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Abstract

Collapsing and collapse binding were proposed by Unruh (Eurocrypt ‘16) as post-quantum strength-
enings of collision resistance and computational binding (respectively). These notions have been very
successful in facilitating the “lifting” of classical security proofs to the quantum setting. A natural
question remains, however: is collapsing is the weakest notion that suffices for such lifting?

In this work we answer this question in the affirmative by giving a classical commit-and-open protocol
which is post-quantum secure if and only if the commitment scheme (resp. hash function) used is
collapse binding (resp. collapsing). This result also establishes that a variety of “weaker” post-quantum
computational binding notions (sum binding, CDMS binding and unequivocality) are in fact equivalent
to collapse binding.

Finally, we establish a “win-win” result, showing that a post-quantum collision resistant hash function
that is not collapsing can be used to build an equivocal hash function (which can, in turn, be used to
build one-shot signatures and other useful quantum primitives). This strengthens a result due to Zhandry
(Eurocrypt ‘19) showing that the same object yields quantum lightning. For this result we make use of
recent quantum rewinding techniques.

1 Introduction

The advent of quantum computing has led to a deep reevaluation of central ideas in cryptography. Most
prominently, the hardness assumptions upon which many widely-used cryptographic schemes are based do
not hold with respect to quantum computation. The past two decades have seen a great deal of progress in
tackling this issue, by devising new schemes based on “post-quantum” assumptions.

This is, however, only part of the picture. Quantum computation is not only more powerful than classical,
it is fundamentally different in nature. Quantum information exhibits properties like superposition and
unclonability that have no classical analogue. As such, we must also revisit another key ingredient in the
study of cryptography: definitions. A number of works explore the implications of quantum information
for security definitions; some examples include random oracles [BDF+11], message authentication codes
[BZ13a, GYZ17], and signatures and CCA-secure encryption [BZ13b].

This work focuses on the related notions of collision resistance and computational binding ; for the present
discussion we focus on the former. While a natural quantum analogue of collision resistance asserts that it is
infeasible for a quantum computer to find a hash collision, [ARU14] demonstrated that this definition is not
sufficient for many applications of hash functions. The key issue is that while collision resistance rules out
finding two distinct preimages simultaneously, it does not rule out being able to “choose” the preimage that
is obtained. Note that this is an exclusively quantum problem: a classical algorithm that can make such a
choice can be used to break collision resistance via rewinding.

Unruh [Unr16b] proposed a strengthening of collision resistance called collapsing (and an analogous
strengthening of computational binding called collapse binding). This has since become a central notion in
post-quantum cryptography: a sequence of works [Unr16b, LZ19, ACP21, CCY21, CMSZ22, LMS21] have
demonstrated that this strengthening is sufficient to prove post-quantum security for various protocols.
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Collapsing hash functions can be built from LWE [Unr16a]; additionally, any CRH that satisfies a certain
regularity property is collapsing, which includes constructions from LPN and isogenies, and plausibly func-
tions like SHA [Zha22, CX22]. Nonetheless, in general there remains a gap between collapsing and collision
resistance. [Zha19] shows that the existence of a hash function in this gap implies the existence of quantum
lightning which (among other things) yields public-key quantum money.

1.1 Results

In this work we investigate the collapsing property and show that it is equivalent to other proposed notions
of post-quantum security for hash functions and commitments.

1.1.1 Chosen-bit binding commitments

We introduce a new binding notion called chosen-bit binding, defined in terms of a classical interaction with
a (potentially quantum) adversary Adv. Let COM = (Gen,Commit) be a commitment scheme for messages
of length `(λ). The chosen-bit binding game is as follows.

1. Choose ck← Gen(1λ).
2. Obtain (com, i)← Adv(ck), where i ∈ [`(λ)].
3. Choose b← {0, 1} uniformly at random.
4. Obtain (m,ω)← Adv(b). Output 1 if Commit(m,ω) = com and mi = b.

We say that COM is classical (resp. post-quantum) chosen-bit binding (CBB) if for every efficient classical
(resp. quantum) Adv, the above experiment outputs 1 with probability 1/2 + negl(λ). It is straightforward
to show (via rewinding) that classical CBB is equivalent to computational binding. Our first result is an
equivalence between post-quantum CBB and collapsing.

Lemma 1.1. A commitment scheme is collapse binding if and only if it is post-quantum chosen-bit binding.

We note that the “only if” direction already follows from a result of Unruh [Unr16a]: CBB is a special
case of “CDMS binding”, which Unruh shows is implied by collapsing. We discuss this in more detail shortly.

1.1.2 Connections to existing notions

Note that, when ` = 1, CBB is identical to “sum binding” [Unr16b]. [Unr16a] shows that collapse binding
implies sum binding; combining this with Lemma 1.1 we obtain the following corollary.

Corollary 1.2. (Post-quantum) sum binding is equivalent to collapse binding (for bit commitments).

For general `, chosen-bit binding is a special case of so-called “CDMS binding” [CDMS04, Unr16b].
Informally, a commitment is CDMS-binding with respect to a function class F if for every f : X → Y in F
and every efficient adversary Adv,

Pr
y

[Adv(y) opens com to m s.t. f(m) = y] ≤ 1

|Y |
+ negl(λ) ,

where above com is a fixed commitment previously output by Adv and y is chosen uniformly at random from
Y . [Unr16a] shows that collapsing implies CDMS binding for all function classes where |Y | is polynomial.
CBB is easily seen to be equivalent to CDMS binding for F being the class of one-bit projection functions;
we hence obtain the following corollary.

Corollary 1.3. (Post-quantum) CDMS binding is equivalent to collapse binding.

It also follows that CDMS binding for one-bit projections implies CDMS binding for all function classes with
polynomial range.
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1.1.3 Collapsing and equivocal hash functions

We define an analogous notion of chosen-bit binding for hash functions. Let Hλ ⊆ {0, 1}m(λ) → {0, 1}n(λ)

be a hash function family. The chosen-bit binding game for hash functions proceeds as follows.

1. Choose h← Hλ.
2. Obtain (y, i)← Adv(h), where y ∈ {0, 1}n(λ) and i ∈ [m(λ)].
3. Choose b← {0, 1} uniformly at random.
4. Obtain x← Adv(b). Output 1 if xi = b.

We say that H is classical (resp. post-quantum) chosen-bit binding (CBB) if for every efficient classical (resp.
quantum) Adv, the above experiment outputs 1 with probability 1/2 + negl(λ). Classical CBB is equivalent
to collision resistance. By an essentially identical argument to Lemma 1.1, we show that post-quantum CBB
is equivalent to collapsing.

Lemma 1.4. A hash family H is collapsing if and only if it is post-quantum chosen-bit binding.

An equivocal CRH [AGKZ20] is a post-quantum CRH with an additional functionality EqGen which
produces a tuple (ρ, y, p) where ρ is a quantum “secret key” and p is a predicate. Given ρ, the user is able to
(later) produce x such that h(x) = y and p(x) = b for any bit b of its choice (with probability close to 1).1

We observe first that what [AGKZ20] call “unequivocality” — roughly, that achieving the above with
any nontrivial advantage is computationally infeasible — implies CBB, and hence collapsing. This resolves
an open question of [AGKZ20].

However, we are able to show something much stronger, in the spirit of the “win-win” results of [Zha19].
In particular, we show that if a CRH is (almost everywhere) not collapsing then it is equivocal. Note that
this is a much stronger notion than being “not unequivocal” since equivocation must succeed with probability
close to 1. More formally, we obtain the following.2

Theorem 1.5. Let H be a hash family that is post-quantum collision resistant but not collapsing. Then
there exists a polynomial r such that the r-fold parallel repetition of H, Hr, is (infinitely often) equivocal.

The proof uses recent quantum rewinding techniques [CMSZ22] to amplify success probability.
Finally, we use the chosen-bit binding definition to give a “fully classical” proof of the (folklore) result

that somewhere-statistically binding (SSB) hash functions are collapsing.

Lemma 1.6. Any somewhere-statistically binding hash function is chosen-bit binding; in particular, post-
quantum SSB hash functions are collapsing.

1.2 Discussion

Our results establish that collapsing is a “minimal” assumption which allows one to prove post-quantum
security for the important class of “commit-and-open” sigma protocols. Indeed, it was shown in [LMS21] that
any classically secure commit-and-open protocol is post-quantum secure when instantiated with a collapse
binding commitment. Our first result (Lemma 1.1) gives a sort of converse: there is a commit-and-open
protocol which is insecure when instantiated with a commitment that is not collapse binding.

Unlike collapse binding, which is defined in terms of a quantum interaction, chosen-bit binding is defined
in terms of a classical interaction with a (potentially quantum) adversary. This may make it easier to
connect with other classical binding notions (as we demonstrate by proving that SSB implies collapsing).
The definition also implies a method by which a quantum falsifier can convince a classical party that a hash
function is not collapsing.

1Note that while these functions are referred to as “hash functions”, it is not necessary that they be compressing in order
to be nontrivial, due to the equivocality property.

2It is claimed in [AGKZ20] that if H is “not unequivocal” then its parallel repetition Hr is equivocal for large enough r.
This is in fact true, but their argument is flawed; see Remark 4.3 for a discussion.
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2 Preliminaries

We denote by λ ∈ N the security parameter. For n ∈ N, we write [n] to denote the set {1, . . . , n}. For a set
S, we write i ← S to denote that i is chosen uniformly from S. For a distribution D we write i ← D to
denote that i is chosen according to D.

We make use of the following simple fact, a consequence of Markov’s inequality.

Proposition 2.1. Let X be a random variable supported on [0, 1]. Then for all α ≥ 0, Pr[X ≥ α] ≥ E[X]−α.

2.1 Quantum information

We recall the basics of quantum information. Most of the following is taken almost verbatim from [CMSZ22].
A (pure) quantum state is a vector |ψ〉 in a complex Hilbert space H with ‖|ψ〉‖ = 1; in this work, H is
finite-dimensional. We denote by S(H) the space of Hermitian operators on H. A density matrix is a positive
semi-definite operator ρ ∈ S(H) with Tr(ρ) = 1. A density matrix represents a probabilistic mixture of pure
states (a mixed state); the density matrix corresponding to the pure state |ψ〉 is |ψ〉〈ψ|. Typically we divide
a Hilbert space into registers, e.g. H = H1 ⊗H2. We sometimes write, e.g., ρH1 to specify that ρ ∈ S(H1).

A unitary operation is a complex square matrix U such that UU† = I. The operation U transforms the
pure state |ψ〉 to the pure state U |ψ〉, and the density matrix ρ to the density matrix UρU†.

A projector Π is a Hermitian operator (Π† = Π) such that Π2 = Π. A projective measurement is a
collection of projectors P = (Πi)i∈S such that

∑
i∈S Πi = I. The application of P to a pure state |ψ〉 yields

outcome i ∈ S with probability pi = ‖Πi |ψ〉‖2; in this case the post-measurement state is |ψi〉 = Πi |ψ〉 /
√
pi.

We refer to the post-measurement state Πi |ψ〉 /
√
pi as the result of applying P to |ψ〉 and post-selecting

(conditioning) on outcome i. A state |ψ〉 is an eigenstate of P if it is an eigenstate of every Πi. A two-
outcome projective measurement is called a binary projective measurement, and is written as P = (Π, I−Π),
where Π is associated with the outcome 1, and I−Π with the outcome 0.

General (non-unitary) evolution of a quantum state can be represented via a completely-positive trace-
preserving (CPTP) map T : S(H) → S(H′). We omit the precise definition of these maps in this work;
we only use the facts that they are trace-preserving (for every ρ ∈ S(H) it holds that Tr(T (ρ)) = Tr(ρ))
and linear. For every CPTP map T : S(H) → S(H) there exists a unitary dilation U that operates on

an expanded Hilbert space H ⊗ K, so that T (ρ) = TrK(U(ρ ⊗ |0〉〈0|K)U†). This is not necessarily unique;
however, if T is described as a circuit then there is a dilation UT represented by a circuit of size O(|T |).

For Hilbert spaces A,B the partial trace over B is the unique CPTP map TrB : S(A ⊗ B) → S(A) such
that TrB(ρA ⊗ ρB) = Tr(ρB)ρA for every ρA ∈ S(A) and ρB ∈ S(B).

A general measurement is a CPTP map M : S(H) → S(H ⊗ O), where O is an ancilla register holding

a classical outcome. Specifically, given measurement operators {Mi}Ni=1 such that
∑N
i=1MiM

†
i = I and a

basis {|i〉}Ni=1 for O, M(ρ) =
∑N
i=1(MiρM

†
i ⊗ |i〉〈i|

O
). We sometimes implicitly discard the outcome register.

A projective measurement is a general measurement where the Mi are projectors. A measurement induces

a probability distribution over its outcomes given by Pr[i] = Tr
(
|i〉〈i|OM(ρ)

)
; we denote sampling from this

distribution by i← M(ρ).

2.2 Commitment schemes

For the purposes of this work, a commitment scheme consists of a pair of PPT algorithms (Gen,Commit)
with the following binding property.

Computational binding. For an adversary Adv, define the experiment ExpAdvbind(λ) as follows.

1. The challenger generates ck← Gen(1λ).
2. Adv(ck) sends (m0, ω0,m1, ω1) to the challenger.
3. The experiment outputs 1 if m0 6= m1 and Commit(ck,m0, ω0) = Commit(ck,m1, ω1).

4



We say that (Gen,Commit) is classically (resp. post-quantum) computationally binding if for all PPT (resp.
QPT) adversaries Adv,

Pr
[
ExpAdvbind(λ) = 1

]
= negl(λ) .

Typically, in order to be non-trivial, commitment schemes should also satisfy a notion of hiding. We omit
the definition of hiding since it is not relevant to the current work. Next, we recall the notion of collapse
binding [Unr16b].

Collapse binding. For an adversary Adv, define the experiment ExpAdvcl (λ) as follows.

1. The challenger generates ck← Gen(1λ).
2. Adv(ck) sends a commitment com and the registers M⊗O of a quantum state ρ.
3. The challenger flips a coin b ∈ {0, 1}. If b = 0, the challenger does nothing. Otherwise, the challenger

measures M in the computational basis.
4. The challenger returns registersM⊗O to the adversary, who outputs a bit b′. The experiment outputs

1 if b = b′.

We say that Adv is valid if measuring the output of Adv(ck) in the computational basis yields, with probability
1, (com,m, ω) such that Commit(ck,m, ω) = com. (Equivalently, ρ =

∑
i pi |ψi〉〈ψi| where all |ψi〉 have zero

amplitude on computational basis states |m,ω〉 where Commit(ck,m, ω) 6= com.)
We say that (Gen,Commit) is collapse-binding if for all valid non-uniform QPT adversaries Adv,∣∣∣∣Pr

[
ExpAdvcl (λ) = 1

]
− 1

2

∣∣∣∣ = negl(λ) .

Sum binding. For an adversary Adv, define the experiment ExpAdvsum(λ) as follows.

1. The challenger generates ck← Gen(1λ).
2. Adv(ck) sends a commitment com.
3. The challenger flips a coin b← {0, 1} and sends it to Adv.
4. Adv returns an opening ω. The experiment outputs 1 if Commit(ck, b, ω) = com.

We say that COM is sum-binding if for all non-uniform QPT adversaries Adv,

Pr
[
ExpAdvsum(λ) = 1

]
≤ 1

2
+ negl(λ) .

Somewhere statistical binding (SSB). Finally, we recall the notion of somewhere statistical binding,
introduced by [HW15] in the context of hash functions. Here we present the equivalent notion for commit-
ments; note this is different to the more sophisticated notion of SSB commitments given by [FLPS21].

Definition 2.2 (Somewhere statistical binding). Let ` be a polynomial. A commitment scheme COM =
(Gen,Commit) is said to be somewhere-statistically binding (SSB) if:

• For all i, j ∈ [`(λ)], the distributions Gen(1λ, i) and Gen(1λ, j) are computationally indistinguishable.

• For all i ∈ [`(λ)] and all cki in the support of Gen(1λ, i), let m,m′ be such that there exist ω, ω′

satisfying Commit(cki,m, ω) = Commit(cki,m
′, ω′). Then mi = m′i.

“Honest” key generation is by (e.g.) choosing a random j ∈ [`(λ)] and running ck ← Gen(1λ, j); note
however that this is indistinguishable from any other way of choosing the index. We find it useful to restate
the indistinguishability property as follows. For all QPT adversaries Adv:

Pr

i = j

∣∣∣∣∣∣
j ← [`(λ)]

ck← Gen(1λ, j)
i← Adv(ck)

 ≤ 1

`(λ)
+ negl(λ) .

Collision-resistant hash functions. For our purposes, a collision-resistant hash function is a binding
(but not hiding) commitment scheme where the length of the randomness is zero. We will henceforth only
discuss commitment schemes; all of our results extend to CRHs mutatis mutandis.
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3 Chosen-bit binding

In this section we define the notion of chosen-bit binding for commitment schemes and show that post-
quantum chosen-bit binding is equivalent to collapse binding.

The chosen-bit binding experiment. Given a commitment scheme COM we define the experiment
ExpAdvcbb (λ), parameterised by λ ∈ N.

1. The challenger samples ck← Gen(1λ) and sends ck to Adv.
2. Adv responds with a commitment com and index i ∈ [`].
3. The challenger sends a random bit b← {0, 1}.
4. Adv responds with (m,ω).

The experiment outputs 1 if Commit(ck,m, ω) = com and mi = b.

Definition 3.1. We say that a commitment scheme is classical (resp. post-quantum) chosen-bit binding
if for all efficient classical (resp. quantum) adversaries Adv,

Pr
[
ExpAdvcbb (λ) = 1

]
≤ 1

2
+ negl(λ) .

The proof of the following lemma is straightforward and hence omitted.

Lemma 3.2. A commitment scheme is chosen-bit binding against classical adversaries if and only if it is
computationally binding.

We now prove the main result of this section, that chosen-bit binding is equivalent to collapse binding.

Lemma 3.3. A commitment scheme is chosen-bit binding against quantum adversaries if and only if it is
collapse binding.

We first prove (via the contrapositive) that collapsing implies chosen-bit binding; this is included only
for completeness as it follows from [Unr16a, Theorem 32].

Proof (collapsing ⇒ CBB). Let Adv be an adversary that achieves advantage ε in the chosen-bit binding
game. We may assume, without loss of generality, that the adversary’s action in step 4 consists of the
application of a unitary U followed by a computational basis measurement of M⊗ O. We construct an
adversary Adv′ for the collapse binding experiment as follows.

• Run Adv(ck) to obtain i ∈ [`], com and residual state ρ. Apply U to σ = |+〉〈+| ⊗ ρ followed by the
binary projective measurement M = (Π, I −Π) where

Π :=
∑

b∈{0,1},m,ω
Commit(ck,m,ω)=com

mi=b

|b,m, ω〉〈b,m, ω| .

If the outcome is 1, send the registers M,O along with i ∈ [`] to the challenger. Otherwise, send an
arbitrary valid (classical) commitment.

• Upon receipt of M,O from the challenger:

– If the outcome in the previous step was 0, output a random bit.
– Otherwise, apply U† to B,M,O and measure B in the {|+〉 , |−〉} basis. If the result is |+〉, output

0; otherwise output 1.

Note that, since Adv′ always sends (part of) a state in the image of Π, it is a valid adversary. Moreover, if
either the challenger measures or the outcome of the first measurement by the adversary is 0, the experiment
outputs a uniformly random bit.

For the case where the challenger does not measure, we use the following proposition:
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Proposition 3.4. Let P,Q be projectors and ρ a density matrix such that ρQ = ρ. Then

Tr(QPρP ) ≥ Tr(Pρ)
2
.

Using the proposition, we lower bound the probability that the first measurement outcome of the adver-
sary is 1 and the second is 0 (so the experiment outputs 1): since σ |+〉〈+| = σ,

Tr (|+〉〈+|ΠσΠ) ≥ Tr(Πσ)
2

=

(
1

2
+ ε

)2

.

The probability that the experiment outputs 1 is thus

1

4
+

1

2

(
Tr(|+〉〈+|ΠσΠ) +

1

2
(1− Tr(Πσ))

)
=

1

4
+

1

2

(
Tr(|+〉〈+|ΠσΠ) +

1

2

(
1

2
− ε
))

≥ 1

4
+

1

2

((
1

2
+ ε

)2

+
1

2

(
1

2
− ε
))

≥ 1

2
+
ε

2
.

Before proving the reverse implication, we show a basic fact about non-commuting projective measure-
ments. Let M be some projective measurement and B = (D, I − D) a binary projective measurement.
Consider the following experiment applied to a state ρ:

1. Measure i← M.
2. Apply B (and ignore the result).
3. Measure j ← M.

The claim gives a lower bound on the probability that i 6= j in terms of how well B distinguishes ρ from
M(ρ) (which is a measure of how “non-commuting” B and M are). Variants of this claim have appeared
independently and concurrently in [Zha22, CX22].

Claim 3.5. Let D be a projector, M = (Πi)i∈[N ] be a projective submeasurement and ρ be a state such that∑
i Tr(Πiρ) = Tr(ρ). Then

∑
j

∑
i 6=j

Tr(ΠiDΠjρΠjD) ≥ Tr(D(ρ−M(ρ)))
2

N · Tr(ρ)
.

Proof. Inserting resolutions of the identity, and since (I −
∑
i Πi)ρ = 0,

Tr(Dρ) =
∑
i

Tr(DΠiρΠi) +
∑
i 6=j

Tr(ΠiDΠjρ) = Tr(DM(ρ)) +
∑
j

Tr(Π6=jDΠjρ) ,

where Π 6=j :=
∑
i 6=j Πi. By Cauchy-Schwarz, |Tr(Π6=jDΠjρ)| ≤

√
Tr(Π6=jDΠjρΠjD)

√
Tr(ρ). Substituting

into the above equation and applying Cauchy-Schwarz again yields the claim.

We now prove the reverse implication.

Proof (CBB ⇒ collapsing). Let Adv be an adversary that achieves ε collapsing advantage. We design an
adversary Adv′ for the chosen-bit binding game as follows.

• Run Adv(ck) to obtain com and residual state ρ. Send com and a random index i← [`].

• Upon receipt of b from the challenger, measure the first i bits of M, obtaining outcomes b1, . . . , bi. If
bi 6= b, apply Adv’s (projective) distinguishing measurement (D, I −D) to ρ.

• Measure M,O, and reply with outcome (m,ω).
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Let Mj(ρ) be the map corresponding to measuring the jth bit of ρ. Let M[i] := M1(· · ·Mj−1(Mj(ρ)) · · · )
be the map corresponding to measuring the first j bits of ρ, where M[0] is the identity map. We have that

ρ−M[`](ρ) =

n−1∑
j=0

M[j](ρ)−M[j+1](ρ) =

n−1∑
j=0

ρj −Mj+1(ρj)

where ρj := M[j](ρ).
The adversary’s success probability γ in the chosen-bit binding experiment can be written as

1

2`

∑
i∈[`]

∑
b∈{0,1}

Tr(Πi,bρi−1) + Tr(Πi,bDΠi,1−bρi−1Πi,1−bD),

where
Πi,b :=

∑
m,ω
mi=b

Commit(ck,m,ω)=com

|m,ω〉〈m,ω|M,O .

Note that the validity of Adv ensures ρi−1 is in the span of Πi,0 + Πi,1, which simplifies the first term of
the sum:

∑
i∈[`]

∑
b∈{0,1} Tr(Πi,bρi−1) =

∑
i∈[`] Tr(ρi−1) = `. Applying Claim 3.5 and Cauchy-Schwarz, we

obtain that

γ ≥ 1

2
+

1

4`

∑
i∈[`]

Tr(D(ρi −Mi+1(ρi)))
2 ≥ 1

2
+

1

4`2

∑
i∈[`]

Tr(D(ρi −Mi+1(ρi)))

2

=
1

2
+

1

4`2
(

Tr(D(ρ−M(ρ)))
)2

=
1

2
+
( ε

2`

)2

where the final equality follows by assumption on Adv. This completes the proof.

Somewhere statistical binding. Using chosen-bit binding, we give a “fully classical” proof that somewhere-
statistical binding commitments (resp. hash functions) are collapse binding (resp. collapsing).

Lemma 3.6. Any post-quantum somewhere statistically binding commitment scheme (resp. hash function)
is chosen-bit binding against quantum adversaries (and therefore collapse binding (resp. collapsing)).

Proof. Let Adv be an adversary satisfying Pr
[
ExpAdvcbb (λ) = 1

]
= 1/2 + ε.

We construct an adversary Adv for the SSB experiment as follows: simulate the CBB experiment with
the key ck, obtaining (com, i, b,m, ω). If mi 6= b or Commit(ck,m, ω) 6= com (i.e., if the adversary loses),
output k ← [`]; otherwise, output k ← [`] \ {i}. We denote by j the (uniformly sampled) binding index.

The success probability of this adversary is

Pr[k = j] =
1

`
· Pr

[
ExpAdvcbb (λ) = 0

]
+

1

`− 1
· Pr

[
ExpAdvcbb (λ) = 1 ∧ j 6= i

]
. (1)

Observe that the experiment outputs 1 with probability at most 1/2 when conditioned on j = i (since one of

the choices for b is such that no winning pair (m,ω) exists); that is, Pr
[
ExpAdvcbb (λ) = 1

∣∣∣ j = i
]
≤ 1/2. Hence

1

2
+ ε = Pr

[
ExpAdvcbb (λ) = 1

∣∣∣ j = i
]

Pr[j = i] + Pr
[
ExpAdvcbb (λ) = 1 ∧ j 6= i

]
.

If Pr[j = i] ≥ (1 + ε)/` (infinitely often) then we can instead construct an adversary against SSB by simply
outputting i as the guess. So we will assume otherwise; then

1

2
+ ε ≤ 1 + ε

2`
+ Pr

[
ExpAdvcbb (λ) = 1 ∧ j 6= i

]
,
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and so Pr
[
ExpAdvcbb (λ) = 1 ∧ j 6= i

]
≥ 1

2 (1− 1
` ) + ε · (1− 1

2` ).

Substituting into (1) yields

Pr[k = j] ≥ 1

2`
+

1− 1
`

2(`− 1)
+ ε ·

(
1− 1

2`

`− 1
− 1

`

)
=

1

`
+

ε

2`(`− 1)
,

which completes the proof.

4 Equivocality

[AGKZ20] define a notion they call equivocal collision-resistant hash functions, and show how these can be
used to construct a variety of interesting quantum cryptographic schemes. Here we consider a slight variant,
which we call a one-time equivocal commitment scheme (with “one-time” to distinguish this from classical
notions of equivocal commitment). We note that an equivocal CRH is a one-time equivocal commitment
to the bit p(x) where p is the adversary’s chosen predicate and x is the hash preimage, and that one-time
equivocal commitments imply one-shot chameleon hash functions.

Definition 4.1. A commitment scheme is one-time equivocal if there exists a stateful QPT algorithm Eq
such that for all messages m ∈M,

Pr

Commit(ck,m, ω) = com

∣∣∣∣∣∣
ck← Gen(1λ)
com← Eq(ck)
ω ← Eq(m)

 = 1− negl(λ) .

[AGKZ20] also informally define a “converse” notion to the above, which they call “unequivocality”. A
formal definition follows.

Definition 4.2. A commitment scheme is unequivocal if for any adversary Adv,

Pr

Commit(ck,m, ω) = com

∣∣∣∣∣∣∣∣
m←M

ck← Gen(1λ)
com← Adv(ck)
ω ← Adv(m)

 ≤ 1

|M|
+ negl(λ) .

While Definitions 4.1 and 4.2 are with respect to arbitrary message spaces, hereafter we focus on the case
that M = {0, 1}. One can immediately observe that in this case, unequivocality is identical to sum-binding
(and hence, in turn, chosen-bit binding). Equivocal string commitments can be obtained from equivocal bit
commitments by the usual composition.

Remark 4.3 (Equivocality vs. unequivocality). Despite what the terminology suggests, we stress that
equivocality and unequivocality are not the logical negation of one another: aside from the usual techni-
cal issues of infinitely-often vs. almost-everywhere, equivocality is syntactically much stronger than “non-
unequivocality”, as it requires a correct opening with all but negligible probability.

[AGKZ20] claim that an adversary breaking unequivocality yields an equivocal commitment scheme as
follows (we adapt their argument to our definitions). The new commitment is a parallel repetition of the
original, where the committed bit is taken to be the majority of the underlying commitments. To equivocate,
we ask the adversary to open each underlying commitment to the same bit b. The idea is that taking the
majority amplifies the small bias that adversary achieves. However, this argument has a significant flaw:
what do we do when the adversary fails to equivocate on a particular commitment? In this case it may either
produce an invalid opening, preventing us from opening the commitment altogether, or even consistently
provide openings for 1− b, leading to a valid opening to the wrong bit!
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We will show that, via the technique of quantum rewinding, breaking unequivocality in fact implies
one-time equivocality – albeit with an expected polynomial-time equivocator Eq. To this end, first note
that the key ck and commitment string com sent by Adv in the one-time equivocation experiment defines
a single-player quantum game (as in [CMSZ22]): we denote by G = Gck,com the game where Adv receives a
random question b ← {0, 1}, replies with ω and wins if the predicate f(b, ω) = Commit(ck, b, ω) = com is
satisfied. We call ωG(Adv, ρ) the winning probability of Adv when its internal state is ρ at the start of the
game (i.e., after it sends com in the experiment).

We will make use of the following two lemmas, which are simplified versions of [CMSZ22, Lemmas 4.9
and 4.10].

Lemma 4.4. Given a poly(λ)-time adversary Adv for the game G and two real parameters γ, δ > 0, there
exists a real-valued poly(λ, ε, log 1/δ)-time measurement ValEst = ValEstG satisfying the following.

(i) Ep←ValEst(ρ)[p] = ωG(Adv, ρ);

(ii) ValEst is (γ, δ)-almost projective, that is, applying ValEst twice in a row to ρ yields p, p′ such that
Pr[|p− p′| ≤ γ] ≥ 1− δ;

(iii) If ρ′ is the post-measurement state of an application of ValEst on ρ, then ωG(Adv, ρ′) ≥ ωG(Adv, ρ)− δ.

Lemma 4.5. Let M and Π = (Π0,Π1) be (γ, δ)-almost projective and projective measurements, respectively.

For any positive integer t, there exists a procedure RepairM,Πt (p, b), that applies M and Π a total of O(1+t
√
δ)

times in expectation, such that the following is a
(
2γ,O(1/t+

√
δ)
)
-projective measurement: apply M followed

by Π, obtaining outcomes p and b; run RepairM,Πt (p, b) on the post-measurement state; and output p.

We are now ready to show that (almost-everywhere) non-unequivocality implies one-time equivocality
(with an expected polynomial time equivocator). Our one-time equivocal commitment scheme is constructed
as follows.

Construction 4.6. Let COM = (Gen,Commit) be a commitment scheme. For r ∈ N, we construct COMr

as follows:

• Genr(1λ) runs, for each i ∈ [r], cki ← Gen(1λ), and outputs ck := (ck1, . . . , ckr).

• Commitr((ck1, . . . , ckr),m, (i, ω)) := (i,Commit(cki,m, ω)).

Given an adversary Adv for the unequivocality experiment (Definition 4.2) with quantum auxiliary input
ρ, we construct an equivocator as follows. Eq has as auxiliary input r copies of ρ on registers A1, . . . ,Ar.

• EqAdvε (ck1, . . . , ckr;A1 ⊗ · · · ⊗ Ar):

1. For each i ∈ [r]:

(a) Run comi ← Adv(cki;Ai).
(b) Apply ValEstG (where G = Gcki,comi) to Ai with parameters γ = ε2/(8λ) and δ = 2−λ,

obtaining outcome pi.

(c) If pi ≥ 1/2 + 3ε/4, set i∗ := i and stop.

2. If i∗ is not set, output ⊥.

3. Otherwise, output (i∗, comi∗) as the commitment and set p := pi∗ . At this point we can discard
Ai for i 6= i∗.

• EqAdvε (b;Ai∗):
Repeat the following at most λ/ε times:

1. Apply the measurement B = (Πb, I − Πb) to Ai∗ . If the outcome is 1, measure the adversary’s
response ω, output (i∗, ω), and stop.
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2. Otherwise, run RepairValEstG ,B
δ−1/2 (p, b) and update p← ValEstG (with the same parameters as above).

Theorem 4.7. Let COM be a commitment scheme admitting a poly(λ)-time adversary Adv that produces
a valid opening in the experiment of Definition 4.2 with probability 1/2 + ε where ε = poly(1/λ) (i.e., that
violates unequivocality infinitely often). Then, with r = λ/ε, Construction 4.6 yields a one-time equivocal
commitment scheme COMr with an expected poly(λ)-time equivocator.

Proof. By assumption, E[pi] = E[ωGcki,comi
(ρi)] ≥ 1/2+ε, where ρi is the post-measurement state after Step 1a.

Hence by Proposition 2.1, Pr[p ≥ 1/2 + 3ε/4] ≥ ε/4. Since each iteration of the loop is independent, the
probability that pi < 1/2 + 3ε/4 for all i ∈ [r] is at most (1− ε/4)r ≤ e−λ/4 = negl(λ).

This shows that Eq(ck1, . . . , ckr), with Eq = EqAdvε , outputs (i∗, comi∗) for some i∗ ∈ [r] except with
probability negl(λ). (Note that this step of Eq runs in strict poly(λ) time.) We now move on to the analysis
of Eq(b). Set ck = cki∗ , com = comi∗ , A = Ai∗ and recall that (Πb, I − Πb) is the projective measurement
corresponding to the whether Adv wins the unequivocality experiment when the challenge is b (that is, Πb

projects onto the subspace spanned by |b, ω〉 such that Commit(ck, b, ω) = com).
Let ρj be the state in A in the beginning of iteration j ∈ [λ/ε] of Eq(b) and bj be the output of Π in the

same iteration. We now argue that Pr[bj = 1] is lower bounded for all j: since p ≥ 1/2+3ε/4, by item (iii) of
Lemma 4.4, we have 1

2 Tr
(
(Π0+Π1)ρ1

)
≥ p−δ, and thus Tr(Πbρ1) ≥ ε/2. Since γ = ε2/8, the estimate-repair

procedure of Lemma 4.5 is (ε2/4, O(
√
δ))-almost projective. Then Pr[bj = 1] = Tr(Πbρj) ≥ ε

2 −
λ
ε ·

ε2

4λ = ε/4

for all j, except with probability O(
√
δ/ε) = negl(λ). Note, moreover, that as each iteration runs in expected

O(1) time, the total (expected) runtime is O(λ/ε) = poly(λ).
The random variables bj are not independent; however, we can conclude by showing that they stochas-

tically dominate a sequence of independent random variables.

Claim 4.8 (Stochastic dominance). Let b1, . . . , bn be a sequence of binary random variables such that for
all j ∈ [n], Pr[bj = 1 | b1, . . . , bj−1] ≥ p. Then

Pr
[
bj = 0 ∀j ∈ [n]

]
≤ (1− p)n

Using the foregoing claim for the conditional probability space (with measure 1 − negl(λ)) where the
first step of Eq does not return ⊥ and Pr[bj = 1] ≥ ε/4 for all j (where it holds, in particular, that
Pr[bj = 1 | bi, i 6= j] is lower bounded by the same value), we conclude that either Eq(ck1, . . . , ckr) aborts or
Eq(b) does not return a valid opening with probability at most

(1− ε/4)λ/ε + negl(λ) = negl(λ).
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