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Abstract

Multiparty randomized encodings (Applebaum, Brakerski, and Tsabary, SICOMP
2021) reduce the task of securely computing a complicated multiparty functional-
ity f to the task of securely computing a simpler functionality g. The reduction is
non-interactive and preserves information-theoretic security against a passive (semi-
honest) adversary, also referred to as privacy. The special case of a degree-2 encod-
ing g (2MPRE) has recently found several applications to secure multiparty compu-
tation (MPC) with either information-theoretic security or making black-box access
to cryptographic primitives. Unfortunately, as all known constructions are based on
information-theoretic MPC protocols in the plain model, they can only be private with
an honest majority.

In this paper, we break the honest-majority barrier and present the first construc-
tion of general 2MPRE that remains secure in the presence of a dishonest majority.
Our construction encodes every n-party functionality f by a 2MPRE that tolerates at
most t = ⌊2n/3⌋ passive corruptions.

We derive several applications including: (1) The first non-interactive client-server
MPC protocol with perfect privacy against any coalition of a minority of the servers and
up to t of the n clients; (2) Completeness of 3-party functionalities under non-interactive
t-private reductions; and (3) A single-round t-private reduction from general-MPC to
an ideal oblivious transfer (OT). These positive results partially resolve open questions
that were posed in several previous works. We also show that t-private 2MPREs are
necessary for solving (2) and (3), thus establishing new equivalence theorems between
these three notions.

Finally, we present a new approach for constructing fully-private 2MPREs based
on multi-round protocols in the OT-hybrid model that achieve perfect privacy against
active attacks. Moreover, by slightly restricting the power of the active adversary,
we derive an equivalence between these notions. This forms a surprising, and quite
unique, connection between a non-interactive passively-private primitive to an interac-
tive actively-private primitive.
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1 Introduction

Information-theoretic secure multiparty computation (IT-MPC) deals with the problem of
jointly computing a function over distributed inputs while providing information-theoretic
privacy against an adversary that may corrupt a subset of the parties. IT-MPC has sev-
eral important features. It does not rely on unproven intractability assumptions and does
not depend on the computational power of the adversary. This notion also tends to pro-
vide clean frameworks (e.g., in the form of idealized models) for studying more complicated
cryptographic questions without facing our ignorance regarding the nature of efficient com-
putation. Moreover, apart from being a playground for basic theoretical feasibility results,
IT-based solutions often lead to highly efficient protocols with a good concrete computational
complexity. Finally, IT-MPC solutions typically form the basis for efficient computational
MPC solutions that make a black-box use of cryptographic primitives.

In this paper, we consider several basic questions in the domain of IT-MPC and reveal new
connections between them. By default, we consider n parties and assume that at most t of
them can be passively corrupted by a (semi-honest) computationally unbounded adversary.1

We refer to this as t-privacy. The following questions are open for any t ≥ n/2.

MPC in the client-server model. Suppose that n ≥ 2 parties, called clients, wish to
employ m ≥ 3 external parties, called servers, in order to securely compute some (possibly
complex) function of their inputs. We would like to obtain a non-interactive protocol in
which each client sends a single message to each server, depending on its input and its local
randomness, and gets a single message from each server in return without any additional
interaction.

Q 1.1. Is there a non-interactive client-server MPC protocol with privacy against any (semi-
honest) adversary who corrupts a minority of the m servers and up to t of the n clients?

This question dates back to the work of Barkol, Ishai and Weinreb [6], who noted that
even the 3-server case is open. Earlier client-server protocols [29, 18] only apply to the
settings where less than one third of the servers (and t < n clients) can be corrupted. The
work of Applebaum, Brakerski and Tsabary [4] presented a client-server protocol that can
tolerate any minority of corrupted servers, but at the expense of tolerating only t < n/2
corrupted clients. The case t ≥ n/2 remains open. In this context, even a computationally-
private solution with good concrete efficiency would be useful. However, the only known
computationally-secure solution (which is in fact secure against an arbitrary strict subset of

1For simplicity, here and throughout the paper, we think of functionalities as finite objects and accordingly
derive protocols and simulators with finite fixed complexity. All our statements carry over to the asymptotic
setting (possibly with a tiny loss of the privacy threshold) and yield constructions whose complexity is
polynomial in the size of the formulas (or branching program) of the underlying functionality. Furthermore,
if one is willing to make a black-box use of a PRG and relax privacy to computational, these results also
extend to size-s circuits, where the complexity is linear in s [39, 8, 18]. In fact, all these “liftings” can be
done automatically by using appropriate completeness results from [29, 2, 4, 3]. See Appendix A.3.
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servers) makes a non-black-box use of OT. This solution is obtained by applying a general
transformation from [24] to the 2-round (non-black-box) OT-based MPC protocols from [25,
11].

Completeness of 3PC under non-interactive reductions. Let us move to the stan-
dard model where no servers are available. Classical completeness results, by Yao [39] and
Goldreich, Micali and Wigderson [27], show that, for an arbitrary corruption threshold t ≤ n,
the problem of securely computing a general n-party functionality t-privately reduces to the
problem of securely computing the elementary finite 2-party Oblivious Transfer (OT) func-
tionality [38, 22]. The OT functionality takes a bit x from the Receiver and a pair of bits
(m0,m1) from the Sender, and delivers to the Receiver the message mx while hiding m1−x
from the Receiver and x from the Sender. In the 2-party setting, Yao’s reduction [39] is com-
pletely non-interactive and makes only parallel invocations of an ideal OT-oracle without
any further interaction. In the multiparty setting, known reductions are either interactive
(i.e., make sequential calls to the OT) [27] or make a non-black-box use of the underlying
OT [25], leading to computational security and to a large, typically impractical, computa-
tional overhead. In [3] it was shown that this limitation is inherent: No 2-party functionality
can be complete under round-preserving black-box (RPBB) reductions. The same paper
also established the completeness of 4-party functionalities, and stated the case of 3-party
functionalities as an open question:

Q 1.2. What is the minimal primitive that is non-interactively complete for t-private MPC?
Are 3-party functionalities complete?

The round complexity of protocols based on ideal-OT. Let us move back to OT-
based protocols. In light of the negative result of [3], it is natural to ask what is the best
achievable round complexity given a black-box access to an OT oracle. A partial answer
was recently given by Patra and Srinivasan [37] who showed that, given a black-box access
to a 2-round OT protocol, general secure multiparty computation with full computational
privacy (t ≤ n) can be realized in 3 rounds. This result falls short of providing information-
theoretic security and, more importantly, it strongly relies on an access to an OT protocol.
Consequently, we do not know whether a 3-round protocol can be based on other realizations
of 2-round OT such as ones that are based on physical means such as noisy channels or
secure hardware, or on some limited form of a trusted party (e.g., [17, 16, 36, 34, 21, 20]).2

To capture such scenarios, we consider a refined version of the OT-hybrid model in which
the OT takes 2 rounds. That is, if both parties send their inputs to an OT in round i, the
output is delivered to the receiver at the end of round i + 1. In addition, the parties are
allowed to exchange messages via standard point-to-point private channels. We refer to this

2More generally, one may ask whether k + 1 round protocols can be based on k-round OT, i.e., is it
possible to obtain a single-round reduction. We focus on the minimal case of k = 2 for simplicity, though all
our results actually hold for the general case.
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model as the 2-round OT hybrid model.3 (See Remark 6.2 for further discussion about the
model.) Refining an open question from [3], we ask

Q 1.3. What is the minimal number of rounds that are needed for t-private MPC in the
2-round OT hybrid model? Are 3-rounds achievable?

MPC with active perfect privacy in the OT-hybrid model. Let us change gears and
move to the problem of perfect privacy under active attacks in the (standard) OT-hybrid
model without putting any limitation on the round complexity. The results of Kilian [33]
and Ishai, Prabhakaran, and Sahai [32] show that in this model one can achieve information-
theoretic security with abort against a computationally unbounded adversary that corrupts
an arbitrary subset of the parties. However, unlike the passive case, where one can achieve
perfect simulation, current constructions suffer from a negligible statistical simulation error.
It is known that one cannot simultaneously achieve perfect correctness and perfect privacy
(aka perfect security) unless NP is contained in BPP (see, e.g., [30]). Still one can hope for a
protocol that achieves perfect privacy against active attacks (i.e., a perfect simulation of the
adversary’s view) together with some weak form of correctness. Partial positive results are
known for special classes of functionalities either in the correlated randomness setting [30] or
in the 2-party setting [1]. Remarkably, for general functionalities the following basic question
is wide open:

Q 1.4. Is general MPC feasible in the OT-hybrid model with perfect passive correctness and
perfect active t-privacy feasible?

The difference between prefect privacy to statistical privacy is analogous to the differ-
ence between perfect zero-knowledge and statistical zero-knowledge. Furthermore, since the
communication complexity grows logarithmically with the inverse error, perfectly-private
protocols may lead to more economical solutions.

2MPREs beyond honest majority. In the honest-majority setting (t < n/2), Ques-
tions 1.1–1.3 can be settled in the affirmative based on the existence of t-private quadratic
multiparty randomized encoding (MPRE).4 The MPRE notion was introduced in [4] as a
multiparty generalization of the notion of randomized encoding of functions from [29, 2].
Roughly speaking, a functionality f has a t-private quadratic-MPRE (2MPRE) if the task
of securely-computing f non-interactively reduces to a single call to a degree-2 functionality

3In the terminology of [3] the reduction of Patra and Srinivasan [37] is a “free Black-Box” reduction,
whereas the (2-round) OT hybrid model corresponds to so-called “strict Black-box reduction”. To illustrate
the distinction between the two notions, note that in a free-BB reduction, party A can, for example, generate
several different “first messages” of the OT protocol, manipulate them (e.g., encrypt them) and deliver them
to B or to a third party. Moreover, the 2nd part of these OT invocations can be later continued or withdrawn
based on additional information (e.g., the inputs of B). In a strict BB reduction there is no notion of “first
message” and the parties can only feed their inputs into the OT functionality and obtain the output. Thus
a strict-BB reduction implies a free-BB reduction. See further discussion in [37].

4To the best of our knowledge, for Question 1.4, no solution is known beyond the trivial case of t < n/3
in which perfect active security can be achieved in the plain model [10].
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g via a t-private information-theoretic reduction. In [4] it was shown that every function-
ality can be realized by an honest-majority 2MPREs. Other constructions were also given
in [24, 35]. All these constructions are essentially based on plain-model MPC protocols and
are therefore limited to the honest-majority setting. In an attempt to understand whether
this limitation is inherent, we ask:

Q 1.5 ([4]). Is t-private 2MPRE feasible with t > n/2?

2 Our Results

We construct new 2MPREs and derive new connections between Questions 1.1–1.5.

2.1 New 2MPREs beyond Honest-Majority

We present the first construction of perfect 2MPRE that achieves privacy against coalitions
of size at most ⌊2n/3⌋.

Theorem 2.1 (main theorem). Every n-party functionality can be perfectly realized by
⌊2n/3⌋-private 2MPRE.

The theorem “separates” the model of 2MPRE from plain-model MPC, demonstrating
the power of the former. We will later discuss the implications of Theorem 2.1. For now
observe that for 3-party functionalities the theorem provides privacy against coalitions of
size at most 2. Since privacy against 3-party functionalities vacuously hold, we derive the
following corollary.

Corollary 2.2 (2MPRE for 3PC). Every 3-party functionality can be perfectly realized by a
3-private 2MPRE.

Note that any tiny improvement to Theorem 2.1, e.g., from ⌊2n/3⌋-privacy to ⌈2n/3⌉-
privacy would allow us to obtain fully-private MPRE for 4-party functionalities. Since 4-
party functionalities are known to be complete under non-interactive reductions [3], such
an improvement would immediately yield n-private 2MPREs for any n-party functionality!
Thus, the ⌊2n/3⌋ bound is a natural intermediate point between the case of full corruption
t = n and the honest-majority setting t < n/2. This puts 2MPRE somewhere between the
OT-hybrid model, in which n-privacy can be achieved, to the plain model that is restricted
to (n− 1)/2-privacy.

Indeed, while proving Theorem 2.1, we show that 2MPREs are equivalent to an MPC
model where the parties are allowed to communicate via private point-to-point channels for
an arbitrary number of rounds and at the end are allowed to make a single call to a degree-2
functionality. If we remove this last round, we get the standard plain model and if we allow
to call degree-2 functionalities in every round we get the standard OT-hybrid model. In
fact, by preprocessing OTs [7], the OT-hybrid model is equivalent to a model where all the
OT-calls are performed in the first round and all other rounds use private point-to-point
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channels. Thus, the “only difference” between the 2MPRE model and the OT-hybrid model
is whether the degree-2 functionality is being invoked before the plain-model sub-protocol
or after it.

2.2 Equivalences and Implications

Theorem 2.1 implies affirmative answers to Questions 1.2 and 1.3 with t = ⌊2n/3⌋. We prove
that 2MPREs are also necessary for the resolution of these questions.

Theorem 2.3 (Necessity of 2MPRE). The following holds for every n-party functionality f
and privacy threshold 1 ≤ t ≤ n.

1. If f non-interactively t-privately reduces to some 3-party functionality, then f has a
t-private 2MPRE.

2. If f can be t-privately computed in 3 rounds in the 2-round OT hybrid model, then f
has a t-private 2MPRE.

The results of [3] imply that if f has t-private 2MPREs then it non-interactively t-
privately reduces to the following 3-party variant of OT (hereafter referred to as TOT).
Given a pair of bits (x1, y1) from Alice, and a pair of bits (x2, y2) from Bob, the functionality
delivers to Carol the value x1x2+y1+y2 where addition and multiplication are computed over
the binary field. Alice and Bob receive no output.5 TOT takes its input from only 2 parties
and deliver it to the third party and so it can be seen as an extremely simple variant of a
3-party functionality. Nevertheless, by combining Theorem 2.3 with the above implication,
we conclude that TOT is complete for 3-party functionalities. Finally, we observe that TOT
can be easily computed in 3 rounds in the 2-round OT hybrid model (see Section 6). We
therefore derive the following equivalence.

Corollary 2.4. Let f be an n-party functionality and let 1 ≤ t ≤ n be some integers. The
following statements are equivalent:

1. f can be realized by t-private 2MPRE.

2. f non-interactively t-privately reduces to TOT.

3. f non-interactively t-privately reduces to some 3-party functionality.

4. f can be t-privately computed in 3 rounds in the 2-round OT hybrid model.

The theorem yields an equivalence between Questions 1.2, 1.3 and 1.5. This equivalence
is fairly strong: it holds for each functionality separately and carries to the statistical setting
as well while preserving correctness and privacy errors.

5We refer to this as “3-party OT” since the 2-party version of this functionality, where the output is
delivered to, say, Alice, is essentially equivalent to the standard 1-out-of-2 OT.
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The client-server model. Let us get back to the client-server model (Question 1.1). It
was shown in [4] that t-private 2MPREs imply non-interactive t-private client-server proto-
cols. As an immediate corollary of Theorem 2.1, we derive the following statement.

Corollary 2.5. Every n-party functionality has a non-interactive client-server MPC with
privacy against any coalition that consists of a minority of the m servers and up to ⌊2n/3⌋
of the n clients. For the case of 3 clients, we derive privacy against an arbitrary (mixed)
coalition of clients and a minority of the servers.

Being an information-theoretic protocol, our construction is fairly efficient and may turn
to be useful in 3PC applications.

2.3 2MPREs vs Active Perfect-Privacy

In an attempt to obtain better 2MPREs with privacy threshold larger than ⌊2n/3⌋, we
reveal a new connection to the problem of achieving perfect-privacy under active attacks
(Question 1.4). Specifically, we show that any protocol in the OT-hybrid model with perfect
t-privacy under active attacks and passive perfect (or statistical) correctness can be turned
into a t-private 2MPRE with statistical correctness error. We find this implication quite sur-
prising; the protocol is an actively-secure primitive with no round-complexity requirements,
whereas the 2MPRE is a passively-secure object whose main feature is low interaction. In
fact, by weakening the notion of active attacks we derive a surprising equivalence between
these 2 objects. Loosely speaking, we consider a weakly-active adversary that corrupts a
subset T of the parties and deviates from the protocol as follows: For every OT-call between
two corrupted parties, the adversary is allowed to replace the receiver’s received message m
with some arbitrary value m′. Once this value is replaced, the adversary must consistently
use this fake value according to the instructions of the protocol. For example, if the protocol
instructs the receiver to pass m to all the parties, then the adversary passes m′ to all the
parties. (See Section 7 for a formal definition.)

We prove the following theorem.

Theorem 2.6. Let f be an n-party public-output functionality and let 0 ≤ t ≤ n be an
arbitrary privacy threshold. The functionality f has a protocol in the OT-hybrid model with
statistical (passive) correctness and t-perfect privacy against weakly-active adversaries if and
only if f has a t-private 2MPRE with statistical correctness error.

The error can be reduced to an arbitrarily small ϵ with O(log(1/ϵ)) overhead via standard
error-reduction techniques. A public-output functionality is a functionality that delivers the
same output to all the parties; it is known that general functionalities can be reduced to
public-output functionalities via a non-interactive reduction.

Note that in the honest-majority setting, any protocol with perfect passive t-privacy is
also t-perfectly private against a weakly-active adversary (since there are no calls to OT).
In this setting, Theorem 2.6 yields a new alternative construction of 2MPREs. In fact, as a
by-product, we derive a new completeness result in the honest-majority setting.
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Theorem 2.7 (completeness of AND ◦ EQ for honest majority). In the honest majority
setting, every n-party functionality f non-interactively reduces to multiple parallel calls to
AND ◦ EQ functionality. The reduction has perfect privacy and an arbitrarily small 1-sided
statistical correctness error.

For parameters ℓ and k, the predicate AND ◦ EQ takes ℓ pairs of k-bit strings, computes
for each pair an equality bit vi that determines whether the ith pair is equal, and outputs
the logical AND of all the bits v1, . . . , vℓ. Specifically, we allocate a single equality for each
pair of parties (i.e., ℓ =

(
n
2

)
).

Features of the AND ◦ EQ predicate. Since EQ(x, y) =
∧

i(xi ⊕ ȳi), the AND ◦ EQ
predicate can be replaced by a conjunction of parities of pairs of bits. Another feature of
this predicate is the following physical implementation: suppose each pair of parties are
connected by pipes (alternatively, electrical wires), one for each comparison of two bits held
by these parties. For each pipe (wire), one can ensure that water (electricity) flows through
only if equality holds. For instance, an input bit may determine the position of a switch,
where the two switches need to be aligned to enable flow. Finally, connecting all pipes via
an Euler path, the output of the AND ◦EQ predicate corresponds to whether or not the flow
gets through the system.

2.4 Techniques

To illustrate some of our techniques, let us focus on the 2MPRE construction and on the
implications of protocols that achieve perfect-privacy under active attacks.

2.4.1 Constructing 2MPREs

Our new construction (Theorem 2.1) is based on two components. First, we introduce a new
round-collapsing lemma that turns a 2-round protocol that satisfies some “nice” form into a
2MPRE. Then, we design a nice protocol with ⌈2n/3⌉-privacy and collapse it into a 2MPRE.
Let us elaborate on these steps.

Round-collapsing lemma. Recall that a 2MPRE can be viewed as a non-interactive
protocol that makes only parallel calls to some degree-2 functionalities (WLOG, we may use
only TOT calls). Consider the seemingly more liberal model where the parties are allowed
to make a single round of communication over private point-to-point channels before calling
the TOT functionalities. We prove that such a nice protocol π can be turned into a 2MPRE.
To explain the high-level idea, let us assume that the protocol π makes a single call to TOT
where A and B are the senders with inputs f and g, respectively, and C receives TOT(f, g).
The messages f and g are computed based on first-round messages that were sent to A
and B during the first round by all the parties P1, . . . , Pn. Denote by a = (a1, . . . , an) and
b = (b1, . . . , bn) the vectors of these first-round messages. Our goal is to replace the second-
round call to TOT with many first-round calls to TOT. All these TOTs are delivered to the
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receiver C and the pair of senders range over all possible pairs of the form (A,B), (A,Pi)
or (B,Pi). Let us imagine, for a moment, that the original TOT computation TOT(f, g) is
replaced with some multi-output function H(f, g) in which each output depends on a single
bit either of f or of g. Moreover, let us assume that each bit of f = f(a) and g = g(b) depends
on a single bit of the input. In this case, each output of H depends on some message, ai or
bi, that some Pi have sent in the first round. Therefore, the corresponding bit of H could be
delivered to C directly at the first round by some party Pi. Of course, we cannot really hope
for such single-bit dependencies. Instead, we replace each of the above computation with
a fully-decomposable randomized encoding [29, 2]. Such an encoding preserves the original
information while maintaining privacy, at the expense of using some secret randomness. The
crucial observation is that in our case the randomness can be chosen either jointly by A and
B (for randomizing the TOT part), or solely by A (for randomizing the f part) or solely by B
(for randomizing the g part). This is due to the fact that we do not need to hide f (resp., g)
from A (resp., B). Overall, this allows us to collapse the computation to first-round calls to
multiple 2-party functionalities.6 The latter can be trivially encoded by 2MPRE, which, by a
proper form of composition, leads to 2MPRE for the entire computation. For full details see
Lemma 4.2 and its proof. By applying the reduction repeatedly, one can turn a multi-round
plain-model protocol whose last round makes calls to degree-2 ideal functionalities into a
2MPRE, establishing the equivalence of these 2 models. The round-preserving lemma plays
a central role in our constructions as well as in our negative results about the necessity of
2MPREs.

Nice protocols. Equipped with the round-collapsing lemma, we explore the power of nice
protocols. To illustrate the power of the model, let us start by observing that for degree-3
computation (which is known to be complete [29]), the passive honest-majority version of the
BGW protocol [10] gives rise to a nice protocol! In the standard description of the protocol,
in (R1) the parties secret share their inputs, then the parties multiply their shares locally and
(R2) apply a round of degree-reduction, then the parties apply another local multiplication
and (R3) publish the randomized shares. Since degree reduction is a linear operation one
can replace the last 2 rounds (including the second local multiplication) with a call to a
degree-2 functionality, and derive a “nice” protocol. The resulting construction can be
viewed as an abstract version of a recent algebraic construction of honest-majority arithmetic
2MPREs [35]. The round-collapsing lemma allows us to derive this result immediately in a
conceptually clean way.

Observe that the BGW-based 2MPRE works even if the ideal degree-2 functionality is
only private against a corrupted minority. Put differently, we did not use the full power
of the degree-2 oracle that provides privacy against an arbitrary coalition. Our result for
t = ⌊2n/3⌋ is derived by making a stronger use of this resource. Following BGW, we dedicate

6A related observation is in the heart of other recent round reduction techniques [25, 11, 4], though we
do not see a way to obtain our result based on their techniques. Specifically, [25, 11] makes a non-black-box
use of OTs and [4] exploit the specific properties of Yao’s based randomized encodings. In particular, the
latter result does not seem to extend to arithmetic protocols while our result does.
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the first round to input sharing, except that this time we use a CNF-based secret sharing
scheme. That is, we additively share each input into

(
n
t

)
shares where each share corresponds

to some “unauthorized” t-subset T of the parties, and hand the corresponding share to all
parties outside T . Now a degree-3 computation boils down to a sum of degree-3 monomials
over the additive shares. A threshold of t = ⌊2n/3⌋ − 1 guarantees that for each monomial
there must exists a party who holds 2 variables of the monomials. (A slightly modified
version yields t = ⌊2n/3⌋.) By locally computing these values, we can realize the remaining
parts via a call to a degree-2 functionality. See Section 5. We note that a similar degree-
reduction technique was previously used in the contexts of communication complexity [5] and
information-theoretic private information retrieval [9]. The current application is unique in
that it applies this technique in the context of feasibility rather than efficiency.

2.4.2 2MPREs from Perfect Active Privacy

Consider the following MPC-in-the-head type approach [31, 32] for transforming a plain-
model (passively) t-private protocol π to a t-private 2MPRE. Each party Pi samples locally
a random tape and guesses randomly a sequence of incoming messages. Then Pi computes,
based on this random view, the vector of outgoing messages that should be sent in π given this
view. Finally, Pi sends her guesses for the incoming messages together with the computed
outgoing messages to an ideal functionality V . The functionality V checks that the local
views match; namely, that each guessed incoming message is equal to the corresponding
outgoing message. If all these tests pass, V returns the output of the protocol (assume wlog
that this output appears in the transcript), say to all the parties. Otherwise, V outputs
zero.

It can be shown that the resulting protocol σ is perfectly private. Correctness holds when
all the guesses succeed which happens with probability 2−c where c is the communication
complexity of π. Since privacy is perfect we can arbitrarily reduce the correctness error
via repetition. The ideal functionality V can be written as a conjunction of Equality tests.
Since Equality of two bits is a linear function over F2, and since AND has a degree-2 RE
(with statistical correctness error), V can be replaced with a degree-2 functionality. By
instantiating π with a perfect plain-model honest majority protocol (e.g., BGW) we obtain
another construction of honest-majority 2MPRE, this time with a statistical correctness
error. (Note that so far π is only required to be passively private.)

In order to obtain an MPRE in the honest-minority setting, we start with a protocol π
that operates in the OT-hybrid model and add pair-wise consistency checks over OT values.
That is, each party guesses the incoming messages and incoming OT messages and computes
the corresponding outgoing messages and OT-inputs. Now V verifies that the local views
are pair-wise consistent. Unfortunately, an OT consistency check corresponds to a quadratic
relation. Since these tests are being fed into a degree-2 function (the randomized encoding
of AND), we get a degree-3 encoding of V . We bypass the problem by letting the pair of
parties that use the OT call to locally sample part of the randomness of the RE. This allows
us to reduce the degree at the expense of leaking some information about the inputs of V .
We show that this leakage can still be simulated if the original protocol π is weakly-active
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perfectly private. See Section 7 for more details.

Organization. Following some preliminaries in Section 3, we relate 2MPREs to non-
interactive protocols in the TOT-hybrid model and prove the round-collapsing lemma in
Section 4. We present our main construction in Section 5, and dedicate Section 6 to the
equivalence between 2MPREs and protocols in the 2-round-OT hybrid model. Finally, in
Section 7, we establish the equivalence between 2MPREs and perfect privacy under weakly-
active attacks. Some MPC background appears in the appendix.

3 Preliminaries

We assume familiarity with standard MPC definitions. The relevant background appears in
Appendix A.We will extensively use randomized encoding (RE) of functions and multiparty
randomized encoding as means for transforming and manipulating protocols.

Definition 3.1 (Randomized Encoding of functions [29]). Let f : X → Y be a function.

We say that a function f̂ : X × R → Z is a δ-correct and ϵ-private randomized encoding
(RE) of f if the following holds:

• (δ-correctness) There exists a randomized algorithm Dec such that for every input x ∈
X,

Pr
r←R

[
Dec(f̂(x; r)) ̸= f(x)

]
≤ δ

• (ϵ-privacy) There exists a randomized algorithm Sim such that for every x ∈ X, the
distributions

Sim (f(x)) and f̂(x; r), where r ← R,

are ϵ-close in statistical distance.

By default, we assume that both correctness and privacy are perfect, i.e., ϵ and δ are both
zero.

By default, the set X (resp., R,Z) is a set of strings of some fixed length. An RE, f̂ , is

fully decomposable if each of its outputs f̂i(x; r) depends on at most a single input bit of x.

The encoding f̂ has degree d if each of its outputs can be written as a degree-d polynomial
over a field F (by default the binary field). If X = Fn, R = Fρ and Z = Fs, then each output

f̂i(x, r) can be written as a degree-d polynomial in the inputs (x1, . . . , xn, r1, . . . , rρ). The
encoding is d-local if each output depends on at most d inputs (x1, . . . , xn, r1, . . . , rρ). The

complexity of an encoding f̂ is s if the encoding can be computed, simulated, and decoded
by s-size circuits. In the asymptotic setting, when f is treated as a polynomial-time uniform
family of circuits, s is required to be polynomial-time bounded and the circuits for encoding,
decoding and simulating should all be uniform. All known RE constructions satisfy these
properties.
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Functionalities. An n-party functionality is a function that maps the inputs of n parties
to a vector of outputs that are distributed among the parties. Without loss of generality, we
assume that the inputs and outputs of each party are taken from some fixed input and output
domains X and Y (e.g., bit strings of fixed length). We will also make use of randomized
functionalities. In this case, we let f take an additional random input r0 that is chosen
uniformly from some finite domain R, and view r0 as an internal source of randomness that
does not belong to any party. We typically write f(x1, . . . , xn; r0) and use semicolon to
separate the inputs of the parties from the internal randomness of the functionality.

Definition 3.2 (Multiparty Randomized Encoding (MPRE) [4]). Let f : Xn → Y n be an n-

party functionality. We say that an n-party randomized functionality f̂ : (X ×R)n×R→ Zn

is a multiparty randomized encoding of f if the following holds:

• (δ-correctness): There exists a decoder Dec such that for every party i ∈ [n], and every
input x = (x1, . . . , xn) it holds that

Pr
(r0,r1,...,rn)←Rn+1

[Dec(i, ŷ[i], xi, ri) = y[i]] ≤ δ,

where y = f(x1, . . . , xn), ŷ = f̂ ((x1, r1), . . . , (xn, rn); r0), and y[i] and ŷ[i] are the re-

strictions of y and ŷ to the coordinates delivered to party i by f and f̂ , respectively.

• ((t, ϵ)-privacy): There exists a randomized simulator Sim such that for every t-subset
T ⊆ [n] of parties and every set of inputs x = (x1, . . . , xn) it holds that the distributions

Sim(T, x[T ], y[T ]), where y = f(x1, . . . , xn)

and the distributions
(x[T ], r[T ], ŷ[T ])

where
ŷ = f̂ ((x1, r1), . . . , (xn, rn); r0) , and (r0, r1, . . . , rn)← Rn+1

are ϵ-close in statistical distance.

We say that f̂ is perfectly correct if it has δ-correctness for δ = 0, and perfectly t-private
if it has (t, ϵ)-privacy for ϵ = 0. We say that f̂ is t-private if it is both perfectly correct and
perfectly t-private.

Definition 3.3 (Effective degree and 2MPRE). A (possibly randomized) n-party function-
ality f : Xn × R→ {0, 1}m has effective degree d if there exist a tuple of local preprocessing
functions (h1, . . . , hn) and a degree-d function h such that

h (h1(x1), . . . , hn(xn); r) = f(x1, . . . , xn; r),

for every input x1, . . . , xn and internal randomness r.
A functionality f has a t-private quadratic MPRE (2MPRE) if it has a t-private MPRE

with an effective degree of 2. Unless stated otherwise, we assume, by default, that the privacy
and correctness errors are zero.
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If f has a t-private 2MPRE h (h1(x1), . . . , hn(xn); r) then it can be computed by a non-
interactive t-private reduction: First, the ith party locally computes hi on her input and
random tape; then she sends the result to the degree-2 functionality h; and finally she locally
computes her output by using the MPRE decoder. In fact, the converse direction also holds,
and so f has a t-private 2MPRE if and only if it reduces to a degree 2 functionality g via a
non-interactive t-private reduction that makes a single call to g.7 (See Proposition A.3 for a
more general statement.)Despite this equivalence, the MPRE abstraction will be useful as it
will allow us to conveniently manipulate protocols and gradually turn them into 2MPREs.
Specifically, we will often use the composition lemma (Lemma A.5)that asserts that if f is
encoded by an MPRE g, and g is encoded by an MPRE h then h encodes f . (This lemma
together with few other useful properties of MPREs appear in Section A.2.) Finally, let us
make the following simple, yet useful, observation.

Observation 3.4. Let f be a 3-party functionality that takes its input from only 2 parties
(aka 2-input functionality). Then, f has a 3-private 2MPRE.

Proof. Let {P0, P1, P2} be the three parties and assume that only P0 and P1 give inputs to
the functionality. Now write each output of f as a polynomial and note that each monomial
can be broken into a product of P0’s inputs and P1’s inputs. These respective products can
be computed locally by P0 and P1, leading to a trivial (deterministic) 2MPRE.

4 2MPRE and TOT-hybrid model

The TOT-hybrid model. A protocol in the TOT-hybrid model consists of black-box
calls to the TOT functionality. We assume that each 3-tuple of parties (A,B,C) can make
a call to an ideal TOT functionality TOT : {0, 1}2 × {0, 1}2 × {⊥} → {⊥}× {⊥}× {0, 1}
where

TOT
(
(x1, y1), (x2, y2),⊥

)
= (⊥,⊥, x1x2 + y1 + y2).

By letting A = C or A = B respectively, TOT calls can emulate OT calls as well as 2-wise
private channels. Still, it will be sometimes convenient to make explicit use of private point-
to-point channels. We will mainly be interested in non-interactive protocols in this model
where the parties make a single round of parallel calls to the TOT functionality.

The following claim can be derived from [3] who studied a close variant of TOT known
as (2, 3)-MULTPlus. For completeness, we provide a self-contained proof in Section 4.1.

Claim 4.1. If a functionality F has a t-private 2MPRE then it has a t-private non-interactive
protocol in the TOT-hybrid model.

The converse direction trivially holds since by definition, a non-interactive protocol in
the TOT-hybrid model is also a non-interactive reduction to a degree-2 functionality. The
following lemma provides a stronger converse: It shows that a 2MPRE can be derived even if

7The requirement for a single call is without loss of generality in the semi-honest setting, since multiple
parallel calls can be packed in a single call.
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we start from a 2-round protocol in the TOT-hybrid model whose first round only consists of
private messages (carried over private point-to-point channels) and its second rounds consists
of parallel calls to the TOT functionality.

Lemma 4.2 (Collapsing a round in TOT-hybrid model). Suppose that the n-party function-
ality f can be realized by a t-private protocol π in the TOT-hybrid model whose first round
only consists of private messages (carried over private point-to-point channels) and its second
round consists of parallel calls to the TOT functionality. Then f has a t-private 2MPRE
f ′. Moreover, f can be realized by a t-private non-interactive protocol σ in the TOT-hybrid
model. The transformation holds even if π has a correctness error or a privacy error while
preserving these errors.

Before proving the lemma, we note that once we can collapse a single plain-model round,
we can also collapse multiple plain-model rounds. Specifically,

Corollary 4.3 (Collapsing multiple rounds in TOT-hybrid model). Suppose that the n-party
functionality f can be realized by a t-private multi-round protocol π in the TOT-hybrid model
that makes TOT calls only in the last round (al;l other rounds are in the plain model). Then
f has a t-private 2MPRE f ′. Moreover, f can be realized by a t-private non-interactive
protocol σ in the TOT-hybrid model. The transformation holds even if π has a correctness
error or a privacy error while preserving these errors.

Proof of Cor. 4.3. By induction on the round complexity k. For k = 1 the statement is
trivial. Assume that the statement holds for k, and consider a (k + 1)-round protocol π
for f that makes calls to TOT only in the last round. We decompose π to a plain-model
protocol π1 that consists of the first k − 1 rounds π and to a protocol π2 that consists of
the last 2 rounds of π. Accordingly, the first round of π2 is a “plain-model” round and the
second round makes TOT-calls. We can (artificially) define a functionality g that is being
perfectly realized by π2 with full security (e.g., g takes the state of each party and delivers
the to her the messages that are delivered by g). By Lemma 4.2, g can be perfectly realized
by a 2MPRE with full security, and so it admits a protocol π′2 that makes a single round of
calls to TOTs. By appending π′2 to π1 (and applying a proper local decoding in the end),
we derive a k-round protocol π′ that realizes f with correctness and privacy guarantees that
are identical to π. By construction, π′ makes TOT calls only in the last round, and so the
corollary follows by the induction hypothesis.

We move on and prove Lemma 4.2.

Proof of Lemma 4.2. Let f : Xn → {0, 1}m be an n-party functionality, and let π be δ-
correct (t, ϵ)-private protocol in the TOT-hybrid model whose first-round only consists of
private messages and its second-round consists of parallel calls to the TOT functionality.
For each call to the TOT functionality with parties A ∈ P and B ∈ P and receiver C ∈ P ,
the protocol π can be viewed as computing the following functionality o:
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• Each party Pi locally computes messages ai and bi based on its private input and
randomness and sends ai to A and bi to B. As part of this step, A (resp., B) sends
her private input/randomness to herself.

• The receiver C gets the TOT output

TOT((f0(a), f1(a)), (g0(b), g1(b))),

where a = (ai)i∈[n] and b = (bi)i∈[n] and f0, f1, g0, g1 are some Boolean functions. (In π
the party A computes f0 and f1 locally and the party B locally computes the functions
g0, g1).

To prove the lemma it suffices to encode the functionality o by a perfect MPRE of effective
degree-2. To gain some intuition, imagine the case where a and b are selected by A and B,
respectively. Then the output that is delivered to C is a 2-party functionality that depends
only on values that can be computed by either A or B. Such a function trivially has an
effective degree of 2 as per Observation 3.4. Our setting is slightly more involved: While
some inputs are neither chosen by A nor by B, each of these inputs is being leaked either to
A or to B. We show that in this case one can still obtain a 2MPRE.

As our first step, we construct an MPRE for o based on degree-3 RE as follows. Let
ô(a, b; r) be the standard degree-3 fully-decomposable RE from [29, 2] where r = (r1, . . . , rm)
is the internal randomness of the RE. Consider the functionality ô1 in which party A ran-
domly samples α = (αi)i∈[m], party B randomly samples β = (βi)i∈[m], and party Pi locally
computes ai and bi as before. The functionality ô1 delivers the value

ô(a, b;α + β)

to C and the vector a to A and b to B. We claim that ô1 is an MPRE of o. Indeed, correctness
follows from the correctness of the RE. As for privacy, fix a set T ⊆ [n] that contains the
receiver C (if C /∈ T simulation is trivial). Observe that if A or B are not in T , then privacy
follows from the privacy of the RE (since, conditioned on the view of the parties in T , the
distribution of C’s output in ô1 is identical to the distribution of ô(a, b;α + β)). Finally, if
both A and B are in T , then simulating C’s output is trivial since we have both a and b as
part of T ’s view in o.

Next, our goal is to construct a 2MPRE for ô1. First, let us take a step backward and
recall that the degree-3 RE ô(a, b; r) is so-called fully-decomposable RE, which means that
each of its outputs is either a degree-2 function (of the form ri + rj + rk or rirj + rk or
xiri + rj) or an expression of the form

xrjrk + rℓ

where x is either ai, bi or ri and ri, rj, rk, rℓ are part of the internal random bits r =
(r1, . . . , rm) of the RE. Recalling that r = α + β, observe that each output bit that ô1
delivers to C is of the form

x(αj + βj)(αk + βk) + (αℓ + βℓ) = xαjαk + xαjβk + xβjαk + xβjβk + (αℓ + βℓ) (1)
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where x is either ai, bi or αi + βi. Let us start by breaking this sum to separate monomials.
That is, we define the functionality ô2 that operates identically to ô1 except that each bit in
(1) that ô1 delivers to C is replaced with the tuple

(xαjαk + s1, xαjβk + s2, xβjαk + s3, xβjβk + (αℓ + βℓ)− (s1 + s2 + s3)) (2)

where s1, s2 and s3 are uniform bits that are sampled as part of the internal randomness of
the functionality ô2.

8 The tuple in (2) is a tuple of 4 random bits whose sum equals to (1).
Therefore, (2) perfectly encodes (1) and so ô2 perfectly encodes ô1.

Observe that the first entry of (2) has an effective degree of 2 since A can precompute
αj · αk. Similarly, the last entry has an effective degree 2 since B can precompute βj · βk.
Moreover if x = αi+βi then the second and third entries of (2) have also an effective degree of
2. It remains to handle the second and third entries in the case where x is either ai or bi. Let
us focus on the second entry and assume that x = ai (the other cases are handled similarly).
Consider the functionality ô3 that is identical to ô2 except that instead of delivering the
second entry of (2) to C we deliver to C the tuple

(ai + α′, αjβk + s′, ais
′ + α′αjβk + α′s′ − s2) . (3)

Here s′ is sampled as part of the internal randomness of the functionality, and, crucially, α′

is sampled uniformly by A. Therefore, (3) has an effective degree of 2. We claim that ô3
perfectly encodes ô2. Indeed, given an output (y1, y2, y3) of (3), we can decode the second
entry of (2) by outputting the value y1y2 − y3. As for privacy, consider a set T ⊊ [n] and
assume that C ∈ T (again the other case is trivial). If A /∈ T , then simulation is simple:
given y, the second entry of (2), sample y1, y2 uniformly at random and set y3 = y1y2 − y.
If A ∈ T , then the simulator is given y,ai and α′ as part of A’s private tape, accordingly we
set y1 = ai + α′, sample y2 uniformly and set y3 = y1y2 − y. It is not hard to verify that the
simulation is perfect.

By handling the third entry of (2) similarly, we derive an MPRE of effective degree
2 that encodes ô2. By the MPRE composition lemma (Lemma A.5),we conclude that the
functionality o admits a perfect 2MPRE. Overall, we encoded f by a a δ-correct (t, ϵ)-private
f ′.

To prove the “Moreover” part, observe that, by Claim 4.1, f ′ can be perfectly realized
by a non-interactive protocol π′ in the TOT-hybrid model. By Proposition A.3,π′ admits a
non-interactive protocol σ in the TOT-Hybrid model that realizes f with δ-correctness and
(t, ϵ)-privacy, as required.

4.1 Proof of Claim 4.1

We present such a protocol for each output bit of F separately. For concreteness, let us focus
on the first output bit F1, and let us assume, wlog, that this output is delivered to a single

8In fact, we could take si to be the sum of a random bit that is sampled by A and a random bit that is
sampled by B.
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party denoted by P . By assumption, F1((x1, r1), . . . , (xn, rn)) can be written as a degree-2
function of the form ∑

i≤j∈[n]

ai,jaj,i

where, for every i, j ∈ [n], the value ai,j = ai,j(xi; ri) is computed locally by the ith party.
The protocol π′ proceeds as follows.

1. Each party Pi computes locally the values ai,i, . . . , ai,n and, in addition, she samples,
for each j ∈ [n], a random pad ri,j ← {0, 1} under the constraint that

∑
j ri,j = 0

where addition is over the binary field.

2. For every i ≤ j ∈ [n], the parties Pi and Pj use a constant number of parallel calls to
TOT to deliver to P the value ai,jaj,i + ri,j + rj,i.

3. The party P outputs the sum of all the values that were received by the TOT calls.

Clearly, the protocol can be realized by making only parallel calls to the TOT oracle.
Correctness holds since P outputs∑

i≤j

ai,jaj,i + ri,j + rj,i =
∑
i≤j

ai,jaj,i.

For privacy, we describe a simulator for a subset T ⊂ [n] as follows. If P /∈ T , the view
of the parties in T consists only of their inputs and their local randomness, and so it can
be trivially simulated. If P ∈ T we use the following simulator. Given the output y, and
inputs/random tapes for the parties in T , the simulator defines the output, yi,j, ∀i ≤ j ∈ [n],
of the (i, j)th call to the TOT functionality as follows. If i, j ∈ T , the simulator computes
yi,j as in the protocol based on the inputs and random tapes of Pi and Pj. Otherwise, the
simulator samples a random yi,j ← {0, 1} subject to the constraint that

∑
i,j yi,j = y.

To analyze the simulator, let us assume, wlog, that the set of honest parties [n] \ T
contains exactly the first k parties P1, . . . , Pk. Fix some input to all parties, and random
tapes for the parties in T , and assume that the output of F1 is y. For i ≤ j ∈ [n], denote by
yi,j, the random variable that describes the output of the (i, j)th TOT call in the protocol.
Since (yi,j)i,j∈T is computed just like in the simulation, it suffices to show that the vector

((y1,j)1≤j≤n, (y2,j)2≤j≤n, . . . , (yk,j)k≤j≤n) (4)

is uniformly distributed subject to
∑

i≤j yi,j = y. Since the latter equality always holds (as
shown by the correctness analysis) it suffices to show that the vector (4) with its last entry
omitted,

Y = ((y1,j)1≤j≤n, (y2,j)2≤j≤n, . . . , (yk,j)k≤j≤n−1) ,

is uniform. Fix the random tapes of the parties in T and observe that each entry yi,j of Y
can be written as the sum of some value z and some unique independent random bit ri′,j′ .
Specifically, for i < k and j ̸= k, we set (i′, j′) to (i, j). For i < k and j = k we set (i′, j′) to
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(j, i). Finally, for i = k and every j ∈ [k, n− 1], we set (i′, j′) to (i, j). We therefore defined
a 1-1 mapping from the random bits

R =
(
(ri,j)i∈[k−1],j∈[i,k−1], (rk,j)j∈[n−1]

)
to the vector Y . (Here the notation [a, b] stands for all the integers i for which a ≤ i ≤ b
and the notation [b] stands for the interval [1, b].) The claim follows since the vector R is
uniformly distributed. This is true even though, for every i, the vector (ri,1, . . . , ri,n) was
chosen subject to

∑
j ri,j = 0; indeed, for every i, there exists at least a single j for which

the random variable ri,j does not appear in R.

5 New 2MPRE Construction

In this section we present our main construction and prove Theorem 2.1.

5.1 2MPREs for 3-party functionalities

We begin with the following simple observation that deals with a degree-3 function whose
output is delivered to one of the parties who owns one of the multiplicands as an input.

Claim 5.1. The Boolean n-party functionality

f ((x1, y1) , (x2, y2) , (x3, y3) , y4, . . . , yn) =

(
x1x2x3 +

n∑
i=1

yi,⊥, . . . ,⊥

)

(where additions and multiplications are in F2) that delivers the output to P1 admits a
2MPRE with perfect correctness and perfect privacy against arbitrary coalitions.

Proof. The MPRE f̂ employs private randomness r that is sampled internally by the func-
tionality. (By Proposition A.4,one can always replace it by the sum

∑
ri where ri is sampled

locally by Pi.) The output of f̂ is delivered to P1 and it consists of two entries:(
x1r +

∑
i

yi, (1− x1)r + x2x3 +
∑
i

yi

)
.

Given the output (z0, z1), party P1 decodes the value of f by outputting zx1 . Indeed, if
x1 = 0 then the output z0 is

∑
i yi and if x1 = 1 then the output z1 is x2x3 +

∑
i yi, as

required. To prove privacy, consider a set of corrupted parties T ⊊ [n] and assume that
P1 ∈ T (the other case is trivial). Given the output y, the inputs x1, y1 and possibly the
inputs of other parties, the simulator samples a random bit b and outputs the value (z0, z1)
where zx1 = y and z1−x1 = b. It is not hard to verify that this is a perfect simulator.

As an immediate corollary we derive the following theorem which implies Corollary 2.2.
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Theorem 5.2 (Corollary 2.2 restated). Every 3-party functionality f admits a 2MPRE with
perfect correctness and perfect privacy against arbitrary coalitions.

Proof. By the completeness of degree-3 REs [29], f can be perfectly encoded by a degree-3
RE f ′ where each of its outputs is of the form x1x2x3 + r1 + r2 + r3 where xi is an input
of Pi and ri is a linear combination of the random inputs of Pi. Therefore, by composition
(Lemma A.5),the theorem follows from Claim 5.1.

Remark 5.3 (Arithmetic extension of Theorem 5.2). The MPRE of Claim 5.1 can be gen-
eralized to work over an arbitrary finite field F. Indeed, if we treat the functionality f from
Claim 5.1 as defined over F, then we can construct an MPRE as follows. Sample internally
|F| random elements (rc)c∈F from F and send to P1 the vector (zc)c∈F where

zc = (xc − c)rc + c · x2 · x3 +
∑
i

yi.

The analysis is similar to the one presented in Theorem 5.2. A similar arithmetic extension
applies to essentially all the results in this paper.

5.2
⌊
2n
3

⌋
-private 2MPRE

Theorem 5.4 (Theorem 2.1 restated). Let n and t be positive integers for which t < 2n+1
3

.
Then, every n-party functionality admits a t-private 2MPRE.

Unfortunately, the complexity of the resulting MPRE is exponential in n. (This is the
only result in this paper that suffers from this drawback.) However, by Theorem A.7, one
can derive an efficient poly(n)-time version of the 2MPRE at the expense of reducing the
privacy threshold to 2

3
− ϵ for an arbitrary small constant ϵ > 0. (In fact, we can even take

ϵ = on(1) by using Remark A.8.)

Proof. Consider the n-party functionality f that takes a pair of bits (a, α) from P1, (b, β)
from P2 and (c, γ) from P3 and delivers the value

abc+ α + β + γ

to some designated receiver R ∈ {P1, . . . , Pn }. Since this functionality is known to be
complete under non-interactive reductions [29, 2, 12] (for an arbitrary privacy threshold), it
suffices to focus on f . Observe that if R ∈ {P1, P2, P3 } the theorem follows from Claim 5.1,
hence we will focus on the case where R /∈ {P1, P2, P3 }. For concreteness, set R = Pn.

We will construct a t-perfect 2-round protocol π for f whose first round makes use of
only private point-to-point channels and its second round makes parallel calls to TOT. By
Lemma 4.2, such a protocol can be compiled back into an MPRE with an effective degree of
2.

Before presenting the protocol π, let us start with the following simple protocol π0:
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• At the first round, P1 shares its input a via a t-private CNF secret sharing among
the parties P . That is, for each t-subset S ⊂ P , party P1 samples a random bit aS
conditioned on a =

∑
S aS and delivers aS to all the parties Pi, i /∈ S. Similarly, P2

shares b into b =
∑

T⊂P,|T |=t bT and sends bT to every party Pi, i /∈ T and P3 shares c

into c =
∑

U⊂P,|U |=t cU and sends cU to every party Pi, i /∈ U .

• At the second round, the parties make a call to an ideal functionality g that delivers
the value  ∑

S⊂P,|S|=t

aS

 ·
 ∑

T⊂P,|T |=t

bT

 ·
 ∑

U⊂P,|U |=t

cU

+ α + β + γ

to Pn.

It is not hard to verify that the protocol π0 achieves perfect correctness and perfect t-privacy.
Our next protocol, π1 is obtained by replacing the call to g by a call to a perfect MPRE

for g (with full privacy) and by letting Pn apply the MPRE decoder. Specifically, the MPRE
ĝ is defined via

(aS · bT · cU + rS,T,U)S,T,U , α + β + γ −
∑
S,T,U

rS,T,U ,

where S, T, U range over all t-subsets of P , and where each random bit rS,T,U is taken to the
sum of random bits rS,T,U,1, . . . , rS,T,U,n that are sampled locally by P1, . . . , Pn, respectively.
By Proposition A.3,the privacy and correctness of π1 are inherited from π0.

Next, we claim that each output of ĝ can be perfectly encoded by a functionality of
effective degree-2 (with full privacy). Fix some S, T and U , and let us focus on the output
y = aS · bT · cU + rS,T,U . Define the complement sets by

S := P \ S, T := P \ T, U := P \ U,

and let V = S ∪ T ∪ U . Recall that aS (resp., bT , cU) is known to all the parties in S (resp.,
T , U). We distinguish between two cases.

If Pn ∈ V , then the output y can be perfectly encoded by an MPRE of effective degree
2 by Claim 5.1. Next, suppose that Pn /∈ V . We claim that in this case there must exist a
party that owns at least 2 out of the 3 elements aS, bT , cU , and so the effective degree is 2.
Indeed, assume towards a contradiction, that such a party does not exist. That is, the sets
S, T , U are pairwise disjoint. Since |S| = |T | = |U | = (n− t), it follows that |V | = 3(n− t).
Since t < 2n+1

3
, |V | > n− 1. But V ⊂ {P1, . . . , Pn−1 } and so |V | ≤ n− 1, a contradiction.

Overall, the second round of π1 can be realized by a call to a functionality ĝ of effective
degree 2. Hence, by Claim 4.1, the second round can be replaced by parallel calls to TOT,
and by Lemma 4.2, the resulting protocol can be compiled back into an MPRE with an
effective degree of 2, as required.
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6 2MPREs vs. 2-round-OT-hybrid Model

The equivalence between t-private 2MPREs and the completeness of 3-party functionalities
under non-interactive t-private reductions follows from Corollary 2.2 and Claim 4.1. In this
section we establish an equivalence between 2MPREs and 3-round protocols in the 2-round-
OT-hybrid Model. Recall that in the 2-round OT hybrid model we assume that OT takes 2
rounds. That is, if both parties send their inputs to an OT in round i, the output is delivered
to the receiver at the end of round i + 1. In addition, the parties are allowed to exchange
messages via standard point-to-point private channels.

Remark 6.1 (On the 2-round-OT-hybrid Model). The 2-round-OT-hybrid Model attempts
to capture an information-theoretic reduction to OT with the minimal possible interaction.
(Recall that a single-round reduction in which the parties exchange messages over private
channels and make parallel calls to OT was shown to be impossible in [3].) A natural sugges-
tion is to consider a 2-round reduction that is allowed to make oracle calls to OT. However,
this allows the reduction to make calls to OT both in the first round and in the second round,
which leads to an actual round complexity of 4 when the OT is realized via a 2-round pro-
tocol. Our refined notion of 2-round-OT-hybrid Model is therefore stronger than 2-round
reduction to OT. One could also consider a seemingly stronger model in which the reduc-
tion has 2 rounds but only the first round is allowed to make calls to an ideal OT. Our
theorem shows that such a 2-round “OT-then-plain” reduction is actually equivalent to the
2-round-OT-hybrid Model.

Theorem 6.2. The following holds for every n-party functionality f and every privacy
threshold 1 ≤ t ≤ n. The functionality f can be t-privately computed by a 3-round protocol
π in the 2-round OT hybrid model if and only if it has a t-private 2MPRE. Furthermore,
for the “if” direction the resulting protocol makes OT calls only at the first round and no
private messages are exchanged in the second round and so derive a 2-round “OT-then-plain”
reduction. The transformation preserves the privacy and correctness errors.

The “only if” direction establishes the second item of Theorem 2.3 (whose first item
follows from Corollary 2.2.)

Proof. We begin with the easy “if” direction. It suffices to realize the TOT functionality
with a 2-round protocol π′ in the OT-hybrid model with perfect correctness and perfect
privacy against any coalition, in which only the first round consists of OT calls. Consider a
TOT between the parties, Alice, Bob and Carol, where Alice holds the inputs (x1, y1), Bob
holds the inputs (x2, y2), and Carol should receive z = x1x2+y1+y2. The protocol proceeds
as follows:

1. (Round 1) Alice samples a random bit α, she sends to Carol the value a = y1 − α
and initiates an OT with Bob.9 In this invocation, Alice plays the Sender with inputs
(α, x1 + α) and Bob uses x2 as the selection bit.

9Despite the equivalence of addition and subtraction over the binary field, we use both signs to indicate
that the construction generalizes to general fields.
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2. (Round 3) Given the output m = x1x2 + α of the OT, Bob sends to Carol the value
b = m+ y2.

3. (Output) Carol outputs the sum a+ b.

Clearly, the protocol can be realized in 3 rounds in the 2-round OT-hybrid model (or, more
generally in k+1 rounds given a k-round OT). Correctness can be easily verified. For privacy,
consider any coalition that contains Carol and either Alice or Bob (all other cases are trivial).
Given z = x1x2 + y1 + y2, sample a random bit a and set Carol’s view to (a, b = z − a). A
corrupted Alice adds nothing to the view (except for her inputs). If Bob is corrupted, then
we are also given the inputs (x2, y2) and we can simulate m by b−y2. It is not hard to verify
that the simulation is perfect.

We move on to prove the more interesting “only if” direction. We show that any 3-round
protocol in the 2-round OT-hybrid model can be transformed into a protocol in which the
party first exchanges private messages and then makes parallel calls to 3-party functionalities.
These functionalities can be replaced by 2MPREs (based on Corollary 2.2) and the resulting
2-round protocol can be compiled into a 2MPRE via the aid of the round-collapsing lemma
(Lemma 4.2). Details follow.

Consider the protocol π. For any round number 1 ≤ R ≤ 3 and parties Pi, Pj, let m
R
i,j be

the private message sent from Pi to Pj on round R. Without loss of generality, we further
assume that in each round each party Pi sends to herself her entire private view, including
the input xi and the private random tape ρi. Since the protocol has only 3 rounds and the
OT takes 2 rounds, we may assume that OT calls are performed either on the first round or
on the second round. Let us further assume that, both in round 1 and in round 2, each pair
of parties (Pi, Pj) performs exactly ℓ OT-calls in which Pi is the sender and Pj is the receiver.
Denote by o2i,j = (o2i,j,1, . . . , o

2
i,j,ℓ) and o3i,j = (o3i,j,1, . . . , o

3
i,j,ℓ) the vector of OT-outputs of

the first-round calls and the second-round calls, respectively. Observe that oRi,j arrives at the
end of round R. For every round R ∈ [3] and party i, let

mR
i =

(
mR

1,i, . . . ,m
1
n,i

)
and oRi =

(
oR1,i, . . . , o

R
n,i

)
.

By definition, for R ∈ [3] and i, j ∈ [n] there exist functions fR
i,j, g

R
i,j such that

m1
i,j = f 1

i,j(xj, ρi),

m2
i,j = f 2

i,j

(
m1

i

)
, o2i,j = g2i,j

(
m1

i,i,m
1
j,j

)
,

m3
i,j = f 3

i,j

(
m2

i , o
2
i

)
, o3i,j = g3i,j

(
m1

i ,m
1
j

)
.

Note that the g functions “merge” together the OT computation with the local computation
that is being used in order to generate the input to the OT. To prove the lemma it suffices
to securely compute each of these values by a non-interactive TOT-hybrid protocol with
perfect correctness and perfect privacy against an arbitrary coalition. In fact, by Lemma 4.2,
it suffices to obtain a 2-round protocol π′ that makes TOT calls only in the second round.
First observe that the values m1

i,j,m
2
i,j can be easily computed by a 2-round protocol via

private point-point channels in which m2
i,j can be transferred using a TOT call in the round
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2. Moreover, since the messages o2i,j = g2i,j
(
m1

ii,m
1
jj

)
and o3i,j = g3i,j

(
m1

i ,m
1
j

)
depend only on

values that are known to Pi and Pj after the first round, we can use Observation 3.4, and
deliver them to Pj by making parallel calls to TOT in the second round (where Pi is the
sender and Pj is the selector and receiver). It is left to deliver the value m3

i,j.

Fix some i, j ∈ [n], and let f̂ be a fully decomposable RE of f 3
i,j, e.g., from [2]. Observe

that it suffices to deliver the value of f̂(m2
i , o

2
i ;w) to Pj where the randomness w is chosen

solely by Pi. (Indeed, privacy for coalitions that do not contain Pi follows from the RE
privacy and privacy for coalitions that contain Pi vacuously holds, since m2

i and o2i are given

to the simulator.) Being fully-decomposable, each output of f̂ depends on the randomness
w, selected by Pi, and on at most a single input bit y of m2

i or o
2
i . Thus, after some reordering

of the outputs, we can write f̂(m2
i , o

2
i ;w) as

f̂1(m
2
1,i, o

2
1,i, w), . . . , f̂n(m

2
n,i, o

2
n,i, w)

where the functions f̂1, . . . , f̂n are multi-output functions. Note that o2k,i itself is the result
of g2k,i(m

1
k,k,m

1
i,i). Therefore there exist functions h1, . . . , hn such that for all k ∈ [n] we can

write f̂k(m
2
k,i, o

2
k,i, w) = hk(m

1
k,i,m

1
k,k,m

1
i,i, w). Since the input to hk is being held by only

two parties, Pi and Pj, and is available at the end of the first round, it can be encoded by
a 2MPRE (Observation 3.4). It follows, by Claim 4.1, that hk can be computed by making
parallel calls to TOT at the second round. The theorem follows.

7 2MPREs vs Perfect Privacy under Active Attacks

In this section we will prove Theorem 2.6. Most of the work will be devoted to the construc-
tion of 2MPREs, the converse direction will be proved in Section 7.3. Along the way, we will
also prove Theorem 2.7.

Recall that a public-output functionality is a function that delivers the same output to
all the parties. We begin with the following basic construction.

Construction 7.1. Let π be a protocol that realizes some Boolean public-output functionality
f(x1, . . . , xn). The protocol π may have an arbitrary number of rounds, and may use OT
calls as well as private channels. We construct a non-interactive protocol σ that realizes f
and makes use of an ideal functionality V as follows.

1. (Local pre-computation) First, each party Pi uniformly samples a local view of π. That
is, Pi samples a private random tape ri, and randomly “guesses” a vector of incoming
private messages, and a vector of incoming OT messages corresponding to all the OT
calls in which Pi plays the receiver. Then, Pi appends her input xi to the sampled view,
and computes the corresponding outgoing messages that she would send in π either over
private channels or as inputs to the OT functionality.

2. (Calling V ) The parties send their sampled views and the computed outgoing messages
to an ideal functionality V . We further assume that P1 sends to V her final π-output.
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The functionality V verifies that for every pair of parties, (Pi, Pj), the sampled views
are consistent in the following sense:

• For every message m that is delivered from Pi to Pj it holds that the guess of Pj

for m is equal to the value of the outgoing message m as computed by Pi.

• For every OT-call in which the sender Pi computes her inputs as (a0, a1) and the
receiver Pj computes her input as s, it holds that the value a′ that is guessed by
the receiver equals to a0 if s = 0 and to a1 if s = 1.

If all these pair-wise tests succeed and P1’s output is 1, the functionality V outputs 1
to all the parties. Else, it outputs 0.

3. (Output) The parties terminate with the output that V passes.

Lemma 7.2. If π realizes f with perfect correctness, perfect privacy against a coalition T ,
and a total communication of c bits (where each OT call is counted as a single bit), then
the protocol σ defined in Construction 7.1 realizes f with perfect privacy against T , and a
1-sided correctness error of 1− 2−c.

Proof. Fix an input x = (x1, . . . , xn) for f . It is not hard to see that if f(x) = 0, the
protocol σ always outputs 0. On the other hand, when f(x) = 1 the protocol σ outputs
the correct result only when the sampled views are consistent. Fix the local random tapes
r = (r1, . . . , rn) in π. Under this fixing, all the communication in a real execution of π is
fully determined, and can be represented by a transcript string Cx,r ∈ {0, 1}c whose ith bit
corresponds to the ith bit that is delivered in π from party A = A(i) to party B = B(i)
either via OT or via a private channel. (We assume, wlog, that the communication in π is
ordered in some canonical way). Since each bit of communication is being guessed by the
receiving party uniformly and independently, the parties submit the consistent transcript
Cx,r with probability exactly 2−c.

We move on to privacy. Fix some coalition T . Syntactically, the view of T in π consists
of the input xT = (xi)i∈T the local random tapes rT = (ri)i∈T and all the incoming messages
that a party in T receives. Let IT denote the set of all indices i ∈ [c], such that the ith
message in π is received by a party in T . Given a full transcript C ∈ {0, 1}c, we denote by
C[IT ] the restriction of C to the messages that are delivered to members in the coalition T .
For convenience, let us further assume that the final output of the protocol, y, appears as
part of the view. Similarly, the view of T in σ consists of (xT , rT , C

′[IT ], v) where C
′[IT ] are

the guessed incoming messages, and v is the bit that V delivers.
Consider the following randomized mapping g that maps a T -view (xT , rT , C[IT ], y) under

π to a T -view (xT , rT , C
′[IT ], v) under σ: First, uniformly sample a sequence e = (e1, . . . , ec)

of random bits (where ei = 1 indicates an “incorrect” guess for the ith bit in the full
transcript). Then, copy C[T ] to C ′[T ] and flip the value of the ith entry if i ∈ IT and ei = 1.
Finally, set v to zero if some ei is‘ one, and otherwise set v = y.

We can define a simulator Sim′ for σ as follows. Given xT and an output y, use the
simulator Sim of π to sample a view (xT , rT , C[IT ], y) under π, apply the mapping g and
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output the resulting σ view (xT , rT , C
′[IT ], v). To analyze the simulator, fix an input x to all

the parties. By the privacy of π, the distribution generated by Sim′(xT , f(x)) is identically
distributed to the distribution g(xT , rT , Cx,r[IT ], f(x)) where Cx,r[IT ] is the vector of incoming
messages to T in a real execution of π over the input x and fresh randomness r = (r1, . . . , rn),
and rT = (ri)i∈T .

We complete the argument by showing that g(xT , rT , Cx,r[IT ], f(x)) is distributed identi-
cally to the real execution of σ. We prove that this is the case for every fixing of r. Indeed,
in σ the entire vector of guesses C ′ ∈ {0, 1}c is chosen uniformly at random, and the coali-
tion T receives the restricted transcript C ′[IT ] together with a bit v which is equal to 0 if
C ′ ̸= Cx,r and to f(x) otherwise. Equivalently, we could sample an error vector e← {0, 1}c,
set C ′ = Cx,r ⊕ e and deliver to T the restricted vector C ′[IT ] with the bit v which is set
to 0 if some bit of e is 1, and otherwise takes the value f(x). The resulting distribution is
exactly the one that is sampled by g. The lemma follows.

Remark 7.3 (Handling protocols with imperfect correctness). One can use a variant of
Construction 7.1 in which V outputs an additional consistency bit b that indicates whether
the views were consistent. (Our simulator can simulate this additional information.) At the
post-processing stage, the parties output a special “I do not know”, ⊥, symbol when b = 0 and
otherwise output the main output v of V . Assuming that the original protocol π is perfectly
correct, the resulting protocol never errs and outputs a non-⊥ symbol with probability 2−c.

This variant also allows us to handle protocols that have imperfect correctness. Specif-
ically, if the original protocol π suffers from some correctness error of δ < 0.5 we get a
protocol with similar correctness error (conditioned on not outputting ⊥). Such an error
can be reduced to an arbitrary ϵ by taking a majority vote over k = O(log(1/ϵ)2c/(1 − 2δ))
independent parallel copies of the new protocol. This new protocol σk is syntactically similar
to σ except that it makes k calls to (the extended version of) V . This allows us to extend
the above lemma (and all the subsequent results) to the case where π has a correctness error
of δ < 0.5. For simplicity, we omit these extensions from the current version.

7.1 2MPRE for protocols without OT calls

Observation 7.4. If π does not use OT calls then the functionality V can be written as∧
i,j∈[n] zi,j where zi,j is computed by taking the equality between a string ai,j, computed locally

by Pi, and a string bi,j computed locally by Pj. The length of ai,j and bi,j equals to the number
of bits that Pi delivers to Pj in π.

Indeed, ai,j is the vector of messages that Pi should deliver to Pj according to her local
computation (under the sampled view) and bi,j is vector of incoming messages that Pj receives
from Pi according to her guesses.

Corollary 7.5 (Theorem 2.7 restated). In the honest majority setting, every n-party func-
tionality f non-interactively reduces to multiple parallel calls to AND◦EQ functionality. The
reduction has perfect privacy and an arbitrarily small 1-sided statistical correctness error of
ϵ. The complexity of the protocol is O(log(m/ϵ)) where m is the number of outputs of f and
the hidden constant in the O-notation depends on the complexity of f .
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Proof. Every n-party functionality f has a protocol in the plain model (i.e. does not use OT
calls) that is perfectly correct and perfectly

⌊
n−1
2

⌋
-private [10]. Assuming that f is a Boolean

public-output functionality, we can use Lemma 7.2 and Observation 7.4 to non-interactively
reduce f to AND◦EQ with perfect privacy and a constant 1-sided correctness error δ against
minority coalitions. (The constant δ depends on the description of f .) We can reduce the

error to ϵ′ by executing the reduction ℓ = O( log(1/ϵ
′)

1−δ ) times in parallel and outputting 1 if
and only if at least one of these executions outputs 1. (The latter step is computed locally,
i.e., by the decoder). Since σ has perfect privacy, repeating it in parallel does not affect
privacy. Finally, since every m-output functionality non-interactively reduces to m parallel
calls to Boolean public-output functionalities, the statement extends to such functionalities
as well, while the error grows to ϵ = mϵ′ where m is the number of outputs.

Remark 7.6 (The complexity of the construction). Recall that every n-party multi-output
functionality f that is computable by s-size formula (or even s-size branching program) non-
interactively n-privately reduces to a functionality g with poly(s) outputs and each of its out-
put is a constant-size deterministic public-output functionality (that takes a constant number
of input bits from a constant number of parties) [29, 2, 3]. Therefore, by Corollary 7.5, f
reduces to poly(s) log(1/ϵ) calls to AND ◦ EQ over constant fan-in.

Observe that the equality function over k-bit strings, EQ(x, y) can be written as a linear
function L(x, y) = (xi − yi + 1)i∈[k] over an arbitrary finite field F such that L(x, y) = 1k iff
x = y. In addition, the AND predicate admits a degree-2 statistical randomized encoding as
follows.

Fact 7.7 (Encoding AND by Inner-Products [29]). Fix an arbitrary finite field F. Let
v = (v1, . . . , vℓ) be a vector of 0-1 values. Consider the randomized function

g(v; ρ) :=
∑
i∈[ℓ]

ρi · (1− vi),

where ρ← Fℓ and the addition and multiplication are taken over F. Then, g is a randomized
encoding of

∧
i∈[ℓ] vi with perfect privacy and correctness error of 1/|F|. When all vis are 1,

we get 0 from g. So the output is decoded as (a) 1 when g outputs 0 and (b) 0 otherwise.
Note that when we output 0, this is always correct. But when we output 1, it may not be
correct, since the sum of ρi’s can lead to zero. Since the sum is random, the probability that
it can be 0 is 1/|F|. Lastly, in this case g is a degree-2 function over the binary field. By
default, we let F be a binary extension field. In this case, g can be written as a degree-2
function over the binary field, and it can be computed by a Boolean circuit of size ℓ log |F|.
Unless stated otherwise, we assume that F is the field of size 2ℓ+1.10

It follows that AND ◦ EQ reduces non-interactively to a degree-2 functionality (with
statistical correctness error) and so Corollary 7.5 yields a new alternative construction of
honest-majority 2MPRE, alas with statistical correctness.

10Alternatively, one can instantiate g over the binary field, and reduce the error to ϵ by repeating the
encoding log(1/ϵ) times with fresh independent randomness. See [29].
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7.2 2MPRE for protocols with OT calls

Note that when the underlying protocol is the OT-hybrid channel, the functionality (also
a predicate) V has a slightly more complicated form. In particular, it computes an AND
over degree-2 functions. As a result, we cannot use Fact 7.7 directly to derive a 2MPRE.
We bypass the problem by letting the pair of parties that use the ith OT call, to locally
select the ith randomizer ρi of the AND in the inner-product based RE of Fact 7.7. (Note
that previously we treated the randomizers as being part of the internal randomness of the
MPRE.) Unfortunately, this leads to a “leaky” 2MPRE of V . We show that this leakage can
still be simulated if the original protocol π is weakly-active private. Details follow.

Definition 7.8 (Weakly-active adversaries). Let π be an n-party protocol in the OT-hybrid
model. A weakly-active adversary A that corrupts a subset T is defined by deviating from
the protocol π as follows. For every OT-call between two corrupted parties, a sender S with
values (a0, a1) ∈ {0, 1}2 and a receiver R with selector bit s ∈ {0, 1}, the adversary sets the
received value to be some fixed value a′ ∈ {0, 1}. After these modifications, the adversary
honestly follows the protocol where a′ is used as the received value of the OT instance with
inputs (a0, a1) and s. Such a deviation can be fully specified by a vector a′ = (a′i)i∈OT

where
i ∈ OT if the ith bit that is exchanged in π is delivered via an OT between 2 corrupted parties.
We write πa′ to denote the protocol that is obtained for a given fixing of a′.

A protocol π in the OT-hybrid model computes a (deterministic) functionality f with t-
perfect privacy against weakly-active adversaries if for every t-bounded subset T , and every
vector a′ = (a′i)i∈OT

, it holds that

Sim(T, a′, xT , fT (x)) ≡ ViewT,πa′
(x, r),

where r = (r1, . . . , rn) are chosen uniformly at random and ViewT,πa′
(x, r) denotes the view

of coalition T when running the protocol πa′ with input x = (x1, . . . , xn) and randomness
r = (r1, . . . , rn).

We also require either statistical or perfect correctness against a passive adversary, i.e.,

Pr
r1,...,rn

[π(x1, . . . , xn; r1, . . . , rn) ̸= f(x1, . . . , xn)] ≤ δ,

where ri is the randomness used by the ith party in π.

A leaky version of Construction 7.1. Before introducing the leaky 2MPRE of V , it
will be useful to consider an intermediate case where V itself is leaky. Let Ṽ denote the
corruption-aware predicate that takes the same input as V in Construction 7.1, delivers the
same output as V to all the honest parties, but leaks some additional information to the
adversary. Specifically, Ṽ leaks to the adversary the consistency bit that verifies consistency
of the transcript without taking into account the OT-messages that are exchanged between
pairs of corrupted parties. Formally, for a set of corrupted parties T ⊂ [n], the functionality

Ṽ is defined as follows.
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• Input: For each index i ∈ [c], (a) if the ith bit in π is a private-channel message from

a sender A(i) to a receiver B(i), then Ṽ receives a bit mi from A(i) and m′i from B(i);

(b) if the ith bit in π is transferred over an OT-channel then Ṽ receives (ai,0, ai,1) from

the sender A(i) and (si, a
′
i) from the receiver B(i). In addition, the functionality Ṽ

receives from the first party P1 her output vc+1 (computed based on her guesses).

• Output: The parties receive the output

V =
∧

i∈[c+1]

vi

where for vi is defined as follows. If the ith communication bit of π is delivered over a
private-channel then vi = 1 if and only if mi = m′i. If the ith communication bit of π is
delivered over an OT-channel then vi = 1 if and only if a′i = si ·ai,1+(1−si)·ai,0. Lastly,
recall that vc+1 = 1 if and only if the output of P1 is 1. In addition, the adversary
receives the value

VT =
∧
i/∈OT

vi

where i ∈ OT if the ith communication bit in π is an OT-message that is delivered
between a pair of corrupted parties A(i), B(i) ∈ T .

Claim 7.9. Suppose that π realizes f with perfect passive correctness and t-perfect privacy
against weakly-active adversaries. Let σ̃ denote the protocol that is obtained by instantiating
Construction 7.1 with the functionality (predicate) Ṽ instead of V . Then, σ̃ realizes f with
perfect t-privacy and 1-sided correctness error of 1− 2−c.

Proof. The proof of correctness is identical to the proof of Lemma 7.2. We move on to prove
privacy. Fix a t-bounded corrupted coalition T ⊆ [n]. For each index i ∈ OT , sample a
random received bit a′i, and consider the weakly-corrupted protocol πa′ where a′ = (a′i)i∈OT

.

Observe that the output VT given by the “leaky” functionality Ṽ to the adversary in σ̃
corresponds to the non-leaky value that is delivered by V in σ when the underlying protocol
is πa′ . Now by Lemma 7.2, since we can perfectly simulate the view of T in πa′ (due to the
security of π against a weak-active), we can also simulate the view of T in σ̃.

In order to obtain a 2MPRE we will need the following extension to the inner-product
encoding from Fact 7.7.

Fact 7.10 (leaky inner products). Under the notation of Fact 7.7, the following holds. For
every set S ⊆ [ℓ], let ρS = (ρi)i∈S and vS = (vi)i∈S. There exists a simulator SimS that, for
every v ∈ {0, 1}ℓ, perfectly samples the distribution

(g(v; ρ), ρS, vS) where ρ← Fℓ

given ρS, vS and
∧

i/∈S vi.
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Lemma 7.11 (2MPRE from weak-active privacy). Suppose that the functionality f can be
realized in the OT-hybrid model by a protocol π with t-perfect privacy against weakly-active
adversaries and perfect passive correctness. Then f can be realized by t-private 2MPRE with
an arbitrarily small correctness error of ϵ and with complexity of log(1/ϵ)(n+Tπ)2

O(c) where
n is the number of parties and Tπ is the computational complexity of π.

Proof. Let f be a functionality that is realized by a protocol π in the OT-hybrid model
that has perfect passive correctness and t-perfect privacy against weakly-active adversaries.
From Claim 7.9, we get a non-interactive protocol σ̃ that makes use of the ideal functionality
Ṽ , and is perfectly t-private and has a 1-sided correctness error of 1 − 2−c, where c is the
total number of bits of communication in π. Denote by M and O the set of indices that
correspond to point-to-point messages and OT messages. That is, i ∈ M (resp., i ∈ O) if
the ith bit in π is a sent by party A(i) to party B(i) via a private channel (resp., over an

OT-channel). We construct MPRE f̂ by modifying σ̃ as follows.

• Local preprocessing: Similarly to σ̃, the parties locally compute the values (mi,m
′
i)i∈M

and (ai,0, ai,1, si, a
′
i)i∈O and vc+1. In addition, for every i ∈ O, the parties A(i) and

B(i) randomly sample αi and βi respectively.

• The functionality outputs g(v; ρ) where v = (vi)i∈[c+1] is computed as in σ̃, for i ∈ O
the randomizer ρi = αi + βi, and for i /∈ O, the randomizer ρi is sampled uniformly at
random internally by the functionality.

• Decoding: The parties decode g and output the result.

Before analyzing the correctness and privacy of f̂ , we show that g has an effective degree
of 2. Recall that g outputs the sum

Q1 + . . .+Qc+1 where Qi := ρi · (1− vi) ∀i ∈ [c+ 1].

We show that for every i, Qi can be written as a degree-2 expression over some prepossessed
inputs and the internal randomness of g.11 Indeed, for i = c + 1, this is trivial since vc+1 is
given as an input to g; For i ∈M it holds that vi is linear in mi,m

′
i, and so Qi is quadratic

in mi,m
′
i and the internal randomness ρi. For i ∈ O, both vi and ρi depend on inputs that

are delivered by A(i) and B(i), and so Qi is a 2-input functionality, which can be written
as a degree-2 function in the prepossessed inputs as shown in Observation 3.4. Specifically,
since vi = 1 + a′i − (si · ai,1 + (1− si) · ai,0) and ρi = αi + βi we can write Qi as a quadratic
expression in a′i, si, ai,1, ai,0, αi, βi and in the pre-processed values αiai,0, αiai,1 and sβi.

Next, we prove that f̂ achieves perfect t-privacy. Fix some t-bounded coalition T . Denote
by OT ⊂ O the indices of the OT message that is sent between a pair of corrupted parties
A(i), B(i) ∈ T . Our simulator, Sim(xT ), first applies the simulator Simσ̃(xT ) for σ̃ and

11The function g has degree-2 over F. However, by taking F to be a binary extension field and by
decomposing ρi = (ρi[j])j to bits, we can also write g as a vector of quadratic polynomials over the binary
field.
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gets a simulated σ̃-view that includes the local guesses, the final output V and a leaky
output VT =

∧
i/∈OT

vi. Based on the guesses of the parties in T , the simulator computes the
consistency bits vOT

= (vi)i∈OT
of the corrupted OT’s, and samples (ρi)i∈OT

. Finally, the
simulator samples the value of g using the leaky-RE simulator SimOT

applied to ρOT
, vOT

and VT . Since both, Simσ̃(xT ) and SimOT
are perfect, we get perfect simulation.

The correctness of f̂ follows from the correctness of σ̃ and the correctness of the MPRE
in Fact 7.7. In more detail, if the output of f is 1, the protocol outputs 1 with probability
exactly 2−c (recall that when the AND evaluates to 1 the MPRE from Fact 7.7 does not
err). When the function evaluates to 0 the output is 1 only if the MPRE errs. Let us
set to error probability of the MPRE to ϵ0 = 2−c/2. To reduce the error to ϵ, we can

invoke L = O(2c log(1/ϵ)) fresh copies of f̂ in parallel, and set the decoding to output 1
iff at least 3

4
2−c-fraction of the executions output one. By a multiplicative Chernoff bound,

an error occurs with probability of exp(−Ω(L2−c)) = ϵ. The complexity of the protocol
(without repetition) is similar to the complexity Tπ of π plus the complexity of g which is
O(Tπ + n2c log(1/ϵ0)) = O(Tπ + n22c), where n is the number of parties. Thus the overall
complexity after repetition is O((Tπ + n22c)L) = O((Tπ + n22c)2c log(1/ϵ).

7.3 2MPRE implies weak-active perfect privacy

We prove the converse of Theorem 2.6.

Lemma 7.12. If the functionality f has t-private 2MPRE, then it can be realized in the OT-
hybrid model with perfect (passive) correctness and t-perfect privacy against weakly active
adversaries. The transformation carries to the statistical setting while preserving the error.

Proof. Suppose that f has t-private 2MPRE. By Theorem 6.2, f can be computed by a
protocol in which the result of OT messages only affect the last-round messages of the
parties. This means that a deviation of a weakly-active adversary can only affect the view of
an honest party after the last round of messages. Put differently, at the beginning of the last
round the view of all honest parties is consistent with an honest execution of the protocol.
Consequently, all the messages that are being sent to the adversary (including the last round
messages) are consistent with an honest execution of the protocol, and so weak-active perfect
privacy follows from passive perfect privacy, as required.
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[16] Claude Crépeau. Efficient cryptographic protocols based on noisy channels. In Advances
in Cryptology - EUROCRYPT ’97, International Conference on the Theory and Appli-
cation of Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding,
pages 306–317. Springer, 1997.
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A Omitted Preliminaries

A.1 Standard background on MPC

Through the paper, we focus on semi-honest (aka passive) secure computation hereafter
referred to as private computation. (See, e.g., [14, 15, 26], for more detailed and concrete
definitions.)

Definition A.1. (Private computation) Let f(x1, . . . , xn) be a (possibly probabilistic)
n-party functionality. Let π be an n-party protocol. We say that the protocol t-privately
computes f with perfect privacy if there exists an efficient randomized simulator Sim for
which the following holds. For any subset of corrupted parties T ⊆ [n] of size at most t,
and every tuple of inputs x = (x1, . . . , xn) the joint distribution of the simulated view of the
corrupted parties together with the output of the honest parties in an ideal implementation
of f ,

Sim(T, x[T ], y[T ]), y[T̄ ], where y = f(x) and T̄ = [n] \ T,

is identically distributed to
Viewπ,T (x), Outputπ,T̄ (x),

where Viewπ,T (x) and Outputπ,T̄ (x) are defined by executing π on x with fresh randomness
and concatenating the joint view of the parties in T (i.e., their inputs, their random coin
tosses, and all the incoming messages), with the output that the protocol delivers to the honest
parties in T̄ .
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When the functionality is deterministic, the above definition scan be decomposed to pri-
vacy and correctness. That is, we require that the correctness error ϵ := Pr[y ̸= Outputπ(x)]
and the t-privacy error δ := SD(Sim(T, x[T ], y[T ]), Viewπ,T (x)) will be both zero. (Here SD
is the statistical distance). We can further relax the definition by allowing small non-zero
correctness error or privacy error.

Secure Reductions. To define secure reductions, consider the following hybrid model.
An n-party protocol augmented with an oracle to the n-party functionality g is a standard
protocol in which the parties are allowed to invoke g, i.e., a trusted party to which they
can securely send inputs and receive the corresponding outputs. The notion of t-security
generalizes to protocols augmented with an oracle in the natural way.

Definition A.2. Let f and g be n-party functionalities. A t perfectly-private reduction from
f to g is an n-party protocol that given an oracle access to the functionality g, t-privately
realizes the functionality f with perfect security. We say that the reduction is non-interactive
if it involves a single call to g (and possibly local computations on inputs and outputs), but
no further communication. The notions of t computationally-private reduction is defined
analogously.

Appropriate composition theorems, e.g., [26, Thms. 7.3.3, 7.4.3] and [14], guarantee that
the call to g can be replaced by any protocol that t-privately realize g, without violating the
security of the high-level protocol for f .

A.2 Properties of MPREs

Below we list some useful properties of MPREs that were proved in [4]. (The original
statements refer to perfect MPREs but the same proofs apply to the statistical setting as
well).

Proposition A.3 (Proposition 3.1 from [4]). Let f be an n-party functionality. Let g be
a δ-correct (t, ϵ)-private MPRE of f . Then the task of computing f with δ-correctness and
(t, ϵ)-privacy reduces non-interactively to the task of computing g with δ-correctness and
(t, ϵ)-privacy.

Proposition A.4 (Removing internal randomness - Proposition 3.2 from [4]). Let f be an

n-party functionality. Suppose the functionality f̂ ((x1, r1), . . . , (xn, rn); r0) is a δ-correct and
(t, ϵ)-private MPRE of f . Then the functionality

g ((x1, r1, r
′
1) , . . . , (xn, rn, r

′
n)) := f̂

(
(x1, r1) , . . . , (xn, rn) ;

∑
i

r′i

)

is a δ-correct (t, ϵ)-private MPRE of f .
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Lemma A.5 (Composition - Lemma 3.3 from [4]). Let f be an n-party functionality and
assume the functionality g is a perfectly correct and perfectly t1-private MPRE of f with no
internal randomness. Further assume that the functionality h is a perfectly correct and t2-
perfectly private MPRE of g (viewed as a deterministic functionality over the domain (X ′)n

where X ′ = (X,R)). Then, then functionality

h′ ((x1, (r1, r
′
1)) , . . . , (xn, (rn, r

′
n)) ; r

′
0) := h (((x1, r1) , r

′
1) , . . . , ((xn, rn) , r

′
n)) ,

is a perfectly correct and t3-perfectly private MPRE of f with t3 = min(t1, t2).

A.3 Non-Interactive Completeness of Finite Functionalities

Let CubePlusn denote the n-party functionality that takes a pair of bits (x1, z1) from a
party Pi1 , (x2, z2) from a party Pi2 , and (x3, z3) from a party Pi3 and delivers the value
x1 · x2 · x3 + z1 + z2 + z3 to all the parties. The following theorem is taken from [3].

Theorem A.6 (Thm 6.4 in [3]). Let f be an n-party functionality. There exists a protocol
Πf for privately computing f against a semi-honest adversary (corrupting an arbitrary subset
of parties), where Πf makes parallel calls to the CubePlusn functionality and uses no further
interaction. The protocol Πf can either be: (1) computationally secure using a black-box
PRG, where the complexity of the parties is polynomial in n, the security parameter sec and
the circuit size of f , or alternatively (2) perfectly secure, where the complexity of the parties
is polynomial in n and the branching program size of f .

Therefore, an n-party protocol σ that t-privately computes CubePlusn with perfect privacy
can be “lifted” to a protocol π that t-privately computes f . One can also consider a 4-
party variant of CubePlus in which the output is delivered to a designated receiver R. Let
us denote this functionality by CubePlusR4. In the semi-honest setting, the public-output
version perfectly reduces to n parallel calls to the designated-receiver variant where in each
call we use a different receiver. Therefore, a protocol σ that 4-privately computes CubePlusR4

can be lifted to a protocol for f . However, this transformation works only if σ achieves a
full privacy threshold of 4. Theorem A.6 therefore falls short of lifting a k′-private protocol
σ for a finite k-party functionality to t-private protocol for general n-party functionality.

The following theorem establishes such a result at the expense of a minor loss in the
threshold. Below, we model a k′-private realization of a functionality g by a k′-corruptible
oracle that leaks all the information (i.e., inputs of the honest parties) to the adversary who
corrupts more than k′-parties.

Theorem A.7. Let f be an n-party functionality, and let α ≤ β ∈ [0, 1] be some real
numbers. There exists a constant k = k(α, β), a finite k-party functionality g, and a protocol
Πf for securely computing f against a semi-honest adversary corrupting αn-fraction of the
parties where Πf makes parallel calls to βk-corruptible version of g and uses no further
interaction. Moreover, g can be taken to be CubePlusk. The protocol Πf can either be:
(1) computationally secure using a black-box PRG, where the complexity of the parties is
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polynomial in n, the security parameter sec and the circuit size of f , or alternatively (2)
perfectly secure, where the complexity of the parties is polynomial in n and the branching
program size of f .

The theorem is based on player virtualization. This technique was first introduced by the
work of Bracha [13] in the context of Byzantine Agreement, and since then has been used
several times in the MPC literature [23, 28, 19]. Nevertheless, to the best of our knowledge
the above basic statement has not appeared in the literature before.

Proof. By Theorem A.6, it suffices to prove the theorem for the case where f is taken to
be the n-party designated-receiver functionality CubePlusRn. Fix some finite field F of size
at least m + 1 for some parameter m that will be determined later. By using standard
arithmetization, we can write CubePlusRn as a degree-3 polynomial x1 · x2 · x3 + z1 + z2 + z3
over F. Specifically, we assume that the inputs arrive from P1, P2 and P3 and the receiver
is P4, and all other n − 4 parties have no inputs or outputs. The idea is to first solve the
problem in a client-server setting where a large fraction of the clients are honest, and then
use party virtualization to replace the servers with calls to some finite g.

For starters, assume that we have m servers Q1, . . . , Qm that are all honest except for at
most γm fraction, for, say, γ = 0.3. Consider the protocol π′ in which Pi for i = 1, 2, 3, shares
xi among the servers via Shamir’s secret sharing with degree γm and shares zi over the servers
via Shamir’s secret sharing with degree 3γm. The servers can now run a non-interactive
version of BGW [10] and send a single message to P4 from which he can recover the output.
Specifically, each server j locally computes the polynomial x1[j]·x2[j]·x3[j]+z1[j]+z2[j]+z3[j]
and sends the result to P4 who uniquely interpolates the corresponding degree 3γ-polynomial
and outputs its free coefficient as its output. Standard analysis shows that this protocol
privately realizes f as long as the adversary does not corrupt more than γ fraction of the
servers.

Let k be a sufficiently large constant whose value will be determined later. We now
replace each server by a k-subset of the parties P1, . . . , Pn that includes the parties P1, P2, P3

and P4, and take g to be the k-party functionality that realizes the operation of the jth
server. That is, we enumerate over all k-subsets S1, . . . , Sm that includes {P1, P2, P3, P4 },
i.e., m =

(
n−4
k

)
. For every j ∈ [m], we make a call to the functionality g that takes the

jth shares (x1[j], z1[j]), (x2[j], z2[j]), (x3[j], z3[j]) from P1, P2 and P3 and delivers the point
x1[j] · x2[j] · x3[j] + z1[j] + z2[j] + z3[j] to the receiver P4. Note that the jth copy is applied
over the set of parties Sj.

Suppose that g is instantiated by a βk-corruptible oracle. Then the resulting protocol π
is private against a subset T ⊂ [n] as long at most γ-fraction of the subsets Si are β-corrupted
in the sense that |Si ∩ T | > βk. By taking k = k(α, β) to be sufficiently larger constant, it
can be guaranteed that the above condition holds for every αn-subset T . (It can be shown
that k = O(1/(β − α)2) suffices.) Observe that g is a k-party functionality that can be
computed by a constant-size arithmetic formula over a field of size m = O(nk) which can
be emulated by polylog(nk) parallel calls to constant-size Boolean functionalities. Moreover,
by Theorem A.6, we can non-interactively k-privately reduce g (with perfect privacy) to
CubePlusk (or to CubePlusRk). The theorem follows.
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Remark A.8 (Reducing the threshold loss β − α). Suppose that, for every k, we have a
protocol σk that βk-privately computes every k-party functionality with complexity exp(k) –
as done in the proof of Theorem 5.4. Then, for some αn = β − on(1), we can αnn-privately
compute every n-party functionality by making parallel calls to σk for k = O(log n) while
keeping the protocol efficient. The new protocol achieves the same features as in Theorem A.7.
That is, the complexity is polynomial in n and in the branching program size (resp., circuit
size) of f and it achieves perfect privacy (resp., computational privacy and black-box access
to a PRG). This can be done by tweaking the above proof along the lines of [19]. Specifically,
the committees S1, . . . , Sm are chosen according to a bipartite expander graph over n left
nodes, m right nodes, with right degree of k = O(log n), so that every αn-subset T of left
nodes has at most 0.3m right neighbors that touch more than βk left nodes. Such graphs can
be constructed efficiently in poly(n) time. See Lemma 5 in [19] for further details.
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