

Ellipsoidal γ = 8 116 410 896 92 460 896

Falcon–1024 Mitaka–1024

Security Sig Size Key Size Security Sig Size Key Size

Original 272 1280 1792 233 1405 1792

Small q = 257 264 805 1152 209 935 1152

Ellipsoidal γ = 8 261 780 1792 204 905 1792

best attacks in each setting and parameter range. As usual, this is done separately for

forgery (which follows a fairly standard methodology, but with appropriate twists for the

ellipsoidal setting) and key recovery (where more subtle attacks come into play).

We in particular identify several parameter regimes relevant to the key recovery analysis,

and carefully evaluate possible attacks in each of them. For ellipsoidal sampling, we

distinguish between a range where both components (f ,g) of the trapdoor are Gaussian,

and a range where the smaller component becomes ternary and sparse (and is therefore

chosen with fixed Hamming weight). Similarly, for the small q case, while the security

analysis of Falcon and Mitaka applies directly for Gaussian (f ,g), other attacks become

relevant in the sparse ternary regime.

As part of this analysis, we propose several new lattice-based attacks that may be of

independent interest.

Resulting parameters. Example parameters achievable with our approaches, including sig-

nature size, verification key size and classical bit security, are presented in Table 1. More

complete numbers can be found in Table 2. As we can see, our techniques lead to a gain

of 30–40% in signature size for Falcon, for example, at the cost of only a few bits of

Core-SVP security. Using small q also leads to a considerable improvement in key size, of

around 35%.
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1.3. Related works. Chuengsatiansup et al. extended the Falcon design to NTRU

lattices of larger (module) ranks and proposed ModFalcon [?]. This relaxation of con-

straints lead to additional parameters sets for intermediate security level. We note that

our techniques can apply to ModFalcon as well.

In [?], Chen, Genise and Mukherjee introduce the notion of approximate trapdoors

to construct smaller hash-and-sign signatures based on LWE and SIS. The size of such

signatures is then further reduced using elliptic Gaussian sampling in [?]. However, we

stress that these constructions rely on Micciancio-Peikert “gadget trapdoors” [?], and that

adapting their techniques to the NTRU setting that is the focus of our paper seems far

from being straightforward. On the other hand, some of our analysis and techniques could

be used in Micciancio-Peikert schemes. efficient than NTRU-trapdoor based signatures.

Asymmetric variants of LWE and SIS were studied in [?] and used to design lattice-based

cryptosystems. The assymetry allows to reduce the bandwidth at no cost on the security

level, and the flavour reminds of the elliptic Gaussian sampling of our work. We note

that [?] focuses on lattice-based KEM and Fiat-Shamir signatures, which have constraints

and challenges quite different from our setting.

Lastly, some efforts have been made to design lattice schemes with a small modulus.

By using error correcting codes, the modulus in LWE-based KEMs can be reduced to

byte-level [?]. Fouque et al. designed BAT–KEM, also based on optimal NTRU trapdoors

combined with a new decryption approach to work with small moduli [?]. While the

underlying objects in there schemes and ours are similar, the cryptanalysis of KEM and

signatures are significantly different problems. modulus size affects the security of the

signature scheme.

2. Background

When f is a real-valued function over a countable set S, we note f(S) =
∑
s∈S f(s)

assuming that this sum is absolutely convergent. Write At for the transpose of any matrix

A. Let Q ∈ Rn×n be a symmetric matrix. We write Q � 0 when Q is positive definite, i.e.

xtQx > 0 for all non-zero x ∈ Rn. We also write Q1 � Q2 when Q1 − Q2 � 0. It holds

that Q � 0 if and only if Q−1 � 0 and that Q1 � Q2 � 0 if and only if Q−1
2 � Q−1

1 � 0.

A positive definite matrix Q defines a norm as ‖x‖Q =
√
xtQx, and corresponds uniquely

to a bilinear form 〈x,y〉Q = xtQy. Let s1,Q(A) = maxx6=0
‖Ax‖Q
‖x‖Q .

A lattice L is a discrete additive subgroup in a Euclidean space. When the space is Rm,

and if it is generated by (the columns of) B ∈ Rm×d, we also write L (B) = {Bx | x ∈ Zd}.
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If B has full column rank, then we call B a basis and d the rank of L . When the ambient

space is equipped with a norm ‖ · ‖Q, the volume of L is VolQ(L ) = det(BtQB)
1
2 =

|det(B)|
√

det(Q) for any basis B.

Power-of-two cyclotomic fields. Let d = 2` for some integer ` > 1 and ζd to be a 2d-th

primitive root of 1. Then for a fixed d, K := Q(ζd) is the d-th power-of-two cyclotomic

field, and its ring of algebraic integers is R := Z[ζd]. The field automorphism ζd 7→
ζ−1
d = ζd corresponds to the complex conjugation, and we write the image f∗ of f under

this automorphism. We have K ' Q[x]/(xd + 1) and R ' Z[x]/(xd + 1), and both are

contained in KR := K ⊗R ' R[x]/(xd + 1). Each f =
∑d−1
i=0 fiζ

i
d ∈ KR can be identified2

with its coefficient vector (f0, . . . , fd−1) ∈ Rd. The adjoint operation extends naturally to

KR, and K +
R is the subspace of elements satisfying f∗ = f .

The cyclotomic field K comes with d complex field embeddings ϕi : K → C which

map f seen as a polynomial to its evaluations at the odd powers of ζd. This defines the

so-called canonical embedding ϕ(f) := (ϕ1(f), . . . , ϕd(f)). It extends straightforwardly to

KR and identifies it to the space H = {v ∈ Cd : vi = vd/2+i, 1 6 i 6 d/2}. For notational
simplicity, we sometimes identify an element x ∈ KR as ϕ(x) ∈ H and denote by ϕi(x)

its i-th coordinate. Note that ϕ(fg) = (ϕi(f)ϕi(g))i6d. When needed, this embedding

extends entry-wise to vectors or matrices over KR. We let K ++
R be the subset of K +

R

which have all positive coordinates in the canonical embedding. We have a partial ordering

over K +
R by f � g if and only if f − g ∈ K ++

R . The algebra KR is also equipped with a

norm N(x) =
∏
i ϕi(x), which extends the standard field norm.

KR-valued matrices. For Q ∈ K 2×2
R , we write Q∗ its conjugate-transpose, where ∗ is

the conjugation in KR. Positive definiteness extends to such matrices: we say Q is totally

positive definite when Q = Q∗and all the dmatrices ϕi(Q) induced by the field embeddings

are hermitian positive definite. We then write Q � 0. For example, B∗B � 0 for all

B ∈ K 2×2
R . A positive definite form over KR corresponds uniquely to a KR-bilinear

form 〈x,y〉Q = x∗Qy. 3 Under the canonical embedding, it induces a euclidean norm

on H as ‖ϕ(x)‖2Q =
∑
i ϕi(〈x,x〉Q). Such forms come with a corresponding notion of

orthogonality. In particular, the well-known Gram-Schmidt orthogonalization procedure

for a pair of linearly independent vectors b1,b2 ∈ K 2 is defined as

b̃1 := b1, b̃2 := b2 −
〈b1,b2〉Q
〈b1,b1〉Q

· b̃1.

2This is the so-called coefficient embedding.
3We keep the same notation as in the common real case, since in the context of our work it will causes

no confusion.
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One readily checks that 〈b̃1, b̃2〉Q = 0. The Gram-Schmidt matrix with columns b̃1, b̃2

is denoted by B̃ and we have det B̃ = detB. For a given form Q, we let |B|K ,Q =

max(‖ϕ(〈b̃1, b̃1〉Q)‖∞, ‖ϕ(〈b̃2, b̃2〉Q)‖∞)1/2.

NTRU lattices. This work deals with free R-modules of rank 2 in K 2, or in other words,

groups of the form M = Rx + Ry where x = (x1, x2),y = (y1, y2) span K 2. A mild

change compared to previous works on the subject is that we equip the ambient space

K 2
R with a totally positive definite form Q and its corresponding inner product. If we

write B the basis matrix for M , the volume of the associated lattice is VolQ(M ) =

N(det(B∗QB))1/2. If B̃ is the Gram-Schmidt orthogonalization of B with respect to Q,

then we also have VolQ(M )2 =
∏
i N(〈b̃i, b̃i〉Q).

Given f, g ∈ R such that f is invertible modulo some prime q ∈ Z, we let h = f−1g mod

q. The NTRU module determined by h is LNTRU = {(u, v) ∈ R2 : uh − v = 0 mod q}.
Two bases of this free module are of particular interest:

Bh =

[
1 0

h q

]
and Bf,g =

[
f F

g G

]
,

where F,G ∈ R are such that fG− gF = q, and ‖(F,G)‖ should be relatively small. This

module is usually seen as a lattice of volume qd N(detQ)1/2 in (R2d, Q) in the coefficient

embedding.

Lemma 2.1 ([32, ?], adapted). Let Bf,g be a basis of an NTRU module and b1 = (f, g).

We have √qN(detQ)1/(4d) 6 |Bf,g|K ,Q and

|Bf,g|2K ,Q = max

(
‖ϕ(〈b1,b1〉Q)‖∞,

∥∥∥∥ q2 · detQ

ϕ(〈b1,b1〉Q)

∥∥∥∥
∞

)
.

Gaussians measures and module lattices. For a positive definite matrix Q ∈ Rd×d, the
Gaussian function with standard deviation σ is ρQ,σ(x) = exp(− 1

2‖x‖
2
Q/σ

2). The standard

(spherical) Gaussian function corresponds to Q = I. Then, for a full rank lattice L in

Rd and a given t ∈ Rd, the discrete Gaussian probability with parameters t and σ with

respect to the form Q is defined as

DL ,Q,σ,t(x) =
ρQ,σ(x− t)

ρQ,σ(L − t)
,

where x ranges in L . When t = 0, we omit it. When given a totally positive definite

Q over KR and representing R-modules with any embedding of K , we keep the same

notation, that is, we omit writing the embedding in formulas, as the context will always

be clear.

11



Algorithm 1: Ring sampler

Input: A target center t ∈ KR, parameters σ ∈ K ×R and a real r > 0.

Result: y with distribution close to DR,(σσ∗+r2)−1I,1,t

1 x← σ · NKR

2 return bt− xer

For any positive definite form Q, there are always matrices T ∈ Rd×d such that Q =

TtT (one example is given by the Cholesky decomposition). One checks that ρQ,σ(x) =

ρI,σ(Tx) for any such T, and well-known results about lattice Gaussian measures then

extend to any form Q. The smoothing parameter of a lattice L for a given ε > 0 is

ηQ,ε(L ) = min{s > 0 : ρQ−1,1/s(L
∨) 6 1 + ε}. Here, L ∨ refers to the dual lattice, and

its exact definition is not needed: in this work, it is enough to know that for a full rank

lattice L (B) ⊂ Rd, it is encoded by B−t. The next lemma says that above the smoothing

parameter, a discrete Gaussian measure does not “see” cosets of a lattice (hence the name).

Lemma 2.2 (Adapted from [28]). Let Q be a positive definite form over Rd, t ∈ Rd and

ε > 0. Let L ⊂ Rd be a full rank lattice. If σ > ηQ,ε(L ), we have ρQ,σ(L − t) ∈
[ 1−ε
1+ε , 1] · ρQ,σ(L ).

We will also use standard tail bounds for elliptic discrete Gaussians.

Lemma 2.3 (Adapted from [25]). Let Q be a positive definite form over Rd, t ∈ Rd and

ε > 0. Let L ⊂ Rd be a full rank lattice and x← DL ,Q,σ,t, where σ > ηQ,ε(L ). For any

τ > 1, we have P[‖x− t‖Q > τ · σ
√
d] 6 2 · 1+ε

1−ε · τ
d exp((1− τ2)d/2).

Lastly, we give the following upper bound on the smoothing parameter.

Lemma 2.4 (Adapted from [19, ?]). Let BR2 be a free R-module, and [b1, . . . ,b2d]

the basis of the associated lattice L in R2d. Let ε > 0. For all totally positive definite

Q ∈ K 2×2
R , we have ηQ,ε(L ) 6 |B|Q,K · ηε(Zd).

For any positive definite form Q ∈ R2d×2d, we have ηQ,ε(L ) 6 max ‖b̃i‖Q · ηε(Z), where

b̃1, . . . , b̃2d is the Gram-Schmidt orthogonalization of the bi’s with respect to Q. For any

integer n > 0, we have ηε(Zn) 6 1
π

√
log(2n(1+1/ε))

2 .

Some Gaussian samplers. Algorithm 1 is a subcase of [31] and inspired of [32, ?]. It allows

to sample spherical discrete Gaussians in R for adequate parameters, as long as a discrete

Gaussian sampler over the integer is given.

12



Algorithm 2: Module Elliptic Gaussian sampler

Input: A target center t ∈ K 2
R , a totally positive matrix Q ∈ K 2×2

R , a basis B = [b1,b2] of

a free R-module M and its GSO [b̃1, b̃2] with respect to Q, and a parameter σ ∈ KR.

Result: z with distribution negligibly far from DM,(σσ∗)−1Q,1,c.

1 Precomputed: τi :=
√

σσ∗

〈b̃i,b̃i〉Q
− r2 ∈ K ++

R .

2 s← 0

3 t̃2 ←
〈b̃2,t〉Q
〈b̃2,b̃2〉Q

4 x2 ← Algorithm 1(t̃2, τ2, r)

5 t′ ← t− x2b2, s← x2b2

6 t̃1 ←
〈b̃1,t

′〉Q
〈b̃1,b̃1〉Q

7 x1 ← Algorithm 1(t̃1, τ1, r)

8 s← s + x1b1

9 return s

Proposition 2.1 (Adapted from [31, ?]). Let D be the output distribution of Algorithm 1.

If ε < 1
2 and r > ηε(R), then the statistical distance between D and DR,1,σσ∗+r2,t is

bounded by 2ε and we have

sup
y∈R

∣∣∣∣ D(y)

DR,(σσ∗+r2)−1I,1,t(y)
− 1

∣∣∣∣ 6 4ε.

We observe that equivalently, Algorithm 1 can reach any covariance parameter τ ∈
K ++

R as long as τ − r2 ∈ K ++
R . Algorithm 2 is a generalization of the so-called hybrid

sampler of [32, ?] to obtain Gaussian ring elements with elliptic covariances. It relies on

the fact that elliptic Gaussians are merely spherical Gaussians in a different metric and is

proved in Appendix A.

Proposition 2.2. Let D be the output distribution of Algorithm 2. If ε < 1
2 and σσ∗ �

(|B|K ,Q · ηε(R))2, then the statistical distance between D and DM ,(σσ∗)−1Q,1,t is bounded

by 7ε and we have

sup
y∈M

∣∣∣∣ D(y)

DM ,(σσ∗)−1Q,1,t(y)
− 1

∣∣∣∣ 6 14ε.

As already observed, sampling elliptically amounts to sampling spherically but changing

the form defining the metric. It is thus no surprise that the well-known Klein sampler [19]

can be extended identically by simply computing the initial Gram-Schmidt orthogonal-

ization with respect to the adequate form: this change is purely syntactic. In particular,
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there is no obstruction either to extending Falcon’s fast Fourier sampler [13]: its core

mechanic relies on the underlying tower of cyclotomic field and an adequate representation

of the Cholesky factor for the lattice basis. The proof and description would be tedious

and uneventful, yet for the sake of modularity, we restrict ourselves to a statement in this

article.

Proposition 2.3 (Adapted from [19, 32]). The fast Fourier sampler of [33] can be extended

to a Gaussian sampler over a module lattice L (B) ∈ (R2d, Q). Let D be its output

distribution. Let also b̃1, . . . , b̃2d be the Gram-Schmidt of B with respect to Q, ε < 1/2

and t ∈ R2d. When σ > ηε(Z) · maxi62d ‖b̃i‖Q, the statistical distance between D and

DL (B),Q,σ,t is bounded by (2d+ 1)ε and we have

sup
y∈L (B)

∣∣∣∣ D(y)

DL (B),Q,σ,t(y)
− 1

∣∣∣∣ 6 (4d+ 1)ε.

3. New hash-and-sign tradeoffs

3.1. Shorter signatures by elliptic sampling. In hash-and-sign over NTRU lattices,

it is well-known that only one of the components of a signature (s1, s2) ∈ LNTRU is needed

as input to the verification algorithm. This comes from the algebraic definition of such

lattices, as we always have s1h = s2 mod q when h is the corresponding public key. To

compress signatures, it, therefore, makes sense to try to minimize the magnitude of the

coefficients in the component that is sent. To this end, we let γ � 1 (in KR) and consider

the totally positive form

Q =

(
γ2 0

0 γ−2

)
,

and keep the same notation for its version in the coefficient embedding. Note that the

resulting lattice volumes are preserved, as detQ = 1. Following Algorithm 3, a signature is

an elliptic Gaussian in LNTRU centered at c = (0, c), where c is the (hash of the) message.

Such random vectors can be sampled with Algorithm 2 or implicit in Proposition 2.3, for

an input basis Bf,g reaching a good quality (as conditioned by Lemma 2.1). the smallest

|Bf,g|Q,K is, the shortest the signatures are.

Now, since Q “favors” vectors with smaller first components, we send s1 as the signature.

Indeed, we can show that the first component of elliptic signatures has an expected length

shorter by a factor γ compared to “regular” spherical ones. We however keep our discussion

at an informal level for the sake of clarity, as the arguments are standard. Note first

that saying s ← DL ,Q,σ,c is equivalent to saying Ts ← DTL ,I,σ,Tc for any T such that

TtT = Q. Taking T = diag(γ, γ−1), the first coordinates of Tc in the signing algorithm

14



Algorithm 3: Hash-and-sign

Input: an NTRU trapdoor Bf,g and message m; a parameter σ > 0, a quadratic form Q and

an acceptance bound B > 0

Result: a signature s ∈ R.

1 c := hash(m) ∈ R, c :=

0

c


2 Sample s = (s1, s2) from DL (Bf,g),Q,σ,c with Algorithm 2

3 if ‖s− c‖Q > B then

4 Restart

5 end if

6 return s1

Algorithm 4: Verification

Input: an NTRU public key h and a signature s for a message m; a quadratic form Q and

and acceptance bound B > 0

Result: Accept or Reject.

1 c := hash(m) ∈ R

2 s′ = hs− c mod q

3 if ‖(s, s′)‖Q > B then

4 Reject

5 end if

6 Accept

are 0. Therefore, the first component of Ts, i.e γs1, closely follows a Gaussian of covariance

σ2Id, which shows that the signature s1 has an expected length of essentially σ
√
d

γ .

3.2. Parameters selection. The resilience of hash-and-sign over lattices against forgery

requires signatures to be short. Getting short signatures is achieved thanks to a trapdoor

for LNTRU, that is, a basis composed of short vectors with good properties with respect to

a selected sampling algorithm. We consider two instantiations of the framework, namely,

Falcon [33] and the recent Mitaka [?]. Each of these schemes find good trapdoors

with the following method. First, candidates f and g are sampled according to a fixed

distribution. Because the resulting lattice is morally a 2 dimensional object with prescribed

volume q, it is possible to deduce the quality Q(Bf,g) = α
√
q of the basis before computing

it, so that if the expected quality is good, the basis is completed, else another pair f, g
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is sampled. We first deal with the value of α depending on the scheme, then discuss the

distribution of f, g.

In our work, we sometimes consider different norms on the ambient space. This could

have an impact on the quality that the key generation algorithm achieves; our experiments

however suggested that it has no impact on the trapdoors we could find. Additionally, Fal-

con relies on the algebraic structure of power-of-two cyclotomic fields, while Mitaka allow

for more number field choices. However, here, we will restrict to the power-two-cyclotomic

case.

3.2.1. Quality of Gaussian samplers. Falcon uses the so-called fast Fourier sampler [13],

while Mitaka relies on the so-called hybrid sampler [32] to sample signatures. If b1,b2

is the module basis of LNTRU and bZ
1 , . . . ,b

Z
2d its corresponding lattice basis, the require-

ments are:

• QFalcon = maxi62d ‖b̃Z
i ‖Q = αFalcon ·

√
q where αFalcon = 1.17;

• Qd,Mitaka = |Bf,g|Q,K = αd,Mitaka ·
√
q, where α512,Mitaka = 2.04 and

α1024,Mitaka = 2.33.

The standard deviation parameters for our signatures are set with Lemma 2.4 as σ = rQ∗
where:

• we want σFalcon > ηε(Z) · αFalcon
√
q, so we take r = 1

π

√
log(2(1+1/ε))

2 ;

• we want σd,Mitaka > ηε(Zd) · αMitaka
√
q, so we take r = 1

π

√
log(2d(1+1/ε))

2 .

These parameters combined give us the tailcut rate of the used sampler. We set the

rejection bound as

(1) ρ = τ · σ
√

2d,

where τ = 1.04 is enough to guarantee that 90% of samples might be too long, thanks to

Lemma 2.3. Lastly, the analyses in [?] states that εMitaka = 2−41, while Falcon claims

εFalcon = 2−36.

3.2.2. On the distribution of secret keys. The standard choice [11, 33] for Falcon is to

sample f, g as independent discrete Gaussians in R to satisfy

(2) E[‖(f, g)‖2Q] = α2
Falconq,

which means the standard deviation parameter is σFalcon = rFalconαFalcon
√
q. On top of

several tricks to speed up the key-generation algorithm, Mitaka uses a different strategy.

The approach is to look for good trapdoors among those which could already be used by
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Falcon. This also means that the expected behavior of f, g for the Euclidean norm is the

same. We now distinguish the regime where the norm is changed and an elliptic signature

is sampled, from the regime where q is reduced and the signature are regular spherical

samples.

Selection in twisted norm: To simplify the exposition, we take γ ∈ R. Condition (2)

becomes

(3) γ2E[‖f‖2] +
1

γ2
E[‖g‖2] = α2q.

If we want to keep f, g as discrete Gaussians, Equation (2) shows that we can select

σf = α
γ

√
q/2d and σg = γα

√
q/2d, where γ remains a priori arbitrary. This choice4 has

expectedly a large impact on the security, and γ should not be too large either.

In any case, when γ grows, there is a parameter window where f looks essentially sparse

and ternary, and the target standard deviation may be below the smoothing parameter

of Z. Since we can no longer predict the behavior of Gaussians in that regime, it is then

natural to sample it directly as a uniform ternary vector of small (fixed) Hamming weight

κ, and we now have E[|‖f‖2] = κ. This change also enables different attacks exploiting

the sparseness of f , see also Section 4. The next step is simplified by balancing the terms

in Equation (3), asking

(4)
1

γ2
E[‖g‖2] = γ2κ =

α2q

2
.

The distortion factor can then be as large as γ = α
√

q
2κ , and we can keep g sampled as a

spherical discrete Gaussian with σ2
g = (αγ)2 q

2d .

Selection for small q’s: The ambient norm corresponds here to Q = I, and the situation is

simplified by taking the same distribution for f, g. As q is now close to d, the standard

deviation of secret keys in the usual setting makes them again behave essentially like

ternary and sparse vectors. This prompts us to sample directly f, g uniform in the set of

ternary vectors of hamming weight κ, which translates in the following constraint:

(5) κ =
α2q

2
.

This implies in particular that q should be slightly smaller than 2d, and may open the

road for combinatoric and hybrid attacks against the secret keys.

4In particular, we could have selected a variable Hamming weight; our analyses suggest that it is a

suboptimal choice for security.
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4. Security analysis

To assess the concrete security of our methods, we proceed using the usual cryptanalytic

methodology of estimating the complexity of the best attacks against key recovery attacks

on the one hand, and signature forgery on the other. For the rest of this section, we

consider that the ambient norm over our lattices is given by

(6) ‖x‖2γ = xtQγx with Qγ = Tt
γTγ and Tγ :=

[
γId

γ−1Id

]
,

for some real γ > 1. To better reflect the impact of this distortion factor, we propose

a parameterized security analysis, and instantiate it depending on our use case (either

elliptic sampling, or “small q” regime with γ = 1).

Lattice reduction setting. In all of the following, we follow the so-called Geometric series

assumption (GSA), asserting that a reduced basis sees its Gram-Schmidt vectors’ norm

decrease with geometric decay. More formally, it can be instantiated as follows for self-

dual BKZ (DBKZ) reduction algorithm of Micciancio and Walter [29]: an output basis

(b1, . . . ,bn) yielded by DBKZ algorithm with block size β on a lattice L of rank n satisfies

the following relation on the length of its Gram-Schmidt vectors:

(7) ‖b̃i‖ = δ
n−2(i−1)
β VolQ(L )

1
n , where δβ =

(
(πβ)

1
β · β

2πe

) 1
2(β−1)

.

4.1. Forging signatures. In the hash-and-sign paradigm signature, forging a signature

boils down to finding a point v ∈ LNTRU at distance at most ρ from a random space point

x. Since we are quite above λ1(LNTRU)/2, this is an instance of the Approximate Closest

Vector Problem (ApproxCVP). This problem can be solved using the so-called Nearest-

Cospace framework developed by Espitau and Kirchner in [18]. Under the Geometric Series

assumption, Theorem 3.3 of [18] states that the decoding can be done in time Poly(d) calls

to a cvp oracle in dimension β under the condition

‖x− v‖γ 6 δ2d
β VolQγ (LNTRU)

1
2d .

Equivalently,an adversary can consider the lattice spanned by TγBh and decode Tγx in

the usual `2norm ‖ · ‖, where

Bh =

[
Id 0d

H qId

]
,

and H is the matrix of multiplication by h in the power basis of R.

While this change with regards to the classical situation of Falcon and Mitaka([33, ?])

seems purely syntactic, it can have an impact on the best approach to decoding, and some
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care must be taken in the details. Indeed, as mentioned in [?], a standard optimization of

this attack consists in only considering the lattice spanned by a subset of the vectors of

the public basis and performing the decoding within this sublattice. The only interesting

subset seems to remove only the k 6 d first vectors. The dimension is of course reduced

by k, at the cost of working with a lattice with of relatively bigger normalized covolume.

Let S ⊂ [d] a set of k indices. Write HS as the submatrix with column indices outside

of S, and IS the analogous submatrix of Id. Let also BS be the corresponding submatrix

of Bh while keeping all the “q vectors”. We then have

(TγBS)t(TγBS) =

(
γ2Id−k + 1

γ2H
t
SHS

q
γ2H

t
S

q
γ2HS

q2

γ2 Id

)
.

By Shur’s complement formula, we find

VolQγ (L (BS))2 = (q/γ)
2d · det(γ2Id−k) = q2dγ−2k.

As such, we need to enforce the following condition on the blocksize β with respect to the

rejection bound:

(8) ρ > min
k6d

(
δ2d−k
β q

d
2d−k γ−

k
2d−k

)
.

From Section 3.2.1 and Equation (1), we know that ρ is proportional to √q once other

parameters are fixed. Then Eq. (8) is equivalent to

(9) τ · α · ηε ·
√

2d > min
k6d

(
δ2d−k
β

(√
q

γ

) k
2d−k

)
,

where α and ηε depends on whether Falcon or Mitaka parameters are considered.

There are three noteworthy observations about Condition (9). In the previous security

analysis for Falcon and Mitaka, saturating the bound showed that k = 0 was the best

case5 from an attacker’s point of view. A first and immediate observation is that the

distortion of the norm directly impacts the hardness of the forgery. For fixed q, larger

distortion factors γ, we observed that γ > 2.3 for d = 512 and γ > 1.7 for d = 1024

made forgetting vectors interesting for the attacker. The second one is more subtle. Note

that the regime of schemes such Falcon or Mitaka always assumes that q is fixed in

advance. In our work, we tolerate smaller q, and it turns out that when q gets smaller,

an attacker finds it advantageous to forget some of the vectors. Experimentally6 we found

that the phase transition happens when q 6 2434 for d = 512 and q 6 4820 when d = 1024.

5But this does not hold for ModFalcon, as observed in [?].
6It is of course possible to calculate the local maximum of the function, but an experiment confirmation

seems enough for the purpose of this work.
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Lastly, Condition (9) reveals that tolerating smaller q’s with the standard norm, or keeping

usual (larger) choices but twisting the norm by γ has essentially an identical effect on

the forgery. One can indeed think of q/γ2 as a "reduced modulus", or in other words,

designing a signature scheme with q′ = bq/γ2e. Hence from the point of view of forgery,

our compression techniques can be seen as equivalent. However, they differ notably when

we enter the domain of key recovery.

4.2. Key-recovery attacks. As advertised in Section 3.2, there are three distinct regimes

to consider:

• in the twisted Gaussian regime, we twist the norm by γ > 1 and have imbalanced

Gaussian secret keys;

• the twisted-mixed regime, the norm is also twisted by a larger γ, so the first half

f of the secret key is now sparse ternary with Hamming weight κ;

• and in the small q regime, we keep the standard norm, but q 6 2d/α2 so that

both f and g are sparse, ternary with Hamming weight κ = α2q/2.

A direct approach to key recovery is to do lattice reduction on the public basis, aiming

at finding a relatively short vector in the spanned lattice: such attacks are addressed

in Section 4.2.1. Whenever (a part of) the key becomes sparse ternary, combinatorics

and more importantly hybrid attacks (combining lattice reduction and meet-in-the-middle

approach) can be considered as a potential threat. In particular, in our mixed setting,

we propose in Section 4.2.2 a new hybrid approach, of a slightly different flavor than the

well-known Howgrave-Graham approach [21].

We also identify a new attack exploiting the sparsity of the secret keys in Section 4.2.3

The core idea is that when at least f is sparse, the number of "modulo turns" k :=

(fh − g)/q is expected to be small too. This leads to another lattice reduction attack

in a suitable orthogonal lattice (of rank 2d in a 3d dimensional space), that can also be

improved by the "hybridization" approach. We also consider different metric choices for

the ambient space of the lattice. Finally, we deal with algebraic, combinatoric, and classic

hybrid attacks in Section 4.2.4.

4.2.1. Projection onto the tail of the reduced basis. The key recovery consists in finding

the private secret key (i.e. f, g ∈ R2) from the sole data of the public elements q and

h. The most powerful attacks are up-to-our-knowledge realized through lattice reduction.

It consists in constructing the algebraic lattice over R spanned by the vectors (q, 0) and

(h, 1) (i.e. the public basis of the NTRU key) and retrieve the lattice vector s = (f, g)
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among all possible lattice vectors of norm bounded by ‖s‖γ = σ
√

2d (or a functionally

equivalent vector, for instance (µg, µf) for any unit µ of the number field). We make use

of the so-called projection trick to avoid enumerating over all the sphere of radius σ
√

2d

(which contains around
(

2dσ2

q

)d vectors under the Gaussian heuristic).

More precisely we proceed as follows. Set β to be the block size parameter of the

DBKZ algorithm and start by reducing the public basis with this latter algorithm. Call

b1, . . . ,b2d the resulting vectors. Then, if we can recover the projection of the secret key

onto the orthogonal space P to Span(b1, . . . ,b2d−β−1), then we can retrieve in polynomial

time the full key by Babai nearest plane algorithm to lift it to a lattice vector of the desired

norm. Hence it is enough to find the projection of the secret key among the shortest vectors

of the lattice generated by the last β vectors projected onto P.

Classically, sieving on this projected lattice will recover all vectors of norm smaller than√
4/3 · `, where ` is the norm of the 2d− β-th Gram-Schmidt vector b̃2d−β of the reduced

basis. Under the GSA (7), we therefore have:

` =
√
qδ−2d+2β+2
β ≈

(
β

2πe

)1− dβ
.

Moreover, considering that s behaves as a random vector of norm σ
√

2d, and using the

GSA again, the expected norm of its projection over P is
√
β/(2d)‖s‖γ = β

1
2σ. Hence,

we will retrieve the projection among the sieved vectors if β
1
2σ 6

√
4/3`, that is if the

following condition is fulfilled:

(10) σ2 6
4q

3β
· δ4(β+1−d)
β

Remark. This approach is similar to the one used in the security evaluation of [1], but we

use all the vectors given by the last step of sieving, resulting in a slightly stronger attack

and as such more conservative parameters choices.

Finding short vectors in tweaked-norm setting: As our scheme suggests the use

of different (Euclidean) norms, when it comes to the analysis of key recovery, it is also

legitimate to wonder which norm is indeed the best to mount lattice attacks. Let us assume

that we take an inner product matrix G and split in blocks of size d× d as

G =

(
A B

BT C

)

with A,C ∈ Sym+(R, d). By homogeneity, we can restrict the study to the case where

the determinant of G is 1. Hence, the squared norm of (f, g) (viewed as a vector over Z2d)

for this norm is 〈Af, f〉+〈Cg, g〉 + 2〈f,Bg〉. Observe that since f, g (and thereof f,Bg)
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are centered independent vectors, the expected value of the inner product 〈f,Bg〉 is zero.
Thus, we have by (bi)linearity:

E := E
[
‖(f, g)‖2G

]
= E [〈Af, f〉] + E [〈Cg, g〉] + 2E [〈f,Bg〉]

= Tr(ACov(f)) + Tr(CCov(g)).(11)

Following Section 3.2.2, we have:

• in the twisted Gaussian regime, σ2
f = (αγ )2 · q2d and σ2

g = (αγ)2 · q2d ;
• in twisted-mixed f has scalar covariance7 with parameter κ

d = σ2
f ;

• in the small q regime, we have γ = 1 and Cov(f) = Cov(g) = α2q
2d .

In all cases, Equation (11) becomes

E =
α2q

2d
·
(

1

γ2
Tr(A) + γ2 Tr(C)

)
.

To favor lattice attacks, the used norm defined byG should minimize E . By the arithmetic-

geometric inequality and Fischer’s inequality, we have

1

γ2
Tr(A) + γ2 Tr(C) >

d

γ2
det(A)

1
d + dγ2 det(C)

1
d > 2d · (det(A) det(C))

1
2d > 2d.

Hence E achieves a minimum α2q at Tr(A) = γ2d,Tr(C) = d
γ2 , which proves the optimality

of Qγ (Eq. (6)) whatever the regime.

4.2.2. An hybrid attack on half-sparse vectors. We now show that we can improve this

attack by exploiting the sparsity of the f part of the secret key. Indeed, if its sparsity

level is low, then with a reasonable probability we can guess the positions of some zeros

of the vector. If such a guess of positions, say I ⊆ {1, · · · , 2d} appears to be correct, we

can intersect the NTRU lattice with ZI . (where I refers to the complement of the set I
in the overset {1, · · · , 2d}) In this lattice, we can apply readily the methodology of Sec-

tion 4.2.1 to retrieve the intersected secret and as such the secret itself. This new lattice

has dimension 2d − |I| and its covolume is likely to be qd (see infra for a discussion of

this phenomena). As a result, the normalized covolume of the intersection lattice is bigger

than previously, and its dimension of course smaller. As such, this final lattice reduction

part is now easier and thus faster. Hence, there exists a trade-off between the probability

of right guessing (the more zeroes to guess, the harder it becomes to correctly guess their

positions) and the time required by the lattice reduction.

7Indeed, E[fifj ] = 0 for i 6= j and by invariance of the distribution by permutation, all the diagonal

elements are equal.
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Estimation of the cost of the attack:

Good guess probability estimation [Fixed Hamming weight]. We now derive an estimation

of the probability of making a successful guess of the zero coefficients. Suppose that the

sparsity of f is 0 < κ < d and that |I| = k. Then, over the randomness of f , the probability

of getting a correct guess is equal to the probability of f having its non-zero coefficient

outside the k positions of I, i.e. is
(
d−k
κ

)(
d
κ

)
. Remark now that we can enhance this

probability by remarking that it suffices that a conjugate of f has is zero on I. It seems

however difficult to estimate such a probability explicitly as it depends on the pattern of I.
An underestimate of this probability consists in assuming that the event of right guessing

for each of the conjugates are independent. Using this heuristic, the average number of

conjugates with zeroes on I is d
(
d−k
κ

)(
d
κ

)−1
. This heuristic is in practice precise enough

for the simulation: we simulated the behavior, in cryptographically relevant parameters,

of this expectation by repeating the counting on 219 trials and report a relative error of

at most 0.5% for results greater than 2−12.

Volume of intersection. Suppose now that a good guess was performed. We intersect the

whole NTRU L lattice with ZI and claim that with high probability this lattice has volume

in `2 norm equal to qd/2. First, remark that it necessarily q-ary and as such that it is

sufficient to study the rank of L with ZI , which will be full rank with overwhelming

probability, according to [6]. As such the volume of the intersection is expected to be q
1
2 .

We can now compute the volume in the twisted norm ‖.‖γ . Remember that we obtained the

intersection by removing d rows coordinates over f , which are all scaled by the parameter

γ in ‖.‖γ . Hence, the volume is now scaled by the determinant of the intersected Gram

matrix G = Diag(I)QγDiag(I), which is exactly γk. All in all the (normalized) volume of

the intersected lattice for the twisted norm is q
d

2d−k γ
k

2d−k .
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Remark. The normalized covolume of the intersection is now bigger than the original

normalized covolume (which is √q), making the lattice reduction attack slightly easier.

However this normalized covolume is not large enough to enter the overstretched NTRU

regime (see [?] for recent developments on this matter).

Remark (On non-fixed Hamming weight secrets). It could seem natural to let the small

secret vectors be sampled with ternary distribution and no restriction on the Hamming

weight (as a limit case of a tail cut Gaussian for instance). However this choice is sub-

optimal security-wise. Indeed in this case, a simple estimation reveals that the probability

of getting abnormally short vectors (i.e. with shorter weight than expected) is sufficiently

high to reduce the whole security of the scheme: in other words, the fraction of generable

weak keys is too high. Fixing in advance the Hamming weight avoids this phenomenon and

has zero drawback on the key generation nor the scheme itself.

4.2.3. A new attack using the small number of modulus rounds. First of all, we stress that

this attack only concerns the twisted-mixed and small q regimes, as it exploits the

sparseness of f . In the twisted Gaussian regime, little can be said about the Hamming

weight, and as the standard deviation parameter is still above the smoothing of Z, it is also
likely that the vector is not “so ternary”, that is, it has enough coefficients of magnitude

at least 2 so that the enumerating part of the attack becomes too costly anyway. As f is

small, we can give a closer look at the size of the polynomial hf − g which vanishes mod

q by the construction of the NTRU basis (Section 2). It appears that k := 1
q (hf − g) has

a norm closely related to the Hamming weight of f as it grows proportionally to
√
κ (see

infra. for an analysis of this fact). For small κ, this quantity is sufficiently small to be

exploited in the lattice reduction. Indeed, instead of working modulo q as in the previous

attack to recover directly f and g, we can aim at recovering directly the vector (f, g, k)

in a rank two module, embedded in a K -vector space of dimension 3. Since fh− g = kq,

this module is nothing else than the orthogonal module to the vector (h,−1, q). A public

basis of this module (in rows) is

B =

(
1 h 0

0 q 1

)
.

On the space containing f, g the metric is given by Qγ as defined in (6), and the "q

part" is rescaled to take into account the expected length of k. Equivalently, this metric is

described over K by the matrix D = diag(γ2, γ−2, δ2), for a parameter δ to be discussed
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later. The corresponding Gram matrix is then

G = BDB∗ =

(
γ2 + hh∗

γ2
qh
γ2

qh∗

γ2 δ2 + q2

γ2

)
,

and it follows that

NK /Q(det(G)) = NK /Q

(
q2 + (γδ)2 +

δ2

γ2
hh∗

)
.

We now estimate the expected normalized volume V = NK /Q(detG)1/4d of L (B). The

intuition guiding the calculation is that q2 will be the dominating term in the expansion

and that we want δ to be a “balancing parameter” for the expected norm of k. Ultimately,

its choice will make γδ to be a small fraction of q, and δ/γ to be constant, see Appendix B

for details about the calculation:

(12) E[V] 6
√
q ·
(

1 +
(γδ)2

q2
+
δ2

γ2
· d

12

)1/4

.

On the expected size of k: We now give a model of the distribution of the euclidean norm

k in our setting, in the sense that its approximations match accurately our experimental

results. Let f be uniform among the set of ternary polynomials of degree d with weight κ.

Recall that we already assumed that h is uniform in R/qR. Then, we model the coefficients

of fh as a sum of κ independent discrete uniform random variables in [−q/2, q/2] ∩ Z.
Such a sum as expected value 0 and variance κ(q2−1)

12 . Assuming that the coefficients of

hf behaves independently, then the (squared) expected norm of the vector hf/q is then
dκ(q2−1)

12q2 ≈ dκ
12 . In the twisted–mixed regime, as seen in Section 3.2.2, the vector g is

a discrete Gaussian distributed with standard deviation σg = γα
√
q/2d, and thus the

expected squared norm of g/q is α4q2

κq2 = α4

κ .When q is small, Section 3.2.2 says ‖g‖2 = κ

so that (fh− g)/q has a squared norm of κ( d12 + 1
q ), which is still reasonably close to dκ

12 .

Therefore, a reasonable approximation for the expected squared norm of k is

E[‖k‖2] =
dκ

12
.

The experiments reported in Appendix D, Figure D confirms the quality of the approxi-

mation.

With that additional estimation in our arsenal, we can now see concrete values for the

parameters. We chose δ so that the vector (f, g, k) has balanced coordinates in the given

norm. Since we have E[‖(f, g, k)‖2D] = α2q + δ2E[‖k‖2], we set δ2 = α2q
2E[‖k‖2] , and our

attack has to find a short vector of expected length α( 3q
2 )1/2. Now, in the twisted–mixed

regime, we have (γδ)2 = 3α4

2κ2dq
2 and δ2

γ2 = 12
d , and in the small q regime, γ = 1 and
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δ2 = κ
E[‖k‖2] = 12

d . In any case, Inequality (12) becomes:

E[V] 6


α
√
q ·
(

2
α4 + 3

2κ2d

)1/4

in the twisted-mixed regime,

√
q ·
(

2 + 12
dq2

)1/4

in the small q regime.

For our smallest considered Hamming weight, we observe that E[V] 6 1.19 · √q in the

twisted–mixed regime. This was in turn confirmed by our experiments: we computed the

average of these normalized volumes for several classes of parameters and found that the

ratio V/√q never exceeded α = 1.17. In the small q regime, the experiments showed that

V/√q 6 1.19 on average too. As in the previous attack, the vector f is sparse so we

hybridize the lattice reduction attack with the guessing technique. The whole attack is

algorithmically depicted in Appendix C.

4.2.4. Combinatorial and hybrid attacks. In this section, we list the other possible type of

attacks on signatures, which are nonetheless not the most effective for the parameters we

consider.

Exploiting the algebraic structure. The schemes we consider are defined over algebraic

lattices, which have a rich structure that could in principle lead to improved attacks.

However, there is no known way to improve all the algorithms previously mentioned for

their general lattice equivalent by more than polynomial factors in an asymptotic sense

(see for instance the speedup on lattice reduction of [22]), and they do not affect our

concrete security levels.

Overstretched NTRU.. As observed in [23] and reanalysed in [?], when the modulus q is

significantly larger than the magnitudes of the NTRU secret key coefficients, the attack

on the key based on lattice reduction recovers the secret key better than the results pre-

sented above. This so-called “overstretched NTRU” parameters occurs when q > n2.484 for

binary secrets, implying that, as it is the case for Falcon and other NTRU-based NIST

candidates, that even very significant improvements to this attack would still be irrelevant

to the security of our proposed parameters: in fact, we are even further away from the

fatigue point when reducing q!

Combinatorial and hybrid attacks. Odlyzko’s meet-in-the-middle attack, and its recent

improvements by May and Kirshanova–May, are a priori very relevant to our ternary

sparse settings, particularly in the small-q case (and although non-ternary errors has not

been analyzed in the literature, the Kirshanova–May improvements do in principle extend

to that setting as well, and hence could affect our ternary regime even for distortion).
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However, running bit security estimator for the state-of-the-art attack of this type shows

that it is very far from competing with the lattice attacks considered earlier in this section.

At best, they yield time complexities over 2180 in dimension 512, for example.

The hybrid attack of Howgrave-Graham [21], and its improved analysis by Wunderer,

appears to be more of a threat in principle. However, again using the available estimator

(adapted to use the Core-SVP metric for BKZ cost) reveals that attacks reach at best 2138

complexity in dimension 512, again not competing with tailor-made lattice approaches.

4.3. Concrete security estimates. Under the heuristics we explicited, we can estimate

the concrete bit security of our techniques on the Falcon and Mitaka NTRU based hash

and sign signaures schemes. The analysis translates into concrete bit-security estimates

following the methodology of NewHope [1], sometimes called “core-SVP methodology”.

In this model [2], the bit complexity of lattice sieving (which is asymptotically the best

SVP oracle) is taken as b0.292βc in the classical setting and b0.2570βc in the quantum

setting in dimension β (using the recent progress of [?]).

4.3.1. Example parameters. We now present the concrete data obtained for our new trade-

offs. In Table 2 we gathered several options for d ∈ {512, 1024}, and choices for moduli q

and distortion factor γ, for both Falcon and Mitaka. The bit-security was obtained by

taking into account our new attacks (impacting the more extremal ranges of parameters)

and the last quantum sieving exponent for the core-SVP hardness, using updated versions

of the scripts from the Falcon and Mitaka team. In Figures 1 and 2, we also provide

curves representing the security level in function of the main compression parameter.

5. Batch compressing Gaussian vectors

In this section, we deal with the problem of efficient and lossless compression of a batch

of random discrete Gaussian variables. Our goal is to further compress the s1 part of the

signature before outputting it. Of course, arithmetic coding would reach almost perfect

entropic coding at the cost of requiring arithmetic computations of high precision floating-

point numbers. We thus want to exploit the specificities of Gaussian variables to design a

near entropic compression while retaining maximal efficiency.

5.1. Preliminary information-theoretical analysis. Let n be a positive integer and

X = (Xi)16i6n be a sequence of independent variables drawn under the discrete Gaussian

distribution of standard deviation σ (assumed to be larger than the smoothing parameter

of Z). The entropy of this random vector is (close to) H = n
2

(
1 + log2(2πσ2)

)
Therefore

27



Table 2. Bit security estimates for Falcon and Mitaka with small q

and ellipsoidal Gaussians (compared to the original schemes), in dimen-

sion 512 and 1024. Security levels are given in pairs Classical/Quantum.

Falcon-512 Mitaka-512

KeyRec Forgery Sig Size Key Size KeyRec Forgery Sig Size Key Size

Original 133/117 123/108 666 896 133/117 102/89 710 896

Small q = 1031 132/116 122/108 490 704 132/116 99/87 540 704

Small q = 521 132/116 121/106 455 640 132/116 97/85 505 640

Small q = 257 130/114 118/104 425 576 130/114 94/82 475 576

Distortion γ = 2 132/116 123/108 540 896 132/116 101/89 590 896

Distortion γ = 4 132/116 122/107 475 896 132/116 98/87 525 896

Distortion γ = 6 131/115 119/105 440 896 131/115 95/84 490 896

Distortion γ = 8 128/113 116/102 410 896 128/113 92/81 460 896

Distortion γ = 10 125/110 113/99 390 896 125/110 88/78 441 896

Falcon-1024 Mitaka-1024

Original 272/239 284/250 1280 1792 272/239 233/205 1405 1792

Small q = 1031 272/239 280/246 932 1408 272/239 224/197 1160 1408

Small q = 521 269/237 275/242 870 1280 269/237 218/191 1000 1280

Small q = 257 264/233 268/235 805 1152 264/233 209/184 935 1152

Distortion γ = 2 271/239 284/250 1033 1792 271/239 230/202 1160 1792

Distortion γ = 4 270/237 278/245 905 1792 270/237 221/195 1035 1792

Distortion γ = 6 267/235 271/239 830 1792 267/235 213/187 960 1792

Distortion γ = 8 261/229 263/232 780 1792 261/229 204/180 905 1792

for a given sample x, an entropic code for this distribution should have a codeword of

length:

L(x) = H − n log2

(
e−
‖x‖2

2σ2

)
=
n

2

(
1 + log2(2π) +

‖x‖2

σ2 log(2)

)
︸ ︷︷ ︸

:=H

+n log2(σ)︸ ︷︷ ︸
:=T

The decomposition of this expression in the two main terms H,T (which we will refer to

by Head and Tail) indicates two contributions, of different geometrical interpretations.

The H part can be thought of as the σ-quantile where x landed, whereas the T part

demonstrates that the log(σ) least significant bits of each coefficient behave as uniform

variables in [0, 2σ], giving the position of x inside the quantile. This rough analysis invites

us to work modulo σ: we can not compress the log2(σ)-lower-order bits, but we can work

on the most significant bits.
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Figure 1. Bit-security in function of the Hamming weight, q = 12289
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Figure 2. Bit-security in function of q, for d = 512 (left) and d = 1024 (right).
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5.2. Golomb-Rice style coding of a single variable. This preliminary observation

leads to a first natural algorithm, working coefficient-wise: we can not compress the re-

minder modulo σ, which remains in binary form. If the quotient behaves roughly like a

discrete normal distribution of unit standard deviation, then we can encode its values using

a Huffman encoding. We then stack the coded heads (as the Huffman code is prefix, we

can decode the heads on the fly) and the tails together which are chunks of equal lengths.

Remark that as the modulus part can not be compressed it will take up to dlog2(σ)e-bits
to be represented. As such, we will perform the euclidean division by k = 2dlog2(σ)e instead

of σ in order to maximize the information put in the tail and retain the least possible in-

formation in the head part. The following diagram presents an example of such encoding

for on a sample (x1, x2, x3), where xi = ti + hik:

t1 t2 t3H(h1) H(h2) H(h3)

This is very close to the so-called Golomb-Rice encoding of each coefficient with split

at k.

5.3. Batch-coding and full signature compression. Since the signature can be (some-

how) interpreted as d independent samples, we can compress them not individually but as

a whole. We then want to encode in the most efficient way the message consisting of the d

quotients. We propose here to rely on adaptive arithmetic encoding (or finite state entropy

method), usually refered as Asymetric Numeral system (or ANS for short) of Duda[16].

The following diagram presents an example of such encoding for on a sample (x1, x2, x3),

where xi = ti + hik:

t1 t2 t3ANS(h1||h2||h3)

5.3.1. Ranged arithmetic encoding. Adapting the ranged version to our contexts, works

as follow. Suppose that the distribution of the quotient part is a discrete Gaussian of

standard deviation σq, denoted by G and of probability density function (pdf for short) ρ.

As the size of signature is itself bounded by construction, we can truncate this distribution

as well by a certain threshold T 8.

We also choose an integral quantization factor p > 0, and denote by f the quantized

quotient distribution of G6T , that is to say its approximation at p bits of precision. More

8By truncating a discrete distribution D over Z of pdf p, we mean constructing the distribution D6T

of support {−T, . . . , T} ∩ Supp(D) and of pdf p6T (x) = p(x)
(∑T

u=−T p(u)
)−1

.
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formally, we construct the distribution G(p)
6T as the distribution of support {−T, . . . , T}

and of pdf ρ̃ proportional to x 7→ d2pρ6T (x)e2−p.

Then denoting by R(x) =
∑x

0 ρ̃(x) its cumulative distribution function, we define the

symbol encoding function to be

s :

∣∣∣∣∣ [0; 2p−1] −→ [0, 2T ]

x 7−→ argmins{F (s) 6 x < F (s+ 1)}.

The coding function is now:

C(x, s) =
⌊

x
f(s)2p � n

⌋
+ (x mod f [s]) + F (s), The encoding of the (head) of the

signature is then perfomed iteratively by (left)-folding the function C: for a sequence

of integers [s1, . . . , sn], define inductively x0 := 0 and xi+1 = C(xi, si). The encoded

sequence is then the integer xn.

With this construction, the decoding function is now, denoting by & the bitwise and

operator, D(x) = (f(s)(x� n) + (x & (2n − 1))− F (s), s) , used again by left folding:

given a compressed sequence represented as the integer x, we stream out the sequence

(si)i defined inductively by x0 = x, (xi+1, si+1) = D(xi).

5.3.2. ANS on the raw input. As the distribution of the signature coefficient is public, we

could use ANS encoding directly on the coefficients. This is of course possible and naturally

would offer the best compression rates, but it would require to multiply larger numbers.

Indeed, using the aforementioned separation only requires handling the head, which is

encoded on a small integer, whereas a direct ANS would require to handle arithmetic with

numbers of around n/2 log(2πσ2) bits.

In addition, as the standard deviation of the quotients is small, the alphabet will be

very limited and we also can use a tabulated variant to completely avoid arithmetic com-

putations (or so-called finite-state-entropy methods).

5.4. Nearly optimal encoding for hash-and-sign signatures.

5.4.1. Encoding of Falcon signatures. For completeness, we recall the compression process

used in the Falcon. The outline of the compression is quite similar to the one of Sec-

tion 5.2, but the sign is taken out of the coefficient and encoded as a separated bit. As

such, the quotient by σ is now following a folded-normal distribution. A careful study of

this distribution reveals that the corresponding Huffman coding corresponds to the unary

encoding of the variable. The following diagram presents an example of such encoding for

on a sample (x1, x2), where |xi| = ti + hik and si = sgn(xi)
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Figure 3. Comparison between Falcon and our encoding. The left

figure is for d = 512, the right one is for d = 1024. They are computed

using a quantization factor of f = 16 (i.e. 16-bits approximation of the

density function of the distribution).

t1 t20h1 1 s1 0h2 1 s2

5.4.2. Practical comparison with our method. We exhibit a practical comparison of the

compression performances between our encoding and Falcon’s, together with the entropy

lower bound. The experiments reveal that our technique is nearly optimal (standing at at

most 3 bytes to the entropic limit). For dimension 512, we can save between 45 and 65

bytes compared to Falcon’s Huffman-based coefficient-wise compression. In dimension

1024, the gaps now lie in between 80 and 130 bytes, which represents a total gain of

7%-14% on the signature size.
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Appendix A. Proof of Proposition 2.2

Let D(s) the probability that the algorithm outputs s = x1b1 + x2b2, and P (xi) be
the probability that Algorithm 1 outputs xi ∈ R. Let also Σi = τ2

i + r2, so that thanks
to Proposition 2.1, we can write

D(s) = P (x1)P (x2) ∈
[(

1− ε
1 + ε

)2

,

(
1 + ε

1− ε

)2
]
·D

R,Σ−1
1 ,t̃1

(x1)D
R,Σ−1

2 ,t̃2
(x2).(13)

Let U be the transformation such that B = B̃U and µ12 its top right coefficient. By

construction, we have t = B̃(t̃1 + x2µ12, t̃2) and s = B̃U(x1, x2). We can then write over

KR

(s− t)∗Q(s− t) = (x1 − t̃1, x2 − t̃2)∗B̃∗QB̃(x1 − t̃1, x2 − t̃2).

Because we orthogonalized B with respect to Q, we have B̃∗QB̃ = diag(〈b̃i, b̃i〉Q). With

the equality above, this leads us to

ρ(σσ∗)−1Q,1(s− t) = ρΣ−1
1

(x1 − t̃1)ρΣ−1
2

(x2 − t̃2).

By assumption on σ, the covariances Σ1 and Σ2 “are above” ηε(R), so using Lemma 2.2,

Identity (13) becomes

D(s) ∈

[(
1− ε
1 + ε

)2

,

(
1 + ε

1− ε

)4
]
· δ ·DM ,Q,σσ∗,t(s),

where we let δ =
ρ(σσ∗)−1Q,1(M−t)
ρ

Σ
−1
1

(R)ρ
Σ
−1
2

(R) . The claims follow from routine computations. �

Appendix B. Estimation of volume for Section 4.2.3

Let µ2 = 1 + (γδq )2. By definition of the algebraic norm, we have

NK /Q(det(G)) = (µq)2d
∏
ϕ

(
1 +

δ2

γ2
· |ϕ(h)|2

(µq)2

)
,

where the product ranges over the complex field embeddings. Using the arithmetic-

geometric inequality and the fact that
∑
ϕ |ϕ(h)|2 = d‖h‖2, we have

NK /Q(det(G)) 6 (µq)2d

(
1 +

δ2

γ2
· ‖h‖

2

(µq)2

)d
.

We now assume that the coefficients of h behave like discrete uniform and independent

variables in [− q2 ,
q
2 ] ∩ Z, so that E[‖h‖2] = d(q2−1)

12 . Next we use the convexity of x 7→ x
1
4d

and Jensen’s inequality to obtain

(14) E[V] 6
√
q ·
(

1 +
(γδ)2

q2
+
δ2

γ2
· d

12

)1/4

.
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Algorithm 5: Key recovery in distorted setting

Input: an NTRU public key h ∈ K , public parameters q, γ of the scheme

Result: (functionally equivalent) secret key (f, g)

1 B←

Id H 0

0 qId Id


2 while 1 do

3 Sample a subset I of {1, . . . , d} of cardinality `

4 B′ ← B[Ī]

5 B′ ← BKZ(B, β, ‖.‖γ)

6 P← π2d−`−β(B′)

7 for x̃ ∈ PZ2d−`−β ∩B
(

0,
√

4/3‖π2d−`−β(B′[2d− `− β])‖γ
)

do

// Using Babai’s Nearest plane

8 Lift x̃ into x ∈ B′Z2d−`

9 (f, g, k)← x

10 if fh− g = k = 0 mod q then return (f, g)

11 end for

12 end while

Appendix C. Algorithmic description of the attack against small-modulus

turns

Algorithm 5 sums up our new attack for key recovery.

Appendix D. Additional experimental results
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�BNRist, Tsinghua University, Beijing, China and National Financial Cryptography Re-

search Center, Beijing, China yu-yang@mail.tsinghua.edu.cn
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Figure 4. Comparison between the estimated size of k and the empirical

data, where the mean is computed by generating 5000 independant secret

keys and compute the correspinding k.
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