
Tight Bounds on the Randomness Complexity

of Secure Multiparty Computation∗

Vipul Goyal
Carnegie Mellon University

and NTT Research
vipul@cmu.edu

Yuval Ishai
Technion

yuvali@cs.technion.ac.il

Yifan Song
Carnegie Mellon University

yifans2@andrew.cmu.edu

June 20, 2022

Abstract

We revisit the question of minimizing the randomness complexity of protocols for secure multiparty
computation (MPC) in the setting of perfect information-theoretic security. Kushilevitz and Mansour
(SIAM J. Discret. Math., 1997) studied the case of n-party semi-honest MPC for the XOR function with
security threshold t < n, showing that O(t2 log(n/t)) random bits are sufficient and Ω(t) random bits
are necessary. Their positive result was obtained via a non-explicit protocol, whose existence was proved
using the probabilistic method.

We essentially close the question by proving an Ω(t2) lower bound on the randomness complexity of
XOR, matching the previous upper bound up to a logarithmic factor (or constant factor when t = Ω(n)).
We also obtain an explicit protocol that uses O(t2 · log2 n) random bits, matching our lower bound up
to a polylogarithmic factor. We extend these results from XOR to general symmetric Boolean functions
and to addition over a finite Abelian group, showing how to amortize the randomness complexity over
multiple additions.

Finally, combining our techniques with recent randomness-efficient constructions of private circuits,
we obtain an explicit protocol for evaluating a general circuit C using only O(t2 · log |C|) random bits, by
employing additional “helper parties” who do not contribute any inputs. This upper bound too matches
our lower bound up to a logarithmic factor.

1 Introduction

The randomness complexity of probabilistic algorithms and distributed protocols is an important complexity
measure that has been the subject of a large body of research. From a practical point of view, the design
of algorithms and protocols that use a minimal amount of randomness is motivated by the difficulty of
generating high-quality randomness from physical sources. While pseudorandomness provides a generic way
of reducing the amount of randomness in a computational setting, this solution (besides requiring unproven
cryptographic assumptions) is not always practical, especially in a distributed setting and when parties may
be subject to resetting attacks. This motivated a line of work on minimizing the amount of randomness
used by secure cryptographic hardware [ISW03, IKL+13, ADF16, BBD+16, FPS17, CGZ20, GIS22a]. From
a theoretical perspective, the goal of minimizing the use of randomness is a fundamental challenge that has
driven many important developments in computer science, including a rich theory of pseudorandomness and
randomness extraction.

In this work, we study the randomness complexity of secure multiparty computation (MPC) in the simplest
setting: perfect security against a passive (semi-honest) adversary who may corrupt up to t parties. Such
an MPC protocol allows n parties, each holding a local input xi ∈ Di, to jointly compute a function

∗This is a full version of [GIS22b].

1

f : D1 × D2 × . . . × Dn → Z of their inputs by exchanging messages over secure point-to-point channels.
At the end of the protocol, all parties should learn f(x1, x2, . . . , xn). We say that the protocol is t-secure if
every set of at most t parties jointly learn nothing beyond what follows from their inputs and the output. To
achieve this goal, the parties may toss random coins at any time during the protocol’s execution, possibly
depending on their inputs and the messages they receive. The randomness complexity of the protocol is the
total number of random bits used by all parties.

Classical MPC protocols for this setting [BGW88, CCD88] can compute every function f with randomness
complexity Õ(s · t2), where s is the Boolean circuit size of f , as long as t < n/2. (For bigger thresholds t,
most functions cannot be realized at all in the information-theoretic setting.) In the useful special case of
the XOR function, where f(x1, x2, . . . , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn (or more generally, addition over a finite
Abelian group), the “textbook” protocol from [Ben86, CK93] requires O(nt) random bits for any t < n.

The question of minimizing the randomness complexity of MPC has been the topic of a fairly large
body of work [KOR96, KM97, KR98, BDPV99, CKOR00, GR02, JLR03, KOR03, GR05, BGP07, IKL+13,
DPP16, KOP+21]. While some of these works focus on the minimal security thresholds of t = 1 or t = 2,
here we are interested in how the randomness complexity grows with t.

We will be mainly interested in the simple special case of computing the XOR function and, more
generally, addition over finite Abelian groups, but will also consider other classes of functions f , including
symmetric functions and even general functions. The case of addition is particularly well motivated because
of its usefulness for many applications, including secure voting [Ben86], anonymous communication [Cha88],
linear sketching [IMSW09], privacy-preserving analytics [CB17], federated learning [BIK+17], and more.

The randomness complexity of XOR was studied by Kushilevitz and Mansour [KM97], who proved that
O(t2 log(n/t)) random bits are sufficient and Ω(t) random bits are necessary. This leaves a quadratic gap
between the two bounds. Another question left open by [KM97] is the existence of an explicit protocol
meeting their upper bound. The positive result was obtained via a non-explicit protocol, relying on a
combinatorial object that can either be generated by an efficient probabilistic construction (with small but
nonzero failure probability) or generated deterministically in super-polynomial time. Blundo et al. [BDPV99]
obtain a lower bound of Ω(t2/(n−t)), which is asymptotically matched by the upper bound of [Ben86, CK93]
when t = n− Ω(1), but still leaves a quadratic gap when t ≤ (1− ϵ)n (e.g., t = 0.99n).

1.1 Our Contribution

In this work, we settle the main open questions about the randomness complexity of t-secure MPC for XOR
and addition over finite Abelian groups, and obtain similar results for other functions. Concretely, we obtain
the following results.

Lower bounds. We prove an Ω(t2) lower bound on the randomness complexity of XOR, matching the
previous upper bound of Kushilevitz and Mansour [KM97] up to a logarithmic factor (or even a constant
factor when t = Ω(n)). Our lower bound extends to arbitrary symmetric Boolean functions, including AND
and majority. It applies also when the output is revealed to a strict subset of the parties and even in the
case where there are additional participating parties who do not hold an input.

Our lower bounds do not apply to statistically secure (let alone computationally secure) MPC for the
following inherent reason: in the setting of statistical privacy, one of the parties can pick a random committee
P of σ parties, for a statistical security parameter σ, and the parties can securely add their inputs by secret-
sharing them among the parties in P. This folklore protocol, which is statistically 2−Ω(σ)-secure against any
(non-adaptive) adversary corrupting t = 0.99n parties, has randomness complexity O(n ·σ), which beats our
Ω(n2) lower bound when σ = o(n). This explains the quick deterioration of the information-theoretic lower
bound technique from [BDPV99], which is robust to small statistical deviations, when t gets farther away
from n. Indeed, our lower bound proof relies on combinatorial rather than information-theoretic methods.

Explicit upper bounds for XOR and addition. To complement our lower bounds, we obtain an explicit
protocol for XOR that uses O(t2 · log2 n) random bits. This matches our lower bound up to a polylogarithmic

2

factor and is at most a polylogarithmic factor worse than the non-explicit protocol from [KM97]. We extend
the protocol from XOR to general symmetric Boolean functions as well as addition over any finite Abelian
group, and show that t additions can be performed using only Õ(t2) random bits, namely essentially for the
same price as one.

Upper bounds for general functions. Finally, building on the techniques from recent randomness-
efficient constructions of private circuits [GIS22a], we obtain an explicit protocol for evaluating a general
circuit C using only O(t2 · log |C|) random bits, but in an easier setting that allows for additional “helper
parties” who do not contribute any inputs but still participate in the protocol. This upper bound too matches
our lower bound up to the logarithmic factor, and gives at least a factor Ω(t) improvement over previous
randomness-efficient MPC protocols from [CKOR00, IKL+13].

We leave open the question of characterizing the randomness complexity of general MPC without helper
parties, as well as closing the remaining (polylogarithmic) gaps between our lower bounds and upper
bounds. Evidence for the difficulty of these questions in some parameter regimes was given by Kushile-
vitz et al. [KOR96], who showed a two-way relation between the randomness complexity of f for t = 1 and
the circuit complexity of f . Finally, we also leave open the question of extending our results to alternative
MPC models; see Appendix B for discussion of such models.

2 Technical Overview

In this section, we give an overview of the technical ideas behind the main results.

2.1 Background: Secure Multiparty Computation

We consider the standard model of information-theoretic MPC: a set of n parties {P1, P2, . . . , Pn}, each
holding an input xi from a finite domain Di, jointly run a protocol Π to compute a function f : D1 ×D2 ×
. . .×Dn → Z. At the end of the protocol, all parties will receive the function output f(x1, x2, . . . , xn).

During the protocol execution, when needed, each party can toss a coin and use the resulting random
bit in the computation. The randomness complexity of the protocol Π is measured by the total number of
random bits that are used in the worst case during the protocol execution.

In the following, we will use x = (x1, x2, . . . , xn) to denote the input, and r = (r1, r2, . . . , rn) to denote
the random tapes of all parties. The function output is denoted by f(x), and an execution of the protocol
Π with input x and random tapes r is denoted by Π(x, r).

We consider the standard definition of correctness and semi-honest security.

• The correctness of the protocol Π requires that, when all parties honestly follow the protocol, they will
finally output f(x) at the end of the protocol.

• Let t be the number of corrupted parties. The semi-honest security of the protocol Π requires that the
joint view of any set of t parties can be perfectly simulated1 by their inputs and the function output.

Note that the semi-honest security implies that, for any set T of t parties, and for all x,x′ such that
f(x) = f(x′) and xi = x′

i for all i ∈ T , the distribution of the joint view of parties in T of a random
execution with input x is identical to that of a random execution with input x′.

2.2 Randomness Lower Bound for XOR and Symmetric Functions

To better exhibit our idea, we begin with an n-ary XOR function for simplicity. Concretely, we consider the
function f : ({0, 1})n → {0, 1} defined by

f(x1, x2, . . . , xn) = x1 ⊕ x2 ⊕ . . .⊕ xn.

1Whereas in our positive results the simulator is efficient, our negative results apply even with a computationally unbounded
simulator.

3

Suppose Π is an MPC protocol that computes f with (semi-honest) security threshold t. Our result shows
that any such protocol must use Ω(t2) random bits, improving the previous Ω(t) lower bound from [KM97]
and matching their O(t2 log(n/t)) upper bound up to at most a logarithmic factor.

We start with the following known fact:

Fact 1. For every Pi, the messages exchanged with Pi together with f(x) fully determine its input xi.

A similar fact was proved and used in [CK93] to show a lower bound on the communication complexity
of the XOR function, and in [BDPV99] to show a lower bound on the randomness complexity of the XOR
function.2

Ideas Behind Fact 1. To see why this fact is true, suppose that there are two executions, Π(x, r) and
Π(x′, r′), such that xi and x′

i are different, but the messages exchanged with Pi and the function output are
identical. Now consider a third execution Π(x̃, r̃) where x̃ = x except that x̃i = x′

i, and r̃ = r except that
r̃i = r′i. I.e., the third execution Π(x̃, r̃) is the first execution Π(x, r) except that we replace Pi’s input and
random tape by those in the second execution Π(x′, r′). Consider the messages exchanged with Pi in these
three executions:

• From the point of view of the party Pi, Pi uses the same input and random tape in Π(x′, r′) and
Π(x̃, r̃). Therefore, if Pi always receives the same messages from other parties in these two executions,
he cannot distinguish these two executions, and thus will always send the same messages to other
parties.

• Similarly, from the point of view of all other parties {Pj}j ̸=i, they use the same input and random tapes
in Π(x, r) and Π(x̃, r̃). Therefore, if {Pj}j ̸=i always receive the same messages from Pi in these two
executions, they cannot distinguish these two executions, and thus will always send the same messages
to Pi.

Note that before the first message exchanged with Pi, Pi cannot distinguish Π(x′, r′) and Π(x̃, r̃), and all
other parties {Pj}j ̸=i cannot distinguish Π(x, r) and Π(x̃, r̃). It implies that the first message exchanged
with Pi is always the same in these three executions. Thus, by induction, the messages exchanged with Pi

are identical in these three executions.
It follows that parties other than Pi cannot distinguish between Π(x, r) and Π(x̃, r̃) at the end of the

protocol, which means that they will output the same value in both executions. However, since x and x̃
only differ in the i-th input, for the XOR function f , we must have f(x) ̸= f(x̃). It means that at least one
of Π(x, r) and Π(x̃, r̃) outputs an incorrect result, which contradicts with the correctness of Π. Thus, Fact
1 holds.

With Fact 1, we can view the messages exchanged with Pi together with the function output as an
encoding of Pi’s input xi. Moreover, we observe that this encoding is t-private, i.e., the distribution of any
t messages in a random codeword of xi is independent of xi.

Fact 2. For every Pi, the messages exchanged with Pi together with f(x) form a t-private encoding of xi.

Ideas Behind Fact 2. Intuitively, it follows from the semi-honest security of Π: for any t messages, the
joint view of the senders and the receivers (other than Pi) of these t messages should not reveal the input of
Pi. To formally argue it, we consider the following encoding scheme:

• Let x = (0, 0, . . . , 0, 1), i.e., all inputs are 0 except the last input is 1. And let x′ be the input subject
to x′

i = 1 and x′
j = 0 for all j ̸= i. Then f(x) = f(x′) = 1 but xi ̸= x′

i.

• The encoding of 0 is the messages exchanged with Pi in a random execution with input x. And the
encoding of 1 is the messages exchanged with Pi of a random execution with input x′.

2Blundo et al. [BDPV99] focus on a broader class of functions which they refer to as functions with sensitivity n. The XOR
function is a concrete instance in this class.

4

For t ≤ n − 2 and any t messages, we want to show that the distribution of these t messages in a random
codeword of 0 is identical to that in a random codeword of 1. To this end, we consider the set T of t parties
which are senders or receivers (other than Pi) of these t messages.

If Pn ̸∈ T , then we have xj = x′
j = 0 for all j ∈ T . Since f(x) = f(x′), by the semi-honest security of Π,

the distribution of the joint view of parties in T of a random execution with input x is identical to that of a
random execution with input x′. Note that these t messages are in the joint view of parties in T . Therefore,
the distribution of these t messages in a random execution with input x is identical to that in a random
execution with input x′.

When Pn ∈ T , the above argument fails because xn = 1 while x′
n = 0. To fix it, we consider another

input x̃ as an intermediate step towards proving the t-privacy. Since t ≤ n− 2, there is a party Pi⋆ which is
not in T

⋃
{Pi}. We choose x̃ subject to x̃i⋆ = 1 and x̃j = 0 for all j ̸= i⋆. Then f(x) = f(x′) = f(x̃) = 1.

On one hand, since xi = x̃i = 0 and f(x) = f(x̃), by the semi-honest security of Π, Pi cannot distinguish
a random execution with input x from a random execution with input x̃. Note that these t messages are
in the view of Pi. Therefore, the distribution of these t messages in a random execution with input x is
identical to that in a random execution with input x̃.

On the other hand, since x′
j = x̃j = 0 for all j ∈ T and f(x′) = f(x̃), by the semi-honest security of

Π, {Pj}j∈T cannot distinguish a random execution with input x′ from a random execution with input x̃.
Note that these t messages are also in the joint view of parties in T . Therefore, the distribution of these t
messages in a random execution with input x′ is identical to that in a random execution with input x̃.

Combining these two parts together, we have shown that the above encoding scheme is t-private.
With Fact 2, we are interested in the randomness complexity of a t-private encoding scheme. In our

work, we show that for any t-private encoding scheme for a single bit, the support of 0 (i.e., the set of all
possible codewords of 0) is of size at least 2t. In Section 2.2.1, we will discuss how we prove this result.
Jumping ahead, this implies that when the input is x, the view of each party Pi has at least 2

t possibilities.

Connection to Randomness Complexity. The lower bounds from [KR98, GR05] rely on the fact that
for a fixed input x, if the protocol execution with input x has 2d different transcripts (i.e., the joint view of
all parties), then the protocol uses at least d random bits. Thus, the result that the view of Pi has at least
2t possibilities implies that the protocol requires at least t random bits.

Final Piece. Indeed, the above result is when we only consider the view of a single party. We note that,
if we fix the view of the first party P1 (by corrupting P1), the protocol Π effectively computes the XOR
function for the remaining n− 1 parties that is secure against t− 1 parties. In particular, we show that the
above argument continues to work for the view of the second party: given the view of P1, the view of P2 has
at least 2t−1 possibilities. In general, we show the following:

Fact 3. For all i ∈ {1, 2, . . . , t}, for a fixed input x and given the views of the first i− 1 parties, the view of
Pi has at least 2

t−i+1 different possibilities.

Thus, for a fixed input x, the joint view of the first t parties has at least
∏t

i=1 2
t−i+1 = 2t(t+1)/2 different

possibilities. This implies that the protocol Π requires Ω(t2) random bits.
We note that this lower bound argument holds even if the output is only given to a strict (nonempty)

subset of the parties and even if there is an arbitrary number of additional “helper” parties who do not have
an input.

Extending to Symmetric Functions. We generalize the previous lower bound to an arbitrary (nontriv-
ial) symmetric Boolean function. For this, it suffices to prove that the above three facts still hold.

• For Fact 1, the main task is to find two executions Π(x, r) and Π(x′, r′) such that (1) xi ̸= x′
i but

the messages exchanged with Pi together with the function output in Π(x, r) are identical to those in
Π(x′, r′), and (2) f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn) ̸= f(x′). We show that such two executions exist for

any symmetric function that outputs a single bit.

5

• For Fact 2, it relies on Fact 1 and the semi-honest security of the protocol. Beyond that, we also need
to find proper inputs x,x′ for the encoding scheme and x̃ that is used to prove the t-privacy of the
encoding scheme. We observe that for a symmetric function, we can continue to use the inputs we
construct above.

• For Fact 3, it follows from Fact 2 and the randomness complexity of t-private encoding schemes.

Thus, we show that for any non-constant n-ary symmetric function that outputs a single bit, any MPC
protocol requires Ω(t2) random bits.

2.2.1 Randomness Complexity of t-Private Encoding Schemes

Let (Enc, Dec) be a t-private encoding scheme for a single bit. Here t-privacy means that the distribution
of any t bits in a random codeword is independent of the input bit. Our goal is to show that the support
of 0 (i.e., the set of all possible codewords of 0) is of size at least 2t. Let supp(m) denote the support of
m ∈ {0, 1}. The lower bound is proved using the following simple inductive argument:

1. When t = 1, we show that the support of 0 is of size at least 2. Let c be a codeword of 0 and c′ be a
codeword of 1. By the correctness of the encoding scheme, c ̸= c′. Without loss of generality, assume
the first bits of c and c′ are different. Since the encoding scheme is 1-private, the distribution of the
first bit in a random codeword of 0 is identical to that in a random codeword of 1. Then the first bit
in a random codeword of 0 is not a constant bit. Otherwise, the first bit in a random codeword of 1
should be the same constant bit, which contradicts with the assumption that the first bits of c and c′

are different.

Since the first bit can take both 0 and 1, there are at least two codewords of 0. The statement holds
for t = 1.

2. Suppose the statement holds for t−1. With the same argument as above, there exists a bit in a random
codeword of 0 which is not a constant bit. Without loss of generality, assume that it is the first bit.

Since the encoding scheme is t-private, the distribution of any t bits in a random codeword of 0 is
identical to that in a random codeword of 1. Then, given the first bit, the encoding scheme is (t− 1)-
private. Thus, according to the induction hypothesis, there are at least 2t−1 codewords of 0 given
the first bit. Note that the first bit can take both 0 and 1, and in each case, there are at least 2t−1

codewords of 0 given the first bit. Thus, there are at least 2t codewords of 0. The statement holds for
t.

3. By induction, we conclude that |supp(0)| ≥ 2t.

In Appendix A we provide an alternative proof of a slightly weaker lower bound using Fourier analysis.
In contrast to the above argument, this proof also applies to (perfectly) t-private encoding schemes with
imperfect correctness.

2.3 Explicit Randomness Upper Bounds for XOR and Addition

In [KM97], Kushilevitz and Mansour gave an n-party MPC protocol for the XOR function with semi-honest
security against t corrupted parties, which uses O(t2 · log(n/t)) random bits. This upper bound matches our
lower bound, Ω(t2) random bits, up to (at most) a logarithmic factor. However, the construction in [KM97]
is non-explicit, relying on a combinatorial object that can either be generated by a probabilistic construction

(with small but nonzero failure probability) or generated deterministically in time (n/t)
O(t)

. In this part,
we introduce our techniques towards constructing an explicit n-party computation protocol for the XOR
function, which uses O(t2 · log2 n) random bits, and where the running time of all parties is polynomial in n.

6

Basic Protocol. We start with describing the construction in [KM97]. Following [KM97], we first assume
that there is an ideal functionality Frand that generates correlated random bits for all parties. The protocol
is as follows:

1. Frand first prepare n random bits r1, r2, . . . , rn subject to ⊕n
i=1ri = 0. We will specify the distribution

of these n bits later. Then Frand sends ri to Pi.

2. Each party Pi uses ri to mask its input xi by computing gi = xi ⊕ ri. Note that ⊕n
i=1gi = (⊕n

i=1xi)⊕
(⊕n

i=1ri) = ⊕n
i=1xi. Therefore, the task becomes to compute the XOR of g1, g2, . . . , gn.

3. From i = 2 to n, the party Pi receives the partial result Gi−1 = ⊕i−1
j=1gj from Pi−1 and computes

the partial result Gi = Gi−1 ⊕ gi. Then this result is sent to Pi+1. Thus, the last party Pn learns
Gn = ⊕n

i=1gi = ⊕n
i=1xi and distributes the function output to all other parties.

The correctness of the protocol follows from the description. As for security, note that when (r1, r2, . . . , rn)
are uniformly random subject to ⊕n

i=1ri = 0, (g1, g2, . . . , gn) are also uniformly random subject to ⊕n
i=1gi =

f(x), where f(x) is the function output. Thus, even learning all {gi}ni=1 reveals no information about
honest parties’ inputs. Therefore, the protocol is secure when (r1, r2, . . . , rn) are uniformly random subject
to ⊕n

i=1ri = 0.
Kushilevitz and Mansour [KM97] noted that, as long as the distribution of the joint view of corrupted

parties remains unchanged, we can relax the requirement of the distribution of r = (r1, r2, . . . , rn) without
breaking the security. Concretely, let r̃ = (r̃1, r̃2, . . . , r̃n) be uniformly random bits subject to ⊕n

i=1r̃i = 0.
Let View(Pi,x, r) denote the view of Pi in an execution with input x and random bits r. A sufficient
condition of maintaining the protocol security is that, for all x and for all set T of t parties, the random
variables r satisfy that

{View(Pi,x, r)}i∈T ≡ {View(Pi,x, r̃)}i∈T .

Note that View(Pi,x, r) contains (xi, ri, Gi−1, Gn) (Here Gn is the value received from Pn). Recall that
gi = xi ⊕ ri for all i ∈ {1, 2, . . . , n}. Given x, we are interested in (ri,⊕i−1

j=1rj ,⊕n
j=1rj). Let W =

{ri,⊕i−1
j=1rj}i∈T

⋃
{⊕n

j=1rj}. Then the above condition can be interpreted as

D(r,W) ≡ D(r̃,W),

where D(r,W) and D(r̃,W) refer to the distributions of the variables in W instantiated by r and r̃ respec-
tively.3

Based on this observation, Kushilevitz and Mansour [KM97] showed the existence of a sampling space of
r of size (n/t)O(t). Therefore, sampling a random r requires O(t · log(n/t)) random bits. Finally, to obtain a
protocol in the standard model, it is sufficient to realize Frand. This is done by letting each of the first t+1
parties sample a fresh copy of the random string r. Then all parties use the XOR of all random strings in
the protocol. Intuitively, since there are at most t corrupted parties, at least one copy of the random string
is generated by an honest party, which is unknown to the corrupted parties. Therefore, given the random
strings generated by corrupted parties, the XOR of all random strings has the same distribution as that
generated by Frand. In this way, Kushilevitz and Mansour [KM97] obtained an MPC protocol for XOR with
randomness complexity O(t2 · log(n/t)).

Parity Sharing Generator [GIS22a]. In [GIS22a], Goyal et al. generalized the approach of Kushilevitz
and Mansour [KM97] to support any order of computing the XOR of g1, g2, . . . , gn.

4 Similarly to [GIS22a],
our protocol is based on a tree Tr with n leaf nodes that represents a possible way of computing the parity
of n bits. However, unlike [GIS22a], for our explicit construction it is crucial that Tr be a low-depth full
binary tree (i.e., each node has either two children or no child). Then Tr has exactly n − 1 internal nodes
and logarithmic depth. The tree Tr defines the following order of computing the XOR of n bits: All parties

3This formalization is from [GIS22a].
4The work [GIS22a] focuses on the private circuits model of [ISW03]. However, it can be transformed to the setting of MPC.

7

start with n bits g1, g2, . . . , gn associated with all leaf nodes. Each time, Pi is responsible to compute the
bit associated with the i-th internal node by querying from other parties the bits associated with the two
children of the i-th internal node and XORing these two bits. Finally, Pn−1 computes the bit associated
with the root node, which is equal to

∑n
i=1 gi.

For a node v ∈ Tr, let gv denote the value associated with v, and Sv denote the set of all leaf nodes that
are descendants of v. Then {gv}v∈Tr satisfy that for all internal node v, gv =

∑
i∈Sv

gi. For a set T of t
corrupted parties, let V be the set of nodes such that for all v ∈ V , gv is in the joint view of all corrupted
parties. Note that the view of each party only contains gv’s for a constant number of nodes v. We have
|V | = O(t). Consider the set W := {⊕i∈Sv

ri | v ∈ V }. With a similar argument, a sufficient condition of
proving security is that, the random variables r satisfy that

D(r,W) ≡ D(r̃,W),

where r̃ = (r̃1, r̃2, . . . , r̃n) are uniformly random subject to ⊕n
i=1r̃i = 0.

To generate such random bits r, Goyal et al. [GIS22a] introduced the notion of parity sharing generators.5

Definition 1 (Access Set [GIS22a]). An access set A of a set of random variables {r1, r2, . . . , rn} is a set
of jointly distributed random variables satisfying the following requirements:

1. For all i ∈ {1, 2, . . . , n}, ri ∈ A.

2. Every variable in A is a linear combination of r1, r2, . . . , rn.

Definition 2 (Parity Sharing Generators [GIS22a]). Let G : {0, 1}m → {0, 1}n be a function, u =
(u1, u2, . . . , um) be a vector of random variables in {0, 1}m that are uniformly distributed, and r = (r1, r2, . . . , rn) =
G(u). Let A be an access set of the random variables {r1, r2, . . . , rn}. The function G is a t-resilient parity
sharing generator with respect to A if the following holds:

1. The output r = (r1, r2, . . . , rn) satisfies that r1 ⊕ r2 ⊕ . . .⊕ rn = 0.

2. Let r̃ = (r̃1, r̃2, . . . , r̃n) be a vector of random variables in {0, 1}n which are uniformly distributed
subject to r̃1 ⊕ r̃2 ⊕ . . .⊕ r̃n = 0. For any set W of t variables in A, the output r satisfies that

D(r,W) ≡ D(r̃,W),

where D(r,W) and D(r̃,W) denote the distributions of the variables in W when they are instantiated
by r and r̃ respectively.

Note that when we choose the access set A = {⊕i∈Sv
ri | v ∈ Tr}, the output of an O(t)-resilient parity

sharing generator with respect to A satisfies the sufficient condition. Thus, to obtain an explicit MPC
protocol for the XOR function, it is sufficient to construct an explicit parity sharing generator with respect
to A.

Explicit Construction of Parity Sharing Generators. For a set of random variables {r1, r2, . . . , rn}
and a full binary tree Tr with n leaf nodes, an access set A with respect to Tr is defined by A = {⊕i∈Sv

ri | v ∈
Tr}. We are interested in access sets that are based on full binary trees. Our construction uses a t-wise
independent pseudo-random generator in a black box way.

Our idea is to assign a bit to each node in Tr such that for all internal node v and its two children c0, c1,
the bit assigned to v is equal to the XOR of the bits assigned to c0 and c1. Then the bits associated with
the leaf nodes are the output. Note that the access set A consists of the bits associated with all nodes in Tr.
For a node v ∈ Tr, we use val(v) to denote the bit associated with v.

Let D be the depth of Tr. Our construction works as follows:

5In fact, Goyal et al. [GIS22a] introduced the stronger notion of robust parity sharing generators, but only gave a probabilistic
construction. See more discussion in Section 9.1.

8

1. We start with the root node. We set val(rt) = 0. This ensures that the XOR of the bits associated
with all leaf nodes is equal to 0.

2. From d = 2 to D, assume that we have assigned bits to nodes of depth d−1. Let ℓd denote the number
of nodes of depth d. Since Tr is a full binary tree, ℓd is even. We use c1, c1, . . . , cℓd to denote the nodes
of depth d such that for all i ∈ {1, 2, . . . , ℓd/2}, (c2i−1, c2i) are the two children of a node vi of depth
d− 1.

Since val(c2i) = val(c2i−1)⊕ val(vi), we only need to assign a bit to the node c2i−1 and then compute

the bit associated with c2i accordingly. For {c2i−1}ℓd/2i=1 , we use the output of a t-wise independent
PRG.

Consider a set W of t bits in A. Let V = {v | val(v) ∈W}. Then |V | = t. We want to prove that

D(r, {val(v)}v∈V) ≡ D(r̃, {val(v)}v∈V).

For a node v in Tr, we say v is a left node if v is a left child of some node in Tr. Similarly, we say v is a
right node if v is a right child of some node in Tr. Effectively, we only assign bits to all left nodes in Tr. For
each depth d ≥ 2, the bits associated with all left nodes of depth d are t-wise independent. Thus, we want
to find a set V ′ ⊂ Tr such that V ′ only contains left nodes and the bits in V ′ fully determine the bits in V .

Consider the following process:

• For each right node in V , since the bit associated with this node is determined by the bits associated
with its left sibling and its parent, we can remove this right node from V and add its left sibling and
its parent in V . We repeat the same step for its parent until the parent node is a left node or a root
node.

• Note that the bit associated with the root node is a constant 0. We can always remove the root node
from V .

In this way, we obtain the set V ′ that only contains left nodes such that the bits in V ′ fully determine the
bits in V . Thus, it is sufficient to prove that

D(r, {val(v)}v∈V ′) ≡ D(r̃, {val(v)}v∈V ′).

We observe that, to remove a right node in V , we may need to insert a left node of each depth. In other
words, for all d ≥ 2, removing a right node in V may insert at most 1 left node of depth d. Therefore, the
number of left nodes in V ′ is bounded by |V | = t. Recall that in our construction, we use t-wise independent
random bits for all left nodes of each depth. It means that the bits associated with nodes in V ′ are uniformly
random. Thus D(r, {val(v)}v∈V ′) is identical to the distribution of |V ′| random bits.

We can show that D(r̃, {val(v)}v∈V ′) is also identical to the distribution of |V ′| random bits. Intuitively,
this is because r̃ is already the most uniform output we can hope. Since {val(v)}v∈V ′ are uniformly random
bits when instantiated by r, they should also be uniformly random when instantiated by r̃. Thus, our
construction yields a t-resilient parity sharing generator.

Regarding the input size of our construction (i.e., the number of random bits), we need to invoke a t-wise
independent PRG for each depth. Therefore, the input size of our construction isD times the input size of a t-
wise independent PRG. It is well-known that when the output size is n, there is an explicit t-wise independent
PRG with input size O(t · log n). Also, we can choose to use a full binary tree of depth log n. Therefore, we
obtain an explicit construction of a t-resilient parity sharing generator that uses O(t · log2 n) random bits.
When we use our explicit construction to instantiate the MPC protocol for XOR from [KM97, GIS22a], we
obtain an MPC protocol that uses O(t2 · log2 n) random bits.

9

From a Single Parity to Multiple Additions. All of the above techniques (including the techniques
from [KM97, GIS22a] and our techniques of constructing parity sharing generators) can be naturally extended
to addition over any Abelian group G, increasing the randomness complexity by a log |G| factor. We show
that one can in fact do better in the amortized setting of computing many additions. Concretely, the
asymptotic randomness cost of computing t additions is essentially the same computing a single addition.
We outline the techniques below.

First, we naturally extend the notion of a parity sharing generator to a general Abelian group G, referring
to the generalized notion as a zero sharing generator. We show that our technique also yields an explicit
construction of zero-sharing generator. We then amortize the randomness complexity by using the following
natural randomness extraction approach. Consider the case of Z2 for simplicity. Suppose all parties want
to compute the XOR function ℓ times. We can first prepare the random strings r(1), r(2), . . . , r(ℓ) in a
batch way, and then use one fresh copy in each execution. Finally, we use a t-resilient randomness extractor
Ext : {0, 1}m → {0, 1}ℓ for bit-fixing sources [CGH+85], guaranteeing that when the input is randomly
sampled from {0, 1}m, the output is uniformly random even when conditioned on any t input bits.

To prepare the random strings r(1), r(2), . . . , r(ℓ), we will let each Pi of the first m parties distribute a
fresh copy of the random string, denoted by τ (i). Then all parties use Ext to extract ℓ random strings. By
the property of a t-resilient randomness extractor, the output strings {r(i)}ℓi=1 are random given the random
strings {τ (i)}i∈T generated by corrupted parties.

It is known that there is a t-resilient randomness extractor based on Vandermonde matrices with input size
m = ℓ+ t · log(ℓ+ t) (see Section 7.1 for details). Thus, we obtain an MPC protocol for ℓ XOR computations
that uses O((ℓ+ t · log(ℓ+ t)) · t · log2 n) random bits, giving an amortized cost of only O(t · log2 n) random
bits per XOR.

2.4 Upper Bounds Beyond Linear Functions

The previous upper bounds apply only to linear functions over an Abelian group. Building on these results,
we obtain near-optimal upper bounds for general symmetric functions, or even general circuits if additional
“helper parties” are allowed.

Upper Bound for Symmetric Functions. For any symmetric function f : ({0, 1})n → {0, 1}, we show
that there is an explicit MPC protocol that uses O(t2 · log3 n) random bits. This includes useful functions
such as majority or threshold, and matches the previous lower bound for nontrivial symmetric functions up
to a polylogarithmic term. Our protocol uses the standard Shamir secret sharing scheme and the BGW
protocol [BGW88, CCD88]. We will use [r]t to denote a degree-t Shamir sharing of r. Our idea works for
all t < n

⌈logn⌉ :

1. For a symmetric function f , the output only depends on the number of 1s in the input bits. Let p be
a prime such that n < p < 2n. Consider the finite field Fp. All parties will first compute a degree-t
Shamir secret sharing of the summation of all input bits in Fp, denoted by [s]t. This is achieved by
the following steps:

(a) All parties first prepare a random degree-t Shamir sharing [r]t by letting each of the first t + 1
parties distributes a random degree-t Shamir sharing and using the summation of these t + 1
sharings. They transform [r]t to a random additive sharing by locally multiplying proper Lagrange
coefficients with their shares.

(b) All parties compute the summation of all input bits together with all shares of the random additive
sharing by using our protocol for addition over Fp (recall that we extend the protocol for XOR to
addition over any Abelian group). Then the output is equal to s + r, where s is the summation
of all input bits.

(c) Finally, all parties locally compute [s]t = (s+ r)− [r]t.

10

2. Note that s is the number of 1s in the input bits, and s ∈ {0, 1, . . . , n}. Therefore, there exists a
function g : {0, 1, . . . , n} → {0, 1} such that f(x) = g(s), where s =

∑n
i=1 xi. We note that g can be

represented by a degree-n polynomial in Fp. Our idea is to compute a Shamir sharing of the output
g(s).

(a) All parties first use the BGW protocol to compute [s2
i

]t for all i ∈ {0, 1, . . . , ⌈log n⌉ − 1}. This
step requires O(log n) multiplications.

(b) Then, all parties can use {[s2i]t}⌈logn⌉−1
i=0 to locally compute a Shamir sharing of sj for all j ∈

{1, 2, . . . , n}. In particular, the resulting sharing has degree at most t · ⌈log n⌉ < n. Therefore,
the resulting sharing can still be reconstructed by all parties. Thus, they can locally compute a
Shamir sharing of the output g(s) of degree at most t · ⌈log n⌉ < n.

3. Finally, all parties reconstruct the Shamir sharing of g(s). This is achieved by first transforming it to
an additive sharing of g(s) and then using our protocol for addition over Fp.

In summary, we need 2 invocations of the addition protocol over Fp and O(log n) multiplications using the
BGW protocol [BGW88] (the preparation of a degree-t Shamir sharing costs the same amount of randomness
as doing 1 multiplication in [BGW88]). In [BGW88], doing O(log n) multiplications require O(t2 · log n)
random field elements. Our addition protocol over Fp requires O(t2 · log2 n) random field elements. Since
each element in Fp is of size O(log n), for any symmetric function, we obtain an explicit construct that uses
O(t2 · log3 n) random bits. See Section 8 for more details.

Upper Bound for General Circuits with Helper Parties. Finally, we consider the goal of evaluating
general functions in a relaxed setting where there are extra helper parties that can participate in the protocol
but do not have inputs nor receive the output. In this model, we give an explicit MPC protocol for a general
circuit C that uses O(t2 · log |C|) random bits, where |C| is the circuit size. Since our lower bound for XOR
extends to the setting of helper parties, this upper bound is essentially optimal.

Our construction uses a variant of the private circuits model from [ISW03] referred to as a leakage-tolerant
private circuit [IKL+13, AIS18], building on the recent randomness-efficient construction from [GIS22a].6

Informally, a leakage-tolerant private circuit with (unprotected) input x and output y is a randomized circuit
such that the values of any t internal wire values can be simulated by probing t input and output wires.
Letting each party simulate a single gate in such a tolerant circuit, we obtain an MPC protocol with helper
parties in which corrupting t parties reveals at most t inputs and outputs. Note that it does not directly give
us an MPC protocol in the usual sense, since the revealed inputs and outputs may belong to honest parties.

Our idea is to first let all parties secret-share their inputs among the helper parties. Then all helper
parties together emulate a leakage-tolerant private circuit to compute a secret-sharing of the function output.
Finally, the output is reconstructed to the parties who should receive it. To make this idea work, we need
to design an efficient protocol that allows parties to secret-share their inputs:

1. We note that, for each party Pi, it is sufficient to use a t-private encoding of its input. This is because
corrupting any t helper parties reveals at most t input and output values, which are independent of Pi’s
input. We borrow the encoding scheme from [GIS22a], which is based on a strong t-wise independent
PRG. It requires O(t · logm) random bits to encode m bits.

2. However, we cannot afford the cost of allowing each party to use fresh random seeds to encode their
inputs, since it requires O(t ·n · logm) random bits. We observe that all parties can actually use t-wise
independent random seeds. This is because each corrupted party who holds an input only observes its
own random seed, and each corrupted helper party receives at most one bit of the encoding of some
input. Thus, the joint view of corrupted parties depends on the encoding of at most t inputs, which

6In the current context, one could plausibly use the explicit construction of a private circuit with quadratic randomness com-
plexity in [CGZ20] as a substitute for the quasilinar-randomness construction from [GIS22a]. However, the analysis of [CGZ20]
only considers standard leakage-resilience whereas here we need the stronger leakage-tolerance property analyzed in [GIS22a].

11

in turn depend on at most t random seeds. Therefore, t-wise independent random seeds are sufficient.
Generating these random seeds (via a trusted party) require O(t2 · logm) random bits.

3. Finally, note that we cannot use the same method as that in [KM97] to generate these random seeds
in a distributed way because the random seeds have size O(t2 · logm). If we ask each of the first t+ 1
parties to generate a fresh copy of the random seeds, we would need O(t3 · logm) random bits. Our
idea is to use a t-resilient randomness extractor. We ask each of the first 2t parties to generate t-wise
independent random seeds of size O(t · logm). Then, all parties use a t-resilient randomness extractor
to extract t copies of fresh random seeds. Finally, each party concatenates its t copies and obtains a
random seed of length O(t2 · logm).

We use the construction of a leakage-tolerant private circuit from [GIS22a], which uses O(t · log t|C|)
random bits. Since the input size m is upper bounded by the circuit size, we obtain an MPC protocol for a
general circuit that uses only O(t2 · log |C|) random bits.

As a final challenge, note that the leakage-tolerant private circuit in [GIS22a] is not explicit. In Section 5,
we show that our technique allows us to obtain an explicit multi-phase parity sharing generator, which
outputs multiple additive sharings of 0. Then, in Section 9.3, we show how to use our explicit construction
of multi-phase parity sharing generators to instantiate the private circuit in [GIS22a]. The instantiation only
requires O(t2 · log2 t|C|) random bits. We use it to obtain an explicit construction of an MPC protocol (with
helper parties) for a general circuit C that uses O(t2 · log2 t|C|) random bits. See Section 9 for more details.

3 Preliminaries

3.1 Secure Multiparty Computation

In this work, we consider the setting where a set of n parties, {P1, P2, . . . , Pn}, each holding an input xi

from a finite domain Di, jointly run a protocol to compute a function f : D1 × . . .×Dn → Z. At the end of
the protocol, all parties receive the function output f(x1, . . . , xn).

Each party has a private random tape which contains uniformly random bits. We use x = (x1, x2, . . . , xn)
to denote the inputs of all parties and r = (r1, r2, . . . , rn) to denote the random tapes of all parties. For a
party Pi, we use View(Pi,x, r) to denote the information that is observed by Pi in an execution with inputs
x and random tapes r, which includes his input, random tape, messages received from other parties, and
the function output. We use View(Pi,x) to denote the random variable over the distribution induced by
View(Pi,x, r) when r is sampled uniformly.

In this work, we consider perfect correctness and semi-honest security with perfect privacy, defined as
follows.

Definition 3 (Correctness and Security). Let f : D1 × . . .×Dn → Z be an n-ary function. For an n-party
computation protocol Π that computes f ,

• (Correctness). We say Π achieves perfect correctness if for all input x, when all parties honestly follow
the protocol Π, they will finally output f(x).

• (Security). We say Π achieves semi-honest security with perfect privacy if for all set T of at most t
parties, and for all input x, there is a probabilistic algorithm S, which takes as input the inputs of
parties in T and the function output, and outputs the views of parties in T , such that the following two
distributions are identical:

{S({xi}i∈T , f(x)), f(x)} ≡ {{View(Pi,x)}i∈T , f(x)}.

If Π achieves both perfect correctness and semi-honest security with perfect privacy, we say Π achieves perfect
semi-honest security.

12

Intuitively, the security requires that the joint view of all corrupted parties only depends on their inputs
and the function output. We have the following property of a protocol Π with semi-honest security and
perfect privacy.

Property 1. Let f : D1 × . . . Dn → Z be an n-ary function. Let Π be an n-party protocol that computes
f with semi-honest security and perfect privacy against t corrupted parties. Then for all set T of at most t
parties, and for all x,x′ ∈ D1× . . .×Dn such that f(x) = f(x′) and xi = x′

i for all i ∈ T , the following two
distributions are identical:

{View(Pi,x)}i∈T ≡ {View(Pi,x
′)}i∈T .

Randomness Complexity of a Protocol. We follow the definition of randomness complexity from [KM97].
At the beginning of the protocol, each party has a private random tape that contains uniformly random bits.
Each time a party needs to use a random bit, he reads the rightmost unused bit on his random tape. Note
that each party may use different number of random bits in different executions. The number of random
bits that is used by the protocol is the total number of random bits used by all parties. The randomness
complexity is the worst case (over all inputs and all executions) number of random bits. The same model
for randomness complexity is also used in [KOR96, KR98, GR05].

We will use the following lemma from [KR98, GR05].

Lemma 1 ([KR98, GR05]). For a given input x, let d be the maximum, over all protocol executions on x,
of the number of random bits used by all parties during a given execution. Then, the number of different
transcripts (i.e., the joint view of all parties) of the protocol execution on x is at most 2d.

For some of our positive results, it is convenient to use a natural generalization of this model where parties
can sample a uniform value from {1, 2, . . . , p} for any choice of integer p > 1. We assume that ⌈p⌉ = O(log p)
random bits are consumed. This can be justified by either entropy considerations, or by the fact that O(log p)
random bits are sufficient to generate a uniform value from {1, 2, . . . , p} in expectation [KY76, CKOR00].

We note that our lower bound also applies to the generalized model with the help of Lemma 1 in the
generalized model, of which we provide a proof below.

Proof. Let Π be a protocol. We consider a new protocol Π′ described as follows:

• Let Frand be a trusted party that generates random values for all parties.

• Whenever a party needs to use a uniform value from {1, 2, . . . , p} in Π, he sends (Sample, p) to Frand.
Then Frand samples a uniform value from {1, 2, . . . , p} and sends it back to the requesting party.

In the new protocol Π′, all parties except the trusted party are deterministic. For an execution of Π′, the
length of the messages that Frand sends to other parties is the number of random bits used in this execution.
Let r denote the messages sent by Frand, represented by a sequence of bits. Note that each bit may not be
uniformly random. For example, if Frand first samples a uniform value from {1, 2, 3}, the first two bits of r
represent this value. Clearly they are not uniformly random bits.

Note that if there exists an execution of Π′ on x, where Frand sends r, then for all r′ such that r is a
strict prefix of r′, there is no execution of Π′ on x such that Frand outputs r′. This is because all parties
will not query any random values after Frand sends r.

Note that there is a one-to-one map between the executions of Π and those of Π′. For a given input x, if
there is an execution of Π on x which uses d random bits, then there is an execution of Π′ on x which uses
d random bits. If for a given input x, d is the maximum of the number of random bits used by all parties
over all executions of Π on x, then d is the maximum of the length of the messages that Frand sends over
all executions of Π′ on x. Since the protocol execution of Π′ is determined by x and the messages sent by
Frand, there are at most 2d different executions of Π′. Thus, there are at most 2d different executions of Π,
which implies that the number of different transcripts of Π on x is at most 2d.

13

Helper Parties. We also consider a general model where there are extra k parties {Pn+1, Pn+2, . . . , Pn+k}.
These parties can participate in the computation but do not have inputs, nor receive the output. We refer
to these parties as helper parties. The randomness complexity of a protocol in the general model also counts
the random bits used by helper parties. The perfect semi-honest security in the general model is defined
similarly.

Functions with Minimal Input Domain. For a party Pi, and two distinct inputs xi ̸= x′
i, we say a

function f is sensitive to (Pi, xi, x
′
i) if there exists {xj}j ̸=i such that

f(x1, . . . , xi−1, xi, xi+1, . . . , xn) ̸= f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn).

We say a function f has minimal input domain if f is sensitive to all possible (Pi, xi, x
′
i).

Note that if f is not sensitive to (Pi, xi, x
′
i), it means that the function behaves identically on input xi

and x′
i. Then, Pi can always use xi when his input is x′

i without changing the output of the function, which
reduces the size of Pi’s input domain. Thus, for a function f that is not sensitive to all (Pi, xi, x

′
i), we can

repeat the above step and reduce the input domain of f . Therefore, without loss of generality, it is sufficient
to only consider functions with minimal input domain.

Symmetric Functions. We say a function f is a symmetric function if it satisfies that:

• All inputs have the same input domain. I.e., D1 = D2 = . . . = Dn.

• The output of the function f is independent of the order of the inputs. I.e., for all x = (x1, x2, . . . , xn)
and x′ = (x′

1, x
′
2, . . . , x

′
n), where x′ is a permutation of x, f(x) = f(x′).

3.2 t-Private Encoding Schemes

Definition 4 (Encoding Scheme). Let ℓ, n be positive integers. Let M ⊂ {0, 1}ℓ be the message space and
C ⊂ {0, 1}n be the codeword space. An encoding scheme consists of a pair of algorithms (Enc, Dec) where:

• Enc is a randomized algorithm which takes as input a message m ∈M and a random tape r ∈ R, and
outputs a codeword c ∈ C, denoted by c = Enc(m; r). When r is not important in the context, we will
omit r and simply write c = Enc(m).

• Dec is a deterministic algorithm which takes as input a codeword c ∈ C and outputs a message m ∈M.

The correctness of an encoding scheme requires that for all m ∈M , the following holds:

Pr[Dec(Enc(m)) = m] = 1

Definition 5 (t-Private Encoding Scheme). We say an encoding scheme (Enc, Dec) is t-private, if for all
m,m′ ∈M and for all t indices i1, i2, ..., it ∈ {1, 2, . . . , n}, the following two distributions are identical:

{c← Enc(m) : c[i1], c[i2], . . . , c[it]} ≡ {c′ ← Enc(m′) : c′[i1], c
′[i2], . . . , c

′[it]},

where c[i] (resp., c′[i]) is the i-th bit of c (resp., c′).

Strong t-wise Independent Pseudo-random Generators. Our work will use the standard notion of
(strong) t-wise independent pseudo-random generators.

Definition 6 ((Strong) t-wise Independent PRG). Let G be a finite Abelian group. A function G : Gℓ → Gn

is a t-wise independent pseudo-random generator (or t-wise independent PRG for short) if any subset of t
group elements of G(x) are uniformly random and independently distributed when x is uniformly sampled
from Gℓ.

14

If any subset of t group elements of (x,G(x)) are uniformly random and independently distributed when
x is uniformly sampled from Gℓ, then we say G is a strong t-wise independent PRG.

We say that a (strong) t-wise independent PRG G is linear if every output group element is a linear
combination of the input group elements. In particular, a linear (strong) t-wise independent PRG G satisfies
that for all x, x′ ∈ Gℓ, G(x) +G(x′) = G(x+ x′).

For a finite field F, it is well known that there is a linear and strong t-wise independent PRG G : Fℓ → Fn

based on Reed-Solomon codes with input size ℓ = O(t · log n). (See [GIS22a] for a construction over binary
field, which can be extended to any finite field.)

Theorem 1. Let F be a finite field and n, t be positive integers. Then there is a linear and strong t-wise
independent PRG G : Fℓ → Fn with input size ℓ = O(t · log n).

Randomness Efficient t-Private Encoding Scheme. We borrow the following linear t-private encoding
scheme from [GIS22a].

Let G : {0, 1}ℓ → {0, 1}n be a linear and strong t-wise independent PRG. The encoding scheme (Enc, Dec)
works as follows:

• The message space isM = {0, 1}n and the codeword space is C = {0, 1}ℓ+n.

• The encoder Enc takes x ∈ {0, 1}n as input and ρ ∈ {0, 1}ℓ as random tape. Then

Enc(x;ρ) = (ρ, G(ρ)⊕ x).

• The decoder Dec takes (c1, c2) ∈ {0, 1}ℓ × {0, 1}n as input and outputs

Dec(c1, c2) = G(c1)⊕ c2.

The linearity follows from that the t-wise independent PRG G is linear. As for t-privacy, since G is a
strong t-wise independent PRG, any t bits of (ρ, G(ρ)) are uniformly random when ρ is uniformly sampled
from {0, 1}ℓ. Therefore, any t bits of (ρ, G(ρ)⊕ x) are also uniformly random and thus, independent of x.

3.3 Zero Sharing Generators

We first define the notion of access set of a set of random variables {r1, r2, . . . , rn}.

Definition 1 (Access Set [GIS22a]). An access set A of a set of random variables {r1, r2, . . . , rn} is a set
of jointly distributed random variables satisfying the following requirements:

1. For all i ∈ {1, 2, . . . , n}, ri ∈ A.

2. Every variable in A is a linear combination of r1, r2, . . . , rn.

Let r = (r1, r2, . . . , rn). For a set W ⊂ A, we use D(r,W) to denote the distribution of the variables in
W when they are instantiated by r.

We follow [GIS22a] and define the notion of zero sharing generators. In [GIS22a], Goyal, et al focuses on
the binary field. We extend this notion to any finite Abelian group G.

Definition 7 (Zero Sharing Generators [GIS22a]). Let G be a finite Abelian group. Let G : Gm → Gn be
a function, u = (u1, u2, . . . , um) be a vector of random variables in Gm that are uniformly distributed, and
r = (r1, r2, . . . , rn) = G(u). Let A be an access set of the random variables {r1, r2, . . . , rn}. The function G
is a t-resilient zero sharing generator with respect to A if the following holds:

1. The output r = (r1, r2, . . . , rn) satisfies that r1 + r2 + . . .+ rn = 0.

15

2. Let r̃ = (r̃1, r̃2, . . . , r̃n) be a vector of random variables in Gn which are uniformly distributed subject
to r̃1 + r̃2 + . . .+ r̃n = 0. For any set W of t variables in A, the output r satisfies that

D(r,W) ≡ D(r̃,W),

where D(r,W) and D(r̃,W) denote the distributions of the variables in W when they are instantiated
by r and r̃ respectively.

One can view a t-resilient zero sharing generator as a generalization of a t-wise independent PRG in the
following two ways:

• First, the output vector should satisfies that the summation of all entries is equal to 0.

• Second, for a t-wise independent PRG, one may think that there is an adversary which can access any
t entries in the output vector. A t-resilient zero sharing generator allows an adversary to access any t
variables in the access set A which contains all entries of the output vector.

We can extend a t-resilient zero sharing generator to generating multiple zero sharings with different
number of shares as follows.

Definition 8 (Multi-Phase Zero Sharing Generators [GIS22a]). Let G be a finite Abelian group. Let p and
n1, n2, . . . , np be positive integers, G : Gm → Gn1 × Gn2 × . . . × Gnp be a function, u = (u1, u2, . . . , um) be
a vector of random variables in Gm that are uniformly distributed, and r = (r(1), . . . , r(p)) = G(u) where

r(j) = (r
(j)
1 , . . . , r

(j)
nj) for all j ∈ {1, 2, . . . , p}. For each r(j), let Aj be an access set of the random variables

{r(j)1 , . . . , r
(j)
nj }, and A =

⋃p
j=1Aj. The function G is a multi-phase t-resilient zero sharing generator with

respect to A if the following holds:

1. For all j = {1, 2, . . . , p}, the output vector r(j) = (r
(j)
1 , . . . , r

(j)
nj) satisfies r

(j)
1 + . . .+ r

(j)
nj = 0.

2. Let r̃ = (r̃(1), . . . , r̃(p)) ∈ Gn1 × . . . × Gnp be uniformly random variables such that for all j =

{1, 2, . . . , p}, the vector r̃(j) = (r̃
(j)
1 , . . . , r̃

(j)
nj) satisfies r̃

(j)
1 + . . . + r̃

(j)
nj = 0. For any set W of t

variables in A, the output r satisfies

D(r,W) ≡ D(r̃,W),

where D(r,W) and D(r̃,W) denote the distributions of the variables in W when instantiated by r and
r̃ respectively.

We say a (multi-phase) t-resilient zero sharing generator G is linear if every output group element is a
linear combination of the input group elements. In particular, a linear (multi-phase) t-resilient zero sharing
generator G satisfies that for all u,u′ ∈ Gm, G(u) +G(u′) = G(u+ u′).

Tree Based Access Sets. In our work, we are interested in access sets that are based on full binary trees.
A full binary tree Tr satisfies that every node has either no children (i.e., a leaf node) or 2 children. For
a set of random variables {r1, r2, . . . , rn} and a full binary tree Tr with n leaf nodes, an access set A with
respect to Tr is defined as follows: We first associate the i-th leaf node with the random variable ri. Then,
each internal node is associated with a random variable which is equal to the sum of the random variables
associated with its two children. The set A contains the random variables associated with all nodes in Tr.

4 Lower Bound for Symmetric Functions

In this section we prove our main lower bound, improving over the previous lower bound of [KM97]. We
start with a technical lemma about the randomness complexity of a t-private encoding scheme and then use
it to obtain the lower bound.

16

4.1 Lower bound for t-private Encoding Schemes

In this section, we discuss the randomness complexity of a t-private encoding scheme. We focus on t-private
encoding schemes that encode a single bit. We will show that, for any t-private encoding scheme and any
input bit m ∈ {0, 1}, the number of codewords of m is at least 2t. Note that it implies that any such a
t-private encoding scheme requires at least t random bits. This result will be used to prove the lower bound
of the randomness complexity of secure multiparty computation in the next section.

Lemma 2. For any t-private encoding scheme (Enc, Dec) and any bit m ∈ {0, 1}, |supp(m)| ≥ 2t.

Proof. We prove the lemma by induction.

When t = 1, we show that the support of 0 is of size at least 2. Let c be a codeword of 0 and c′ be a
codeword of 1. By the correctness of the encoding scheme, c ̸= c′. Without loss of generality, assume the
first bits of c and c′ are different. Since the encoding scheme is 1-private, the distribution of the first bit
in a random codeword of 0 is identical to that in a random codeword of 1. Then the first bit in a random
codeword of 0 is not a constant bit. Otherwise, the first bit in a random codeword of 1 should be the same
constant bit, which contradicts with the assumption that the first bits of c and c′ are different. Since the
first bit can take both 0 and 1, there are at least two codewords of 0. The statement holds for t = 1.

Now suppose the statement holds for t − 1, i.e., for any (t − 1)-private encoding scheme (Enc, Dec) and
any bit m ∈ {0, 1}, |supp(m)| ≥ 2t−1. Consider a t-private encoding scheme (Enc, Dec). With the same
argument as above, there exists a bit in a random codeword of 0 which is not a constant bit. Without loss
of generality, assume that it is the first bit.

Consider the following encoding scheme (Enc′, Dec′):

• For m ∈ {0, 1}, Enc′(m) outputs a random codeword c = Enc(m) subject to c[1] = 0. Here c[1] refers
to the first bit of the codeword c.

• Dec′ = Dec.

We show that (Enc′, Dec′) is a (t− 1)-private encoding scheme. Let supp′(m) denote the set of codewords of
m defined by (Enc′, Dec′).

The correctness of (Enc′, Dec′) follows from the correctness of (Enc, Dec): if there exists a codeword
c ∈ supp′(m) such that Dec′(c) ̸= m, since supp′(m) is a subset of supp(m) and Dec′ = Dec, we have
c ∈ supp(m) and Dec(c) ̸= m, which contradicts with the correctness of (Enc, Dec).

As for (t − 1)-privacy, recall that (Enc, Dec) is t-private. Therefore, for any t bits, the distribution of
these t bits in c = Enc(0) is identical to the distribution of these t bits in c′ = Enc(1). Then, fixing the first
bit to be 0, for any t− 1 bits, the distribution of these t− 1 bits in c = Enc(0) subject to c[1] = 0 is identical
to the distribution of these t − 1 bits in c′ = Enc(1) subject to c′[1] = 0. Recall that Enc′(m) outputs a
random codeword c = Enc(m) subject to c[1] = 0. Therefore (Enc′, Dec′) is (t− 1)-private.

According to the induction hypothesis, |supp′(0)| ≥ 2t−1. I.e., there are 2t−1 different codewords in
supp(0) whose first bit is 0. By the same argument, there are 2t−1 different codewords in supp(0) whose
first bit is 1. Therefore, |supp(0)| ≥ 2t.

By induction, we conclude that the lemma holds for all t.

We note the following direct corollary.

Corollary 1. Any t-private encoding scheme (Enc, Dec) uses at least t random bits.

Proof. According to Lemma 2, |supp(0)| ≥ 2t. Therefore, Enc(0) has at least 2t different output. Thus the
random seed has length at least t.

In Appendix A we give an alternative proof of a variant of Lemma 2 by relying on Fourier analysis of
Boolean functions and a known bound on the number of roots of a low-degree polynomial over the Boolean
hypercube. This variant applies also to t-private encoding with imperfect correctness, to which the above
simple combinatorial argument does not apply.

17

4.2 Randomness Lower Bound for Symmetric Functions

In this section we prove a lower bound on the randomness complexity of secure multiparty computation
protocols that compute symmetric functions with a single output bit. This includes parity and threshold
functions (including AND, OR, majority) as special cases.

Theorem 2. For all n ≥ 3 and t ≤ n − 2, and for all non-constant symmetric functions f that outputs
a single bit, any n-party protocol Π that computes f with perfect semi-honest security against t corrupted

parties requires at least t2

2 random bits. Moreover, this holds even with an arbitrary number k of helper
parties.

Proof. Recall that, without loss of generality, it is sufficient to only consider functions with minimal input
domain. In the following, we assume that f is a non-constant symmetric function with minimal input domain.
Without loss of generality, we assume that in every round, each party sends a message in {0, 1,⊥} to every
other party. This can be achieved by requiring that in each round, every party Pi sends a ⊥ to every party
Pj if Pi does not need to send any bit to Pj in this round, which does not change the randomness complexity
of the protocol.

Note that an execution is determined by the inputs and random tapes of all parties. For an execution
with inputs x and random tapes r, we use MPi

(x, r) to denote the messages that Pi receives from or sends
to other parties. We use MPi

(x) to denote the random variable over the distribution induced by MPi
(x, r)

when r is sampled uniformly.
By the definition of symmetric functions, all parties have the same input domain. Recall that we have

assumed that f is a non-constant symmetric function with minimal input domain. Also recall that f outputs
a single bit.

We first prove the following lemma:

Lemma 3. For all Pi ∈ {P1, P2, . . . , Pn}, and for all (x, r) and (x′, r′) such that xi ̸= x′
i,

(MPi(x, r), f(x)) ̸= (MPi(x
′, r′), f(x′))

Proof. For the sake of contradiction, assume that this lemma is not true. Then there exists two executions,
one with inputs x and random tapes r and the other one with inputs x′ and random tapes r′, such that
xi ̸= x′

i but
(MPi

(x, r), f(x)) = (MPi
(x′, r′), f(x′))

Since f has minimal input domain, f is sensitive to (Pi, xi, x
′
i), which means that there exists {x̃j}j ̸=i

such that
f(x̃1, . . . , x̃i−1, xi, x̃i+1, . . . , x̃n) ̸= f(x̃1, . . . , x̃i−1, x

′
i, x̃i+1, . . . , x̃n).

Let x̃ = (x̃1, . . . , x̃i−1, xi, x̃i+1, . . . , x̃n) and x̃′ = (x̃1, . . . , x̃i−1, x
′
i, x̃i+1, . . . , x̃n). Then x̃i = xi, x̃

′
i = x′

i,
x̃j = x̃′

j for all j ̸= i, but f(x̃) ̸= f(x̃′). Since f outputs a single bit, either f(x) = f(x′) = f(x̃) or
f(x) = f(x′) = f(x̃′). Without loss of generality, assume that f(x) = f(x′) = f(x̃).

We first show that there exists r̃ such that (MPi(x, r), f(x)) = (MPi(x̃, r̃), f(x̃)). Since x, x̃ satisfy that
xi = x̃i and f(x) = f(x̃), by Property 1, the following two distributions are identical:

{View(Pi,x)} ≡ {View(Pi, x̃)}

Thus, there exists r̃ such that View(Pi,x, r) = View(Pi, x̃, r̃). Since (MPi
(x, r), f(x)) is determined by Pi’s

view, we have (MPi(x, r), f(x)) = (MPi(x̃, r̃), f(x̃)). Recall that (MPi(x, r), f(x)) = (MPi(x
′, r′), f(x′)).

Therefore, (MPi(x̃, r̃), f(x̃)) = (MPi(x
′, r′), f(x′)).

Let r̃′ = (r̃1, . . . , r̃i−1, r
′
i, r̃i+1, . . . , r̃n), i.e., r̃

′ = r̃ except r̃′i = r′i. We will prove that MPi
(x̃′, r̃′) =

MPi
(x̃, r̃) = MPi

(x′, r′) by induction:

• Consider the first message in MPi
(x̃′, r̃′). If it is a message sent from Pi to another party, then

this message is fully determined by x̃′
i = x′

i and r̃′i = r′i since Pi does not receive any message from

18

other parties. Thus, this message is identical to the first message in MPi(x
′, r′). Since MPi(x̃, r̃) =

MPi(x
′, r′), the statement holds for the first message.

If the first message in MPi
(x̃′, r̃′) is received from another party, then this message is fully determined

by {x̃′
j , r̃

′
j}j ̸=i since Pi does not send any message to other parties. Note that {x̃′

j , r̃
′
j}j ̸=i = {x̃j , r̃j}j ̸=i.

Thus this message is identical to the first message in MPi(x̃, r̃). Since MPi(x̃, r̃) = MPi(x
′, r′), the

statement holds for the first message.

• Assume the statement holds for the first ℓ−1 messages. For the ℓ-th message, if it is a message sent from
Pi to another party, then this message is determined by x̃′

i = x′
i, r̃

′
i = r′i and the first ℓ− 1 messages in

MPi
(x̃′, r̃′). According to the induction hypothesis, the first ℓ−1 messages in MPi

(x̃′, r̃′) are identical
to the first ℓ − 1 messages in MPi

(x′, r′). We also have (x̃′
i, r̃

′
i) = (x′

i, r
′
i). Thus, the ℓ-th message in

MPi
(x̃′, r̃′) is identical to the ℓ-th message in MPi

(x′, r′) as well. Since MPi
(x̃, r̃) = MPi

(x′, r′), the
statement holds for the first ℓ messages.

If the ℓ-th message of Pi is received from another party, then this message is fully determined by
{x̃′

j , r̃
′
j}j ̸=i and the first ℓ − 1 messages in MPi

(x̃′, r̃′). According to the induction hypothesis, the
first ℓ− 1 messages in MPi

(x̃′, r̃′) are identical to the first ℓ− 1 messages in MPi
(x̃, r̃). We also have

{x̃′
j , r̃

′
j}j ̸=i = {x̃j , r̃j}j ̸=i. Thus, the ℓ-th message in MPi(x̃

′, r̃′) is identical to the ℓ-th message in
MPi(x̃, r̃) as well. Since MPi(x̃, r̃) = MPi(x

′, r′), the statement holds for the first ℓ messages.

• Therefore, by induction, the statement holds for all ℓ. We have MPi(x̃
′, r̃′) = MPi(x̃, r̃) = MPi(x

′, r′).

Recall that f(x̃′) ̸= f(x̃). On the other hand, for parties in {Pj}j ̸=i, their views are determined
by {x̃′

j , r̃
′
j}j ̸=i and MPi

(x̃′, r̃′). Since {x̃′
j , r̃

′
j}j ̸=i = {x̃j , r̃j}j ̸=i and MPi

(x̃′, r̃′) = MPi
(x̃, r̃), parties in

{Pj}j ̸=i,j≤n will obtain the same output in both the execution with (x̃′, r̃′) and the execution with (x̃, r̃),
which contradicts with f(x̃′) ̸= f(x̃).

Lemma 3 shows that the messages a party (of the first n parties) receives or sends together with the
output can determine his input. Without loss of generality, assume that 0, 1 are in the input domain. Now
consider the first t parties P1, P2, . . . , Pt. For all 1 ≤ i ≤ t, and for all vectors V subject to

Pr[(View(P1,x), . . . , View(Pi−1,x)) = V] ̸= 0,

we define an encoding scheme (Enc, Dec) for the message space {0, 1} as follows:

• Let x = (0, 0, ..., 0, 1) (i.e., all inputs are 0 except the last input is 1) and x′ ∈ {0, 1}n subject to x′
i = 1

and x′
j = 0 for all j ̸= i. Since f is a symmetric function, we have f(x) = f(x′) but xi ̸= x′

i.

Enc(0) samples r uniformly subject to {View(Pj ,x, r)}i−1
j=1 = V and outputs MPi(x, r).

Enc(1) samples r′ uniformly subject to {View(Pj ,x
′, r′)}i−1

j=1 = V and outputs MPi(x
′, r′).

• The decoding algorithm takes as input a codeword c = MPi
(x̃, r̃), where x̃ ∈ {x,x′}. Recall that

f(x) = f(x′). Therefore, f(x̃) = f(x) = f(x′). According to Lemma 3, (MPi(x̃, r̃), f(x̃)) can
determine the input x̃i. Dec(c) outputs the input determined by (c, f(x)).

We first show that supp(0) and supp(1) of the encoding scheme are not empty. It is sufficient to show
that there exist r and r′ such that

(View(P1,x, r), . . . , View(Pi−1,x, r)) = V

and
(View(P1,x

′, r′), . . . , View(Pi−1,x
′, r′)) = V.

Recall that V satisfies that Pr[(View(P1,x), . . . , View(Pi−1,x)) = V] ̸= 0. Therefore, the existence of r
follows. Recall that f(x) = f(x′) and xj = x′

j for all j ∈ {1, 2, . . . , i− 1}, by Property 1, we have

{View(P1,x), . . . , View(Pi−1,x)} ≡ {View(P1,x
′), . . . , View(Pi−1,x

′)}.

19

Thus,

Pr[(View(P1,x), . . . , View(Pi−1,x)) = V]

= Pr[(View(P1,x
′), . . . , View(Pi−1,x

′)) = V] ̸= 0.

The existence of r′ follows. This implies that the encoding scheme (Enc, Dec) is well defined.

Lemma 4. The encoding scheme (Enc, Dec) constructed above is (t− i+ 1)-private.

Proof. For a codeword c in supp(0), it corresponds to the messages that Pi sends or receives in an execution
with (x, r) for some random tapes r. The probability that c is output by Enc(0) is

Pr[MPi
(x) = c | (View(P1,x), . . . , View(Pi−1,x)) = V],

where the randomness comes from the random tapes r.
Let m = (b, Pi, Pj , ℓ), where b ∈ {0, 1,⊥}, denote that Pi sends b to Pj in the ℓ-th round. Then c is a

sequence of such messages. To show that (Enc, Dec) is (t− i+ 1)-private, it is sufficient to show that, for all
t− i+ 1 messages ms1 ,ms2 , . . . ,mst−i+1

,

Pr[c←MPi
(x) : (cs1 , . . . , cst−i+1

) = (ms1 , . . . ,mst−i+1
) | {View(Pj ,x)}i−1

j=1 = V]

= Pr[c′ ←MPi(x
′) : (c′s1 , . . . , c

′
st−i+1

) = (ms1 , . . . ,mst−i+1) | {View(Pj ,x
′)}i−1

j=1 = V].

Assume that Pj1 , Pj2 , . . . , Pjt−i+1
are senders or receivers of ms1 ,ms2 , . . . ,mst−i+1

respectively. Let

T = {P1, . . . , Pi−1}
⋃
{Pj1 , . . . , Pjt−i+1}.

Then |T | ≤ t. Since n ≥ t+2, there exists a party Pi⋆ such that Pi⋆ ̸∈ T , Pi⋆ ̸= Pi, and i⋆ ≤ n (i.e., Pi⋆ is not
a helper party). Let x̃ be a vector such that x̃i⋆ = 1 and x̃j = 0 for all j ̸= i⋆. Then f(x̃) = f(x) = f(x′).

Since f(x) = f(x̃) and (x1, x2, . . . , xi) = (x̃1, x̃2, . . . , x̃i), by Property 1, the following two distributions
are identical:

{View(P1,x), . . . , View(Pi,x)} ≡ {View(P1, x̃), . . . , View(Pi, x̃)}.
Therefore, we have

{View(Pi,x) | View(P1,x), . . . , View(Pi−1,x)}
≡ {View(Pi, x̃) | View(P1, x̃), . . . , View(Pi−1, x̃)}.

Note that the view of Pi fully determines ms1 ,ms2 , . . . ,mst−i+1
. Therefore,

Pr[c←MPi
(x) : (cs1 , . . . , cst−i+1

) = (ms1 , . . . ,mst−i+1
) | {View(Pj ,x)}i−1

j=1 = V]

= Pr[c̃←MPi
(x̃) : (c̃s1 , . . . , c̃st−i+1

) = (ms1 , . . . ,mst−i+1
) | {View(Pj , x̃)}i−1

j=1 = V].
(1)

Also note that f(x′) = f(x̃) and x′
j = x̃j = 0 for all Pj ∈ T . According to Property 1, the following two

distributions are identical:
{View(Pj ,x

′)}Pj∈T ≡ {View(Pj , x̃)}Pj∈T .

Therefore, we have

{View(Pj1 ,x
′), . . . , View(Pjt−i+1

,x′) | View(P1,x
′), . . . , View(Pi−1,x

′)}
≡ {View(Pj1 , x̃), . . . , View(Pjt−i+1

, x̃) | View(P1, x̃), . . . , View(Pi−1, x̃)}.

Note that the joint view of Pj1 , . . . , Pjt−i+1 also fully determines ms1 ,ms2 , . . . ,mst−i+1 . Therefore,

Pr[c′ ←MPi(x
′) : (c′s1 , . . . , c

′
st−i+1

) = (ms1 , . . . ,mst−i+1) | {View(Pj ,x)}i−1
j=1 = V]

= Pr[c̃←MPi(x̃) : (c̃s1 , . . . , c̃st−i+1) = (ms1 , . . . ,mst−i+1) | {View(Pj , x̃)}i−1
j=1 = V].

(2)

Combining Equation 1 and Equation 2, Lemma 4 follows.

20

According to Lemma 2, |supp(0)| ≥ 2t−i+1. That is, for inputs x = (0, 0, . . . , 0, 1), when fixing the views
of the first i−1 parties, the view of the i-th party has at least 2t−i+1 different possibilities. Consider the joint
view of the first t parties when the inputs are x. It has at least

∏t
i=1 2

t−i+1 = 2t(t+1)/2 different views. It
implies that the number of random bits required by the protocol in the worst case is at least t(t+1)/2 ≥ t2/2.
Therefore, the randomness complexity of the protocol is at least t2/2.

Remark 1. We note that Theorem 2 holds even if the output is only given to a strict (nonempty) subset of
the parties.

To see it, note that for Lemma 3, the statement holds for Pi as long as there is a party Pj ̸= Pi that
receives the function output. Therefore, if there are at least two parties that receive the output, Lemma 3
holds. If only one party receives output, say Pn, then the statement holds for all parties other than Pn. Then
in the rest of the proof, we can continue to focus on the number of views of the first t parties. With the same
argument, we can show that the randomness complexity is at least t2/2.

5 Explicit Construction of Zero Sharing Generators

In this section, we will give an explicit construction of a linear (multi-phase) t-resilient zero sharing generator
by using a linear t-wise independent PRG in a black box way. We would like to point out that our construction
is not a (multi-phase) robust zero sharing generator, and it cannot be used to instantiate the private circuits
in [GIS22a]. However, jumping ahead, we will use it in the following places:

• In Section 6, we consider the standard MPC model. We will give an explicit construction of an n-party
computation protocol for addition over a finite Abelian group against t corrupted parties with perfect
semi-honest security. When the group is a binary field, our construction only needs Õ(t2) random
bits (omitting logarithmic terms related to t and n), which matches the randomness lower bound in
Theorem 2 up to polylogarithmic factors.

• In Section 9, we consider the general MPC model (i.e., with helper parties). We will give an explicit
construct of an n-party computation protocol for a general function against t corrupted parties with
perfect semi-honest security that uses a polynomial number of helper parties. Our construction only
needs Õ(t2) random bits (omitting logarithmic terms related to t and the circuit size). Our idea makes
use of the private circuit constructed in [GIS22a]. While we can use the private circuit in [GIS22a] in
a black box way, we show that our explicit construction of a linear multi-phase t-resilient zero sharing
generator can be used to reduce the number of helper parties.

Theorem 3. Let G be a finite Abelian group. Let p and n1, n2, . . . , np be positive integers, and Tr1, Tr2, . . . , Trp
be full binary trees such that Trj has nj leaf nodes for all j ∈ {1, 2, . . . , p}. For each tree Trj, let Aj denote
the access set determined by Trj. Set n = n1 +n2 + . . .+np, A =

⋃p
j=1Aj, and D to be the largest depth of

Tr1, Tr2, . . . , Trp. Suppose F : Gm → Gn is a linear t-wise independent PRG. Then there exists an explicit
linear multi-phase t-resilient zero sharing generator with respect to the access set A that uses (D − 1) ·m
random group elements in G.

Proof. For every tree Trj and every node v ∈ Trj , the depth of v is the length of the path towards the root
of Trj plus 1. I.e., the root node of Trj has depth 1, the two children of the root node of Trj have depth 2,
and so on. Note that leaf nodes of Trj do not necessarily have the same depth.

Let Fr denote the collection of the trees Tr1, Tr2, . . . , Trp. Fr is also referred to as a forest. Recall that
F : Gm → Gn is a linear t-wise independent PRG. To construct a linear multi-phase t-resilient zero sharing
generator G, we will assign to each node v in Fr a linear combination of the outputs of F , denoted by val(v),
such that for all internal node v and its two children c0, c1, val(v) = val(c0) + val(c1). Then the values
associated with the leaf nodes in Fr represent the output of G.

21

Explicit Construction of Linear Multi-Phase Zero Sharing Generator. The construction works
as follows:

1. Let u = (u(1),u(2), . . . ,u(D−1)) ∈ G(D−1)×m be the input of G, where D is the largest depth of
Tr1, Tr2, . . . , Trp.

2. For all root node rtj , we set val(rtj) = 0.

3. From d = 2 to D, we will assign values to all nodes of depth d in Fr. Let ℓd denote the number of nodes
of depth d. Since Tr1, Tr2, . . . , Trp are full binary trees, ℓd is even. We use c1, c1, . . . , cℓd to denote the
nodes of depth d such that for all i ∈ {1, 2, . . . , ℓd/2}, (c2i−1, c2i) are the two children of a node vi of
depth d− 1.

Suppose we have assigned values to all nodes of depth d − 1 in Fr. We compute y(d) = F (u(d−1)).

Then for all i ∈ {1, 2, . . . , ℓd/2}, we set val(c2i−1) = y
(d)
i and val(c2i) = val(vi)− y

(d)
i . In this way, for

the node vi and its two children c2i−1, c2i, we have val(vi) = val(c2i−1) + val(c2i).

4. The output of G are the values associated with the leaf nodes in Fr. In particular, for all j ∈
{1, 2, . . . , p}, r(j) = (r

(j)
1 , . . . , r

(j)
nj) are the values associated with the leaf nodes of Trj .

Verifying the Properties of the Explicit Construction. We show that the above construction yields
a linear multi-phase t-resilient zero sharing generator. The linearity follows from the following induction:

1. The values associated with all root nodes are 0. Therefore, they are linear combinations of the input
group elements of G.

2. Assume that the values associated with all nodes of depth d − 1 are linear combinations of the input
group elements of G. For nodes of depth d, note that for all i ∈ {1, 2, . . . , ℓd/2}, val(c2i−1) is set to
be the i-th output group element of F (u(d−1)), which is a linear combination of the group elements
in ud−1. Therefore, for all i ∈ {1, 2, . . . , ℓd/2}, val(c2i−1) is a linear combination of the input group
elements of G.

Also note that for all i ∈ {1, 2, . . . , ℓd/2}, val(c2i) = val(vi) − val(c2i−1). Since vi has depth d − 1,
according to the induction hypothesis, val(vi) is a linear combination of the input group elements
of G. Since val(c2i−1) is also a linear combination of the input group elements of G, val(c2i) =
val(vi)− val(c2i−1) is a linear combination of the input group elements of G.

3. Then the values associated with all nodes in Fr are linear combinations of the input group elements of
G. In particular, the values associated with the leaf nodes in Fr, which are the output of G, are linear
combinations of the input group elements of G. Therefore, G is linear.

Then we show that for all j ∈ {1, 2, . . . , p}, the output vector r(j) = (r
(j)
1 , . . . , r

(j)
nj) satisfies that∑nj

i=1 r
(j)
i = 0. Recall that r(j) = (r

(j)
1 , . . . , r

(j)
nj) are the values associated with the leaf nodes in Trj .

By construction, the summation of the values associated with all leaf nodes in Trj is equal to the value

associated with the root node of Trj , which is 0. Thus
∑nj

i=1 r
(j)
i = 0.

Finally, let r̃ = (r̃(1), . . . , r̃(p)) ∈ Gn1 ×Gn2 × . . .×Gnp be uniformly random variables such that for all

j = {1, 2, . . . , p}, the vector r̃(j) = (r̃
(j)
1 , . . . , r̃

(j)
nj) satisfies that r̃

(j)
1 + . . . + r̃

(j)
nj = 0. We show that, for any

set W of t variables in A, the output r = (r(1), r(2), . . . , r(p)) satisfies that

D(r,W) ≡ D(r̃,W),

where D(r,W) and D(r̃,W) denote the distributions of the variables in W when they are instantiated by r
and r̃ respectively.

Note that every value in A corresponds to the value associated with a node in Fr. Equivalently, we need
to show that for any set V of at most t nodes in Fr,

D(r, {val(v)}v∈V) ≡ D(r̃, {val(v)}v∈V).

22

For a node v in Fr, we say v is a left node if v is a left child of some node in Fr. Similarly, we say v is a
right node if v is a right child of some node in Fr. For a given set V , we will construct a set V ′ of nodes
such that: (1) the values associated with nodes in V are determined by the values associated with nodes in
V ′, and (2) all nodes in V ′ are left nodes. The construction is as follows:

1. Initially, we set V ′ = V . Then we remove all root nodes from V ′. Recall that the values associated
with the root nodes are always 0. Thus, after removing the root nodes in V ′, the values associated
with nodes in V ′ can still determine the values associated with nodes in V .

2. For every right node c in V ′, run the following steps:

(a) Let v denote the parent of c, and c′ denote the left child of v.

(b) Since val(c) = val(v)− val(c′), we can replace the node c by v and c′. Thus, we remove c from V ′

and insert c′ in V ′.

(c) As for v,

• if v is a root node, abort.

• if v is a left node, insert v in V ′ and abort.

• if v is a right node, insert v in V ′, set c := v, and go back to Step 1.

Since the values associated with nodes in V ′ can determine the values associated with nodes in V , it is
sufficient to show that

D(r, {val(v)}v∈V ′) ≡ D(r̃, {val(v)}v∈V ′).

We will prove that (1) D(r, {val(v)}v∈V ′) is identical to the distribution of |V ′| random group elements in
G, and (2) D(r̃, {val(v)}v∈V ′) is also identical to the distribution of |V ′| random group elements in G.

For the first part, we will show that for all d ∈ {2, 3, . . . , D}, there are at most t nodes of depth d in V ′.
Recall that the way we obtain V ′ is to replace every right node in V by its parent and its left sibling, and
then repeat this step for its parent until the parent node is a left node or a root node. Therefore, to remove
a right node in V , we will add at most 1 node of each depth in V ′. For each depth, there are at most |V |
nodes in V ′. Since |V | = t and V ′ does not contain root nodes, for all d ∈ {2, 3, . . . , D}, there are at most t
nodes of depth d in V ′.

Recall that for each depth d ∈ {2, 3, . . . , D}, and for each left node of depth d, we set the value of this
node to be an output group element of F (u(d−1)). Also recall that F : Gm → Gn is a t-wise independent
PRG. Therefore, the values associated with the nodes of depth d in V ′ are uniformly random. Since we use
different inputs for F to set the values of nodes of different depths, the values associated with nodes in V ′ are
uniformly random. Thus, D(r, {val(v)}v∈V ′) is identical to the distribution of |V ′| random group elements
in G.

For the second part, let L be the set of all left nodes in Fr. We will show a stronger statement:
D(r̃, {val(v)}v∈L) is identical to the distribution of |L| random group elements in G. To this end, we
prove that there is a one-to-one map from the values associated with nodes in L to r̃ = (r̃(1), r̃(2), . . . , r̃(p))

subject to
∑nj

i=1 r̃
(j)
i = 0 for all j ∈ {1, 2, . . . , p}. We first show that there is a one-to-one map from the

values associated with nodes in L to the values associated with all nodes in Fr. Then we show that there
is a one-to-one map from r̃ to the values associated with all nodes in Fr. Combining these two one-to-one
maps, we obtain the desired result.

• One-to-one map from the values associated with nodes in L to the values associated with all nodes
in Fr: Recall that the values associated all root nodes are 0. Given the values associated with nodes
in L, we will compute the values associated with all right nodes in Fr. From d = 2 to D, assume
that we have computed the values associated with nodes of depth d− 1. For every right node c, let v
denote the parent of c, and c′ denote the left child of v. Then c′ ∈ L and val(v) has been computed.
Compute val(c) = val(v)− val(c′). Note that the values associated with all nodes in Fr satisfy that (1)
val(rtj) = 0 for all j ∈ {1, 2, . . . , p} and (2) val(v) = val(c0) + val(c1) for all internal node v ∈ Fr and
its two children c0, c1.

23

To see that this map is injective, note that the values associated with nodes in L, {val(v)}v∈L (i.e.,
the input of the map), are a part of the values associated with all nodes in Fr, {val(v)}v∈Fr (i.e., the
output of the map). Starting from two different assignments to the nodes in L, we will not reach the
same assignment to all nodes in Fr. Therefore, this map is injective.

To see that this map is surjective, for every assignment {val(v)}v∈Fr which satisfies that (1) val(rtj) = 0
for all j ∈ {1, 2, . . . , p}, and (2) val(v) = val(c0)+val(c1) for all internal node v ∈ Fr and its two children

c0, c1, we show that {val(v)}v∈L maps to {val(v)}v∈Fr. Suppose {val(v)}v∈L maps to {ṽal(v)}v∈Fr. Then
for all left node v, val(v) = ṽal(v). And for all root node rtj , ṽal(rtj) = val(rtj) = 0. Let d ≥ 2 be the

smallest depth which satisfies that there exists a node c of depth d such that val(c) ̸= ṽal(c). Then c is
a right node. Let v be the parent of c, and c′ be the left child of v. We have val(c) = val(v)−val(c′) and

ṽal(c) = ṽal(v) − ṽal(c′). However, by the choice of d, val(v) = ṽal(v). Since c′ is a left node, we have

val(c′) = ṽal(c′). Then val(c) = val(v)−val(c′) = ṽal(v)−ṽal(c′) = ṽal(c), which leads to a contradiction.

Therefore val(v) = ṽal(v) for all v ∈ Fr, which means that {val(v)}v∈L maps to {val(v)}v∈Fr. Therefore,
this map is surjective.

In summary, the map we construct is bijective.

• One-to-one map from r̃ to the values associated with all nodes in Fr: Recall that r̃ corresponds to the
values associated with the leaf nodes in Fr. Given r̃, we will compute the values associated with all
internal nodes in Fr: from d = D − 1 to 1, assume that we have computed the values associated with
nodes of depth d+1. For each internal node v of depth d, compute val(v) = val(c0)+val(c1), where c0, c1
are the two children of v. Since for all j ∈ {1, 2, . . . , p},

∑nj

i=1 r̃
(j)
i = 0, we have val(rtj) =

∑nj

i=1 r̃
(j)
i = 0.

Similarly, we can prove that the above is a bijective map from r̃ subject to
∑nj

i=1 r̃
(j)
i = 0 for all

j ∈ {1, 2, . . . , p}, to {val(v)}v∈Fr subject to (1) val(rtj) = 0 for all j ∈ {1, 2, . . . , p}, and (2) val(v) =
val(c0) + val(c1) for all internal node v ∈ Fr and its two children c0, c1.

Combining the above two bijective maps, we obtain a bijective map from the values associated with nodes in

L to r̃ subject to
∑nj

i=1 r̃
(j)
i = 0 for all j ∈ {1, 2, . . . , p}. Since r̃ is uniformly random subject to

∑nj

i=1 r̃
(j)
i = 0

for all j ∈ {1, 2, . . . , p}, the values associated with nodes in L are also uniformly random. It implies that
D(r̃, {val(v)}v∈V ′) is identical to the distribution of |V ′| random group elements in G.

In summary, we have shown that for any set W of t variables in A,

D(r,W) ≡ D(r̃,W).

Therefore, G is a linear multi-phase t-resilient zero sharing generator. The input size of G is (D − 1) ·m
group elements in G.

When G is a finite field F, by Theorem 1, we can instantiate the linear t-wise independent PRG F :
Fm → Fn with input size m = O(t · log n). For all j ∈ {1, 2, . . . , p}, we can use a full binary tree Trj with nj

leaf nodes of depth O(log nj) = O(log n). Thus, we have the following corollary.

Corollary 2. Let F be a finite field. Let p and n1, n2, . . . , np be positive integers, and Tr1, Tr2, . . . , Trp be
full binary trees such that Trj has nj leaf nodes of depth O(log nj) for all j ∈ {1, 2, . . . , p}. For each tree
Trj, let Aj denote the access set determined by Trj. Set n = n1 + n2 + . . . + np and A =

⋃p
j=1Aj. Then

there exists an explicit linear multi-phase t-resilient zero sharing generator that uses O(t · log2 n) random
elements in F.

6 Upper Bound for Addition

In this section we prove our main new upper bounds, obtaining an explicit version of the previous upper
bound for XOR from [KM97] and extending it to Abelian group addition. In Section 7 we show how to

24

amortize randomness complexity over multiple executions. In Section 8, we show how to construct an
explicit protocol for any symmetric Boolean functions with O(t2 · log3 n) random bits. Finally, in Section 9,
we show how to construct an explicit protocol for general circuits with helper parties, which uses O(t2 · log s)
random bits, where s is the circuit size.

We start by considering a function f that computes addition of n elements in a finite Abelian group G.
Concretely, f takes xi ∈ G from the party Pi and computes

∑n
i=1 xi. Assuming the existence of a linear

t-resilient zero sharing generator G : Gm → Gn, we construct an n-party computation protocol for f against
t corrupted parties with perfect semi-honest security.

Theorem 4. Let m,n, t be positive integers, Tr be a full binary tree with n leaf nodes, and G be a finite
Abelian group. Let f : Gn → G be the addition function which is defined by f(x1, x2, . . . , xn) =

∑n
i=1 xi.

Assume that G : Gm → Gn is a linear (4t+ 1)-resilient zero sharing generator with respect to the access set
A determined by Tr. There is an n-party computation protocol for f against t corrupted parties with perfect
semi-honest security, which uses (t+ 1) ·m random group elements in G.

Proof. We first construct a protocol for f assuming the existence of an ideal functionality Frand that dis-
tributes correlated randomness to all parties. For a full binary tree Tr with n leaf nodes, it has exactly n− 1
internal nodes. We use {1, 2, . . . , n} to label the leaf nodes in Tr, and {n+ 1, n+ 2, . . . , 2n− 1} to label the
internal nodes in Tr. We also use rt to denote the root of Tr.

Protocol with Ideal Functionality Frand. Consider an ideal functionality Frand that samples u ∈ Gm

uniformly, computes r = (r1, r2, . . . , rn) = G(u), and distributes ri to the party Pi for all i ∈ {1, 2, . . . , n}.
All parties run the following steps:

1. Each party Pi locally computes gi = xi + ri.

2. For each node v in Tr, let Sv be the set of indices of leaf nodes that are descendants of v. We will
ask a single party to compute gv :=

∑
i∈Sv

gi. Note that for all leaf nodes v ∈ {1, 2, . . . , n}, we have
already computed gv = xv + rv in Step 1. Now we describe how parties compute gv for all internal
nodes. Recall that Tr has n− 1 internal nodes. From i = 1 to n− 1, all parties run the following steps:

(a) Let v be the first internal node in Tr such that gv has not been computed but gc0 , gc1 have been
computed, where c0, c1 are the two children of v. Suppose that gc0 is computed by Pj0 , and gc1
is computed by Pj1 .

(b) Pi receives gc0 from Pj0 and receives gc1 from Pj1 . Then Pi computes gv = gc0 + gc1 .

3. Note that in the last iteration of Step 2, Pn−1 computes grt for the root node rt. Then

grt =

n∑
i=1

gi =

n∑
i=1

xi +

n∑
i=1

ri.

Since G is a zero sharing generator and r = (r1, r2, . . . , rn) is the output of G, we have
∑n

i=1 ri = 0.
Therefore, grt =

∑n
i=1 xi. Thus, Pn−1 learns f(x). Pn−1 sends the result to all other parties.

Correctness and Security. The correctness of our construction follows from the description. As for
security, consider the following simulator S:

1. S simulates the ideal functionality Frand by sending to each corrupted party Pi a uniformly random
group element r̃i on behalf of Frand.

2. S learns the inputs of corrupted parties the the function output f(x1, x2, . . . , xn).

3. For every corrupted party Pi, S computes g̃i := xi + r̃i. Then S randomly samples g̃i for each honest
party Pi subject to

∑n
i=1 g̃i = f(x1, x2, . . . , xn). After generating g̃i for each party Pi, S honestly

follows the protocol to compute g̃v for each internal node v. Finally, if Pn−1 is an honest party, S sends
f(x1, x2, . . . , xn) to the rest of parties on behalf of Pn−1.

25

We show that for any t corrupted parties, the distribution of their joint view in a real execution is identical
to the distribution of their joint view generated by S.

Let C be the set of corrupted parties, and V be the set of nodes in Tr such that for all v ∈ V , gv is either
computed or received by a corrupted party in C. We first show that |V | ≤ 4t+ 1:

• In Step 1, every corrupted party Pi computes gi = xi + ri. Thus, V contains the i-th leaf node.

• In Step 2, every corrupted party Pi is responsible to compute gv for at most one internal node v. Let
c0, c1 be the two children of v. To compute gv, Pi will receive gc0 , gc1 from other parties. Thus, V
contains v, c0, c1.

• In Step 3, all corrupted parties will receive the function output, which is equal to grt for the root node
rt, from Pn−1.

Thus, in total, |V | ≤ t+ 3t+ 1 = 4t+ 1.
Then, we show that the views of corrupted parties are determined by {xi}i∈C and {gv}v∈V . The views

of corrupted parties consist of their inputs, random tapes, messages exchanged with other parties, and the
function output.

1. Inputs of Corrupted Parties: Note that the set {xi}i∈C contains corrupted parties’ inputs.

2. Random Tapes: Since in our construction, the randomness is provided by Frand, corrupted parties do
not have random tapes.

3. Messages Exchanged with Other Parties: In Step 1, each corrupted party Pi receives ri from Frand.
Since ri = gi − xi, ri is determined by xi and gi, which are in {xi}i∈C and {gv}v∈V respectively. In
Step 2, every message a corrupted receives or sends is in the form of gv for some node v. By the
construction of V , v ∈ V . Thus, every message a corrupted receives or sends is in {gv}v∈V .

4. Function Output: In Step 3, all corrupted parties receive the function output f(x1, x2, . . . , xn) from
Pn−1. Recall that the root node rt is in V and grt = f(x1, x2, . . . , xn). Thus, the function output is
in {gv}v∈V .

Thus, the views of corrupted parties are determined by {xi}i∈C and {gv}v∈V .
Let {g̃v}v∈V denote the values generated by the simulator S. For all (x1, x2, . . . , xn), we want to prove

that the following two distributions are identical:

{{xi}i∈C , {gv}v∈V } ≡ {{xi}i∈C , {g̃v}v∈V }

Recall that {g̃v}v∈V are generated by the simulator S as follows:

1. S first samples {r̃i}i∈C uniformly and computes g̃i = xi + r̃i for all Pi ∈ C.

2. S then randomly samples g̃i for each honest party Pi subject to
∑n

i=1 g̃i =
∑n

i=1 xi.

3. After generating g̃1, g̃2, . . . , g̃n, {g̃v}v∈V are computed accordingly.

Given x1, x2, . . . , xn, let r̃i = g̃i − xi. Then r̃1, r̃2, . . . , r̃n are uniformly distributed subject to
∑n

i=1 r̃i = 0.
Recall that for each node v, Sv is the set of indices of leaf nodes that are descendants of v, and gv =∑

i∈Sv
gi =

∑
i∈Sv

xi +
∑

i∈Sv
ri. Similarly, g̃v =

∑
i∈Sv

xi +
∑

i∈Sv
r̃i. Thus, given (x1, x2, . . . , xn), the

statement
{{xi}i∈C , {gv}v∈V } ≡ {{xi}i∈C , {g̃v}v∈V }

is equivalent to
{
∑

i∈Sv
ri}v∈V ≡ {

∑
i∈Sv

r̃i}v∈V .

Recall that A is the access set with respect to the full binary tree Tr. For all v ∈ V , we have
∑

i∈Sv
ri ∈ A.

Therefore {
∑

i∈Sv
ri}v∈V ⊂ A. Recall that G is a (4t+ 1)-resilient zero sharing generator. Also recall that

26

r̃ = (r̃1, . . . , r̃n) are uniformly distributed subject to
∑n

i=1 r̃i = 0. By definition, for any set W of 4t + 1
variables in A,

D(r,W) ≡ D(r̃,W).

Since |V | ≤ 4t+ 1, |{
∑

i∈Sv
ri}v∈V | ≤ 4t+ 1. By setting W = {

∑
i∈Sv

ri}v∈V , we have

{
∑

i∈Sv
ri}v∈V ≡ {

∑
i∈Sv

r̃i}v∈V .

Realizing Frand. To obtain an n-party computation protocol for f in the plain model, it is sufficient to
realize Frand. We simply follow the approach in [KM97]: Recall that G is a linear zero sharing generator.
To realize Frand, we ask each party Pi of the first t + 1 parties randomly samples u(i) ∈ Gm, computes

r(i) = G(u(i)), and distributes r
(i)
j to Pj for all j ̸= i. Then all parties locally set r = r(1) + . . .+ r(t+1) =

G(u(1) + . . . + u(t+1)). The security follows from the fact that at least one of the first t + 1 parties is not

corrupted. Therefore, u =
∑t+1

i=1 u
(i) is uniformly random and r = G(u) has the same distribution as that

generated by Frand.
In summary, the whole protocol uses (t+ 1) ·m random group elements in G.

When G is a finite field F, and when we use a full binary tree Tr with n leaf nodes of depth O(log n), by
Corollary 2, there is an explicit linear (4t+ 1)-resilient zero sharing generator G : Fm → Fn with input size
m = O(t · log2 n). We have the following corollary.

Corollary 3. Let n, t be positive integers, F be a finite field, and f : Fn → F be the addition function which
is defined by f(x1, x2, . . . , xn) =

∑n
i=1 xi. There is an n-party computation protocol for f against t corrupted

parties with perfect semi-honest security, which uses O(t2 · log2 n) random field elements in F.

7 Randomness Complexity of Multiple Executions of Additions

7.1 Preliminaries: Randomness Extractor

We consider the following randomness extractor, which generalizes the extractor for bit-fixing sources (or
block-fixing sources) introduced in [CGH+85].

Definition 9. Let G be a finite and additive Abelian group. We say Ext : Gn → Gm is a t-resilient
randomness extractor if for all set T of t indices i1, i2, . . . , it in {1, 2, . . . , n}, given {rij}j∈T , Ext(r) is
uniformly distributed in Gm when {rij}j ̸∈T are uniformly sampled from Gn−m.

Vandermonde Matrix. For a finite field F of size |F| ≥ m + t, let α1, α2, . . . , αm+t be m + t distinct
elements in F. A Vandermonde matrix M of size (m + t) × m satisfies that Mij = (αi)

j for all i ∈
{1, 2, . . . ,m + t} and j ∈ {1, 2, . . . ,m}. It is well known that the transpose of M can be used as a linear
t-resilient randomness extractor Ext : Fm+t → Fm: for input x ∈ Fm+t, Ext(x) = MT · x.

For a small finite field F, we may consider an extension field of K with [K : F] = log(m + t). Then

|K| ≥ m + t. A linear t-resilient randomness extractor Ext : K
m

log(m+t)
+t → K

m
log(m+t) can be viewed as a

linear t-resilient randomness extractor Ext′ : Fm+t log(m+t) → Fm.

Theorem 5. For all finite field F, and for all positive integers m and t, there is a linear t-resilient randomness
extractor Ext : Fn → Fm with input size n = m+ t log(m+ t).

7.2 Extension to Multiple Executions of Additions

In our construction in Theorem 4, the main task is to emulate Frand and prepare the correlated random
tapes G(u), where G : Gm → Gn is a linear (4t + 1)-resilient zero sharing generator. Let ℓ, k be positive
integers such that k ≤ n. Suppose that Ext : Gk → Gℓ is a linear t-resilient randomness extractor, and
suppose that all parties want to run ℓ executions of additions. We can prepare ℓ copies of correlated random
tapes as follows:

27

1. For all Pi ∈ {P1, P2, . . . , Pk}, Pi randomly samples µ(i) ∈ Gm, computes τ (i) = G(µ(i)), and distributes

τ
(i)
j to Pj for all j ̸= i.

2. Each party Pj computes

(r
(1)
j , . . . , r

(ℓ)
j) = Ext(τ

(1)
j , . . . , τ

(m)
j).

3. For all i ∈ {1, 2, . . . , ℓ}, in the i-th execution, all parties use r(i) = (r
(i)
1 , . . . , r

(i)
n) as the correlated

random tapes.

To see that the above construction works, it is sufficient to show that r(1), . . . , r(ℓ) are the outputs of G
with uniformly random inputs u(1), . . . ,u(ℓ).

For all j ∈ {1, 2, . . . ,m}, let (u
(1)
j , . . . , u

(ℓ)
j) = Ext(µ

(1)
j , . . . , µ

(k)
j). Then for all i ∈ {1, 2, . . . , ℓ}, set

u(i) = (u
(i)
1 , . . . , u

(i)
m).

Let C be the set of corrupted parties in the first k parties. Then |C| ≤ t. We first show that u(1), . . . ,u(ℓ)

are uniformly random given {µ(i)}i∈C . Note that each honest party Pi ∈ {P1, P2, . . . , Pk} randomly samples

µ(i). For all j ∈ {1, 2, . . . ,m}, {µ(i)
j }i ̸∈C are uniformly random given {µ(i)

j′ }j′ ̸=j and {µ(i)
j }i∈C . According

to Definition 9, (u
(1)
j , . . . , u

(ℓ)
j) = Ext(µ

(1)
j , . . . , µ

(k)
j) satisfies that {u(i)

j }ℓi=1 are uniformly random given

{µ(i)
j′ }j′ ̸=j and {µ(i)

j }i∈C . Observe that {u(i)
j′ }j′ ̸=j are determined by {µ(i)

j′ }j′ ̸=j , and {µ(i)}i∈C are included

in {µ(i)
j′ }j′ ̸=j

⋃
{µ(i)

j }i∈C . Therefore, {u(i)
j }ℓi=1 are uniformly random given {u(i)

j′ }j′ ̸=j and {µ(i)}i∈C . Since it

holds for all j ∈ {1, 2, . . . ,m}, we have {u(i)}ℓi=1 are uniformly random given {µ(i)}i∈C .
Now we show that for all i ∈ {1, 2, . . . , ℓ}, r(i) = G(u(i)). Intuitively, this is because that both G and

Ext are linear:

• Since G : Gm → Gn is linear, there exists a matrix M1 ∈ Zn×m such that for all x ∈ Gm, y = G(x) =
M1 · x.

• Since Ext : Gk → Gℓ is linear, there exists a matrix M2 ∈ Zk×ℓ such that for all x ∈ Gk, y = Ext(x) =
M2 · x.

Therefore, from (µ(1), . . . ,µ(k)) to (τ (1), . . . , τ (k)), each Pi applies G on µ(i) to obtain τ (i), i.e., multiplies
M1 with each column vector. We have

(τ (1), . . . , τ (k)) = M1 · (µ(1), . . . ,µ(k)).

Then, from (τ (1), . . . , τ (k)) to (r(1), . . . , r(ℓ)), each Pj applies Ext on (τ
(1)
j , . . . , τ

(k)
j), i.e., multiplies M2 with

each row vector. We have
(r(1), . . . , r(ℓ)) = (τ (1), . . . , τ (k)) ·MT

2 .

In summary,
(r(1), . . . , r(ℓ)) = M1 · (µ(1), . . . ,µ(k)) ·MT

2 .

On the other hand, from (µ(1), . . . ,µ(k)) to (u(1), . . . ,u(ℓ)), we apply Ext on (µ
(1)
j , . . . , µ

(k)
j) for all j, i.e.,

multiply M2 with each row vector. We have

(u(1), . . . ,u(ℓ)) = (µ(1), . . . ,µ(k)) ·MT
2 .

Then, from (u(1), . . . ,u(ℓ)) to (G(u(1)), . . . , G(u(ℓ))), we apply G on u(i) for all i, i.e., multiply M1 with
each column vector. We have

(G(u(1)), . . . , G(u(ℓ))) = M1 · (u(1), . . . ,u(ℓ)).

In summary,
(G(u(1)), . . . , G(u(ℓ))) = M1 · (µ(1), . . . ,µ(k)) ·MT

2 .

Therefore, (r(1), . . . , r(ℓ)) = (G(u(1)), . . . , G(u(ℓ))). We have the following theorem:

28

Theorem 6. Let m,n, t, k, ℓ be positive integers such that k ≤ n. Let Tr be a full binary tree with n
leaf nodes and G be a finite Abelian group. Let f : Gn → G be the addition function which is defined by
f(x1, x2, . . . , xn) =

∑n
i=1 xi. Assume that G : Gm → Gn is a linear (4t+ 1)-resilient zero sharing generator

with respect to the access set A determined by Tr, and Ext : Gk → Gℓ is a linear t-resilient randomness
extractor. There is an n-party computation protocol that computes ℓ executions of f against t corrupted
parties with perfect semi-honest security, which uses k ·m random group elements in G.

When G is a finite field F, by Theorem 5, there is a linear t-resilient randomness extractor Ext : Fk → Fℓ

with input size k = ℓ+ t · log(ℓ+ t). When ℓ ≤ n− t · log n, we have

k = ℓ+ t · log(ℓ+ t) ≤ n− t · log n+ t · log(n− t · log n+ t) ≤ n.

When we use a full binary tree Tr with n leaf nodes of depth O(log n), by Corollary 2, there is an explicit
linear (4t+ 1)-resilient zero sharing generator G : Fm → Fn with input size m = O(t · log2 n). We have the
following corollary.

Corollary 4. Let n, t, ℓ be positive integers such that ℓ ≤ n − t · log n, F be a finite field, and f : Fn → F
be the addition function which is defined by f(x1, x2, . . . , xn) =

∑n
i=1 xi. There is an n-party computation

protocol that computes ℓ executions of f against t corrupted parties with perfect semi-honest security, which
uses O((ℓ+ t log(ℓ+ t)) · t · log2 n) random field elements in F.

8 Upper Bound for Symmetric Functions

In this part, we focus on symmetric functions f : {0, 1}n → {0, 1}. Our main theorem is as follows:

Theorem 7. Let n, t be positive integers such that t < n
⌈logn⌉ . Let f : {0, 1}n → {0, 1} be a symmetric

function. There is an n-party computation protocol for f against t corrupted parties with perfect semi-honest
security, which uses O(t2 · log3 n) random bits.

Our protocol will use the addition protocol we constructed in Section 6 as a building block and also use
the standard Shamir secret sharing scheme.

Shamir Secret Sharing Scheme. Let n be the number of parties and F be a finite field of size |F| ≥ n+1.
Let α1, . . . , αn be n distinct non-zero elements in F.

A degree-d Shamir sharing of x ∈ F is a vector (x1, . . . , xn) which satisfies that, there exists a polynomial
f(·) ∈ F[X] of degree at most d such that f(0) = x and f(αi) = xi for all i ∈ {1, . . . , n}. Each party Pi

holds a share xi and the whole sharing is denoted by [x]d.
The Shamir secret sharing scheme has two nice properties:

• Linear Homomorphism: Suppose all parties hold [x]d, [y]d. By locally adding up their shares, all parties
hold [x+ y]d = [x]d + [y]d.

• Multiplication Friendly: Suppose all parties hold [x]d1 , [y]d2 . By locally multiplying up their shares,
all parties hold [x · y]d1+d2 = [x]d1 · [y]d2 .

Protocol Construction with Fadd. Let p be a prime such that n < p < 2n, whose existence is guaranteed
by Chebyshev’s Theorem in number theory. Our construction will use the prime field Fp.

We first assume an ideal functionality Fadd that computes the addition function. Later on, we will
instantiate Fadd by our addition protocol constructed in Section 6.

Since f : {0, 1}n → {0, 1} is a symmetric function, the output of f only depends on the number of 1s
in the input (x1, x2, . . . , xn). Let s = x1 + x2 + . . . + xn. Then s is the number of 1s in (x1, x2, . . . , xn).
Therefore, there exists g : {0, 1, . . . , n} → {0, 1} such that f(x1, x2, . . . , xn) = g(s). Our idea is to first

29

compute the sum s in Fp and then compute g(s). Let k = ⌈log n⌉. Recall that t < n
⌈logn⌉ . Then t + k =

t+ ⌈log n⌉ < n
⌈logn⌉ + ⌈log n⌉ ≤ n+ 1. Therefore t+ k ≤ n.

Step 0: Preparing a Random Degree-t Shamir Sharing. In this step, we want to prepare a
random degree-t Shamir sharing [r]t. To this end,

1. Each Pi of the first t+1 parties generates a random degree-t Shamir sharing [s(i)]t and distributes the
shares to all parties.

2. All parties compute [r]t =
∑t+1

i=1[s
(i)]t and output [r]t.

Step 1: Computing a Degree-t Shamir Sharing of s. In this step, all parties use [r(0)]t (the other
sharing [r(0)]2t is simply discarded) prepared in Step 0 to compute a degree-t Shamir sharing of s. All parties
run the following steps:

1. Each party Pi view its input bit xi as a field element in Fp.

2. For the random degree-t Shamir sharing [r(0)]t prepared in Step 0, let r
(0)
i denote the share of Pi. By

the property of the Shamir secret sharing scheme,

r(0) =
t+1∑
i=1

λi · r(0)i ,

where λ1, . . . , λt+1 are Lagrange coefficients. For all Pi ∈ {P1, P2, . . . , Pt+1}, Pi computes yi = xi −
λi · r(0)i . For all Pi ∈ {Pt+2, . . . , Pn}, Pi sets yi = xi.

3. All parties invoke Fadd on (y1, y2, . . . , yn) and learn the summation y =
∑n

i=1 yi =
∑n

i=1 xi−
∑t+1

i=1 λi ·
r
(0)
i = s− r(0).

4. All parties locally compute [s]t = (s− r(0)) + [r(0)]t.

Step 2: Computing a Degree-t Shamir Sharing of s2
i

for all i ∈ {0, . . . , k−1}. In this step, all

parties will compute [s2
i

]t for all i ∈ {0, . . . , k−1}. Note that when i = 1, all parties have already computed

[s2
0

]t = [s]t in Step 1. For all i ∈ {1, 2, . . . , k − 1}, all parties will compute [s2
i

]t by using [s2
i−1

]t by the
BGW protocol in [BGW88]. Concretely, from i = 1 to k − 1, all parties run the following steps:

1. All parties locally compute [s2
i

]2t = [s2
i−1

]t · [s2
i−1

]t.

2. Let sh1, . . . , sh2t+1 denote the shares of [s2
i

]2t of the first 2t+1 parties. Then there exists coefficients

λ1, . . . , λ2t+1 such that s2
i

= λ1 ·sh1+ . . .+λ2t+1 ·sh2t+1. For each party Pj of the first 2t+1 parties,
Pj distributes a random degree-t Shamir sharing [shj]t.

3. All parties locally compute [s2
i

]t = λ1 · [sh1]t + . . .+ λ2t+1 · [sh2t+1]t.

Step 3: Evaluating the Function g. Recall that g : {0, 1, . . . , n} → {0, 1} satisfies that f(x1, x2, . . . , xn) =
g(s). It is sufficient to compute g(s). Note that we can express g(s) by a degree-n polynomial in Fp (e.g.,
by using Lagrange interpolation). Suppose

g(s) =

n∑
i=0

ci · si.

We show that all parties can locally compute a degree-(t · k) Shamir sharing of g(s).
Recall that k = ⌈log n⌉. For all i ∈ {0, 1, . . . , n}, consider its binary representation i = (αk−1αk−2 . . . α0)2.

Then i = αk−1 · 2k−1 + αk−2 · 2k−2 + . . .+ α0. Since all parties have computed [s2
k−1

]t, [s
2k−2

]t, . . . , [s]t, all
parties can locally compute

[si]t·k :=
∏

j:αj=1

[s2
j

]t.

30

Note that the RHS gives a Shamir sharing of degree at most t · k. Here we use the fact that any Shamir
sharing of degree at most t · k can be viewed as a Shamir sharing of degree t · k. Thus, all parties can locally
compute

[g(s)]t·k =

n∑
i=0

ci · [si]t·k.

Finally, to reconstruct g(s), we need t·k+1 shares. Recall that k = ⌈log n⌉ and t < n
⌈logn⌉ . Then t < n/k,

which means that t · k < n. Thus t · k + 1 ≤ n. Let shi be the i-th share of [g(s)]t·k. Let µ1, µ2, . . . , µn

be Lagrange coefficients such that g(s) =
∑n

i=1 µi · shi. All parties locally compute zi = µi · shi. Then all
parties invoke Fadd on (z1, z2, . . . , zn) and learn the summation

∑n
i=1 zi = g(s).

Correctness and Security. The correctness of our construction follows from the description. For security,
our protocol consists of the following four steps:

1. Preparation of a random degree-t Shamir sharing [r]t.

2. An invocation of Fadd to compute a degree-t Shamir sharing of s.

3. The BGW protocol in [BGW88] to compute {[s2i]t}ki=1. Then all parties locally compute [g(s)]t·k.

4. An invocation of Fadd to compute the output g(s).

For the first step, the security follows from the fact that there are at most t corrupted parties. Therefore,
the resulting sharing is a random degree-t Shamir sharing. For the rest of 3 steps, the security follows from
Fadd and the BGW protocol.

Randomness Complexity. Our construction needs randomness in the following three places: (1) prepar-
ing a random degree-t Shamir sharing in Step 0, (2) instantiating Fadd used in Step 1 and Step 3, and (3)
using the BGW protocol to compute multiplications. In Step 0, each of the first t + 1 parties need to use
t+1 random elements to sample a random degree-t Shamir sharing. Therefore, Step 0 requires O(t2) random
field elements. In Step 1 and Step 3, we use Corollary 3 to instantiate Fadd, which requires O(t2 · log2 n)
random field elements in Fp. In Step 2, each multiplication requires 2t+1 parties to share their shares using
degree-t Shamir sharings. Thus, all parties need O(t2) random field elements per multiplication. The total
cost for multiplications is O(t2 · k) random field elements.

Recall that k = ⌈log n⌉ and n < p < 2p. Therefore, the randomness complexity of our construction is

O(t2) · log p+O(t2 · log2 n) · log p+O(t2 · ⌈log n⌉) · log p = O(t2 · log3 n).

9 Upper Bound for General Circuits with Helper Parties

In this section, we show how to construct a randomness-efficient multiparty computation protocol for a
general function f assuming helper parties (i.e., parties which can participate in the computation but do not
have inputs, nor receive outputs). Concretely, for all n-ary function f that admits a circuit of size s, our
construction requires O(t2 · log s) random bits.

9.1 Preliminaries: Leakage-Tolerant Private Circuit

In this work, we are interested in a tolerant variant of the private circuits model from [ISW03] in which the
inputs and outputs are unprotected. Concretely, we focus on a stateless and leakage-tolerant private circuit,
defined as follows.

Definition 10 (Tolerant private circuit [IKL+13, AIS18]). A stateless and t-leakage-tolerant private circuit
for f : {0, 1}ni → {0, 1}no is a randomized Boolean circuit C with input x ∈ {0, 1}ni , output y ∈ {0, 1}no ,
and randomness ρ ∈ {0, 1}m such that

31

• (Correctness) Pr[C(x) = f(x)] = 1.

• (Privacy) There exists a simulator S = (S1,S2) such that for all x and any set P of at most t
intermediate wires in C, S1(C,P) outputs a set P ′ of |P | input and output wires in C such that the
following two distributions are equivalent:

{CP (x,ρ)} ≡ {S2(C,CP ′(x,ρ))},

where CP (resp., CP ′) denotes the set of bits on the wires from P (resp., P ′).

We have the following theorem about the randomness complexity of a leakage-tolerant private circuit
from [GIS22a]:

Theorem 8 ([GIS22a]). Any function f with circuit size s admits a t-leakage-tolerant private circuit C,
where C uses O(t · log ts) random bits.

In [GIS22a], the construction of leakage-tolerant private circuits is not explicit. Concretely, their con-
struction relies on a multi-phase robust zero sharing generator. This is different from a multi-phase zero
sharing generator in the sense that the output of a robust generator should has the desired property even
if some wires of the circuit that computes the generator are leaked. This property is necessary when con-
structing a private circuit. This is because the output of a multi-phase zero sharing generator is computed
gate by gate in a private circuit, and an adversary can not only probe the output wires of the generator, but
also the internal wires of the generator.

Definition 11 (Multi-phase Robust Zero Sharing Generators [GIS22a]). Let G be a finite Abelian group. Let
p and n1, n2, . . . , np be positive integers, G : Gm → Gn1×Gn2× . . .×Gnp be a function, u = (u1, u2, . . . , um)
be a vector of random variables in Gm that are uniformly distributed, and r = (r(1), r(2), . . . , r(p)) = G(u)

where r(j) = (r
(j)
1 , . . . , r

(j)
nj) for all j ∈ {1, 2, . . . , p}. For each r(j), let Aj be an access set of the random

variables {r(j)1 , . . . , r
(j)
nj }, and A =

⋃p
j=1Aj. A circuit implementation C of the function G is a multi-phase

(t, k, q)-robust zero sharing generator with respect to A if the following holds:

• For all j ∈ {1, 2, . . . , p}, the output vector r(j) = (r
(j)
1 , . . . , r

(j)
nj) satisfies that r

(j)
1 + . . .+ r

(j)
nj = 0.

• Let r̃ = (r̃(1), . . . , r̃(p)) ∈ Gn1 × . . . × Gnp be uniformly random variables such that for all j ∈
{1, 2, . . . , p}, the vector r̃(j) = (r̃

(j)
1 , . . . , r̃

(j)
nj) satisfies that r̃

(j)
1 + . . . + r̃

(j)
nj = 0. For any set S of

at most k wires in C, there is a set T of at most q|S| output elements such that for any set W of t

variables in A and for any fixing of the values CS of the wires in S and rI , where I = {(j, i) : r(j)i ∈ T}
and rI is the vector that contains all variables in {r(j)i : (j, i) ∈ I},

D(r|CS ,rI
,W) = D(r̃|r̃I=rI

,W),

where D(r,W) is the distribution of the variables in W when they are instantiated by r, r|CS ,rI
is

the random variable r conditioned on CS and rI , and r̃|r̃I=rI
is the random variable r̃ conditioned on

r̃I = rI .

Let Tr1, Tr2, . . . , Trp be full binary trees such that Trj has nj leaf nodes for all j ∈ {1, 2, . . . , p}. For
each tree Trj , let Aj denote the access set determined by Trj . Set n = n1 +n2 + . . .+np and A =

⋃p
j=1Aj .

Goyal, et al [GIS22a] show that, when G is a binary field, there exists a (non-explicit) linear multi-phase
(t, t, 1)-robust zero sharing generator with respect to A with input size O(t · log n).

For a function f with circuit size s, the construction of a t-leakage-tolerant private circuit in [GIS22a]
transforms f to a circuit of size O(t2 · s · log2 s) and uses a multi-phase (t, t, 1)-robust zero sharing generator
G with output size O(t2 · s · log2 s). The randomness complexity is dominated by the input size of G, which
is O(t · log ts). Since G is linear with input size O(t · log ts), computing each output bit of G has circuit size
at most O(t · log ts). Thus, the construction in [GIS22a] has circuit size O(t3 · s · log2 s · log ts).

32

9.2 MPC Protocol for General Functions

Theorem 9. Let n be the number of parties, t be the number of corrupted parties, and k be the number of
helper parties. For all n-ary function f : D1 × . . . × Dn → Z, suppose f admits a circuit implementation
of size s. There is a non-explicit n-party computation protocol for f against t corrupted parties with perfect
semi-honest security, which uses O(t2 · log s) random bits and k = O(t4 · s · log s · log3 ts) helper parties.

Proof. We first describe our construction. At a high-level, all parties will run the following three steps:

1. The first n parties secret-share their inputs to helper parties.

2. All helper parties together emulate a t-leakage-tolerant private circuit which takes as input the shares
of the input of f and outputs the shares of the function output.

3. Finally, the function output is reconstructed to the first party P1, who then distributes the result to
P2, P3, . . . , Pn.

We start with an ideal functionality Frand that generates random tapes for all parties. Later on, we will
show how to instantiate Frand.

Protocol Description. Let s be the circuit size, and G : {0, 1}m → {0, 1}s be a linear and strong 3t-
wise independent PRG. We will use the following linear 3t-private encoding scheme (Enc, Dec) introduced
in [GIS22a]. See Section 3.2 for more details. The encoding and decoding algorithms are defined by:

Enc(x;ρ) := (ρ, G(ρ)⊕ x) Dec(c1, c2) = G(c1)⊕ c2,

where x ∈ {0, 1}s,ρ ∈ {0, 1}m and (c1, c2) ∈ {0, 1}m × {0, 1}s.
To encode a message of length ℓ < s, we only need to use the first ℓ bits of the output of G and mask

the message with these ℓ bits. The decoding scheme can be modified similarly.
Step 0: Generating Randomness. The ideal functionality Frand will generate n random strings

ρ1,ρ2, . . . ,ρn, each of length m, such that they are 4t-wise independent. In addition, Frand will generate
a uniformly random string ρ0 ∈ {0, 1}m. Finally, Frand sends ρ0,ρ1 to P1 and sends ρi to Pi for all
i ∈ {2, . . . , n}.

Step 1: Sharing Phase. For all i ∈ {1, 2, . . . , n}, let xi be the input of Pi, and ℓi = |xi|. To share xi,
Pi uses the random string ρi ∈ {0, 1}m received from Frand and computes Enc(xi;ρi). Then Pi distributes
the encoding to a set of m + ℓi helper parties, one bit per party. We require that every two parties Pi, Pj

distribute the encoding of their inputs to two disjoint sets of helper parties. Or equivalently, each helper
party will receive at most one bit from the first n parties during the sharing phase. Note that the total size
of the inputs of all parties is bounded by the circuit size s. Thus, there are in total n ·m+ s helper parties,
each receiving a single bit from the first n parties during the sharing phase.

In addition, the first party P1 will distribute ρ0 to another set of m helper parties (which are different
from the above n ·m+ s helper parties). ρ0 will be used to compute the encoding of the function output.

Step 2: Function Evaluation. All helper parties together emulate a 3t-leakage-tolerant private
circuit for the following function f̃ :

1. The input of f̃ consists of {Enc(xi;ρi)}ni=1 and ρ0. f̃ first computes xi by decoding Enc(xi;ρi).

2. Then f̃ computes y = f(x1,x2, . . . ,xn).

3. Finally, f̃ computes Enc(y;ρ0)

Note that at the beginning, we have (n+ 1) ·m+ s helper parties, each holding a single bit of the input
of f̃ . The emulation is done as follows: The private circuit is computed gate by gate. For each gate, let Pj

be the first helper party who does not hold any input bit nor compute any gate. Pj receives the input values
of this gate from other helper parties and computes the output value of this gate. In this way, each helper
party learns at most 3 wire values in the private circuit.

33

Step 3: Output Reconstruction. After emulating the private circuit for f̃ , there are m+ s helper
parties, each holding a single bit of the output of f̃ . They send the output of f̃ to the first party P1. Then
P1 decodes the output and sends the function output y = f(x1,x2, . . . ,xn) to P2, P3, . . . , Pn.

Correctness and Security. The correctness of our protocol follows from the description. As for the
security, we consider a stronger adversary who can corrupt t parties in {P1, P2, . . . , Pn} and t helper parties.
Let T be the set of corrupted parties in {P1, P2, . . . , Pn}. We will show that the joint view of all corrupted
parties as well as the function output can be simulated by only accessing to the inputs of parties in T and
the function output.

First, consider the corrupted helper parties. Recall that each helper party is only responsible to compute
a single gate in the private circuit. Therefore, each helper party learns at most 3 wires in the private circuit.
Thus, the joint view of the corrupted helper parties contains at most 3t wire values, which can be simulated
by at most 3t input and output wires of the private circuit. Recall that the input and the output of f̃ consist
of the encoding of x1,x2, . . . ,xn and y, i.e.,

{Enc(xi;ρi)}ni=1 and Enc(y;ρ0).

Then the joint view of the corrupted helper parties can be simulated by accessing to 3t bits in the encoding
of x1,x2, . . . ,xn and y.

Now, we focus on the corrupted parties in T . For party Pi (i ≥ 2), the view of Pi consists of
xi,ρi, Enc(xi;ρi) and the function output y. For party P1, the view of P1 consists of x1,ρ1, Enc(x1;ρ1) and
y,ρ0, Enc(y;ρ0). Thus, given the inputs of parties in T and the function output, for every Pi ∈ T (i ≥ 2),
we only need to simulate the random tape ρi. For P1, we only need to simulate the random tapes ρ0 and
ρ1.

The simulator S works as follows:

1. For every corrupted party Pi ∈ T (i ≥ 2), S generates a random string ρi ∈ {0, 1}m. Then S computes
Enc(xi;ρi). If P1 ∈ T , S generates two random strings ρ0,ρ1 ∈ {0, 1}m and computes Enc(x1;ρ1) and
Enc(y;ρ0).

2. For each of the 3t bits in the encoding of x1,x2, . . . ,xn and y that are required to simulate the joint
view of the corrupted helper parties, if this bit is not generated in Step 1, S samples a random bit.
Then S invokes the simulator of the 3t-leakage-tolerant private circuit to simulates the joint view of
the corrupted helper parties.

We show that the simulator S perfectly simulates the joint view of all corrupted parties. Let I be the set
of corrupted parties in {P1, P2, . . . , Pn} such that Pi ∈ I if and only if some bits of Enc(xi;ρi) are required
to simulate the joint view of the corrupted helper parties. Since we need to access to at most 3t wires,
|I| ≤ 3t. Then |T

⋃
I| ≤ t + 3t ≤ 4t. Recall that ρ1, . . . ,ρn are random strings with 4t-wise independent.

Also recall that ρ0 is uniformly distributed and independent of {ρi}ni=1 Therefore, {ρi}i∈T
⋃

I

⋃
{ρ0} are

uniformly random. Thus, in the first step, S perfectly simulates the random tapes of corrupted parties in T .
For the second step, we consider the following two cases:

• If P1 ∈ T , then to simulate the views of the corrupted helper parties, we need at most 3t bits for each
of {Enc(xi;ρi)}i∈I\T . Recall that the encoding scheme is defined to be

Enc(x;ρ) := (ρ, G(ρ)⊕ x),

where G is a strong and linear 3t-wise independent PRG. It implies that any 3t bits of the encoding
of xi are uniformly random when using fresh randomness ρi. Recall that the random tapes {ρi}i∈I\T
are uniformly distributed given {ρi}i∈T

⋃
{ρ0}. Therefore, in the second step, S perfectly simulates

the rest of the input and output wires that are required to simulate the joint view of the corrupted
helper parties.

By the property of a 3t-leakage-tolerant private circuit, S perfectly simulates the views of all corrupted
parties.

34

• If P1 ̸∈ T , then to simulate the views of the corrupted helper parties, we need at most 3t bits for
each of {Enc(xi;ρi)}i∈I\T and Enc(y;ρ0). Note that {ρi}i∈I\T

⋃
{ρ0} are uniformly distributed given

{ρi}i∈T . By the same argument, S perfectly simulates the rest of the input and output wires that are
required to simulate the joint view of the corrupted helper parties.

By the property of a 3t-leakage-tolerant private circuit, S perfectly simulates the views of all corrupted
parties.

Therefore, the simulator S perfectly simulates the joint view of all corrupted parties. The security holds.

Instantiating Frand. Now we discuss how to instantiate the ideal functionality Frand. Note that to
generate ρ1,ρ2, . . . ,ρn that are 4t-wise independent, we need at least 4t ·m random bits. Since m is the
input size of a 3t-wise independent PRG G, m is at least O(t). It means that we need at least O(t2) random
bits. We cannot use the same approach as our protocol for addition (Section 6), i.e., by letting each of the
first t + 1 party prepare and distribute a copy of all random bits and using the summation of all copies as
the final random tapes, since it would cost O(t3) random bits in total.

Our idea is to let each of the first 2t parties prepare and distribute 4t-wise independent sources. Then
we will use a t-resilient randomness extractor to extract t copies of fresh 4t-wise independent sources. The
final random tapes are the concatenation of these t copies. In this way, each copy only needs to contain
m/t random bits. Therefore, the total random bits required by the protocol becomes 2t · 4t · (m/t) = O(t2)
(omitting the logarithm factors in the circuit size).

With more details, let F be an extension field of the binary field such that |F| ≥ max{n, 2m/t}. Let
G′ : Fm′ → Fn be a 4t-wise independent PRG over F. Also let Ext : F2t → Ft be a t-resilient randomness
extractor (which can be constructed based on a Vandermonde matrix as we discussed in Section 7.1). All
parties run the following steps:

1. For each party Pj ∈ {P1, P2, . . . , P2t}, Pj randomly samples u(j) ∈ Fm′
. Then Pj computes r(j) =

G′(u(j)) and sends r
(j)
i to Pi for all i ∈ {1, 2, . . . , n}.

2. For each party Pi ∈ {P1, P2, . . . , Pn}, let ri = (r
(1)
i , . . . , r

(2t)
i) ∈ F2t. Pi computes τi = Ext(ri). Then

Pi transforms each field element in τi to log |F| bits and use the concatenation of all bits as the random
tape ρi.

3. P1 samples m random bits as ρ0.

Note that for all i ∈ {1, 2, . . . , n}, |τi| = t · log |F| ≥ t · (m/t) = m. Therefore, Pi will obtain a random
tape ρi of length m. Now we only need to show that ρ1,ρ2, . . . ,ρn are 4t-wise independent. It is equivalent
to show that, for any set I of 4t indices in {1, 2, . . . , n}, {ρi}i∈I are uniformly random.

Let T be the set of corrupted parties in {P1, P2, . . . , P2t}. Then |T | ≤ t. For all Pj ̸∈ T , {r(j)1 , r
(j)
2 , . . . , r

(j)
n }

are 4t-wise independent. Therefore, {r(j)i }i∈I are uniformly random. Thus, {r(j)i | j ̸∈ T and i ∈ I} are

uniformly random even given {r(j)i | j ∈ T and i ∈ I}. For all i′ ∈ I, {r(j)i′ }j ̸∈T are uniformly random after

fixing {r(j)i′ }j∈T and {r(j)i }i ̸=i′,i∈I . Since |T | ≤ t, by the property of a t-resilient randomness extractor, τi′

is uniformly distributed and independent of {τi}i ̸=i′,i∈I . Since the same argument works for all i′ ∈ I, we
have that {τi}i∈I are uniformly random, which implies that {ρi}i∈I are uniformly random.

Randomness Complexity. We analyse the randomness complexity of our protocol. Our construction
uses the following primitives:

• A strong and linear 3t-wise independent PRG G : {0, 1}m → {0, 1}s. It is used to construct the 3t-
private encoding scheme (Enc, Dec). G can be instantiated with input size m = O(t · log s). See more
discussion in [GIS22a].

• A 4t-wise independent PRG G′ : Fm′ → Fn. Recall that |F| ≥ n. Such a PRG can be instantiated with
input size m′ = O(t), e.g., by using a Shamir secret sharing scheme.

35

• A 3t-leakage-tolerant private circuit for the function f̃ , which can be instantiated by using O(t · log(t ·
|f̃ |)) random bits from Theorem 8, where |f̃ | denotes the circuit size of f̃ .

Thus, in Step 0, all parties together prepare random tapes ρ0,ρ1, . . . ,ρn. With the above instantiations,
we need 2t ·m′ · log |F|+m = O(t2 · log s) random bits.

In Step 2, all helper parties together emulate the 3t-leakage-tolerant private circuit for f̃ . Regarding
the circuit size of f̃ , in addition to computing the function f , f̃ needs to decode the inputs and encode the
output. To decode the input of Pi, we need to compute the PRG G and compute the XOR of two ℓi-bit
strings, where ℓi is the length of Pi’s input. To encode the function output, we need to compute the PRG
G and compute the XOR of two s-bit strings, since the length of the output is bounded by the circuit size
s. Since G is a linear PRG, the circuit size of computing a single output bit of G is bounded by m. Thus,

• the input size of f̃ is (n+ 1) ·m+ s as we analysed in Step 2;

• the circuit size of decoding the input of Pi is at most m · ℓi + ℓi;

• the circuit size of computing f is s;

• the circuit size of encoding the function output is at most m · s+ s.

The total size of f̃ is therefore bounded by O(t · s · log s)7. Thus, by Theorem 8, the private circuit for f̃
requires O(t · log ts) random bits.

Note that Step 1 and Step 3 are deterministic. Therefore, the randomness complexity of our protocol is
O(t2 · log s).

Analysis of the Number of Helper Parties. Recall that all helper parties together emulate a leakage-
tolerant private circuit for the function f̃ , which takes the encoding of the inputs and outputs an encoding
of the output of f . Recall that the circuit size of f̃ is bounded by O(t · s · log s), where s is the circuit size
of f .

As we discussed in Section 9.1, the size of the leakage-tolerant private circuit from [GIS22a] is bounded
by O(t3 · |f̃ | · log2 |f̃ | · log(t · |f̃ |)), where |f̃ | is the circuit size of f̃ . Thus, the size of the leakage-tolerant
private circuit for f̃ is bounded by O(t4 ·s · log s · log3 ts). Since we use each helper party to compute a single
gate in the private circuit, our construction requires O(t4 · s · log s · log3 ts) helper parties.

9.3 Reducing the Number of Helper Parties

We note that the construction in Theorem 9 is not explicit due to the use of a non-explicit private circuit
from [GIS22a]. As we discussed in Section 9.1, the non-explicit part in [GIS22a] is a multi-phase robust zero
sharing generator.

Recall that in Section 5, we give an explicit construction for a multi-phase zero sharing generator. While
we cannot directly use it in the construction of private circuit in [GIS22a] since it does not have robustness,
as noted in [IKL+13], we can use t+1 copies of multi-phase zero sharing generator to achieve the robustness.
We have the following theorem.

Theorem 10. Let G be a finite and additive Abelian group. Let p and n1, n2, . . . , np be integers, and
Tr1, Tr2, . . . , Trp be full binary trees such that Trj has nj leaf nodes for all j ∈ {1, 2, . . . , p}. For each tree
Trj, let Aj denote the access set determined by Trj. Set n = n1 + n2 + . . . + np, A =

⋃p
j=1Aj. Suppose

G : Gm → Gn is a linear multi-phase 2t-resilient zero sharing generator with respect to A. Then there exists
a linear multi-phase (t, t, 1)-robust zero sharing generator that uses (t+ 1) ·m random group elements in G.

Proof. We construct the multi-phase (t, t, 1)-robust zero sharing generator G′ as follows:

1. The input of G′ is (u(1), . . . ,u(t+1)) ∈ Gm(t+1).

7Here we assume that n ≤ s for simplicity. In general, let n′ be the number of parties that hold inputs. Then n′ ≤ s. The
input size of f̃ can be bounded by (n′ + 1) ·m+ s. Therefore, the bound for the size of f̃ always holds.

36

2. The circuit implementation C of G′ first computes G(u(i)) for all i ∈ {1, 2, . . . , t+ 1}.

3. Then for the j-th output group element of G′, C computes the summation of the j-th output group
elements of G(u(1)), . . . , G(u(t+1)) for all j ∈ {1, 2, . . . , n}.

Note that the linearity of G′ follows from the linearity of G. We prove that G′ is a multi-phase (t, t, 1)-
robust zero sharing generator by verifying the two properties in Definition 11. Let u = u(1) + . . .+ u(t+1).
Since G is linear, we have G′(u(1), . . . ,u(t+1)) = G(u(1) + . . . + u(t+1)) = G(u). Since G is a multi-phase
t-resilient zero sharing generator, the output of G(u) satisfies the first property in Definition 8, which is the
same as the first property in Definition 11. Therefore, G′ satisfies the first property in Definition 11.

Regarding the second property in Definition 11, for any set S of at most t wires in C, let S1 be the set of
wires in S that are intermediate wires when computing G(u(1)), . . . , G(u(t+1)), and S2 be the set of wires in
S that are intermediate wires when computing G(u(1)) + . . .+G(u(t+1)). Then |S1| ≤ t and |S2| ≤ t. The
set T of output elements of G′ is determined as follows: For all j ∈ {1, 2, . . . , n}, if an intermediate wire of
computing the j-th output element is in S2, we insert the j-th output element in T . Then |T | ≤ |S2| ≤ t.
For any set W of t variables in A and for any fixing of the values CS of the wires in S and rI , where

I = {(j, i) : r(j)i ∈ T} and rI is the vector that contains all variables in {r(j)i : (j, i) ∈ I}, we want to prove
that

D(r|CS ,rI
,W) = D(r̃|r̃I=rI

,W),

where r = G′(u(1), . . . ,u(t+1)) = G(u) and r̃ = (r̃(1), . . . , r̃(p)) ∈ Gn1 × . . . × Gnp are uniformly random

variables such that for all j ∈ {1, 2, . . . , p}, the vector r̃(j) = (r̃
(j)
1 , . . . , r̃

(j)
nj) satisfies that r̃

(j)
1 + . . .+ r̃

(j)
nj = 0.

Since |S1| ≤ t, there exists an index i⋆ such that no wire in the sub-circuit that computes G(u(i⋆)) is in
S1. Then the wires in S1 are determined by {u(i)}i ̸=i⋆ . Note that, given {u(i)}i ̸=i⋆ , u = u(1) + . . .+ u(t+1)

is still uniformly random. Therefore, by the second property of a multi-phase 2t-resilient zero sharing
generator, the output r = G(u) = G′(u(1), . . . ,u(t+1)) satisfies that, for the set W

⋃
T which is of size at

most |W |+ |T | ≤ 2t and satisfies that W
⋃

T ⊂ A,

D(r|{u(i)}i̸=i⋆
,W

⋃
T) = D(r̃,W

⋃
T).

It implies that for any fixing rI , where I = {(j, i) : r(j)i ∈ T} and rI is the vector that contains all variables

in {r(j)i : (j, i) ∈ I},
D(r|{u(i)}i̸=i⋆ ,rI

,W) = D(r̃|r̃I=rI
,W).

Finally, we only need to show that {u(i)}i̸=i⋆ and rI can fully determine the values associated with wires
in S:

• For wires in S1, they are intermediate wires when computing {G(u(i))}i ̸=i⋆ . Thus, the values associated
with wires in S1 are determined by {u(i)}i ̸=i⋆ .

• For wires in S2, they are intermediate wires when computing the output elements of G′ in T . Note that
the j-th output element ofG′ is computed by adding up the j-th output elements ofG(u(1)), . . . , G(u(t+1)).
Given {u(i)}i ̸=i⋆ and the j-th output element of G′, we can fully determine the j-th output elements
of G(u(1)), . . . , G(u(t+1)). Thus, the values associated with wires in S2 are determined by {u(i)}i̸=i⋆

and rI .

Thus, we have
D(r|CS ,rI

,W) = D(r̃|r̃I=rI
,W).

Relying on Theorem 10, we obtain an explicit construct of an MPC protocol for a general circuit. By
Corollary 2, we need O(t2 · log2 |f̃ |) random bits to instantiate a multi-phase robust zero sharing generator

37

for the construction in Theorem 9. Recall that |f̃ | = O(t · s · log s). Then the randomness complexity of our
construction becomes

O(t2 · log2 |f̃ |) = O(t2 · log2 ts).

Furthermore, we note that instead of letting helper parties emulate the computation of the multi-phase
robust zero sharing generator G′ constructed in Theorem 10, we can let the first t+ 1 parties each compute
a single copy of the multi-phase zero sharing generator G (i.e., G(u(i))). To obtain the output of the multi-

phase robust zero sharing generator G′ (i.e., G′(u(1), . . . ,u(t+1)) =
∑t+1

i=1 G(u(i))), for each helper party that
should receive the j-th output bit of G′, each party Pi of the first t + 1 parties send the j-th output bit of
G(u(i)) to this helper party so that he can compute the j-th output bit of G′. In this way, all helper parties
only need to emulate the rest of the private circuit. As we discussed in Section 9.1, the size of the rest of
the private circuit is bounded by

O(t2 · |f̃ | · log2 |f̃ |) = O(t3 · s · log s · log2 ts).

We have the following theorem.

Theorem 11. Let n be the number of parties, t be the number of corrupted parties, and k be the number of
helper parties. For all n-ary function f : D1 × . . . × Dn → Z, suppose f admits a circuit implementation
of size s. There is an explicit n-party computation protocol for f against t corrupted parties with perfect
semi-honest security, which uses O(t2 · log2 ts) random bits and k = O(t3 · s · log s · log2 ts) helper parties.

Acknowledgements. We thank Yuval Filmus for the alternative proof of Lemma 2 in Appendix A. Y.
Ishai was supported by ERC Project NTSC (742754), BSF grant 2018393, and ISF grant 2774/20. V. Goyal
and Y. Song were supported by the NSF award 1916939, DARPA SIEVE program, a gift from Ripple, a
DoE NETL award, a JP Morgan Faculty Fellowship, a PNC center for financial services innovation award,
and a Cylab seed funding award. Y. Song was also supported by a Cylab Presidential Fellowship.

References

[ADF16] Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit compilers with o(1/log
(n)) leakage rate. In EUROCRYPT 2016, pages 586–615, 2016.

[AF93] Noga Alon and Zoltán Füredi. Covering the Cube by Affine Hyperplanes. Eur. J. Comb.,
14(2):79–83, 1993.

[AIS18] Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private circuits: A modular approach. In
CRYPTO 2018, pages 427–455, 2018.

[BBCG+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge
proofs on secret-shared data via fully linear pcps. In Alexandra Boldyreva and Daniele Mic-
ciancio, editors, Advances in Cryptology – CRYPTO 2019, pages 67–97, Cham, 2019. Springer
International Publishing.

[BBD+16] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire,
Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and type-directed higher-
order masking. In ACM CCS 2016, pages 116–129, 2016.

[BDPV99] C. Blundo, A. De Santis, G. Persiano, and U. Vaccaro. Randomness Complexity of Private
Computation. Comput. Complex., 8(2):145–168, 1999.

[Ben86] Josh Cohen Benaloh. Secret sharing homomorphisms: Keeping shares of A secret sharing. In
CRYPTO ’86, pages 251–260, 1986.

38

[BFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-secure multiparty
computation with a dishonest minority. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology – CRYPTO 2012, pages 663–680, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[BGP07] Carlo Blundo, Clemente Galdi, and Giuseppe Persiano. Low-randomness constant-round private
XOR computations. Int. J. Inf. Sec., 6(1):15–26, 2007.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In STOC 1988, pages 1–10, 1988.

[BIK+17] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMa-
han, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation
for privacy-preserving machine learning. In CCS 2017, pages 1175–1191, 2017.

[CB17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation of
aggregate statistics. In USENIX NSDI 2017, pages 259–282, 2017.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally secure proto-
cols. In STOC 1988, pages 11–19, 1988.

[CDD+04] Ran Canetti, Ivan Damg̊ard, Stefan Dziembowski, Yuval Ishai, and Tal Malkin. Adaptive versus
non-adaptive security of multi-party protocols. J. Cryptol., 17(3):153–207, 2004.

[CGH+85] Benny Chor, Oded Goldreich, Johan Hasted, Joel Freidmann, Steven Rudich, and Roman
Smolensky. The bit extraction problem or t-resilient functions. In FOCS 1985, pages 396–407,
1985.

[CGZ20] Jean-Sébastien Coron, Aurélien Greuet, and Rina Zeitoun. Side-channel masking with pseudo-
random generator. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology – EU-
ROCRYPT 2020, pages 342–375, Cham, 2020. Springer International Publishing.

[Cha88] David Chaum. The dining cryptographers problem: Unconditional sender and recipient un-
traceability. J. Cryptol., 1(1):65–75, 1988.

[CK93] Benny Chor and Eyal Kushilevitz. A Communication-Privacy Tradeoff for Modular Addition.
Inf. Process. Lett., 45(4), 1993.

[CKOR00] Ran Canetti, Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Randomness versus Fault-
Tolerance. Journal of Cryptology, 13(1):107–142, 2000.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a black-box
pseudorandom generator. In CRYPTO 2005, pages 378–394, 2005.

[DPP16] Deepesh Data, Vinod M. Prabhakaran, and Manoj M. Prabhakaran. Communication and
randomness lower bounds for secure computation. IEEE Trans. Inf. Theory, 62(7):3901–3929,
2016.

[FPS17] Sebastian Faust, Clara Paglialonga, and Tobias Schneider. Amortizing randomness complexity
in private circuits. In ASIACRYPT 2017, Part I, pages 781–810, 2017.

[GIP+14] Daniel Genkin, Yuval Ishai, Manoj M. Prabhakaran, Amit Sahai, and Eran Tromer. Circuits
resilient to additive attacks with applications to secure computation. In Proceedings of the
Forty-sixth Annual ACM Symposium on Theory of Computing, STOC ’14, pages 495–504, New
York, NY, USA, 2014. ACM.

39

[GIS22a] Vipul Goyal, Yuval Ishai, and Yifan Song. Private circuits with quasilinear randomness. In Orr
Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology – EUROCRYPT 2022,
pages 192–221, Cham, 2022. Springer International Publishing.

[GIS22b] Vipul Goyal, Yuval Ishai, and Yifan Song. Tight Bounds on the Randonness Complexity of
Secure Multiparty Computation. In Crypto, 2022.

[GLO+21] Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou, and Yifan Song. Atlas:
Efficient and scalable mpc in the honest majority setting. In Advances in Cryptology – CRYPTO
2021, pages 244–274, Cham, 2021. Springer International Publishing.

[GPS21] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Unconditional communication-efficient
mpc via hall’s marriage theorem. In Tal Malkin and Chris Peikert, editors, Advances in Cryp-
tology – CRYPTO 2021, pages 275–304, Cham, 2021. Springer International Publishing.

[GR02] Anna Gál and Adi Rosén. A theorem on sensitivity and applications in private computation.
SIAM J. Comput., 31(5):1424–1437, 2002.

[GR05] Anna Gál and Adi Rosén. Ω(log n) Lower Bounds on the Amount of Randomness in 2-Private
Computation. SIAM Journal on Computing, 34(4):946–959, 2005. Earlier version in STOC
2003.

[GS20] Vipul Goyal and Yifan Song. Malicious security comes free in honest-majority mpc. Cryptology
ePrint Archive, Report 2020/134, 2020. https://eprint.iacr.org/2020/134.

[IKL+13] Yuval Ishai, Eyal Kushilevitz, Xin Li, Rafail Ostrovsky, Manoj Prabhakaran, Amit Sahai, and
David Zuckerman. Robust pseudorandom generators. In ICALP 2013, pages 576–588, 2013.

[IMSW09] Yuval Ishai, Tal Malkin, Martin J. Strauss, and Rebecca N. Wright. Private multiparty sampling
and approximation of vector combinations. Theor. Comput. Sci., 410(18):1730–1745, 2009.

[ISW03] Yuval Ishai, Amit Sahai, and DavidWagner. Private circuits: Securing hardware against probing
attacks. In Dan Boneh, editor, CRYPTO 2003, pages 463–481, 2003.

[JLR03] Andreas Jakoby, Maciej Liskiewicz, and Rüdiger Reischuk. Private computations in networks:
Topology versus randomness. In STACS 2003, pages 121–132, 2003.

[KM97] Eyal Kushilevitz and Yishay Mansour. Randomness in Private Computations. SIAM Journal
on Discrete Mathematics, 10(4):647–661, 1997. Earlier version in PODC 1996.

[KOP+21] Eyal Kushilevitz, Rafail Ostrovsky, Emmanuel Prouff, Adi Rosén, Adrian Thillard, and Damien
Vergnaud. Lower and upper bounds on the randomness complexity of private computations of
AND. SIAM J. Discret. Math., 35(1):465–484, 2021. Earlier version in TCC 2019.

[KOR96] Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Characterizing Linear Size Circuits in Terms
of Privacy. In STOC 1996, page 541–550, 1996.

[KOR03] Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Amortizing randomness in private multi-
party computations. SIAM J. Discret. Math., 16(4):533–544, 2003.

[KR98] Eyal Kushilevitz and Adi Rosén. A Randomness-Rounds Tradeoff in Private Computation.
SIAM J. Discret. Math., 11(1):61–80, feb 1998.

[KY76] D. Knuth and A. Yao. Algorithms and Complexity: New Directions and Recent Results, chapter
The complexity of nonuniform random number generation. Academic Press, 1976.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

40

[PS21] Antigoni Polychroniadou and Yifan Song. Constant-overhead unconditionally secure multiparty
computation over binary fields. In Anne Canteaut and François-Xavier Standaert, editors, Ad-
vances in Cryptology – EUROCRYPT 2021, pages 812–841, Cham, 2021. Springer International
Publishing.

A Alternative Lower Bound Proof via Fourier Analysis

In this section we show an alternative proof of a slightly weaker version of Lemma 2 by using a polynomial
representation of the probability distribution. The proof assumes basic familiarity with Fourier analysis of
Boolean functions. See, e.g., [O’D14] for relevant background.

We say that two distributions over vectors are t-indistinguishable if their projections to any t coordinates
are identically distributed. Note that for any t-private encoding scheme (Enc, Dec), the distributions X0 =
Enc(0) and X1 = Enc(1) are distinct t-indistinguishable distributions. We show that this implies that at
least one of X0, X1 has support of size ≥ 2t−1, implying that t-private encoding requires ≥ t − 1 random
bits.

Theorem 12. Let X0 and X1 be distinct t-indistinguishable distributions on {−1, 1}n. Then at least one of
X0, X1 has support size at least 2t−1.

Proof. For a real-valued function f : {−1, 1}n → R, let S(f) denote the number of inputs on which f
is nonzero. Define f0, f1 : {−1, 1}n → R such that fb(x) = Pr[Xb = x], let f(x) = f0(x) − f1(x) and
f ′(x) = f(x) · x1x2 . . . xn. The theorem now follows directly from the following lemma.

Lemma 5. S(f ′) ≥ 2t.

Proof of Theorem 12 from Lemma 5: Since x1x2 . . . xn is nonzero on {−1, 1}n, Lemma 5 implies that
S(f) ≥ 2t. Since S(f) ≤ S(f0) + S(f1), we have that either S(f0) ≥ 2t−1 or S(f1) ≥ 2t−1 from which the
theorem follows.

Proof of Lemma 5: When writing fb as a sum of multilinear monomials, the coefficient of the monomial∏
i∈T xi is the T -bias of Xb (namely, the bias of the parity of the bits with indices in T). Since X0 and X1

are t-indistinguishable, they have the same T -bias for every T of size ≤ t. This implies that all monomials
of degree ≤ t have the same coefficients in f0 and f1, and so all monomials in f have degree > t and f ′ has
degree ≤ n − t (since for x ∈ {−1, 1} we have x2 = 1). Lemma 5 now follows from the following lemma,
which is a special case of a theorem of Alon and Füredi [AF93].

Lemma 6 (Roots of low-degree polynomials on the hypercube). For every nonzero g : {−1, 1}n → R of
degree ≤ d, we have S(g) ≥ 2n−d.

B Alternative Models

In this work (similarly to previous related works) we focus on the simple case of perfectly secure semi-honest
MPC. In the following we discuss alternative models.

B.1 MPC with Statistical Security

As far as we know, all previous works on the randomness complexity of MPC and related primitives focus
on the case of perfect security. In particular, this is the case for the papers we cite in the introduction and
in a related line of work on the randomness complexity of private circuits. The case of statistical security
involves an additional error parameter and is very sensitive to whether the adversary is static or adaptive.

41

This is contrasted with the case of perfect semi-honest security with unbounded simulation, where security
against a static adversary implies security against an adaptive adversary [CDD+04].

Trade-off Between Randomness Complexity and Statistical Error. In Section 1.1, we gave an
example for a construction that achieves statistical security with less randomness complexity when the
corruption threshold t is large enough. This trade-off is not optimal. For example, if t is much smaller than
n, the construction in Section 1.1 still requires O(n ·σ) random bits, where σ is the security parameter, while
it is possible to use only O(t2 · log n/t) randomness even without error. We leave the question of exploring
the optimal trade-off between the randomness complexity and statistical error to future work.

Challenges of Extending Our Lower Bounds to Statistical Security. As noted in Section 1.1, our
lower bound technique does not apply to statistically secure MPC. While this is to some extent inherent,
since the statistical setting admits better upper bounds, one could still hope to obtain a tight characterization
of the randomness complexity in this case. Our lower bound relies on a lower bound on the randomness
complexity of a t-private 1-bit encoding schemes (see Section 2) that only holds in the perfect security setting.
Concretely, in Lemma 2 we prove that for a t-private 1-bit encoding scheme, the encoding of the message
0 (or 1) has 2t possibilities. In our proof of the lower bound, the number of different possible encodings is
related to the number of different possible views of parties, which is then used to obtain a lower bound on
the randomness complexity.

In the statistical security setting, Lemma 2 no longer holds. A natural starting point for lower bounds in
the statistical security setting would be to obtain a statistical analogue of Lemma 2. We leave this direction
to future work.

B.2 MPC with Helper Parties

The model of MPC with additional helper parties can be interpreted as the client-server model, which is
extensively studied in the context of efficient MPC protocols [DI05, GIP+14, GS20, PS21, GLO+21, GPS21].
In the client-server model, the clients only provide inputs and receive outputs whereas the servers conduct
the computation. Another useful interpretation is in the context of secure hardware. The “private circuits”
model [ISW03] may be viewed as an MPC protocol embedded in hardware, where Boolean gates act as
“helper parties”. One key difference is that the private circuits model allows for a trusted encoding of the
secret inputs. This enables protocols that only use Õ(t) random bits, as recently shown in [GIS22a]. In
contrast, our results show that for private circuits with unprotected inputs (where security requires that
only inputs which are directly probed are leaked), Θ̃(t2) random bits are necessary and sufficient.

B.3 MPC with Malicious Security

Among the related works on the randomness complexity of MPC and related primitives, only one work we are
aware of (Canetti et al. [CKOR00]) consider the active setting. A potential approach towards upgrading our
positive results to the malicious security model is to use randomness-efficient variants of recent passive-to-
active compilers for information-theoretic MPC [BFO12, GIP+14, BBCG+19, GS20]. We leave the question
of exploring the randomness complexity of MPC with malicious security to future works.

B.4 Random Bits vs. Entropy

Similarly to most previous related works, we assume that parties can toss random coins and measure the
randomness complexity by the number of tossed coins. A more liberal model allows Our final open question
concerns extending our lower bounds to a more liberal measure of randomness, where the randomness of
each party can be picked from an arbitrary probability distribution and the goal is to minimize the entropy
of this distribution.

42

	Introduction
	Our Contribution

	Technical Overview
	Background: Secure Multiparty Computation
	Randomness Lower Bound for XOR and Symmetric Functions
	Randomness Complexity of t-Private Encoding Schemes

	Explicit Randomness Upper Bounds for XOR and Addition
	Upper Bounds Beyond Linear Functions

	Preliminaries
	Secure Multiparty Computation
	t-Private Encoding Schemes
	Zero Sharing Generators

	Lower Bound for Symmetric Functions
	Lower bound for t-private Encoding Schemes
	Randomness Lower Bound for Symmetric Functions

	Explicit Construction of Zero Sharing Generators
	Upper Bound for Addition
	Randomness Complexity of Multiple Executions of Additions
	Preliminaries: Randomness Extractor
	Extension to Multiple Executions of Additions

	Upper Bound for Symmetric Functions
	Upper Bound for General Circuits with Helper Parties
	Preliminaries: Leakage-Tolerant Private Circuit
	MPC Protocol for General Functions
	Reducing the Number of Helper Parties

	Alternative Lower Bound Proof via Fourier Analysis
	Alternative Models
	MPC with Statistical Security
	MPC with Helper Parties
	MPC with Malicious Security
	Random Bits vs. Entropy

