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Abstract. One of the main challenges cryptography needs to deal with
is balancing the performances of a cryptographic primitive with its se-
curity. That is why in 2015, the National Institute of Standards and
Technologies (NIST) has begun a standardization process to solicit the
creation of new lightweight cryptographic algorithms. We then wondered
which of this standardization finalists would suit the best to a white-box
implementation.
To this end, we studied different algorithms structures on their encod-
ability to later develop our white-box encoding solution. Afterwards, we
reviewed the standardization finalists on the applicability of our solution
to those algorithms, and finally apply it to GIFT, the permutation of
GIFT-COFB.
Keywords : White-Box Cryptography, Lightweight Cryptography, En-
codings, GIFT-COFB.

1 Introduction

Lightweight cryptography is the field of cryptography that aims to develop cryp-
tographic primitives adapted to devices with limited capacities. To meet with
the growing need in this area, the NIST has initiated in 2015 a process to ”solicit,
evaluate, and standardize” cryptographic algorithms fulfilling this requirement
([12]).

Furthermore, the growing of the number of these active devices goes hand in
hand with the need of connecting them with each other or with other devices,
for instance in the IoT domain. Hence, the need for lightweight cryptographic
primitives eligible for white-box implementations has emerged.

Definition 1 (from [13]). White-Box Cryptography is an obfuscation tech-
nique intended to implement cryptographic primitives in such a way that even
an adversary with full access to the implementation and its execution platform
is unable to extract key information.

To protect the key from a white-box attacker, one of the first and most known
method proposed by Chow et al. [4] in 2002 is to tabularize then encode the
implementation. Their original idea was to turn the AES algorithm into a giant
look-up table mapping each possible plaintext to its corresponding ciphertext,



hence avoiding any manipulation of the key. Nevertheless, such a table for 128-bit
plaintexts and ciphertexts would be too heavy and thus unrealistic (2128 ∗128 =
2135 bits). Hence, the chosen solution was to build a network of encodings look-up
tables.

Our approach was to study different structural characteristics of algorithms
and their implications on potential encodings, to present a solution that would
settle most of the noticed challenges. Then, we reviewed the NIST Lightweight
standardization finalists to choose the most suitable to white-boxability by our
solution.

Outline of the paper In Section 2.1, we describe the principle of encoded
networks of look-up tables. Then, in Section 2.2. we make a classification of
cryptographic algorithmic structures depending on how their outputs can be
encoded, and present how the two different cases can be merged. Thereafter, we
present in Sections 2.3. and 2.4. our encoding solution and its design rationale.
Then, in Section 3, we review the NIST lightweight finalists to choose GIFT-
COFB as the most suitable to the application of our method. Finally, we present
this application on GIFT-COFB permutation GIFT.

2 A new kind of encoded network of lookup tables

2.1 Principle of an encoded network of lookup tables

Implementations with look-up tables aim to gather the operations of the cipher
algorithm into small groups of operations to tabularize them. Tabularizing con-
sists in replacing a group of operations G with a lookup-table that links each
possible input of G to its corresponding output. These groups of operations need
to be small-sized, as an n-bit input to m-bit output group of operations has a
corresponding lookup table of 2n ∗m bits.

Once the whole algorithm has been separated onto small groups of operations,
we apply an encoding scheme to it. In order to preserve the original ciphering,
we then apply the corresponding decoding to each input of the following group
of operations.

We can finally tabularize all the group operations along with their input
decoding and output encoding operations. A white-box attacker does not know
these encoding and decoding operations, so cannot retrieve the state being ci-
phered. Ultimately, as this implementation avoids a white-box attacker accessing
the state being encoded and protects the operations through encodings, it might
succeed in preventing the attacker deducing a key being used inside of some
groups of operations.

2.2 Choice of the encoding of a group of operations

For each jth group of operations of round i Gi
j , we need to choose an output

encoding operation that fits with the usage of the output. Indeed, the encoding



cannot be the same depending if the output bits of the group of operations are
used altogether or separately, which can be represented as two main cases:

Fig. 1. Two cases of groups of operations

In the first case, all n output bits of a group of operations Gi
j are used

altogether in different following groups of operations, which means that they
receive all of Gi

j output bits at once. An encoding solution in this case would be
to create a revertible n-bit lookup table that would be applied to the n output
bits. Then, the corresponding n-bit decoding lookup table would be applied
to each input of the following groups of operations. However, the attacker will
know that the same input decoding lookup table is applied in these different
following groups of operations, which weakens their encoding by giving him
complementary information. To avoid that, a better solution would be to merge
the group of operations to each of its following groups of operations.

For instance, in the case 1 of Fig. 1, all i + 1th round groups of operations
Gi+1

j have for input all the output bits a, b, c and d of the group of operations

of round i Gi
1. So its output bits are used altogether in the following groups

of operations Gi+1
j . In this case, we can create G′i+1

1 = Gi+1
1 ◦ Gi

1, that will

have the same inputs as Gi
1, and the same outputs as Gi+1

1 . Even if a group of
operations has some input bits that are not outputs of Gi

1 such as Gi+1
2 with

x1 and x2, we can still consider a new group of operations G′i+1
2 such that

G′i+1
2 = Gi+1

2 (a, b, c, d, x1, x2).

However, most cryptographic algorithms tend to have as many input bits as
output bits. So, if the output bits of a group of operations are duplicated, the
state will have more bits, which implies that its number of bits will be reduced
in other groups of operations elsewhere, which is often done with a XOR, which
can be problematic (§2.6).

Furthermore, if the output is duplicated then used in n different lookup
tables, we need to create n different merged lookup tables. Hence, the number
of tables would grow exponentially with the number of rounds.



In the second case, the bits of a group of operations G are used separately
in the following groups of operations, which means that none of its following
groups of operations have all the output bits of G as input. In this case, we
cannot create a n-bit lookup table that will encode the n output bits of a group
of operations, as reversing this operation would imply to transmit the n encoded
bits, while needing only some of them. Besides increasing the size of the input, an
attacker can observe which bits are not used in the following groups of operations,
weakening their encoding. The solution is rather to encode the outputs bits per
bundles.

For instance, in the case 2 of Fig. 1, the output bits a, b, c and d of the
group of operations Gi

1 are used separately as each following group of operations
Gi+1

j do not have all of these four bits for input. Thus, we cannot create a 4-bit

lookup table to encode the output of Gi
1. In this case, we would rather create

three lookup tables to encode {a}, {b, c} and {d}. Indeed, a is used only in Gi+1
1 ,

separately from b, c and d, justifying its solo encoding. We should also create
a 2-bit encoding for b and c as b is not used separately from c in any following
groups of operations. Lastly, even if b, c and d are used in the input of Gi+1

3 , we
cannot create a 3-bit encoding for them, as d is not used with b and c for Gi+1

2

input, so we would rather create another 1-bit encoding for d.

The first weakness of encoding separately the output bits is that the output
encodings are smaller thus weaker to brute-force attacks, as there exists (2n)!
n-bit lookup tables. In particular, a 1-bit encoding correspond to a XOR of a
constant bit ∈ {0, 1}, which is weak. The second is that an attacker can deduce
more information from the output. In fact, in that case we need to encode the
4-bit output of Gi

1 as three separate groups {a}, {b, c} and {d}. So, even if the
input of Gi

1 is encoded, an attacker can observe which inputs modify only a or
d and reciprocally, which gives him information on Gi

1.

Finally, the output bits of a group of operations can be used separately in
some following groups of operations and altogether in some other groups. In such
case, as described in the first case explication, we generate the different merged
groups of operations each time the bits are used altogether, to thereafter relate
this case to a only separated one, and apply the associated method.

2.3 Our new encoding scheme

As seen previously (2.2), the usual encoding methods have intrinsic weaknesses in
each case. We developed a new method that can be applied to resolve some of the
problems shown above. This method consists of creating Tboxes, each protecting
a group of operations using pseudo-random bits to encode their outputs. We
will show that this method strengthens the brute-force attack resistance, allows
small-sized encoding and avoids the attacker getting information on a group of
operations using its output bits separately, which makes this method well-suited
for this case. We present below the steps to apply this method to a general case,
and an application on an example.



Step 1: For each group of operations, determine how their outputs are used:
their different bundles. Indeed, we can determine a partition of the output bits
of a group of operations, that corresponds to which output bits go to which
following group of operations; we call each element of this partition a bundle.

In our example of Fig. 2 we want to create a Tbox T for Gi
1. The input bits

of Gi
1 come from two previous groups of operations: three bits from Gi−1

1 and
two from Gi−1

2 , so Gi
1 has two input bundles of respectively three and two bits.

Similarly, Gi
1 has three output bundles, two 1-bit that go to Gi+1

1 and Gi+1
3 , and

a 2-bit one that goes to Gi+1
2 . In our scheme, we suppose that the previous and

following groups of operations of Gi
1 use their bits on other groups of operations

of the step i, otherwise we are in the altogether case (see Fig. 1), and we could
merge them with Gi

1.

Fig. 2. An example of a group of operations being Tboxed with the first three steps

Step 2: For each group of operations, we determine the needed size of their
intern lookup table (noted IL in the scheme), that will be used to modify the
input pseudo-random bits. To apply our method, we need to encode each output
bundle with at least one pseudo-random bit, which determines the minimum of
bits that the intern lookup table needs to output. Furthermore, the overall Tbox
T input needs to have a reasonable size, as a n-bit Tbox costs 2n ∗ n bits. For
those memory and performance reasons, we considered that the Tbox needs to
have a 10-bit input maximum size, which implies that the intern lookup table
input needs to have a maximum of 10− |G| bits, with |G| the input size of the
group of operations being encoded. Lastly, the intern lookup table needs to have
at least as much input bits as output bits, because if not, the lookup table will
not be surjective, which causes statistical bias.

In our example, firstly, Gi
1 is a 5-bit to 5-bit group of operations, so the intern

lookup table can have a maximum of 10 − 5 = 5 bit of input. Furthermore, Gi
1

receives two bundles for input, and outputs three bundles. So its intern lookup
table will receive a minimum of two pseudo-random bits, and outputs a minimum



of three. As it needs to have at least as much input bits as output ones, the intern
lookup table is at minimum a 3-bit to 3-bit one. It implies that either Gi−1

1 or
Gi−1

2 needs to encode their bundles transmitted to Gi
1 with at least two pseudo

random-bits. For those reasons, here we will choose (arbitrarily) a 5-bit to 5-bit
intern lookup table.

Step 3: Once the intern lookup table has been determined, we need to at-
tribute its input and output pseudo-random bits to each input and output bun-
dle. Firstly, each bundle needs to have at least one pseudo-random bit. Secondly,
each bundle needs to have the same number of pseudo-random bits attributed
by both of its previous and following groups of operations.

As we chose a 5-bit to 5-bit intern lookup table for Gi
1, we can for instance

attribute 2 pseudo-random bits (represented in dashed lines) to the receivedGi−1
1

bundle, and hence three to Gi−1
2 . Likewise, we choose to transmit two pseudo

random bits for the bundles sent to Gi+1
1 and Gi+1

3 , and thus one for Gi+1
2 .

Step 4: Then, we generate the bundle encodings and decodings. For each output
bundle of G and its associated pseudo-random data, we need to generate a lookup
table that has for input size the number of bits of the bundle coming from G
plus the number of its associated pseudo-random bits. Then, for each output
bundle, we need to generate the corresponding decoding lookup table that will
be applied accordingly to the input of the following groups of operations.

Fig. 3. The last two steps of our example being Tboxed

In our case, as shown in Fig. 3, we will generate a 4-bit encoding Enci2 for
the bundle of Gi

1 transmitted to Gi+1
2 , as it is a 3-bit bundle associated with one



pseudo-random bit. We proceed the same way for the other bundle encoding and
their corresponding decoding.

Step 5: Tabularize each group of operations with their intern lookup table, input
decodings and output encodings to create its corresponding Tbox.

In our case, we represented in solid line the TBox T of Gi
1.

2.4 Design rationale

We designed the Tbox to allow an encoding implementation on cases that did
not have one. Indeed, to encode the second case described in Fig. 2.2, we cannot
simply encode all the output bundles of a group of operations separately, as it
is not resistant to brute-force attacks, and allows a white-box attacker to get
information on the group of operations.

With a Tbox, the brute-force attack resistance is greatly enhanced, as an at-
tacker needs to enumerate all the possible encoding, decoding and intern lookup
tables. This values grows exponentially as there exists (2n)! possible lookup ta-
bles of n bits.

Furthermore, the Tbox has been made to be resistant to differential attacks,
as a single bit modification of the input of a Tbox has an impact on the output
bits of its bundle decoding. Thus, some bits of the decoded bundle or some
pseudo-random bits are modified. If pseudo-random bits or group of operations
state bits are modified, then the output of respectively the intern lookup table
or the group of operations changes, impacting the overall output of the Tbox as
each of its output bundles are encoded with at least one pseudo-random bit.

Another possibility for the intern lookup table would be to transmit a copy
of the input bits of the group of operations along with its usual pseudo-random
bits as input. We avoided this possibility, as the output of the intern lookup
table would depend on the input of the group of operations, which will make the
overall Tbox output more dependant on the state bits than the pseudo-random
ones, which can be observed by a white-box attacker to deduce if he succeeds to
modify a state bit rather than a pseudo-random one, judging by its impact on
the Tbox output.

As explained in the previous section 2.2, if all groups of operations are using
their output bits altogether, the classic encoding scheme will be too heavy when
trying to create all the merged groups of operations, so it is a case that we want
to avoid. If the groups of operations in the altogether case do not generate a too
large amount of merged groups of operations, we should relate this case as the
separated one. Then the Tbox method could be in some cases mandatory, and
in others will bring the presented advantages, so must be applied in any cases
where it is possible.

2.5 The problem of the first and last Tboxes

We suppose that the algorithm will operate with encoded inputs and outputs. As
a matter of fact, this is a use case common for instance in the DRM field. Even



with this supposition, our white-box implementation is still exposed to Chosen
Plaintext Attacks, if we suppose that the attacker can choose the real plaintext
rather than encoded one.

To properly encode the input given to each of the first Tboxes of the im-
plementation, we consider that each of these first Tboxes is receiving a single
bundle encoded with its needed amount pseudo random bits, and we consider
that the last Tboxes are also transmitting a single bundle. So, for each of the
first Tboxes, we generate a decoding lookup table and tabularize it inside the
Tbox to decode its input. We also proceed similarly to the last Tboxes with their
output encoding lookup table. However, this obliges the entity which commu-
nicates with this implementation to know these encoding and decoding lookup
tables, and generate random data. It might not always be feasible, moreover,
these random bits could also be seen as an asset to protect.

2.6 The weakness of Tboxing the XOR operation

Firstly, the n-bit XOR corresponds to a 2n-bits to n-bit group of operations,
which is a problem for the pseudo-random data handling. Indeed, as explained
in the first case of the section 2.2, reducing the state size with such operation
will imply to duplicate some outputs of groups of operations elsewhere as the
whole algorithm has often a same amount of input bits than output ones. This
duplication is costly to avoid, and if not, implies to decode the duplicated output
multiple times with the same decoding lookup table, which can be exploited by
an attacker. Furthermore, these following groups of operations that have for
input the duplicated output will also have the same pseudo-random bits.

Secondly, encoding a n-bit XOR with a Tbox does not prevent an attacker
from getting information. Indeed, if the Tbox of the n-bit XOR takes for input
two encoded n-bit vectors a and b and outputs another encoded n-bit vector c,
then for any other input encoded vectors a′ and b′, if the Tbox still outputs c,
then we know that the XOR of the decoded values of a′ and b′ equals the XOR
of the decoded values of a and b. It can also be deduced that the output pseudo-
random bits of the intern lookup table are the same, which gives information on
the outputs of the groups of operations of the previous Tboxes.

3 Review of the white-boxability of the NIST LWC
finalists

We then evaluated which NIST lightweight finalists would be the best to apply
to our solution structure-wise.

3.1 Overview of the NIST LWC finalists

In April 2019, 56 submissions were admitted to the round 1 of the lightweight
standardization process. Then, in August 2019, the NIST announced the 32 most
promising candidates qualified for round 2. Finally, in March 2021 the selection
of the ten finalists was made public :



– ASCON [7]
– Elephant [10]
– GIFT-COFB [1]
– Grain128-AEAD [9]
– ISAP [6]

– Photon-Beetle [2]
– Romulus [8]
– Sparkle [3]
– TinyJAMBU [11]
– Xoodyak [5]

Amongst these candidates, we want to select the best algorithm for a white-
box implementation by using our encoding method. This implementation has for
objective to protect the key from a white-box attacker.

3.2 Selection of white-boxable NIST LWC finalists

To realize this selection, we studied the finalists given different arguments.

First of all, the dispersion of the key throughout an algorithm forces a white-
box attacker to study more parts of it to recover the key([13], §3.2).

Furthermore, following the Kerckhoffs principle we suppose the attacker
knows the algorithm except for the key. So a tabularized and encoded opera-
tion that depends on the key might be harder to break for a white-box attacker
than an operation that does not depend on the key. Furthermore, the disclo-
sure of a state allows an attacker to compute all following operations that are
not key-dependent. For these reasons, Isap[6] ascon[7] photon-beetle[2] sparkle[3]
xoodyak[5] Grain128-AEAD[9] were eliminated.

We then reviewed in more details the remaining algorithms.

Why we did not choose Romulus Romulus uses the block cipher Skinny to
perform its own ciphering. The Skinny state can be regarded as a 4x4 table of
bytes, with each of its operations being byte-wise and not bit-wise. The MixCol-
umn step uses 8-bit XOR, so this algorithm is in the altogether case as described
in the section 2.2. The XOR of bytes is too heavy to tabularize, as this 16-bit
to 8-bit XOR would create a 216 ∗ 8 = 524KB lookup table.

To avoid this problem, a solution would be to transform the 8-bit encoding
of a byte into two 4-bit encodings to reduce the 16 to 8 bits XOR to two 8 to
4 bits XORs. As we are separating the output bits of the previous operation in
two bundles, we are in both altogether and separated cases. So we have to relate
this case as a separated case only (2.2). To avoid to reuse the decoding of the
duplicated bits used in the MixColumns step, we need to duplicate the previous
groups of operations as many times as the number of times their outputs are used
in different XOR. Of course, all these duplicated groups operations would have
the same input and so the same input decoding, so we have to also duplicate
all the previous groups of operations of the algorithm, which is very heavy,
considering that Skinny has 40 rounds. Once done, we related this case to an
separated one, but it still has the problem of the XOR (§2.6). Thus, we decided
to not choose Romulus.



Why we did not choose TinyJAMBU To perform the permutation step of
TinyJAMBU, we consider the 128-bit state as a 128-bit LFSR, which is clocked
using 5 bits of state as well as a bit of the key. The state bits cannot be encoded
with each other, as the clock operation never uses a same set of state bits. We
also cannot encode the state bits without pseudo-random data, as an attacker
would try to clock 128 times (i.e. the key size number of times) the LFSR with
fixed state value, to deduce at each time whether the encoded result varies or
not, deducing the key bit values.

Thus, we would need to apply our method to this algorithm. However, each
clock of the LFSR is using four 1-bit XORs (2.6) and one NAND. So, as for
Romulus, in order to avoid decoding the bits multiple times we need to duplicate
the encoded bit 5 times, as each state is used 5 different times. Because the LFSR
can be clocked up to 1024 times, this method would be too heavy. For this reason,
we decided to not choose TinyJAMBU.

Why we did not choose Elephant Elephant[10] uses a functionmask(K, a, b)

= maska,bK that extends a key K depending on a, b ∈ N. a and b are dependant

on the block indexes of the message and associated data. Thus maska,bK depends
only on constant inputs, so we want to precompute it to reduce the manipulation
of the key. However, the message length and the nonce length are potentially
infinite, forcing to restrict their lengths. Furthermore, Elephant proposes two
permutations: Keccak and Spongent-π. We cannot apply our solution to Keccak
as it uses many XOR operations.

However, our solution can be applied in the same fashion to Spongent-π as
GIFT, the permutation of GIFT-COFB. Indeed, if we forgot about GIFT round
key, we can observe that both algorithms are using 4-bit Sboxes, followed by
a bitwise permutation, that uses the Sbox output as four 1-bit bundles (§2.3).
Nonetheless, if we achieve a white-box implementation of this permutation, as
maska,bK varies, each of its calls and their white-box implementations will be
different which is very heavy, as we are realising a constant-key implementation.

For those reasons, we choose to focus in the application of our solution on
GIFT.

3.3 Overview of GIFT

In each of its forty rounds, GIFT uses three operations: SubCells, PermBits and
AddRoundKey :

– SubCells applies the 4-bit GIFT SBox GS to all 4-bit nibbles of the 128 bit
state.

– PermBits applies a bitwise permutation to the state.

– AddRoundKey XOR two bits of the current round key and one bit of the
round constant to each 4-bit nibble of the state.



Algorithm 1: GIFT(S,RK)

Input : S, the 128-bit state and RK the 64-bit round keys
Output: S

1 for i = 0 to 39 do
2 S ← SubCells(S)
3 S ← PermBits(S)
4 S ← AddRoundKey(S,RK[i])

5 end for
6 return S

3.4 Presentation of our solution on GIFT

Firstly, any operation of GIFT duplicates its output. So GIFT figures among
the separated case 2.2. The best solution to encode GIFT would be to choose
to regroup the 4-bit Sbox application and its 2-bit key bit XOR and 1-bit round
constant XOR as a group of operations. That way, each of GIFT forty rounds
will contain 32 groups of operations that we want to encode.

Choosing another way to regroup the operations seems impossible at low
cost, as regrouping many Sboxes as a groups of operations would be too heavy.
Even if separating a Sbox application would allow an heavier encoding, creating
this network of groups of operations to replace the Sbox would take the same
4-bit input and return the same 4-bit output, while giving the attacker more
possibilities of modifications during the Sbox application.

In order to use the key at any round, PermBits and AddRoundKey need to
be swapped. Indeed, PermBits(S)⊕E = PermBits(S ⊕PermBits−1(E)), for
S the state and E the key and round constants array. (see Algorithm 2)

Algorithm 2: G̃IFT (S,R̃K)

Input : S, the 128-bit state and R̃K = PermBits−1(RK)
Output: S

1 for i = 0 to 39 do
2 S ← SubCells(S)

3 S ← AddRoundKey(S, R̃K[i])
4 S ← PermBits(S)

5 end for
6 return S

The SubCells and AddRoundKey operations can now be merged together
in a single group of operations. To Tbox it, we can observe that this group of
operations has four 1-bit input and output bundles, which obliges us to select an
intern lookup table with four to six input and output bits. The GIFT bit-wise
permutation has the particularity to link each ith output bit of an Sbox to a ith



input bit of a following one, with i ∈ {0, ...3}. Thus, we can encode each bundle
with a different amount of bits as long as we decode its corresponding bundle
with the same sized decoding. We decided to encode the first and last bundle
with a 2-bit encoding, and the two left middle ones with 2-bit or 3-bit one, as
shown in the scheme 4.

Fig. 4. T0, the right-most Tbox of the round r

As GIFT has 1-bit bundles, the Tbox implementation was mandatory and
brings all its advantages presented in 2.4. In particular, GIFT is in the separated
case, ensuring that each bundle is encoded and decoded only once. Further-
more, GIFT allows a Tbox implementation with less than 10-bit input. Lastly,
if we choose to encode each bundle with only 1 pseudo-random bit, the in-
tern lookup table would be 4-bit to 4-bit, leading the brute-force attack to
(22!)4 ∗ (22!)4 ∗ (24)! ≈ 280 possibilities. If we encode the two middle bundles
with 3-bit encodings, there are four 2-bit lookup tables, four 3-bit lookup ta-
bles and one 6-bit lookup table. Then, a brute force attack would require to go
through (22!)4 ∗ (23!)4 ∗ (26)! ≈ 2375 possibilities.

3.5 Performances

We propose below a comparison of two versions of the implementation of GIFT,
mainly to discuss the impact of our encoding scheme on both the execution time
and the size of the implementation considered. In the following, we denote by :

– GIFTEmbedded : a bitsliced tabularized implementation of GIFT with con-
stant key ;



– GIFTEncoded : a bitsliced encoded version of GIFTEmbedded using our
encoding scheme previously exposed, with each bundle encoded with only 1
pseudo-random bit.

The processor used for testing is an 11th Gen Intel Core i7-1185G7 @ 3.00GHz
1.80 GHz, and we used the GCC compiler with optimization options (-Os for
binary size measurements and -O2 for execution time measurements).

For the execution time procedure, we generated 4000 random plaintexts and
measured the elapsed time of the execution of GIFT on these inputs. These
plaintexts are used both for GIFTEmbedded and GIFTEncoded in order to have
the same test context for both implementations. Here are the results :

Nature of the tests GIFTEmbedded GIFTEncoded

Execution time (4000 runs) 15.34 ms 94.68 ms
Size of binary 132.2 kB 1.2 MB

4 Conclusion

We classified the structures of cryptographic algorithms into two different cases,
whether the output bits of groups of operations are used separately or altogether
in the following groups of operations. Then, we showed that all cases can be
related to the separated one, and presented our encoding solution to this case.
Afterwards, we reviewed the NIST lightweight standardization finalists on the
white-boxability of their structure to select the one the most suitable to the
application of our solution : GIFT-COFB. Finally, we presented our solution
applied to GIFT-COFB base permutation GIFT.



References

1. Banik, S., Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M., Peyrin, T.,
Sasaki, Y., Sim, S.M., Todo, Y.: GIFT-COFB. IACR Cryptol. ePrint Arch. p. 738
(2020), https://eprint.iacr.org/2020/738

2. Bao, Z., Chakraborti, A., Datta, N., Guo, J., Nandi, M., Peyrin, T., Ya-
suda, K.: Photon-beetle authenticated encryption and hash family (2020),
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/round-2/spec-doc-rnd2/photon-beetle-spec-round2.pdf
3. Beierle, C., Biryukov, A., dos Santos, L.C., Großschädl, J., Perrin, L., Udovenko,
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