
Improved Preimage Attacks on Round-Reduced
Keccak-384/512 via Restricted Linear Structures

Le He, Xiaoen Lin, and Hongbo Yu

Department of Computer Science and Technology, Tsinghua University, Bejing
100084, China

Abstract. This paper provides improved preimage analysis on round-
reduced Keccak-384/512. Unlike low-capacity versions, Keccak-384/512
outputs from two planes of its inner state: an entire 320-bit plane and a
second plane containing 64/192 bits. Due to lack of degrees of freedom,
most existing preimage analysis can only control the 320-bit plane and
cannot achieve good results. In this paper, we find out a method to con-
struct linear relations between corresponding bits from the two planes,
which means attacker can control two output planes simultaneously with
degrees of freedom much less than 320. Besides, we design several linear
structures for each different version with additional restrictions that can
leave more degrees of freedom. As a result, the complexity of preimage
attacks on 2-round Keccak-384/512 and 3-round Keccak-384/512 can be
decreased to 228/2252 and 2271/2426 respectively, which are all the best
known results so far. To support the analysis, this paper also provides
the first preimage of all ‘0’ digest for 2-round Keccak-384, which can be
obtained in hours level by a personal computer. It is worth noting that
although our structures contain non-linear parts, the attack algorithms
only involve the solution of linear equation systems.

Keywords: Keccak · Preimage attack · Linear relation

1 Introduction

The Keccak function, designed by Bertoni et al. [3, 4], was selected as the winner
of SHA-3 competition in 2012 and finally standardized in 2015 by NIST. Since
Keccak was proposed in 2008, there have been kinds of security cryptanalysis
from public research community, including preimage [2, 14, 15], collision [5, 16,
19], distinguishing [1, 7, 8], keyed modes [6, 10, 18], and many other unmentioned
security settings. Those advanced attack methods work well even with practical
results in low-capacity Keccak — round-reduced Keccak-224/256. Yet for round-
reduced Keccak-384/512, due to lack of freedom in message block setting, most
methods cannot work as efficiently as they do in low-capacity versions.

In this paper, we mainly focus on preimage attacks on round-reduced Keccak-
384/512 — more specifically, linear analysis. Our research is inspired by four
creative works: Guo et al.’s [8], Li et al.’s [13], Rajasree’s [17] and He et al.’s [9]. In
2016, Guo et al. [8] adopted a strategy of linear structure in both distinguishing

and preimage cryptanalysis on different Keccak versions. Their idea is to linearize
the whole inner state after several rounds with large amount of freedom space
left. Yet for Keccak-384/512, their structures can only pass through 1 round and
thus they have to adopt other advanced technologies to achieve good results,
which are not required in this paper. Then in 2019, Li et al. [13] proposed an
improved structure with an allocating model: the first message block aims to
generate a restricted middle state satisfying several conditions, and the second
message block (XORed with the restricted middle state) can obtain extra gains in
preimage searching. They adopted this model merely on reduced-round Keccak-
224/256. Yet it can also be simply applied to 3-round Keccak-384 (we will give a
brief discussion in Section 3.1). Rajasree [17] made an improvement from another
perspective. He noticed that the number of degrees of freedom left is much less
than the number of linear equations. Thus he allowed non-linear parts existing
in the structure and just constructed equations in linear parts. This idea would
not increase the number of degrees of freedom, but enlarge the space of random
constants, which is also a noticeable problem of high-capacity versions. In 2021,
He et al. [9] proposed a technology named zero coefficient. It actually refers to
some linear-dependent bit pairs in the inner state. Using this technology, they
successfully set 173 equations within 162 degrees of freedom, obtaining 11 linear-
dependent bit pairs. This result is limited just because their analysis object is
Keccak-224/256. For Keccak-384/512 with two output planes, the number can
be increased to lanes (a set of 64 bits) level. Table 1 summarizes some existing
preimage cryptanalysis results on round-reduced Keccak-384/512.

Table 1. Summary of preimage cryptanalysis on round-reduced Keccak-384/512.

Round Instance Complexity∗ Reference
2 Keccak-384 2129 [8]
2 Keccak-384 2113 [17]
2 Keccak-384 289 [11]
2 Keccak-384 228 Section 4.1
2 Keccak-512 2384 [8]
2 Keccak-512 2321 [17]
2 Keccak-512 2252 Section 4.2
3 Keccak-384 2322 [8]
3 Keccak-384 2321 [17]
3 Keccak-384 2271 Section 5.1
3 Keccak-512 2482 [8]
3 Keccak-512 2475 [17]
3 Keccak-512 2426 Section 5.2
4 Keccak-384 2371 [17]

∗Note: The results here refer to guess times instead of Keccak calls, which
do not include the complexity of solving the linear equation systems (the
constant factor is about 28 ∼ 210).

2

Our contributions. Inspired by previous works, we propose two new tech-
nologies on linear analysis of round-reduced Keccak. One is named non-linear
liberalization. Unlike Rajasree’s thought [17], this technology can indeed improve
the linear structure with more degrees of freedom left. The other is named extra
linear dependence. Through this technology, attacker can construct extra linear
relations between corresponding bits from different planes without spending any
degrees of freedom. These technologies are especially suitable for round-reduced
high-capacity Keccak, which contains two output planes with linear structures
passing through. It is worth mentioning that in [12] the authors have proposed
a practical attack for 1-round Keccak-512. Thus we apply these technologies to
versions starting from two rounds. As a result, we improve the preimage analysis
of 2-round Keccak-384/512 and 3-round Keccak-384/512 in two aspects:

1. With non-linear parts existing, we optimize the linear structures of differ-
ent versions that can leave 320/192 and 64/128 degrees of freedom.

2. By carefully setting restricting constants and counting random space, we
obtain 128/192 and 96/128 linear-dependent bit pairs from two output planes.

After analyzing the probability of eliminating those quadratic terms and the
gain of those linear-dependent bit pairs, it is concluded that the complexity of
preimage attacks on 2-round Keccak-384/512 and 3-round Keccak-384/512 can
be decreased to 228/2252 and 2271/2426 respectively (message padding has been
taken into account). An example preimage attack of all ‘0’ digest for 2-round
Keccak-384 is given in Section 4.1.

Organization. The paper starts with some preliminaries and notations of
Keccak in Section 2. In Section 3, we introduce the core technologies involved in
our work. Improved preimage attacks on 2-round Keccak-384/512 and 3-round
Keccak-384/512 are provided separately in Section 4 and Section 5. Conclusions
are summarized in Section 6.

2 Preliminaries
This section gives the descriptions about sponge construction, Keccak-f permu-
tation, SHA-3 standard, some properties of Keccak-f , and the meanings of those
notations used in this paper.

2.1 Sponge Construction
The Keccak function adopts a new iterative construction named sponge, which
involves three parameters r, c, ℓ and a permutation Keccak-f [b] with b = r + c
(as depicted in Fig. 1). This construction processes a message in two phases —
absorbing phase and squeezing phase. In absorbing phase, the message M (after
padding) is split into r-bit blocks. Starting with a b-bit all ‘0’ IV, its first r bits
are XORed with the first message block, followed by an execution of Keccak-f .
After all message blocks are processed similarly, it comes to the squeezing phase.
In the squeezing phase, the construction outputs an r-bit digest and mixes the
inner state by executing Keccak-f , repeating until the digest length reaches ℓ.
Finally, the digest is truncated to the first ℓ bits.

3

Fig. 1. The sponge construction.

2.2 Keccak-f Permutation

The core of Keccak-f is its b-bit inner state. In [4], the designers provided seven
Keccak-f permutations with b ∈ {25, 50, 100, 200, 400, 800, 1600}. NIST finally
chose b = 1600 as SHA-3 standard. In this paper, we also consider the case of
b = 1600 only.

In the case of b = 1600, the inner state can be organized as 5×5 64-bit lanes
like Fig. 2. Each bit is denoted as Ax,y,z, where x varies from 0 to 4, y varies
from 0 to 4, and z varies down from 63 to 0 (counting from the most significant
bit) as the arrows in Fig. 2 show. The r-bit part of the inner state piles in order
of A0,0,0 ∼ A0,0,63, A1,0,0 ∼ A1,0,63, . . . , A4,0,0 ∼ A4,0,63, A0,1,0 ∼ A0,1,63 . . .

Fig. 2. The inner state of Keccak-f .

The Keccak-f permutation consists of 24 rounds of function R, and each R
consists of five steps R = ι ◦ χ ◦ π ◦ ρ ◦ θ, where:

θ : Ax,y,z = Ax,y,z ⊕
⊕

j=0∼4
(Ax−1,j,z ⊕Ax+1,j,z−1)

ρ : Ax,y,z = Ax,y,z−rx,y

π : Ax,y,z = Ax+3y,x,z

χ : Ax,y,z = Ax,y,z ⊕ (Ax+1,y,z ⊕ 1) ·Ax+2,y,z

ι : A0,0,z = A0,0,z ⊕RCz

4

In the formulas above, “⊕” means bit-wise XOR and “·” means bit-wise AND.
Indices x and y are calculated modulo 5 and index z is calculated modulo 64.
Besides, rx,y refers to a lane-dependent rotation constant as shown in Table 2.
RC is a round-dependent constant. We omit the details of RC here since those
constants do not affect our attack methods.

Table 2. The offsets of ρ.

x = 0 x = 1 x = 2 x = 3 x = 4
y = 0 0 1 62 28 27
y = 1 36 44 6 55 20
y = 2 3 10 43 25 39
y = 3 41 45 15 21 8
y = 4 18 2 61 56 14

2.3 SHA-3 Standard

Any Keccak instance can be denoted as Keccak[r, c, ℓ] with bitrate r, capacity c
and digest length ℓ. In [20], NIST standardized four SHA-3 versions that have
r = 1600− 2ℓ and c = 2ℓ, where ℓ ∈ {224, 256, 384, 512}. Therefore, we can use
Keccak-ℓ or SHA-3-ℓ to denote a SHA-3 version for short.

The only difference between Keccak-ℓ and SHA-3-ℓ is padding rule: Keccak
pads the message by 10∗1 while SHA-3 pads the message by 0110∗1. This means
that for both Keccak and SHA-3, the last bit of the r-bit part (corresponding
to z = 63) must be ‘1’ and for SHA-3 only, the penultimate ‘1’ must follow “01”.
The preimage cryptanalysis results in this paper are applicable for Keccak: when
applied to SHA-3, the complexity will be a bit higher.

2.4 Properties of Keccak-f

Most properties of Keccak-f have been discussed in previous works [8, 9, 13, 17].
For simplicity, here we just state related properties without any proof.

1. Step θ. θ is the linear diffusion layer of Keccak-f . Through θ, the variation
of a single bit will spread to 11 bits. An important property of θ is, the XOR
value of two bits from identical column always holds, which can be written as:

Ax,y1,z ⊕Ax,y2,z = θ(A)x,y1,z ⊕ θ(A)x,y2,z

2. Step π ◦ ρ. π ◦ ρ can be regarded as a bit-level permutation function of the
inner state. In this paper, we always combine ρ together with π.

3. Step χ. χ is the only non-linear step of Keccak-f , which can be regarded
as a 5-bit Sbox. The output of χ can keep linear if and only if the input contains
at most two discontinuous unknown variables. When 5 output bits are all known

5

(the 320-bit plane), the input bits can be entirely inversed. When 5 output bits
are partially known (the 64/192-bit plane), extra input restrictions are required
to match the known part. Particularly, to match 3 continuous output bits b0b1b2
(the 192-bit plane), two linear restrictions of input bits ai can be inversed:

a0 ⊕ (b1 ⊕ 1) · a2 = b0

a1 ⊕ (b2 ⊕ 1) · a3 = b1

4. Step ι. Since ι only runs in A0,0,z, the last ι can always be inversed in any
Keccak version. In this paper, except for the instance of 2-round Keccak-384 that
correctly matches an all ‘0’ digest, we omit the last ι in other Keccak versions:
we regard the digest as truncated from the inner state after the last χ.

2.5 Notations

From this section on, we will no longer use A to denote the inner state, since it
cannot accurately show its execution process. Instead, we will use capital Greek
letters (in {Θ,P,Π,X, I}) with a superscript (from 1 to 3) to express the state
exactly after the corresponding step is executed. For example, Π2 denotes the
inner state after the second π, and X3 denotes the inner state after the third χ.
In particular, I0 denotes the initial input (after XORing the message block).

To avoid ambiguity, we will always use three indices in subscript to denote a
part of the inner state. However, we may use “∗” to indicate all possible values.
For example, I1∗,y,z is a 5-bit row, I1x,∗,z is a 5-bit column, I1x,y,∗ is a 64-bit lane,
I1∗,y,∗ is a 320-bit plane, and I1∗,∗,z is a 5× 5 slice. If the subscript is omitted, it
indicates the 1600-bit whole state (like the notations above).

Column sum setting is the core issue of our preimage attacks. In this paper,
we use SA with two parameters x, z to denote the sum of a certain column from
state A, which is:

SA(x, z) =
⊕

y=0∼4
Ax,y,z

3 Technology Overview

This section introduces four core technologies involved in our preimage attacks:
restricted linear structure, allocating model, non-linear liberalization and extra
linear dependence.

3.1 Restricted Linear Structure

Linear structure is a significant idea in linear analysis on round-reduced Keccak
— not limited to preimage attack. Our paper inherits this idea from Guo et al.’s
work [8]. Actually the linear structures in [8] for Keccak-384/512 can only pass
through 1 round. Here we take a 2-round structure for Keccak-384 as an example
(as depicted in Fig. 3). In order to pass through the second non-linear Sbox, I0
must satisfy extra restrictions. Thus it is named restricted linear structure.

6

� ∘ � ∘ �

= 0 = 1 = linear = const = restricted const

� = !⊕# $% &% �%

' (∘ * + ∘ ,

'

(∘ *+ ∘ ,

$-&-&. �-

Fig. 3. A 2-round linear structure for Keccak-384.

Explanations for Fig. 3 are in order of Keccak-f execution:
1. State I0. I0 contains 6 variable lanes and 10 restricted (and 9 free) constant

lanes, corresponding to 384 initial degrees of freedom and 448 restrictions.
2. State I0 to state Θ1. The number of variable lanes remains 6 in Θ1, which

means variables could not spread through the diffusion layer θ. To prevent such
diffusion, related column sums need to be fixed, which correspond to 128 linear
equations (z = 0 ∼ 63, red indicates variables, the same in other equations):{

I00,0,z ⊕ I00,1,z ⊕ I00,2,z = SI0(0, z)⊕ I00,3,z ⊕ I00,4,z

I02,0,z ⊕ I02,1,z ⊕ I02,2,z = SI0(2, z)⊕ I02,3,z ⊕ I02,4,z

In addition, Θ1 restricts 10 constant lanes to be all ‘0’ or ‘1’. Then according to
the property of θ stated in Section 2.4, 448 restrictions are required before θ:

I01,0,z = I01,1,z ⊕ 1 = I01,3,z ⊕ 1 = I01,4,z

I03,1,z = I03,2,z = I03,3,z

I04,0,z = I04,1,z = I04,4,z

3. State Θ1 to state Π1. In structure figures, the 1600-bit permutation π ◦ ρ
can be regarded as a 25-lane color-swap.

4. State Π1 to state I1. The constants of ‘0’ and ‘1’ in Π1 can partly control
the output of the first non-linear Sbox. Notice that this structure doesn’t restrict
Π1

2,3,∗ to be all ‘0’. Thus variables may possibly spread to I10,3,∗ after χ.
5. State I1 to state Θ2. Similarly, 192 column sums are fixed to prevent the

diffusion of variables (I10,3,z may be constant or variable, indicated by purple):
I10,0,z ⊕ I10,3,z ⊕ I10,4,z = SI1(0, z)⊕ I10,1,z ⊕ I10,2,z

I11,2,z ⊕ I11,3,z = ⊕SI1(1, z)⊕ I11,0,z ⊕ I11,1,z ⊕ I11,4,z

I12,0,z ⊕ I12,1,z = ⊕SI1(2, z)⊕ I12,2,z ⊕ I12,3,z ⊕ I12,4,z

7

6. State Θ2 to state Π2. Variable lanes are swapped to different sites.
7. State Π2 to state I2. According to the property of χ stated in Section 2.4,

without any continuous variables in Π2, the outputs in I2 can keep linear.
8. State I2 to state Π3. Through three more linear steps, the linear structure

finally reaches the third χ with 384− 128− 192 = 64 degrees of freedom left.
This linear structure can be directly applied in preimage attack on 3-round

Keccak-384. According to the inversion property, Π3
∗,0,∗ can be entirely inversed

from the target digest. Thus this structure can support a preimage attack with
a correct rate of 2−321 (counting 1-bit message padding).

The basic principle of other restricted linear structures in this paper (mainly
in Section 4 and Section 5) is just the same. For simplicity, there we only provide
a structure figure with concrete column sum equations and I0 restrictions.

3.2 Allocating Model
The linear structure in Section 3.1 requires 448 I0 restrictions. However, among
these restrictions, I01,3,z ⊕ 1 = I01,4,z and I03,2,z = I03,3,z cannot simply be satisfied
by modifying the message block, since r-bit M merely reaches I02,2,63. Those 128
restrictions must be satisfied before XORing the message block, which involves
an allocating model (as depicted in Fig. 4).

�

�!

⨁

#

$

3-round Keccak-�

complexity: ��

complexity: ��
random space: �

= target

= restricted

= unconcerned

= free

= 0

3-round Keccak-�

Fig. 4. The allocating model (example of 3-round Keccak-384).

In this allocating model, attacker first finds out a message block M1 to let
the middle state H meet those restrictions. The searching complexity is denoted
as d1. XORed with the middle state, attacker then finds out a message block M2

to match the target digest. The searching complexity is denoted as d2. Certainly,
those restrictions can help decrease d2. Another important issue is, the random
space size s of M2 must not be less than d1. For high-capacity Keccak, usually
s < d2, which means attacker requires [d2/s] H to construct a preimage. Then
if s < d1, the total complexity becomes [d1/s]× d2

1, instead of d2.
1 Here we ignore the factor difference from solving the linear equation systems.

8

The random space consists of two parts: free bits from the message block, and
controllable column sums from the linear equation system. Take the structure
in Fig. 3 as an example.

The message block contains two free constant lanes I01,2,∗ and I03,0,∗, which
bring a space of 2128. As for the linear equation system, SI1(0, ∗), SI1(1, ∗) and
SI1(2, ∗) in the second θ are all free to be ‘0’ or ‘1’, which bring a space of 2192.
Yet SI0(0, ∗) and SI0(2, ∗) in the first θ are restricted by the equations below:

SI0(0, z)⊕ SI0(2, z − 1)⊕ I01,3,z = Θ1
1,3,z = 0

SI0(2, z)⊕ SI0(4, z − 1)⊕ I03,3,z = Θ1
3,3,z = 0

SI0(3, z)⊕ SI0(0, z − 1)⊕ I04,4,z = Θ1
4,4,z = 1

In above linear equation system, SI0(4, ∗) has been fixed by I0 restrictions,
and SI0(3, ∗) is corresponding to I03,0,∗. Therefore, there is a space loss of 264 in
the first θ. In total, the random space size of M2 is s = 2256. With d1 = 2128

and d2 = 2321, the allocating model for 3-round Keccak-384 meets the relations.

3.3 Non-Linear Liberalization

The improved linear structures in this paper (mainly in Section 4 and Section 5)
adopt two kinds of non-linear liberalization: liberalization to enlarge the random
space and liberalization for extra degrees of freedom. The former is first adopted
by Rajasree [17]. Although the structures in [17] cannot leave extra degrees of
freedom, his idea really inspires us to design the latter.

Non-Linear Liberalization to Enlarge the Random Space The inspira-
tion of this kind is: since the number of degrees of freedom left is less than the
number of linear bits in Π3, attacker can loosen some non-linear terms, partly
polluting Π3 but enlarging the random space. An example is given in Fig. 5.

� ∘ � ∘ �

= 0 = 1 = linear = const = restricted const

� = !⊕# $% &% �%

' (∘ * + ∘ ,

'

(∘ *+ ∘ ,

$-&-&. �-

= quadratic

Fig. 5. A 2-round partly non-linear structure for Keccak-384.

9

Compared to Fig. 3, this structure loosens two restricted constant lanes I03,2,∗
and I04,1,∗. This results in two extra diffused variable lanes I10,1,∗ and I10,2,∗ after
the first χ. Then in the second χ, continuous variables exist and generate two
quadratic lanes. Those quadratic terms spread through the third θ and almost
pollute the whole Π3. However, 5 lanes can still remain linear in this structure.
Meanwhile, the number of degrees of freedom left is equally 384−128−192 = 64,
which means attacker can exactly set 64 linear equations on Π3

3,0,∗.
In summary, this partly non-linear structure can support a preimage attack

on 3-round Keccak-384 with a complexity of equally 2321. However, through this
structure, the random space size greatly increases: since this structure loosens
128 I0 restrictions, the model parameters of such attack become d1 = 264 and
s = 2320.

Non-Linear Liberalization for Extra Degrees of Freedom The inspira-
tion of this kind is: since a quadratic term can be eliminated (equal to ‘0’) with
a probability of 3/4 instead of 1/2, if the quadratic term can exchange an extra
degree of freedom, it can still bring a gain of 21 × 3/4 = 20.58. An example is
given in Fig. 6.

� ∘ � ∘ �

= 0 = 1 = linear = const = restricted const

� = !⊕# $% &% �%

' (∘ * + ∘ ,

'

(∘ *+ ∘ ,

$-&-&. �-

= quadratic

(2 !")

Fig. 6. An improved 2-round partly non-linear structure for Keccak-384.

In this improved structure, we directly add two variable lanes I03,0,∗ and I03,1,∗
(and extra I0 restrictions). This results in continuous variables existing in Π1.
Then the core of this structure is, we regard I14,4,z = Π1

4,4,z⊕(Π1
0,4,z⊕1)·Π1

1,4,z =
Π1

4,4,z with a correct rate of 3/4. The second round is similar to that in Fig. 5.
Finally the number of degrees of freedom left increases to 512−192−192 = 128,
and attacker can exactly set 128 linear equations on Π3

0,0,∗ and Π3
3,0,∗. However,

the probability of one solution passing through the first χ is only (3/4)64 = 2−27.
In summary, this improved 2-round structure can support a preimage attack

on 3-round Keccak-384 with a complexity of 2384−128+27+1 = 2284. The model
parameters are d1 = 2192 and s = 2192, which construct a legal attack. Notice

10

that d1/s has reached the limit and thus the technology of extra linear depen-
dence cannot be applied in this structure. By applying extra linear dependence
in an ordinary structure, the final complexity can be even lower.

3.4 Extra Linear Dependence

This technology is inspired by a similar technology in [9] named zero coefficient.
The origin technology aimed to find out some linear-dependent pairs in a fixed
linear equation system. As a result, the authors saved 11 degrees of freedom from
173 equations. Yet in this paper, we tend to “construct” rather than “find out”
linear dependence — under this thought, attacker can even choose 128 target
linear bits and match them one-to-one, saving 64 degrees of freedom. With those
linear-dependent bit pairs, the complexity of preimage attacks on round-reduced
high-capacity Keccak can be greatly decreased.

Principle of Extra Linear Dependence The principle of extra linear depen-
dence is revealed in Fig. 7.

�∗,∗,!"
#

�∗,∗,!$
#

%∗,∗,!&'
#&'

%∗,∗,!
#&' (∗,∗,!

#

) * ∘ -
= unconcerned

= linear

= target bit

�∗,∗,!
"#$ �∗,∗,!

"#$ �∗,∗,!
"#$

= const

= 0 = 1

�∗,∗,�
��� �∗,∗,�

��� �∗,∗,�
���

 ∘ " ∘ " ∘ "

Fig. 7. Principle of extra linear dependence.

Suppose we set two linear equations on Πn. Each equation is composed of 11
bits from Θn. Then, if two targets are permuted from the same column Θn

x,∗,z,
10 out of 11 bits are identical in the equation pair. Furthermore, if two unique

11

bits are ensured to be constant, the linear dependence of the equation pair can
be ensured. One step backward, the attribute of In−1

x,y,z depends on related bits
in Πn−1. As shown in Fig. 7, if Πn−1

x,y,z has been a variable, In−1
x,y,z can never be a

constant, and if Πn−1
x,y,z is a constant, In−1

x,y,z can be ensured by fixing related bits
to be ‘0’ or ‘1’. In general cases, constructing linear dependence between 1 pair
of In−1

x,y1,z and In−1
x,y2,z requires 3 restrictions as below. Converting Πn−1 to Θn−1,

then attacker can construct (1 pair of) linear dependence by setting SIn−2 .
Πn−1

x+1+c1,y1,z
= c1 ⊕ 1, c1 = 0 or 1

Πn−1
x+1+c2,y2,z

= c2 ⊕ 1, c2 = 0 or 1

Πn−1
x,y1,z ⊕Πn−1

x,y2,z = 0 or 1

Lanes Level Extra Linear Dependence We have introduced the method to
construct 1 linear-dependent pair. However, when the number increases to lanes
level, additional problems may arise — at least all restrictions must be satisfied
without any contradictions. Meanwhile, since the random space size s must not
be less than the complexity of d1, we’d better reduce the number of restrictions
if possible. Take the structure in Fig. 5 as an example.

Since Π3
3,0,∗ and Π3

0,1,∗ are the only linear lanes related to the 384-bit digest,
we just construct linear dependence between these two lanes. The target linear-
dependent pairs are (for all z = 0 ∼ 63):

(I23,0,z → Π3
0,1,z+28)⊕ (I23,3,z → Π3

3,0,z+21) = c(z)

where the constant attribute of I23,0,z requires fixed Π2
4,0,z = 1, and the constant

attribute of I23,3,z has been ensured.
Tracing back to Θ2, the target bit pairs become (yellow indicates linear bits):

I23,0,z = Π2
3,0,z ⊕ (Π2

4,0,z ⊕ 1) ·Π2
0,0,z = Π2

3,0,z

I23,3,z = Π2
3,3,z ⊕ (Π2

4,3,z ⊕ 1) ·Π2
0,3,z

Π2
4,0,z = Θ2

4,4,z−14 = SI1(3, z − 14)⊕ SI1(0, z − 15)⊕ I14,4,z−14 = 1

Π2
3,0,z = Θ2

3,3,z−21 = SI1(2, z − 21)⊕ SI1(4, z − 22)⊕ I13,3,z−21

Π2
3,3,z = Θ2

2,3,z−15 = SI1(1, z − 15)⊕ SI1(3, z − 16)⊕ I12,3,z−15

Π2
4,3,z = Θ2

3,4,z−56 = SI1(2, z − 56)⊕ SI1(4, z − 57)⊕ I13,4,z−56

Π2
0,3,z = Θ2

4,0,z−27 = SI1(3, z − 27)⊕ SI1(0, z − 28)⊕ I14,0,z−27

From the formulas above, it seems that from the perspective of SI1 , I33,0,z ⊕
I33,3,z = c(z) is a quadratic equation, and to linearize the whole system, extra
64 restrictions on Π2

4,3,∗ or Π2
0,3,∗ need to be fixed. However, notice that in I1

I14,0,z = I14,4,z = 1, which infers Π2
4,0,z = 1 ⇔ Π2

0,3,z = 1. Thus the whole system
has actually been linearized by restricting Π2

4,0,z = 1 for all z = 0 ∼ 63. In other
words, as long as we choose to fix Π2

0,3,z = 1, the system can be solved without
contradictions and 64 restrictions can be reduced. Under this case, the equation
system of I33,0,z ⊕ I33,3,z = c(z) becomes:

12


SI1(0, z) =SI1(3, z + 1)

SI1(1, z) =SI1(2, z − 6)⊕ SI1(2, z − 41)⊕ SI1(3, z − 1)⊕ SI1(4, z − 7)

⊕ SI1(4, z − 42)⊕ c(z + 15)⊕ I12,3,z ⊕ I13,3,z−6 ⊕ I13,4,z−41 ⊕ 1

In summary, by controlling SI1 as above, Π3
0,1,z+28⊕Π3

3,0,z+21 = c(z) can be
ensured for all z = 0 ∼ 63, where c(z) is surely decided by Π3

0,1,z+28 = I30,1,z+28

(with a correct rate of 3/4) for the greatest gain. Thus these linear-dependent
pairs can bring a gain of (21×3/4)64 = 237. The model parameters of this attack
are d1 = 264, s = 2192 and d2 = 2284, better than the attack’s shown in Fig. 6.

Since d1/s has not reached the limit, space of improvements still exists in
preimage attack on 3-round Keccak-384. In following sections, we will directly
present the best preimage cryptanalysis for different Keccak versions.

4 Preimage Cryptanalysis of 2-Round Keccak-384/512

Improved preimage cryptanalysis of 2-round Keccak-384/512 is presented in this
section. For these two versions, we first design 1-round restricted linear structures
with 320/192 degrees of freedom left. Both structures hold with a probability of
2−27 to eliminate quadratic terms. Then extra linear dependence is applied to
construct linear relations between the output planes. As a result, we obtain 128
and 192 linear-dependent pairs which can bring extra gains of 264 and 296 (the
latter meets the average case of 2-round Keccak-512). Finally, the complexity of
preimage attacks on 2-round Keccak-384/512 is 228 and 2252 respectively.

4.1 Improved Preimage Attack on 2-Round Keccak-384

The restricted linear structure for 2-round Keccak-384 is given in Fig. 8.

1

2

1

2

1

1 2

2 1

2

1

2

= 0 = 1 = linear = const = restricted const

� = !⊕# $% &% �%

' (∘ * + ∘ ,

'

(∘ *

$-&-

(2/-0)

Fig. 8. Restricted linear structure for 2-round Keccak-384.

13

This structure requires 192 column sum equations and 128 I0 restrictions as
below, leaving 320 degrees of freedom. Since all I0 restrictions can be ensured
by modifying M , a 1-block model is enough for the attack.

I04,0,z = I04,1,z = I04,4,z ⊕ 1

I00,0,z ⊕ I00,1,z ⊕ I00,2,z = SI0(0, z)⊕ I00,3,z ⊕ I00,4,z

I02,0,z ⊕ I02,1,z ⊕ I02,2,z = SI0(2, z)⊕ I02,3,z ⊕ I02,4,z

I03,0,z ⊕ I03,1,z = SI0(3, z)⊕ I03,2,z ⊕ I03,3,z ⊕ I03,4,z

The target linear-dependent pairs are (as marked by red numbers in Fig. 8):{
(I13,0,z → Π2

0,1,z+28)⊕ (I13,3,z → Π2
3,0,z+21) = c1(z)

(I14,1,z → Π2
1,1,z+20)⊕ (I14,4,z → Π2

4,0,z+14) = c2(z)

where the constant attributes of I13,0,z and I14,1,z require Π1
4,0,z = 1 and Π1

1,1,z =
0, the constant attribute of I14,4,z depends on probable (Π1

0,4,z ⊕ 1) ·Π1
1,4,z = 0

(with a correct rate of 3/4), and the constant attribute of I13,3,z has been ensured.
Similarly, choosing Π1

0,3,z = 0 can avoid contradictions and reduce restrictions.
Tracing back to Θ1, the target bit pairs become:

I13,0,z = Π1
3,0,z ⊕ (Π1

4,0,z ⊕ 1) ·Π1
0,0,z = Π1

3,0,z

I13,3,z = Π1
3,3,z ⊕ (Π1

4,3,z ⊕ 1) ·Π2
0,3,z = Π1

3,3,z

I14,1,z = Π1
4,1,z ⊕ (Π1

0,1,z ⊕ 1) ·Π1
1,1,z = Π1

4,1,z

I14,4,z = Π1
4,4,z ⊕ (Π1

0,4,z ⊕ 1) ·Π1
1,4,z = Π1

4,4,z

Π1
4,0,z = Θ1

4,4,z−14 = SI0(3, z − 14)⊕ SI0(0, z − 15)⊕ I04,4,z−14 = 1

Π1
0,3,z = Θ1

4,0,z−27 = SI0(3, z − 27)⊕ SI0(0, z − 28)⊕ I04,0,z−27 = 0

Π1
1,1,z = Θ1

4,1,z−20 = SI0(3, z − 20)⊕ SI0(0, z − 21)⊕ I04,1,z−20 = 0

Π1
3,0,z = Θ1

3,3,z−21 = SI0(2, z − 21)⊕ SI0(4, z − 22)⊕ I03,3,z−21

Π1
3,3,z = Θ1

2,3,z−15 = SI0(1, z − 15)⊕ SI0(3, z − 16)⊕ I02,3,z−15

Π1
4,1,z = Θ1

2,4,z−61 = SI0(1, z − 61)⊕ SI0(3, z − 62)⊕ I02,4,z−61

Π1
4,4,z = Θ1

1,4,z−2 = SI0(0, z − 2)⊕ SI0(2, z − 3)⊕ I01,4,z−2

Under this case, the linear equation system of SI0 is:

SI0(3, z)⊕ SI0(0, z − 1) = I04,4,z ⊕ 1

SI0(1, z − 15)⊕ SI0(3, z − 16)⊕ SI0(2, z − 21)⊕ SI0(4, z − 22)

= c1(z)⊕ I02,3,z−15 ⊕ I03,3,z−21

SI0(0, z − 2)⊕ SI0(2, z − 3)⊕ SI0(1, z − 61)⊕ SI0(3, z − 62)

= c2(z)⊕ I01,4,z−2 ⊕ I02,4,z−61

where c1(z) and c2(z) are set in line with Π2
0,1,z = I20,1,z and Π2

1,1,z = 1 for the
greatest gain (264).

14

Each time attacker chooses qualified SI0 and sets 192 column sum equations.
With 320 target equations on Π2

∗,0,∗, the 384-bit digest can be matched as long
as the solution passes through the first χ with a probability of 2−27. In summary,
the complexity of preimage attack on 2-round Keccak-384 is only 228 (including
1-bit padding). Table 3 gives a practical preimage of all ‘0’ digest.

Table 3. A preimage of all ‘0’ digest for 2-round Keccak-384 (in big-endian order).

Starting State I0 (one message block)
65fbd7e20b5fe6b4 0000000000000000 b7fb5afa8f3f1ffb dd2d29a4b4194993 ffffffffffffffff
9bec84cf16dc95f5 fffffffffd9c96b1 09e053aed207f2d7 dd2d292436194993 ffffffffffffffff
01e8ac92a37c8cbe fffffffffd9c96b1 be1b097079a8ed2c 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

4.2 Improved Preimage Attack on 2-Round Keccak-512

The restricted linear structure for 2-round Keccak-512 is given in Fig. 9.

1

2

3

1

3 2

3 1

1 2 3

2 1

2

3

1

3 2

= 0 = 1 = linear = const = restricted const

� = !⊕# $% &% �%

' (∘ * + ∘ ,

'

(∘ *

$-&-

(2/-0)

Fig. 9. Restricted linear structure for 2-round Keccak-512.

This structure requires 192 column sum equations and 128 I0 restrictions as
below, leaving 192 degrees of freedom. Since M cannot affect I04,1,∗, the attack
requires a 2-block model with d1 = 264.

I04,0,z = I04,1,z = I04,4,z ⊕ 1

I00,0,z ⊕ I00,1,z = SI0(0, z)⊕ I00,2,z ⊕ I00,3,z ⊕ I00,4,z

I02,0,z ⊕ I02,1,z = SI0(2, z)⊕ I02,2,z ⊕ I02,3,z ⊕ I02,4,z

I03,0,z ⊕ I03,1,z = SI0(3, z)⊕ I03,2,z ⊕ I03,3,z ⊕ I03,4,z

15

The target linear-dependent pairs are (as marked by red numbers in Fig. 9):
(I13,0,z → Π2

0,1,z+28)⊕ (I13,3,z → Π2
3,0,z+21) = c1(z)

(I14,1,z → Π2
1,1,z+20)⊕ (I14,4,z → Π2

4,0,z+14) = c2(z)

(I12,2,z → Π2
2,0,z+43)⊕ (I12,4,z → Π2

4,1,z+61) = c3(z)

where the constant attributes of I13,0,z and I14,1,z require Π1
4,0,z = 1 and Π1

1,1,z =
0, the constant attribute of I14,4,z depends on probable (Π1

0,4,z ⊕ 1) ·Π1
1,4,z = 0

(with a correct rate of 3/4), and the constant attributes of I13,3,z, I12,2,z and I12,4,z
have been ensured.

Among those target pairs, all c1 and c2 parts can be ensured by an equation
system exactly the same as that in Section 4.1:

SI0(3, z)⊕ SI0(0, z − 1) = I04,4,z ⊕ 1

SI0(1, z − 15)⊕ SI0(3, z − 16)⊕ SI0(2, z − 21)⊕ SI0(4, z − 22)

= c1(z)⊕ I02,3,z−15 ⊕ I03,3,z−21

SI0(0, z − 2)⊕ SI0(2, z − 3)⊕ SI0(1, z − 61)⊕ SI0(3, z − 62)

= c2(z)⊕ I01,4,z−2 ⊕ I02,4,z−61

In this linear equation system, SI0(4, ∗) has been fixed by I0 restrictions, and
SI0(1, ∗) is controllable by setting I01,0,∗ and I01,1,∗. Moreover, as long as SI0(1, ∗)
is fixed, the whole SI0 will be decided. Then from the perspective of SI0(1, ∗),
ensuring c3(z) becomes a quadratic problem:

I12,2,z = Π1
2,2,z ⊕ (Π1

3,2,z ⊕ 1) ·Π1
4,2,z

I12,4,z = Π1
2,4,z ⊕ (Π1

3,4,z ⊕ 1) ·Π1
4,4,z

Π1
2,2,z = Θ1

3,2,z−25 = SI0(2, z − 25)⊕ SI0(4, z − 26)⊕ I03,2,z−25

Π1
3,2,z = Θ1

4,3,z−8 = SI0(3, z − 8)⊕ SI0(0, z − 9)⊕ I04,3,z−8

= I04,3,z−8 ⊕ I04,4,z−8 ⊕ 1

Π1
4,2,z = Θ1

0,4,z−18 = SI0(4, z − 18)⊕ SI0(1, z − 19)⊕ I00,4,z−18

Π1
2,4,z = Θ1

4,2,z−39 = SI0(3, z − 39)⊕ SI0(0, z − 40)⊕ I04,2,z−39

= I04,2,z−39 ⊕ I04,4,z−39 ⊕ 1

Π1
3,4,z = Θ1

0,3,z−41 = SI0(4, z − 41)⊕ SI0(1, z − 42)⊕ I00,3,z−41

Π1
4,4,z = Θ1

1,4,z−2 = SI0(0, z − 2)⊕ SI0(2, z − 3)⊕ I01,4,z−2

Since the space of SI0 only remains 264, this quadratic problem cannot be
solved through linearization methods. However, the problem can be well solved
by exhaustive search (a complete satisfaction for all c3(z) may not exist). Notice
that although SI0(1, ∗) is fixed, with two free constant lanes, the random space
size still remains 264, meeting d1 ≤ s. Thus attacker can spend a 264 search in
(almost) ensuring c3(z), and the fixed SI0 can support a preimage search of 264,
which is an amortized-O(1) solving algorithm.

16

Table 4. An example for 2-round Keccak-512 (in big-endian order).

Starting State I0 (the second message block)
268c296b1554f13d 000000020cdde05b 00ddc28718198fb9 0d6f443343bbe87b ffffffffffffffff
268cd56b15540d3d 001cfffdf2c2efa4 fcddc147181e7c46 f29143ccbc45ef84 ffffffffffffffff
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

Target State Π2 (the first two planes)
1bdbd867cb38d33d 2f9874f320040d8d 0000000000000000 0000000000000000 0000000000000000
ffffffff00000000 00000000ffffffff 6b7fbd45e6be5596 0a1b0874659065b0 fffffe430000ffff

Table 4 gives a special example that ensures 48 of 64 c3(z). This particular
solving algorithm only works for partial and continuous target bits. The details
are excluded in this paper.

The effect of those 192 linear-dependent bit pairs is analyzed below. Suppose
we aim to match a 3-bit output row (denoted as b0b1b2??) from the second plane,
and we are able to arbitrarily set 3 input bits a0, a1, a4. Then we surely choose
a0a1??a4 that is most likely to match the output. For example, to match 011??,
we choose a0 = 0, a1 = 1 and a4 = 0. Under these restrictions, among 4 cases of
different a2a3, 01100 → 01101 and 01110 → 01111, with matching probability
of 1/2. Table 5 summarizes the most effective restrictions for different outputs.
If an output corresponds to multiple choices, the table would only present one.

Table 5. Most effective input restrictions for different 3-bit outputs (a0a1??a4 ver).

Output Input Restrictions Prob. Gain
000?? a0 = 0&a1 = 1 2/8 21

a0 = 0&a1 = 0&a4 = 0 1/4 21

001?? a0 = 1&a1 = 0 3/8 21.58

a0 = 1&a1 = 0&a4 = 0 2/4 22

010?? a0 = 0&a1 = 0 2/8 21

a0 = 0&a1 = 0&a4 = 0 1/4 21

011?? a0 = 0&a1 = 1 4/8 22

a0 = 0&a1 = 1&a4 = 0 2/4 22

100?? a0 = 1&a1 = 1 2/8 21

a0 = 0&a1 = 0&a4 = 1 1/4 21

101?? a0 = 0&a1 = 0 3/8 21.58

a0 = 0&a1 = 0&a4 = 0 2/4 22

110?? a0 = 1&a1 = 0 2/8 21

a0 = 1&a1 = 0&a4 = 0 1/4 21

111?? a0 = 1&a1 = 1 4/8 22

a0 = 1&a1 = 1&a4 = 0 2/4 22

17

From Table 5 we can see that not all 3-bit outputs require the satisfaction of
c3(z). In average case (8 of 64 of each kind), the attack is required to construct
144 linear-dependent bit pairs, whose total gain is 2(1+2+1+2+1+2+1+2)×8 = 296.
In summary, the model parameters of preimage attack on 2-round Keccak-512
are d1 = 264, s = 264 and d2 = 2512−192−96+27+1 = 2252.

5 Preimage Cryptanalysis of 3-Round Keccak-384/512

Improved preimage cryptanalysis of 3-round Keccak-384/512 is presented in this
section. For these two versions, we first design 2-round restricted linear structures
with 64/128 degrees of freedom left. The latter structure holds with a probability
of 2−27 to eliminate quadratic terms, while the former structure has not applied
non-linear liberalization for extra degrees of freedom due to lack of random space.
For 3-round Keccak-384, a basic application of extra linear dependence has been
discussed in Section 3.4 with 64 linear-dependent bit pairs. Here we propose an
improved application with up to 96 linear-dependent bit pairs, which can bring
an increased gain of 250. As for 3-round Keccak-512, because of the diffusion of
quadratic bits in the third θ, the linear structure cannot reach Π3. Yet we can
spend degrees of freedom in constructing 128 linear-dependent bit pairs, which
can bring a gain of 2114 (the average case). Finally, the complexity of preimage
attacks on 3-round Keccak-384/512 is 2271 and 2426 respectively.

5.1 Improved Preimage Attack on 3-Round Keccak-384

The restricted linear structure for 3-round Keccak-384 is given in Fig. 10.

� ∘ � ∘ �

1 2

1 2

1

2

1

= 0 = 1 = linear = const = restricted const

� = !⊕# $% &% �%

' (∘ * + ∘ ,

'

(∘ *+ ∘ ,

$-&-&. �-

= quadratic

2

Fig. 10. Restricted linear structure for 3-round Keccak-384.

This structure requires 320 column sum equations and 320 I0 restrictions as
below, leaving 64 degrees of freedom. Since M cannot ensure I01,3,z ⊕ 1 = I01,4,z,
the attack requires a 2-block model with d1 = 264.

18



I01,0,z = I01,1,z ⊕ 1 = I01,3,z ⊕ 1 = I01,4,z

I03,1,z = I03,3,z

I04,0,z = I04,4,z

I00,0,z ⊕ I00,1,z ⊕ I00,2,z = SI0(0, z)⊕ I00,3,z ⊕ I00,4,z

I02,0,z ⊕ I02,1,z ⊕ I02,2,z = SI0(2, z)⊕ I02,3,z ⊕ I02,4,z

I10,0,z ⊕ I10,1,z ⊕ I10,2,z ⊕ I10,3,z ⊕ I10,4,z = SI1(0, z)

I11,2,z ⊕ I11,3,z = SI1(1, z)⊕ I11,0,z ⊕ I11,1,z ⊕ I11,4,z

I12,0,z ⊕ I12,1,z = SI1(2, z)⊕ I12,2,z ⊕ I12,3,z ⊕ I12,4,z

In the equation system above, SI0(0, ∗) and SI0(2, ∗) can be decided by:
SI0(0, z)⊕ SI0(2, z − 1) = I01,3,z

SI0(2, z)⊕ SI0(4, z − 1) = I03,3,z

SI0(3, z)⊕ SI0(0, z − 1) = I04,4,z ⊕ 1

where SI0(3, ∗) and SI0(4, ∗) are all controllable with corresponding free constant
lanes. Counting controllable SI0(1, ∗) in, setting SI0 can generate a random space
of s = 2128, enough to ensure d1 ≤ s. Therefore, we can even fix all controllable
SI1 to apply extra linear dependence.

The target linear-dependent pairs are (as marked by red numbers in Fig. 10):{
(I23,0,z → Π3

0,1,z+28)⊕ (I23,3,z → Π3
3,0,z+21) = c1(z)

(I24,1,z → Π3
1,1,z+20)⊕ (I24,4,z → Π3

4,0,z+14) = c2(z)

where the constant attributes of I23,0,z and I24,4,z require Π2
4,0,z = 1 and Π2

1,4,z =
0, and the constant attributes of I23,3,z and I24,1,z have been ensured.

It is worth emphasizing that although we cannot set any target equations on
Π3

4,0,∗ (quadratic), the linear dependence between Π3
1,1,z+20 and Π3

4,0,z+14 still
helps the search of preimage. Suppose Π3

4,0,∗ randomly matches the digest with
a probability of 2−64. Under proper linear relations, Π3

1,1,∗ can simultaneously
match. The gain of those 64 linear-dependent pairs of c2 part is 20.42×64 = 226.

The satisfaction of c1(z) has been discussed in Section 3.4. By fixing Π2
0,3,∗

and Π2
4,0,∗ to be all ‘1’, the target relations can be linearized to SI1 restrictions

as below:
SI1(0, z) =SI1(3, z + 1)

SI1(1, z) =SI1(2, z − 6)⊕ SI1(2, z − 41)⊕ SI1(3, z − 1)⊕ SI1(4, z − 7)

⊕ SI1(4, z − 42)⊕ c1(z + 15)⊕ I12,3,z ⊕ I13,3,z−6 ⊕ I13,4,z−41 ⊕ 1

Then SI1(0, ∗) has been decided and SI1(1, ∗) depends on SI1(2, ∗). Similarly,
from the perspective of SI1(2, ∗), ensuring c2(z) becomes a quadratic problem.
However, this time we have to adopt linearization methods because the constant
attribute of I24,4,z requires Π2

1,4,z = 0. Related formulas are given below:

19



I24,1,z = Π2
4,1,z ⊕ (Π2

0,1,z ⊕ 1) ·Π2
1,1,z

I24,4,z = Π2
4,4,z ⊕ (Π2

0,4,z ⊕ 1) ·Π2
1,4,z = Π2

4,4,z

Π2
1,4,z = Θ2

3,1,z−55 = SI1(2, z − 55)⊕ SI1(4, z − 56)⊕ I13,1,z−55 = 0

Π2
4,1,z = Θ2

2,4,z−61 = SI1(1, z − 61)⊕ SI1(3, z − 62)⊕ I12,4,z−61

= SI1(2, z − 3)⊕ SI1(2, z − 38)⊕ · · ·
Π2

0,1,z = Θ2
3,0,z−28 = SI1(2, z − 28)⊕ SI1(4, z − 29)⊕ I13,0,z−28

Π2
1,1,z = Θ2

4,1,z−20 = SI1(3, z − 20)⊕ SI1(0, z − 21)⊕ I14,1,z−20

= I14,1,z−20

Π2
4,4,z = Θ2

1,4,z−2 = SI1(0, z − 2)⊕ SI1(2, z − 3)⊕ I11,4,z−2

A basic idea is, choosing 32 SI1(2, z) to fix Π2
1,4,z+55 = 0, and the remaining

32 can ensure corresponding I24,1,z ⊕ I24,4,z = c2(z). But one problem is that the
chosen set may decide some I24,1,z⊕I24,4,z and cause contradictions. For example,
suppose a certain Π2

1,1,z = 0. Then I24,1,z ⊕ I24,4,z = Π2
4,1,z ⊕Π2

4,4,z is decided by
SI1(2, z− 38) (notice that the term of SI1(2, z− 3) is always eliminated). If this
column sum has been fixed, the choosing algorithm may fail to ensure c2(z).

Since ensuring a certain c2(z) requires a fixed SI1(2, z − 55) firstly, the core
of any choosing algorithm is: the chosen set cannot contain any pair of SI1(2, z)
and SI1(2, z− 17). It is easily known that the set of odd z (or even z) meets the
restriction. An example is given in Table 6.

Table 6. An example for 3-round Keccak-384 (in big-endian order).

Starting State I0 (the second message block)
29f2a8022c6bc4f1 ffffffffffffffff c4a1d57c66425fb8 0000000000000000 0000000000000000
945ff683ef81a471 0000000000000000 ad7bda1596b6ed4e 0000000000000000 ffffffffffffffff
4252a17e3c159f7f a913e08d6cdfe4f7 9625f0960f0b4d09 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 ffffffffffffffff 0000000000000000 0000000000000000 0000000000000000

Target State Π3 (the first two planes)
c131d81cb43192e3 668d5e436102ac54 5e131b071ee3f03d 0000000000000000 f4436871e72b9eb5
ffffffff00000000 e587e304b5187222 2a80f3ffd586b8d5 b0fcf6d2cf772225 9f1b23d55c71c2f7

(f4436871e72b9eb5≪ 6)⊕e587e304b5187222=f55dff7d7fffdf5f with even sites all ‘1’.

In summary, by fully spending the random space of identical restricted linear
structure, at most 96 linear-dependent bit pairs from the output planes can be
constructed in improved preimage attack on 3-round Keccak-384. The total gain
of those linear-dependent bit pairs is 237+26/2 = 250. And the model parameters
of this attack are d1 = 264, s = 2128 and d2 = 2384−64−50+1 = 2271.

20

5.2 Improved Preimage Attack on 3-Round Keccak-512

The restricted linear structure for 3-round Keccak-512 is given in Fig. 11.

� ∘ � ∘ �

3 1 2

1 2 3

3 1

2

3

1

2

= 0 = 1 = linear = const = restricted const

� = !⊕# $% &% �%

' (∘ * + ∘ ,

'

(∘ *+ ∘ ,

$-&-&. �-

= quadratic

(2 !")

Fig. 11. Restricted linear structure for 3-round Keccak-512.

This structure requires 256 column sum equations and 256 I0 restrictions as
below, leaving 128 degrees of freedom. Since M cannot affect I04,1,∗, the attack
requires a 2-block model with d1 = 264.

I01,0,z = I01,1,z ⊕ 1 = I01,4,z

I04,0,z = I04,1,z ⊕ 1 = I04,4,z

I00,0,z ⊕ I00,1,z = SI0(0, z)⊕ I00,2,z ⊕ I00,3,z ⊕ I00,4,z

I02,0,z ⊕ I02,1,z = SI0(2, z)⊕ I02,2,z ⊕ I02,3,z ⊕ I02,4,z

I03,0,z ⊕ I03,1,z = SI0(3, z)⊕ I03,2,z ⊕ I03,3,z ⊕ I03,4,z

I10,0,z ⊕ I10,1,z ⊕ I10,2,z ⊕ I10,3,z ⊕ I10,4,z = SI1(0, z)

In the equation system above, SI0(0, ∗), SI0(2, ∗) and SI0(3, ∗) are fixed by:
SI0(0, z)⊕ SI0(2, z − 1) = I01,4,z ⊕ 1

SI0(1, z)⊕ SI0(3, z − 1) = I02,4,z ⊕ 1

SI0(3, z)⊕ SI0(0, z − 1) = I04,4,z ⊕ 1

since SI0(1, ∗) has been fixed by I0 restrictions. In other words, setting SI0 will
not generate any random space. The random space of this structure is entirely
provided by controllable SI1(0, ∗) with s = 264, meeting d1 ≤ s.

It is easily found that this structure abandons the column sum equations of
I11,1,z ⊕ I11,2,z ⊕ I11,3,z = SI1(1, z) ⊕ I11,0,z ⊕ I11,4,z for extra degrees of freedom.
Then without these restrictions, variables spread to Θ1

2,∗,∗ and generate several
quadratic lanes in Π2. Finally quadratic bits pollute the whole Π3 through the

21

third θ. Therefore, in this structure we cannot spend degrees of freedom in fixing
Π3

∗,0,∗, but spend degrees of freedom in ensuring the linear-dependent bit pairs
from the output planes. The target linear-dependent pairs are (as marked by red
numbers in Fig. 11):

(I23,0,z → Π3
0,1,z+28)⊕ (I23,3,z → Π3

3,0,z+21) = c1(z)

(I24,1,z → Π3
1,1,z+20)⊕ (I24,4,z → Π3

4,0,z+14) = c2(z)

(I20,0,z → Π3
0,0,z)⊕ (I20,2,z → Π3

2,1,z+3) = c3(z)

Since the number of degrees of freedom left is 128, attacker can only choose
any 128 of them. An example is given in Table 7.

Table 7. An example for 3-round Keccak-512 (in big-endian order).

Starting State I0 (the second message block)
a26df3be8c43aa78 0000000000000000 71a5148504cdf108 f7efffbbe7fbed7e 0000000000000000
5d920c4173bc5587 ffffffffffffffff 71a5148504cdf108 f7efffbbe7fbed7e ffffffffffffffff
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

Target State Π3 (the first two planes)
3327f7cc992a672d 3ec07f37d73be269 4636786d13ae0854 04d45037d9c52357 f25c21711cd4d327
6a281bece291ab82 97085c693116aafc 7afd317cc953396b ac29a826a456e7f0 4b16e8378663a85e

3327f7cc992a672d⊕(7afd317cc953396b≪ 61) =5c7851e300000000
04d45037d9c52357⊕(6a281bece291ab82≪ 57) =0000000000000000
f25c21711cd4d327⊕(97085c693116aafc≪ 58) =00000000b810898c

Yet an unsolved problem is, how should attacker choose the linear-dependent
bit pairs. Actually attacker can choose not only “bit” but also “combination”.
For example, suppose a target 3-bit output row is 000??. Then according to the
inversion property stated in Section 2.4, a0⊕a2 = 0 is inversed from the output.
To satisfy this combination, attacker can spend 1 degree of freedom in setting
I20,0,z−3⊕I20,2,z−3⊕I23,0,z−28⊕I23,3,z−28 = Π3

0,0,z−3⊕Π3
3,0,z−7, where Π3

0,0,z−3 and
Π3

3,0,z−7 are decided by the digest. If Π3
0,0,z−3 and Π3

3,0,z−7 (quadratic) match
the digest with a probability of 2−2, Π3

0,1,z ⊕Π3
2,1,z = 0 can be simultaneously

ensured with a gain of 21. It is concluded that attacker should spend degrees of
freedom on those inversed parts firstly with a gain of 21 each, and then spend
remaining degrees of freedom on extra restrictions.

Table 8 summarizes the effect of inversed equations and extra restrictions
for different 3-bit outputs. Each output contains two lines of content. The first
line is about linear equations (among a0a1a2) inversed from the output. Each of
them can bring a gain of 21. The second line is about the most effective choices
of the 3 input bits. Unlike Table 5, this table presents the only choice.

22

Table 8. Most effective input restrictions for different 3-bit outputs (a0a1a2?? ver).

Output Input Restrictions Prob. Gain
000?? a0 ⊕ a2 = 0 4/16 21

a0 = 0&a1 = 1&a2 = 0 2/4 22

001?? a0 ⊕ a2 = 0&a1 = 0 4/8 22

a0 = 1&a1 = 0&a2 = 1 3/4 22.58

010?? a0 = 0 4/16 21

a0 = 0&a1 = 0&a2 = 0 2/4 22

011?? a0 = 0&a1 = 1 4/8 22

a0 = 0&a1 = 1&a2 = 1 3/4 22.58

100?? a0 ⊕ a2 = 1 4/16 21

a0 = 1&a1 = 1&a2 = 0 2/4 22

101?? a0 ⊕ a2 = 1&a1 = 0 4/8 22

a0 = 0&a1 = 0&a2 = 1 3/4 22.58

110?? a0 = 1 4/16 21

a0 = 1&a1 = 0&a2 = 0 2/4 22

111?? a0 = 1&a1 = 1 4/8 22

a0 = 1&a1 = 1&a2 = 1 3/4 22.58

From Table 8 we can see that the second output plane is expected to inverse
96 linear equations in average case (8 of 64 of each kind). Counting remaining
extra restrictions in, those 128 linear-dependent bit pairs can bring a total gain
of 296+32×0.58 = 2114. In summary, the model parameters of preimage attack on
3-round Keccak-512 are d1 = 264, s = 264 and d2 = 2512−114+27+1 = 2426.

6 Conclusion

This paper provides improved preimage cryptanalysis on round-reduced Keccak-
384/512. The core of our preimage attacks is linear analysis. We inherit the ideas
of linear structure and allocating model from previous works, and improve the
preimage cryptanalysis results in two aspects:

1. We adopt improved linear structures with proper non-linear liberalization
that can bring extra degrees of freedom and enlarge the random space.

2. We construct lane-level extra linear dependence between two output planes
without spending degrees of freedom (by restricting the random space instead),
and those linear relations can much decrease the complexity of preimage search.

As a result, the complexity of preimage attacks on 2-round Keccak-384/512
and 3-round Keccak-384/512 is decreased to 228/2252 and 2271/2426 respectively.

It is noted that our attack algorithm is still far from threatening the security
of full-round Keccak. It seems that methods based on linear analysis can hardly
threaten the preimage resistance of even 5-round Keccak: Rajasree has proposed
a linear attack for 4-round Keccak-384 in [17], while linear analysis for 4-round

23

Keccak-512 is still an open problem. However, although this paper only focuses
on linear analysis, the idea of constructing linear dependence between the output
planes might be able to combine with non-linear technologies.

References
1. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for

the core functions of Luffa and Hamsi. NIST Mailing List (2009). https://131002.
net/data/papers/AM09.pdf

2. Bernstein, D.J.: Second preimages for 6 (7? (8??)) rounds of Keccak?
NIST Mailing List (2010). https://ehash.iaik.tugraz.at/uploads/6/65/
NIST-mailing-list_Bernstein-Daemen.txt

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponge
functions. Submission to NIST (Round 3) (2011). https://sponge.noekeon.org/
CSF-0.1.pdf

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference, ver-
sion 3.0. Submission to NIST (Round 3) (2011). https://keccak.noekeon.org/
Keccak-reference-3.0.pdf

5. Dinur, I., Dunkelman, O., Shamir, A.: New attacks on Keccak-224 and Keccak-
256. In: FSE 2012. LNCS, vol. 7549, pp. 442–461. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34047-5_25

6. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks and
cube-attack-like cryptanalysis on the round-reduced Keccak sponge function. In:
EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 733–761. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5_28

7. Duan, M., Lai, X.: Improved zero-sum distinguisher for full round Keccak-f per-
mutation. Cryptology ePrint Archive, Report 2011/023 (2011). https://eprint.
iacr.org/2011/023

8. Guo, J., Liu, M., Song, L.: Linear structures: applications to cryptanalysis of round-
reduced Keccak. In: ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 249–274.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_9

9. He, L., Lin, X. Yu, H.: Improved preimage attacks on 4-round Keccak-224/256.
IACR Transactions on Symmetric Cryptology 2021(1), 217–238 (2021). https:
//doi.org/10.46586/tosc.v2021.i1.217-238

10. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack on
reduced-round Keccak sponge function. In: EUROCRYPT 2017, Part II. LNCS,
vol. 10211, pp. 259–288. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-319-56614-6_9

11. Kumar, R., Mittal, N., Singh, S.: Cryptanalysis of 2 round Keccak-384. In: Progress
in Cryptology – INDOCRYPT 2018. LNCS, vol. 11356, pp. 120–133. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-030-05378-9_7

12. Kumar, R., Rajasree, M.S., AlKhzaimi, H.: Cryptanalysis of 1-round KECCAK. In:
Progress in Cryptology – AFRICACRYPT 2018. LNCS, vol. 10831, pp. 124–137.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-89339-6_8

13. Li, T., Sun, Y.: Preimage attacks on round-reduced Keccak-224/256 via an allo-
cating approach. In: EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 556–584.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-17659-4_19

14. Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational cryptanalysis of round-
reduced Keccak. In: FSE 2013. LNCS, vol. 8424, pp. 241–262. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-662-43933-3_13

24

15. Morawiecki, P., Srebrny, M.: A SAT-based preimage analysis of reduced KECCAK
hash functions. Information Processing Letters 113(10-11), 392–397 (2013). https:
//doi.org/10.1016/j.ipl.2013.03.004

16. Qiao, K., Song, L., Liu, M., Guo, J.: New collision attacks on round-reduced Kec-
cak. In: EUROCRYPT 2017, Part III. LNCS, vol. 10212, pp. 216–243. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-319-56617-7_8

17. Rajasree, M.S.: Cryptanalysis of round-reduced KECCAK using non-linear
structures. In: Progress in Cryptology – INDOCRYPT 2019. LNCS, vol.
11898, pp. 175–192. Springer, Heidelberg (2019). https://doi.org/10.1007/
978-3-030-35423-7_9

18. Song, L., Guo, J., Shi, D., Ling, S.: New MILP modeling: improved conditional
cube attacks on Keccak-based constructions. In: ASIACRYPT 2018, Part II. LNCS,
vol. 11273, pp. 65–95. Springer, Heidelberg (2018). https://doi.org/10.1007/
978-3-030-03329-3_3

19. Song, L., Liao, G., Guo, J.: Non-full sbox linearization: applications to col-
lision attacks on round-reduced Keccak. In: CRYPTO 2017, Part II. LNCS,
vol. 10402, pp. 428–451. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-319-63715-0_15

20. The U.S. National Institute of Standards and Technology: SHA-3 standard:
permutation-based hash and extendable-Output functions. Federal Information
Processing Standard, FIPS 202 (2015). http://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.202.pdf

25

