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Abstract

It is well-known that in the presence of majority coalitions, strongly fair coin toss is impossi-
ble. A line of recent works have shown that by relaxing the fairness notion to game theoretic, we
can overcome this classical lower bound. In particular, Chung et al. (CRYPTO’21) showed how
to achieve approximately (game-theoretically) fair leader election in the presence of majority
coalitions, with round complexity as small as O(loglogn) rounds.

In this paper, we revisit the round complexity of game-theoretically fair leader election. We
construct O(log* n) rounds leader election protocols that achieve (1—o(1))-approximate fairness
in the presence of (1 — o(1))n-sized coalitions. Our protocols achieve the same round-fairness
trade-offs as Chung et al.’s and have the advantage of being conceptually simpler. Finally, we also
obtain game-theoretically fair protocols for committee election which might be of independent
interest.
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1 Introduction

Suppose that Murphy, Murky, and Moody co-authored a paper that proved a ground-breaking
theorem and the paper got accepted at the prestigious CRYPTO’22 conference. Murphy, Murky,
and Moody want to run a coin toss protocol over the Internet to elect a winner who will present
the paper at the conference. Since everyone wants to go to the beautiful beaches of Santa Barbara,
all of them want to be the winner. They each are worried that the other coauthors might deviate
from the honest protocol to gain an unfair advantage. There is both good and bad news. The
bad news is that due to a famous lower bound by Cleve [Cle86], there is no strongly fair coin toss
protocol when half of the parties may be corrupt and misbehaving — roughly speaking, strong
fairness requires that the coalition cannot bias the outcome of the coin toss whatsoever. The good
news is that a more recent line of work [CCWS21,GGS,CGL ™18, WAS22] has shown that a relaxed
fairness notion called game-theoretic fairness is indeed possible for the leader election problem, even
when an arbitrary number of parties may be corrupt. To see why, first observe that the original
Blum’s coin toss protocol [Blu83| actually gives a game-theoretically fair leader election scheme for
n = 2 parties. Imagine that each party first commits to a random coin, they then open their coin,
and the XOR of the two bits is used to elect a random winner. If one party fails to commit or
correctly open, it is eliminated and the remaining party is declared the winner. Blum’s coin toss
satisfies game-theoretic fairness in the following sense. As long as the commitment scheme is not
broken, a corrupt layer cannot bias the coin to its own favor no matter how it deviates from the
protocol. Note that Blum’s protocol is not strongly fair since a corrupt party can indeed bias the
coin, but only to the other player’s advantage.

For the more general case of the n parties, we can use a folklore tournament-tree protocol to
accomplish the same purpose. Suppose that n is a power of 2 for simplicity. We first divide the n
parties into n/2 pairs, and each pair elects a winner using Blum’s coin toss. The winner survives
to the next round, where we again divide the surviving n/2 parties into n/4 pairs. The protocol
continues after a final winner is elected after log, n rounds. At any point in the protocol, if a party
fails to commit or correctly open its commitment, it is eliminated and its opponent survives to the
next round.

The recent work of Chung et al. [CCWS21] argued that this simple tournament tree protocol
satsfies a strong notion of game-theoretic fairness as explained below. Suppose that the winner
obtains a utility of 1 and everyone else obtains a utility of 0. As long as the commitment scheme is
not broken, the tournament tree protocol guarantees that 1) no coalition of any size can increase its
own expected utilty no matter what (polynomially-bounded) strategy it adopts; and 2) no coalition
of any size can harm any individual honest player’s expected utility, no matter what (polynomially-
bounded) strategy it adopts. Recent work in this space [CCWS21, GGS, CGLT18, WAS22] calls
the former notion cooperative-strategy-proofness (or CSP-fairness for short), and calls the latter
notion mazimin fairness. Philosophically, CSP-fairness guarantees that any rational, profit-seeking
individual or coalition has no incentive to deviate from the honest protocol; and maximin fairness
ensures that any paranoid individual who wants to maximally protect itself in the worst-case sce-
nario has no incentive to deviate either. In summary, the honest protocol is an equilibrium and
also the best response for every player and coalition. Therefore, prior works [CGL*18, CCWS21,
WAS22, GGS] have argued that game-theoretic notions of fairness are compelling and worth in-
vestigating because 1) they are arguably more natural (albeit stricly weaker) than the classical
strong fairness notion in practical applications; and 2) the game-theoretic relaxation allows us to
circumvent classical impossibility results pertaining to strong fairness in the presence of majority
coalitions [Cle86].

Having established the general feasibility of game-theoretically fair leader election in the pres-



ence of majority-sized coalitions, Chung et al. [CCWS21] asked the following natural question:
what is the round complexity of game-theoretically fair leader election in the presence of majority
coalitions? Specifically, can we asymptotically outperform the logarithmic round complexity of the
folklore tournament tree protocol? They then gave a partial answer to this question, showing that
for any desired round complexity parameter ©(loglogn) < R < logn, there is an O(R)-round

n-party leader election protocol that achieves (1 — ﬁ)—f&irness against coalitions of size up to

(1 — ﬁ) n. In particular, their result statement adopts an approximate notion of game-theoretic

fairness. Roughly speaking, a protocol is (1 — €)-fair if it satisfies the aforementioned game theoretic
fairness (including CSP-fairness and maximin fairness) up to an e slack. More specifically, we want
that the coalition’s expected utility cannot exceed 1/(1 — €) times its normal utility had everyone
behaved honestly, and we require that any honest individual’s expected utility cannot drop below
(1 — ¢€) times its normal utility had everyone behaved honestly. Chung et al.’s result [CCWS21]
enables a smooth and mathematically quantifiable tradeoff between the efficiency of the protocol
and its resilience to strategic behavior. However, their result requires the protocol to have at least
O©(loglogn) rounds to give any meaningful fairness guarantee. Indeed, a more careful examination
suggests that their framework has a sharp cutoff at O(loglogn) rounds, i.e., the approach funda-
mentally fails when we want round complexity to be less than loglogn. Therefore, an obvious gap
in our understanding is the following:

In the presence of majority-sized coalitions, can we achieve any meaningful fairness guarantee
for small-round protocols whose round complexity is less than loglogn?

1.1 Our Results and Contributions

In this paper, we revisit the round complexity of game-theoretically fair leader election. We make
the following contributions. First, we show positive results in the style of Chung et al. [CCWS21],
but now for a broader range of parameters as explained in the following Theorem 1.1. In particular,
our result shows that under standard cryptographic assumptions, there is a O(log™ n)-round leader
election protocol that achieves (1—o(1))-game-theoretic-fairness, in the presence of (1—0(1))-n-sized
coalitions.

Second, we give conceptually simpler constructions than those of Chung et al. [CCWS21], which
also result in simpler analyses. More specifically, Chung et al.’s construction relies on combinatorial
objects called extractors, which we get rid of in our construction. We believe that our conceptually
simpler constructions can lend to better understanding and make it easier for future work to extend
our framework. Interestingly, our constructions are inspired and have structural resemblance to
Feige’s famous lightest bin leader election protocol [Fei99]. We stress, however, that Feige’s protocol
itself does not satisfy game-theoretic fairness, but rather, achieves only a much weaker notion of
resilience, i.e., an honest party is elected leader with constant probability. At a very high level, our
approach augments Feige’s protocol lightest-bin protocol with a “commit and open” and a “virtual
identity” mechanism, and we prove that the resulting protocol satisfies the desired game-theoretic
properties.

Third, we also present results for the more generalized problem of fair committee election, where
the goal is to elect a committee of size c. The leader election problem can be viewed as a special case
of committee election where ¢ = 1. Our main results are summarized in the following theorems.

Theorem 1.1 (Game-theoretically fair leader election). Assume the existence of enhanced trapdoor
permutations, and collision-resistant hash functions. Fix n and let log*n < R < Clogn be the
round complexity we want to achieve for some constant C. Then there ezists an O(R)-round leader



election that achieves (1 — ﬁ)—game—theomtic fairness against a non-uniform p.p.t. coalition of

size at most (1 — %)n, where L is the smallest integer such that log™) n < 28,

For readers who are familiar with the line of work on approximate strong fairness [Cle86, MNS09,
A0O16,BO010,HT14], an interesting observation is that for game-theoretic fairness, the efficiency-
fairness tradeoff is exponentially better than that of strong fairness. Specifically, it is known that any
R-round protocol cannot achieve Q(1/R) strong fairness! against an n/2-sized coalition, whereas
we show that R-round protocols can achieve (1 — 1/29()-fairness.

Theorem 1.2 (Game-theoretically fair committee election). Assume the existence of enhanced
trapdoor permutations and collision-resistant hash functions. Fiz n and c. Let L* be the smallest
integer such that log(L*) n < c. Then for any L* < R < Cylogn for some constant Cy, we have
that

e If ¢ > 2B, there exists an O(R)-round committee election that achieves (1 — C@%)—game—

theoretic fairness against a non-uniform p.p.t. coalition of size at most (1 — %)n

o If ¢ < 2R there exists an O(R)-round committee election that achieves (1 — 2e—%m)—gam6—

theoretic fairness against a non-uniform p.p.t. coalition of size at most (1 — ﬁ)n, where L

is the smallest integer such that log(L) n < 2R,

Below are some interesting examples with respect to different committee size ¢ and the round
complexity R.

e For committee size ¢ = 1, i.e., leader election, and round complexity R = O(log*n), our
protocol achieves ©(1)-game-theoretic fairness against a coalition of size ©(n) assuming log *n
is a constant;

e For committee size ¢ = 1, i.e., leader election, and round complexity R = logloglogn, out

protocol achieves -fairness against a coalition of size n — o

(1— %) __n
poly log log n log loglogn) -

e For committee size ¢ = polyloglogn and for constant round complexity R = ©(1), our

protocol achieves (1 — m)—fairness against ©(n)-sized coalition.

In this paper, we consider the standard notions of approximate CSP-fairness and maximin-
fairness. The standard notion of approximate CSP-fairness is also sometimes referred to as ap-
proximate coalition-resistant Nash equilibrium in some earlier works such as Fruitchain [PS17]. It
is also known [CCWS21] that the standard notion of approximate CSP-fairness (or maximin-
fairness) is equivalent in some sense to approximate notions of fairness formulated by the more
classical Rational Protocol Design (RPD) paradigm [GKM™13,GTZ15, GKTZ15].

Although the standard notion of approximate fairness seems the most natural one, Chung
et al. [CCWS21] pointed out that when defining approximate fairness, one can in fact adopt a
strengthened notion which they call sequential fairness. Their game-theoretically fair leader election
result is in fact stated for the sequential notion. In this sense, our result is incomparable to
theirs: they consider a stronger solution concept but their approach inherently cannot give any
meaningful result for protocols of o(loglogn) rounds. By contrast, we consider the more standard
non-sequential notion and we are able to generalize the smooth tradeoff between efficiency and
fairness shown by Chung et al. [CCWS21] to a broader range of parameters.

!The approximate strong fairness line of work defines what we call (1 — ¢)-fairness as e-fairness (but for the notion
of strong fairness instead). Following the notations of Chung et al. [CCWS21], we flipped this notation to make it
more intuitive: with our notation, 1-fair is more fair than O-fair which agrees with our intuition.



1.2 Additional Related Work

Game theory meets cryptography. Some recent efforts have instigated the intersection of the game
theory [Nas51, Aum74] and multi-party computation [GMW19, Yao82]. See [Kat08, DR*07] for a
survey. There have been two classes of questions that have attracted a lot of interests.

Some work [HT04,KN08, ADGH06,0PRV09,AL11,ACH11] explore how to define game-theoretic
notions of security, as opposed to cryptography security notions for distributed computing tasks
such as secure function evaluation. Existing works in this line considered a different notion of
utility than our work. Their utility functions are often defined assuming that players prefer to
compute the function correctly, or prefer to learn others’ secret data and prefers that other players
do not gain knowledge about their own secrets. Garay et al. propose a paradigm called Rational
Protocol Design [GKM™13] and develop this paradigm in subsequent works [GTZ15, GKTZ15]. As
mentioned in Section 1, the standard notion of approximate CSP-fairness (or maximin fairness) is
in some sense equivalent to the approximate notion of fairness formulated in RPD paradigm.

Another line of work explores how cryptography can help traditional game theory. Many works
in game theory assumed the existence of a trusted mediator, which can be realized under cryptog-
raphy [DHR00,IML05, GK12, BGKO11].

Recently, there has been renewed interest in the connection between game theory and cryp-
tography. Besides the work of Chung et al. [CCWS21] that inspires our work, and [GGS]| that
generalized the lower bound of the round complexity of game-theoretically fair leader election, the
recent work [CGL ™18, WAS22] have also suggested game-theoretically fair multi-party binary-coin
toss. Binary-coin toss considers tossing a binary coin among n players, while in leader election,
we consider tossing an n-way coin among n players. These two formulations are different and they
exhibit starkly different theoretical landscape.

Leader election in other models. Leader election has been studied extensively. A line of
work [BK14, ADMM14] considered how to achieve “financially-fair” n-party lottery over cryptocur-
rencies. Their game-theoretic notion of fairness is similar to ours, yet they rely on collateral and
penalty mechanisms to achieve fairness. As a comparison, our fairness can be achieved without
relying on additional assumptions such as collateral and penalty. Moreover, [ADGHO06] studied an
incomparable game-theoretic notion for leader election. In their notions, all users prefer to have a
leader, and users may have different preferences of who the leader is.

Besides, leader election was considered in the full information model [RZ01, RSZ02, Fei99,
Dod06]. Their notion of security concentrates on electing an honest leader with some small constant
probability, assuming honest majority [Fei99]. This notion is much weaker than the game-theoretic
notion considered in our work, which are more suitable in some decentralized applications, where
honest majority assumption is not applicable. Moreover, in the full-information model, leader elec-
tion is impossible against a majority coalition even under this weak notion of security. Interestingly,
our committee election protocol actually builds on Feige’s lightest bin protocol [Fei99].

Approximate strong fairness. As mentioned in Section 1, the de facto notion of fairness con-
sidered in the multi-party computation literature is strong fairness or unbiasability. The celebrated
result of Cleve [Cle86] showed that it is not possible to achieve {(4%)-unbiasable coin toss against
a coalition consisting of half or more players. Moran et al. [MNS09] showed how to obtain an R-
round protocol that achieves Q(%)—unbiasability in the two-party setting, that matches Cleve’s lower
bound. Recent work [AO16,BO0O10,HT14] have been making encouraging progress on building fair
multi-party coin toss. However, they rely on constant number of players to ensure polynomial round
complexity. We cannot directly rely on multi-party unbiasable coin toss to build game-theoretically



fair leader election because our trade-off curve between round complexity and the fairness slack e
is exponentially better than that of the unbiasability.

2 Technical Roadmap

2.1 Electing Poly-logarithmically Sized Committees: Achieving CSP-Fairness

We start by observing that a single iteration of Feige’s lightest-bin protocol [Fei99] can elect a
committee of size ¢ > polylogn while satisfying CSP-fairness against relatively large coalitions.
Feige’s ingenious protocol works as follows (we describe a single iteration of the protocol): each
player i € [n] chooses a random bin b; among a total of B = n/c bins, and broadcasts its choice
b;. At this moment, we identify the lightest bin, and everyone who has placed itself in the lightest
bin is elected as a committee member. A simple analysis shows that this protocol satisfies CSP-
fairness against relatively large coalitions. Specifically, the lightest bin cannot exceed a capacity
of ¢ = n/B. Moreover, applying the standard Chernoff bound and the union bound, we know
that with probability at least 1 — n - exp(—Q(e* - ¢)), a good event that every bin has at least
(1 —€2)- (1 — B) - ¢ honest players must happen, where 3 - n is the maximum coalition size for
B € (0,1). Now we show that if the coalition has size larger than € - n, then Feige’s lightest bin
is (1 — O(¢e))-CSP-fair. Given that the good event happens, the expected fraction of corrupted
players in the committee is at most 1 — (1 — €2) - (1 — ) < % For large n, it is easy to see
that the good event happens with 1 — negl(n) probability and the expected fraction of coalition
in the committee is at most ;—gy. For small n, however, the calculation is more involved, as
we will describe below. The overall expected fraction of the coalition in the committee is at most
l_i% + 8, where 6 = n - exp(—§(e* - ¢)) is the probability that the good event does not happen. To
guarantee that the expected fraction of the coalition in the committee is at most %@(e)’ we need
the failure probability § < 8- ©(e). The expected fraction of the coalition in the committee is thus
l_i% +0 < B35 +6(e) < %é(e). For example, if we pick € = @ and ¢ = (logn)'%, then the
probability that the good event does not happen is at most n exp{—Q((logn)®)} < €2 < 3-¢ for any
n > 3. Henceforth the protocol satisfies (1 — O(¢)) -CSP-fairness as long as the coalition contains
at least en players.

Unfortunately, the protocol does not satisfy CSP-fairness for small coalitions. For example, a
single individual i € [n] (i.e., a coalition of size 1) can examine all others’ bin choices and then
decide to place itself in the lightest bin. In this case, if the lightest bin (not counting player i) is
at least 2 lighter than the second lightest bin, player ¢ is elected into the committee. This happens
with a probability at least g% for large n , which is significantly higher than the normal probability
¢/n that player i ought to be elected in an all-honest execution.

Commit-and-reveal lightest bin. We introduce commit-and-reveal version of Feige’s lightest
bin protocol which achieves CSP-fairness not just against large coalitions, but also against small
coalitions as well. The idea is quite simple — below we describe the scheme assuming ideal com-
mitments, although in our formal technical sections we will instantiate the commitments using
standard non-malleable commitments. Everyone first commits to a random bin number among
B = n/c bins. They then open their commitments. Those who land in the lightest bin are declared
the committee, and like before, anyone who fails to commit or correctly open is kicked out. Using
the same argument as before, we can show that the commit-and-reveal lightest bin protocol also
achieves (1 — ©(¢€))-CSP-fairness against coalitions of size at least en .



We now argue why it also satifies CSP-fairness against small coalitions of size fn < en. In-
tuitively, the coalition’s best strategy is to pick a bin with the fewest number of honest players
(henceforth called the honest-lightest bin), and place as many coalition members in it as possible
while still maintaining that it is the lightest. However, the coalition does not know which one is
the honest-lightest bin when committing to its own bin choices. In fact, even when conditioned
on the coalition’s view during the commitment phase, each bin is the honest-lightest bin with
equal probability. No matter how the coalition spreads its members across the bins, the expected
number of coalition members in a randomly chosen bin is at most 5-n/B = [ - c¢. Further, with
1 —n - exp(—Q(e* - ¢)) probability, the good event that honest-lightest bin should have at least
(1 — €?)(1 — B)c honest players happens. Therefore, the coalition’s expected representation on
the committee cannot exceed A=) 1=p) <3 ie given that the good event happens. Overall, the

expected fraction of the coalition in the committee is at most % + 0, where § = n-exp(—Q(e*-¢))
is the probability that the good event does not happen. Still, as long as § < fe, by the same
analysis as before, the expected fraction of the coalition in the committee is at most =60

2.2 Electing Poly-logarithmically Sized Committees: Achieving Maximin Fair-
ness

Although simple and cute, the commit-and-reveal lightest bin protocol does not satisfy maximin
fairness. For example, a ©(n)-sized coalition can target a victim player ¢ € [n] and prevent it
from being elected with high probability using the following strategy. During the commitment
phase, spread the coalition members evenly across all bins. During opening, first observe which bin
(denoted b*) player i lands in. Then, all coalition members fail to open except those whose choice
was b*.

To achieve maximin fairness, we are inspired by a virtual identity technique originally proposed
by Chung et al. [CCWS21], but unfortunately, directly applying this idea to the lightest bin does
not work. At a high level, a strawman idea is as follows:

1. Every player i € [n] selects a random virtual identity v; from a sufficiently large space, and
commits to the pair (i, v;).

2. Every player i € [n] selects a random bin b, among B = n/c bins, and commits to the pair
(v, bj) where v; is its secret virtual identity.

3. Everyone i € [n]| opens their commitment of (v;,b;). The virtual identities contained in the
lightest bin will be elected committee.

4. Everyone opens their real-virtual identity mapping (i, v;). This will allow everyone to compute
the real identities of those elected to the committee.

Now, as long as the coalition does not know an honest player i’s virtual ID, it does not know who
to target during the commit-and-reveal lightest bin steps (Steps 2 and 3). Therefore, as long as the
good event that each bin contains at least (1 —€)(1 — 8)c honest players happens, an honest player
1 will be elected into the committee with probability at least (1 1=fe _ (= e) . By law of total
probability, the probability that an honest player i gets elected 1nto tﬁe commlttee with probability

at least 1=9U0=9¢ where 1—§ is the probability that the good event happens. Henceforth, as long
as § < ¢, an honest player i gets elected into the committee with probability at least %.

Unfortunately, this idea does not work if the coalition can eavesdrop on the network channel
and observe who sent which (bin, virtual ID) pair in the commit-and-reveal lightest bin protocol.




This would allow the coalition to immediately learn the correspondance between virtual and real
identities.

To salvage this idea, our high-level idea is simple but realizing it turns out to be somewhat sub-
tle as we explain later. First, if we are willing to assume the existence of an idealized anonymous
communication network where players can post messages anonymously, then we can overcome the
aforementioned problem by running Steps 2 and 3 over an anonymous communication network.
Therefore, it suffices to find a suitable anonymous communication protocol to realize anonymous
communication. Although anonymous communication has been extensively studied in the litera-
ture [Cha81, Cha88, Abe99, CGF10,DMS04, SGR99,7ZZZR05], in our setting, it is tricky to adopt
existing schemes directly. The main technicality is that in the presence of a majority coalition, we
cannot guarantee the liveness of the anonymous communication protocol.

To overcome this problem, one naive idea is to rely on an anonymous communication protocol
with identifiable abort, and if the protocol fails, we kick out an offending player and retry. Unfor-
tunately, the vanilla notion of identifiable abort does not work for us because we cannot afford to
kick out offending players one by one since we are aiming for small round complexity. Our idea
is to devise an anonymous communication protocol not just with identifiable abort, but with with
plentiful identifiable aborts. In other words, if the protocol fails, we want to kick out sufficiently
many players, such that we can eventually succeed without too many retries.

Therefore, we adapt an anonymous communication protocol inspired by DC-nets [Cha88] to
achieve such a plentiful identifiable abort notion. Assuming an upper bound of Sn on the coalition
size, our protocol kicks out at least (1 — B)n players in the event of failure. Thus the round
complexity is at most ﬁ For example, if = 99%, we can still succeed in O(1) rounds.

We present a formal description and proof of our anonymous communication protocol in Sec-
tion 6.2 in supplementary materials. We give a formal description of our poly-logarithmically-sized
committee election protocol and prove its security in Section 4.

2.3 Leader Election

Although the lightest bin protocol via anonymous broadcast (denoted as LBin-V below) achieves
CSP-fairness and maximin-fairness simultaneously, it cannot be directly used to select a leader,
i.e., ¢ = 1. Indeed, the fairness of LBin-V depends on the occurrence of the good event that each
bin has at least (1 — €2)(1 — 8)c number of honest players, where 3 - n is the maximum coalition
size for B € (0,1). If we are to choose a leader directly using LBin-V, then the probability that this
good event happens is 0, which makes our protocol unfair.

To construct a leader election protocol, we compose the committee election LBin-V for multiple
iterations. In each iteration: we choose a log-sized committee. In the first iteration we choose a
poly log-sized committee C1, and then in the second iteration we choose a poly log log sized committee
Co from Cy, and so on. As analyzed earlier, each iteration of LBin-V is (1 — ©(¢))-game-theoretically
fair given that the failure probability ¢ that the good event does not happen in this iteration is
small compare to 3 - e.

However, as the committee size becomes smaller in each iteration, the probability that the
good event does not happen becomes larger. In the last few rounds, when the committee becomes
constant size, the probability that the good event does not happen becomes a constant. Therefore,
we need to cut off at some point and instead run the “almost perfect” tournament tree protocol. As
shown in Chung et al. [CCWS21], the tournament tree protocol among ¢ players chooses a leader in
O(log ¢) rounds and is (1 — negl)-game-theoretically fair. If we want to achieve a round complexity
of R, then we can stop running LBin-V when the committee size becomes smaller than 29(R) and
run the tournament tree protocol among the committee to elect a leader.



Now suppose that we run L iterations of committee election LBin-V and get a committee of size
29(R)  Then we need to guarantee that the round complexity of these L iterations of LBin-V is at
most O(R). By the analysis above, if we kick out (1—3)n players in each anonymous communication
protocol, the round complexity of each LBin-V is at most ﬁ This requires that the fraction of
coalition <1 — %

Now since the probability that the good event does not happen increases in each iteration, the
probability that there is an iteration in which the good event does not happen is dominated by
L -6, where 61, = exp{—e4 . Q*G(R)} is the probability that good event does not happen in the last
iteration. As long as this probability is smaller than 3 - €, the protocol is (1 — O(e))-fair. Picking

€= 2% suffices. Therefore, if we run LBin-V multiple iterations to elect a committee C of size is

29(F) " and then run the tournament tree protocol among C to elect a leader, our leader election
protocol achieves (1 — ﬁ)—game-theoretic fairness.

In Section 5, we give a generalized protocol that combines multiple iterations of LBin-V and
the tournament tree protocol to elect an arbitrary-sized committee, including the special case of

committee size 1, i.e., leader election.

3 Preliminaries

Notation. Throughout, we use A to denote the security parameter. The notation log(e) 7, means
taking logarithm ¢ times over n. For example, log(3) n = logloglogn. Moreover, we use log" n to
denote the smallest integer ¢ such that log®n < 1. For an event E, we denote E as the event
that E does not happen. For a vector X of length M, we use X[j] for j € [M] to denote the j-th
element of X. By t-out-of-n S5, we refer to a Shamir secret sharing protocol in which any ¢ + 1
players can reconstruct the secret, while any ¢ players know nothing about the secret [Sha79]. We
use the acronym p.p.t. for non-uniform probabilistic polynomial time. We use {X)} =. {Y)}.\ to
denote that two distribution ensembles {X,} and {Y)}, are computationally indistinguishable,
i.e., for all non-uniform p.p.t. A, there exists a negligible function negl(-), such that for any A € N,

| Prlzd X, A(z) = 1] — Prly&-Y,, Aly) = 1]| < negl()).

3.1 Probability Tools

Lemma 3.1 (Chernoff bound, Corollary A.1.14 [AS16]). Let Xi,..., X, be independent Bernoulli
random variables. Let p =KE[Y " | X;]. Then, for any € € (0,1), it holds that

Pr

S xi<a- e)u] < eenr,
=1

3.2 Fairness Notions for Committee Election

Since a leader is a special case of a 1-sized committee, we will define correctness and fairness with
respect to committee election protocol.

In a (¢,n)-committee election protocol, n players interact through pairwise private channels
and a public broadcast channel. We assume that each player has identity 1,2,...,n, respectively.
We assume that all communication channels are authenticated, i.e., messages carry the sender’s
identity. Moreover, the network is synchronous, and the protocol proceeds in rounds.

The protocol execution is parametrized with the security parameter \. We assume that the
coalition (adversary) A performs a rushing attack. In every round r, it waits for all honest players



(those not in A) to send messages in round r and decide what messages the players in the coalition
send in round r. At the end of the committee election, the protocol outputs a set of at most ¢
players called the committee. The output is defined as a deterministic, polynomial-time function
over all public messages posted to the broadcast channel. Since we assume that all players wish to
be selected into the committee, the utility function we consider is as follows: each player elected
into the committee gains a utility of 1, while everyone else gains a utility of 0. If all players behave
honestly, the committee is chosen uniformly at random.

Correctness. We say that a (c,n)-committee election protocol is correct, if in an all honest
execution, every subset C' C [n] of size ¢ has an equal probability of being elected as the committee,
where the probability is taken over the randomness of (an honest execution) the protocol.

For the fairness notion, we recall the definitions proposed by Chung et al. [CCWS21]. The first
notion of fairness (CSP-fairness) protects against a malicious coalition from increasing its utility.
The second notion (maximin-fairness) protects against a malicious coalition from decreasing the
utility of any honest party. Each of these notions is natural and useful on its own, and in some
sense, they complement each other. A protocol that satisfies both simultaneously is called game-
theoretically fair.

Approximate CSP-fairness. The CSP-fairness requires that no coalition can increase its own
expected utility by more than a (1 — €) multiplicative factor, no matter how it deviates from the
honest protocol.

Definition 3.2 ((1 — ¢)-CSP-fair committee election). A (¢, n)-committee election is (1 — €)-CSP-
fair against a non-uniform probabilistic polynomial time (p.p.t.) coalition A of size Bn, iff no
matter what strategy A adopts,

P p

E[] <

—1—€

where E is the fraction of players in the coalition among the committee, where the expectation is
taken over the randomness of the protocol.

In our proof, we will also make use of another fairness notion:

Definition 3.3 ((1 — ¢, §)-CSP-fair committee election). A (¢, n)-committee election is (1 — €, 9)-
CSP-fair against a non-uniform probabilistic polynomial time (p.p.t.) coalition A of size n, if
there exists an event GOOD, where Pr[GOOD] > 1 —4, such that no matter what strategy A adopts,

B

E[S D| <
(8] GOO }_1_6,

where E s the fraction of the coalition’s representation in the committee, and the expectation is
taken over the randomness of the protocol.

Analogously, we define (1—¢)-maximin-fair and (1—¢, §)-maximin-fair committee election, which
requires that the probability that an honest individual gets into the committee is large enough given
that the good event happens.

10



Approximate maximin-fairness. Maximin-fairness requires that no coalition can harm any
honest individual by more than a (1 — €) multiplicative factor, no matter how it deviates from the
honest protocol.

Definition 3.4 ((1 — e)-maximin-fair committee election). A (¢, n)-committee election is (1 — €)-
mazximin-fair against a non-uniform probabilistic polynomial time (p.p.t.) coalition A of size (n,
iff for any honest individual i, the probability that i gets into the committee is

1—
Pr[i is in the committee] > Qv
n

no matter what strategy A adopts. The probability is taken over the randomness of the protocol.

Definition 3.5 ((1 — ¢, §)-maximin-fairness). A (¢, n)-committee election is (1 — €, 0)-mazximin-fair
against a non-uniform probabilistic polynomial time (p.p.t.) coalition A of size Bn, if there exists
an event GOOD, where Pr[GOOD] > 1 — §, such that no matter what strategy A adopts,

1—
Pr[i is in the committee | GOOD] > (ne)c’

for any honest individual i. The probability is taken over the randomness of the protocol.

Although committee election is a constant-sum game, these two notions of fairness are non-
equivalent. As shown in [CCWS21], approximate CSP-fairness and approximate maximin-fairness
are different, although committee election is a constant-sum game. For example, in a (1 — o(1))-
CSP-fair (¢,n) committee election protocol against a coalition A of size 0.9n, the coalition may
exclude a specific individual from being elected. Because the = utility transferred from this honest
individual to the coalition is very small compared to the coalition’s default utility when playing
honestly. On the other hand, in a (1 — O(1))-maximin-fair (¢,n) committee election against a small
coalition A of size O(1), the coalition can transfer %
significantly increase its utility by a ©(n) factor.

Finally, we define game-theoretical fairness. This notion of fairness requires CSP and maximin-
fairness simultaneously.

utility from each honest individual, and

Definition 3.6 ((1 — ¢)-game-theoretical fairness). A (¢, n)-committee election is (1 — €) game-
theoretically fair committee election against a non-uniform probabilistic polynomial time (p.p.t.)
coalition A, iff it is (1 — €)-CSP-fair and (1 — €)-maximin-fair against A.

Definition 3.7 ((1 — €, 0)-game-theoretical fairness). A (c¢,n)-committee election is (1 — €) game-
theoretically fair committee election against a non-uniform probabilistic polynomial time (p.p.t.)
coalition A, iff it is (1 — €,0)-CSP-fair and (1 — €, §)-mazximin-fair against A.

By definition, a (1 — €)-game-theoretically fair committee election is also (1 — €,0)-game-
theoretically fair. Next we give the translation from (1 — €,0)-CSP/maximin-fair to (1 — €)-
CSP /maixin-fair.

Lemma 3.8. Let n be the number of parties and fix a parameter c. Let CElect be an R-round
(1 —¢€,6)-CSP-fair (c,n)-committee election protocol against a coalition of size fn. Then the above
leader election protocol is (1 — €1)-CSP-fair against a coalition of size Bn, with a round complezity
R+ O(logc), where

_ Be+6(1—¢)

= 5 sl o + negl(\).

€1
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Proof. Let B denote the fraction of the coalition in committee C. By Definition 3.5, there exists
an event GOOD with Pr[GOOD] > 1 — 4, such that E[g | GOOD] < % By the law of total
expectation,

E [E] —E [§| Gooo} - Pr[GOOD] + E [B’| GOOD] . Pr [GOOD]
< 1 ? . + (1 — Pr[GOOD])
p

< o

S 1. +

_3. B+5(1—¢)

B(1—e)

Combine with Lemma 5.1, the expected utility of the coalition is at most /3 - B(l—ﬁe J)r(él(_l;:g)l( VS il ,
and the round complexity is R 4+ O(logc). The lemma thus follows. O

Lemma 3.9. Let n be the number of parties and fix a parameter c. Let CElect be an R-round
(1 — €, 8)-mazimin-fair (c,n)-committee election protocol against a coalition of size fn. Then the
above leader election protocol is (1 — e2)-mazimin-fair, with a round complexity R+ O(logc), where

€2 = € + 0 + negl(\).

Proof. Let H; denote the event that honest player i gets elected into the committee C. By Defini-
tion 3.7, there exists an event GOOD with Pr[GOOD] > 1 — ¢, such that Pr[H; | GOOD] > %
By the law of total probability,

> (1—6)6'(1_6) > (1—6—5)6'

n n
Combine with Lemma 5.1, the probability that an honest player gets elected as the leader is at least
(1=e=d)e l_nzgl(’\) > 1;62, and the round complexity is R + O(log¢). The lemma thus follows. [

n

Hybrid vs. real worlds. For ease of presentation and modulatiry purposes, we shall sometimes
consider protocols in a hybrid setting where we assume some “generic” functionality is given for
free. This is called a “hybrid world”. That is, we say that a protocol is in the F-hybrid world if
players interacting in this protocol have access to an ideal functionality F. A protocol in the (plain)
real world is a protocol without any ideal functionalities or setup assumptions. Specifically for us,
we say that a (¢, n)-committee election protocol achieves (1 — €)-game-theoretic fairness against a
coalition A in the F-hybrid world, if the protocol achieves (1 — €)-game-theoretic fairness against
this coalition A, assuming the ideal functionality F.

3.3 Publicly Verifiable Concurrent Non-Malleable Commitment

A publicly verifiable commitment scheme (C, R, V) consists of a pair of interacting Turing machines,
the committer C, the receiver R, and a deterministic, polynomial-time public verifier V. We assume
that the protocol has two phases, a commitment phase and an opening phase. The public verifier,
upon receiving a transcript I' of the commitment protocol, outputs either a bit b € {0,1} to accept
or L to reject. We use (C*(2),R*(2')) to denote an execution between C* on input z, 1%, and R* on
input 2’, 1%, where X is the security parameter.

12



Correctness. Correctness guarantees that an honest committer always completes the protocol
and correctly opens its input bit; and will not be stuck by a malicious, non-aborting receiver.
Formally, for b € {0,1}, for any A € N, if C is honest and receives input bit b, then (C(z), R*(z))
will complete with the accepting bit b with probability 1, for any non-aborting R*. If the messages
sent by R* are outside the valid range, it is treated as aborting.

Perfect Binding. Perfect binding guarantees that the commitment phase will determine only
one bit that can be successfully opened. Formally, let (I'.,T',) € {0, 1}“)‘) be the transcripts of the
commitment phase and the opening phase, respectively, where () is a fixed polynomial function
denoting the maximum length of the transcripts. Then for any A € N, any transcripts I'¢, Ty, '), if
V(M T, T,) = b and V(1*,T,,I") = ¥/, where b, b’ € {0,1}, it must be that b = b/

Computationally Hiding. Computationally hiding guarantees that at the end of the commit-
ment phase, the receiver learns only a negligible amount of information about the input that the
committer commits to. Formally, let py)(v) denote the probability that R* outputs 1 at the end
of the commitment phase in an execution (C*(1*,v),R*(1")), then for any non-uniform p.p.t. R,
there exists a negligible function negl(-) such that for every A € N and every vy,v2 € {0,1}}, it
holds that |py(v1) — pa(v2)] < negl(N).

Concurrent Non-malleability. We follow the definition of Lin et al. [LPV08]. Consider a man-
in-the-middle adversary A that participate on the left m interactions with an honest committer
who runs commitment phase committing to values v1, ..., v, with identity idq,...,id,,, and on the
right m interactions with an honest receiver trying to commit to values vf,...,v}, with identity
id},...,id,,. If any of the right commitments are invalid its value is set to L. For every i € [m)], if
id; = id; for some j € [m], then U;- is set to be L. Let mitm”(1*, vy, va, ..., vm, 2) denote the view

of A and the values v}, ..., v),.

Definition 3.10. A commitment scheme is concurrent non-malleable if for every polynomial p(-),
for every non-uniform p.p.t. adversary A that participates in at most m = p(\) concurrent execu-
tions, there exists a polynomial time simulator S such that

A

. A _
{mltm 17, 01,02, ..., U, z)}vl,...,va{O,l},zE{O,l}*,)\GN =c

{8(1)\7 z)}vl,...,va{O,l},zE{O,l}*,)\GN-

Theorem 3.11 ( [LPVO08]). Assume that one-way permutations exist. Then there exists a constant-
round, publicly verifiable commitment scheme that is perfectly correct, perfectly binding, and con-
current non-malleable.

In this paper, we will only consider bounded concurrency. Without loss of generality, the number
of concurrent calls to public verifiable concurrent non-malleable commitment in our protocol is
upper bounded by n?, where n is the number of players.

4 Game-Theoretically Fair Committee Election

In this section, we present our game-theoretically fair committee election that extends Feige’s
lightest bin protocol. Later, in Section 5, we will use it as a building block to get our committee
election protocol that achieves game-theoretic fairness for arbitrary committee size.
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4.1 Electing Poly-logarithmically Sized Committees: Achieving CSP-Fairness

In this section, we give a CSP-fair committee election protocol. This is the first step towards our
game-theoretically fair committee election (that needs to be CSP-fair and maximin fair, simulta-
neously).

Our CSP-fair protocol is a commit-and-reveal variant of Feige’s well-known lightest bin proto-
col [Fei99]. Specifically, we require all parties to (cryptographically) commit to their bin choices
and only afterward to reveal their choices. The parties whose choices correspond to the lightest
bin are the committee. The commitments that we use are interactive. To commit to a string, a
player invokes n instances of NMC, one for each of the n receivers. To open the commitments,
the committer posts the openings for all n instances in the broadcast channel, and the opening is
correct iff all of the n instances are correctly opened to the same string. Without loss of generality,
we assume that the committer only needs to send one message in the opening phase. Moreover,
we assume that messages are posted to the broadcast channel, and it can be checked publicly if a
commitment is correctly opened. This is why we also require public verifiability of the commitment
scheme. We say that a player fails to commit if the player fails to commit in an instance, where
the receiver is non-aborting.

LBin-C: Commit-and-Reveal Lightest Bin

Parameters: Let ¢ be an upper bound of the size of the required committee and n is the

number of players. Fix B = [2] as the number of bins. For simplicity, we assume ¢ divides n.

Building blocks: A publicly verifiable concurrent non-malleable commitment as in Sec-
tion 3.3, NMC.

Protocol:

1. Round 1: Every player ¢ randomly chooses a bin b; € [B], invokes n NMC instances and
run the commit phase with n receivers to commit to b;. The messages are sent in a
broadcast channel. Exclude those players who fail to commit.

2. Round 2: Every player ¢ runs the opening phase with n receivers to open its bin choice
b;. Exclude those players who fail to open all n instances correctly.

3. Let b be the lightest bin after exclusion (break ties with lexicographically the smallest
bin). The players who choose bin b constitute the committee.

Theorem 4.1. Assume that NMC is publicly verifiable concurrent non-malleable commitment as
in Section 3.3. For n,c € N, € € (0,1/2), and § € (0,1), the protocol LBin-C is a constant round
(1 — 2¢,0)-CSP-fair (c,n)-committee election protocol against a coalition K of size fn, where

5:Zexp{—€24(l—ﬂ)c}. (1)

Proof. Fix n,c,¢, and 8 as in the statement. Define GOOD to be the event that each bin has at
least (1—¢2)(1—B3)c honest players. Let 3 denote the fraction of players in K among the committee.
Then, we have the following lemma.

B
1-2¢-

Lemma 4.2. E {g! GOOD} <

For now assume that Lemma 4.2 holds and we explain why Theorem 4.1 follows from it. The
proof of Lemma 4.2 appears right afterwards. Let X;;, be an indicator random variable that
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honest player ¢ chooses bin b € [B]. Then, X;; is a Bernoulli random variable that takes 1
with probability ¢/n. Since the number of honest players is n — n, by linearity of expectation,
E[ ien Xipl = (1 = B)c, where H denotes the set of honest players. For a fixed bin b, by Chernoff
bound (Lemma 3.1), the probability that the number of honest players choosing this bin is less
than (1 —€2)(1 — B)c is

4

Pr ZXi’b <(1-€éH - ﬂ)c] < exp {—62(1 - 5)0} .
1€EH

By the union bound over the B bins, the probability that GOOD happens is at least

Pr[GOOD] > 1 — %exp {—624(1 - 5)(;} . (2)

Combing Lemma 4.2 and (2), LBin-C is a (1 — 2¢,0)-CSP-fair committee election protocol by
Definition 3.5. O

We now proceed with the proof of Lemma 4.2.

Proof of Lemma 4.2. We split into two cases. First, assume that 5 > e. In this case, the claim
follows directly from the assumption that GOOD holds. Specifically, since each bin contains at least
(1 — €?)(1 — B)c honest players, the committee contains at least (1 — €2)(1 — 3) fraction of honest
players. It follows that the fraction of players in X among the committee must satisfy

5§1—(1_52)(1_5):ﬁ<1+€;_€2> < 1_5267

as required.
Now, we focus on the case where § < e. In this case, the proof relies on the concurrent non-
malleability of the commitment scheme. Specifically, we consider the following hybrid experiment.

Hybrid experiment Hyb: the hybrid experiment essentially runs LBin-C but the bin choices of the
coalition are chosen by the NMC’s simulator S. Recall that the simulator S outputs at most n?
values that the coalition commits to, as well as the view of the coalition in the man-in-the-middle
game.

Hyb: Hybrid experiment

1. Each honest player randomly chooses a bin b; € [B], invokes n instances of NMC and run
the commit phase with n receivers to commit to b;.

2. Run the simulator S for NMC, that outputs 1) fn? values {bjl, ol b?}jelc that the coali-
tion is trying to commit: each player j € K commits to b} to receiver i, for i € [n]; and
2) the view of the adversary view. If the same player j is committing to different values
to different receivers, we simply let its committed value be b; = 0; otherwise, we let b;,
i.e., the bin choice of player j, be the value output by the simulator S.

Output: The experiment outputs the bin choices of each players by, ...,b,.

Note that the outputs b1,...,b, are not efficiently computable but are well-defined due to the
perfect binding property of NMC. The hybrid experiment Hyb stops before the opening phase of
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the NMC, because by the concurrent non-malleability definition (Section 3.3), the simulatability of
the NMC only holds for the commitment phase.

We use Real to denote a real execution of Round 1 of LBin-C, i.e., every player commits to its
bin choice by invoking n instances of NMC and running the commit phase with n receivers. The
output is the bin choice of each player. Still, the outputs by, ..., b, are not efficiently computable
but are well-defined due to the perfect binding property of NMC.

To compute ]E[g | GOOD], we define a random variable =, which depends only on {b;}!" ;, that
upper bounds B in an execution of LBin-C. Let b € [B] be the index of the bin that contains least
number of honest players; and b* € [B] be index of the lightest bin at the end of the commit phase.
Note that by the way the protocol works, b and b* depends only on {b;}?_,. Below, for | € [B], we
use h; to denote the number of honest players in bin [, and f; to denote the number of players in
K in bin .

Claim 4.3. Given the bin choices {b;}}'_, at the end of the commit phase, the fraction of players

in IC among the committee B s at most v := m
Proof. Given the bin choices at the end of the commit phase {b;}" ;, by the perfect binding property
of NMC, a player j € K can either choose to open the correct bin choice b; it commits to, or fail to
open its bin choice in the opening phase. If some players in K refuse to open their commitments,
by the public verifiability of NMC, they will be excluded at the end of the opening phase, which
may change the lightest bin. That is to say, after the commit phase, the only way the coalition can
deviate is essentially to refuse to open some of their bin choices, in order to change the lightest bin.

If the some players in K refuse to open their commitments and make bin k£ the lightest bin,
then after excluding those misbehaved players, the number of players in bin k is at most fy« + hp=
(otherwise bin b* is still the lightest bin). Since the number of honest players in bin [ is h;, the
fraction of players in KC in bin [, after excluding the misbehaved players, is at most 1 — fb*}}kilhb*
To maximize the fraction of the coalition in the committee, the best strategy for the coalition is to
choose bin | = b, which contains the least number of honest players. N

Therefore, the best strategy for the malicious coalition is to make bin b the lightest bin at the
end of the opening phase. The maximum fraction of the coalition in the committee is thus bounded

by
L SR |
by + for = hipe + for

where the inequality follows from the fact that the number of the coalition’s representation in bin
b is at most f;. O

<1

Therefore, to upper bound E[E | GOOD], it suffices to bound E[y | GOOD] in the Real experi-
ment, which only depends on {b;}?_ ;.

We then argue the computational indistinguishability of 4 in Hyb and in Real. If this holds,
then we only need to bound E[y | GOOD] in the Hyb experiment.

Claim 4.4. The distribution of v in the real experiment Real (denoted as yea) is computationally
indistinguishable from that of vy in the hybrid experiment Hyb (denoted as ynyp).

Proof. Suppose for the sake of contradiction that there exists a non-uniform p.p.t. adversary D
that can distinguish YRreal and yhyp.

Consider the following hybrid experiment Hyb’, which is same as Hyb except that the bin
choices of players in the coalition are chosen by mimtA(l/\, 0,...,0,2). Since in both Hyb and Hyb’,
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the coalition’s bin choices are chosen independently from honest players’ bin choices, by the non-
malleability of NMC, Hyb =, Hyb'. Therefore, the random variable 1, should be indistinguishable
from v in Hyb', denoted as ypyp. This means that D should be able to distinguish Ygeal from Yy
with a non-negligible probability.

Now we can construct a non-uniform p.p.t. adversary D’ that can distinguish mimt““(lA7 {bi}icw, 2)
from mimt4(1*,0,...,0,z). D" works as follows: it randomly picks {b;};c3 as the bin choices each
honest player commits to, and send {b;};c3 to the challenger. Upon receiving the bin choices for
players in the coalition from the challenger, which is either output from mimt4(1*, {b;};e, 2), or
mimt“‘l(lA7 0,...,0,2), it computes 7 given the bin choices of every player. D’ then passes v to D
and output whatever D outputs.

If the coalition’s bin choices are generated from mimtA(1*, {b;}ie3, 2), then D’s view is same as
YReal; Otherwise, D’s view is same as Yyt This implies that D’ can distinguish mimtA(lA, {bi}ien, 2)
from mimt*4(1*,0,...,0, z) with a non-negligible probability. This contradicts the non-malleability
of NMC that there exists a simulator S, such that

mimt? (1}, {b; }ien, 2) = S(1*, 2) and
mimt*(1*,0,...,0,2) = S(1*, 2)
To conclude, YRreal is computationally indistinguishable from yhyp. ]

Now, it suffices to bound E[y | GOOD] in the hybrid experiment Hyb.

Claim 4.5. In the hybrid experiment, E [y | GOOD] < (1_62’%

Proof. In Hyb, the coalition K’s bin choices are chosen by the simulator &, who has no access
to the bin choice of honest players. Therefore, the malicious coalition’s bin choices {b;};cx are
independent of honest players’ bin choices {b;};c3;, where K and H denote the coalition and the
set of honest players, respectively. This implies that the number of the coalition’s representation
fiin bin [ is independent from g, which depends only on {b;};c. Moreover, f; is independent from
GOOD since GOOD also depends only on honest players bin choices.

As a consequence, by the law of total expectation,

E[ | GOOD]
B B

-3 Y E [fy\'z?:z,b* :l’,GOOD] Pr [E:z,b* 1| GOOD}
=10U=1

ﬁiEb@Z:um:rxmoqprwzdwzzacomﬂprﬁzuGooq
10'=1

I
M=

o~
I

B
:CZZE[ f |f5:l,b*:l/7600D]Pr[b*:l/|g:l7GooD}_ (3)
niio et

Since when GOOD happens, the number of honest players in every bin is at least (1 — €2)(1 — )¢,
we have that hl/ﬁfu < (1752)]0(1175)c for any [,1’ € [B]. Thus, (3) is at most

B

B
(&f%l_gil_mnE:(E:Epﬂg:lﬁ*:KGooqI%Pf:V|3:LGOOﬂ>
=1 \l'=1

1 B ~
:a_§x1_mn?:Epub:LGooﬂ.
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Since f; is independent of b and GOOD, we have that

1 J B B
E[y | GOOD] = =i —B)n;E[ﬁ] = 1-e)(1-5) < 1—e)(1—e¢)

where the last inequality comes from the assumption that 8 < e. O

Putting together, the expectation E [§| GOOD} in the committee election LBin-C is at most
B B
m + neg|(>\) S T9¢- O

Corollary 4.6. Pr[3 < 8(1 — €2) + €2 | GOOD] = 1.

Proof. This is because when GOOD happens, the fraction of honest players in the committee is at
least (1 —€)(1— f3). The fraction of the coalition is at most 1 — (1 —€)(1— ) = B(1 —€%) + €%, i.e,,
Pr[8 < B(1 — €?) + €2 | GOOD] = 1. O

4.2 Electing Poly-logarithmically Sized Committees: Achieving Maximin-Fairness

In Section 4.1 we gave a commit-and-reveal variant of Feige’s lightest bin protocol for committee
election and showed that it is CSP-fair. The protocol is, however, not maximin-fair. While the
adversary cannot gain too much utility by deviating from the protocol, it can still harm the utility
of an honest individual. Specifically, consider the following adversarial strategy. The coalition
generates commitments so that the coalition’s representations in each bin are equal. Then, when
it wants to target at a specific player ¢ to not participate in the committee, it waits to see which
bin [ was chosen by that honest party and then it refuses to reveal commitments from some other
bin I’ which will then be lighter than the bin [ chosen by honest player i. This attack prevents an
honest individual ¢ from being elected into the committee.

By the properties of the commitment scheme and how our protocol works, this is the only useful
attack for the adversary. Thus, we modify our protocol to withstand this attack by masking the
identity of parties. Namely, we hide which bin choice belongs to which party. We achieve this by
requiring players to choose a random virtual ID and use it throughout the execution. Players will
only reveal their virtual IDs at the end of the protocol, after the lightest bin has been fixed. A-
priori, it seems hard to implement such a system because once a party sends its message, everybody
knows who sent it (recall that we are in the broadcast model). We overcome this by implementing
an “anonymous”’ broadcast channel on top of our existing broadcast channel.

Thus, we first describe our anonymous broadcast functionality f;’noon. Then, we show that in
a féh(gn—hybrid model, we can build a committee election protocol that ensures CSP-fairness and
maximin-fairness simultaneously.

4.2.1 Anonymous Broadcast Functionality

Let O be the set of all players involving in the protocol. Our anonymous broadcast functionality

t,0
anon Works as follows.

J—“é;on: Anonymous broadcast with ¢-identifiable abort

Parameters: O is the set of players involving in the protocol and ¢ is a bound on the number
of misbehaved players to exclude.

Functionality:
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1. Input: Every player ¢ sends a single message m; or L to Fé’noon.

2. Output: ]—“;i;fgn computes a multiset Out = {m; : i € O and m; # L}.
If the number of corrupted players is smaller than ¢, send (ok,Out) to everyone in O.
Otherwise, send Out to the adversary A.
e If receives ok from A, FLO | sends (ok, Out) to every honest player in O.

e Otherwise, it receives a set D of corrupted IDs of size at least ¢ from the adversary
A, and then send (fail, D) to every honest player in O.

We say that an adversary A is admissible if 1) it sends only one message for each corrupt
player, and 2) it either sends ok, or a set of corrupted players of size at least ¢ in Step 2.

The functionality exhibits several appealing properties that are important for us. Specifically,
in the ideal functionality .7-";;1(211, it holds that:

—

. Each player can only send one message.
2. The coalition has to choose their messages independently from honest players’ messages.
3. The coalition cannot tell which honest player sends which message.

4. The output is either (ok, Out), or (fail, D) with a set D of size at least t.

4.2.2 Formal Description of the Protocol

Here we present the formal description of our lightest bin via anonymous broadcast protocol in the
whon-hybrid model.

LBin-V(¢,n, B): Lightest Bin via Anonymous Broadcast

Parameters: Let ¢ be an upper bound of the required committee and n is the number of
players. Fix B = [Z] as the number of bins. For simplicity, we assume c divides n. Let O
be initialized as [n] that denotes the set of active players. [ -n is the maximum size of the
coalition for 8 € (0,1).

Building blocks: A publicly verifiable concurrent non-malleable commitment as in Sec-
tion 3.3, NMC.

Protocol:

1. Every player i randomly chooses a string v; < {0, 1}* as its virtual ID, invokes n instances
of NMC, and runs the commit phase with n receivers to commit to (i, v;). Exclude those
players who fail to commit.

2. Each player randomly chooses a bin b; < [B] with fresh randomness, and sets m; =
(bi, vi). Broadcast m; using Fh9, with t = [(1—=pB)n].

e If the output is (fail, D), exclude the players in D from O (namely, set O = O\ D).
Then, the remaining players (i.e., those in the updated O) re-run step 2.

e If the output is (ok, Out), go to the next step.
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3. Let b* be the lightest bin. Every player opens its virtual ID (i,v;). Let Uy« be the set
of virtual IDs that are unique and choose the lightest bin b*. Those who open the (i, v;)
successfully with v; € Up« are chosen to be the committee.

Note that in LBin-V, players do not need to commit to their bin choices and then open, since the
functionality féhoon guarantees that the malicious coalition has to choose their messages, i.e., bin
choices, independently from honest players’ messages. In the following theorem we show that the
protocol LBin-V described above is both maximin-fair and CSP-fair in the fé}gn—hybrid model.

Theorem 4.7. Assume that NMC is a publicly verifiable concurrent non-malleable commitment
as in Section 3.3. For any n,c € N and ¢ € (0,1/2),8 € (0,1), the committee election protocol
LBin-V(c,n, B) is a (1 — €, 8)-mazimin-fair and a (1 — 2¢,5)-CSP-fair (c,n)-committee election * in
the Féhon—hybrid model, against a coalition IC of size fn, where

n et
0= (liﬁ)ceXp {—2(1 - 5)0} + negl(\).

Moreover, the round complexity of LBin-V is at most ﬁ + 2.

Proof. Fix n,c,e, and § as in the statement. Let Unique be the event that honest players choose
unique virtual IDs, and their virtual IDs do not collide with any players in the coalition. Let GOOD
be the event that in every execution of ]-'é}gn in Step 2, each bin has at least (1 —€?)(1 — 3)c honest
players.

We use the following lemma to prove maximin-fairness and CSP-fairness. The proof to the
lemma, appears afterward.

Lemma 4.8. Pr[Unique, GOOD] > 1 — 4.

Maximin-fairness Let H; denote the event that an honest player i is chosen into the committee.
The claimed maximin-fairness follows from the following lemma. The proof of the lemma appears
below.

Lemma 4.9. Pr[H; | Unique, GOOD] > (1 — ¢)c/n.

Combining Lemmas 4.8 and 4.9, we have that LBin-V is a (1 — ¢, d)-maximin-fair committee
election protocol against a coalition of size Sn by Definition 3.7.

CSP-fairness Let 5 denote the fraction of the coalition in the committee. Now, the claimed CSP-
fairness follows from the following lemma. The proof of the lemma appears below.

Lemma 4.10. E |3 | GOOD, Unique| < 2.

Combining Lemmas 4.8 and 4.10, we have that LBin-V is a (1 — 2¢,§)-CSP-fair committee
election protocol against a coalition of size Sn by Definition 3.5. O

4.2.3 Proof of Lemma 4.8

Since Unique depends only on the virtual IDs (vy,...,v,), Consider the following hybrid experi-
ment.

2Theorem 4.7 implies that the protocol LBin-V is a (1 — 2¢, §)-game-theoretic fairness by Definition 3.7.
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Hyb: Hybrid experiment

1. Each honest player randomly chooses a virtual ID v; € {0,1}*, invokes n instances of
NMC and run the commit phase with n receivers to commit to v;.

2. Run the simulator & for NMC, that outputs 1) An? values {vjl.,...,v;?}je;c that the
malicious coalition is trying to commit: each player j € K commits to v;'- to receiver %, for
i € [n]; and 2) the view of the adversary view 4. If the same player j € K is committing
to different values to different receivers, we simply let its committed value be v; = 0
otherwise, we let vj, i.e., the virtual ID of player j € K, be the value output by the
simulator S.

Output: The experiment outputs the set of virtual IDs of honest players Vg and the set of
virtual IDs of the coalition Vi, as well as the view of the malicious coalition viewg.

We use Real to denote a real execution of Step 1 of LBin-V. The output is the set of virtual
IDs chosen by honest players, players in the coalition, and the view of the adversary. By a similar
argument as Claim 4.4, Pr[Unique] in Real should be negligibly close to Pr[Unique| in Hyb. Note
that in Hyb, the probability that an honest player ¢ chooses a virtual ID that collides with another

player j with probability at most 2% By the union bound over the number of pairs of players,
n(n—1)
2:23

Unique happens with 1 —
1 — negl(N).

By Chernoff’s bound (Lemma 3.1) and the union bound over B bins, in a single execution of
Fi, each bin contains at least (1 — €2)(1 — B)c honest players with probability

probability in Hyb. Therefore, in Real, the probability Pr[Unique] >

64

n
=1—-— 1-— .
P - eXD { 5 ( 5)0}
Next, we argue that the number of executions of ]-'é’n(gn in LBin-V is at most ﬁ Indeed, each

time we invoke féh(gn, the protocol either outputs ok or outputs a set of players in the coalition
of size at least . These ¢ players in the coalition are excluded from the later executions of ]:éhoon.
Since t = [ (1 — B)n], we will run at most L(lgﬁ < ﬁ rounds of ;;SZH.
Thus, the probability that each bin contains at least (1 — ¢2)(1 — 8)c honest players in every
2
execution of féhoon is p1-#. Henceforth,

2

Pr[GOOD, Unique] > p=5 (1 — negl(X))

> (1- 125 e {-S0-9)c} ) (- negin)
>1- 1_252exp {—624(1 _ B)c} Cnegl(A) =1- 0

4.2.4 Proof of Lemma 4.9

In LBin-V, the players choose their bins in Step 2 with their virtual IDs and broadcast the bin
choices using fﬁh(gn. By the property of the functionality, in each execution of Féhoon, the coalition
has to choose their input, i.e., their bin choices, independently from honest players’ bin choices.
If the coalition chooses to fail a call to ]—“;{;fgn, then ¢ players in the coalition will be wiped out,
and honest players choose bins with fresh randomness in the next call to fé}gn. Therefore, the
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coalition’s strategy S; of whether to fail the [-th call to fé}gn in Step 2 depends only on the output
of the first [ number of calls to f;’n(gn, and the view view®™™ of the coalition K in Step 1. Still, we
use H to denote the set of honest players, where |H| =n — fn.

Let L denote the maximum number of ]:;’noon calls in Step 2. We use Out; to denote the output
of the I-th call to .Fé;l(gn, and 57 to denote the coalition’s strategy of whether to fail the I-th call.
The support of S is {fail, ok, L}. If S; = ok, then for any I’ > [, Sy = L. Moreover, Outy = L.

For the I-th call to Féfgn, let H; ; denote the event that honest player i chooses bin j in that

fﬁn(gn call. Now we proceed to bound

Pr[H; ; | Outy, ..., Outy, viewg™™, S1, ..., S

Since honest players choose their bins independently in different calls to féh(gn, and moreover, the
coalition’s strategy S; depends only on Outy,...,Out; and viewg™™, it follows that

Pr [Hi,j ’ Outy,...,Outy, view°°mm ;51 SL] =Pr [Hi,j ‘ Outl,view‘}?mm] .

Next, we show that given the output of each call to ]:;’n(gn, and view2™™, the map between the
honest virtual ID and the honest players’ identity remains hidden from the coahtlon K. Formally,

Claim 4.11. Let Viy and Vi be the (unordered) set of virtual IDs chosen by the honest players and
the players in the coalition, respectively, that the transcript of Step 1 binds to, and viewg™™ be the
corresponding view of the malicious coalition in Step 1. Then, for any honest player i € H,

1
~i := Pr[Honest player i chooses v; € Vi | Vi, Vi, viewg™"] > o negl(\).
Proof. By a similar argument as in Claim 4.4, by the non-malleability of NMC, for any i, ; in Real
is computationally indistinguishable from ~; in Hyb. Therefore, it suffices to bound ~; in Hyb.
In Hyb, the virtual IDs of the coalition and the view view2™™ are independent of honest players’

virtual IDs. Hence, in Hyb, for any i € H,
1

M
The claim thus follows. O

~vi = Pr[Honest player ¢ chooses v; € Vi | Vi, Vi, viewe™"| =

Recall that Out; is an unordered set of all messages {(vi,b;)}ic[n), Where v; is the virtual ID

chosen by player ¢ and b; is the bin choice of player i in the I-th call to FEO, (If |Out;| < n, just pad

—|Outy| copies of (L, L) to Out;). For j € [B], we use V; to denote the set V; = {v; : (v;,7) € Out;},
i.e., the set of virtual IDs choosing bin j. By Claim 4.11, we have that

Pr[H;; | Out; = {(vs, b;) }igpn), viewg ™" = ]
Out; = ((vlvbl) (Unu n))p

comm

=Pr [Player i chooses virtual ID v; € V;
viewgm™m = v

— negl(A),

!H\
where h; is the number of honest players in bin j. Given the assumption that GOOD happens,
hj > (1—€?)(1—B)c for every j € [B]. Hence, for any output ((v1,1),..., (Un,by)), and any view v,

Out; = ((v1,b1),. .., (vn,bn)),] > (1—€)e

— negl(\). 4
view2™™ = v, GOOD negl(}) )

Pr |:Hi,j
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Note that the lightest bin b* is a deterministic function given the outputs of ]:éh(gn and the
coalition’s strategy: given QOuty,...,Outy and Si,...,Sr, b* is the lightest bin in the first success
call to J—“ﬁ;fﬁn. Let H; denote the event that honest player ¢ is chosen into the committee.

We use viewg to denote the view of the adversary at the end of Step 2, which includes viewe™™,
and Outy,...,Outy, as well as A’s strategy Si,...,S5r. Then, for any i € H,

Pr[H; | GOOD] = > Pr[H;;,b* = j | GOOD]
Jj€lB]

= Z Z Pr[H;;,b* = j | viewg = v, GOOD] - Pr [viewg = v | GOOD]

j€[B] veEsupp(view )

> Z <(1—neQ)c - negl(/\)> Pr [viewrx = v | GOOD]

vEsupp(view )

— e
:(171) —negl(}),

where the inequality follows from (4), and the last equality results from the fact that the sum of
probability over the whole support is 1.

Therefore, at the end of Step 2, the probability that an honest player ¢’s virtual ID is in the
lightest bin b* is at least (1 — €2)c/n — negl(\). As the event Unique happens (Recall that Uy is the
set of virtual IDs that are unique and chooses the lightest bin b*), if honest player i’s virtual ID v;
is in the lightest bin, then v; is also in the set Up+. Thus, player ¢ will be elected into the committee.
This implies that the honest player ¢ will be elected into the committee with a probability at least
(1 —€%)c/n — negl(\) > (1 — €)c/n, given that GOOD and Unique happens.

4.2.5 Proof of Lemma 4.10

The proof to this Lemma is similar to the proof of Lemma 4.2, except that now we do not commit
and then open the bin choices. Instead, the players directly send their bin choice with the virtual ID
using the anonymous broadcast functionality féh(gn. Note that in Step 2, the coalition can choose
to fail ]:éh(gn and change their bin choices. Yet, in the next run of f;’n(gn, honest players choose
their bins with fresh randomness, and the coalition’s bin choices are still independent of the honest
players’ bin choices in the new call. Therefore, the proof of Lemma 4.2 still applies in each call of
fé}fgn. Consequently, the fraction of the coalition in the lightest bin at the end of Step 2 is at most
% given that GOOD happens. In addition, since Unique happens, every honest player choosing
the lightest bin will appear in the committee. The fraction of the coalition in the committee is thus
at most % given GOOD and Unique happens. That is, E[3 | GOOD, Unique] < % In addition,
Corollary 4.6 still holds in LBin-V.

5 Fairness Amplification Though Iteration

This section gives our final game-theoretically fair committee election and leader election proto-
cols to select arbitrary committee size with good fairness parameters. The committee election
protocol LBin-V introduced in Section 4.2 does not achieve fairness with good parameter for ar-
bitrary committee size. For example, if we want to choose a loglogn-sized committee from n
players using LBin-V, the probability that the GOOD event does not happen is upper bounded
by m exp{—% loglogn}, which is even larger than 1. This makes LBin-V not fair enough for
electing a small sized-committee.

23



Therefore, to build a fair committee election protocol that works for arbitrary committee size,
we compose LBin-V for multiple iterations, and combine it with the tournament tree protocol if
necessary.

We first give the formal description of the tournament tree protocol and its “almost perfect”
fairness. Then we give our final committee election protocol that achieves game-theoretic fairness
for arbitrary committee size.

5.1 Preliminary: Fairness of Tournament Tree Protocol

This section gives a formal description of the tournament tree protocol.

Tournament tree protocol Tourn(O)

Let n be the size of O.

e If n =1, return the single player in O.

e Otherwise, let n1 = [§] and ny = [§]. Let Op be the first n; players in O and Oy be
the remaining players.

e In parallel, run Tourn(O;) and Tourn(O3), and denote the output as O; and Os, respec-
tively.

e The final winner is determined by the duel protocol between O and Os such that O;
wins with probability n;/n. This is described below.

Duel Protocol between O; and O

Let klljrle and klljsz be the probability that player O; and Oy wins, respectively.

o Let k = ki + ko, and ¢ = [log k|. Each player O; commits to an ¢-bit random string that

represents some s; € Zy,_1 for i =1, 2.

e Each player O; opens its commitment and reveals s;. If s+ sy mod k € {0,..., k1 —1},
player O; wins. Otherwise, Oy wins.

e [f a player aborts or fails to open the commitment correctly, it is treated as forfeiting and
the other player wins.

Lemma 5.1 (Theorem 3.5 of Chung et al. [CCWS21]). Let n be the number of players and X be the
security parameter. Then, the tournament-tree protocol, when instantiated with a suitable publicly
verifiable, non-malleable commitment scheme as defined in Section 3.3, satisfies (1 —negl(A))-CSP-
fairness and (1 — negl(\))-mazimin-fairness against coalition of arbitrarily sizes. Moreover, the
round complezity is O(logn).

5.2 Our Final Game-Theoretically Fair Committee Election

In this section, we give our fair committee election protocol that works for arbitrary committee
size. Our final protocol runs multiple iterations of LBin-V and combines it with the tournament
tree protocol if necessary. The ]-"é;fgn ideal functionality in LBin-V can be instantiated in real-world
cryptography, with only a constant round blowup. The instantiation will be given in Section 6 in
supplementary materials.
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Let ¢ be the upper bound of the committee size we want to achieve. The final committee
election is given below.

Committee election protocol CElect(n, c)

Parameter: Let ¢ be the upper bound of the committee size and R be the round complexity
we want to achieve. The initial committee is Cy = [n], ¢co = n. The fraction of the coalition
is Bg = . If ¢ > 2%, let L < R be the smallest integer such that log(L) n <l and e = CO%;

otherwise, set L < R be the smallest integer such that log(L) n<2fand e= 2%.

Protocol
1. For/=1,...,L—1:

o Let ¢p = (log(é) )0 O =Co1, Br = Be—1(1 — ) + €%

e Run LBin-V(¢g, Cp—1, fe—1). That is, we choose a committee Cy of size ¢, = (log(z) n)10
from Cp_1.

o /=/(+1.

2. If ¢ > 2%, set ¢, = ¢; otherwise, set ¢;, = 2!, Run the committee election protocol
LBin-V(cr,Cr—1, Br—1) to elect a committee Cr, of size at most cf..

3. If ¢, > ¢, run ¢ number of parallel instances of Tourn®(Cy) for sid € [¢]. Let the final
committee be the set of elected leaders in these ¢ instances of tournament tree protocol.

Note that in the protocol, §y is just a parameter that passes to LBin-V, together with ¢ and O.
It is not the real fraction of the coalition in committee Cy. Instead, it is the upper bound of the
real fraction of the coalition in C, if good event happens in each round up to . The parameter 5,
is only used to set the parameter ¢ of ]-'é}gn in the ¢-th LBin-V call.

Theorem 5.2. Assume the existence of enhanced trapdoor permutations and collision-resistant
hash functions. Fix n and c. Let L* be the smallest integer such that log(L*) n < c. Then for any
L* < R < Cylogn for some constant Cy, we have that

o If ¢ > 2B there exists an O(R)-round committee election that achieves (1 — C@—l(l))—game-

theoretic fairness against a non-uniform p.p.t. coalition of size at most (1 — %)n.

o If ¢ < 2 there exists an O(R)-round committee election that achieves (1 — 2@%)—game—

theoretic fairness against a non-uniform p.p.t. coalition of size at most (1 — ﬁ)n, where L

is the smallest integer such that log(L) n < 28,

Proof. Consider the CElect protocol given above. By the theorem statement, L is the number of
invocations of the committee election protocol LBin-V. The size of the committee chosen in each
round of LBin-V satisfies that ¢, = (log@n)10 for £ = 1,...,L —1 and ¢, = ¢ if ¢ > 28 and
cr, = 2ME otherwise. We use (; to denote the random variable of the fraction of the coalition in
committee Cy and By to denote the support of 5.

If ¢ > 2R: 1In this case, the protocol runs L rounds of LBin-V. Recall that L* is the smallest
integer such that log(L*) n < ¢, we have that L < L* < L + C* for some non-negative constant C*.
Therefore, 8 <1 — % <1- ﬁ

Round complexity: By Theorem 4.7, the round complexity of the /-th committee election LBin-V
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; C/ée + 2 for a constant C’. Since 8y = Br—1(1 — €?) + €2, we have that, for any ¢ € [L],

Be = Bo-1(1 — €%) + €

is at most -2¢

/-1
— - 4y (1
=0

1—(1—€?)f

:5(1—62)Z+62- 5

=1-(1-8)1-¢)"
L V4
1‘@<R><1‘c0-1>

1—@(LR)<1—29€R)>, (5)

where the last inequality comes from the assumption that ¢ > 2%. Therefore, the round complexity
of the committee election CElect protocol is

Lo/ 20
;<1ﬁ£+2)

€

IN

IA

20
<2L+L-
- 1-08L
20"
<L-— —— +O(R) By L < R and (5)
8(R) (1 - 2C—><R7>
' O(R
_COW) L o) = o(R).
1_ L
20(R)

We now proceed to prove the CSP fairness and the maximin fairness separately.
CSP fairness: By Theorem 4.7, the LBin-V in the /-th round is (1—2¢, §)-CSP fair against a coalition
of size Bg,lcg,l, where

b= —2 Gt —5(1—5 )eo b + negl(X)
(=105 PP s —1)ce o+ neg
< (log“~Y n)1exp {—5(1 — Be—1)(log® n)G} , fore=1,...,L—-1

4 ~
5 2 cr exp {_62(1 — 6L—1)c} + negl(})

- 1-— BL Cc
< (logF=Y )0 exp {—5(1 — BL_1)00‘6} .

By definition, for £ =1,..., L, there exists an event G, that satisfies the following;:

Pr[Gy | Bo_1 = 2] > 1 — §4(), (6)
~ ~ x
= <
EBe | Gg, Be—1 = x] < T 50 (7)
where
o(x) = (log Y n)0exp {—5(1 — z)(log®® n)G} , ford=1,...,L—1

6r(x) = (logF=Y n) 1% exp {-5(1- 33)60'6} .
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Let G denote the event that Gy, ..., Gy happens.
We first bound E[SL | G]. For £ =1,..., L, we have that

E[B¢ | G1,..., G
~ ~7 :x7 ~
— Z E |3 G/Be ! G]Pr[ﬂglleGl,...,Gg]
e 15---50¢
x ~
<) 5 PriBea =261, Gl (By (7))
z€By_1
_ ! E[Br1 | G G
=15 BlBe-11 G, ..o G

Consequently E[3;, | G] = E[BL, | G1,...,GL] < T
To compute the probability that G happens, note that for £ =1,...,L

Pr(Gy | Gy, ..., Ge 1]

s ufe

TR )
Gﬁg ! ] Pr[Bp—1 =2 | Gy,...,Gp_1]

2€By_, 1 '7GK—1
< > bu(@)Pr[Be—1 =z | G, ..., G
z€By_1

=E[0¢(Be-1) | Gi, ..., Gp1].

We give the following claim and show that the result follows from it. The proof of the claim is
given afterward.

Claim 5.3. There exists a constant C, such that or any £ =1,..., L, the expectation

E[6¢(Be—1) | G1,...,Gp_1] < exp {—C(log@) n)4} .

Therefore, the probability that G happens is at least

=

Pr[G] = | | Pr[G¢ | Gi,...,Gy_1]

o~
Il

1

>

=

(1 — exp {—C(log(e) n)4}) >1— Lexp {—C(log(L) n)4} .

~
Il
—

Thus, CElect is a (1 — (1 — 2¢)%,6)-CSP fair (cr,n)-committee election, where the probability that
G does not happen is at most § = Lexp {—C(log(L) n)4}. By Lemma 3.8, CElect is a (1 — €;)-CSP
fair leader election, where

B(1— (1 —26e)F) +6(1 —2¢)F
B+ 6(1 —2¢)L

< B8-2Le+ 6

€ = + negl(A) < 519

: (8)

where the inequality comes from the fact that (1 — 2¢)“ > 1 — 2Le, and that for any 0 < 7 <1,

7 < ZTJf for € > 0. We consider the following cases based on the fraction of the coalition f.
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o Case 1: B > g. Substitute into (8), we have

B-2Le+d6 _ [B-2Le+ Be (2L + 1)e 1
< < = = .
B+46 B+ Be 1+e 1)

Thus, the committee election protocol CElect is (1 — C@—luJ—CSP fair.

€1

. 5 _ L . . . . . .
o Case2: B <& = coxp{Clloa@ )" In this case, substituting § into (8) directly does not yield
the desired result. However, note that the fraction of the coalition is very small. With some
large probability, there will be no coalition’s representation on the committee in the last few
rounds of committee election LBin-V, and the coalition gains utility 0 no matter the good

events happen or not in the last few rounds.
Let ¢* € [L] be the value such that

Note that

L L
* < * .
eexp{C(log" D n)4} — p< eexp{C(log*") n)4}
since 3 > % (otherwise we are in an all-honest execution), such £* must exist.

Since the expected fraction of the coalition in C; is E[B; | G1...Gy] < ~—2—, the expected

(1-2¢)©°
number of the coalition’s representations fy in Cy is E[fy | G1,...,Gy] < (f%)l For any
> 0* — 1, the expected number of the coalition’s representation in the committee is

Bee - L - 2B(logl® n)10
(1—26)" ~ exp{C(log“) n)4}(1 — 2¢)*
If there is no coalition’s representation in Cy for some ¢ € [L], the expected utility of the

coalition is 0, no matter whether the good events happen or not in the later committee
elections, i.e., for any ¢ > ¢, E[By | fo < 1] = 0.

E[f€|Gla"‘7Gf] S

By Markov inequality, for any ¢ > ¢* — 1, the probability that there exist players from the
coalition in the /-th committee is Cp is

Be

P >1|Gy,...,G < ———. 9

I‘{ff_ | 1, 5 f]—(l_QE)g ( )

Let G’ denote the event that Gy,..., Gy« happens. Then the probability that G’ happens is

at least (£* —1) exp{—C(log'" ~Y n)*} by a similar argument as before. Next we proceed to

bound E[B], | G']. Recall that f; is the number of the coalition’s representations in Cyp, we
have

E[gL | le sy GZ*—I}

L
Gl?"'aGfa :| |: Gf*a"'vav ‘ :|
= E Pr Gy, ...,Gps_
e%:—1 [ﬂL fer 21, fr <1 fea=1fo<1 | o
L1
- Gl,...,Gg,} [Gg*,...,cg, }
¥ E |3 20 | py 220 Gy G
62;1 [L fo> 1G] 21,6 | o
+E[BL | Gi,...,Gr, fr > 1 Pr[Gps,...,Gp, fr > 1| Gy,..., Gl (10)

Intuitively, the first term is the expectation of 5 1, if the number of the coalition’s representation
after £ rounds of LBin-V becomes 0; the second term is the expectation of 3, given that there
exist the coalition’s representations in each round, yet the good event does not happen in the
{-th round of LBin-V; the third term is the expected fraction of the coalition given that good
event happens in every round of LBin-V, and that the number of the coalition’s representations
in every round is at least one. We now proceed to calculate the above terms separately.
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1. For any £ > ¢* — 1, E[BL | G1,...,Gy, fro1 > 1, fr < 1] = 0.
2. Forany L—1>/{>¢*—1, E[EL | G1,...,Gy, fo—1 > 1,Ggy1] < 1. The probability

Pr(Gye, ..., Ge, fo > 1,Gort | Giy .oy Gee 1]

=Pr[Gpy1 | G1,..., Gy, fr > 1]
“Pr[f;>1]Gu,...,G Pr[Ge,. .., G | Gr,..., Gor ]
Bee p

(1 —26)¢ = exp{C’(log!“*V) n)2}’

<exp{—C(log!""V n)"}

for some constant C'.

3. E[By | Gy, Gr, fr 2 1] < 55

Substituting all three terms back into (10):

_ 8 = 5
E[BL | Gy, .., Gpra] < (I—207F +z=;1 exp{C'(log ™D n)2)
1 , 1
<6 | g oggr + Lexp{=C'(log® n)z}} <p [(1—2)L + 6]

Therefore, for the expected fraction of the coali-

L L
* < *
eexp{C’(log*" ~ 1 n)4} — p< eexp{C'(log*") n)4}’

tion in the committee is at most /3 [ﬁ + @(6)} + ¢, where

8 = (1" — 1) exp{—C"(log" M n)*} < Be.
That is, the expected fraction of the coalition in the committee is at most

8| e + 0] <

e
Therefore, the committee election protocol is (1 — €;)-CSP fair for ¢ = c@%.
Maximin fairness: Let H; ;, be the event that an honest individual 7 gets elected into the committee
Cy. Then by Theorem 4.7, for £ =1,...,L,

1—¢€)ey
Pr{H; | Hip—1,Ge] > (041), Pr[H; ¢ | Hie—1] = 0.
Still, let G denote the event that Gy, ..., Gy happens. Then the probability that G happens is at

least Pr[G] > 1 — Lexp {—C(log(L) n)4}. Therefore, we have

PI‘[HLL | G] Z PI"[HLL ’ H’L',L717G17" .,GL] PI‘[HLL,1 | Gl,.. .,GL]

1—
> &PT[HLL—I | G1,...,Gr1] Pr[Gy,...,Gy]
CrL—1
>
> %(1 — ek (1 — Lexp {—C(log(L) n)4}>
L (1 _Le— _ (L) )4 L
> - (1 Le Lexp{ C(log'™ n) }) > n(l 2Le)

Thus, CElect is a (1 — 2Le, §)-maximin fair committee election, where § < L exp {—C’(log(L) n)4}.

It follows from Lemma 3.9 that the committee election CElect is (1 — C(_)%)-maudmin fair.
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If ¢ < 219 In this case, the protocol runs L rounds of LBin-V and then ¢ parallel instance of the
tournament tree protocol, which takes at most O(R) rounds. Pick € = 2@—1@), by a similar argument
as above, we have that the expected fraction of the coalition in C;, (the committee chosen by the
L-th LBin-V) is at most %, and the probability that an honest individual 7 gets elected into Cy, is

(1—€)cr,

at least , where cf, = |Cp|.

CSP fairness: Let X; be an indicator of whether the elected leader in the k-th instance of Tourn(Cy)
is a player from the coalition. Then by Lemma 5.1, E[X}] < li +negl(A). Therefore, the expected
fraction of the coalition in the final committee is

X
Zke[c k ZE X3 < B < B —
¢ (I1—¢)(1—negl(A) — 1— FO0R)

Therefore, CElect is a (1 — 55 ~otmy)-CSP fair committee election.

Maximin fairness: For any fixed honest individual 7, let Y3 be an indicator of whether honest player
i gets elected as the leader of the k-th instance of Tourn(Cr). Then by Lemma 5.1, we have that
Pr[Y} | Player i in Cr] > lf%fl()‘). Therefore,

Pr[Player i in the committee]

= Pr[Player ¢ in the committee | Player i in Cr] Pr[Player ¢ in Cy]
. (1—¢€)ct
=(1- H (1 — Pr[Yy | Player i in C]) | ——
kelc] "
> (1 B H 1—negl(A) | (1—¢€)cg
cr n
kelc]

-1 1- 1 1-
Z<C_C(C 2 )—negl(/\)>(€)CLZC<1—R>(€)CL
cL 2cy, n cr, 2 n

c 1
> Z
- n(l 20(R ))
Therefore, CElect is (1— ﬁ)—maximin fair against at most (1— %)n. The theorem thus follows.

O

Proof of Claim 5.5. Recall that Bg = Br-1(1 — ¢ Y4+ e for £ = 1,...,L. By Corollary 4.6, the
probability that Pr[ﬁe < z(l—€e)+e | Br_1 = x,Gp] = 1. Therefore, given that Gi,...,Gy
happens, Bg < B¢ with probability 1.

Now we proceed to bound E[&g(ﬁg_l) | Gi,...,Gy_1]. By the definition of expectation and the
fact that d;(x) is monotone, we have that

E[0¢(Be-1) | Gi,-- -, Go1] Z d¢(x) Pr[Be—1 = 7]

$€Bz 1
Z 5g Pl‘ﬁg 1—1‘|G1,...,Gg_1]
T<Po—1
< 0¢(Be-1)
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For ¢ =1,...,L — 1, we have that

e(Be1) = (logV )Y exp {—“ (1 - 2‘;) (log® n>6}
< exp{—C(log") n)*}.

For ¢ = L, we have that

_ 5L L
01(Br-1) < (logL=Y n)0exp {_ (1 _ 601> 00.6}
< exp{—C(log'® n)*},
where the last inequality follows from the fact that log™) n < ¢®1. The claim thus follows. O

Remark 5.4. As we will see in Theorem 6.2, the parameter By should be appropriately chosen
such that in each round, c¢; —t > Pecy where t = |(1 — By)eg|. Note that in 