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Abstract. This article develops a novel method of generating “inde-
pendent” points on an ordinary elliptic curve E over a finite field. Such
points are actively used in the Pedersen vector commitment scheme and
its modifications. In particular, the new approach is relevant for Pasta
curves (of j-invariant 0), which are very popular in the given type of
elliptic cryptography. These curves are defined over highly 2-adic fields,
hence successive generation of points via a hash function to E is an ex-
pensive solution. Our method also satisfies the NUMS (Nothing Up My
Sleeve) principle, but it works faster on average. More precisely, instead
of finding each point separately in constant time, we suggest to sample
several points at once with some probability.
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1 Introduction

A commitment scheme is a cryptographic primitive that allows one party to
commit to a chosen value while keeping it hidden to others, with the ability
to reveal the committed value later. Commitment schemes are designed so that
the party cannot change the value after they have committed to it. They have
important applications in a number of cryptographic protocols including secure
coin flipping and zero-knowledge proofs.

There is the classic Pedersen commitment scheme [31, Section 3]. It works
in any cyclic group with the hard discrete logarithm problem (DLP). However,
throughout the article we will deal only with (a large subgroup G of) the Fq-
point group E(Fq) of an elliptic curve E over a finite field Fq. As is well known,
today ordinary (i.e., non-supersingular) curves over fields of large characteristic
p are considered the safest. And every cryptographer understands perfectly that
the order ℓ := #G must be prime.

We can use a variant of the original Pedersen commitment (for n = 1) to com-
mit to multiple values (m1, · · ·,mn) ∈ Fn

ℓ at once (so-called vector commitment).
We have to sample a vector of public points (P1, · · ·, Pn) ∈ Gn, along with a fixed
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generator P0 ∈ G. Then the commitment is just the sum m0P0 +
∑n

i=1miPi,
where m0 ∈ Fℓ is an auxiliary value to ensure the security of the scheme.

Of course, we can simply commit to each mi individually, but this solution
is much less efficient in terms of memory and computing resources. Indeed, the
full multi-scalar multiplication can be performed much more rapidly than each
one riP0 +miP1 alone. Here (r1, · · ·, rn) ∈ Fn

ℓ is another random vector playing
the role of m0. Besides, vector commitments provide a way to store or transmit
only one element of the group G instead of a vector from Gn. In real-world
cryptography it happens that n reaches huge numbers such as ≈ 230 as indicated,
e.g., in [10].

The aforementioned primitive is also known as the Pedersen hash Fn
ℓ → G

(see, e.g., [5]). It is provably secure, because its resistance is based on the multi-
dimensional DLP. According to cryptanalysis performed in [18], [19] the given
problem does not seem to be simpler in general than the classical DLP. Another
advantage of the Pedersen hash is in its additive homomorphic property. All
this positively distinguishes it from (Merkle hash tree [30] using) faster standard
hash functions such as SHA-3 (Keccak).

Certainly, the Pedersen scheme is resistant only if the points Pi are “indepen-
dent”, that is nobody knows a non-trivial linear relation between them. In other
words, it is hard to find values (k1, · · ·, kn) ∈ Fn

ℓ such that k0P0 =
∑n

i=1 kiPi and
at least one ki ̸= 0. Therefore, every point Pi must be generated in a transparent
way. Be careful that, from the mathematical point of view, conversely, any two
points depend on each other, since the group G is prime.

Over time, a malicious user may find some relation between the points Pi

through a kind of brute-force attack. We have no guarantee that this cannot hap-
pen for concrete points, even though the multi-dimensional DLP is intractable
in the general case. The fact is that for the large n there is the huge number
of linear relations. At the same time, it is enough to find just one to break the
Pedersen scheme. That is why it is desirable for security to periodically change
the points.

The author of [16] prefers the word “basis” and he admits that “updating
the basis at every round is inefficient”. Let’s assume the opposite situation when
the points Pi remain the same for a long time. Even in this situation, the task of
their rapid generation is still important. First, the storage (resp. transmission)
of the points requires a lot of memory (resp. bandwidth). And second, there
is ground for a potential fault attack, because it is enough for an adversary to
replace just one point.

As is known, the points Pi can be obtained by means of a hash function
H : {0, 1}∗ → G, for example as Pi = H(seed||i) (cf. [5, Section 5.1]). This
approach forces to evaluate H exactly n times. The fastest constructed hash
functions to elliptic curves extract one radical m

√
· in Fq for some m ∈ N. Their

actual classification is given in [25, Tables 1-2] (cf. [15]). And the existence of H
without radicals at all is highly unlikely. There is plenty of material devoted to
extracting m

√
·, starting with the seminal work of Adleman, Manders, and Miller
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[1]. But despite this, m
√
· continues to be a much more expensive operation than

the arithmetic ones in Fq, namely +, −, ∗, and even /.
It is also worth noting the Kate–Zaverucha–Goldberg (KZG) commitment

scheme (or just the Kate commitment) [23] based on pairings of elliptic curves.
At the moment, this scheme is recognized by the cryptographic society as one
of the best from the computational point of view. However, to deploy it we need
a trusted setup. More concretely, the scheme substantially uses the points siP0

(with a secret s ∈ Fℓ) rather than arbitrary “independent” points. By the way,
such points can be equally utilized in the Pedersen scheme.

In comparison with the Pedersen protocol, KZG one is in fact a polynomial
commitment. By definition, it allows a prover to commit to a polynomial f =∑n−1

i=0 mi+1x
i, with the property that the prover can later convince a verifier of

the equality f(α) = β, given α, β ∈ Fℓ. In addition, until n points of the form(
α, f(α)

)
are revealed, the polynomial f remains hidden, as should be clear.

It turns out that the Pedersen vector commitment can be supplemented
to give rise to a polynomial commitment without a trusted setup (see, e.g.,
[9, Section 3], [14, Section 4.5]). Incidentally, those sources are dedicated to a
protocol of so-called recursive proof composition using an amicable pair [37] of
prime-order elliptic curves. More precisely, the latter are non-pairing-friendly
curves y2 = x3 + 5 of j-invariant 0 under the name Pasta curves (Pallas and
Vesta) [20] (cf. [21]).

These curves (and many others [2]) are defined over highly 2-adic fields, i.e.,
2e | q − 1 for a fairly large e ∈ N. Such fields allow to utilize the fast Fourier
transform (FFT) [14, Section 4.2] to speed up the polynomial arithmetic in
numerous modern protocols. The downside is that one cannot express a square
root in Fq via one exponentiation in Fq. We can always resort to the Tonelli–
Shanks algorithm [13, Algorithm 5.14], but it is substantially slower than the
exponentiation operation. That is why we should avoid square roots as far as
possible.

2 Underlying mathematical preliminaries

Consider a finite field Fq of characteristic p > 3. The notion of an elliptic surface
[32, Section 5], [35, Chapter III] over Fq is key for us. Without loss of generality,
we can confine to a short Weierstrass form

E : y2 = x3 + a(t)x+ b(t) ⊂ A3
(x,y,t)

with polynomial coefficients a(t), b(t) ∈ Fq[t]. As usual, E is interpreted as an
elliptic curve over the function field F := Fq(t) in one variable. From time to
time, we will equally need the field F ′ := Fq(t) over the algebraic closure Fq.

Recall that the Mordell–Weil group of E is the abelian group E(F ) of all F -
points on E . Due to a special case of the Mordell–Weil theorem [32, Section 3.3]
the group E(F ) is finitely generated. Its rank r is called the Mordell–Weil rank
of E . As always, we denote by E(F )tor the (finite) torsion subgroup of E(F ). The
quotient E(F )/E(F )tor ≃ Zr enjoys a positive-definite quadratic form ĥ under
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the name the canonical height or the Néron–Tate height [35, Section III.4]. The
corresponding symmetric bilinear form ⟨·, ·⟩ and r-dimensional lattice are said to
be the height pairing and the Mordell–Weil lattice respectively (see [32, Section
6.5]).

As is customary, we are given an ordinary elliptic Fq-curve E : y2 = x3+ax+b.
Throughout the article we assume the coincidence of the j-invariants: j(E) =
j(E). Such a surface E is said to be isotrivial. Note that r = 0 for trivial (constant)
elliptic surfaces (s.t. E ≃F ′ E), because elliptic curves are not rational. Hence
trivial surfaces are excluded from our consideration. By definition, E is a non-
trivial twist of E. Since p > 3, the results of [36, Section X.5] about twisting
elliptic curves are still relevant even though F is not a perfect field.

Let’s define the function

c(t) :=



a(t)b(t)

ab
if ab ̸= 0, i.e., j(E) ̸∈ {0, 1728},

a(t)

a
if b = 0, i.e., j(E) = 1728,

b(t)

b
if a = 0, i.e., j(E) = 0.

Let d ∈ {2, 4, 6} be the order of the cyclic group Aut(E) and s := d
√
c(t). The

curves E, E are isomorphic precisely over the Kummer extension F (s)/F of
degree d. It is the function field of the superelliptic curve C : sd = c(t) ⊂ A2

(t,s).

The corresponding isomorphism (from the proof of [36, Proposition III.1.4.(b)])
has the form

φ : E → E (x, y) 7→
( x
z2
,
y

z3

)
,

where

z :=


as

a(t)
=
b(t)

bs
if ab ̸= 0, i.e., j(E) ̸∈ {0, 1728},

s otherwise.

It is worth saying that points from E(F ) are nothing but Fq-sections A1
t →

E of the projection prt to the variable t. Below Et stands for its fiber over
t ∈ Fq. Similarly, φt : Et → E denotes the specialization of φ. There is only
a finite number of degenerate fibers, namely those for which the discriminant
∆(Et) = −16

(
4a3(t) + 27b2(t)

)
vanishes. Clearly, this happens exactly when φt

is meaningless. In this situation, φt(x, y) = ∞ is a convenient notation (for any
map). Finally, given t ∈ Fq, the condition Et ≃Fq E occurs iff φt is defined over
Fq iff s ∈ F∗

q .
We need certain results about the endomorphism rings of elliptic curves,

which can be found in any classical source like [36, Sections III.9, V.3]. Since
E is an ordinary Fq-curve, new endomorphisms on it are not added when ex-
tending Fq. It is also readily shown by exploiting φ that the coefficients of F (s)-
endomorphisms on E in fact belong to F . Eventually, we have:

End(E/Fq) = End(E/F ) = End
(
E/F (s)

)
≃ End

(
E/F (s)

)
= End(E/F ).
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By abuse of notation, we will identify all these rings by means of the single
symbol O.

As is well known, O is an order in the imaginary quadratic field Q(
√
D),

where D := t2q − 4q and tq is the trace (of the Frobenius) of E/Fq. Furthermore,

O = Z ⊕ Zϕ for some endomorphism ϕ (with the dual one ϕ̂). Recall that its
characteristic (and at the same time minimal) polynomial equals

χϕ = x2 − tr(ϕ)x+ deg(ϕ), where tr(ϕ) := ϕ+ ϕ̂, deg(ϕ) := ϕ·ϕ̂.

As explained in [4, Appendix A], original Schoof’s algorithm (see, e.g., [13, Al-
gorithm 2.4]) for computing tq is easily modified to compute tr(ϕ) whenever ϕ
is the composition of a bounded number of small-degree isogenies.

There is a natural action of the group µd ≃ Z/d on the curve C and hence
on its Jacobian JC . Let’s introduce the number

k := max
{
k′ ∈ N | exists a surjective µd-equivariant Fq-morphism JC → Ek′}

,

where µd acts diagonally on Ek′
. Evidently, k does not exceed the geometric

genus of C. And when k attains the genus, JC is said to be a ρ-maximal (or
singular) abelian variety [6, Proposition 3].

By virtue of [27] (cf. [24, Sections 6, 7]) we have the sequence of homomor-
phisms of O-modules

E(F ) ≃ Morµd
(C,E) → Homµd

(JC , E) ≃ Hom(Ek, E) ≃ End(E)k. (1)

The first homomorphism maps P 7→ φP through φ in a clear way. The kernel
of the second one consists of constant morphisms, which implies the equality
r = 2k. At last, the third one is not in any way a canonical isomorphism.

Likewise, we possess the sequence starting from

E
(
F (s)

)
≃ E

(
F (s)

)
≃ Mor(C,E).

Looking ahead, this O-module gives an advantage over E(F ) whenever the rank
of the former is greater than that of the latter. Indeed, in Algorithm 1 one can
evaluate any (not necessarily µd-equivariant) covers ψ1, · · ·, ψn : C → E that
are independent over O. However, E

(
F (s)

)
is an awkward object that is more

difficult to analyze than E(F ). In Section 5.1 we carry out such an analysis in a
simple example.

3 New generation method and its running time

Let us keep the notation of the previous section. At the same time, consider an
arbitrary cyclic Fq-cover χ : C → P1 of degree m | q − 1. In other words, the
curve can be represented in the form C : vm = f(u) ⊂ A2

(u,v) for some f ∈ Fq[u]
without roots of multiplicity ⩾ m. In particular, the earlier coordinates t, s are
expressed via rational Fq-functions in u, v and vice versa: (t, s) = τ(u, v) and
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(u, v) = τ−1(t, s). When m = d, for our purposes, it will be sufficient to take
f = c(t) (or, equivalently, χ = prt) and τ = id.

Pick any points P1, · · ·, Pn ∈ E(F ) \ E(F )tor linearly independent over O.
Given u ∈ Fq, the condition Et ≃Fq E evidently amounts to the fact that v =
m
√
f(u) ∈ Fq, unless τ(u, v) is meaningless or Et is singular. If actually v ∈

Fq, we obtain the n points Pi(t) ∈ Et(Fq) ≃ E(Fq) at least for integral Pi.
Since in discrete logarithm cryptography the group E(Fq) is (almost) prime, the
specialized points (very often) become dependent for n > 1. However, we do not
see a non-trivial relation between them. Finally, whenever G ⊊ E(Fq), it remains
to clear the cofactor to definitely fall into G, but the resulting points are still
“independent”.

It is worth avoiding torsion points Pi, because they and hence Pi(t) have tiny
orders with respect to ℓ. We also emphasize that the points must be independent
precisely over O, and not just over Z. Although 1, ϕ are linearly independent
endomorphisms, their restrictions on G are not. Indeed, from G ≃ Z/ℓ it follows
that End(G) ≃ Fℓ. On the other hand, in practice G = E(Fq)[ℓ]. As a conse-
quence, there exists λ ∈ Fℓ such that ϕ(P ) = λP for all P ∈ G. In other terms,
λ is a root of the characteristic polynomial χϕ ∈ Fℓ[x], i.e., λ is an eigenvalue of
ϕ|E[ℓ]. Eventually, knowing χϕ, we can determine λ with 50-percent confidence
(100-percent one when ϕ is easy to evaluate).

Realizing ϕ as an abstract element of Q(
√
D), we immediately get χϕ, be-

cause ϕ̂ is the complex conjugate of ϕ. In turn, the latter can be found via
randomized Bisson–Sutherland’s algorithm [7] (resp. deterministic Kohel’s one
[17, Section 25.4.2]). While in the worst case its running time is sub-exponential
(resp. exponential), the curve E is usually generated once and for all by a certain
regulator. It is not ruled out that ϕ is in its sleeve. That is why we should not rely
on the hardness of finding ϕ. In addition, implementors of elliptic cryptosystems
often choose E for which, conversely, ϕ is a small-degree endomorphism known
to all. This is done in order to enjoy the GLV (Galbraith–Lambert–Vanstone)
scalar multiplication method [17, Section 11.3.3].

Fix a hash function η : {0, 1}∗ → Fq. We need to change u = η(seed||i),
where i ∈ N, while the desired requirement m

√
f(u) ∈ Fq is not met. So the new

generation method (formalized in Algorithm 1) is a priori non-constant-time.
Nevertheless, this is not dangerous as regards timing attacks, because seed||i
is public information. Frankly speaking, we have to continue sampling u when
we encounter one of the degenerate situations τ(u, v) = ∞, φt(x, y) = ∞, or
Pi(t) = ∞. They arise with negligible probability, so we do not pay attention to
them anymore, with the permission of the reader.

We have the power residue symbol
(
x
q

)
m

:= x(q−1)/m generalizing the Legen-

dre symbol (for m = 2). It is obviously a surjective homomorphism F∗
q → µm to

the group of all m-th roots of unity. As is well known, to determine whether f(u)

is an m-th residue in Fq it is sufficient to check the equality
( f(u)

q

)
m

= 1. It turns
out that for m ⩽ 11 computing the residue symbol is a much cheaper operation
due to [22] than extracting any root in Fq. Thus, unlike the generation method
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with a hash function H : {0, 1}∗ → E(Fq), we obtain a set of “independent”
Fq-points on E by extracting only one root in Fq (of degree m).

The same thought occurs in [41, Section 3] to speed up (de)compression in the
post-quantum protocol SIDH (Supersingular Isogeny Diffie–Hellman). Instead
of applying a constant-time encoding (essentially H) to an elliptic curve, the
authors of that article prefer to “subvert” it to produce at once two independent
(in the strict sense) points with high probability. They agree with us that a
randomized algorithm with one square root (and several Legendre symbols) is
faster on average than a deterministic one with two square roots in the same
field. This is especially relevant for SIDH, since the given protocol is deployed
over a highly 2-adic field.

Algorithm 1: New generation method

Data: a seed ∈ {0, 1}∗ and a hash function η : {0, 1}∗ → Fq,
an elliptic Fq-curve E and an elliptic Fq-surface E of the same j-invariant,
points P1, · · ·, Pn ∈ E(F ) \ E(F )tor independent over O,
a superelliptic curve C : vm = f(u) (where m | q − 1 and f ∈ Fq[u]) such that
E ≃ E over the function field Fq(C).
Result: n “independent” points in E(Fq).
begin

i := 0;
u := η(seed||i);
while

( f(u)
q

)
m

̸= 1 do
i := i+ 1;
u := η(seed||i);

end

v := m
√

f(u);
(t, s) := τ(u, v);
return φP1(t, s), · · ·, φPn(t, s).

end

We do not claim the authorship of the following lemma, but we prove it for
the sake of completeness.

Lemma 1. Let m | q − 1 and f ∈ Fq[u] be a polynomial without roots of multi-

plicity ⩾ m. Given a random u ∈ Fq, the probability that m
√
f(u) ∈ Fq equals

ρ :=
N

q
=

1

m
+O

( 1
√
q

)
, where N := #

{
u ∈ Fq | m

√
f(u) ∈ Fq

}
,

m, f are fixed, but q → +∞.

Proof. We are going to extend the reasoning of [13, Section 8.2.1] from the case
m = 2. As is customary, pa ∈ N stands for the arithmetic genus of C : vm = f(u).
Let n0 be the number of Fq-points on C of the form (u, 0) and n∞ be the number
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of those at infinity. Trivially, pa, n0, n∞ = O(1). Since C is known to be an
absolutely irreducible curve, we have the Weil–Aubry–Perret inequality

|#C(Fq)− (q + 1)| ⩽ 2pa
√
q [3,Corollary 2.4],

where n∞ is taken into account in #C(Fq). Therefore, #C(Fq)− q = O(
√
q).

For compactness, we use the auxiliary notation

α(u) :=

m−1∑
i=0

(f i(u)
q

)
m
, A :=

∑
u∈Fq

α(u).

From the equality (xm − 1)/(x− 1) =
∑m−1

i=0 xi it follows that

α(u) =


m if m

√
f(u) ∈ F∗

q ,

1 if f(u) = 0,

0 otherwise.

Consequently,

#C(Fq) = A+ n∞, N =
A+ n0(m− 1)

m
.

Eventually,

ρ− 1

m
=

A− q + n0(m− 1)

mq
=

#C(Fq)− n∞ − q + n0(m− 1)

mq
=

=
O(

√
q)− n∞ + n0(m− 1)

mq
= O

( 1
√
q

)
.

Lemma 2. The average-case complexity of Algorithm 1 is that of computing m
symbols

( ·
q

)
m

and one radical m
√
· in Fq.

Proof. We suggest to consider the probability ρk that for k ∈ N random in-
dependent elements ui ∈ Fq the root m

√
f(ui) ̸∈ Fq and for the (k + 1)-th one,

conversely, m
√
f(uk+1) ∈ Fq. By virtue of Lemma 1 we get:

ρk = xk · 1
m

=
(m− 1)k

mk+1
, where x :=

m− 1

m
.

Denote by X the random variable returning k + 1 with the probability ρk. It
corresponds to the number of symbols

( ·
q

)
m

arising during the work of our algo-
rithm.

By definition of average-case complexity, we need to compute the expected
value

E[X] =

∞∑
k=0

(k + 1)ρk =
1

m

∞∑
k=0

(k + 1)xk
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It is a classical fact that under the condition |x| < 1 (fulfilled for m ∈ N) the
geometric series

∑∞
k=0 x

k = 1/(1− x), hence

E[X] =
1

m

( ∞∑
k=0

xk+1
)′

=
1

m

( x

1− x

)′
=

1

m(1− x)2
= m.

Bearing in mind the final m-th root extraction, the lemma is proved.

Due to (1) the number n = r/2 ∈ N is the most optimal in Algorithm 1.
Besides, the smaller number m, simpler methods exist (over a general field Fq)
for finding

( ·
q

)
m

and m
√
·, not to mention Lemma 2. The minimal possible m is

the cyclic analogue

γc := min
{
deg(χ) | χ : C → P1 is a cyclic (i.e., Kummer) Fq-cover

}
of the gonality γ [28, Section 6.5.3] of the curve C. Trivially, 2 ⩽ γ ⩽ γc ⩽ d ⩽ 6.

Thus, we see that our generation method works more productively if the
fraction δ := r/γc is greater. It is natural to call it the relative Mordell–Weil
rank of E . Of course, this notion is useless when j(E) ̸∈ {0, 1728}, that is d = 2.
In the opposite case, it seems quite difficult to determine the exact value γc, so
it is reasonable to also define δ(χ) := r/deg(χ). Then δ = maxχ{δ(χ)}.

The problem of maximizing δ has much in common with a classic one of
pure mathematics about how big the conventional Mordell–Weil rank r can
theoretically be for elliptic surfaces. Over an algebraically closed field of zero
characteristic (or just C) the current record equals 68 for the surfaces Em : y2 =
x3 + tm + 1 such that 360 | m (see [32, Section 13.2]). Be careful, there is a
discrepancy with our previous notation Et of a fiber.

Circumstances are drastically different in a prime characteristic p. There is no
upper bound on r in the class of non-isotrivial surfaces [39], whose j-invariants
are always ordinary. The same is true for (isotrivial) surfaces of supersingular
j-invariants [38]. In fact, among those it is enough to confine to Epe+1 (where
e ∈ N) as shown in [33]. Surprisingly, in accordance with the articles [8], [12]
the rank r can be made arbitrarily large even in the class of isotrivial surfaces
of ordinary j-invariants. However, it is not clear how constructive the results
established in those articles.

4 The case of j-invariant 0

Hereafter we focus on elliptic curves of j-invariant 0, that is a = a(t) = 0, because
they are popular in practice. Since we deal only with ordinary curves, 3 | q − 1
or, equivalently, a primitive cubic root ω = (−1+

√
−3)/2 of unity lies in Fq (see

[36, Example V.4.4]). There is on E, E the automorphism [ω](x, y) = (ωx, y) of
order 3 and moreover O = Z[ω].

For any m | q − 1 and c ∈ F∗
q consider the twist Em : y2 = x3 + tm + c of

the aforementioned elliptic surface. Remarkably, the group Em(F ) is torsion-free
regardless of m. Further, for Em to be a rational surface it is necessary and
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sufficient that m ⩽ 6. These and other details about the surfaces Em can be
found in [33]. And the general theory of rational elliptic surfaces is discussed,
e.g., in [32, Chapter 7].

It is also natural to denote the curve C from the previous sections by Cm :
bs6 = tm+c. Its geometric genus g(Cm) can be computed via a formula from [28,
Section 5.1]. In this article we decided to focus only on the case m ⩽ 6, because
it is the simplest and investigated in the literature. For instance, C6 is a twist of
the Fermat sextic curve [6, Proposition 7], [27, Example 4.3]. We hope to study
the opposite case m > 6 in the future articles. So from now on, we represent
the curve in the form Cm : tm = bs6 − c. In terms of Section 3 this means that
f = bs6 − c, i.e., χ = prs and (t, s) = (v, u).

Table 1 exhibits main information about the rational surfaces Em over Fq.
We provide it for the convenience of the reader, no more no less. First, (up to
an isomorphism) the Mordell–Weil lattices Em(F ′) are dual to some root lattices
(E8 is self-dual). By the way, a good survey of root lattices and their dual ones
is given in [32, Section 2.3]. And second, the column dmin (resp. disc) contains
the minimum norm (resp. discriminant) of the lattices.

m Em(F ′) δ(χ) dmin disc g(Cm)

1 0 0 0

2 A∗
2 1 2/3 1/3 2

3 D∗
4 4/3 1 1/4 4

4 E∗
6 3/2 4/3 1/3 7

5
E8

8/5
2 1 10

6 4/3

Table 1. The rational surfaces Em/Fq

Note that 0 < 1 < 4/3 < 3/2 < 8/5 for the values from the column δ(χ).
For Algorithm 1 the surface E6 does not provide any advantage with respect to
E3. That is why we do not consider it in detail. In turn, the surface E5 is the
best. Unfortunately, 5 ∤ q − 1 for Pasta curves, hence for them we have to be
content with E4. So we are able to generate 3 “independent” Fq-points on E in
such a way that the average running time coincides with that of computing 4
symbols

( ·
q

)
4
and one quartic root in Fq. The latter can be obviously represented

as 2 successive square roots. Alternatively, one can apply (a variation of) the
Adleman–Manders–Miller algorithm in order to directly find 4

√
·.

It is time to remind that Pasta curves were designed, taking into account
the existence of Fq-isogenies of small degree (namely 3) from auxiliary elliptic
curves of j-invariants different from 0. As a result, the state-of-the-art hash
function for Pasta curves is the Wahby–Boneh hash function HWB [40] based on
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the simplified SWU (Shallue–van de Woestijne–Ulas) one [15, Section 6.6.2]. It
requires to compute one square root in Fq during the execution.

As we said before,
√
· (as well as 4

√
·) is a laborious operation over highly

2-adic fields and Pasta curves are defined over such fields. Fortunately, their
fields Fq are not highly 3-adic (more concretely, 27 ∤ q− 1). Therefore, the cubic
root extraction in Fq can be performed by one exponentiation by virtue of [11,
Proposition 1]. Thus, instead of E4, it might be wise to use the surface E3 to
obtain 2 “independent” points at the price of 3 symbols

( ·
q

)
3
and one cubic root

in Fq.
Finally, the surface E2 is useless, because we always have the opportunity to

exploit the more advantageous surface E3. Indeed, we are not aware of practical
situations in which Fq is a highly 3-adic field and at the same time 4, 5 ∤ q − 1.
Even if this situation occurs (and HWB is not applicable), it is enough to use
the universal SW hash function [13, Sections 8.3.4, 8.4.2] with the same running
time as for the method built on E2.

To sum up, methods of generating n “independent” Fq-points on elliptic
curves of j-invariant 0 are exhibited in Table 2. To justify its bottom row, in
the next section we will demonstrate that for all m ⩽ 5 there is c ∈ F∗

q for

which the Mordell–Weil lattices of Em/Fq and Em/Fq coincide. To be precise, we
will explicitly construct r (resp. r/2) minimal points Pi ∈ Em(F ) independent
over Z (resp. Z[ω]). We are guided by the fact that the size of point formulas is
proportional to their canonical height. Furthermore, Pi form a basis (cf. [29]),
although this property is not applied anywhere by us.

method n average complexity conditions on q

classical with H : {0, 1}∗ → E(Fq) 1 [25, Tables 1-2] (
√
· for HWB)

new with Em, where 2 ⩽ m ⩽ 5 m− 1 m
( ·
q

)
m

+ m
√
· m | q − 1

Table 2. Generation methods for elliptic Fq-curves E of j-invariant 0

5 Linearly independent points in Em(F )

In the current section we tacitly resort to the computer algebra system Magma.
The corresponding code is loaded on the web page [26]. Besides, we will regularly
use a folklore result that, given a pair of lattices L′ ⊂ L of the same rank, the
squared index [L : L′]2 = disc(L′)/disc(L). In particular, L = L′ if and only if
disc(L) = disc(L′).

5.1 The case m = 2

Assume that 3
√
c ∈ Fq. It is readily seen that the points Pi := (−ωi−1 3

√
c, t)

belong to E2(F ). Any two of them are clearly independent over Z and dependent
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over Z[ω]. The height pairing on the sublattice ⟨P1, P2⟩ ⊂ E2(F ) is given by the
Gram matrix

M =


2

3
−1

3

−1

3

2

3

,
where the i-th row and column correspond to Pi. Since det(M) = 1/3 = disc(A∗

2),
the minimal points P1, P2 in fact constitute a Z-basis of E2(F ) = E2(F ′) ≃ A∗

2.
Consequently, P := P1 is a generator over Z[ω].

In comparison with m > 2, the case under consideration is easier, hence let’s
dwell on it in more detail. The curve C2 : t

2 = bs6 − c is a famous hyperelliptic
curve of geometric genus 2 (see, e.g., [6, Example 1]). There are two quadratic
Fq-covers

φP : C2 → E (s, t) 7→
(− 3

√
c

s2
,
t

s3

)
,

where
E : y2 = x3 + b,

φ′ : C2 → E′ (s, t) 7→ (bs2, bt), E′ : y2 = x3 − b2c.

Notice that φP ∈ Morµ6
(C2, E) as always, but φ′ ̸∈ Morµ6

(C2, E
′). This imme-

diately implies independency of φP , φ
′ over Z[ω] after identifying the curves E,

E′ by an isomorphism, which exists at most over Fq6 . In other words, JC2 ∼Fq
E×E′ ∼Fq6 E

2.

By analogy with the sequence (1), there are two Fq-covers C2 → E indepen-
dent over Z[ω] if and only if

JC2 ∼Fq E
2 ⇔ E ∼Fq E

′ ⇔ E ≃Fq E
′ ⇔ 6

√
−bc ∈ Fq ⇔

√
−bc, 3

√
b ∈ Fq.

The first ⇔ takes place according to uniqueness (up to an Fq-isogeny) of the
Jacobian decomposition into simple components. The second one follows from
the fact that E, E′ are ordinary twists of each other. The remaining ones are
evident. The restriction

√
−bc ∈ Fq is surmountable by picking c = −b3. But

despite this, for many curves E (including Pasta curves) 3
√
b ̸∈ Fq.

5.2 The case m = 3

From the proof of [33, Proposition 5.2] we know that the sought points in E3(F )
have the form (x, y) = (a1t + a0, b1t + b0) for some ai, bi ∈ Fq. Substituting it
into the equation of E3, we get the points

P1 :=
(
−t,

√
−3·u3

18

)
, P2 :=

(
−t+ u2

3
, ut− u3

6

)
,

where u := 6
√
−108c, as well as P3 := [ω]P1 and P4 := [ω]P2. Note that u ∈ Fq if

and only if
√
c, 3

√
4c ∈ Fq. Of course, it is sufficient to just take c = −1/108 or,

equivalently, u = 6
√
1.
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The height pairing on the sublattice ⟨Pi⟩4i=1 ⊂ E3(F ) is given by the Gram
matrix

M =



1 0 −1

2

1

2

0 1 −1

2
−1

2

−1

2
−1

2
1 0

1

2
−1

2
0 1


,

where the i-th row and column correspond to Pi. Since det(M) = 1/4 = disc(D∗
4),

the minimal points Pi constitute a Z-basis of E3(F ) = E3(F ′) ≃ D∗
4. As a result,

P1, P2 do a Z[ω]-basis.

5.3 The case m = 4

In this section, i :=
√
−1 ∈ Fq. Also, we need the values v := 26

√
3 − 45 and

u :=
12
√
263vc. The surface E4 over a non-closed field is discussed in the article

[34]. From there we know that one can search for the desired points from E4(F )
in the form (x, y) = (a1t+ a0, t

2 + b1t+ b0), substituting it into the equation of
E4. In addition to P1 := (− 3

√
c, t2), we find a point P2 with the coordinates

x2 := ut+

√
3 + 3

12
u4, y2 := t2 +

u3

2
t+

√
3 + 2

8
u6

and P3(t) := −P2(it). Obviously, u ∈ Fq if and only if
4
√
223vc, 3

√
3vc ∈ Fq. Inter

alia, 3
√
c ∈ Fq, because 3

√
3v = 2

√
3 − 3. Of course, it is enough to just pick

c = 1/(263v) or, equivalently, u = 12
√
1.

As usual, there are equally the counterparts P3+j := [ω]Pj , where 1 ⩽ j ⩽ 3.
The height pairing on the sublattice ⟨Pk⟩6k=1 ⊂ E4(F ) is given by the Gram
matrix M such that

3M =



4 −2 −2 −2 1 1

−2 4 1 1 −2 1

−2 1 4 1 −2 −2

−2 1 1 4 −2 −2

1 −2 −2 −2 4 1

1 1 −2 −2 1 4


,

where the k-th row and column correspond to Pk. Since det(M) = 1/3 =
disc(E∗

6), the minimal points Pk constitute a Z-basis of E4(F ) = E4(F ′) ≃ E∗
6.

As a result, Pj do a Z[ω]-basis.
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5.4 The case m = 5

As well as E4, the surface E5 over a non-closed field is studied in article [34] on
which we rely. First of all, possessing ζ := 5

√
1 ∈ Fq, ζ ̸= 1, we besides have the

root
√
5 = 2ζ3 + 2ζ2 + 1. Also, we need the values

v :=

√
3(
√
5 + 5)

2
= ζ2(ζ − 1)

√
−3,

θ := 564300 + 252495
√
5 + 170252·v + 76074

√
5·v, u := 30

√
60·θc.

Without further ado, one can just take c = 1/(60·θ), that is u = 30
√
1.

It turns out to be enough to confine to points of the form

Qu =
( 1

u2
t2 + a1t+ a0,

1

u3
t3 + b2t

2 + b1t+ b0

)
.

As earlier, the substitution ofQu into the equation of E5 gives rise to a polynomial
system. After that, we find its solution

a0 := − (8289ζ3 + 35113ζ2 + 43402ζ + 21701)ω + (26238ζ3 + 39650ζ2 + 21701ζ − 2804)

15
u10,

a1 := − (58ζ3 + 246ζ2 + 304ζ + 152)ω + (184ζ3 + 278ζ2 + 152ζ − 19)

5
u4,

b0 :=
12a0a1 − a31u

2 − 12a0u
4 + 15a21u

6 + 9a1u
10 + u14

16
u,

b1 :=
12a0 + 3a21u

2 − 6a1u
6 − u10

8u
, b2 :=

3a1 + u4

2u
.

Consider the points Pi := Qζi−1u and P4+i := [ω]Pi = Qωζi−1u, where 1 ⩽
i ⩽ 4. The height pairing on the sublattice ⟨Pk⟩8k=1 ⊂ E5(F ) is given by the
Gram matrix

M =



2 −1 0 0 −1 1 0 0

−1 2 −1 0 0 −1 1 0

0 −1 2 −1 0 0 −1 1

0 0 −1 2 0 0 0 −1

−1 0 0 0 2 −1 0 0

1 −1 0 0 −1 2 −1 0

0 1 −1 0 0 −1 2 −1

0 0 1 −1 0 0 −1 2



,

where the k-th row and column correspond to Pk. Since det(M) = 1 = disc(E8),
the minimal points Pk constitute a Z-basis of E5(F ) = E5(F ′) ≃ E8. As a result,
Pi do a Z[ω]-basis.



Generation of “independent” points by means of Mordell–Weil lattices 15

Acknowledgements. The author expresses his gratitude to Alistair Stew-
art, Antonio Sanso, Geoffroy Couteau, Jeffrey Burdges, and Sergey Vasilyev for
their useful comments on the role of generating “independent” points on elliptic
curves in real-world vector commitment schemes.

References

1. Adleman, L., Manders, K., Miller, G.: On taking roots in finite fields. In: Sympo-
sium on Foundations of Computer Science (SFCS 1977). pp. 175–178 (1977)

2. Aranha, D.F., El Housni, Y., Guillevic, A.: A survey of elliptic curves for proof
systems (2022), https://eprint.iacr.org/2022/586

3. Aubry, Y., Perret, M.: A Weil theorem for singular curves. In: Pellikaan, R., Per-
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