
VERI-ZEXE: Decentralized Private Computation with
Universal Setup

Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang, Benedikt Bünz, Ben Fisch, Fernando
Krell, and Philippe Camacho

Espresso Systems
{alex,binyi,zhenfei,benedikt,ben,fernando,philippe}@espressosys.com

Abstract. Traditional blockchain systems execute program state transitions on-chain,
requiring each network node participating in state-machine replication to re-compute
every step of the program when validating transactions. This limits both scalability
and privacy. Recently, Bowe et al. introduced a primitive called decentralized private
computation (DPC) and provided an instantiation called zexe, which allows users to
execute arbitrary computations off-chain without revealing the program logic to the
network. Moreover, transaction validation takes only constant time, independent of
the off-chain computation. However, zexe required a separate trusted setup for each
application, which is highly impractical. Prior attempts to remove this per-application
setup incurred significant performance loss.
We propose a new DPC instantiation verizexe that is highly efficient and requires only
a single universal setup to support an arbitrary number of applications. Our benchmark
improves the state-of-the-art by 9x in transaction generation time and by 2.6x in memory
usage. Along the way, we also design efficient gadgets for variable-base multi-scalar
multiplication and modular arithmetic within the plonk constraint system, leading to a
Plonk verifier gadget using only ∼ 21k plonk constraints.

Table of Contents

1 Introduction . 3
1.1 Our Contributions . 4
1.2 Our Techniques . 4
1.3 Related Works . 7

2 Preliminaries . 8
2.1 Decentralized Private Computation (DPC) . 8

3 Verizexe: Practical Zexe with Universal SNARKs . 12
3.1 Lightweight Verifier Circuit from Accumulation Scheme 12
3.2 Instance Merging . 14
3.3 Proof Batching . 16
3.4 Variable-base Multi-Scalar Multiplication via Online Lookup Table 18
3.5 Polynomial Evaluation over Non-native Field . 20
3.6 SNARK-friendly Symmetric Primitives . 23

4 Implementation and Evaluation . 25
4.1 System Implementation . 25
4.2 Experimental Evaluation . 27

A Cryptographic Primitives: Definitions and Security Properties 33
A.1 Commitment Scheme . 33
A.2 Polynomial Commitment Scheme . 34
A.3 Indexed Relation . 35
A.4 Pre-processing SNARK with Universal SRS . 35
A.5 Incrementally Verifiable Computation (IVC) . 36

B Plonk, TurboPlonk, UltraPlonk Constraint Systems . 37
C UltraPlonk Proof Systems . 39

C.1 Witness transformation . 39
C.2 Polynomial Interpolation . 40

D Plonk with Merging, Batching and Accumulation . 40
E Modular Arithmetic Gadgets: Security Proof . 47
F Optimized Predicate Commitment . 48

1 Introduction

Distributed ledgers are replicated state machines maintained by a network of potentially
faulty nodes via a distributed consensus algorithm. The state machine might range
from a specialized accounting system, as in Bitcoin [Nak08], to a Turing complete
virtual machine, as in Ethereum [W+14], where any user can instantiate a stateful
program called a smart contract. These platforms are resilient to failures or even
malicious behavior by a subset of the network nodes. This resilience enables a new
class of applications in cryptocurrencies, governance, digital collectibles, and more.
Unfortunately, privacy, which is paramount for many applications, is disregarded in
ledger systems like Bitcoin and Ethereum.

There is a rich literature of work attempting to improve privacy guarantees on
distributed ledgers [BSCG+14,NVV18,KMS+16,CZJ+17,BAZB20,CZK+19].The Zero-
cash protocol [BSCG+14] is a privacy-preserving payment system that achieves user
anonymity and amount confidentiality in transactions. Hawk [KMS+16] proposes a
smart-contract framework that preserves program data privacy. Zether [BAZB20] en-
ables confidential transactions among publicly known smart contracts, and hides the
identities of transacting parties within a small anonymity set. All of these prior de-
signs, however, are either limited to a fixed functionality (e.g., payments), or lack
function-privacy, i.e. transactions do not hide which smart-contract is being executed.
Zexe [BCG+20] addresses this by proposing a new cryptographic primitive called decen-
tralized private computation (DPC) scheme that achieves both data privacy and function
privacy for arbitrary user-defined programs. The scheme hides from the network nodes
both the states and the logic of the programs being called in each transaction. Users in
DPC schemes execute computations and update the ledger by sending a transaction
with a publicly verifiable cryptographic proof attached, attesting to the correctness of
the computation.

One of the core building blocks in a DPC construction is a SNARK system (see
Appx. 2.1 for more background). A SNARK system for a binary relation R provides a
prover algorithm P(x,w) that on any valid input (x,w) ∈ R outputs a valid proof π, and
a verifier algorithm V(x, π) that always accepts valid proofs and rejects invalid proofs
with overwhelming probability. A zk-SNARK proof leaks no information about the
witness w. We will generally refer to R as a “circuit", which outputs 1 on input (x,w) if
and only if (x,w) ∈ R, however alternative representations, i.e. constraint systems, may
be utilized. The SNARK system may also require a trusted setup procedure to generate
a structured reference string (SRS), which is an input to both P and V. A SNARK
system is universal if it has a single setup to generate a single SRS that can be reused
for all circuits, and non-universal if it requires a new setup per circuit. The original
zexe [BCG+20] system uses a non-universal scheme [Gro16,GM17], thus requiring a
trusted setup for every application. As this is extraordinarily inconvenient in practice,
the authors also suggest an alternative instantiation from universal SNARKs [CHM+20],
which requires a one-time setup to support all future applications up to a maximum
circuit complexity. However, the performance of this alternative instantiation1 is signifi-
cantly worse than the original protocol due to the higher complexity of the universal
SNARK verification logic and the fact that zexe requires producing a SNARK proof
for a circuit that encodes the SNARK verification logic. Specifically, its transaction
generation speed is an order-of-magnitude slower than in the original zexe. Hence we
ask the following question:
Problem 1. Can we obtain DPC with universal setup without sacrificing transaction
generation speed?

1 https://github.com/AleoHQ/snarkVM/tree/testnet1

3

Implementation Universal Setup ExecuteL Memory VerifyL Proof Size

Original zexe [BCG+20] 7 14.3 s 6.56 GB 15 ms 0.482 KB
SnarkVM testnet-2 3 151.4 s 16.59 GB 15 ms 0.482 KB
verizexe (this work) 3 16.9 s 6.49 GB 18 ms 4.138 KB

Table 1: Comparison of three DPC implementations for 2-input-2-output transaction. Details in § 4.

1.1 Our Contributions

We answer the above question in the affirmative. The contributions of this paper are:

• verizexe, a DPC scheme instantiation that supports both one-time universal
system setup and efficient transaction generation comparable to zexe (see Table 1).
• Constraint designs for efficient variable-base MSM and modular arithmetics, lead-
ing to a Plonk verifier gadget taking only ∼ 21k Plonk constraints which are of
independent interests.
• Implementation (open-sourced2, written in Rust) and evaluation of verizexe show-

ing its practicality and most notably its 9x improvement on transaction generation
time and 2.6x improvement on memory usage over the prior state-of-the-art.

1.2 Our Techniques

In zexe, a user creates a transaction that nullifies some existing records and mints
some new records, representing a state transition for the ledger. Each record has an
associated birth and death predicate. The state transition is valid only if all death
predicates of nullified records and birth predicates of minted records are satisfied. The
user submitting the transaction creates a SNARK proof that these predicates are
satisfied, called the inner proof. To achieve function privacy, the user additionally
creates an outer proof, which is a zero-knowledge SNARK proving the existence of a
correct inner proof. Only the outer proof is included in the transaction and hides the
predicates involved.

zexe [BCG+20] instantiates both the outer proof and the inner predicate proofs
with SNARK schemes that require predicate-specific trusted setups. Instead, we propose
the use of SNARKs with universal setup parameters that can be reused for all predicates.
Normally, universal SNARKs are built on information-theoretic Polynomial Interactive
Oracle Proofs (PIOP)[BFS20] which are then cryptographically compiled using Poly-
nomial Commitment Schemes and Fiat-Shamir Transform to turn the transcripts of
IOPs into succinct NARKs. To make verizexe efficient we need to overcome several
obstacles when encoding the verifier logic of a universal SNARK inside a circuit:

• Pairing checks: SNARKs that utilize pairing-based PCS [KZG10,CHM+20] require
some pairing operations in their verification logic, which is very expensive and
requires a large number of constraints in circuit. Note that this is not a unique
problem for universal SNARKs, as many non-universal counterparts [Gro16,GM17]
also need pairing checks.
• Multi-Scalar Multiplications: There are more variable-based MSM operations

in the verification steps of universal SNARKs than their non-universal counterparts,
which results in high circuit complexity with naïve implementation.

2 https://github.com/EspressoSystems/veri-zexe

4

• Polynomial evaluations over non-native field: The predicate (inner) proofs
and final outer proof are generated in different circuits over different finite fields,
thus polynomial evaluations over the inner fields will be simulated in an outer circuit
with a different field, which involves high overheads.
• Fiat-Shamir transform: Unrolling all the challenges generated by FS transform
requires applying a hash function for many times. However, commonly used hash
functions are not SNARK friendly and results in high circuit cost.

We now give an overview of our techniques that drastically reduce the outer circuit
complexity whose proof generation dominates the cost of DPC transaction generations.
The set of techniques can be split into two categories where we start with generic
ones that are agnostic to the choice of constraint systems. Later we present the other
techniques that particularly fit into Plonk-based constraint systems.

Lightweight Verifier Circuit from Accumulation Scheme. Inspired by Halo [BGH19],
we move out the expensive pairing check from the SNARK verifier circuit and delay
the final proof verification step to ledger validators. Intuitively, the verification logic of
universal SNARKs with pairing-based PCS culminates in producing 2G1 points for the
final bilinear pairing check. Instead of carrying out the full proof verification in circuit,
we output the 2G1 points as public inputs and attach to the transaction validity proof.
To ensure these two points reveal no information about the underlying predicates, we
further mask them by simultaneously applying a blinding factor on both points so that
the masked points preserve the pairing check result. The actual pairing check will be
executed by ledger maintainer who receive the transaction validity proof and the two
masked points. This technique has been formalized and generalized as a new primitive
called accumulation scheme3 by Bünz et al. [BCMS20] whose results are originally
targeting incrementally verifiable computation (IVC). We explain in §3.1 how to cast
the DPC transaction creation task as a simplified two-step IVC, and naturally rely on
theorems from the paper for correctness and security.

Instance Merging. As briefly explained, the outer circuit needs to verify m + n
universal SNARK proofs for m death predicates and n birth predicates in an m-input-
n-output transaction (W.L.O.G. we assume m = n). We halve the number of proofs the
outer circuit needs to verify (from 2m to m) by merging each pair of death predicate
and birth predicate into a single larger predicate. The critical precondition for this
technique to have positive net saving is that: verifying one proof for a merged statement
twice as large requires significantly fewer constraints than verifying two proofs for two
statements; which holds true for SNARKs such as Plonk [GWC19].

Assume that the original circuit size bound for birth/death predicates is N , the
merging technique simply left/right pad another N dummy gates to birth/death predi-
cate circuits respectively before arithmetizing them into polynomials that constitutes
the proving keys. The key observation is that with additive homomorphic polyno-
mial commitment schemes (such as [KZG10]), the commitment to the addition of
two polynomials is simply the addition of their polynomial commitments, namely
Commit(p1 +p2) = Commit(p1)+Commit(p2) where p1, p2 ∈ F[X]. Therefore, by adding
a pair of verification keys of any padded birth predicate and any padded death predicate,
the verifier can obtain the verification key of the merged predicate and thus be able to
verify the proof for the merged predicate.

Notice that theoretically one can merge more than two predicates, but in the DPC
context, merging a pair of birth and death predicates hits the sweet spot of flexibility

3 not to be confused with cryptographic accumulator concept for set membership.

5

and efficiency improvement. This is because circuit/predicate key preprocessing happens
beforehand in the offline phase, and instance merging-then-proving happens later in the
online phase. For example, if we merge 3 predicates, then during circuit key generation
phase, we will have to decide which N -out-of-3N slots (in the merged circuit) should a
particular predicate be assigned to, which restrict it from merging with other predicates
that occupy the same N slots. In contrast, our merging of a death and a birth predicate
requires easy slot allocation and allows for arbitrary assembly of death/birth predicates
in a transaction.

Proof Batching. Instead of generating and verifying m proofs separately, we exploit
proof batching technique to achieve a lower amortized cost. We leverage the fact that
universal SNARKs are cryptographically compiled from a PIOP using a PCS and
many choices of PCS support batch opening which reduces opening proofs size and
amortizes verification cost. Thus, we present a generic compiler in § 3.3 to transform a
PIOP-based SNARK into a batched prover and verifier for a list of NP relations. In
the case of KZG-Plonk, batching ` relations reduces the total proof size by 5(`− 1)G1
elements by sharing the same quotient polynomial and the same opening polynomials;
reduces the number of MSM operation by 7(`− 1) and the number of pairing operation
by (`− 1). Batching TurboPlonk with more selector polynomials and wire polynomials
leads to even greater savings. Since both MSM gadget and pairing gadget are expensive,
we would noticeably reduce outer circuit complexity by batch verifying m merged
predicate.

Next we present techniques that are tailored for (customized) Plonk-based constraint
systems that support lookup gates.

Variable-base MSM via Online Lookup Table. Instead of naïvely enforce variable-
base MSM computation, we design a Pippenger-base MSM gadget and further reduce
its complexity by relying on a special variant of lookup argument called online lookup
table argument. Recall that Pippenger algorithm [Pip80] reduces a b-bit MSM into b/c
instances of c-bit MSMs (c < b) and finally sums them together. When computing a
c-bit MSM, instead of unrolling the exact Pippenger algorithm in the circuit which is
very expensive, we utilize a lookup table containing all resulting points from the scalar
multiplications between the base point and all 2c − 1 possible scalar values. With such
lookup table, any c-bit scalar multiplication on this specific base point becomes a table
query rather than elliptic curve group operation. Given that these bases are unfixed,
the lookup table cannot be pre-processed – table values are only known during online
proving phase. Such online lookup tables are already possible with [GW20] although
whose presentation is limited to preprocessed query table whose values are known ahead
of time. We provide detailed gadget descriptions and circuit size breakdown in § 3.4.

Polynomial Evaluation over Non-native Field. To facilitate polynomial evaluation
over non-native field, we device efficient modular multiplication and modular addition
gadgets by leveraging range check via lookup argument [GW20]. Compared to other
modular arithmetic gadget designs, ours take advantage of (a) clearer UltraPlonk
constraint system design to do range-check with little to no additional circuit cost; (b)
specialized use case of two-chain curves for depth-2 proof recursion (instead of cycling
curves for deeper proof recursions), which allows us to safely assume finer-grained
requirements on the sizes of two fields to make our circuit simpler. We provide detailed
gadget descriptions in § 3.5.

6

SNARK-friendly Symmetric Primitives. To reduce the number of non-algebraic
operations in the circuit, we instantiate symmetric primitives used such as commitment
schemes, PRF, and CRH with SNARK-friendly candidates which are designed to work
natively with finite field involving mostly algebraic operations. We specify our concrete
implementations in § 4.1, most of which are based on Rescue hash functions [AABS+20].
More importantly, we carefully design customized gates in our turbo-plonk (Def. 2)
to optimize for these rescue operations. Our Fiat-Shamir transcript uses Sponge-based
hash from Rescue permutation so that verifier challenge derivation is much cheaper
in circuit. We further designed an optimized predicate commitment gadget in § 3.6 to
ensure two circuits over different fields are committing to the same list of predicates.
Particularly, the number of non-native hash operations in our gadget does not grow
with the number of predicates committed.

1.3 Related Works

We refer readers to Section 1.2 in [BCG+20] for a comprehensive literature review on
privacy-preserving computation on ledgers before zexe.

Private Smart Contracts. Since the exciting work of zexe [BCG+20], there has
been more works on privacy-preserving smart contracts. ZKay [SBG+19] observes
the difficulty of expressing programs in low-level circuits correctly, and designs a
high level language to annotate private data with explicit ownership. Zkay provides a
compiler transforming zkay contracts into Solidity contracts on Ethereum that leverages
encryption for privacy and NIZK proofs for correctness. Unfortunately, transactions
in Zkay cannot operate on “foreign values” (values owned by parties other than the
caller), a limitation addressed by ZeeStar [SBBV22] which uses additive homomorphic
encryption to allow simple addition on foreign values. Zkay and ZeeStar lower the
barrier for non-cryptographer to write contracts in higher level language but have many
restrictions and limited expressiveness.

Meanwhile zkHawk [BCT21] extends Hawk [KMS+16] by replacing the minimal
trusted manager who will learn the private inputs from users with an MPC protocol.
To avoid running a SNARK prover in MPC which is prohibitively expensive, they
simplify the Hawk framework by assuming a “freeze-compute-finalize” three-phase
process for program execution. To enforce correct payout of the original deposits
from “freeze” phase during “finalize” phase or contract closure, zkHawk uses sigma
protocols and homomorphic commitments, similar to techniques used in confidential
transaction. While this model is perfect for applications like sealed bid auction, it is
arguably restricted since many applications run forever without a clear closure yet
require frequent intermediate on-chain state commitments.

SmartFHE [SA21] is the first to use fully-homomorphic encryption in the blockchain
model and allow multi-user computation on-chain with hidden function inputs and
outputs. Additionally, to mitigate concurrency issue, SmartFHE introduces account
locking to freeze account balance or states from unintended update when some private
transactions are still in the mempool. Inevitably, the biggest obstacle is still the
staggering cost of FHE for arbitrary computation.

Kachina [KKK21] provides a unified universal composable (UC) model on private
smart contracts which claims to be an overarching framework to capture Zexe, Hawk,
Zether and more while preserving their original privacy guarantees. One of the novelties
of Kachina is introducing the concept of state oracle transcript and model read/write
of private and public states as query/response from the local and public oracles.
Transactions are further allowed to declare inter-dependencies, which together with the

7

public oracle transcripts are supposed to help with the concurrency issue. However,
it remains to be demonstrated how to achieve flexible composability of contracts and
complex interactions among contracts in Kachina. Particularly, [KKK21] did not offer
concrete construction that improve zexe.

In short, zexe remains the only concrete private smart contract construction to
date that offers both data privacy and function privacy with rich expressiveness.

Universal SNARKs. Zero-knowledge proof [GMR85] allows a prover to convince a
verifier an NP statement without revealing any extra information. Subsequent works lead
to non-interactive proofs [BFM88] in the common reference string model and arguments
with sublinear communication [Kil92,Mic00] where malicious provers are computation-
ally bounded. In the recent decade, a long line of work [Gro10,BCCT12,BCI+12,GGPR13,Gro16,GM17]
has focused on succinct non-interactive argument of knowledge (SNARK) with succinct
proofs, sometimes of constant size, and fast verification. These SNARKs usually rely
on some heavy offline pre-processing to generate a circuit-specific structured reference
string (SRS) to facilitate faster online verification. Even though some constructions like
Groth16 is highly efficient and widely deployed, sampling of the SRS would require a
trusted setup for each circuit, instantiated using a secure multi-party ceremony [BGG18]
that takes months in practice, which is highly unsustainable. One way around is using
argument system with transparent setup depending on only uniformly random refer-
ence string without any toxic trapdoor; however, they usually results in larger proof
size [BBHR18] or non-succinct (linear) verification cost [BBB+18]. Another alternative
is using an universal and updatable model [GKM+18] where a circuit-independent SRS
is generated when system boots up, and any party can update the SRS in a verifiable
way; the trapdoor is unknown to all parties as long as at least one contributor is honest.
Sonic [MBKM19] presents the first efficient universal SNARK construction, followed
up by Marlin [CHM+20], Plonk [GWC19], and Lunar [CFF+21] to further improve the
efficiency of the proof system.

Universal SNARKs strike a good balance between efficiency and acceptable trust
assumption. We choose variants of Plonk for our implementations primarily due to
its excellent performance, customizable gates and importantly its support for lookup
argument [BCG+18,GW20] that some of our optimization techniques depend on.

2 Preliminaries

We denote [n] as the set {1, . . . , n} ⊆ N, λ ∈ N as the security parameter, negl(λ) as
a negligible function in λ if it vanishes faster than the inverse of any polynomial in
λ. A probability is overwhelming if it is 1− negl(λ) for a negligible function negl(λ).
Further, we use efficient algorithms to refer to probabilistic polynomial time algorithms
in λ.

We provide formal definitions and security properties of Commitment Scheme, Poly-
nomial Commitment Scheme (PCS), indexed relation, (preprocessing) non-interactive
argument of knowledge (NARK), and incrementally verifiable computation (IVC) in
Appx. A.

2.1 Decentralized Private Computation (DPC)

Decentralized Private Computation (DPC) scheme is a cryptographic primitive intro-
duced in [BCG+20] to capture a decentralized computational model where parties
execute state transitions offline, and then update an online, append-only ledger with
the updated new states via publicly verifiable transactions which serve as attestations

8

to the correctness of the offline computation. As a generalization to prior work on
Decentralized Anonymous Payments in Zcash protocol [BSCG+14], DPC allows arbi-
trary bounded computation (i.e. applications with bounded complexity) to be carried
out in a privacy-preserving manner. Specifically, achieving both data privacy where
application data are hidden from ledger maintainers, and function privacy where the
target function/application being invoked in each transaction is also private, is the a
major novelty of DPC. In addition to privacy, DPC schemes also attain succinctness
where the verification of transactions is fast and independent of the cost of offline
computation, thus achieving scalability compared to a standard decentralized ledger
(a.k.a. blockchain) design where all computation are conducted online and re-executed
by every ledger maintainer.

In a DPC scheme, the core data structures are records, transactions, and the
ledger. Note that many notations and part of the descriptions below are verbatim
from [BCG+20] with a few modifications (marked in cyan).

Records. A record, denoted by rec, is the generalization of an unspent transaction
output (UTXO) and the core unit of data our scheme is centered around. Similar to
UTXOs in Bitcoin [Nak08], records are consumed and created inside a transaction to
reflect state updates in the system.

Concretely, a record is a tuple

rec := (apk, payload, Φb, Φd, ρ; rcm)

that consists of (a) a address public key apk, which specifies the record’s owner; (b) a
data payload payload, which contains arbitrary application states;4 (c) a birth predicate
Φb that must be satisfied when rec is created; (d) a death predicate Φd that must
be satisfied when rec is consumed; (e) a record nonce ρ which is a deterministically
computed, unique nonce; (f) a record randomizer rcm used to hide record attributes in
its commitment cm.

Similar to Zcash, records are never published on the ledger in plaintext. Only
commitments of these records are publicly stored. A record is created when its hiding
record commitment cm is declared as one of the outputs of a transaction (details later);
and it can be consumed or destroyed when its respective nullifier nf5 is included as
one of the inputs of a transaction.

Concretely, a record commitment is defined as:

cm = COM.Commit(ppCOM, apk‖payload‖pidb‖pidd‖ρ; rcm)

where birth predicate identifier pidb = CRH.Eval(ppCRH, vkb) is the hash of the verifying
key of Φb (similarly for pidd);6 record nonce ρ = CRH.Eval(ppCRH, j‖nfin0)7 is (w.h.p.) a
unique nonce deterministically computed inside the transaction that created it – since
the first input nullifier nfin0 is unique across the entire ledger (see justification below)
and the record’s position j among all output records is unique across this transaction.
We note that record commitment cm does not reveal anything about the actual record
openings.

4 payload contains a designated subfield isDummy indicating whether rec is dummy or not.
5 Nullifier is equivalent to the serial number in zexe paper, but the former is more descriptive and
becoming more common in the literature.

6 Whereas in zexe paper, they commit to Φb, Φd directly, whose representation can be huge. Admittedly
in practice, one might employ the same techniques, basically we just choose to make them explicit
from the syntax.

7 Whereas in zexe paper, the record nonce is hashing over all input nullifiers of the transaction
that generates it ρ = CRH.Eval(ppCRH, j‖nfin0 , . . . , nfinm), which we think it’s unnecessary and more
expensive to enforce in circuit.

9

To consume rec, one needs to prove integrity of its record commitment and its
nullifier. The former requires proof of knowledge of the entire record openings used
to generate cm; the latter requires proof of knowledge of the address private key ask
corresponding to the owner address rec.apk.

Intuitively, the ledger prevents “double-spending” by disallowing a same nullifier
to appear twice in the ledger. By construction, each record has a deterministically
computable, unique nullifier. Additionally, non-owners cannot generate a valid nf to
consume a record without the knowledge of owner’s ask, even if they know the entire
record openings. Finally, it is computationally infeasible to come up with two distinct
records with a same cm and different nfs.

Transactions. A transaction, denoted by tx, represents a state change to the system
by consumption of input records and creation of output records. A transaction usually
contains a list of record nullifiers as inputs and record commitments as outputs – while
former are considered to be consumed or died, thus whose death predicate Φd must be
satisfied, and latter are created or born, thus whose birth predicate Φb must be satisfied.
Dummy records, with isDummy = 1 and mostly used as inputs to create non-dummy
records, can be created freely, but consuming them still requires satisfaction of their
death predicates.

Concretely it is a tuple of tx := ([nf]m1 , [cm]n1 ,memo, cmΦ, cmldata, πe, stL)8 for an
m-input-n-output transaction, where memo is some memorandum or arbitrary data one
can attach to the transaction; cmΦ is a hiding commitment to all predicates checked
inside this transaction;9 cmldata is a hiding commitment to all local data ldata (defined
later in this section) used; πe is a cryptographic proof attesting to the valid execution
of the state transition (namely destruction and creation of records); stL is the historical
ledger digest the validity of tx is proved against. The transaction only reveals nullifiers
of old records, commitments of new records and the fact that death predicates of all old
records and birth predicates of all new records are satisfied. Note that the input/output
size (m,n) is also public but the number of dummy records are completely hidden.

Informally, a valid transaction satisfies a list of predicates including: Φd of all its
input records, Φb of all its output records, and an extended UTXO predicate ΦL

utxo,
and it contains a stL that indeed exists in the canonical history of the ledger state
digest. The extended UTXO predicate ΦL

utxo ensures the following for a transaction: (a)
all input records are well-formed whose respective cm were accumulated before, whose
nullifiers have not shown in the ledger before; (b) all output records are well-formed
with correctly computed cm.

During predicate checking, predicates in a transaction are given access to a common
input called local data, denoted by ldata. Local data includes (a) every record’s contents;
(b) shared, publicly revealed field: transaction memorandum memo; (c) shared, hidden
secret fields: auxiliary input aux; and more:

ldata := ([reci]m1 , [nfi]m1 , [recj]n1 ,memo, aux)

Ledger. A publicly-accessible, append-only ledger, denoted by L, stores all published
valid transactions and keep track of output commitments through a Merkle tree

8 Usage of cmΦ and cmldata is not included in original syntax but is implicit after applying solutions
mentioned in Section 7 of [BCG+20].

9 We use cmΦ to reduce circuit complexity of the outer (second layer) proof statement. Roughly,
we need to prove correctness of a list of inner proofs for birth/death predicates correspond to the
matching predicates of records involved instead of some arbitrary predicates. We enforce that through
checking the commitment over all relevant pid, namely cmΦ. Note that, even if we can use cmldata to
ensure the same condition since ldata contains all relevant pid, it is much cheaper to check correct
commitment of cmΦ with smaller input message size.

10

accumulator. We describe the ledger’s basic functionalities as follows (notations are
mostly verbatim to that in Zexe):

• L.Len: returns the number of transactions currently on the ledger.
• L.Append(tx): append a verified, valid transaction tx to the ledger.
• L.Digest→ stL: returns a short digest of the current state of the ledger.
• L.ValidateDigest(stL)→ b: checks if stL is a valid historic ledger state.
• L.Contains(nf)→ b: checks if the nullifier nf has been published on the ledger.
• L.Prove(cm) → πmt,L: if a record commitment cm appears on the ledger, then

returns a proof of membership πmt,L; else returns ⊥.
• L.Verify(stL, cm, πmt,L)→ b: check if the membership proof for cm is consistent with

current ledger state stL.

DPC Syntax: Algorithms.

A Decentralized Private Computation scheme DPC = (Setup,GenAddress,ExecuteL,VerifyL)
is a tuple of efficient algorithms:

• DPC.Setup(λ) → pp: Given the security parameter λ, a trusted party setup the
system once and output a public parameter pp for the system, and the trusted party
is no longer needed.
• DPC.GenAddress(pp) → (apk, ask): Given the system wise public parameter pp,
any user can create a new address key pair with address public key apk, and
corresponding secret key ask.
• Any user can make consumed old records and create new ones (thus making state
transitions) offline:

DPC.ExecuteL



public parameters pp
old records [reci]m1
old secret keys [aski]mi
new public keys [apkj]n1
new record payloads [payloadj]n1
new birth predicates [Φb,j]n1
new death predicates [Φd,j]n1
aux. predicate input aux
transaction memo memo


→
(
new record [recj]n1
transaction tx

)

• DPC.VerifyL(pp, tx) → b: Given the public parameter pp and a transaction tx, an
online ledger maintainer can verify transaction validity and output a bit b indicating
acceptance or rejection.

We refer definitions of all security properties to Section 3.3 in [BCG+20].

11

3 Verizexe: Practical Zexe with Universal SNARKs

To tackle the challenges of efficiently instantiating the DPC scheme with universal
SNARKs described in Sec. 1.2, we propose numerous optimization techniques many of
which can be applied to a wide range of protocols beyond DPC. With all optimizations
applied, we expect to bring verizexe to the realm of practicality. Detailed benchmark
is reported in Sec. 4.

3.1 Lightweight Verifier Circuit from Accumulation Scheme

We apply a technique called Accumulation Scheme (AS), originally introduced in [BGH19]
and later generalized in [BCMS20], to move the expensive pairing check out of the
SNARK verifier circuit. While the technique is not new, we try to cast part of
DPC.ExecuteL procedure into an incrementally verifiable computation (Appx. A.5)
and show explicitly how accumulation schemes can improve the performance of zexe.
The core observations are:10

1. Proving satisfiability of user-defined predicates during DPC.ExecuteL can be modeled
as a two-step IVC.

2. Original zexe instantiated this IVC using SNARK composition.
3. We instead construct this IVC using a SNARK with accumulation scheme which has

a more lightweight IVC prover. The key observation is that many known universal
SNARKs have succinct verification apart from the polynomial opening check, which
in turn can be handled by an accumulation scheme for the specific PCS used in the
SNARK.

Modeling DPC executions as IVCs. In DPC.ExecuteL, a user creates a transaction
that nullifies some existing records and mints some new records, representing a state
transition for the ledger. The validity of those state transitions (equivalently transition
functions allowable) are governed by Re which specifies constraints among old and new
states that such transitions must satisfy. For efficiency reason, zexe has proposed to
split Re into two relations – one is the extended UTXO relation Rutxo (Appx. 2.1), the
other is a predicate satisfiability relation RΦ which is the target for our optimization
here. As shown in Fig. 1, this process of proving RΦ can be modeled as a two-step IVC.
In the first step, users produce SNARK proofs certifying all relevant predicates are
satisfied over some local data ldata of that transaction. To achieve function privacy,
SNARK proofs for predicates-SAT are not directly posted on the ledger. Instead, an
outer proof πΦ is generated in the second step attesting to the correctness of these
predicate proofs, by taking predicate proofs and their verification keys as secret witness
and run SNARK verifier inside the outer circuit. Finally, ledger maintainers run the
IVC verifier to verify the outer proof which reveals nothing about the actual predicates
involved (i.e. functions invoked) in the transaction. To ensure consistency of records
used in Rutxo and RΦ, commitments to the local data cmldata and list of predicates
cmΦ involved are returned as public outputs. Note that when applying proof batching
technique (see § 3.3), the IVC proof from the first step will be a single batched proof
denoted as π~ instead of a list of predicate proofs.

Remark 1. In Fig. 1, we only produce a single proof π1 for proving satisfiability of m+n
user-defined predicates: ∀i ∈ [m], j ∈ [n], Φd,i(ldata) = 1 ∧ Φb,j(ldata) = 1. The reason
10 Point (c) are Theorem 1 and 2 in [BCMS20] and concrete constructions for accumulation schemes for

PCS are also provided in Section 8 of the same paper. We skipped elaborating on why these generic
constructions are secure or property preserving and refer readers to the Bünz et al. [BCMS20] above
for details. We provide a concrete instantiation of this technique on zexe with plonk in Appx. D.

12

Fig. 1: Casting RΦ proving into a two-step IVC (with different step function at each step).

why we can do this is through technique introduced in § 3.3 where we batch prove
and verify a list of instances. We also borrow the notation π~ to indicate a batched
proof. Obviously, the accumulation scheme is not dependent on such proof batching,
one could cast the RΦ proving process into a proof carrying data (PCD) which is a
generalization of IVC where an IVC can be viewed as PCD for a path in a directed
acyclic graph (DAG). Fortunately, theorems and compilers in [BCMS20] are applicable
to both IVC and PCD, thus so does the technique discussed in this section. Casting
RΦ proving to an IVC makes cleaner presentation.

Remark 2. When casting RΦ into an IVC, we are not strictly using the standard
definition, but rather a weaker notion of the IVC verifier where it will only validate
the final state and proof instead of any intermediate outputs. We emphasize that this
simplification won’t affect any security property – IVC prover incrementally compute on
correct previous state and proof will produce correct new state and proof (completeness);
convincing final state and proof implies a knowledge extractor for all the witnesses
(knowledge soundness). This modification makes the instantiation of the IVC verifier
simpler since it no longer has to incorporate verification logic for every step functions.
Concretely, in zexe, the IVC verifier corresponds to DPC.VerifyL run by validators
maintaining the ledger, who won’t have to deal with inner predicate proof(s) π1, but
only final outer proof π2. Thus there is no need to include verification logic for the first
step function – making our verifier predicate independent.

Zexe: IVC from SNARK composition. Next, we explain how the original zexe
instantiate this IVC using SNARK composition (see left half of Fig. 2). For a general
IVC, at each step, the prover will receive the state z and an IVC proof π from the last
computation step, compute the next state by applying the step function F to get the
new state z′, and create another IVC proof π′ for the statement “F (z) = z′∧V (z, π) = 1”
where V is a SNARK verifier. The fact that we have to embed the entire SNARK
verifier logic inside the IVC prover’s circuit is where the complexity comes from. For
example, many PIOP-based universal SNARK are instantiated with pairing-based PCS
like KZG that contains a pairing check, which incurs a high prover circuit complexity
and slows down the proof generation significantly.

Verizexe: IVC from accumulation schemes. Finally, we give a high level intuition
on leveraging an accumulation scheme for SNARK to defer the heavy-lifting during the
SNARK verification to the IVC verifier, thus liberating the IVC prover from a complex

13

Fig. 2: IVC from SNARK compositions (left) v.s. IVC from accumulation schemes (right). Blue boxes are SNARK
prover P and verifier V for the relation R, and orange boxes are accumulation prover P , verifier V (more
lightweight than a SNARK verifier) and decider D. z1, z2, π1, π2 in both schemes are the same as those in Fig. 1
where F is the step function that calculates the predicate commitment cmΦ using Pedersen Commitment over
the hashes of the predicate verifying keys. There are a few inputs dropped from the diagram for visual clarity,
e.g. witness w1 as an input to the IVC prover in both diagrams; SNARK verifying key vkR for the SNARK
verifier inside the IVC verifier on the right diagram.

circuit (see right half of Fig. 2).11 At each step, the IVC prover receives an additional
accumulator acci (think of the tuple (acci, πi) as the new IVC proof), and eventually
the accumulator will be validated by a decider algorithm as part of the IVC verifier
logic. The core idea is: at the second step, the IVC prover will receive the predicate
proof π~ and an empty accumulator acc1 = ⊥; then instead of verifying the predicate
proof entirely, we partially verify it (e.g. compute everything except the pairing check
in case of PIOP+KZG SNARKs); the expensive steps in verification are delayed to the
IVC verifier via the accumulator (e.g. acc2 would contain the final two G1 elements
used in KZG opening proof check). Informally, our accumulation prover will compute
the group elements for PCS opening proof check, our accumulation verifier will ensure
correct accumulations (i.e. correct derivation of the two G1 elements in KZG), our IVC
prover only embeds the accumulation verifier’s logic in its circuit which is much more
lightweight than a SNARK verifier, and finally our IVC verifier (DPC.VerifyL in zexe)
will run a SNARK verifier for π2 := πΦ and a decider algorithm which completes the
PCS opening proof check (e.g. the final pairing check in KZG).

Remark 3. We emphasize that the accumulation must be zero-knowledge – the accumu-
lator acc2 and accumulation proof πV shouldn’t reveal anything about the predicates
being accumulated. In the context of an AS for plonk with KZG, this means the two
G1 elements for pairing must be masked/randomized and the randomizer is an addi-
tional secret witness for the accumulation verifier. Note that authors of [BCMS20] have
already showed how to make AS for inner-product-argument-based and pairing-based
PCSs zero knowledge in their Appendix A and Section 8.

3.2 Instance Merging

Recall that in DPC.ExecuteL, a user needs to generate predicate (inner) proofs for all
death predicates of input records and birth predicates of output records. We describe a
method to merge two proving instances (e.g. a birth predicate and a death predicate)
into one by exploiting the algebraic nature of preprocessing in a NARK (Appx. A.4)
and the homomorphism of polynomial commitment schemes (Appx. A.2), thus halving
the number of proofs the outer circuit needs to verify.
11 In [BCMS20], the authors are motivated by achieving IVC using NARKs that don’t have a succinct

(polylog) verifier, such as [BBB+18], whereas we are concerned about some heavy (circuit-unfriendly)
computation of NARK verifiers even if they are succinct.

14

Technique. In a NARK based on polynomial IOP (such as Algebraic Holographic
Proof (AHP) in marlin, and idealized low-degree protocol in plonk), the preprocessing
of circuit (i.e. NARK.Isrs) involves an arithmetization process where constraints in
an algebraic circuit (or equivalent computational models) are being transformed into
constraints about polynomials. The resulting proving key ipk usually contains these
index polynomials and the verifying key ivk contains the commitments to these index
polynomials. During arithemtization, for a birth predicate circuit C1 of size n, we pad
the circuit to size of 2n, with C1 being right padded (last n gates are dummy), and
compute the proving key and verification key as usual; for a death predicate circuit
C2 of size n, we perform similar operations but left pad the circuit (first n gates are
dummy). Subsequently, whenever we want to merge C1 and C2, we can construct a
merged circuit of size 2n just by adding the two padded circuits while maintaining overall
circuit satisfiability. The merged proving key can be easily obtained via addition of two
polynomials of the same degree, and the merged verification key (i.e. the commitments)
can be similarly derived thanks to additive homomorphism of PCS (such as KZG10
and its variants).

Syntax. We proceed to propose a slightly modified syntax for NARKs that supports
instance merging. A k-Mergeable NARK scheme

NARKk
⊕ = (G, I,Mipk,Mivk,Mw,P,V)

supports merging k slotted instances into one single merged instance, where a slotted
instance is labeled with a slot ∈ [k], and only a batch of non-overlapping instance {sloti}
where sloti 6= slotj for any i 6= j, i, j ∈ [k] can be merged together. For simplicity, we
present the variant we will use to improve zexe with k = 2 which allows for merging of
a death and a birth predicates into one.

• srs← NARK⊕.G(λ,N): same as NARK.G except N = 2n where n is the size bound
for each instance.
• (ipkb, ivkb)← NARK⊕.Isrs(Φb, b): Given circuit description Φb, slot number b ∈ [2],
and oracle access to SRS srs, it deterministically outputs the slotted proving
key and verifying key (ipkb, ivkb). The relation for the merged instance is R⊕ :=
{(x0||x1,w0||w1) : φ0(x0,w0) = 1 ∧ φ1(x1,w1) = 1}.
• ipk ← NARK⊕.Mipk(ipk0, ipk1): Given any two complementarily slotted proving

keys ipk0, ipk1, it outputs a merged proving key ipk.
• ivk ← NARK⊕.Mivk(ivk0, ivk1): Given any two complementarily slotted verifying

keys ipk0, ipk1, it outputs a merged verifying key ivk.
• w ← NARK⊕.Mw(w0,w1): Given any two witnesses w0,w1 corresponding to

relations RΦ0 ,RΦ1 , it outputs a merged witness w for R⊕.
• π ← NARK⊕.P(ipk,x,w): same as NARK.P except N = 2n.
• b← NARK⊕.V(ivk,x, π): same as NARK.V except N = 2n.

We present a concrete construction of such technique for plonk in Appx. D.

Analysis. A clear trade-off we make here is halving the number of proving instances
by doubling the circuit size of each instance. Concretely in zexe’s context, given an m-
input-m-output transaction, we have 2m predicate proofs (m death and m birth) to be
verified in the outer circuit, which is over a larger field with more expensive computation
within it. Now by merging each pair of (Φb,i, Φd,i)mi=1 7→ [φ′i]mi=1, we reduce the number
of inner predicate proofs to m, potentially lowering the outer circuit complexity. The
concrete net saving is dependent on the choice of NARK proof system for predicate

15

circuits. Assume a circuit of size n, the proof for the circuit satisfiability can be checked
by a verifier gadget using Nn constraints; while a verifier gadget for circuit of size 2n
takes N2n = Nn + δ constraints. Our instance merging techniques effectively reduce the
outer circuit complexity from roughly 2m ·Nn to m ·N2n, which is a significant saving
as long as δ � Nn. In the case of a Plonk verifier gadget, δ is very small and attributed
to a few additional modular arithmetic constraints from computing the polynomial
evaluations that are dependent on the doubled evaluation domain size; whereas Nn is
orders of magnitude larger. Meanwhile, inevitably there is additional cost associated
with a larger circuit per inner instance. The only noticeable cost boils down to running
polynomial interpolations using FFT over a domain size of 2n instead of n during inner
proof generation – effectively 2 FFT of the size n v.s. 1 FFT over the size of 2n. Given
that the running time of FFT is O(n · log(n)), the increased cost is really negligible
compared to the efficiency gain from a simpler outer circuit.

3.3 Proof Batching

We describe a generic compiler that transforms a public-coin non-interactive argument
that proves a single relation into an argument that batch proves a list of relations,
while preserving all security properties. Notice that one could trivially run multiple
instances of the argument protocol independently in parallel. Our compiler below is
non-trivial as it reduces the total communication complexity (thus the final proof size)
and the total verification computation, which in turn ultimately reduces the overall
verifier circuit complexity in zexe compared to verifying them individually.

Syntax. A NARK that supports proof batching shares most of the syntax from
NARK except that the proving and verification algorithm now accepts a list of instances,
witnesses and proofs instead of one:

• π~ ← NARK.P~([ipki]`i=1, [xi]`i=1, [wi]`i=1): Given a list of ` proving keys, instances
and witnesses, it proves them in batch and outputs a proof π~.
• b← NARK.V~([ivki]`i=1, [xi]`i=1, π~): Given a list of ` verifying keys, instances and

an aggregated proof, it outputs a success bit b.

We explain the high level techniques below and present a concrete construction in
Appx. D.

Technique. marlin presents a compiler that combines any public-coin AHP/PIOP for
a relation R and an extractable polynomial commitment scheme to obtain a public-coin
pre-processing argument with universal SRS for the same relation (see Theorem 1
in [CHM+20]). The universal SNARKs we use also fit into this construction paradigm,
and we summarize it schematically in Fig. 3. To extend the above paradigm and support
batching, the core idea is to leverage the batch opening of PCS, which reduces opening
proofs size and amortizes verification cost. We observe that many existing PCSs have a
linear combination scheme, and thus support batch opening of multiple polynomials at
multiple points (proven in Theorem 3 of [BDFG21] on private aggregation scheme).

Next we summarize the general paradigm and its batching extension in Fig. 3. On
the left side of Fig. 3 is an interactive argument between a Prover P and a Verifier V
both of whom are running an information-theoretic PIOP as a sub-protocol. The prover
starts by running the PIOP prover with given instance x and witness w, where in each
round it produces a polynomial pi to be committed into cmi and sent over to the verifier.
Meanwhile the verifier V who internally runs the PIOP verifier randomly samples a
coin ri in each round, and at the end of n-th round, outputs a query set Q containing

16

algebraic queries such as “evaluate {pi} at point rj” or some polynomial identity testing.
Upon receiving the queries, P calculates the replies as a list of evaluated values [v] and
return to V who will decide whether the replied values are acceptable. Additionally
P has to prove that the replies to algebraic queries are consistent with committed
polynomials by running PCS.Eval.P as a sub-procedure whose opening proof will be
verified by V who runs PCS.Eval.V.

Fig. 3: Generic compiler for batching PIOP-based NARKs.

On the right side of Fig. 3 is an interactive argument, compiled from the one on the
left, for a list of relations {Ri}`i=1 with the same size bound. In j-th round (j ∈ [n]),
the i-th PIOP prover (i ∈ [`]), sends over the committed polynomial for that round
{pi,j} and the PIOP verifier would replied with a random coin rj after it receives all
polynomials from ` PIOP provers. After n rounds of polynomial commitments and coin
flips, the PIOP verifier outputs a single query set Q for all ` relations and the size of
this set should be the same as that of a single PIOP run. Finally, P and V run batch
opening of PCS over all polynomials at those query points.

Note that a strawman (yet non-trivial) compiler would run ` PIOP instances
in parallel, where the verifier produces ` random challenges {ri,j}nj=0 (in total ` · n
challenges) and ` query set Qi. Subsequently the PCS.Open will proceed to prove
opening of polynomials

{
{pi,j}nj=1

}`
i=1

at different subsets in Q :=
⋃
{Qi}. In contrast,

our compiler utilizes the same random challenges (in total n) and the same query set
Q, independent of the number of batched relations `, so that the batched opening of
PCS is even simpler. Intuitively our compiler preserves security since these random
challenges are only sent after receiving the committed polynomials (for that round)
from all of the ` PIOP provers, and the query set is constructed after finishing the
n rounds of all PIOPs, thus there won’t be any knowledge soundness compromise
(although the knowledge extractor requires slight modifications).

Analysis. The efficiency improvement of our generic compiler is dependent on the
concrete choice of PCS and PIOP. For batching ` vanilla relations in plonk12 that
combines an idealized low-degree protocol with KZG polynomial commitment:

• the prover benefits from sharing the same quotient polynomial (which is further
split into 3 polynomials) and the two opening polynomials. The total proof size is
reduced by 5(`− 1) G1 elements.

12 Other variants such as turbo-plonk (plonk with customized gates) and ultra-plonk (with lookup
table [GW20] support), the concrete efficiency will also be different and the improvement will mostly
be more significant.

17

• the verifier requires only a single pairing check during batch checking; it also
benefits from fewer and smaller MSMs thanks to the shared quotient and opening
polynomials. The total number of base points in MSMs is reduced by 7(`− 1), and
the total number of pairing operation is reduced by (`− 1).

3.4 Variable-base Multi-Scalar Multiplication via Online Lookup Table

We generalize the lookup table argument in [GW20] by enabling a variant we call online
lookup table to constrain MSM in circuit more efficiently.

Motivation. Recall that a b-bit multi-scalar multiplication (MSM) problem of size
n ∈ N is to compute Q = Σi∈[n](si · Pi) where si ∈ [0, 2b) are scalars, Pi ∈ G are bases,
· is scalar multiplication, and + is group addition. When all bases are fixed and known
in advance, we call such instance a fixed-base MSM (fMSM); otherwise variable-base
MSM (vMSM).

During verification of inner proofs in the outer circuit in zexe, there are some
vMSM computation where the bases are commitments to witness polynomials inside
proofs or commitments to preprocessed circuit descriptions inside verifying keys (note
that verifying keys for user-defined predicates are dynamic). On a high level, we employ
Pippenger-like [Pip80]13 strategy by reducing a b-bit MSM into b/c instances of c-bit
MSMs (c < b), and finally summing them together. Particularly, when computing a
c-bit MSM, instead of unrolling the exact Pippenger algorithm in the circuit which
is very expensive,14 we utilize a lookup table containing all resulting points from the
scalar multiplications between the base point and all 2c− 1 possible scalar values. With
such lookup table, any c-bit scalar multiplication on this specific base point becomes
a table query rather than elliptic curve group operation. Given that these bases are
unfixed, the lookup table cannot be pre-processed – table values are only known during
online proving phase which give rise to our following technique.

Pre-processed v.s. Online Lookup Table. plonkup [GW20] presents a polynomial
IOP (PIOP) protocol for checking values of a query table f := (f1, . . . , fn) ∈ Fn are
contained in the values of a lookup table t := (t1, . . . , td) ∈ Fd. They further generalize
the protocol to support vector lookup where each entry in the query table and lookup
table is a vector (i.e. fi, ti ∈ Fw); and to support multiple tables by adding an additional
column for table index and concatenating multiple tables into one. However, the
presentation in [GW20] only considers pre-processed lookup tables where values in the
lookup tables are predefined and fixed. The key observation is that the PIOP protocol
for lookup relations works regardless of how the query table and the lookup table are
constructed – whether those values are known in advance or determined during online
phase of the protocol run. Intuitively, the PIOP for online lookup tables still preserve
soundness because online columns constructed by the prover are committed first (sent
to the verifier for oracle access), before any verifier-initiated checks are carried out.
13 We only use a special case of a simplified Pippenger algorithm which is sometimes refers to as

“the bucket method”. For detailed literature review and comparisons among different variants of
Pippenger’s predecessors, please see [Ber02].

14 For each c-bit MSM, there are 2c − 1 buckets each representing a possible non-zero scalar. We need
to compute the “bucket sum” {S1, . . . , S2c−1 ∈ G} by adding all base points that are supposed to
multiply with that the scalar (e.g. Si is computed by adding all bases that multiply with i, with
i ∈ [1, 2c − 1]), then finally the MSM result is computed as

∑
i∈[2c−1] i · Si. We note that the main

circuit complexity does not come from point additions, but maintaining 2c − 1 bucket sums and
selectively update the correct bucket sum for each base and its scalar – which is trivial outside the
circuit, but expensive to enforce inside the circuit.

18

Optimized MSM Circuit. With the online lookup table in our toolbox, we proceed
to present an optimized circuit for MSM.

Inputs: Base point variables: [P1, . . . , Pn], scalar variables: [s1, . . . , sn] where scalar values ∈ [0, 2b).
Outputs: A point variable Q =

∑
i∈[n] si · Pi.

Circuit: We break b-bit MSM into m := b/c instances of c-bit MSM and finally summing over m
points.

1. For i ∈ {1 . . . n}:
(a) Compute (2 · Pi, . . . , (2c − 1) · Pi) using repeated point addition from Pi.
(b) Create online lookup table: Ti = [(0, 0G), (1, Pi), (2, 2 · Pi), . . . , (2c − 1, (2c − 1) · Pi)].
(c) Decompose si into m chunks of c-bit value [si,0, . . . , si,m−1], such that si =

∑m−1
j=0 si,j · 2cj

(we don’t need to further range-check si,j , as it is implicitly constrained later in lookup gates).

2. For j = {0 . . .m− 1}:
(a) For i = {0 . . . n}:

i. Create a point variable Qi,j for the value si,j · Pi.
ii. Add an entry to query table (si,j , Qi,j) (lookup argument will check if (si,j , Qi,j) ∈ Ti).

(b) Compute window sum: wsumj =
∑

i∈[n] Qi,j .
3. Compute Q =

∑m−1
j=0 wsumj · 2cj .

Fig. 4: Optimized variable-base MSM using online lookup tables.

We denote an elliptic curve point addition gadget �add, point doubling gadget
�double, linear combination gadget �lc for k terms, lookup gadget (for either filling
entry in query or lookup table) �lookup. Then our overall circuit size (number of gates)
is dominated by:

n ·

(2c − 2) �add︸ ︷︷ ︸
step 1a

+ 2c �lookup︸ ︷︷ ︸
step 1b

+ (m− 1)/k �lc︸ ︷︷ ︸
step 1c

+m ·

n �lookup︸ ︷︷ ︸
step 2(a)ii

+n �add︸ ︷︷ ︸
step 2b

+m �add +b �double︸ ︷︷ ︸
step 3

As a point of reference, with the turbo-plonk circuit used to generate benchmark
number in § 4, which supports linear combination of k = 4 terms using 1 gate, elliptic
curve point addition and doubling using 2 gate, a lookup entry or query using 1 gate,
a 256-bit vMSM of size 128 takes only around 34, 516 gates with chosen chunk size
c = log(n) ≈ 5. In contrast with the naïve circuit implementation, the expected number
of gates required is around 230, 00015 – our optimized circuit is more than 6.5 factor
smaller.

Remark 4. Step 1b and 2(a)ii in Fig. 4 involves creating multiple online lookup tables
and later querying from one of them. To achieve this, we implicitly apply the multiple
table techniques presented in [GW20] by adding an extra domain separator column
both in the merged lookup table and the merged query table. Furthermore, we note
that in a turbo-plonk constraint system, with 3 (preprocessed) selector polynomials
(2 domain separator polynomials and 1 polynomial for the fixed scalar value in the
online lookup table) and 5 wire polynomials (2 for point variables in lookup table, 3
for the key-value tuple in query table), we can do an entry creation for both lookup
table and query table in a single gate, thus reducing the total number of constraints
required. (at the cost of longer proving and verifying keys). Specifically, instead of
(n · 2c +m · n) �lookup, we could just use max(n · 2c,m · n) �lookup.
15 Roughly, a naïve variable-base MSM can be done by decomposing the scalars to binary representation,

then perform conditional addition based on each bit, then finally adding all points together. The
decomposing scalars takes nb/k �lc; the multiplication takes 6bn �add and final combining takes
n �add which adds up to 229, 632.

19

3.5 Polynomial Evaluation over Non-native Field

Inner proofs for predicate satisfiability and outer proofs for inner proofs correctness
are generated by circuits over different finite fields. Therefore, when running the inner
proof verifier in the outer circuit, any polynomial evaluations would require modular
arithmetics over a non-native field. In this section, we present efficient gadgets for
two main building blocks: modular multiplications for evaluating each monomial and
modular additions for summing over evaluations of all monomials. The stepping stone
of our modular arithmetic gadgets is a range proof gadget that uses lookup table
introduced in [GW20].

Let p, q be the sizes of two fields where p2 > q > p, we want to show how to emulate
modular arithmetics over Fp in a circuit over field Fq. The common theme behind our
design is enforcing: (a) an equivalent equation over integers expressing the congruence
relation of the modular equation and (b) both sides of the equation won’t overflow or
underflow the native field size q at any intermediate step. For example, to constrain
modular operation z′ ≡ x · y (mod p), we ensure there exist witnesses w such that (i)
z′ + pw = xy over integers, and (ii) arithmetic operations that simulate computations
of z′ + pw, xy never exceeds the range [0, q).

Assume that we already have a linear combination gadget �lc for klc terms, and a
preprocessed range table (with size K := 2k) that enables us to constrain a variable x
to be in the range [0,K). We start by constructing a more general range-check circuit,
and then build the modular addition/multiplication gadgets on top of it.

Range proofs. We present a range proof gadget in Fig. 5 with the circuit size:
nrange(`) := d `−1

klc
e �lc +` �rg.

Modular multiplications. Since we assume p2 > q, we can’t directly multiply
x, y ∈ Fp in circuits over Fq. Instead we choose to break each Fp element into two limbs
with a splitting parameter m such that 22m ≥ p, so that we can represent any x ∈ Fp
as (x0, x1) ∈ [0, 2m)2 such that x = x0 + 2mx1. With the range proof gadget for the
range [0,K`) in mind (where K = 2k), we recommend fixing m by finding the minimum
` ∈ N such that 22`k ≥ p (namely we denote m := `k).

The intuition for proving x · y = z (mod p) is to find a witness w ∈ Fp such that
x · y = z + p · w holds over integers and that both sides won’t overflow Fq. Specifically:

(x0 + 2m · x1) · (y0 + 2m · y1) = z0 + 2m · z1 + (w0 + 2m · w1) · (p0 + 2m · p1)
m

z0 + w0 · p0 − x0 · y0 + 2m · (z1 + w0 · p1 + w1 · p0 − x0 · y1 − x1 · y0)
+ 22m · (w1 · p1 − x1 · y1) = 0

m
z0 + w0 · p0 − x0 · y0 − 2m · c′0 = 0
z1 + w0 · p1 + w1 · p0 − x0 · y1 − x1 · y0 + c′0 − 2m · c′1 = 0
w1 · p1 − x1 · y1 + c′1 = 0

for some c′0, c′1 carriers bounded by −2m ≤ c′0 < 2m+1 and −2m+1 ≤ c′1 < 2m+2.16 We
present the modular multiplication gadget in Fig. 6 with following notes:
16 Since z0 + w0 · p0 ∈ [0, 2m + 22m), x0 · y0 ∈ [0, 22m), we know 0−22m

2m = −2m ≤ c′0 <
2m+22m−0

2m =
2m + 1 < 2m+1.
Similarly since z1 + w0 · p1 + w1 · p0 + c′0 ∈ [−2m, 2m + 22m+1 + 2m+1), x0 · y1 + x1 · y0 ∈ [0, 22m+1),
we know −2m−22m+1

2m = −1− 2m+1 < −2m+1 < c′1 <
2m+22m+1+2m+1−0

2m < 2m+2.

20

• To optimize gadget circuit size, we assume that the limbs of input x, y are already
in range [0, 2m) without further checking.
• We shift the actual carriers c′0, c′1 to c0, c1 in order to have a positive range and

upper-bounded by a power of K to utilize our range proof gadget.
• Witness w ∈ Fp must exist since we assume both x, y ∈ Fp even though we only

constrain them to range [0, 22m) which is bigger than [0, p).
• The prover must set witness z to be in range [0, p) in order to continue feeding
z as an input to the next modular multiplication gadget, even though another
representation such as z + p might still satisfy the current gadget. This is because
our modular multiplication gate is only composable when the inputs are strictly
within [0, p) bound to guarantee existence of witness w ∈ Fp.17

Public Parameters: K ∈ [0, q), ` ∈ N where K` < q
Input: x ∈ Fq
Relation: x ∈ [0,K`)
Circuit:

1. Create variables x0, . . . , x`−1 and constrain x = x0 +K · x1 +K2 · x2 + . . .+K`−1 · x`−1.
2. Range check variables x0, . . . , x`−1 ∈ [0,K).

Fig. 5: Range proof gadget.

Public Parameters:

• predefined field sizes: p2 > q > p.
• range of �rg: K = 2k ∈ [0, q)
• splitting parameter m such that 22m = 22`k ≥ p for a minimum ` ∈ N
• limbs of prime (p0, p1) such that p = p0 + 2m · p1
• additional requirement: k ≥ 3 ∧ q > 22m+k+1

Input: (x0, x1), (y0, y1) ∈ [0, 2m)2 such that x = x0 + 2m · x1 ∈ Fp, y = y0 + 2m · y1 ∈ Fp
Witness: (w0, w1), (z0, z1)
Relation: (x0 + 2m ·x1) · (y0 + 2m ·y1) = z0 + 2m · z1 + (w0 + 2m ·w1) · (p0 + 2m ·p1) over integers
Circuit:

1. Range check w0, w1, z0, z1 ∈ [0, 2m)
2. Compute carrier c′0 and c0 = c′0 + 2m,

range check c0 ∈ [0, 2m+k) and constrain z0 + w0 · p0 = x0 · y0 + 2m · (c0 − 2m)
3. Compute carrier c′1 and c1 = c′1 + 2m+1,

range check c1 ∈ [0, 2m+k) and constrain
z1 + w0 · p1 + w1 · p0 + (c0 − 2m) = x0 · y1 + x1 · y0 + 2m · (c1 − 2m+1)

4. Constrain w1 · p1 + (c1 − 2m+1) = x1 · y1

Fig. 6: Modular multiplication gadget. In circuit description, blue texts are actual circuit constraints whereas
black normal text are computation outside the circuit.

Proposition 1. The modular multiplication gadget in Fig. 6 satisfies

• Completeness: Given public parameters, for any inputs and their valid witnesses,
the circuit for the relation should always be satisfied.

17 Our circuit constrains z, w ∈ [0, 22m), hence z + p · w should be in range [0, 22m + 22m · p) with p a
fixed public parameter. Suppose inputs x, y ∈ [0, 22m) exceed p and x · y exceeds 22m + 22m ·p (which
is possible as 22m > p), then it’s impossible to find a proper witness w such that x · y = z + p · w.

21

• Soundness: Given public parameters, for any inputs and invalid witnesses, the
circuit should never be satisfied.

See proofs in Appx. E.
Using the ultra-plonk constraint system specified in Def. 3, the circuit size of

modular multiplication gadget is: 5+4 ·nrange(`)+2 ·nrange(`+1) UltraPlonk constraints.
With k = 15, klc = 4, range-check of [0,K) for free, and Fq,Fp be the base field and
scalar field of BLS12-377 curve, our gadget uses only 23 constraints.

Remark 5 (On circuit complexity of range checks). In an ultra-plonk constraint
system, by adding a dedicated input wire to each gate (an additional wire polynomial),
we can piggyback the range-checking of a variable on any existing gate instead of
requiring a dedicated new gate. As long as the number of range checks are fewer than
total number of gates used for the rest of the proof relation, we don’t have to increase
circuit size, in which case we effectively support range checks “for free”.

Remark 6. While there are alternative designs for emulating non-native modular mul-
tiplication such as [Gab], those designs usually are more general and applicable for any
p, q even when q < p. In contrast, we have a specialized use case of two-chain curves
for depth-2 proof recursion (instead of cycling curves for deeper proof recursions) in
mind, therefore we can safely assume finer-grained requirements on p, q to make our
circuit more efficient.

Modular additions. The intuition for proving y = x1 + . . .+ xN (mod p) is to find a
witness w ∈ Fp such that y + p · w = x1 + . . .+ xN over integers and that both sides
won’t overflow Fq. Assume we take the splitting parameter m from foregoing modular
multiplication gadget, we present the modular addition gadget in Fig. 7.

Public Parameters:

• predefined field sizes: p2 > q > p.
• range of �rg: K = 2k ∈ [0, q)
• splitting parameter m such that c · p ≥ 22m ≥ p for a minimum c ∈ N
• maximal number of summards allowed: N < K−1

c
+ 1

• additional requirement: q
p
> c+K

Input: x1, . . . , xN ∈ [0, 22m)
Witness: w, y
Relation: y + p · w = x1 + . . .+ xN over integers
Circuit:

1. Range check y ∈ [0, 22m), w ∈ [0,K)
2. Constrain y + p · w = x1 + . . .+ xN

Fig. 7: Modular addition gadget.

Proposition 2. The modular addition gadget in Fig. 7 satisfies completeness and
soundness.

See proofs in Appx. E.
The circuit size of our modular addition gadget is: naddmod = d Nklc

e �lc +1 �rg
+nrange(2m). With k = 15, klc = 4, range-check of [0,K) for free, and Fq,Fp be the base
field and scalar field of BLS12-377 curve, our gadget uses only dN4 e+ 6 constraints for
simulating an addition of N terms.

22

3.6 SNARK-friendly Symmetric Primitives

Recall that the circuit for relation Re, which governs the rules of a valid state transition
in DPC.ExecuteL, requires constraining some symmetric cryptographic primitives such
as commitment schemes, pseudo-random functions (PRF), and collision-resistant hashes
(CRH). However, some standard implementations of these primitives involves many non-
algebraic operations (e.g. bit-wise XOR, rotate in SHA256 and s-box bytes substitution
in AES) which takes a lot of gates to constrain in an algebraic circuit. There are two
main ways to constraining these primitives inside circuit more efficiently:

1. precompute a lookup table containing legitimate (input, output) tuples18 and the
prover argues the witnesses (input and output of intermediate, non-algebraic steps)
belongs to the table [GW20].

2. use SNARK-friendly primitives specifically designed to work natively with finite field
elements by using mostly algebraic computations and removing non-algebraic steps
(notably new hash functions: Rescue and Vision [AABS+20], Poseidon [GKR+21],
MiMC [AGR+16]).

Generally, the latter approach produces smaller circuits at the cost of reliance on
newer, less time-tested designs which are often much slower outside the circuit due to
lack of hardware acceleration. The former approach may allow better candidates with
better security bound or relies on weaker cryptographic assumptions for the required
security properties.

Fiat-Shamir Transcript. Many universal SNARKs are made non-interactive by
applying Fiat-Shamir transformation [FS87] on a public-coin interactive argument
where random challenges sent from the verifier are deterministically simulated by
hashing all previous transcripts between the prover and the verifier. The heuristic
security of these SNARKs assume these hash functions as random oracles. In practice,
these random oracles are instantiated using Blake2s or the keccak permutation in
SHA3,19 all of which incurs high circuit complexity as their internals entail many
non-algebraic operations. Since the verifier logic includes deriving the verifier challenges
in the transcript which should be constrained in the outer circuit, we are motivated to
use one of the techniques above to reduce its circuit complexity.

As a point of reference, Halo2 [Ele] designed a highly optimized circuit for SHA256
using lookup table with an overall cost of 2099 turbo-plonk constraints; whereas
CAP project [KCCX21] designed a circuit for a CRH from using Rescue permutation
in a sponge construction with only 148 turbo-plonk constraints. Granted that the
arithemtizations in those two turbo-plonk designs are slightly different, and such
numbers can only be used for informal comparison. We decide to use Rescue-based hash
when constraining verifier challenges derivation from the transcripts for its better circuit
efficiency, knowing that it is still a philosophical question whether these SNARK-friendly
hashes suffice as random oracles.

Predicate Commitments. To ensure that death/birth predicates involved in Rutxo
and RΦ are consistent, [BCG+20] proposes to make the hiding commitment cmΦ to
the predicates in a transaction as a public input for both circuits so that the verifier
18 For instance, to assist bit-wise XOR between any two 8-bit integers, we can build a table of size 216

of all possible two integer inputs and their XOR outputs – namely each entry is a tuple (x, y, x⊕ y).
19 For instance, Aztec 2.0 (https://hackmd.io/@aztec-network/ByzgNxBfd) and Halo2

(https://github.com/zcash/halo2) uses Blake2s; Merlin library (https://github.com/
dalek-cryptography/merlin) uses keccak permutation.

23

https://hackmd.io/@aztec-network/ByzgNxBfd
https://github.com/zcash/halo2
https://github.com/dalek-cryptography/merlin
https://github.com/dalek-cryptography/merlin

can check their equality. Concretely, the original zexe instantiate CRH with Pedersen
hash, COM with Blake2s hash where the message is appended with a randomizer for
the hiding property. The primary circuit cost comes from constraining non-algebraic
Blake2s hash on a message size of m+ n+ 1 for an m-input-n-output transaction.

We emphasize that directly switching Blake2s to a SNARK-friendly hash is not
immediately more advantageous, since we need to constrain this hash function in two
different fields (over Fr for Rutxo and over Fp for RΦ), and constraining algebraic hashes
over non-native fields is probably more expensive as it requires many range checks and
modular arithmetics. Worse, the number of non-native operations grows linearly with
the message size since longer messages require more invocations of the hash function.

In Appx. F, we propose an efficient solution whose non-native operations does not
grow regardless of the number of predicates committed, by utilizing rescue-hash-based
commitment schemes.

24

4 Implementation and Evaluation

In this section, we provide an overview of our verizexe implementation with most of
our optimization techniques applied and report our experimental evaluation.

4.1 System Implementation

We implemented the delegable DPC scheme and applied all optimizations (§ 3) except
the predicate commitment technique (Fig. 14). The resulting system is a zexe that
only requires a one-time universal setup to produce the system parameter required for
all future user-defined predicates which we affectionately call verizexe. Our code base,
written in Rust, follows the stack shown in Fig. 8: we utilized arkworks library [ac22] as
the underlying algebra backend for finite field, elliptic curve, and polynomial operations;
necessary cryptographic primitives including zkSNARKs and their circuit constraints
are built on top; finally a verizexe library that instantiates the DPC scheme using all
building blocks below.

Algebra (ark-ff, ark-ec, ark-poly)

Cryptography primitives
(Rescue, KZG, . . .)

Transcript
(merlin, rescue-trans.)

zkSNARK and its constraint systems
(jf-plonk)

Gadgets for crypto. primitives

veri-zexe

Fig. 8: Stack of libraries comprising verizexe.

We break down our concrete instantiations of cryptographic building blocks used to
generate benchmark below:

Elliptic Curves. We use two pairing-friendly elliptic curves EBLS, EBW in a similar
fashion as [BCG+20] to support one layer of proof composition, and one twisted edwards
curve EEd/BLS whose base field matches the prime order subgroup of EBLS. Inner proofs
are generated over the BLS12-377 curve (inner circuits are over its scalar fields), and
outer proofs are generated over the BW6-761 curve [HG20] (outer circuits are over
its scalar field which matches the base field of BLS12-377). Additionally, for some
cryptographic primitives that requires a DLP-hard group (e.g. transaction signing in
delegable DPC), we use the twisted edwards curve whose base field is the scalar field of
the BLS12-377 curve.

Pseudorandom Permutation. Many of our following primitives are built from an
algebraic pesudorandom permutation using Rescue algorithm [AABS+20].

The Rescue PRP is defined by a square matrix MDS of size w×w (in our instantiation
w = 4), an initial constants vector IC, and a key-scheduling constant vector C and
a key-scheduling matrix K. We set the number of rounds nr = 12. For the S-box
parameter α, we set α = 11 for BLS12-377’s scalar field (used by the inner circuit)

25

and α = 5 for BLS12-377’s base field (used by the outer circuit). Note that during
key scheduling, the key injection vectors can be preprocessed yielding a much faster
generation of round keys. Formally, our Rescue instance works over a field F, with keys
and inputs of size 4 field elements: m′ ← PRP(k,m) where k,m,m′ ∈ F4.

For our PRF and hash function below, we need a fixed-key permutation as a building
block rather than the full Rescue PRP. We build this by setting the key to the 0 vector:
m′ ← FixedKeyPRP(m) = PRP([0, 0, 0, 0],m) where m,m′ ∈ F4.

Pseudorandom Function. We build a sponge-based PRF from the fixed-key Rescue
permutation. The construction follows the Full-State Keyed Sponge (FKS) paradigm
(see Algorithm 1 in [MRV15]) but here is simplified to output a single field element.
The PRF takes a secret key k of one field element, a message m of fixed length:
y ← PRFn(k, x) where k, y ∈ F, x ∈ Fn.

The Full-State Keyed Sponge construction works as follows: it set the initial state
with zeroes and the key in the last slot. Then it divides the input in chunks of Rescue’s
state size, and absorb them sequentially by 1) adding the chunk to the state, and
2) calling the Rescue permutation to produce a new state. After the input has been
absorbed, it outputs the first element of the state20.

CRH. We build our collision-resistant hash (CRH) using the Sponge construc-
tion [BDPVA07] on top of our Rescue fixed-key permutation. In our instantiation
of Rescue, the permutation state is of width 4: 3 slots for the rate and 1 for the capacity
of the sponge construction. We provide two instantiations of the sponge-based CRH.
The first one assumes the input length is multiple of the rate. The second one applies
the following simple padding before calling the Sponge CRH: append the field element
1 to the input, then append zeroes as necessary until length is multiple of the rate. In
short, we have a family of CRH that supports H : F∗ 7→ F for arbitrary number of field
elements as the pre-image.

Merkle Tree. The append-only ledger L is instantiated using a Merkle tree to
accumulate all published record commitments and to generate membership proofs for
old input records inside a transaction. Specifically, we implemented a ternary Merkle
tree (branch factor is 3) using our Rescue-based CRH introduced above. Notice that
the permutation in our hash function takes in 4 field elements, out of which the last
one is reserved for padding to avoid prefixing attacks. Thus, a ternary Merkle tree is
tailored for our hash function in terms of circuit constraints. Our Merkle tree is of fixed
height, a parameter initialized during system setup; and it is incremental meaning it is
possible to dynamically insert new leaves and update the Merkle root in time O(logM)
where M is the maximum number of leaves allowed. For details on domain separation
for different types of nodes in prevention of prefixing attacks and other formal security
proofs, please refer to Section 4.1.8 in [KCCX21].

Commitments. We build a resuce-based commitment scheme that takes in a message
m ∈ Fn of some fixed length n and a randomly sampled blinding factor s, outputs
a hiding commitment c← Commitn(s,m) = CRH(s‖m‖0) where 0 are padded zeros
so that the total input to CRH is of multiples of its rate (i.e. 3), CRH is the first
instantiation of rescue-based CRH introduced above, and c ∈ F. Intuitively, the binding
20 For arbitrary length output, the squeeze phase proceeds as in a sponge construction: the rate part of

the state is outputed, then the permutation is applied to the state to produce more output chunks
until desired output length is achieved

26

and hiding property of our commitment scheme is derived from the collision resistance
and one-wayness of the rescue permutation respectively. We further note that we can
safely pad zeros to the fixed-length input messages because any message input of
mismatching length should be rejected.

NARK. We instantiate the NARKs using KZG-based plonk [GWC19]. Concretely,
our predicate circuit and circuit for the relation Rutxo uses our turbo-plonk con-
straint system over EBLS (see Def. 2) with customized gates optimized for rescue-based
statements; while our outer circuit for the relation RΦ uses our ultra-plonk con-
straint system over EBW (see Def. 3) with lookup table for efficient range proofs and
variable-base MSM gadgets. We further extend the normal capability of a zkSNARK
to support instance merging, proof batching and lightweight verifier gadget for our
outer SNARK as illustrated in Appx. D. Note that our inner circuits don’t need to be
zero-knowledge, only the outer circuit require zero-knowledge to reveal nothing about
the predicate verification keys used in order to achieve the function privacy of a DPC
scheme.

4.2 Experimental Evaluation

We now provide experimental evaluations of our verizexe system with optimization
techniques described in § 3, and concrete implementation details in § 4.1.

Metrics and evaluation methodology. As an instantiation of the DPC scheme,
our measurements focus on the resources required (including time, memory usage,
storage) during the execution of the four algorithms of a DPC scheme (namely
Setup,GenAddress,ExecuteL,VerifyL). Particularly, the primary target of our optimiza-
tion has been the circuit complexity of the NP relation RΦ (namely the outer circuit)
whose SNARK proof generation dominates the cost of ExecuteL (namely transaction
generation procedure) – which directly affect the usability and practicality of the final
private computation system. To wit, we also provide microbenchmarks on the circuit
costs of important cryptographic building blocks used. Note that we do not provide
evaluations on dimensions or parts that our optimizations has mild or no effect on,
such as the GenAddress algorithm or the transaction size besides its validity proof size.

All our reported data are measured on an AWS EC2 instance running Ubuntu 20.04.
The server has 64 cores (AMD EPYC 7R13 at 2.65 GHz) and 128 GB of RAM.

General benchmark. We first compare our system against other DPC implemen-
tations on important dimensions. We manage to find only a handful of public DPC
repositories, some are outdated and no longer maintained.21. To the best of our knowl-
edge, the most relevant and actively maintained implementation is snarkVM by the
Aleo team many of whom are the co-authors of the Zexe paper. While there are a few
versions of DPC instantiations inside snarkVM, we focus on its testnet-1 and testnet-2
versions. 22

Here we outlines the technical difference between our system and snarkVM’s. First,
snarkVM chooses to verify SNARK proof for Rutxo together with predicate SNARK
21 e.g. arkworks has a DPC code base extracted from the original libzexe used in submission

of [BCG+20], but it is unmaintained, so is Celo’s fork of this repository.
22 We note that snarkVM had shifted away from the original DPC design by removing the notion of

death/birth predicates altogether since their testnet-3 and even some late iterations of testnet-2,
therefore we only use their earlier testnet-2 version when it still faithfully instantiates the DPC
model in the original paper. The design and performance of this new DPC model is outside the
scope of this paper.

27

Setup ExecuteL

RΦ(outer circuit)

Tx. Dim. Time (s) SRS size (MB) Constraints Prover (s) Time (s) Memory (GB)

snarkVM R1CS
2× 2 176.8 5,254.2 4,235,068 138.5 151.4 16.6
3× 3 246.0 7,056.6 6,330,496 202.7 223.0 20.5
4× 4 370.1 10,454.9 8,447,588 293.2 321.1 27.1

verizexe UltraPlonk
2× 2 11.8 33.1 87,176 13.1 16.9 6.5
3× 3 18.4 66.2 126,076 24.7 29.2 8.5
4× 4 19.1 66.2 141,492 24.8 32.4 9.1

Table 2: Performance comparison against the state-of-the-art DPC implementation across different transaction
dimensions (e.g. 2× 2 means 2-input-2-output transaction). Under ExecuteL category, “Prover” column refers to
prover time for outer circuit whereas “Time” column refers to the overall transaction generation time. snarkVM
refers to its testnet-2 version where both Rutxo and RΦ are proven using Groth16, birth/death predicates are
proven using Marlin; whereas verizexe uses TurboPlonk for both Rutxo and birth/death predicates, RΦ is
proven using UltraPlonk. Notice that structured reference string (SRS) size for snarkVM contains the universal
SRS of Marlin and preprocessed proving keys of the inner and outer circuits; whereas that for verizexe only
contains two universal SRS, one for Rutxo and predicate circuits, the other for the outer circuit. Further note that
constraints number reported for snarkVM are referring to R1CS constraints whereas the number for verizexe
are Plonk constraints. All death and birth predicates requires 215 constraints in their respective constraint
systems.

Gadgets Field of Operation # Constraints

native over BLS nr = 388
Rescue Permutation native over BW np = 148

non-native over BW nnn = 23, 760∗

CRH native over BLS (d `3e+ k − 1) · nr + 4
(input: F`, output: Fk) native over BW (d `3e+ k − 1) · np + 4

Commitment native over BLS d `+1
3 e · nr + 4

(input: F`) non-native over BW6 d `+1
3 e · nnn + 4∗

PRF (input: F`) native over BLS d `4e · nr + 4
Merkle Path (depth: `) native over BLS (5 + nr) · `+ nr
ECC Add native over both 2
Mod Add (input: F`r) non-native over BW d `4e+ 6∗
Mod Mul (input: F2

r) non-native over BW 23∗
Plonk Verifier

1 proof native over BW 20, 232∗
2 proofs native over BW 31, 407∗
3 proofs native over BW 42, 407∗
4 proofs native over BW 53, 735∗

Table 3: Number of Plonk constraints for major cryptographic building blocks and algebraic operations. These
numbers are specific to the TurboPlonk design (see Def. 2), those annotated with ∗ refers to the number of
UltraPlonk constraints (see Def. 3). Furthermore, we denote the scalar field of BLS12-377 as Fr, and the scalar
field of BW6-761 as Fp.

28

proofs inside its outer circuit, thus producing only a single outer proof instead of the
two proofs per transaction as described in Section 7 of the Zexe paper. To ensure a
fair comparison, we have modified their code to accurately reflect the original paper as
our verizexe does. SnarkVM testnet-1 (the same implementation used to generate
experimental data in Section 9 of [BCG+20]) uses [GM17] for birth/death predicates
each of which requires a trusted setup. SnarkVM testnet-2 uses universal SNARK
Marlin [CHM+20] for predicates and this will serve as the primary benchmark to gauge
the improvements gained from our optimizations.

As shown in Table 2, we achieve a 10.6 ∼ 11.8x improvement on outer proof
generation, and a 9 ∼ 10x on overall transaction generation speed; the latter is the
most important bottleneck and the determining factor of the usability of a DPC system.
Notwithstanding the impossible task of directly comparing numbers of R1CS constraints
to numbers of Plonk constraints, it is evident that our optimizations have kept the
outer circuit complexity relatively low which results in faster proof generations. We
also observe a 2.6 ∼ 3.0x improvement on memory usage during transaction generation,
this helps alleviates the hardware requirements for users.

Astute readers may notice the non-linear slowdown in verizexe’s performance
from 2 × 2 to 3 × 3. This is caused by the large number of range checks invoked by
non-native rescue permutation pushing the evaluation domain size for FFT to a higher
power-of-two, thus effectively increase the cost across the board from universal SRS
generation to proving key indexing to proving23.

For the Setup algorithm, our verizexe is also notably faster. We note that it is
a one-time, universal setup for both candidates, thus it is arguably less important in
practice. We do want to highlight another significant differences in SRS size – snarkVM
has much larger SRS since it requires to store preprocessed proving keys of the Rutxo
and RΦ (outer) circuits (Groth16’s trusted setups are circuit-dependent), whereas
verizexe only contains two universal SRS. We stress that SRS size matters in practice
as they are the (partial) size of the system parameter a user needs to download from
ledger maintainers when he first join the system.

23 We could further reduce the number of non-native operations when we implements the optimized
predicate commitment in § 3.6.

29

Microbenchmarks. Since most of our techniques are attempts to reduce the outer
circuit complexity, we now provide microbenchmark on concrete circuit costs for major
components in Table 3. Among them, one of the highlights is our Plonk verifier gadget
only taking roughly 21k UltraPlonk constraints for verifying a single TurboPlonk proof.
This is made possible primarily thanks to highly efficient modular arithmetic gates (see
§ 3.5) for polynomial evaluation over non-native field and compact variable-based MSM
gadget (see § 3.4). To illustrates the improvement attributed to our Pippenger-based
vMSM gadget relying on online lookup table technique, we provide a benchmark against
a naïve implementation in Fig. 9.

 0

 50000

 100000

 150000

 200000

 250000

2 4 8 16 32 64 128

N
u

m
b

e
r

o
f

P
lo

n
k
 C

o
n

s
tr

a
in

ts

Number of Basis in log scale

Naive method

3.73k 7.46k
14.9k

29.8k

59.7k

119k

239k
Pippenger with lookup

1.06k 1.62k 2.75k 5.00k
9.49k

18.4k

36.4k

Fig. 9: Circuit complexity for variable-based MSM.

30

References

AABS+20. Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepieniec.
Design of symmetric-key primitives for advanced cryptographic protocols. IACR Trans.
Symmetric Cryptol., 2020:1–45, 2020. 7, 23, 25

ac22. arkworks contributors. arkworks zksnark ecosystem. https://arkworks.rs, 2022. 25
AGR+16. Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen.

Mimc: Efficient encryption and cryptographic hashing with minimal multiplicative com-
plexity. In Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference
on the Theory and Application of Cryptology and Information Security, Hanoi, Vietnam,
December 4-8, 2016, Proceedings, Part I, 2016. 23

BAZB20. Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: Towards
privacy in a smart contract world. In Joseph Bonneau and Nadia Heninger, editors,
Financial Cryptography and Data Security, pages 423–443, Cham, 2020. 3, 3

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Gregory
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. 2018 IEEE
Symposium on Security and Privacy (SP), pages 315–334, 2018. 8, 14

BBHR18. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent,
and post-quantum secure computational integrity. IACR Cryptol. ePrint Arch., 2018. 8

BCCT12. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back again. In
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12.
Association for Computing Machinery, 2012. 8

BCG+18. Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune Kristian Jakobsen, and Mary Maller.
Nearly linear-time zero-knowledge proofs for correct program execution. In IACR Cryptol.
ePrint Arch., 2018. 8

BCG+20. Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard
Wu. Zexe: Enabling decentralized private computation. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 947–964, 2020. 3, 3, 4, 4, 7, 7, 8, 9, 10, 11, 23, 25, 27, 29,
48, 48

BCI+12. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct
non-interactive arguments via linear interactive proofs. In TCC, 2012. 8

BCMS20. Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Proof-carrying
data from accumulation schemes. IACR Cryptol. ePrint Arch., 2020:499, 2020. 5, 12, 12,
12, 13, 14, 14

BCT21. Aritra Banerjee, Michael Clear, and Hitesh Tewari. zkhawk: Practical private smart con-
tracts from mpc-based hawk. 2021 3rd Conference on Blockchain Research & Applications
for Innovative Networks and Services (BRAINS), pages 245–248, 2021. 7

BDFG21. Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo infinite: Proof-carrying data
from additive polynomial commitments. In Tal Malkin and Chris Peikert, editors, Advances
in Cryptology – CRYPTO 2021, pages 649–680, Cham, 2021. Springer International
Publishing. 16

BDPVA07. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge functions.
In ECRYPT hash workshop. Citeseer, 2007. 26

Ber02. Daniel Bernstein. Pippenger’s exponentiation algorithm, 01 2002. https://cr.yp.to/
papers/pippenger-20020118-retypeset20220327.pdf. 18

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its
applications. In Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, STOC ’88. Association for Computing Machinery, 1988. 8

BFS20. Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks from dark compilers.
In 39th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, volume 12105 of Lecture Notes
in Computer Science. Springer, 2020. 4

BGG18. Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol for constructing
the public parameters of the pinocchio zk-snark. In Financial Cryptography and Data
Security - FC 2018 International Workshops, BITCOIN, VOTING, and WTSC, Nieuwpoort,
Curaçao, March 2, 2018, Revised Selected Papers, Lecture Notes in Computer Science,
2018. 8

BGH19. Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive proof composition without a trusted
setup. Cryptology ePrint Archive, Report 2019/1021, 2019. https://ia.cr/2019/1021.
5, 12

BSCG+14. Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin.
In 2014 IEEE Symposium on Security and Privacy, pages 459–474, 2014. 3, 3, 9

31

https://arkworks.rs
https://cr.yp.to/papers/pippenger-20020118-retypeset20220327.pdf
https://cr.yp.to/papers/pippenger-20020118-retypeset20220327.pdf
https://ia.cr/2019/1021

CFF+21. Matteo Campanelli, Antonio Faonio, Dario Fiore, Anaïs Querol, and Hadrián Rodríguez.
Lunar: A toolbox for more efficient universal and updatable zksnarks and commit-and-prove
extensions. In Advances in Cryptology - ASIACRYPT 2021 - 27th International Conference
on the Theory and Application of Cryptology and Information Security, Singapore, December
6-10, 2021, Proceedings, Part III, 2021. 8

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas
Ward. Marlin: Preprocessing zksnarks with universal and updatable srs. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
pages 738–768. Springer, Cham, 2020. 3, 4, 8, 16, 29

CZJ+17. Ethan Cecchetti, Fan Zhang, Yan Ji, Ahmed E. Kosba, Ari Juels, and Elaine Shi. Solidus:
Confidential distributed ledger transactions via pvorm. Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, 2017. 3

CZK+19. Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah M. Johnson, Ari
Juels, Andrew K. Miller, and Dawn Xiaodong Song. Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts. 2019 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 185–200, 2019. 3

Ele. The halo2 book. https://zcash.github.io/halo2/index.html. Accessed: 2022-04-26. 23
FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and

signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology — CRYPTO’
86, pages 186–194, Berlin, Heidelberg, 1987. Springer Berlin Heidelberg. 23

Gab. Ariel Gabizon. Aztec emulated field and group operations. https://hackmd.io/
LoEG5nRHQe-PvstVaD51Yw. Accessed: 2022-04-26. 22

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct nizks without pcps. In Advances in Cryptology - EUROCRYPT 2013,
32nd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013. Proceedings, Lecture Notes in Computer
Science, 2013. 8

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable
and universal common reference strings with applications to zk-snarks. In Hovav Shacham
and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, pages 698–728,
Cham, 2018. Springer International Publishing. 8, 36

GKR+21. Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus
Schofnegger. Poseidon: A new hash function for zero-knowledge proof systems. In USENIX
Security Symposium, 2021. 23

GM17. Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge from
simulation-extractable snarks. In Jonathan Katz and Hovav Shacham, editors, Advances in
Cryptology – CRYPTO 2017, pages 581–612, Cham, 2017. Springer International Publishing.
3, 4, 8, 29

GMR85. S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive proof-
systems. In Proceedings of the Seventeenth Annual ACM Symposium on Theory of Com-
puting, STOC ’85, New York, NY, USA, 1985. Association for Computing Machinery.
8

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASI-
ACRYPT, 2010. 8

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Annual international
conference on the theory and applications of cryptographic techniques, pages 305–326.
Springer, 2016. 3, 4, 8

GW20. Ariel Gabizon and Zachary J Williamson. plookup: A simplified polynomial protocol for
lookup tables. IACR Cryptol. ePrint Arch., 2020:315, 2020. 6, 6, 8, 17, 18, 18, 18, 19, 20,
23, 38, 39, 41

GWC19. Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. IACR Cryptol.
ePrint Arch., 2019:953, 2019. 5, 8, 27, 39, 44, 44, 45, 46

HG20. Youssef El Housni and Aurore Guillevic. Optimized and secure pairing-friendly elliptic
curves suitable for one layer proof composition. IACR Cryptol. ePrint Arch., 2020:351,
2020. 25

KCCX21. Fernando Krell, Binyi Chen, Philippe Camacho, and Alex Xiong. Configurable as-
set privacy: Specification. https://raw.githubusercontent.com/EspressoSystems/cap/
master/cap-specification.pdf, 2021. Accessed: 2022-04-25. 23, 26

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract).
In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing,
STOC ’92. Association for Computing Machinery, 1992. 8

KKK21. Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss. Kachina – foundations of private
smart contracts. 2021 IEEE 34th Computer Security Foundations Symposium (CSF), pages
1–16, 2021. 7, 8

32

https://zcash.github.io/halo2/index.html
https://hackmd.io/LoEG5nRHQe-PvstVaD51Yw
https://hackmd.io/LoEG5nRHQe-PvstVaD51Yw
https://raw.githubusercontent.com/EspressoSystems/cap/master/cap-specification.pdf
https://raw.githubusercontent.com/EspressoSystems/cap/master/cap-specification.pdf

KMS+16. Ahmed E. Kosba, Andrew K. Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou.
Hawk: The blockchain model of cryptography and privacy-preserving smart contracts.
2016 IEEE Symposium on Security and Privacy (SP), pages 839–858, 2016. 3, 3, 7

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to
polynomials and their applications. In Masayuki Abe, editor, Advances in Cryptology -
ASIACRYPT 2010, pages 177–194, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
4, 5, 34, 35, 40

MBKM19. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge
snarks from linear-size universal and updatable structured reference strings. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS
’19, page 2111–2128, New York, NY, USA, 2019. Association for Computing Machinery. 8

Mic00. Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 2000. 8
MRV15. Bart Mennink, Reza Reyhanitabar, and Damian Vizár. Security of full-state keyed sponge

and duplex: Applications to authenticated encryption. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 465–489. Springer,
2015. 26

Nak08. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Dec 2008. Accessed:
2015-07-01. 3, 9

NVV18. Neha Narula, Willy Vasquez, and Madars Virza. zkledger: Privacy-preserving auditing for
distributed ledgers. In IACR Cryptol. ePrint Arch., 2018. 3

PFM+22. Luke Pearson, Joshua Fitzgerald, Héctor Masip, Marta Bellés-Muñoz, and Jose Luis Muñoz-
Tapia. Plonkup: Reconciling plonk with plookup. Cryptology ePrint Archive, Report
2022/086, 2022. https://ia.cr/2022/086. 41

Pip80. Nicholas Pippenger. On the evaluation of powers and monomials. SIAM Journal on
Computing, 9(2):230–250, 1980. 6, 18

SA21. Ravital Solomon and Ghada Almashaqbeh. smartfhe: Privacy-preserving smart contracts
from fully homomorphic encryption. IACR Cryptol. ePrint Arch., 2021:133, 2021. 7

SBBV22. Samuel Steffen, Benjamin Bichsel, Roger Baumgartner, and Martin Vechev. Zeestar:
Private smart contracts by homomorphic encryption and zero-knowledge proofs. In 2022
IEEE Symposium on Security and Privacy (SP), pages 1543–1543. IEEE Computer Society,
2022. 7

SBG+19. Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa Melchior, Petar Tsankov, and
Martin T. Vechev. zkay: Specifying and enforcing data privacy in smart contracts. Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
2019. 7

Val08. Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In Proceedings of the 5th Conference on Theory of Cryptography, TCC’08, page
1–18, Berlin, Heidelberg, 2008. Springer-Verlag. 36

W+14. Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014):1–32, 2014. 3

A Cryptographic Primitives: Definitions and Security Properties

A.1 Commitment Scheme

A commitment scheme COM = (COM.Setup,COM.Commit,COM.Open) is a triple of
efficient algorithms where:

• ppCOM
$←− COM.Setup(1λ) generates a public parameter given the security parameter;

• cm ← COM.Commit(ppCOM,m; r) produces a commitment cm given the message
from a message space to be committed (m ∈MppCOM), and an explicit randomness
r

$←− RppCOM from the randomness space;
• b← COM.Open(ppCOM, cm,m, r) checks whether (m, r) is an opening of the com-
mitment cm, and outputs a bit b ∈ {0, 1} representing accept if b = 1, and reject
otherwise.

Informally, a commitment scheme is called binding if once a message is committed,
it is infeasible to later open to a different message; and it is called hiding if the
commitments of any two messages are indistinguishable from one another.

Formally, COM is:

33

https://ia.cr/2022/086

• Computationally Binding if for all efficient adversaries A, there exists a negligible
function negl(·) such that:

Pr

 b0 = b1 6= 0
∧ x0 6= x1

∣∣∣∣∣∣∣∣∣
ppCOM ← COM.Setup(1λ)
(cm, x0, x1, r0, r1)← A(ppCOM)
b0 ← COM.Open(ppCOM, cm, x0, r0)
b1 ← COM.Open(ppCOM, cm, x1, r1)

 ≤ negl(λ)

if negl(λ) = 0, then we say the scheme is perfectly binding.
• Statistically Hiding if for all unbounded adversaries A, there exists a negligible

function negl(·) such that:

∣∣∣∣∣∣∣∣∣∣∣∣
Pr

 b = b̂

∣∣∣∣∣∣∣∣∣∣∣∣

ppCOM ← COM.Setup(1λ);

b
$←− {0, 1}, r $←− RppCOM ,

(x0, x1)← A(ppCOM)
cm← COM.Commit(ppCOM, xb; r)

b̂← A(ppCOM, cm)

−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

if negl(λ) = 0, then we say the scheme is perfectly hiding.

A.2 Polynomial Commitment Scheme

Introduced in [KZG10], Polynomial Commitment Schemes (PCS) enables a prover to
commit to a polynomial f ∈ F[X], and later open the commitment c at any point
z ∈ F by producing an evaluation proof π attesting that “the opened value is consistent
with committed polynomial and f(z) = y”. A polynomial commitment scheme is a
tuple of algorithms PCS = (Setup,Commit,Open,Eval) where (Setup,Commit,Open) is
a binding commitment scheme for a message space F[X] of polynomials over a finite
field F, and:

• (⊥, b) ← PCS.Eval(P(ppPCS,f , r),V(ppPCS, cm, z,y)) is a public-coin interactive
protocol between the prover P who has a list of polynomials and opening hints
{fi, ri}ni=1, where fi ∈ F<d[X]; and the verifier V who has the common input ppPCS
and a list of commitments, evaluation points and their evaluations {cmi, zi, yi}ni=1
where (cmi, zi, yi) ∈ G× F2. The verifier outputs b ∈ {0, 1} and the prover has no
output. The purpose of the protocol is to convince the verifier that for ∀i ∈ [n],
fi(zi) = yi and deg(fi) < d.

A PCS is correct if for all degree bound d ∈ N and efficient adversaries A:

Pr



{b1,i}ni=1

∧ b2 = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ppPCS ← PCS.Setup(1λ, d)
(d,f , r, z)← A(ppPCS)
For i ∈ [n] :

cmi ← PCS.Commit(ppPCS, fi; ri)
b1,i ← PCS.Open(ppPCS, cmi, fi, ri)
yi ← fi(zi)

(⊥, b2)← PCS.Eval
(
P(ppPCS,f , r),
V(ppPCS, cm, z,y)

)


= 1

34

A PCS has knowledge soundness if PCS.Eval has knowledge soundness as an
interactive argument for REval(ppPCS):

REval(ppPCS) =



(x = (cm, z,y, d),w = (f , r)) :
For i ∈ [n] :
fi ∈ F[x] ∧ deg(fi) < d

∧ fi(zi) = yi

∧ PCS.Open(ppPCS, cmi, fi, ri) = 1


Linearly Additive Homomorphism. A PCS is linearly additively homomorphic if it
holds the following property: let [Ci]ni=1 commit to [fi]ni=1, then

∑n
i=1 ai ◦ Ci commits

to
∑n
i=1 ai · fi for any ai ∈ F. Here, arithmetics operations for fi are over F[X]; and ◦

is the addition over the commitment space (e.g. it is the group addition in [KZG10]).

A.3 Indexed Relation

We define an indexed relation R as a set of (i,x,w), where i is the index that describes
the circuit; x consists of the (public) instances that holds the assignments to a subset
of wires; and w is the witness that holds the assignments to the remaining wires
in the circuit. The corresponding indexed language is defined as: L(R) := {(i,x) :
∃w s.t. (i,x,w) ∈ R}. We further denote RN for a relation with an upper-bounded
circuit |i| < N where N ∈ N is the size bound. When there is no ambiguity, we use
i = Φ to represent the indexing of circuit for the relation: RΦ := {(x,w) : Φ(x,w) = 1};
and refer to Φ as a predicate.

A.4 Pre-processing SNARK with Universal SRS

A (pre-processing) non-interactive argument of knowledge (NARK) is a tuple of efficient
algorithms NARK = (G, I,P,V) where:

• srs← NARK.G(λ,N) is a probabilistic algorithm that generates a structured refer-
ence string srs from the security parameter λ and a size bound N for the circuit.
• (ipk, ivk)← NARK.Isrs(i) is a deterministic algorithm that, given a circuit descrip-

tion i and oracle access to srs, generates an index proving key ipk and index verifying
key ivk for this particular circuit.
• π ← NARK.P(ipk,x,w) is a probabilistic prover algorithm that given an index

proving key ipk corresponding to some relation RΦ, an instance x, and a witness w,
returns a NARK proof π.
• b← NARK.V(ivk,x, π) is a verifier algorithm that given the index verifying key ivk,
the instance x, and the proof π, outputs a bit b where b = 1 indicates successful
verification, b = 0 otherwise.

A NARK scheme NARK = (G, I,P,V) for relation RΦ needs to the following
properties to hold:

• Completeness. For all size bound N ∈ N, all adversaries A:

Pr


(x,w) /∈ RΦ

∨
NARK.V(ivk,x, π) = 1

∣∣∣∣∣∣∣∣∣∣∣

srs $←− NARK.G(λ,N)
(Φ,x,w)← A(srs)

(ivk, ipk) $←− NARK.Isrs(Φ)

π
$←− NARK.P(ipk,x,w)

 = 1

35

• Adaptive Knowledge Soundness. For all N ∈ N, all efficient adversaries A =
(A1,A2) with state st, there exists a knowledge extractor EA with oracle access to
A, such that:

Pr


(x,w) /∈ RΦ

∧
NARK.V(ivk,x, π) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

srs $←− NARK.G(λ,N)
(Φ,x, st)← A1(srs)

(ivk, ipk) $←− NARK.Isrs(Φ)
π ← A2(st)

w← EA(srs, Φ,x, ipk, ivk)


≤ negl(λ)

A NARK scheme can additionally satisfy the following optional properties:

• Statistical Zero-knowledge. For all N ∈ N, all unbounded adversaries A =
(A1,A2), there exists an efficient simulator24 S = (S1,S2):∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


(x,w) ∈ RΦ

∧
A2(st, π) = 1

∣∣∣∣∣∣∣∣∣∣
srs $←− NARK.G(1λ, N)

(Φ,x,w, st)← A1(srs)

(ivk, ipk) $←− NARK.Isrs(Φ)
π ← NARK.P(ipk,x,w)



−Pr

 (x,w) ∈ RΦ
∧

A2(st, π) = 1

∣∣∣∣∣∣∣
(srs, τ) $←− S1(1λ, N)

(Φ,x,w, st)← A1(srs)
π ← S2(τ, Φ,x)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

• Succinctness. A NARK scheme is said succinct (and thus denoted as SNARK) if
there exists a universal polynomial poly (independent of relation RΦ) such that:
◦ The indexer algorithm NARK.Isrs runs in polyλ(|Φ|) time, namely, it is polyno-

mial in the circuit size and independent from the public parameter srs size.
◦ The proof size |π| is bounded by poly(λ).
◦ The verifier NARK.V runs in poly(λ+ |x|) time. Particularly if is independent
from the size of the predicate Φ (equivalently the circuit i).

Furthermore, when the structured referenced string srs is independent from all
subsequent relations RN , we refer to these NARK as universal since their SRS can
be universally applied to all relations of a bounded size N . Universal (S)NARKs are
of tremendous interest because they obviate the requirement of a “circuit-specific” srs
and thus a dedicated setup ceremony for each relation. Usually SNARK with universal
srs are also updateable [GKM+18], allowing anyone to efficiently update the SRS thus
reducing the trust assumption on the setup ceremony during NARK.G.

A.5 Incrementally Verifiable Computation (IVC)

The notion of incrementally verifiable computation (IVC), introduced by Valiant [Val08],
describes a machine that outputs the updated state in each step of computation, along
with a proof attesting the correctness of all historical computation steps. As shown
Fig. 10, an IVC starts with an initial state z0 and takes t steps to compute the function
F0 ◦ F1 ◦ . . . ◦ Ft−1 and outputs the final state zt. In each step, an IVC prover takes in
the state zi, some optional witness wi, and integrity proof πi from the last step, apply
the computation Fi and outputs the new state zi+1 together with a new proof attesting
correctness of πi and correctness of state transitions zi+1 = Fi(zi). An IVC verifier
can “jump in” at any step i ∈ [t], verify the (zi, πi), and be convinced that the state is
correct since all historical computation are incrementally verified.
24 We change a bit the syntax of the NARK.G algorithm in order to return the trapdoor τ .

36

Fig. 10: Incrementally Verifiable Computation.

For simpler presentation and W.L.O.G., we assume that F = F0 = . . . = Ft−1. An
IVC for a step function F : X 7→ X is a tuple of efficient algorithms IVC = (PF ,VF)
that follows these properties:

• Completeness. For all inputs z ∈ X , witnesses w and proofs π:
Pr [z′ = F (z, w) ∧ VF (z′, π′) = 1 | (z′, π′)← PF (z, w, π)] = 1

• Knowledge Soundness. For all efficient adversaries A, there exists an efficient
knowledge extractor EA, such that:

Pr

 VF (zt, π) = 0
∨

∀i ∈ [t− 1], zi+1 = F (zi, wi)

∣∣∣∣∣∣∣
(zt, π)← A

{zi, wi}t−1
i=1 ← EA

 ≥ 1− negl(λ)

B Plonk, TurboPlonk, UltraPlonk Constraint Systems

A plonk (and its variants) constraint system over a finite field F consists of many gates,
each of which has a predefined number of wires where each wire is to be assigned with
a value in the witness vector. Each gate implies an algebraic relation among all wire
values and the exact relation is configurable via some selectors to collectively select
the exact function applied, and a public input wire to be assigned with values of the
public input of an NP relation. Value assignments for all wires are described using an
index vector that connects each wire with a specific value in the witness vector. For an
NP relation expressed in this constraint system, the index vector, the selectors and the
field F constitute the circuit description. Such constraint system is satisfied if and only
if some “local constraints” (i.e. algebraic functions at each gate) are fulfilled and some
“regional/global constraints” across different/all gates (e.g. all wire values respect the
index vector connection) are fulfilled.

We denote n,m, ` the number of gates, length of witness vector, and number of
public inputs respectively. We adapt definitions of plonk and its variants to indexed
relations (defined in Appx. A.3) below.

Definition 1 (Plonk indexed relation). The indexed relation Rplonk is the set of
all triples: (

i = (F, n,m, `,a,Q),x = (wj)j∈[`],w = (wj)j∈[`+1,m]
)

where the index vector a ∈ [m]3n, selectors are Q := (qL, qR, qO, qM , qC) ∈ (Fn)5, such
that ∀i ∈ [n],

(qL)i · wai + (qR)i · wan+i + (qM)i · waiwan+i + (qC)i + PIi = (qO)i · wa2n+i

where PIi = wi for i ∈ [`] and PIi = 0 for i ∈ [`+ 1, n].

Next, we propose a turbo-plonk constraint system that allows for customized
gates beyond just addition and multiplication gate. However, we note that turbo-
plonk proof system has higher per-gate cost for proof generation and higher fan-in

37

resulting in slightly larger proof size and more polynomial to interpolate during proving.
Fortunately, our design is extremely efficient for NP relations that involve heavy Rescue
computation (e.g. Merkle proof verification in a Merkle tree instantiated with Rescue
hash) and elliptic curve operations, since the total constraints required is significantly
reduced, the overall efficiency will be improved.

Definition 2 (TurboPlonk indexed relation). The indexed relation Rtplonk is the
set of all triples:(

i = (F, n,m, `,a,Q),x = (wj)j∈[`],w = (wj)j∈[`+1,m]
)

where the index vector a ∈ [m]5n, selectors are
Q := (q1, q2, q3, q4, qM1,2 , qM3,4 , qO, qC ,qH1 , qH2 , qH3 , qH4 , qecc) ∈ Fn×13, such that
∀i ∈ [n],

(qO)i · wa4n+i = (q1)i · wai + (q2)i · wan+i

+ (q3)i · wa2n+i + (q4)i · wa3n+i

+ (qM1,2)i · waiwan+i + (qM3,4)i · wa2n+iwa3n+i

+ (qH1)i · w5
ai + (qH2)i · w5

an+i

+ (qH3)i · w5
a2n+i + (qH4)i · w5

a3n+i

+ (qecc)i · waiwan+iwa2n+iwa3n+iwa4n+i

+ (qC)i + PIi

where PIi = wi for i ∈ [`] and PIi = 0 for i ∈ [`+ 1, n].

Furthermore, to minimize the number of gates used for range proofs and multi-scalar
multiplications, we integrate the techniques from Plookup [GW20] with the previous
turbo-plonk constraint system and propose a customized UltraPlonk constraint
system. The system is mainly used for outer-layer circuits, where we need to simulate
non-native field arithmetics (whose circuit is dominated by range proofs), as well as
the Pippenger-based multi-scalar multiplications (which requires lookup over online
key-value tables). The UltraPlonk constraint system extends TurboPlonk by further
introducing the following:

• To enable efficient range proofs, it introduces a preprocessed range table Trg ∈ Fn,
an additional wire to each gate, and an index vector arg ∈ [m]n, such that for each
i ∈ [n], the witness value w(arg)i is in the range table Trg.
• To support multiple online lookup tables25, each containing key-value tuples where

the “keys” are scalars and “values” are affine point variables (i.e. two variables for
the x and y coordinates)26, it introduces the following:
1. A merged, preprocessed table Tkey ∈ Fn containing predefined “keys” in the

key-value entries across all sub-tables.
2. A lookup selector qK ∈ Fn to indicate whether a gate is performing online table

entry insertion and query table insertion.
3. Two domain separator selectors qlt, qqt for indicating the exact lookup sub-table

and query sub-table an entry in the final merged table belongs to.
25 We merged multiple sub-tables into a single one by adding additional column for table index in both

the online lookup sub-tables and online query sub-tables, which results in two additional “domain
separator” selectors.

26 The “values” type here is a pair of variables, but we can easily support “value” type of a single
variable by filling the other one with zero variable.

38

More precisely, the i-th entry in our merged online lookup table is a key-value
tuple Ti := (qK)i ·

[
(qlt)i, (Tkey)i, wa3n+i , wa4n+i

]
; the i-th entry in our merged online

query table is a key-value tuple Qi := (qK)i ·
[
(qqt)i, wai , wan+i , wa2n+i

]
. The witness

vector and index vector should satisfy that ∀i ∈ [n],Qi ∈ T := (Tj)j∈[n].

Definition 3 (UltraPlonk indexed relation). The indexed relation Ruplonk is the
set of all triples (i,x,w) where

i = (F, n,m, `,a,arg,Q, Trg, Tkey), x = (wj)j∈[`], w = (wj)j∈[`+1,m]

where the TurboPlonk index vector a ∈ [m]5n, the index vector for the range wire:
arg ∈ [m]n, selectors are: Q := (q1, q2, q3, q4, qM1,2 , qM3,4 , qO, qC , qH1 , qH2 , qH3 , qH4 ,

qecc, qK , qlt, qqt) ∈ Fn×16, such that:

1. ((F, n,m, `,a,Q),x,w) ∈ Rtplonk.
2. ∀i ∈ [n], w(arg)i ∈ Trg.
3. ∀i ∈ [n], the query key-value tuple

Qi := (qK)i ·
[
(qqt)i, wai , wan+i , wa2n+i

]
is in the lookup table

T :=
{
Tj = (qK)j ·

[
(qlt)j , (Tkey)j , wa3n+j , wa4n+j

]}
j∈[n]

Here a · b denotes the element-wise multiplications between scalar a and vector b.

C UltraPlonk Proof Systems

We present a Polynomial IOP for the UltraPlonk indexed relation Ruplonk (Def. 3) in
Fig. 11 and 12 and follow notations similar to [GWC19] and [GW20].

Let F be a finite field of prime order p, H ⊂ F∗ the multiplicative subgroup
containing the n-th roots of unity where ω is the generator of the subgroup, namely
H := {1, ω, ω2, . . . , ωn−1}. The Lagrange polynomial Li(X) ∈ F<n[X] over H is defined
as Li(X) = ωi(Xn−1)

n(X−ωi) so that Li(x) = 1 when x = ωi and Li(x) = 0 elsewhere. The
vanishing polynomial ZH(X) over H is defined as ZH(X) = (X − 1)(X − ω) . . . (X −
ωn−1) = Xn − 1 so that ∀x ∈ H,ZH(x) = 0.

C.1 Witness transformation

Given an UltraPlonk indexed relation Ruplonk :=
(
i,x = (wj)j∈[`],w = (wj)j∈[`+1,m]

)
with i = (F, n,m, `,a,arg,Q, Trg, Tkey), we show how to transform the index vector
a′ = (a,arg) ∈ [m]5n × [m]n into a permutation: σ : [6n] → [6n] and transform
Ruplonk into an equivalent relation: R′uplonk :=

(
i,x = (w′i)i∈[`],w = (w′i)i∈[`+1,6n]

)
with

i = (F, n,m, `, σ,Q, Trg, Tkey).

1. Define a partition P1, . . . ,Pm corresponding to m values in the witness vector, such
that for each j ∈ [m]: Pj =

{
i ∈ [6n] : a′

i = wj
}
. Intuitively, Pi is the set of gate

wire identifiers whose assignments maps to the same witness value wj .
2. Define a permutation σ : [6n]→ [6n] such that for each j ∈ [m], the restriction of σ

on input Pj forms a cycle going over all elements in Pj .
3. Define a new instance-witness vector (w′i)i∈[6n] such that for each j ∈ [m] and each
i ∈ Pj , we have w′i = wj . It is easy to see that this copy constraint holds if and only
if ∀i ∈ [6n], w′i = w′σ(i).

39

C.2 Polynomial Interpolation

During arithmetization, we turn relations among some vectors indexed by gates into
relations among some polynomials indexed by elements in a multiplicative subgroup H –
a process that involves polynomial interpolations. For vectors v = (vi)i∈[n] of size n, the
same as the subgroup order, we interpolate using Lagrange polynomial and expressed as
pv(X) =

∑
i∈[n] Li(X) · vi ∈ F<n[X]. In practice, one should use (Inverse) Fast Fourier

Transform (IFFT/FFT) to efficiently compute the coefficients of pv(X) from the data
points (vi)i∈[n]. For vectors of size kn for some k ∈ N, we use k polynomials over k
non-overlapping cosets of H to interpolate all data points. In our case, we need to
find {ki}i∈[6] such that k1H, . . . , k6H are disjoint cosets of H in order to interpolate
polynomials from a vector of size 6n. We choose the cosets using the following algorithm:
let N ≥ |H| be a global constant that is a multiple of |H|. We pick k1 = 1 and pick
random k2, . . . k6 such that (k−1

j · ki)N 6= 1 for every i, j ∈ [6], i 6= j because every
elements x ∈ H satisfies xN = 1, and that: aH = bH if and only if a−1 · b ∈ H.

D Plonk with Merging, Batching and Accumulation

We present a scheme Plonk′ based on the vanilla plonk in Def. 1 and that in-
corporates instance merging (§ 3.2), proof batching (§ 3.3), and lightweight ver-
ifier via accumulation scheme technique (§ 3.1). The presentation can be easily
adapt to turbo-plonk which is what we use for inner predicate circuits in zexe
since it minimize the circuit complexity of the outer proof. Details of Plonk′ =
(Setup, Index,MergePK,MergeVK,MergeWit,BatchProve, BatchPartialVfy,Decide) are
shown below.

For generating a npf-input-npf-output transaction via DPC.ExecuteL, the user will
take npf pair of input death predicate and output birth predicate (Φd, Φb) and preprocess
them via Plonk′.Index to get proving keys and verification keys. The user then pass npf
pair of proving keys, verification keys and witnesses into MergePK,MergeVK,MergeWit
to get npf number of merged keys/witnesses. Subsequently, the user generate a batched
inner predicate proof for all 2npf predicates via BatchProve whose correctness will
be checked inside the outer circuit that embeds the logic in BatchPartialVfy. Finally,
a ledger maintainer will check the outer proof and run Decide on the accumulator
outputted by BatchPartialVfy to determine validity of the transaction.
Setup(λ,N)→ srs

• inputs: security parameter λ, and upper bound for merged-instance circuit N = 2n
(where n is the size bound for a single instance)
• outputs: public parameter srs

1. Run Setup of the [KZG10] PCS to get srs := ([1]1, [x]1, . . . , [xN+5], [1]2, [x]2).

Index(srs, Φ, b)→ (ipk, ivk)

• inputs:
◦ public parameter srs
◦ predicate Φ (whose circuit size is bounded by n)
◦ bit b indicating whether Φ is a birth or death predicate

• outputs: circuit proving key ipk and verification key ivk

1. Compute all selectors Q ∈ (Fn)5 and the wire permutation σ : [3n] 7→ [3n] from
predicate Φ (similar to the process in Appx. C.1).

40

Preprocessing Phase:
The indexer I takes as input an indexed instance i = (F, n,m, `, σ,Q, Trg, Tkey) and outputs the
following polynomial oracles:

• The selector polynomials that interpolates selector vectors in Q:

q1(X) =
∑
i∈[n]

Li(X) · (q1)i , . . . , qqt(X) =
∑
i∈[n]

Li(X) · (qqt)i .

• Define σ∗ := σ ◦fσ : [6n] 7→ k1H ∪ . . .∪k6H, where fσ := i 7→ k1 ·ωi, . . . , 5n+ i 7→ k6 ·ωi ∀i ∈ [n].
The identity polynomials SIDj(X) = kjX for each j ∈ [6], and the permutation polynomials
Sσj(X) =

∑
i∈[n] σ

∗((j − 1)n+ i) · Li(X) that encodes σ∗ for each j ∈ [6].
• The preprocessed table polynomials

Trg(X) =
∑
i∈[n]

Li(X) · (Trg)i , Tkey(X) =
∑
i∈[n]

Li(X) · (Tkey)i .

Prover Inputs: The prover P takes as input the indexed relation i, the online public instance
x = (wi)i∈[`], and the online witness w = (wi)i∈[`+1,6n]. (WLOG we assume w6n = 0, (qK)n = 0.)
Verifier Inputs: The verifier V takes as input F, the online public instance x = (wi)i∈[`], and the
oracle access to polynomials the indexer generates.
Online Phase:
Round 1

1. P computes the public input polynomial PI(X) =
∑

i∈[`] Li(X) · (w)i.
2. P computes and sends V polynomials f1(X), . . . , f6(X) such that for every i ∈ [6], fi(X)

interpolates (w(i−1)n+1, . . . , win) over H.

Round 2

1. V sends P a random challenge τ ∈ F.
2. P computes the merged query polynomial:

Q∗(X) := f6(X) + τ · qK(X) · (qqt(X) + τ · f1(X) + τ2 · f2(X) + τ3 · f3(X)) ,

and the merged lookup table polynomial:

T ∗(X) := Trg(X) + τ · qK(X) · (qlt(X) + τ · Tkey(X) + τ2 · f4(X) + τ3 · f5(X)) .

(q∗ = (Q∗(ωi))i∈[n] is the merged query vector, t∗ = (T∗(ωi))i∈[n] is the lookup table vector)
3. Let s be the vector (q∗, t∗) sorted by t∗. We represent s by the vectors h1,h2 ∈ Fn as followsa:

h1 = (s1, s3, . . . , s2n−1), h2 = (s2, s4, . . . , s2n)

P computes the sorted polynomial h1(X), h2(X) ∈ F<n[X] and sends them to V:

h1(X) =
∑
i∈[n]

s2i−1 · Li(X), h2(X) =
∑
i∈[n]

s2i · Li(X)

Round 3

1. V sends random challenges β, γ ∈ F.
2. P computes Plonk permutation polynomial z1(X) and Plookup permutation polynomial z2(X)

and sends to V:

z1(X) = L1(X) +
n−1∑
i=1

(
Li+1(X) ·

i∏
j=1

6∏
`=1

w(`−1)n+j + βk`w
j−1 + γ

w(`−1)n+j + βσ∗((`− 1)n+ j) + γ

)
,

z2(X) = L1(X) +
n−1∑
i=1

(
Li+1(X) ·

i∏
j=1

(1 + β)(γ + q∗
j)(γ(1 + β) + t∗

j + βt∗
j+1)

(γ(1 + β) + s2j−1 + βs2j)(γ(1 + β) + s2j + βs2j+1)

)
.

a We borrow the alternating method from [PFM+22] to split s into even and odd halves instead of
lower and upper halves as in the original [GW20] to save one polynomial identity check used to
ensure h1 and h2 are overlapped.

Fig. 11: A Polynomial IOP for the UltraPlonk constraint system: Part I.

41

(Online Phase) Round 4:

1. V computes a random challenge α ∈ F.
2. P computes some intermediate polynomials:

Fgate(X) = q1(X)f1(X) + q2(X)f2(X) + q3(X)f3(X) + q4(X)fx(X)
+ qM1,2 (X)f1(X)f2(X) + qM3,4 (X)f3(X)f4(X)

+ qH1 (X)f1(X)5 + qH2 (X)f2(X)5 + qH3 (X)f3(X)5 + qH4 (X)f4(X)5

+ qecc(X)f1(X)f2(X)f3(X)f4(X)f5(X)
+ qC(X) + PI(X)− qO(x)f5(X)

Fz1,1 = L1(X) · (z1(X)− 1)

Fz1,2 = z1(X) ·

(
6∏
i=1

fi(X) + βSIDi(X) + γ

)
− z1(ωX) ·

(
6∏
i=1

fi(X) + βSσi(X) + γ

)
Fz2,1 = L1(X) · (z2(X)− 1)
Fz2,2 = z2(X) · (1 + β)(γ +Q∗(X))(γ(1 + β) + T ∗(X) + βT ∗(X · ω))

− z2(ωX) · (γ(1 + β) + h1(X) + βh2(X))(γ(1 + β) + h2(X) + βh1(X · ω))

3. P computes polynomial

F (X) := Fgate(X) + αFz1,1(X) + α2Fz1,2(X) + α3Fz2,1(X) + α4Fz2,2(X)

and sends V the quotient polynomial t(X) := F (X)
ZH (X) .

Verification Phase:

1. V computes public input polynomial PI(X) defined in online phase round 1.
2. V checks the polynomial identity

F (X) ?= t(X)ZH(X)
where F (X) is defined above in online phase round 4, and can be evaluated given oracle access to
the indexer’s preprocessed polynomials, polynomials sent by P, and the public input polynomial
PI(X).
We note that the check is equivalent to checking F (X) = 0, ∀x ∈ H.

Fig. 12: A Polynomial IOP for the UltraPlonk constraint system: Part II.

42

2. Find coset representatives {k1, k2} such that H, k1H, k2H ⊂ F∗ are non-overlapping
cosets (similar to the process in Appx. C.2). Note H = {1, ω, ω2, . . . , ωN} is a
multiplicative subgroup of size N .
Derive σ∗ as:

σ∗︷ ︸︸ ︷
[3n] σ7→ [3n] 7→ [6n]︸ ︷︷ ︸

σ′

fσ′7→ H ∪ k1H ∪ k2H

σ′(i) :=


σ(i) 0 < σ(i) ≤ n
σ(i) + n n < σ(i) ≤ 2n
σ(i) + 2n 2n < σ(i) ≤ 3n

fσ′(i) :=


ωi 0 < σ′(i) ≤ N
k1 · ωi N < σ′(i) ≤ 2N
k2 · ωi 2N < σ′(i) ≤ 3N

3. If b = 0,
qL(X) =

∑n

i=1 (qL)i · Li(X)
qR(X) =

∑n

i=1 (qR)i · Li(X)
qO(X) =

∑n

i=1 (qO)i · Li(X)
qM (X) =

∑n

i=1 (qM)i · Li(X)
qC(X) =

∑n

i=1 (qC)i · Li(X)
qC(X) =

∑n

i=1 (qC)i · Li(X)
Sσ1(X) =

∑n

i=1 σ
∗(i) · Li(X)

Sσ2(X) =
∑n

i=1 σ
∗(n+ i) · Li(X)

Sσ3(X) =
∑n

i=1 σ
∗(2n+ i) · Li(X)

If b = 1
qL(X) =

∑n

i=1 (qL)i · Ln+i(X)
qR(X) =

∑n

i=1 (qR)i · Ln+i(X)
qO(X) =

∑n

i=1 (qO)i · Ln+i(X)
qM (X) =

∑n

i=1 (qM)i · Ln+i(X)
qC(X) =

∑n

i=1 (qC)i · Ln+i(X)
Sσ1(X) =

∑n

i=1 (σ∗(i) + n) · Ln+i(X)
Sσ2(X) =

∑n

i=1 (σ∗(n+ i) + n) · Ln+i(X)
Sσ3(X) =

∑n

i=1 (σ∗(2n+ i) + n) · Ln+i(X)
4. Output proving key:

ipk := (qL(X), qR(X), qO(X), qM (X), qC(X), Sσ1(X), Sσ2(X), Sσ3(X))

and verification key:
ivk := ([qL]1, [qR]1, [qO]1, [qM]1, [qC]1, [Sσ1]1, [Sσ2]1, [Sσ3]1)

MergePK(ipkb, ipkd)→ ipk⊕
• inputs: a birth predicate proving key ipkb and a death predicate proving key ipkd.
• outputs: a merged proving key ipk⊕.

1. Parse two input proving keys:
ipkb :=

(
qbL(X), qbR(X), qbO(X), qbM (X), qbC(X), Sbσ1(X), Sbσ2(X), Sbσ3(X)

)
ipkd :=

(
qdL(X), qdR(X), qdO(X), qdM (X), qdC(X), Sdσ1(X), Sdσ2(X), Sdσ3(X)

)
2. Homomorphically add each element in the two verification keys:

q⊕L (X) = qbL(X) + qdL(X), . . . , S⊕σ3(X) = Sbσ3(X) + Sdσ3(X)

3. Output the merged verification key:

ipk⊕ :=
(

q⊕L (X), q⊕R(X), q⊕O(X), q⊕M (X), q⊕C(X),
S⊕σ1(X), S⊕σ2(X), S⊕σ3(X)

)

43

MergeVK(ivkb, ivkd)→ ivk⊕

• inputs: a birth predicate verification key ivkb and a death predicate verification key
ivkd.
• outputs: a merged verification key ivk⊕.

1. Parse two input verification keys:

ivkb :=
(
[qbL]1, [qbR]1, [qbO]1, [qbM]1, [qbC]1, [Sbσ1]1, [Sbσ2]1, [Sbσ3]1

)
ivkd :=

(
[qdL]1, [qdR]1, [qdO]1, [qdM]1, [qdC]1, [Sdσ1]1, [Sdσ2]1, [Sdσ3]1

)
2. Homomorphically add each element in the two proving keys:

[q⊕L]1 = [qbL]1 + [qdL]1, . . . , [S⊕σ3]1 = [Sbσ3]1 + [Sdσ3]1

3. Output the merged proving key:

ivk⊕ :=
(
[q⊕L]1, [q⊕R]1, [q⊕O]1, [q⊕M]1, [q⊕C]1, [S⊕σ1]1, [S⊕σ2]1, [S⊕σ3]1

)
MergeWit(wb,wd)→ w⊕

• inputs: birth predicate witness wb and death predicate witness wd

• outputs: merged witness w⊕

1. Parse birth and death witness ∈ F3n (witness from the indexed relation is trans-
formed as in Appx. C.1 first):

wb = (wb,1, . . . , wb,3n) , wd = (wd,1, . . . , wd,3n)

2. Outputs merged witness ∈ F3N where N = 2n:

w⊕ =


wb,1, . . . , wb,n, wd,1, . . . , wd,n,

wb,n+1, . . . , wb,2n, wd,n+1, . . . , wd,2n,

wb,2n+1, . . . , wb,3n, wd,2n+1, . . . , wd,3n


where the merged public instance is x⊕ = (wb,1, . . . , wb,`, wd,1, . . . , wd,`)

BatchProve(srs, [x⊕,i]
npf
i=1, [w⊕,i]

npf
i=1, [ipk⊕,i]

npf
i=1)→ π~

• inputs:
◦ public parameter srs
◦ list of merged instances, merged witnesses, and merged proving keys

[x⊕,i]
npf
i=1, [w⊕,i]

npf
i=1, [ipk⊕,i]

npf
i=1 where npf denotes the number of instances to be

proven.
• outputs: a batched proof π~

Round 1:

• For each i ∈ [npf], compute wire polynomials ai(X), bi(X), ci(X) as in Round 1
of [GWC19]27, and outputs ([ai]1, [bi]1, [ci]1)i∈[npf].

Round 2:

• Compute permutation challenge β = H(transcript, 0), γ = H(transcript, 1).
• For each i ∈ [npf], compute permutation polynomials zi(X) as in Round 2 of [GWC19],
and outputs ([zi]1)i∈[npf].

Round 3:
27 Referring to the protocol presented in Section 8.3, similarly for all consequent steps

44

• Compute quotient challenge α = H(transcript).
• For each i ∈ [npf],
◦ Parse merged instance x⊕,i = (xi)i∈[2`], compute public input polynomial:

PIi(X) =
∑`
i=1 (xi · Li(X) + xi+` · Ln+i(X))

◦ Compute the following intermediate polynomials:

Fgate,i(X) = ai(X)qiL(X) + bi(X)qiR(X) + ai(X)bi(X)qiM (X) + PIi(X)− ci(X)qiO(X)
Fσ1,i(X) = (ai(X) + βX + γ)(bi(X) + βk1X + γ)(ci(X) + βk2X + γ) · zi(X)

− (ai(X) + βSiσ1(X) + γ)(bi(X) + βSiσ2(X) + γ)(ci(X) + βSiσ3(X) + γ) · zi(ωX)
Fσ2,i(X) = (zi(X)− 1) · L1(X)

• Compute the batched quotient polynomial (note |H| = N = 2n):

t(X) = Z−1
H (X)

(npf∑
i=1

α3i−3
(
Fgate,i(X) + αFσ1,i(X) + α2Fσ2,i(X)

))

• Split t(X) into t1(X), t2(X), t3(X) as in Round 3 of [GWC19], and outputs ([t1]1, [t2]1, [t3]1).

Round 4:

• Compute evaluation challenge z = H(transcript).
• For each i ∈ [npf], compute and output opening evaluations:

āi = ai(z), b̄i = bi(z), c̄i = ci(z), s̄σ1,i = Siσ1(z), s̄σ2,i = Siσ2(z), z̄ω,i = zi(zω)

Round 5:

• Compute opening challenge v = H(transcript).
• For each i ∈ [npf], compute the following intermediate polynomials:
◦ Numerator polynomial of the quotient polynomial:

ri(X) = āiq
i
L(X) + b̄iq

i
R(X) + āib̄iq

i
M (X) + qiC(X) + PI(z)− c̄iqiO(X)

+ α · [(āi + βz + γ)(b̄i + βk1z + γ)(c̄i + βk2z + γ) · zi(X)
− (āi + βs̄σ1,i + γ)(b̄i + βs̄σ2,i + γ)(āi + βs̄σ3,i + γ) · z̄ω,i]
+ α2 · [(zi(X)− 1)L1(z)]

◦ Polynomials evaluated at evaluation point z:

gz,i(X) =



v · (ai(X)− āi)
+v2 · (bi(X)− b̄i)
+v3 · (ci(X)− c̄i)

+v4 · (Siσ1(X)− s̄σ1,i)

+v5 · (Siσ2(X)− s̄σ2,i)


◦ Polynomial(s) evaluated at evaluation point zω:

gzω,i(X) = zi(X)− z̄ω,i

• Compute the batched linearization polynomial:

r(X) =
npf∑
i=1

α3i−3 · ri(X)− ZH(z) ·
(
t1(X) + zN t2(X) + z2N t3(X)

)
• Compute the batched opening proof polynomials:

Wz(X) =
r(X) +

∑npf
i=1 v

6i−6 · gz,i
X − z

, Wzω(X) =
∑npf

i=1 v
i−1 · gzω,i

X − zω

45

• Outputs their commitments: [Wz]1, [Wzω]1.

Final Round:

• Compute multi-point evaluation challenge u = H(transcript).
• For each i ∈ [npf], define: πi =

(
[ai]1, [bi]1, [ci]1, [zi]1, āi, b̄i, c̄i, s̄σ1,i, s̄σ2,i, z̄ω,i

)
,

outputs batched proof:

π~ :=
(
[t1]1, [t1]2, [t3]1, [Wz]1, [Wzω]1, [πi]i∈[npf]

)
.

Remark 7. Since we only use Plonk′ for the inner predicate proofs, we don’t need it to
be zero-knowledge, as long as the SNARK proof for the outer circuit is zero-knowledge,
then we would satisfy the function privacy of zexe. Specifically, we don’t need random
blinding scalars for wire polynomials in Round 1 and permutation polynomials in
Round 2 as in [GWC19].

BatchPartialVfy(srs, [x⊕,i]
npf
i=1, [ivk⊕,i]

npf
i=1, π~, s)→ ξ

• inputs:
◦ public parameter srs
◦ list of merged instances, merged verification keys [x⊕,i]

npf
i=1, [ivk⊕,i]

npf
i=1

◦ the batched proof for all relations π~
◦ masking randomness s ∈ F

• outputs: an accumulator ξ containing two group elements to checked in a pairing
equation in Decider in the accumulation scheme.

1. Validate all field elements and group elements in π~.
2. Compute challenges α, β, γ, z, v, u ∈ F as in the BatchProve from the common inputs,

public inputs, and elements of π~.
3. Compute:

[A]1 = [Wz]1 + u[Wzω]1

[B]1 = z[Wz]1 + uzω[Wzω]1 +
[
r(X) +

npf∑
i=1

v6i−6gz,i(X)
]

1
+ u

[npf∑
i=1

vi−1gzω,i(X)
]

1︸ ︷︷ ︸
computable from all inputs to BatchPartialVfy.

4. Mask both elements for hiding property:

[Ã]1 = [A]1 + s[x]1, [B̃]1 = [B]1 + s[1]1

where [x]1, [1]1 are in srs.
5. Outputs ξ :=

(
[Ã]1, [B̃]1

)
.

Decide(srs, ξ)→ b

• inputs: public parameter srs and the accumulator (partial verification state) ξ
• outputs: accept or reject bit b ∈ {0, 1}

1. Parse ξ :=
(
[Ã]1, [B̃]1

)
, get [1]2, [x]2 from srs.

2. Check e([Ã]1, [1]2) ?= e([B̃]1, [x]2), if equal output b = 1; output b = 0 otherwise.

46

E Modular Arithmetic Gadgets: Security Proof

We proceed to provide detailed proofs for the security properties of our modular
arithmetic gadgets. Given set of relevant public parameters (and prerequisite assumption
about them), a circuit design (w.r.t. a relation) has completeness when for any inputs
and their valid witnesses, the circuit should always be satisfied; soundness when for
any inputs and invalid witnesses, the circuit should never be satisfied.

Proof (Proposition 1). Soundness is straightforward since any invalid witnesses w0, w1, z0, z1 ∈
Fq, either they are out of bound ∈ [2m, q) thus failed the first range check in the gadget,
or they are values ∈ [0, 2m) that breaks the equation 1 and by violating any one of
equation 1b,1c,1d, the corresponding steps in the gadget will fail.

(x0 + 2m · x1) · (y0 + 2m · y1) (1)
= z0 + 2m · z1 + (w0 + 2m · w1) · (p0 + 2m · p1) (1a)

m
z0 + w0 · p0 − x0 · y0 − 2m · c′0 = 0
z1 + w0 · p1 + w1 · p0 − x0 · y1 − x1 · y0 + c′0 − 2m · c′1 = 0
w1 · p1 − x1 · y1 + c′1 = 0

(1b)
(1c)
(1d)

For completeness, we need to further argue that (i) calculations within circuit won’t
overflow or underflow Fq at all steps; and (ii) there exists at least one witness for any
possible inputs.

To see why (i) is true (with honest provers who follow the protocol and prepare
witnesses and intermediate values like carriers c0, c1 properly):

• In step 2, LHS is z0 + w0 · p0 ∈ [0, 2m + 22m]; RHS is x0 · y0 + 2m · (c0 − 2m) ∈
[0, 22m + 2m · (2m+k − 2m)) ∈ [0, 22m+k). Since q > 22m+k+1, both LHS and RHS
won’t overflow. Note that RHS ≥ 0 because c′0 ≥ −2m and c0 = c′0 + 2m.
• In step 3, LHS is z1 +w0 · p1 +w1 · p0 + (c0− 2m) ∈ [0, 2m + 22m · 2 + 2m+k − 2m) ∈

[0, 22m+1 +2m+k); RHS is x0 ·y1 +x1 ·y0 +2m ·(c1−2m+1) ∈ [0, 22m ·2+2m ·2m+2) ∈
[0, 22m+3). Since q > 22m+k+1 ∧ K ≤ 3, both LHS and RHS won’t overflow.
• In step 4, LHS is w1 · p1 + (c1 − 2m+1) ∈ [0, 22m + 2m+2) ∈ [0, 22m+1); RHS is
x1 · y1 ∈ [0, 22m). Clearly both sides won’t overflow.

To see why (ii) is true, we emphasize that inputs x, y are assumed to be the canonical
representation of Fp (namely, x, y ∈ [0, p)). Since for x ·y = z+p ·w (the actual relation
is expressed limb-wise), x · y ∈ [0, p2) and p · w ∈ [0, p · 22m), given that 22m > p, we
know ensure existence of at least one w ∈ [0, 22m) for any inputs x, y.

Proof (Proposition 2). For soundness, it is straightforward, invalid witnesses w, y are
either out of proper range and failed the range check in the first step of circuit, or they
are in range but violate the relation y + p · w = x1 + . . . + xN which will failed the
second step.

For completeness, we need to further argue that (i) calculations within circuit won’t
overflow or underflow Fq at all steps; and (ii) there exists at least one witness for any
possible inputs.

To see why (i) is true: given N < K−1
c + 1, c · p ≥ 22m ≥ p, qp > c+K in step 2,

LHS is 0 ≤ y + p · w < 22m + 22m ·K < 22m+k+1;
RHS is 0 ≤ x1 + . . .+ xN < N · 22m) < (Kc + 1) · 22m < (Kc + 1) · c · p < (K + c) · p < q.
We can see both sides won’t overflow Fq.

47

To see why (ii) is true: since the tight upper bound of LHS is bigger than a loose
upper bound of RHS:

22m +K · p ≥ (K + c− 1) · p

> (K − 1
c

+ 1) · cp > (K − 1
c

+ 1) · 22m > N · 22m

there must exists some witnesses w, y for any inputs.

Predicate commitment in Rutxo

xutxo =
(
pred. commitment cmΦ

)
wutxo =

(input death pred. hashes [pidd,i]m1
output birth pred. hashes [pidb,j]n1
pred. comm. randomness rΦ

)

Circuit (over Fr)

1. The predicate commitment is valid:

cmΦ = COM.Commit([pidd,i]
m
1 ‖ [pidb,j]

n
1 ; rΦ) = Blake2s([pidd,i]

m
1 ‖ [pidb,j]

n
1 ‖ rΦ)

Predicate commitment in RΦ

xΦ =
(
pred. commitment cmΦ

)
wΦ =

(input death pred. ver. key [ivkd,i]m1
output birth pred. ver. key [ivkb,j]n1
pred. comm. randomness rΦ

)

Circuit (over Fp)

1. For each i ∈ {1, . . . ,m}: the death predicate hash is computed correctly: pidd,i =
CRH.Eval(ppCRH, ivkd,i).

2. For each j ∈ {1, . . . , n}: the birth predicate hash is computed correctly: pidb,j =
CRH.Eval(ppCRH, ivkb,j).

3. The predicate commitment is valid:

cmΦ = COM.Commit([pidd,i]
m
1 ‖ [pidb,j]

n
1 ; rΦ) = Blake2s([pidd,i]

m
1 ‖ [pidb,j]

n
1 ‖ rΦ)

Fig. 13: Relation snippet for predicate commitment in [BCG+20].

F Optimized Predicate Commitment

For efficiency reason, we split Re into two relations: an extended UTXO relation Rutxo
that checks the the well-formedness of input and output records among other things,
and a predicates satisfiability relation RΦ that checks inner proofs for death/birth
predicates of the input/output records. The circuit for RΦ takes a list of inner proofs
and their corresponding verification keys as secret witnesses and checks their validity. To
ensure that death/birth predicates involved in Rutxo and RΦ are consistent, [BCG+20]
proposes to make the hiding commitment cmΦ to the predicates in a transaction as a
public input for both circuits so that the verifier can check their equality (see Fig. 13).
Furthermore, the authors suggest committing to the collision-resistant hashes of the
predicate verification keys instead, to reduce the cost of computing cmΦ in the circuit.

Concretely, the original zexe instantiate CRH with Pedersen hash, COM with
Blake2s hash where the message is appended with a randomizer for the hiding property.
The primary circuit cost comes from constraining non-algebraic Blake2s hash on a
message size ofm+n+1 for anm-input-n-output transaction. We emphasize that directly

48

switching Blake2s to a SNARK-friendly hash is not immediately more advantageous,
since we need to constrain this hash function in two different fields (over Fr for Rutxo
and over Fp for RΦ), and constraining algebraic hashes over non-native fields is probably
more expensive as it requires many range checks and modular arithmetics. Worse, the
number of non-native operations grows linearly with the message size since longer
messages require more invocations of the hash function.

We present an optimized circuit in Fig. 14. The high level idea is to encode the
list of predicate hashes/identifiers as the coefficients of a univariate polynomial, and
commit to these predicates by evaluating this polynomial at a binding point.

Let HCOM1 : Fm+n
r 7→ Fr,HCOM2 : Fm+n

p 7→ Fr be two hash-based commitment
scheme with different message spaces but the same digest space. In practice, we can
instantiate HCOM1,HCOM2,COM with SNARK-friendly, hash-based commitments,
and use modular arithmetic gadgets introduced in § 3.5 during step 4 of the predicate
commitment circuit in RΦ.

Predicate commitment in Rutxo

xutxo =
(
pred. comm. cmΦ ∈ Fr
pred. bindings c1, c2 ∈ Fr

)
wutxo =

input death pred. hashes [pidd,i]m1
output birth pred. hashes [pidb,j]n1
pred. comm. randomness rΦ ∈ Fr
pred. binding factor rΦ,1 ∈ Fr


Circuit (over Fr)

1. Check predicate binding is correct: c1 = HCOM1.Commit(ppHCOM1 , [pidd,i]m1 ‖ [pidb,j]n1 ; rΦ,1).
2. The predicate commitment is valid: cmΦ = COM.Commit(ppCOM, putxo(c); rΦ) where c = c1 + c2

and putxo(X) =
∑m

i=1 pidd,i ·Xi−1 +
∑n

j=1 pidb,j ·Xm+j−1.

Predicate commitment in RΦ

xΦ =
(
pred. comm. cmΦ

pred. bindings c1, c2 ∈ Fr

)
wΦ =

input death pred. ver. key [ivkd,i]m1
output birth pred. ver. key [ivkb,j]n1
pred. comm. randomness rΦ ∈ Fr
pred. binding factor rΦ,2 ∈ Fp


Circuit (over Fp)

1. For each i ∈ {1, . . . ,m}: the death predicate hash is computed correctly: pidd,i =
CRH.Eval(ppCRH, ivkd,i).

2. For each j ∈ {1, . . . , n}: the birth predicate hash is computed correctly: pidb,j =
CRH.Eval(ppCRH, ivkb,j).

3. Check predicate binding is correct: c2 = HCOM2.Commit(ppHCOM2 , [pidd,i]m1 ‖ [pidb,j]n1 ; rΦ,2).
4. The predicate commitment is valid: cmΦ = COM.Commit(ppCOM, pΦ(c); rΦ) where c = c1 + c2

and pΦ(X) =
∑m

i=1 pidd,i ·Xi−1 +
∑n

j=1 pidb,j ·Xm+j−1. (addition, polynomial evaluation, and
commitment are all computed over non-native field Fr)

Fig. 14: Relation snippet for optimized predicate commitment.

Remark 8. Compared to the naïve solution of directly switching Blake2s to a SNARK-
friendly hash, the main efficiency of our design in Fig. 14 comes from the fact that our
non-native operations does not grow with message size (number of predicates committed).
Because HCOM1,HCOM2 computations, used to bind all predicate identifiers and whose
costs increase linearly with the input message size, are over the native field of their
respective circuits and involve no modular arithmetics; whereas the only step involving
non-native operations (the COM.Commit in RΦ circuit) enjoys a fixed-size input, thus
fixed cost, regardless of the number of predicates to be committed.

49

Proposition 3. Assuming HCOM1,HCOM2 are random oracles, COM is a hiding
commitment scheme, then the circuits in Fig. 14 ensure that the list of predicates being
used in two circuits are consistent with overwhelming probability w.r.t. the randomly
sampled binding factors rΦ,1 ∈ Fr, rΦ,2 ∈ Fp, and the predicate commitment randomness
rΦ ∈ Fr, and that cmΦ, c1, c2 reveals nothing about the predicates involved.

Proof (informal). Since cmΦ, c1, c2 are public inputs, we know cmΦ, c = c1 + c2 are
guaranteed to be equal across two circuits. If Rutxo and RΦ commits to two different
lists of predicates, then the two polynomials would be different: putxo(X) 6= pΦ. Given
cmΦ = COM.Commit(ppCOM, putxo(c); rΦ) = COM.Commit(ppCOM, pΦ(c); rΦ), there are
two cases:

• putxo(c) 6= pΦ(c): this means we open cmΦ to two different messages which breaks
the computational binding property of COM.
• putxo(c) = pΦ(c): two different polynomials ∈ F<m+n−1

r only evaluate to the same
value at the same random point c (generated from random oracles) with negligible
probability of m+n−1

|Fr| based on the Schwartz-Zippel lemma.

Therefore, we can conclude that the predicates are consistent across these two relations
with overwhelming probability.

Furthermore, since COM is hiding, HCOM1,HCOM2 are random oracles, with ran-
domly sampled randomnesses rΦ,1, rΦ,2, rΦ, we know that cmΦ, c1, c2 reveals nothing
about their committed messages.

50

	Introduction
	Our Contributions
	Our Techniques
	Related Works

	Preliminaries
	Decentralized Private Computation (DPC)

	Verizexe: Practical Zexe with Universal SNARKs
	Lightweight Verifier Circuit from Accumulation Scheme
	Instance Merging
	Proof Batching
	Variable-base Multi-Scalar Multiplication via Online Lookup Table
	Polynomial Evaluation over Non-native Field
	SNARK-friendly Symmetric Primitives

	Implementation and Evaluation
	System Implementation
	Experimental Evaluation

	Cryptographic Primitives: Definitions and Security Properties
	Commitment Scheme
	Polynomial Commitment Scheme
	Indexed Relation
	Pre-processing SNARK with Universal SRS
	Incrementally Verifiable Computation (IVC)

	Plonk, TurboPlonk, UltraPlonk Constraint Systems
	UltraPlonk Proof Systems
	Witness transformation
	Polynomial Interpolation

	Plonk with Merging, Batching and Accumulation
	Modular Arithmetic Gadgets: Security Proof
	Optimized Predicate Commitment

