
Reliable Password Hardening Service with Opt-Out
Chunfu Jia

Nankai University
cfjia@nankai.edu.cn

Shaoqiang Wu
Nankai University

wushaoqiang@mail.nankai.edu.cn

Ding Wang
Nankai University

wangding@nankai.edu.cn

Abstract—As the most dominant authentication mechanism,
password-based authentication suffers catastrophic offline pass-
word guessing attacks once the authentication server is compro-
mised and the password database is leaked. Password hardening
(PH) service, an external/third-party crypto service, has been
recently proposed to strengthen password storage and reduce
the damage of authentication server compromise. However, all
existing schemes are unreliable in that they overlook the im-
portant restorable property: PH service opt-out. In existing PH
schemes, once the authentication server has subscribed to a PH
service, it must adopt this service forever, even if it wants to
stop the external/third-party PH service and restore its original
password storage (or subscribe to another PH service).

To fill the gap, we propose a new PH service called PW-Hero
that equips its PH service with an option to terminate its use (i.e.,
opt-out). In PW-Hero, password authentication is strengthened
against offline attacks by adding external secret spices to pass-
word records. With the opt-out property, authentication servers
can proactively request to end the PH service after successful au-
thentications. Then password records can be securely migrated to
their traditional salted hash state, ready for subscription to other
PH services. Besides, PW-Hero achieves all existing desirable
properties, such as comprehensive verifiability, rate limits against
online attacks, and user privacy. We define PW-Hero as a suite
of protocols that meet desirable properties and build a simple,
secure, and efficient instance. Moreover, we develop a prototype
implementation and evaluate its performance, establishing the
practicality of our PW-Hero service.

Index Terms—Password-based authentication, Password hard-
ening service, Opt-out option, Offline password guessing attack

I. INTRODUCTION

Password authentication plays an essential role in protecting
our digital assets. However, securely implementing password
authentication is difficult. Generally, the authentication server
needs to store users’ passwords in salted-hash form (see the
upper part of Fig. 1) as recommended by major standards
like NIST-800-63B [1] and the NCSC guideline [2]. Once
this salted password file is leaked (see the 3 billion Yahoo
leakage [3]), passwords can be recovered relatively easily by
offline password guessed because users’ passwords follow the
Zipf’s law [4]. For concrete real-world successful/damaging
offline password guessing attacks, see the cracking campaigns
of Ashley-Madison [5] and Mall.cz [6].

A promising solution to resist offline password guessing
attacks is the password hardening (PH) service [7]–[10]. It in-
troduces an external crypto server that provides cryptographic
functions, such as pseudo-random functions (PRF), to help
authentication servers generate password records hardened by
external secrets. As shown in the low part of Fig. 1, an

 “Traditional password
authentication schemes”

 “Password hardening
(PH) service schemes”

User

 PH
Protocol

Password hardening
 (PH) server

Web authentication server

Attacker

Web authentication server

PRF('ilovey',Key)Encrypted pw

Username 'Alice'

Username

Salt

Hashed pw

'Alice'
65D7H...

H(65D7H...,'ilovey')

 O
nlin

e

 guessin
g

pass
word

 guessing
password

 Offlin
e

Register('Alice','ilovey')

Login('Alice','ilovey')

Fig. 1: Password authentication with a password hardening
service will transform the canonical, catastrophic offline
password guessing attack (upon an authentication server
compromise) into a remediable online password guessing
attack (e.g., resisted by rate-limiting and lockout).

authentication server carries out the PH registration protocol
with a PH server. After that, the authentication server generates
an “encrypted” password record, which is a PRF value with
a secret key known only to the PH server. Thus, without
this key, even if the authentication server is compromised
and the record is leaked, attackers cannot crack the password
offline. Attackers can only turn to online attacks by requesting
the PH verification protocol to confirm each password guess,
while the PH server can resist the online attacks by rate-
limiting verification requests. In a nutshell, a PH service liber-
ates authentication servers from cryptographically protecting
passwords by providing external crypto functions. Note that
PH protocols are transparent to users1, and users’ password
operations (i.e., register and login) remain as usual.

A. Motivations

Due to the above desirable advantages of the PH service,
it has drawn considerable attention [8]–[10]. A number of PH
schemes have been successively proposed, such as Pythia [8],
PO-COM [9], and Phoenix [10]. Among them, Pythia fares
poorly on performance, with registration and verification pro-
tocols costing three times more time than the other two. Lai
et al. [10] pointed out that PO-COM cannot withstand offline
attacks after a single validation. Therefore, Phoenix is the best
existing PH scheme regarding efficiency and security overall.

1Therefore, for clarity, we omit the user and refer to the PH server as the
server for the PH protocols and the authentication server as the client.

However, we find that Phoenix [10] has some shortcomings
when assuming that the PH server can be compromised.2

(1) In the registration protocol of Phoenix, the values re-
turned from the server are unverifiable. This unverifiability
may cause the client to be tricked by malicious servers into
storing an incorrect password record and then deleting the
original password, resulting in permanent loss of password
verification information. (2) The username and verification
result are public to the server. This discloses user behavior
privacy, such as what sites the user registered to and when the
user logged in. Furthermore, (3) in the multi-tenant mode3, all
Phoenix clients share the same secret key. This key share leads
to an unreasonable situation where all clients must perform a
key rotation when any client requests one.

Besides the above defects in existing PH schemes, most cru-
cially, we find that they all [8]–[10], [12], [13] are unreliable
because of overlooking the important property: PH service opt-
out. Once a client uses the existing PH services, it cannot get
out of them securely and efficiently on the premise that the reg-
istered passwords remain valid to authenticate. However, there
inevitably are situations where the client needs to withdraw
from the PH service. For example, the PH service operator
intends to shut down her PH service, and a client wants to
stop renewing the current service and subscribe to a new-
generation one. Therefore, an exit mechanism is indispensable
for complete PH schemes. It is helpful in increasing the reli-
ability of PH services and user confidence in PH services. To
this end, we define the opt-out property, which means that a
legitimate client can exit the PH service with the assistance
of the server and generate new password records without
adding external secrets. After that, the client can authenticate
independently. Besides, this exit process should be secure,
efficient, and verifiable.

In addition, a well-summarised property set can guide the
design and comparative evaluation of PH schemes. However,
there is no comprehensive and systematic summary of the
properties of the PH service. Its absence leads to existing PH
schemes asserting their advantages while overlooking disad-
vantages. Phoenix [10], for example, has better performance
than Pythia but lacks the verifiability noted early in the Pythia
study [8]. To solve this issue, we conclude all properties of
the PH service in Section II.

B. Challenges

Our goal is to build a new PH service that meets the
desirable properties of the prior schemes and covers their
shortages. Designing such a PH scheme is rather challenging.

Opt-out property is challenging to obtain in the existing
schemes, and we need to achieve it from scratch. In Pythia [8]
and Phoenix [10], the client can only wait until each user
logins with her correct password and then recalculates a new

2In general, we assume that both the identity server and the PH server can
be compromised for the PH service schemes, but not both.

3A PH service can be built by the enterprise for internal use only, or it can be
publicly deployed on the cloud to provide services for multiple authentication
servers simultaneously, that is, the multi-tenant mode [11].

password record based on the password plaintext. In the sim-
plified Phoenix [14], where the password record is repre-
sented as HC(un, pw, nC)

kC ·HS(un, nS)
kS , the client can ask

for HS(un, nS)
kS for each password by registration protocols

and obtain a service-independent record HC(un, pw, nC)
kC .

Here, nC and nS are random values, and kC and kS are
the secret keys of the client and the PH server, respectively.
However, the two exit methods are undesirable. First, the
exit processes are lengthy, increasing security risk. Second,
they are not batch executed for all registered passwords and
are therefore cumbersome. Third, the communication traffic
required for exiting the simplified Phoenix is related to the
size of the password database, so it is inefficient and poorly
scalable. In addition, the correctness of the newly generated
password records should be verifiable. To support opt-out with
verifiability, simply modifying the existing PH schemes based
on our PH definition, which first formally introduces the exit
phase in Section III, is inconvenient.

Some privacy and functional properties are conflict and
challenging to balance. First, achieving both user login privacy
and rate limits is tricky. If a PH server doesn’t learn login
verification results, it is only capable of rate-limiting the total
number of legitimate users and attackers’ verification requests,
which is the tactic adopted by [8], [13]. Second, providing
an opt-out would compromise the privacy of the external
secret because it allows a way to get the external secret by
exit protocols and recover efficient offline attacks. Therefore,
appropriate trade-offs are needed for these properties that are
not compatible with each other. In this work, we present out-
of-protocol methods to alleviate possible shortcomings.

C. Our Contributions

Our main contribution is that, for the first time, we present
the PassWord Hardening service equipped with the crucial
opt-out property, named PW-Hero. We set up a decryption
protocol to achieve opt-out, where the hardened password
record stored by the client is stripped to its traditional salted
hash form. In PW-Hero, the decryption meets three conditions:
the decrypted password form is convenient for introducing
other PH services, the correctness of the decrypted password is
verifiable, and the decryption protocol can batch decrypt with
a compact communication traffic. Due to passwords always
participating in PH protocols in a hash form, transitioning to
their salted hash will not affect subsequent access to other
PH services. The client can quick exit: By asking for the
decryption protocol, the client receives a constant-sized de-
cryption token with which it can quickly batch transfer all
password records to their salted hash. In addition, the client
keeps the hash of a pivotal intermediate value to verify that
the decryption protocol yields the correct password hash. Note
that the PH server should strictly verify the client’s identity
before allowing it to exit. The client authentication can prevent
attackers from abusing the exit function to evade password
protection from external PH crypto services.

We define the PW-Hero as a suite of protocols in Sec-
tion III. And the PW-Hero definition is general enough to

capture all properties specified for PH services by prior works.
Besides the above opt-out, we enrich the PH property set
with other crucial properties, including username privacy and
verification-result privacy. In addition, we give the security
definition of PW-Hero in the way of game-based challenges
in Appendix B and formally prove them in Appendix C.

To prove the practicality of PW-Hero, we build a simple
construction based on our definition of PW-Hero. As a brief
schematic shown in Fig. 2b, we set a two-layer mechanism.
Instead of the password m, a random value r is involved to
interactively calculate a PRF value as c2. And r also is used as
a key to blind m as c1. When finished, r is securely deleted.
The two-layer mechanism introduces an external secret s into
the verification record c of the password m without sending
any value derived from the password to the server. The detailed
PW-Hero protocols are described in Section IV. Moreover,
we implement the PW-Hero scheme and test its performance
compared with all existing PH schemes [8]–[10] in Section V.
The experimental results show that our PW-Hero scheme is as
efficient as Phoenix [10].

s

m c

External secret

Password
plaintext

Hardened
password
 records

PH service

(a) PH adds external secret s into
password m to generate hardened c.

r
PRF

s

Blindm

c2

c1

PW-Hero service

Client's random value

(b) Two-layer hardening mech-
anism of our PW-Hero scheme.

Fig. 2: Schematic diagram of our PW-Hero scheme.

D. Related Work

Faced with the gap between the realistic demand for the
password-based authentication mechanism and the password
security problems caused by rampant offline guessing attacks,
Facebook [7] built a cryptographically secure solution by in-
troducing an external PRF-Service to strengthen password
records. The authentication server must interact with the exter-
nal PH server to verify that the candidate password matches its
stored password verification record. Neither the authentication
server nor the PH server can do this alone. Therefore, offline
attack cracking passwords becomes impossible.

Everspaugh et al. [8] provide the first formal treatment of
the PH service and propose Pythia, based on a new crypto-
graphic primitive called the verifiable partially-oblivious PRF
(PO-PRF). Pythia computes pair(H(t), H(pw))kS as the veri-
fication record of the password pw, where t is an identifier
of the username un, termed tweak. At the client’s request
(t,H(pw)n), where n is a random value, Pythia hides the
password pw by exponentially blinding but reveals t to the
PH server. Based on the username tweak, the server can fine-
grained rate-limit requests per user. Additionally, the verifia-
bility of PO-PRF ensures that faulty returns from the server
cannot earn clients’ trust. However, pair is a bilinear pair-
ing operation with poor performance. Since then, two more

schemes have been proposed, PO-COM [9] and Phoenix [10].
Schneider et al. [9] rely on a weaker cryptographic primi-
tive called partially oblivious commitments (PO-COM) and
propose an efficient construction based on the multiplicative
group operations. However, Lai et al. [10] soon find that
the PO-COM scheme is vulnerable to offline attacks after a
single verification request and revive it with a new construction
Phoenix, three times as efficient as Pythia. Later, Lai et al. [12]
propose password-hardened encryption (PHE) based on their
Phoenix. PHE is an external crypto server that encrypts user
data and recovers it when a user supplies the correct password.
Brost et al. [13] deal with the single point of failure introduced
by PHE. In addition, Diomedous et al. [15] implement a TLS-
based password hardening scheme in which the cryptographic
functions equipped in TLS-enabled web servers are modified
to act as a password hardening service.

Moreover, password policy [16], strength meter [17], pass-
word manager [18], two/multi-factor authentication [19], [20],
device-enhanced password authentication [21], [22], password
crack alarm mechanism [23]–[25], and more [26] can improve
password security.

II. OVERVIEW

In this work, we define the password hardening (PH) service
with the opt-out, i.e., PW-Hero, based on the property set of
the PH service we envision, and then construct an instantiation
to verify PW-Hero’s practicality. Overall, we follow the idea
of perfecting the PH property set, defining the PH service with
opt-out as PW-Hero, and then instantiating PW-Hero.

This section mainly suggests the PH property set. Generally
speaking, a comprehensive and systematical set of the prop-
erties of the PH service is available for PH schemes to be
faultlessly designed and objectively assessed.

A. Properties of the Password Hardening Service

Based on the existing studies [8]–[10], [13], we aggregate
the properties of the PH services and classify them into five
types A ∼ G. In particular, we provide some properties not
mentioned before, which enrich the PH property set to match
our PW-Hero. Specifically, these new properties are opt-out,
username anonymity, and verification-result privacy. Opt-out
is an entirely new property. While username anonymity and
verification-result privacy are not explicitly stated in prior
work, Pythia [8] meets them, i.e., PH service cannot obtain
usernames and verification results through PH protocols, but
Phoenix [10] does not. We generalize them into the property
set of PW-Hero. In addition, we emphasize the username
binding and the password binding to ensure that attackers will
not bypass the service’s rate limit by forging the username or
password in the verification request. And we also emphasize
that all values returned from the service should be verifiable.

The whole properties of our envisioned PW-Hero service
are summarized and classified as follows.
• Classification A - Disable offline password guessing at-

tacks. It is the starting point of the research on PH service.

P1: Password privacy. The PH server should learn nothing
about the password and its record. This eliminates the in-
troduced external server from cracking the user password
directly or through offline attacks.

P2: External secret privacy. External secrets are kept secret
and should not be disclosed to clients via the PH proto-
cols. This ensures that any offline attack is not feasible,
even though the password record storage is spilled.

• Classification B - Limit online password guessing attacks.
The PH server should limit the number of verified passwords
by online requests on a per-account basis over a certain time.

P3: Rate-limit verification. The PH server should rate-limit
password verification requests per user. This effectively
reduces the number of passwords guessed by online at-
tackers, reducing the likelihood of password cracking.

P4: Username binding. It should be impossible for the user-
name involved in the verification protocol to be forged.
This ensures that an attacker cannot construct a fake
username to bypass the rate limit imposed by the PH
server under the original username.

P5: Password binding. One verification should only be able
to verify one candidate password. This ensures that limit-
ing requests is equivalent to limiting verified passwords.

• Classification C - Prevent leakages of user privacy.
P6: Username anonymity. The PH server should only link

verification requests involving the same username by
virtue of the username identifier but not learn the
username itself. This ensures that the PH server does
not know which user is registering and logging in.

P7: Verification-result privacy. The PH server should not be
able to learn password verification results. This avoids the
external PH server analyzing user login behaviors.

• Classification D - Respond to the malicious/compromised
PH server.

P8: Verifiability. The authentication server should be able
to verify all values returned from the PH server to
prevent itself from being spoofed by the
malicious/compromised PH server. If the return value
verification fails, indicating that the PH server is
malicious/compromised, the authentication server should
promptly alert the PH service operator to restore the
security of her PH service. Moreover, during the
registration phase, verifiability can troubleshoot wrong
return values and prevent the authentication server from
falling into the dilemma of missing password
verification information. Inappropriately, Phoenix [10]
overlooks verifiability in the registration phase.

P9: Opt-out. The legitimate authentication server can opt out
its PH service, bringing password verification records
back to a specific state from which other services can be
introduced. This allows the authentication server to end
use of the PH service, once it is found to be malicious.
PW-Hero adopts the traditional salted hash as the backed
state of password authentication records.

• Classification E - Rotate keys. The PH services should sup-
port key rotations as the current password records or service
key becomes insecure or needs to be updated periodically.

P10: Individual key rotation. In multi-tenant mode, the PH
server should provide each authentication server with a
unique secret key that can be updated independently. This
ensures that when one authentication server needs to up-
date the key, it does not affect others.

P11: Master key rotation. The PH server should be able to
rotate its master key to refresh the security of the entire
PH service.

P12: Secure key rotation. It means that key rotation can ren-
der old password records completely incomprehensible
and useless the old service key to verify passwords for
new records. In addition, other security properties do not
diminish due to key rotations.

• Classification F - Efficiency and scalability.
P13: Compact traffic. It means that the token communicated

by protocols should be constant-size, independent of the
size of the password database.

P14: Batch update. The authentication server should be able
to update all its stored password records in batches, not
one by one, through a protocol.

• Classification G - Improve user experience.
P15: User transparency. The PH service is transparent to

users, who enter a username and password to register and
log in to the authentication server as usual.

P16: Low latency. The PH protocols should be single-round
and computationally efficient.

Tab. III , at the end of this paper, summarizes the properties
possessed by each existing scheme.

In addition, since this paper focuses on the PH service with
one single server, the issue of the single point of failure is not
addressed; see the threshold schemes that specifically address
the single point of failure of services [13], [27]–[29].

B. Property Discussion

We answer the following key questions in this section.
• Q1: Why PW-Hero adopts the master-slave key mode, where

individual keys are derived from a master key?
• Q2: Will rate-limiting all requests indiscriminately instead

of requests with wrong passwords affect normal user logins?
• Q3: How can we prevent attackers from impersonating the

authentication server and requesting to exit the PH service?
The master-slave key model is suitable for multi-tenant sce-

narios. The master key held by the PH server is used to derive
an individual key for each authentication server participating in
the PH service. And the individual key is used as the external
secret specific to the authentication server to strengthen its
password records. In this way, one authentication server asking
for a key rotation or exiting will only affect her individual key,
and the other authentication servers will not incur any cost for
these requests. In addition, the PH server only needs to store
one master key instead of keeping all individual keys, which
can be temporarily derived with the master key when used.

Incidentally, Phoenix [10] can be improved by introducing
the master-slave key model to solve the problem that its keys
cannot be updated independently for each client.

Rate limiting all verification requests could have little to no
effect on normal user logins. Verification-result privacy causes
the PH server indiscriminately rate-limiting all requests. This
rate limit may lead to concern; for example, allowing three
attempts before locking out the account for five minutes can
cause significant delays for the legitimate user who wants to
log in four times in a row. As a simple but effective solution,
adjusting the time interval, such as 100 attempts per three
hours, will make it equally hard for offline attackers to crack
passwords while not inconveniencing legitimate users.

To avoid abusive opt-out by attackers, the PH server must
authenticate the requester before responding to an exit request.
Besides, the authentication should be robust, such as the secure
email or telephone confirmation, to be still valid even if au-
thentication servers are compromised. In this way, PH services
can prevent attackers from impersonating the authentication
server to exit the PH service and activate the offline attack.

III. PASSWORD HARDENING SERVICE WITH OPT-OUT

We define our PH service with opt-out and call it PW-
Hero, which comes from the “PassWord Hardening service
with opt-out”. PW-Hero meets all properties we envisioned in
Section II. Nevertheless, we assume that the PW-Hero server
and the authentication server will not be compromised simul-
taneously because, in this case, any PH service is equivalent
to a typical salted hash scheme. We assume that when the
authentication server is compromised, its secret key is leaked
to attackers along with password records. We also assume
that all protocols are to transmit messages through a secure
communication channel.

A. Definition of PW-Hero

We define PW-Hero to be a suite of protocols based on the
related definitions of the PH services in [10] [9]. Due to user
transparency, we call a PH-Hero protocol a two-party protocol,
including an authentication server and a PH server. We call an
authentication server a client C and call a PW-Hero server a
server S from now on.

DEFINITION 1. PW-Hero is a password hardening service
with the opt-out, consisting of a tuple of cryptographic algo-
rithms Φ = {Setup,CKeyGen,SKeyGen, ⟨C,S⟩reg, ⟨C,S⟩ver,
⟨C,S⟩rot, ⟨C,S⟩dec}. Concretely, as following five phases:

Setup phase: On input the security parameter λ, Setup(1λ)
returns the public parameter pp, which is public to all entities,
so that omitted by us. Then, the client key generation algorithm
CKeyGen() returns a secret key kC of the client. And on inputs
mkS and a client state identifier4 w, the server key generation
algorithm SKeyGen(mkS , w) generates a private key skS for
w and a public key pkS which is sent to the client. If the

4The client state identifier is a random string generated by the client and
uniquely identifies the client.

parameter mkS is none, SKeyGen first randomly generates a
master key.

Registration phase: On inputs of the client state identifier
w, a username un, a password pw, which are from the client,
and the master key mkS of the server, the registration proto-
col Φ.⟨C(w, un, pw, pkS , kC),S(mkS)⟩reg returns the password
verification record T to the client and a username identifier
h0 to the server. Finally, the server initializes a counter c for
h0, and the client stores the T . Note that not only when a
new password is registered, but also when a registered user
re-sets/changes her password, the registration phase will also
be executed.

Verification phase: On inputs of the client state identifier
w, a username un, and a candidate password pw′, the verifica-
tion protocol Φ.⟨C(w, un, pw′, pkS , kC),S(mkS)⟩ver returns an
authentication result (“Accept”/“Reject”/abort5) to the client
and returns a username identifier h0 to the server. The server
increments h0’s counter by 1.

Key rotation phase: There are two main key rotation
protocols, the external secret key (skS) rotation protocol
⟨C(w,w′,pkS),S(mkS)⟩skrot and the master key (mkS)
rotation protocol ⟨C(w,pkS),S(skS)⟩mkrot. For the former,
on inputs of the old client state identifier w and a new w′, a
secret key rotation protocol returns new T s for all password
records and a new public key pk′S to the client. For the
latter, a master key rotation protocol returns new T s and a
new public key pk′S to the client as well and returns a new
master mk′S to the server.

Decryption phase: On input of the client state identifier w,
a decryption protocol Φ.⟨C(w,pkS , kC),S(mkS)⟩dec returns a
triple, (“identifier of un”, “salt value”, “salted hash of pw”), for
each record T to the client and returns nothing to the server.
After that, the server deletes all counters of the client.

Setup

Registration

Verification Key Rotation Decryption

Fig. 3: Five phases of our PH service, PW-Hero.

Fig. 3 illustrates the five phases of our PH service, PW-
Hero, and the sequential relationship between them.

B. Security of PW-Hero

The security of our PW-Hero includes obliviousness, hiding,
forward security, binding, and privacy. The first three are
inherited from previous work [9], [10], but we need to redefine
them since the existing definitions do not embody our PW-
Hero’s newly introduced decryption protocol. In addition, we
enrich the meaning of binding security. The privacy is a new

5The verification protocol aborts when the cumulative number of
verification requests reaches the limit, or the verifiability-related check fails.

security goal based on the properties of Classification C in
Section II-A, and we provide its first formal treatment. We
formally define the security of the PW-Hero in Appendix B.

1. Obliviousness. Any protocols do not leak the password and
its verification record to the server. In other words, the server
cannot learn the password from the protocol’s messages.

2. Hiding. Without the external key, an attacker cannot verify
a guess of the underlying password of the leaked password
verification record.

3. Forward security. A key rotation should render the old
secret keys and old verification records useless to attackers.

4. Binding. In the previous definition, binding means that a
password and its verification record are bound, so a mali-
cious/compromised server cannot convince the client to pass
wrong passwords and fail correct passwords. We believe
that the meaning of binding is insufficient and add that the
client cannot trick the server into verifying the request with
a forged username or password.

5. Privacy. It is terrible if the server can learn what site and
when the user logged in from the PH protocols. Therefore,
PW-Hero keeps username and verification results private
to the client. For the sake of username anonymity, we do
not recommend direct transmission of username plaintext,
and the random identifier is an appropriate choice, such as
H(un)k. Here, the privacy definition focus on the privacy
of verification results. In a nutshell, the server should not
be informed of the result of whether the candidate password
matches the password record.

IV. A PW-HERO SCHEME

We propose a simple construction for PW-Hero based on
a two-layer cryptographic mechanism. It is composed of a
pseudorandom function (PRF) and a multiplicative blind func-
tion (MBF) on a finite cyclic multiplicative group. These two
functions have the same parameter r. In MBF, r is used as the
blinding factor, and it generates the blinded output c1 of the
input m, c1 = H(m)·r; In PRF, r is the input, and it generates
the pseudorandom output c2 with the key k, c2 = rk. c1 and
c2 are taken together as the m’s ciphertext hardened with k.

Concretely speaking, in the registration phase, the client C
samples a random value r and sends it instead of the password
pw to the server S. Locally on the client side, C uses r as
a random factor to blind the password pw to generate t1 =
H(pw)·r6 (Layer 1). Meanwhile, S computes and returns the
PRF value t2 = rkS , where kS is the secret key (Layer 2).
Benefiting from the two-layer mechanism, the client does not
need to send any password-derived value to the server but
a random value r. Here, r is used as an intermediate value
to completely isolate the password from the server to ensure
password privacy. After that, C stores the blinded password
ciphertext t1 and the PRF value t2 as the password records of
pw and then securely deletes pw and r.

In the decryption/exit phase, S returns the external key kS
to C. C first decrypts t2 with the kS to get r′ = t

1/kS
2 (Inverse

6H(·) could be the salted hash algorithm, here abbreviated as H(pw).

of layer 2) and then decrypts t1 with r′ to get H(pw)′ =
t1/r

′ (Inverse of layer 1). To ensure the correctness of the
decryption, i.e., H(pw)′ = H(pw), the client needs to record
t3 = H(r)kS as well in the registration phase and verify
H(r′)kS during the decryption phase. The client can determine
if r′ is correct by checking if H(r)′ = t

1/kS
3 is equal to the

hash of r′. If r is correct, H(pw)′ decrypted with r must be
correct, that is, H(pw)′ = H(pw).

In the verification phase, the client C uses the login pass-
word pw′ to solve r′, r′←t1/H(pw′) (Inverse of layer 2). Then
C samples a random value nC to exponentially blind r′ to
get x1 = (r′)nC , and send it to the server S. After that, S
returns y = (r′)nC·kS . Finally, the client can get t′2 = (r′)kS

after unblinding the return value. By checking whether t′2 is
equal to the stored t2, the client can confirm whether the login
password pw′ is correct.

Furthermore, we provide the zero-knowledge proofs (ZKP)
for returned values, t2 and y, to ensure that they are calculated
according to agreed protocols by S. In particular, to avoid
the client falsifying h0 in the verification phase to bypass the
h0-based rate limit enforced by S, we additionally let clients
provide ZKP for the PRF value of h0.

A. Protocol Description

In this section, we formally describe the protocols of our
PW-Hero construction. Φ denotes the protocol set of PW-Hero,
and Π denotes the ZKP protocol we adopted, described in Ap-
pendix A. In addition, G denotes a finite cyclic multiplicative
group of order q. H0 and H1 denote two cryptographic hash
functions: {0, 1}∗ → G. H2 denotes a cryptographic hash
function: {0, 1}∗ → {0, 1}λ. H3 denotes a cryptographic hash
function: {0, 1}∗ → Zq .

1) Setup: As shown in Fig. 4, in the setup phase, Φ.Setup
algorithm randomly picks a generator g from G and sets up
four cryptographic hash functions Hi|i∈{0,1,2,3} and returns
them as the public parameter pp. Next, Φ.CKeyGen algorithm
samples an integer from Zq and sets it as the client key kC .
And Φ.SKeyGen randomly picks a master key mkS from Zq ,
generates a private key for C with the hash of mkS and w,
and initializes the public key with pkS = gskS . Finally, the
public key pkS is sent to C.

Setup(1λ)
g←$G
Hi|i∈{0,1} ←$H1 = {H : {0, 1}∗→G}
Hi|i∈{1,2} ←$H2 = {H : {0, 1}∗→Zq}
return p = {g,H0, H1, H2, H3}

CKeyGen()
kC ←$Zq

return kC

SKeyGen(mkS , w)
if not mkS

then mkS ←$Zq

kS ←$H3(mkS , w)

skS ←$ kS

pkS ←$ gkS

return mkS , skS , pkS

Fig. 4: The setup protocol of PW-Hero.

Registration protocol
Client(w, un, pw, pkS , kC) Server(mkS)

r←$G, h0 ← H0(un)kC (w, h0, r)

s←$ {0, 1}λ, h1 ← H1(s, un, pw) kS←H3(mkkS , w)

t1 ← r·h1 t2←(h0·r)kS , t3←H2(r)
kS

π1 ←$ ZKP : DLg(pkS) = DLh0·r(t2)

(t2, t3, π1, π2) π2 ←$ ZKP : DLg(pkS) = DLH2(r)(t3)

if π1 and π2 verify then c← 0 # The counter of h0 for rate-limiting.
record T = {h0, s, t1, t2, t3} record {h0, c}

Record items in Client
• h0: Username identifier.
• s: Salt value.
• t1: Auxiliary value for ver-

ifcation phases.
• t2: Verification record.
• t3: Verify r in decryption

phases.

Fig. 5: The registration protocol of PW-Hero.

Verification protocol
Client(w, un, pw′, pkS , kC) Server(mkS)

nC ←$Zq, h0 ← H0(un)kC

search (h0, s, t1, t2, t3)

h′
1 ← H1(s, un, pw′)

x1←(t1/h
′
1)

nC , x2 ← hnC
0 , x3 ← gnC (w, h0, x1,

πx ←$ ZKP : DLg(x3) = DLh0(x2) x2, x3, πx)

search (h0, c)

if c < climit and πx verify then

kS ← H3(mkS , w), y ← (x1·x2)
kS

(y, πy) πy ←$ ZKP : DLg(pkS) = DLx1·x2(y)

if πy verify and t2 = y1/nC then

return “Accept”
else return “Reject”

Proof of correctness
∵ y = (x1·x2)

kS

∴ t2 = y1/nC

⇒ t2 = (x1·x2)
kS/nC

⇒ t2 = ((t1/h
′
1)

nChnC
0)kS/nC

⇒ t2 = (r·h0·h1/h
′
1)

kS

∵ t2 = (r·h0)
kS

⇒ (r·h0)
kS = (r·h0·h1/h

′
1)

kS

⇒ 1 = h1/h
′
1

⇒ pw = pw′

Fig. 6: The verification protocol of PW-Hero.

2) Registration: Fig. 5 shows the registration protocol
Φ.⟨C(w, un, pw, pkS , kC),S(mkS)⟩reg. The client generates an
identifier h0

7 of username un and samples a ramdom vale r
from Zq . Then, the client sends her state identifier w, h0,
and r to the server. Next, the client randomly picks a salt
value s from Zq and calculates a salted hash h1 for the
username-and-password pair (un, pw). Then the password
salted hash is multiplicatively blinded with the random value
r to generate the hardened password record t1. In parallel,
after receiving (w, h0, r), the server generates a private key
kS

8 for the client w with her master key mkS and calculates

7A client private kC can be introduced the username hash if the username
privacy is a concern, such as h0 = H0(un)kC .

8We derive a private key for each client with the server’s master key, and
the private key helps its client to give rise to isolated PRF. This facilitates
individual rotations of PRF keys in a multi-tenant scenario. Pythia [8] takes
the same method, but unlike Pythia, our client state identifiers are stored on
the client-side and are only handed to the server when the protocol is running.
Whereas in Pythia the client state identifiers are called the ensemble selectors
and are always stored at the server.

a PRF values t2 ← (r·h0)
kS and t3 ← H2(r)

kS , which are
sent to the client together with their ZPKs. If the proofs are
verified, the client securely deletes pw and r. Finally, the
client records (h0, s, t1, t2, t3) as the verification records of
(un, pw), and the server initializes a counter for h0.

3) Verification: Fig. 6 shows the verification protocol
Φ.⟨C(w, un, pw′, pkS , kC),S(mkS)⟩ver. The client re-generates
the username identifier h0 of un and uses it as the index to
search its password verification record (s, t1, t2, t3). After
that, the client use the searched salt s to calculate the salted
hash h′

1 of the login username pw′ by h′
1←H1(s, un, pw′).

With h′
1, the client solve r′ ← t1/h

′
1 from the password

record t1. Then, a nonce nC is randomly selected from Zq ,
and the client use it to exponentially blind r′ and h0, by
x1 ← r′

nC and x2 ← h0
nC . In addition, the client generates

a ZKP πx for x2. When the proof πx is verified, and the
counter of h0 does not exceed the preset limit climit, the
server recovers the client-specific key kS , and then calculates
the PRF value y ← (x1·x2)

kS and the corresponding ZKP

Secret Key Rotation protocol
Client(w,w′, pkS) Server(mkS)

(w,w′) kS←H3(mkS , w), k′
S←H3(mkS , w

′)

sk′S ← k′
S , pk

′
S ← gk

′
S

for item (h0, s, t1, t2, t3) : (pk′S ,∆kS) ∆kS ← k′
S/kS

t′2 ← t∆kS
2 , t′3 ← t∆kS

3

Master Key Rotation protocol
Sample a new master key in Server.
kS ← H3(mkS , w)

mk′
S ←$Zq, k

′
S←H3(mk′

S , w)

∆kS ← k′
S/kS

Update t2 and t3 with ∆kS in Client.

Fig. 7: The key Rotation protocol of PW-Hero.

Decryption Protocol
Client(w, pkS , kC) Server(mkS)

w

kS kS←H3(mkS , w)

if g1/k
′
SpkS = g then

for each (h0, s, t1, t2, t3)

if H2(t
1/k′

S
2 /h0)

kS
′
= t3 then

h1 ← t1/(t
1/k′

S
2 /h0), t← hkC

1

record new T = {h0, s, t}

• Proof of verifiability

∵ H2(t
1/k′

S
2 /h0)

k′
S = t3

⇒ H2(t
1/kS
2 /h0)

k′
S = H2(r)

k′
S

⇒ t
1/kS
2 /h0 = r

∴ h1 ← t1/r ← t1/(t
1/kS
2 /h0)

• Proof of correctness

h′
1 ← t1/(t

1/kS
2 /h0)

⇒ h′
1 ← t1/r

⇒ h′
1 ← h1

Therefore the decryption result must be the correct h1.

Fig. 8: The decryption protocol of PW-Hero.

πy . After receiving the returns y and πy , the client verifies
πy and then unblinds the return y to obtain t′2 ← y1/nC . If
t2 = t′2, the (un, pw′) passes verification, otherwise it fails.

CORRECTNESS. In the registration phase, the client stored
the password verification record tuple T ← (h0, s, t1, t2, t3)
for the username-and-password pair (un, pw). During the veri-
fication phase, the client verifies the equation t2 = t′2 to ensure
that the login password pw′ is identical with the underlying
password pw of T .

t2 = (r·h0)
kS , (1)

t′2 = y1/nC = (x1·x2)
kS/nC = ((t1/h

′
1)

nChnC
0)kS/nC

= ((t1/h
′
1)h0)

kS = (r·h0·h1/h
′
1)

kS . (2)

If the equation t2 = t′2 holds, i.e., Eq. (1)=Eq. (2), it means
that (r·h0·h1/h

′
1)

kS is equal to (r·h0)
kS , that is, h1 = h′

1.
h1 and h′

1 are the hashes of the registration password pw and
the verification password pw′ respectively, with the same salt
value s and username un, so that pw=pw′ can be obtained from
h1 = h′

1. In other words, the equation holds t2 = t′2 if and
only if pw=pw′.

4) Key Rotation: Fig. 7 shows the secret key rotation proto-
col Φ.⟨C(w,w′,pkS),S(mkS)⟩skrot and the master key rotation
protocol Φ.⟨C(pkS), S(mkS)⟩mkrot. In the former protocol, the
client sends old and new state identifiers (w,w′) to request
a key rotation. The server calculates old secret kS of w,
generates new key k′S with SKeyGen, and computes the update

token △kS ← k′S/kS . Then, the new public key pk′S and
the update token △kS are sent to the client. Then the client
updates t′2←t△kS

2 and t′3←t△kS
3 . As for the latter protocol,

the server first samples a new master key and generates the
update tokens for all clients. Then all clients update t2 and t3.

CORRECTNESS. In the key rotation protocols, the key kS
is rotated to k′S . And the client needs to update the password
record t2 to t′2. If the key rotation protocols are correct, t′2
should be the password record hardened with the new key.

t2 = (r·h0)
kS (3)

t′2 = t△kS
2 = ((r·h0)

kS)k
′
S/kS = (r·h0)

k′
S (4)

As shown in Eq. (3) and Eq. (4), only the key kS used for
hardening t2 is updated to k′S , so the updated t′2 is correct.

In addition, the client key kC can also be rotated to the new
one k′C . To be specific, the client computes △kC ← k′C/kC and
send it to the server. Then, the client and server both update
h0 by h′

0 ← h△kS
0 .

5) Decryption: Fig. 8 shows the decryption protocol Φ.⟨C
(pkS , kC),S(mkS)⟩dec. The server only needs to send kS to
the client. Then, if the return value passes the check
g1/kS pkS = g, the client opens verification information by
three steps: Firstly, the client recovers r′ by r′ ← t

1/kS
2 /h0;

Secondly, it checks H2(r
′)kS = t3 and ensures r′ = r;

Thirdly, it recovers h′
1 by h′

1 ← t1/r
′. Finally, the client can

get a traditional verification information (h0, s, h
′
1).

CORRECTNESS. When an authenticated client wants to ter-
minate the use of the PW-Hero service,

The client recovers the password salted hash h1 by request-
ing the decryption protocol. In this process, the client first
checks the correctness of the returned key kS

′ through Eq. (5).

g1/kS
′
·pkS = g. (5)

If kS′ = kS , the client goes on check whether recovered r′ is
correct by whether H2(r

′)kS
′
= t3 holds, where r′←t

1/kS
2 /h0

and t3←H2(r)
kS . If r′ is correct (i.e., r′ = r), the client

can determine that h′
1 derived by h′

1 ← t1/r
′ is correct (i.e.,

h′
1 = h1). In other words, the decryption protocol correctly

returns the salted hash value of pw.

B. Security Analysis

In this section, we analyze the security of the PW-Hero
scheme and show that our PW-Hero scheme satisfies: obliv-
iousness, hiding, forward security, binding, and privacy. The
formal security definitions and proofs are in Appendix B and
C. We follow previous works [9], [10] and provide security
assumptions: The decisional Diffie-Hellman (DDH) problem
and the discrete logarithm (DL) problem are hard in group
G, and {Hi,i∈{0,1,2,3}} are modeled as random oracles. We
assume that an adversary will not compromise both client and
server simultaneously; otherwise any PH service is insecure.
We also assume that the client of the decryption protocol is
authenticated and cannot be malicious.

1) Obliviousness: It means that a malicious/compromised
server cannot learn passwords from the protocol interactions
with the client. We prove the obliviousness by ensuring that
the server cannot distinguish whether the password partic-
ipating in PW-Hero protocols is pw0 and pw1. Of the in-
termediate values available to servers, only x1 depends on
pw, x1 = (r·H1(s, un, pwb)/H1(s, un, pw))nC , where nC is a
nonce sampled by the client. The malicious server needs to
distinguish between (r·H1(s, un, pwb)/H1(s, un, pw0))

nC and
(r·H1(s, un, pwb)/H1(s, un, pw1))

nC , which is equivalent to
distinguishing between the tuple (g, gα, gβ , gγ , gαγ) and the
tuple (g, gα, gβ , gγ , gβγ), where r = gα, nC = γ, (r)nC =
gαγ , and (r·H1(s, un, pwb)/H1(s, un, pwb−1))

nC = gβγ . The
latter is the DDH-problem. Since the DDH problem is hard in
G, we conclude that the server guessing whether pw = pw0

or pw = pw1 cannot perform better than tossing a coin.
2) Hiding: It means that a compromised client cannot

learn passwords from the password verification record
T := {h0, s, t1, t2, t3} by offline attacking. First, cracking
the external key kS from t2 = (r·h0)

kS and t3 = H2(r)
kS is

equivalent to solving the DL-problem, where , which is hard
in group G. Second, only the t1 = r·H1(s, un, pw) is dep-
endent on the pw. But, r, a random value securely deleted by
the honest registration-phase client, covers the pw so that
later compromised client attackers cannot see it. Thus,
malicious clients cannot learn pw from T . Third, the attacker
cannot distinguish the records of pw1 and pw2, which can be
simplified to distinguish between H1(s, un, pw1)

kS and
H1(s, un, pw2)

kS . Given a tuple (g, gα, gβ , gkS , gαkS , gβkS),

let gα = H1(s, un, pw1), gβ = H1(s, un, pw2), gαkS = H1(s,
un, pw1)

kS , and gβkS = H1(s, un, pw2)
kS . The problem is

equivalent to distinguishing between the tuple (g, gα,
gβ , gkS , gαkS) and the tuple (g, gα, gβ , gkS , gβkS), the
DDH-problem, which is hard in G.

3) Forward Security: It means that a key rotation can make
the old secret key useless for the new password verification
records and the new key useless for the old password verifica-
tion records. We prove the forward security by ensuring that
the verification record updated by the key rotation protocols
is indistinguishable from the verification record generated by
starting over with the registration protocol. Let old record t2 =
(r·h0)

kS . After a secret key rotation, let the new secret key be
kS

′ such that t2′ = ((r·h0)
kS)k

′
S/kS . Solving the DL problem

t2
′ = (r·h0)

k′
S can be reduced to solving t2

′ = (r′·h′
0)

kS ,
where r′ = rk

′
S/kS and h′

0 = h
k′
S/kS

0 . Clearly, the tuple
(r, h0, kS , (r·h0)

kS) and the tuple (r′, h′
0, kS , (r

′·h′
0)

kS) are
indistinguishable.

4) Binding: On the one hand, it means that the malicious/
compromised server cannot trick the client into generating
wrong verification results. We reduce this problem to the
fact that a client will not pass two passwords for one veri-
fication record. We assume that there are two different un-
derlying passwords pw0 and pw1 for T . In that case, there
are (t1/H1(s, un, pw0))·h0)

k̃S = (r·h0)
kS and (t1/H1(s, un,

pw1))·h0)
k̃S = (r·h0)

kS that hold, where k̃S is set by the
malicious server in the verification protocol. Due to the values
returned from the server are together with their ZKP, k̃S =
kS must holds. Other related parameters (r, s, and un) are
isolated with the server. Therefore, pw0 = pw1 is the necessary
condition for the assumption that the two equations hold, but
this contradicts the premise of the assumption (pw0 ̸= pw1),
so the pre-assumption does not keep.

On the other hand, binding also means that the malicious/
compromised client cannot tamper with the username identifier
h0 to bypass the rate limit on verification requests in the server.
We reduce the problem to the fact that the malicious client can-
not verify the username-and-password pair (un1, pw) through
the verification interaction for the pair (un0, pw), where un0 ̸=
un1. Due to the ZKP of x2, x2 = hnC

0 must hold, where
nC is a random value sampled by the client. For the ver-
ification request h0 = H0(un0)

kC , the client receives y =
(t1/H1(s, un1, pw)·h0)

nCkS . Then the malicious client needs
to solve for y′ = (t1/H1(s, un1, pw)·H0(un1))

nCkS , which is
equivalent to solving for the secret key kS . The latter is a DL
problem, which is hard in group G.

5) Privacy: It means that a malicious/compromised server
can learn nothing about the password verification results (“Ac-
cept” or “Reject”). Recall that the verification formula for
the client to get the verification result is ((x1·x2)

kS)1/nC =
(r·h0)

kS . The server can obtain intermediate values (r·h0)
kS

from the registration protocol and (x1·x2)
kS from the verifi-

cation protocol, but not 1/nC , where nC is a random value
isolated from the server. We conclude that the malicious sever
cannot learn verification results from the PW-Hero protocols.

Furthermore, even if the verification record is specified to be
that of pw0, it is difficult for a malicious server to distinguish
whether the correct password pw0 or the wrong password
pw1 is participating in the verification protocol. Given a tuple
(g, gα, gβ , gnC , gαnC , gβnC), where gα = H1(s, un, pw0) and
gβ = H1(s, un, pw1). The problem is equivalent to distin-
guishing between the tuple (g, gα, gβ , gnC , gαnC) and the tuple
(g, gα, gβ , gnC , gβnC), which is a DDH problem, hard in G.

Additionally, privacy means that usernames are anonymous
in the PW-Hero protocols. h0 = H0(un)kC , where kC is a
client key. Even assuming that the username is low-entropy,
solving this problem is at least equivalent to solving a DL
problem, which is hard in group G. Thus, the malicious server
cannot learn the username un from h0.

C. Opt-out and Accessing to New PH Services

PW-Hero permits its clients to return to a traditional storage
form of salted hashes, i.e., T := {h0, s, h1}, after opting
out. We use Phoenix [10] as an example of a new service
to illustrate the process of a client opting out of the PW-
Hero service and accessing a new service. The client provides
identity proof, such as secure email and device token, to the
PW-Hero service and then makes an exit request. The service
verifies the client’s identity and then executes a decryption
protocol. After that, the client obtains the new password record
T := {h0, s, h1}. When joining the new service Phoenix, s is
used as nC , and h1 is used as HC(un, pw, nC). The service
switching process for Pythia [8] or PO-COM [9] as a new
service is also similar.

There is an optional suggestion about the offline status for
the client in service switching. Suppose the client exits the old
server and joins a new service immediately. In this case, it is
recommended that the client remains offline until all password
records are migrated to the new service for protection, to avoid
accidental corruption and disclosure of offline-crackable salted
hash records during this time.

V. EVALUATION

We implemented PW-Hero protocols’ server and client cryp-
tographic algorithms based on the Charm-Crypto [30] crypto-
graphic framework and using NIST P-256 as the multiplicative
group. We implemented a prototype application of the server
based on the Falcon Python Web framework [31]. The com-
munication was implemented with the Python httplib2 library.
Data was passed to the server as GET request parameters and
returned to the client as a Json string. And we set up NGINX
and uWSGI to run our server and provision its service.

We re-implemented the existing PH service schemes, such
as PO-COM [9] and Phoenix [10], in the same way. A proto-
type of Pythia is provided at [11], [32] using BN 254 as the
base group. The execution time of group operations of NIST
P 256 and BN 254 is given in Appendix D.

Our experiments run on a machine equipped with Intel(R)
Core(TM) i7-8850H/2.60GHz ×2 and 3.8 GiB RAM, installed
with 64-bit Ubuntu 20.04.3 LTS. Our experiments were con-
ducted to test the client latency of the registration phase and

TABLE I: Client latency (in ms).
Keep-alive HTTP ✓ ✓ ✓

Zero-knowledge proof ✓ ✓ ✓
Verification of incorrect password ✓

Phoenix [10] Enroll 1.134 1.434
Validate 2.508 2.341 2.402 1.365

PO-COM [9] Enroll 1.424 1.181 1.433
Validate 1.876 1.887 2.035

Pythia [8] Eval 8.696 3.583 8.533

PW-Hero Reg 1.362 0.945 1.371
Ver 1.978 1.118 1.917 1.907

✓denotes that the experimental group provides the corresponding optional test parameter.
A cell with no data indicates that the protocol cannot provide this combination of settings.
Enroll and Validate represent the registration and verification protocols in Phoenix and PO-
COM, respectively. Pythia executes Eval during both the registration and validation phases.
The standard deviations of the above test results are very small (< 0.15 ms).

TABLE II: Client latency (in ms) over HTTPS.
Scheme Latency of Registration Latency of Verification

Phoenix [10] 5.191 6.667
PO-COM [9] 6.093 7.205
PW-Hero ⋆ 5.632 6.900

The standard deviations of the above test results are less than 1.5 ms.

verification phases. All experiment results presented are the
averages of 10,000 independent executions.

1) Latency: Client-side latency is the length of time the
client takes from the start of the protocol to the end of the
protocol, including the time spent by the client and server per-
forming calculations based on the protocol. The tested client-
side latency does not include the portion of time spent retriev-
ing the database and rate-limiting, nor the RTT. In other words,
we test the latency of pure protocol calculations. We provided
three optional test parameters: Whether HTTP-keepalive is
turned on, whether zero-knowledge proofs are included, and
whether the login passwords are correct, and tested all the
protocols in four combinations of setting parameters.

Tab. I shows the latency of one registration and one verifi-
cation for three existing schemes and our PW-Hero. Pythia [8]
has the worst performance, whose latency is about five times
that of the other three schemes (i.e., PW-Hero, Phoenix [10],
and PO-COM [9]) with similar performance. Among them,
PW-Hero slightly outperforms the other two (i.e., Phoenix
and PO-COM). Phoenix has the shortest verification time for
incorrect passwords. The reason is that the Phoenix server is
informed of the password verification result in advance during
the verification phase and omits part of the computation when
the login password is incorrect. Another point to add is that
the part of our registration protocol that can be parallelized
is not reflected in our simple implementation of the PW-Hero
prototype, so the registration latency of PW-Hero should be
shorter in the actual case. On balance, the latency comparison
of protocol calculations shows that PW-Hero is feasible and
does not impose a significant computational and time burden
on password registration and verification.

In addition, we further tested the client latency of the three
well-performing schemes (i.e., PW-Hero, Phoenix [10], and
PO-COM [9]) over HTTPS with an OpenSSL self-signed cer-
tificate. As shown in Tab. II, the tested client latency of these
three schemes over HTTPS is almost the same. Our PW-Hero
is inferior to Phoenix with a performance disadvantage of

TABLE III: Evaluation of our scheme (⋆) with comparison among relevant password hardening schemes.

Scheme Latency Storage Property

Registration Verification P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

(t,m)-PHE (2020) [13] 6H+19E 6H+96E 3Lλ+2Lg ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ ×
PHE (2018) [12] 6H+13E 6H+15E 2Lλ+2Lg ✓ ✓ ✓ ✓ ✓ ✓ × ✓ × × ✓ ✓ ✓ ✓ ✓ ✓
Phoenix (2017) [10] 2H+5E 3H+16E 3Lλ+3Lg ✓ ✓ ✓ ✓ ✓ × × ✓∖ × × ✓ ✓ ✓ ✓ ✓ ✓
PO-COM (2016) [9] H+12E H+19E Lλ+3Lg ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ ✓
Pythia (2015) [8] HG2 + EG2 + 6EGt + pair Lλ+Lgt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ×

PW-Hero ⋆ 3H+15E 2H+18E 2Lλ+3Lg ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ : Achieving the corresponding goal. Lλ : Length of the element in {0, 1}λ. P1: Password privacy. P7: Verification-result privacy. P13: Compact traffic.
× : Not achieving the corresponding goal. Lg : Length of the element in G. P2: External secret privacy. P8: Verifiability. P14: Batch update.
✓∖ : Partially achieving the corresponding goal. Lgt : Length of the element in Gt. P3: Rate-limit verification. P9: Opt-out. P15: User transparency.
H : Hashes inputs into G. E : Exponentiates the element in G. P4: Username binding. P10: Individual key rotation. P16: Low latency.
pair : Pairs elements in G1 and G2 into GT . EG2

: Exponentiates the element in G2. P5: Password binding. P11: Master key rotation. Set t = m = 1.
HG2

: Hashes inputs into G2. HGt : Hashes inputs into Gt. P6: Username anonymity. P12: Secure key rotation.

no more than 0.5 ms, and is better than PO-COM with a
performance advantage of no more than 0.5 ms.

2) Storage Analysis: Inevitably, the client of PH service
needs to store some verification information for each registered
username-and-password pair. In our PW-Hero scheme, a salt
value, two verification-related values, and a decryption-related
value need to be stored in the client. Our server stores a
username-driven index for each account and a counter for rate-
limiting as well as other existing schemes. Tab. III shows the
comparison of the storage size of clients of four schemes,
where PW-Hero performs in the middle.

Discussion. As shown in Tab. III, our PW-Hero is the best
overall, considering efficiency, storage, and properties
compared to the existing schemes [8]–[10]. PW-Hero
achieves the most comprehensive properties, and its high
efficiency is attributed to high-performance algorithms based
on the multiplicative group. In addition, PO-COM [9] and
Phoenix [10] perform as well. In contrast, the bilinear
pairing-based Pythia [8] performs less well due to the
time-consuming pairing operation. Moreover, the PHE
scheme [12] is an encryption scheme based on Phoenix. Its
threshold scheme (t,m)-PHE [13] is the only one that
requires multiple rounds of communication; its protocols are
complex, so its performance is relatively the worst. It should
be noted that there are unexpected situations where the client
wants to exit the PH service, but PW-Hero cannot support
opt-out, such as the service operator going bankrupt and the
server being malicious or hacked. In these cases, the server
may be unwilling or unable to handle aftermath, i.e., the
decryption protocol. Hopefully, this issue might be addressed
by designing the PW-Hero threshold scheme [13], [27], [28]
or the stand-alone decryption protocol [33].

VI. CONCLUSION

This paper proposes a new password hardening (PH) service
with the opt-out property, named PW-Hero. PW-Hero assists
its clients in strengthening stored password verification records
to resist offline password guessing attacks. Additionally, PW-
Hero increases the resistance to online password guessing
attacks by rate-limiting verification requests. In contrast to
previous works, the PW-Hero client can actively opt-out and
return its password record to a state where it can easily join

a new service, thus alleviating the concern of a failed or
compromised PH service under one-shot deals of previous
schemes. We demonstrate the practicality of our solution by
building a PW-Hero instance and measuring the latency time
of the client. We leave the question of building a more reliable
and efficient PH service (e.g., restoring original password
authentication when the PH service somehow does not work
due to a hack or bankruptcy) as important future work.

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for
their invaluable comments. Ding Wang is the corresponding
author. This research was partly supported by the National Nat-
ural Science Foundation of China under Grant No.62172240
and by the Natural Science Foundation of Tianjin, China under
Grant No.21JCZDJC00190. There are no competing interests.

REFERENCES

[1] P. A. Grassi, J. L. Fenton, E. M. Newton, R. A. Perlner, A. R.
Regenscheid, W. E. Burr, J. P. Richer et al., “NIST 800-63B digital
identity guidelines: Authentication and lifecycle management,” National
Institute of Standards and Technology, McLean, VA, Tech. Rep., 2017,
doi:https://doi.org/10.6028/NIST.SP.800-63b.

[2] UK National Cyber Security Centre, Password policy: Updating your
approach, Nov. 2018, https://www.ncsc.gov.uk/collection/passwords/
updating-your-approach.

[3] D. Goodin, Every Yahoo account that existed all 3 billion was
compromised in 2013 hack, Oct. 2017, https://arstechnica.com/
information-technology/2017/10/yahoo-says-all-3-billion-accounts-were
-compromised-in-2013-hack/.

[4] D. Wang, H. Cheng, P. Wang, X. Huang, and G. Jian, “Zipf’s law in
passwords,” IEEE Trans. Inform. Foren. Secur., vol. 12, no. 11, pp. 2776–
2791, 2017.

[5] D. Goodin, Once seen as bulletproof, 11 million+ Ashley Madison
passwords already cracked, Sep. 2015, http://arstechnica.com/
security/2015/09/once-seen-as-bulletproof-11-million-ashley-madison-
passwords-already-cracked/.

[6] M. Spacek, Cracking passwords from the Mall.cz dump, Jan. 2018, https:
//www.michalspacek.com/cracking-passwords-from-the-mall.cz-dump.

[7] A. Muffett, Facebook password hashing and authentication., https:
//www.youtube.com/watch?v=7dPRFoKteIU.

[8] A. Everspaugh, R. Chaterjee, S. Scott, A. Juels, and T. Ristenpart, “The
Pythia PRF service,” in Proc. USENIX SEC 2015, pp. 547–562.

[9] J. Schneider, N. Fleischhacker, D. Schröder, and M. Backes, “Efficient
cryptographic password hardening services from partially oblivious
commitments,” in Proc. CCS 2016, pp. 1192–1203.

[10] R. W. Lai, C. Egger, D. Schröder, and S. S. Chow, “Phoenix: Rebirth
of a cryptographic password-hardening service,” in Proc. USENIX SEC
2017, pp. 899–916.

https://doi.org/10.6028/NIST.SP.800-63b
https://www.ncsc.gov.uk/collection/passwords/updating-your-approach
https://www.ncsc.gov.uk/collection/passwords/updating-your-approach
https://www.michalspacek.com/cracking-passwords-from-the-mall.cz-dump
https://www.michalspacek.com/cracking-passwords-from-the-mall.cz-dump
https://www.youtube.com/watch?v=7dPRFoKteIU
https://www.youtube.com/watch?v=7dPRFoKteIU

[11] Ace0, “Pythia server (prototype) implementation,” 2015, https://github.
com/ace0/pythia.

[12] R. W. Lai, C. Egger, M. Reinert, S. S. Chow, M. Maffei, and D. Schröder,
“Simple password-hardened encryption services,” in Proc. USENIX SEC
2018, pp. 1405–1421.

[13] J. Brost, C. Egger, R. W. Lai, F. Schmid, D. Schröder, and M. Zoppelt,
“Threshold password-hardened encryption services,” in Proc. CCS 2020,
pp. 409–424.

[14] R. W. Lai, C. Egger, M. Reinert, S. S. Chow, M. Maf-
fei, and D. Schröder, “Slides of simple password-hardened en-
cryption services.” https://www.usenix.org/sites/default/files/conference/
protected-files/security18 slides lai.pdf.

[15] C. Diomedous and E. Athanasopoulos, “Practical password hardening
based on tls,” in Proc. DIMVA 2019, pp. 441–460.

[16] B. Hitaj, P. Gasti, G. Ateniese, and F. Perez-Cruz, “Passgan: A deep
learning approach for password guessing,” in Proc. ACNS 2019, pp.
217–237.

[17] D. Wang, D. He, H. Cheng, and P. Wang, “fuzzypsm: A new password
strength meter using fuzzy probabilistic context-free grammars,” in Proc.
IEEE/IFIP DSN 2016, pp. 595–606.

[18] AgileBits Inc, “1password password manager: Generate and keep
passwords safe,” 2022, https://1password.com.

[19] S. Jarecki, H. Krawczyk, M. Shirvanian, and N. Saxena, “Two-factor
authentication with end-to-end password security,” in Proc. PKC 2018,
pp. 431–461.

[20] D. Wang and P. Wang, “Two birds with one stone: Two-factor
authentication with security beyond conventional bound,” IEEE Trans.
Depend. Secur. Comput., vol. 15, no. 4, pp. 708–722, 2018.

[21] S. Jarecki, H. Krawczyk, M. Shirvanian, and N. Saxena, “Device-
enhanced password protocols with optimal online-offline protection,” in
Proc. ASIACCS 2016, pp. 177–188.

[22] M. Shirvanian, S. Jareckiy, H. Krawczykz, and N. Saxena, “Sphinx:
A password store that perfectly hides passwords from itself,” in Proc.
ICDCS 2017, pp. 1094–1104.

[23] D. Wang, Y. Zou, Q. Dong, Y. Song, and X. Huang, “How to attack and
generate honeywords,” in Proc. IEEE S&P 2022, pp. 489–506.

[24] M. H. Almeshekah, C. N. Gutierrez, M. J. Atallah, and E. H. Spafford,
“Ersatzpasswords: Ending password cracking and detecting password
leakage,” in Proc. ACSAC 2015, pp. 311–320.

[25] C. N. Gutierrez, M. H. Almeshekah, S. Bagchi, and E. H. Spafford, “A
hypergame analysis for ersatzpasswords,” in Proc. IFIP SEC 2018, pp.
47–61.

[26] J. Kelsey, D. Dachman-Soled, S. Mishra, and M. S. Turan, “Tmps: ticket-
mediated password strengthening,” in Proc. CT-RSA 2020, pp. 225–253.

[27] Y. Zhang, C. Xu, H. Li, K. Yang, N. Cheng, and X. Shen, “Protect:
efficient password-based threshold single-sign-on authentication for
mobile users against perpetual leakage,” IEEE Trans. Mobile Comput.,
vol. 20, no. 6, pp. 2297–2312, 2020.

[28] S. Agrawal, P. Miao, P. Mohassel, and P. Mukherjee, “Pasta: password-
based threshold authentication,” in Proc. CCS 2018, pp. 2042–2059.

[29] A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu, “Password-protected
secret sharing,” in Proc. CCS 2011, pp. 433–444.

[30] Johns Hopkins University ISI, “Charm-crypto docs,” https://jhuisi.
github.io/charm/index.html.

[31] K. Griffiths, “The falcon web framework,” https://falcon.readthedocs.io/
en/stable/.

[32] Ace0, “Safeid protects passwords using the pythia prf protocol,” 2015,
https://github.com/ace0/safeid.

[33] X. Huang, Y. Xiang, E. Bertino, J. Zhou, and L. Xu, “Robust multi-
factor authentication for fragile communications,” IEEE Trans. Depend.
Secur. Comput., vol. 11, no. 6, pp. 568–581, 2014.

[34] Ace0, “Pyrelic: a python module that wraps the relic cryptography
library,” 2016, https://github.com/ace0/pyrelic.

APPENDIX A
ZERO-KNOWLEDGE PROOF

Fig. 9 shows the zero-knowledge proof (ZKP) protocol
adopted by our PW-Hero instantiation, which is the same as
that of Pythia [8]. The ZKP protocol is defined as Π :=
{Gen,PoK,Vf}, which proves y = xk without delivering k.

Gen(1λ)
H ←$H = {{0, 1}∗ → Zq}
return H

Vf(g, gk, x, y, π)
(h, u)← π

a′
1 ← gu·(gk)h, a′

2 ← xu·yh

h′ ← H(g, gk, x, v, a′
1, a

′
2)

return h = h′

PoK(g, gk, x, y, k)

v←$Zq

a1 ← gv, a2 ← xv

h← H(g, gk, x, v, a1, a2)

u← v − h·k
return π ← (h, u)

Fig. 9: The ZKP protocol adopted by the PW-Hero scheme,
Π := {Gen,PoK,Vf} that proves y = xk without revealing k.

CORRECTNESS. When h = h′, the ZKP protocol claims
that y = xk does hold. Assuming that H is a random oracle,
h = h′ is equivalent to a1 = a′1 and a2 = a′2.

a1 = gv, a′1 = gu(gk)h = gv−hk(gk)h = gv,

a2 = xv, a′2 = xuyh = xv−hkyh = xv(x−ky)h.

a1 = a′1 means that the public gk is the value of k-th expo-
nential operation of g, and a2 = a′2 means (x−ky)h = 1, i.e.,
y = xk. Thus, y = xk can be derived from h = h′.

APPENDIX B
FORMAL SECURITY DEFINITION

This section formally defines the securities of PW-Hero,
including obliviousness, hiding, forward security, binding, and
privacy, by considering their corresponding security games.

A. Obliviousness

We define the PH-OBL game, which is played between the
challenger R acting as the client and the adversary A acting
as the malicious server, as follows:
• Setup 1: On input of security parameter λ, Π.Setup(1λ)

generates the public parameter pp. Set up the oracle
accessed by A: O ← {Π.⟨A(·),A(·)⟩X ,Π.⟨R(·),A(·)⟩X ,
X ∈ {reg, ver, rot, dec}}.

• Setup 2: Adversary A has free access to O and generates
a public key pkS , a username un and two passwords, pw0

and pw1, which are sent to the challenger R.
• Challenge: Challenger R samples b ← {0, 1}. With b, R

performs the registration protocol ⟨R(un, pwb),A(·)⟩reg. A
has free access to O again, including Π.⟨R(pw0),A(·)⟩ver
and Π.⟨R(pw1),A(·)⟩ver. 9

• Output: Adversary A outputs his guess b′ on b and wins the
game if b′ = b.
We refer to such adversary A as the PH-OBL adversary and

define adversary A’s advantage as

AdvA,O
PH-OBL(λ) = |Pr[b = b′]− 1

2
|.

9In [10], the Challenge returns ⊥ for ⟨R(un,pw0),A(·)⟩val and
⟨R(un,pw1),A(·)⟩val to avoid the adversary A from directly learning pw
from these two verification protocols. Its reason is that verification results
are leaked to the server, i.e., A, in Phoenix [10]. However, it results in the
obliviousness definition not covering its verification protocol.

https://github.com/ace0/pythia
https://github.com/ace0/pythia
https://www.usenix.org/sites/default/ files/conference/protected-files/security18_slides_lai.pdf
https://www.usenix.org/sites/default/ files/conference/protected-files/security18_slides_lai.pdf
https://1password.com
https://jhuisi.github.io/charm/index.html
https://jhuisi.github.io/charm/index.html
https://falcon.readthedocs.io/en/stable/
https://falcon.readthedocs.io/en/stable/
https://github.com/ace0/safeid
https://github.com/ace0/pyrelic

DEFINITION 2. (Obliviousness) We say that a PW-Hero ser-
vice is PH-OBL secure if for any protocols in O and any
probabilistic polynomial-time (PPT) PH-OBL adversaryA, the
advantage AdvA,O

PH-OBL(λ) is negligible.

B. Hiding

We define the PH-HID game, which is played between the
two challengers, RC acting as the first-phase honest client
and RS acting as the server, and the adversary A acting as
the second-phase compromised client as follows:
• Setup 1: On input of the security parameter, Π.Setup(1λ)

generates the public parameter pp. And Π.SKeyGen()
generates a master key mkS , a secret key skS , and a
public key pkS . Then mkS is sent to the server challenger
RS . pkS is sent to the adversary A and the client
challenger RC . O← {Π.⟨A(·),A(·)⟩X ,Π.⟨A(·),RS(·)⟩X ,
X ∈ {reg, ver, rot,dec}}.

• Setup 2: Adversary A has free access to O and generates a
username un and two passwords, pw0 and pw1, which are
sent to the challenger RC .

• Challenge: Challenger RC picks b ← {0, 1} at random.
With b, RC executes the protocol ⟨RC(un, pwb),RS(·)⟩reg
and generates the verification record T ∗, which is sent to
the adversary A. And A has free access to O again.

• Output: AdversaryA outputs his guess b′ on b and wins the
game if b′ = b.
We refer to such adversary A as a PH-HID adversary and

define adversary A’s advantage as

AdvA,O
PH-HID(λ) = |Pr[b = b′]− 1

2
|.

DEFINITION 3. (Hiding) We say that a PW-Hero service is
PH-HID secure if for any protocols in O and any PPT PH-HID
adversary A, the advantage AdvA,O

PH-HID(λ) is negligible.

C. Forward security

We define the PH-FOR-1 game, which is played between
the two challengers, RC acting as the first-phase honest client
and RS acting as the server, and the adversary A acting as
the second-phase compromised client as follows:
• Setup 1: Same as the Setup 1 in the PH-HID game.
• Setup 2: AdversaryA has free access to O and generates two

username-and-password pairs, (un0, pw0) and (un1, pw1),
which are sent to the client challenger RC .

• Challenge: ChallengerRC picks randomly b← {0, 1}. With
b, RC performs registration protocol ⟨RC(unb, pwb),RS(·)
⟩reg and generates the verification record T ∗, which is sent to
adversary A. Immediately, RC performs secret key rotation
protocol ⟨RC(·),RS(·)⟩skrot. A has free access to O again.

• Output: Adversary A outputs his guess b′ on b and wins the
game if b′ = b.
We refer to such adversary A as the PH-FOR-1 adversary

and define adversary A’s advantage as

AdvA,O
PH-FOR-1(λ) = |Pr[b = b′]− 1

2
|.

Additionally, the PH-FOR-2 game is played between the
two challengers, RS acting as the second-phase honest server
and RC acting as the client, and the adversary A acting as
the first-phase compromised server:
• Setup 1: On input of security parameter λ, Π.Setup(1λ)

generates the public parameter pp. O← {Π.⟨A(·),A(·)⟩X ,
Π.⟨RC(·),A(·)⟩X , X ∈ {reg, ver, rot,dec}}

• Setup 2: Adversary A has free access to O and generates a
master key mkS , a public key pkS , and a username un and
two passwords, pw0 and pw1, all but the first of which are
sent to the client challenger RC . And mkS is sent to the
server challenger RS .

• Challenge: RC picks b ← {0, 1} at random. With b, RC

performs the registration protocol ⟨RC(un, pwb),A(·)⟩reg
and generates the password verification record T ∗.
Immediately, RS performs master key rotation protocol
⟨RC(·),RS(·)⟩mkrot. Then, the old verification record T ∗

is sent to A, who has free access to O again.
• Output: Adversary A outputs his guess b′ on b and wins the

game if b′ = b.
We refer to such adversary A as the PH-FOR-2 adversary

and define adversary A’s advantage as

AdvA,O
PH-FOR-2(λ) = |Pr[b = b′]− 1

2
|.

DEFINITION 4. (Forward security) We say that a PW-Hero
service is PH-FOR secure if for any protocols in O and any
PPT PH-FOR-1 adversary A1 and PH-FOR-2 adversary A2,
A1’s advantage AdvA1,O

PH-FOR-1(λ) and A2’s advantage
AdvA2,O

PH-FOR-2(λ) both are negligible.

D. Binding

We define the PH-BIN-1 game, which is played between the
challenger R acting as the client and the adversary A acting
as the malicious server:
• Setup 1: Same as the Setup 1 in the PH-OBL game.
• Setup 2: Adversary A has free access to O and generates

a public key pkS and two different username-and-password
pairs, (un0, pw0) and (un1, pw1), which are sent to R.

• Challenge: Challenger R picks b← {0, 1} at random. With
b, R performs the registration protocol ⟨R(unb, pwb, pkS),
A(·)⟩reg and generates the verification record T ∗.

• Output: R performs two verification protocols with the A,
⟨R(un0, pw0, T

∗, pkS),A(·)⟩ver and ⟨R(un1, pw1, T
∗, pkS),

A(·)⟩ver, which return two verification results, r0 and r1.
b0 := (r0 = “Accept”), b1 := (r1 = “Accept”). Adversary
A wins the game if b0∧b1.
We refer to such adversary A as a PH-BIN-1 adversary and

define adversary A’s advantage as

AdvA,O
PH-BIN-1(λ) = |Pr[b0∧b1]−

1

2
|.

And the PH-BIN-2 game is played between the two chal-
lengers, RS acting as the server and RC acting as the first-
phase honest client and the adversary A acting as the second-
phase compromised client:

• Setup 1: Same as the Setup 1 in the PH-HID game.
• Setup 2: Adversary A has free access to O and generates

two different pairs of username and password, (un0, pw0)
and (un1, pw1), which are sent to the client challenger RC .

• Challenge: RC samples b ← {0, 1}. With b, RC performs
the registration protocol ⟨RC(unb, pwb, pkS),RS(·)⟩reg
and generates the verification record T ∗, which is sent to
the adversary A. A performs the verification protocols
⟨A(un0, pw1, T

∗, pkS),RS(·)⟩ver and ⟨A(un1, pw0, T
∗, pkS),

RS(·)⟩ver and has free access to O again. However, if A
requests to verify (un0, pw0) or (un1, pw1), RS returns ⊥
to avoid A getting the result directly.

• Output: Adversary A outputs his guess b′ on b and wins the
game if b′ = b.

We refer to such adversary A as the PH-BIN-2 adversary
and define adversary A’s advantage as

AdvA,O
PH-BIN-2(λ) = |Pr[b = b′]− 1

2
|.

DEFINITION 5. (Binding) We say that a PW-Hero service is
PH-BIN secure if for any protocols in O and any PPT PH-
BIN-1 adversary A1 and PH-BIN-2 adversary A2, advantages
AdvA1,O

PH-BIN-1(λ) and AdvA2,O
PH-BIN-2(λ) both are negligible.

E. Privacy

We define the PH-PRI game, which is played between the
challenger R acting as the client and the adversary A acting
as the malicious server, as follows:

• Setup 1: Same as the Setup 1 in the PH-OBL game.
• Setup 2: Adversary A has free access to O and generates

a public key pkS , a username un and two passwords, pw0

and pw1, which are sent to R. And R performs the regis-
tration protocol ⟨R(un, pw0, pkS),A(·)⟩reg and outputs the
verification record T ∗.

• Challenge: Challenger R samples b ← {0, 1}. With b,
R performs the verification protocol ⟨R(un, pwb, T

∗, pkS),
A(·)⟩ver. The adversary A has free access to O again.

• Output: Adversary A outputs his guess b′ on b and wins the
game if b′ = b.

We refer to such adversary A as the PH-PRI adversary and
define adversary A’s advantage as

AdvA,O
PH-PRI(λ) = |Pr[b = b′]− 1

2
|.

DEFINITION 6. (Privacy) We say that a PW-Hero service is
PH-PRI secure if for any protocols in O and any PPT PH-PRI
adversary A, the advantage AdvA,O

PH-PRI-1(λ) is negligible.

APPENDIX C
FORMAL SECURITY PROOF

This section proves the security of the PW-Hero scheme
and show that it has obliviousness, hiding, forward security,
binding, and privacy. To start with, we provide several as-
sumptions: Let hash functions, H0, H1, H2, H3, be modeled

as random oracles; Discrete logarithm (DL)10 and decisional
Diffie-Hellman (DDH)11 assumptions both hold in group G.

A. Obliviousness

THEOREM 1. Let hash function H1(·) be a random ora-
cle. Suppose DL and DDH assumptions hold in group G. If
there exists an adversary D who can break DDH assumption
with AdvDDDH(λ), for any adversary A, his advantage in the
PH-OBL game is:

AdvA,O
PH-OBL ⩽ AdvDDDH(λ),

where AdvA,O
PH-OBL is defined in Section B-A.

Proof. We prove the Theorem 1 by introducing four games in
which H1(s, un, pw)nC gradually replaced by a random oracle,
and proving that the transition of hidden bit b from 0 to 1 is
indistinguishable.
• Game 0: Equivalent to the obliviousness game, PH-OBL.
• Game 1: Challenger simulates the random oracle H1. On

query H1(·), the Challenger picks h from Zq and returns
gh. Game 1 is functionally identical to Game 0.

• Game 2: Given a tuple (g, gα, gβ), Challenger returns gα

and gβ on queries on H1(s, un, pwb) and H1(s, un, pw1−b),
respectively, and returns on other queries the same as Game
1. Game 2 is functionally identical to Game 1.

• Game 3: Given a tuple (g, gα, gβ , gγ , gαγ , gβγ), where
α, β, γ ∈ Zq . Let r = gα and nC = γ. The Game 3 is
identical to Game 2 except that when executing
Φ.⟨C(un, pw),S()⟩ver, the Challenger returns gαγ for
(r·H1(s, un, pwb)/H1(s, un, pwb))

nC and returns gβγ for
(r·H1(s, un, pwb)/H1(s, un, pw1−b))

nC . Game 3 is
functionally identical to Game 2. We build an adversary D
who can break DDH assumption with the negligible
advantage of AdvDDDH(λ). Thus, Pr[Distinguishing
(g, gα, gβ , gγ , gαγ) from (g, gα, gβ , gγ , gβγ) in Game
3] ⩽ AdvDDDH(λ).

Since the transition of b from 0 to 1 is indistinguishable in
Game 3, the Theorem 1 is proved.

B. Hiding

THEOREM 2. Let hash function H1(·) be a random oracle.
Suppose DL and DDH assumptions hold in group G. If there
exists an adversary B who can break DL assumption with
AdvBDL(λ) and an adversary D who can break DDH assump-
tion with AdvDDDH(λ), for any adversary A, his advantage in
the PH-HID game is:

AdvA,O
PH-HID ⩽ AdvBDL(λ) +

2q(λ)

Z(λ)
(AdvBDL(λ) +AdvDDDH(λ)),

where q(λ) is the number of queries to the Challenger by
the adversary A, and Z(λ) is the size of Zq . In addition, the
PH-HID game and AdvA,O

PH-HID are defined in Section B-B.

10Discrete logarithm assumption says that given (G, g, y), for any PPT
adversary A, the probability of finding a k ∈ Zq , y = gk is negligible.

11Decisional Diffie-Hellman assumption says that for any PPT A, the
probability of distinguishing the tuple (g, ga, gb, gab) from (g, ga, gb, gc)
is negligible, where a, b, c ∈ Zq .

Proof. First, adversary A cracking the service key kS from the
password record (·)kS is equivalent to solving the DL problem.
Second, we introduce five games where H1(s, un, pw)kS grad-
ually replaced by random value, and prove that the transition
of hidden bit b from 0 to 1 is indistinguishable.
• Game 0: Equivalent to the hiding game, PH-HID.
• Game 1: Challenger simulates the random oracle H1. On

query H1(·), the Challenger picks h from Zq and returns
gh. Game 1 is functionally identical to Game 0.

• Game 2: Given a tuple (g, gα, gβ), the Challenger returns
gα on queries on H1(s, un, pwb), returns gβ on queries on
H1(s, un, pw1−b), and returns on other queries the same as
Game 1. In addition, Challenger records query history to
H1(s, un, pw0) and H1(s, un, pw1). If a random oracle query
is a history query, the Challenger aborts. Since the parameter
s of H1 is sampled from Zq at random in the registration
protocol, we assume |Zq| = Z(λ). And then Pr[Challenger
aborting in Game 2] < 2q(λ)

Z(λ) for most q(λ) queries.
• Game 3: If adversary makes a history query, Challenger

returns hkS
1 , where h1 is came from the random oracle H1

in Game 2 and kS is sampled from Zq . In addition, we
assume that adversary B breaks the DL assumption with the
negligible advantage of AdvBDL(λ). Thus, Pr[Solving kS in
Game 3] ⩽ AdvBDL(λ).

• Game 4: Given a tuple (g, gα, gβ , gkS , gαkS , gβkS), when
executing Φ.⟨C(un, pwb),S()⟩reg,ver protocols, Challenger
returns gαkS for H1(s, un, pwb)

kS and returns gβkS for
H1(s, un, pw1−b)

kS . Game 4 is functionally identical to
Game 3. We assume that adversary D can break the DDH
assumption with the negligible advantage of AdvDDDH(λ).
Thus, Pr[Distinguishing (g, gα, gβ , gkS , gαkS) from
(g, gα, gβ , gkS , gβkS) in Game 4] ⩽ AdvDDDH(λ).

Note that the transition of the hidden bit b from 0 to 1 is
indistinguishable in Game 4, even if adversary A hits history
query in most q(λ) queries.

C. Forward Security

THEOREM 3. Let hash function H1(·) be a random oracle.
Suppose DL and DDH assumptions hold in group G. If there
exists an adversary A′ who can break hiding security of PW-
hero with AdvA

′,O
PH-HID, an adversary B who can break DL

assumption with AdvBDL(λ) and an adversary D who can
break DDH assumption with AdvDDDH(λ), for any adversary
A, his advantage in the PH-FOR game is:

AdvA,O
PH-FOR ⩽ AdvA

′,O
PH-HID (6)

⩽
2q(λ)

Z(λ)
(AdvBDL(λ) +AdvDDDH(λ)),

where AdvA,O
PH-FOR is defined in Section B-C.

Proof. For game PH-FOR-1, let t∗2 = (r·h0)
kS . After a

secret key rotation, let the new secret key be kS
′ such that

t∗2
′ = ((r·h0)

kS/k′
S)k

′
S . Solving the DL problem t∗2

′ =
((r·h0)

kS/k′
S)k

′
S can be reduced to solving t∗2

′ = (r′·h′
0)

k′
S ,

where r′ = rkS/k′
S and h′

0 = h
kS/k′

S
0 . Due to the tuple

(r, h0, kS , (r·h0)
kS) and the tuple (r′, h′

0, k
′
S , (r

′·h′
0)

k′
S) are

indistinguishable, adversary A in game PH-FOR-1 is
equivalent to A′ in game PH-HID.

Similarly, adversaryA in game PH-FOR-2 can be equivalent
to A′ in game PH-HID.

D. Binding

THEOREM 4. Let hash function H0,1(·) be random oracles.
Suppose DL assumption holds in group G. If there exists an
adversary B who can break DL assumption with AdvBDL(λ),
for any adversary A, his advantage in the PH-BIN game is:

AdvA,O
PH-BIN ⩽ AdvBDL(λ),

where AdvA,O
PH-BIN is defined in Section B-D.

Proof. We let B be a simulator which receives a discrete
logarithm problem instance (g0, g1) and solves logg0(g1). B
records query history to H0 and H1 and maps (un) and
(s, un, pw) respectively to random exponents of g0 and g1.
When adversary A queries the random oracle H1 on
(s, un, pw), B checks whether (s, un, pw) is programmed. If
so, it retrieves and returns its history value. Otherwise, it
samples a exponent a ∈ Zq and programs H1(s, un, pw) =
ga1 . B simulates H0 similarly, and we omit the details of it.

Recall that if adversary A wins the PH-BIN game, A
needs to generate {(un0, pw0), (un1, pw1), T

∗} such that
⟨R(un0, pw0, T

∗),A(·)⟩ver and ⟨R(un1, pw1, T
∗),A(·)⟩ver both

output “Accept”. T ∗ = {h0, s, t1 = r·h1, t2 = (r·h0)
kS,reg ,

t3 = H2(r)
kS,reg}.

If A can provide a ZKP proof π0,ver for the first ver
protocol, ((r·h1)/g

b0
1 ga0

0)kS,0,ver = (r·h0)
kS,reg . And if A also

can provide a proof π1,ver for the second ver protocol,
((r·h1)/g

b1
1 ga0)

kS,1,ver = (r·h0)
kS,reg .

Due to the correctness of π0,ver and π1,ver, if Challenger
accepts both returns from A, kS,0,ver = kS,1,ver. We can easily
obtain ga0

0 gb01 = ga1
0 gb11 , i.e., logg0(g1) = (a1 − a0)/(b0 −

b1), where (un0, pw0) ̸= (un1, pw1), (a0, b0) and (a1, b1) are
sampled independently. This is equivalent to solving the DL
problem logg0(g1). Thus, if A wins with a non-negligible
probability in the PH-BIN-1 game, then simulator B can solve
the DL problem with non-negligible probability.

E. Privacy

THEOREM 5. Let hash function H1(·) be a random ora-
cle. Suppose DDH assumption holds in group G. If there
exists an adversary D′ who can break DDH assumption with
AdvD

′

DDH(λ), for any adversaryA, his advantage in the PH-PRI
game is:

AdvA,O
PH-PRI ⩽ AdvD

′

DDH(λ),

where AdvA,O
PH-PRI is defined in Section B-E.

Proof. We prove the Theorem 5 by introducing three games
with the hidden bit b transition from 0 to 1 and proving
that each transition is indistinguishable. Recall that the pass-
word record of (un, pw) is T ∗ = {H0(un), s, r·H1(s, un, pw),
(r·H0(un))kS , H2(r)

kS}.

• Game 0: The hidden bit b = 0.
• Game 1: Challenger simulates the random oracle H1 and

return ga for the query on H1(s, un, pw), where a ←$ Zq .
When executing Φ.⟨C(un, pw0),S()⟩ver, Challenger samples
a0, n0,C←Zq and returns ga0n0,C . Game 1 is functionally
identical to Game 0.

• Game 2: b = 1. When executing Φ.⟨C(un, pw1),S()⟩ver,
Challenger samples a1, n1,C←Zq and returns ga1n1,C .
Suppose an adversary D who can differentiate Game 2
from Game 1, which means that he can differentiate
{g, ga0 , gn0,C , ga1 , gn1,C , ga0n0,C} from {g, ga0 , gn0,C , ga1 ,
gn1,C , ga1n1,C}. So we can build an adversary D′ who can
break the DDH assamption with the negligible advantage
of AdvD

′

DDH(λ). Thus, Pr[Distinguishing Game 2 from
Game 1] ⩽ AdvD

′

DDH(λ).

APPENDIX D
EXPERIMENT SUPPLEMENT

We evaluate the time of all operations contained in the two
groups, G and S (= {G1,G1,Gt}), on which the schemes in-
volved in the comparison were based. And the average runtime
across 10,000 iteration on our machine is given in Tab. IV.

TABLE IV: Operation time (µs).
Charm [30]: NIST P 256 Pyrelic [34]: BN 254
Random ZR 2.04 Random ZR 2.54 Add G2 3.02
Random G 37.47 Random ZR 69.04 Mul ZR 1.20
Hash ZR 1.43 Random G2 568.13 Mul GT 5.67
Hash G(H) 24.26 Random GT 408.92 Exp G1 156.91
Add ZR 0.27 Hash G1 36.23 Exp G2(EG2

) 427.52
Mul ZR 0.40 Hash G2(HG2) 160.36 Exp GT(HGt) 889.32
Mul G 0.82 Add ZR 1.49 Pair(pair) 747.87
Exp(E) 39.84 Add G1 2.55
Random str: {0, 1}∗ → {0, 1}λ 4.60

Obviously, the pairing group operation used by Pythia [8]
is more time-consuming compared to the multiplicative group
operations of other schemes [9], [10]. In particular, the pair
operation and the exponential operation of Gt elements take
about 20 times longer than the exponential operations in the
multiplicative group G.

	Introduction
	Motivations
	Challenges
	Our Contributions
	Related Work

	Overview
	Properties of the Password Hardening Service
	Property Discussion

	Password Hardening Service with Opt-out
	Definition of PW-Hero
	Security of PW-Hero

	A PW-Hero Scheme
	Protocol Description
	Setup
	Registration
	Verification
	Key Rotation
	Decryption

	Security Analysis
	Obliviousness
	Hiding
	Forward Security
	Binding
	Privacy

	Opt-out and Accessing to New PH Services

	Evaluation
	Latency
	Storage Analysis

	Conclusion
	References
	Appendix A: Zero-Knowledge Proof
	Appendix B: Formal Security Definition
	Obliviousness
	Hiding
	Forward security
	Binding
	Privacy

	Appendix C: Formal Security Proof
	Obliviousness
	Hiding
	Forward Security
	Binding
	Privacy

	Appendix D: Experiment Supplement

