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Abstract. As the Bitcoin mining landscape becomes more competitive,
analyzing potential attacks under the assumption of rational miners be-
comes increasingly relevant. In the rational setting, blockchain users can
bribe miners to reap an unfair benefit. Established protocols such as Du-
plex Micropayment Channels and Lightning Channels are susceptible to
bribery, which upends their financial guarantees. Indeed, we prove that
in a two-party contract in which the honest party can spend an output
right away, whereas the malicious can only spend the same output after a
timelock, the latter party can promise a high fee to the miners, who then
intentionally ignore the transaction of the honest party in anticipation
of the higher fee. This effectively prevents a valid transaction from ever
entering the blockchain, resulting in potentially severe financial losses for
the honest and considerable gains for the malicious party.
We expand previous results on timelock bribes to more realistic block-
chains, proving that a general class of contracts are susceptible. We
then apply our results to Duplex Micropayment Channels and Light-
ning Channels, providing exact bounds on their safe operating region.
Furthermore, we enhance the Bitcoin Script of Duplex Micropayment
Channels so that the coins of a party that attempts to bribe are given to
the miners as fees, therefore effectively disincentivizing bribes. Our solu-
tion, named Suborn channels, is implemented as a proof-of-concept. We
also propose a small change to Lightning Channels that achieves a simi-
lar effect. Moreover, we formally express the exact circumstances under
which our two proposals ensure alignment of miner incentives with the
prescribed protocol outcome.

Keywords: Bitcoin · Security · Layer 2 · Payment channels · Lightning
network · Incentives · Bribing

1 Introduction

Blockchains like Bitcoin [23] and Ethereum [28] reformed the financial landscape.
Nevertheless, blockchains scale poorly in comparison to conventional centralized
payment systems [9]. One of the major approaches to alleviate the scalability
issue of blockchains is payment channel networks (PCNs).

? Work done while the author was at the University of Edinburgh.
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Payment channels allow two parties to lock funds on the blockchain and
thereafter securely transact off-chain. A number of PCN proposals exist [2–
8, 10–15, 17, 21, 24, 25], each improving on previous designs, exploiting features
of different blockchains or balancing various trade-offs differently. Two of the
earliest PCNs are the Lightning Network (LN) [24] and the Duplex Micropayment
Channels (DMC) [11], both applicable on Bitcoin.

As Bitcoin implements a (crypto-)currency, financial incentives are critical
to the security of the protocol. These financial incentives naturally transfer to
the off-chain network operating on top of Bitcoin, e.g., DMC or LN, since the
off-chain network also involves locked cryptocurrency funds. As a result, several
bribing attacks have been proposed on PCNs [22,26,27]. In this work, we focus
on a specific type of bribing attacks, the so-called timelocked bribes: a briber
pays the miners to include the briber’s transaction which will only be valid in
the future, and not include a conflicting but currently valid transaction from an
honest party. This attack affects directly the security of most PCNs.

The success of a timelock bribing attack is conditional on several variables.
Determining those variables and therefore the parameter regions in which parties
can transact securely against a briber is a challenging task. Furthermore, we ask
whether expanding these safe regions is possible, as this would imply a wider
functioning area for payment channels. In this work, we take up these challenges.

Our Contributions. We first formally describe the dynamics governing min-
ers’ choices on whether to mine a future transaction with a high fee or a currently
spendable but conflicting transaction with a smaller fee. To this end, we perform
a game-theoretic analysis in Section 3. We then formulate and prove in Theo-
rem 1 under which circumstances it is a strictly dominant strategy for miners
to ignore the currently spendable transaction in favor of the future one. This
theorem generalizes the incentive analysis performed in [26] to blockchains with
more than 1 transaction per block and to a more generic smart contract than
HTLC [11]. At a high level, miners prefer the future transaction if it offers a
very high fee (a.k.a. bribe) compared to the currently spendable transaction.
The exact bound depends also on the fees paid by ordinary transactions and the
mining power of the weakest miner but, somewhat surprisingly, is independent
of the length of the timelock for large enough bribes.

In Section 4 we apply our theorem to DMC, providing exact bounds on the
cases in which a timelock bribe is possible. Subsequently, we modify the DMC
protocol and propose a new scheme which we term Suborn channels in order
to greatly expand those bounds. The core idea is that Suborn channels allow
miners to claim the coins the briber owns in the channel when the honest party
proves the briber cheated. The exact script for Suborn channels is provided as
well, along with its proof of concept implementation3.

Lastly, we apply our theorem to LN, characterizing exactly when a timelock
bribe is beneficial. We then propose a straightforward change to the protocol
that completely nullifies timelock bribes; we simply increase the transaction fees

3 https://gitlab.com/fc22-submission-69/suborn

https://gitlab.com/fc22-submission-69/suborn
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to include the coins owned by the briber. We further analyze the circumstances
under which our proposal would not cost money to the honest party and recom-
mend how the honest party can avoid cost-inducing situations entirely. We note
that no change in LN Script is necessary for implementing our proposal.

2 Background and Notation

2.1 Bitcoin

Bitcoin users publish transactions, which are temporarily stored by miners. Each
miner composes a block that consists of valid transactions. Miners compete with
each other in a lottery which periodically selects a winner with probability pro-
portional to their mining power – a quantity that we assume is constant and
common knowledge among participants. Mining is a resource-intensive process
that each miner performs locally. The winning miner gets their block included in
the blockchain and gains a (constant) block reward plus the sum of the fees of all
included transactions; thus rational miners attempt to maximize their received
fees. Then miners verify that all transactions in the new block are valid, compose
a new block compatible with all past ones (including the new valid block they
just received) and attempt to win the next lottery. In case a miner receives two or
more conflicting blocks of the same height (a.k.a. when they encounter a fork),
they can mine on top of any one. With high probability one of the forks will
eventually overtake the others by accumulating more blocks, so all miners will
switch to the longest chain, dropping the other forks and resolving the conflict.

Smart contracts. Blockchains like Bitcoin [23] and Ethereum [28] enable smart
contracts, i.e., programmable scripts that attach a wide variety of rules which
must be satisfied in order to spend coins. In Bitcoin, coins are attached to trans-
action outputs, which in turn are locked with a specific script. Bitcoin smart con-
tracts commonly employ the use of multisignatures, timelocks, and hashlocks.

The most commonly used smart contract requires a single signature from a
specific public key: such a contract ensures that the coins of interest are exclu-
sively owned by whoever knows the associated private key. An m-of-n multisig-
nature is a contract that demands at least m signatures which correspond to
any m of the n predefined public keys.

Hashlocks are another type of contract, available also in Bitcoin Script. If a
transaction output is hashlocked, it requires the pre-image of the specific hash
to become valid and thus spendable. For instance, suppose h(s) denotes the hash
of a secret s. If an output is hashlocked with h(s), it is valid only if the secret s
is revealed.

Timelocked outputs can only be spent after a specified time in the future. One
of the simplest practical smart contracts that uses timelocks is the conditional
timelock, which allows the associated output to be spent either with the signature
of party P1 right away, or with the signature of party P2 after a timelock –
possibly additional requirements encumber one or both spending methods, e.g.
hashlocks or multisigs.
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2.2 Payment channels

The core idea behind payment channels is the same across different construc-
tions: two parties may lock coins on an escrow on the blockchain, or a so-called
channel, and then perform arbitrarily many transactions off-chain. Each off-chain
transaction is a signed message that depicts the current balance of coins between
the parties. Any party can close the channel at any time, either in collaboration
with the counterparty, or unilaterally by publishing the last message signed by
both parties. Therefore, the blockchain is only used to open and close the chan-
nel, and to resolve potential conflicts between parties. The conflict resolution
mechanism differs significantly among channel constructions. Please see [29] for
a survey of PCNs.

In this work, after establishing a general result for conditionally timelocked
contracts, we apply our results to two specific PCNs: DMC [11] and LN [24]. We
now describe these constructions, excluding their HTLCs.

DMC overview. At a high level, a DMC between parties P1 and P2 works
as follows: At first the parties agree on a setup transaction, which spends their
initial coins and moves them to an output locked with a 2-of-2 multisig. They
then establish a series of opt-in transactions. These transactions form a chain of
a pre-agreed length and are all timelocked until a common pre-agreed future time
Tmax. The first transaction consumes the setup transaction output and provides a
similar 2-of-2 multisig output. Each subsequent transaction consumes the output
of the previous opt-in transaction and provides a similar 2-of-2 multisig output,
with the exception of the last one. This opt-in transaction has two 2-of-2 multisig
outputs instead, each carrying coins equal to one party’s initial coins.

Each of the two last outputs constitutes the setup output for a simple mi-
cropayment channel (not to be confused with the setup transaction of the DMC
itself). A simple channel can only facilitate payments in one direction, so there
is one channel for each direction. We here explain briefly how the channel in
which P2 pays P1 functions; the other one is symmetric. The channel starts off
with P1 and P2 agreeing on a refund transaction that is timelocked until Tmax,
spends the setup output and provides one output that carries P2’s initial coins
that are spendable by P2 alone. Once both parties know the relevant opt-in and
refund transactions along with the necessary signatures by their counterparty,
they only need to put the DMC setup transaction on-chain to open the DMC.
When P2 holds c2 and wants to pay δ coins to P1, who holds c1 coins, P2 signs
and sends to P1 an update transaction which has no timelock, spends the setup
output and has one output per party; P1’s output carries c1 + δ and P2’s carries
c2− δ coins. The balances c1, c2 are as in the last update transaction if any, oth-
erwise as in the refund. Note that P1 can put on-chain any update transaction
if needed, so he prefers the latest update transaction in which he has most coins
– this mechanism is called replace by incentive.

Due to their unidirectional nature, one of the two simple channels may even-
tually get depleted. In such a case, the parties invalidate them along with the
last opt-in transaction by creating a new competing opt-in transaction with a
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lower timelock. This opt-in transaction provides two new simple micropayment
channels, each initially containing the sum of the payer’s coins in the just in-
validated simple channels. In case the timelock of the new opt-in transaction is
smaller than a pre-agreed value Tmin, the two parties replace the last two opt-
in transactions instead. Both new opt-in transactions use the same timelock,
which is lower than the timelock of the second-last opt-in transaction in the old
chain. The same replacement logic, called replace by timelock, can be extended
backwards to the entire length of the opt-in transactions’ chain. This way, an
invalidation tree is created that consists of opt-in transactions as non-leaf nodes
and pairs of simple micropayment channels as leaves.

When an invalidation tree is itself depleted, cooperative parties can refresh
their DMC and obtain a new invalidation tree with a single on-chain transac-
tion. Similarly, cooperative parties can close their channel with a single on-chain
teardown transaction.

The above construction depicted in Figure 1, ensures that an honest party
can always retrieve its coins unilaterally by publishing the opt-in transactions
of the latest branch when their timelock expires, even if the counterparty stops
cooperating in arbitrary ways. This security guarantee holds only if a transac-
tion with a lower timelock is always included on-chain when competing only
with transactions with a higher timelock. As we see in this work however, this
assumption does not always hold.

LN overview. LN bases its functionality on an entirely different construction.
A central premise is that, in contrast to DMC, not all of the transactions stored
locally by the two parties are the same: some have differing scripts.

The two parties first negotiate the funding output, which carries all of the
channel’s coins in a 2-of-2 multisig. They then build a pair of commitment trans-
actions, one for each party, each of which can spend the funding output. P1’s
commitment transaction is signed by P2 and has two outputs. One carries P2’s
initial coins and can be spent with a simple signature by P2. The other carries
P1’s initial coins and can be spent in one of two ways: either with a signa-
ture by P1 after a pre-agreed timelock (the honest spending method), or with
a signature by a special revocation key that is generated by the two parties co-
operatively (the punishment spending method). The latter private key has the
unusual property that it can remain unknown to both parties while allowing the
corresponding public key to be computed cooperatively: Each party has a secret
share, from which it can generate a public share. The two secret shares combine
to the private key, whereas the two public ones combine to the public key, thus
the two parties can cooperatively derive the public key without disclosing their
secret shares. This construction is formalized and proved secure in [18]. P2’s com-
mitment transaction is symmetric. Once each party holds its first commitment
transaction, they can put the funding output on-chain to open the channel.

Conceptually, an off-chain payment is performed in two steps. First, the two
parties generate and sign a new pair of commitment transactions of which the
outputs pay out the newly agreed coins to each party. New revocation keys
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are used. Second, each party sends to its counterparty the secret share of the
revocation key used in the previous commitment transaction, revoking the latter.
This way, if a party publishes an old commitment transaction, the counterparty
can take all coins in the channel as punishment as long as it uses the punishment
spending method before the timelock of the honest spending method expires.
Note that the actual update procedure is slightly more complicated than in this
simplified, but morally correct, description.

Lastly, the two parties can cooperatively close the channel by building a
single closing transaction that spends the funding output and gives each party
its coins without a timelock.

The LN construction ensures that an honest party which checks the blockchain
periodically can always unilaterally retrieve its coins or more, either by publish-
ing its latest commitment transaction and waiting for its timelock to expire or
by punishing its counterparty in case the latter published a revoked commit-
ment transaction. This guarantee though holds only under the assumption that
a non-timelocked transaction which competes only with a timelocked one can
always go on-chain. As we mentioned however, this assumption is violated under
certain circumstances. The LN construction is illustrated in Figure 2.

Fig. 1: Duplex Micropayment Channels Fig. 2: Lightning Channels

3 Incentive Analysis

3.1 Model

As in [26], we assume that all n ≥ 2 miners are rational and each has a propor-
tion 0 < λi < 1 of the total mining power, constant throughout the execution.
Block rewards are ignored to simplify the analysis, but would not change our
results as long as they remain constant throughout the time frame of interest.
Let λmin = mini∈[n] λi. We assume that each block is comprised of a fixed num-
ber of transactions N (as opposed to, e.g., a fixed block size like Bitcoin or a
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fixed gas limit like Ethereum). The game evolves in rounds. At the beginning of
each round, each miner decides on a set of transactions to include in her block.
Subsequently a single miner is chosen at random according to the mining power
distribution, her block is appended to the blockchain, the included transaction
consumes its designated UTXO(s) and potentially provides one or more new
unspent outputs, the winning miner obtains the fee of the transaction and all
miners learn who won. This completes the round and miners attempt to mine a
new block.

The utility of each miner ui is equal to the sum of fees she obtains over all
game rounds – we restrict our attention to games with a finite number of rounds,
say T . All transactions that may be included in a block are publicly known and
carry a constant fee f , unless stated otherwise. The mining power distribution
along with the rest of the model discussed above is common knowledge.

In each round k ∈ [T ], the i-th miner employs a strategy σki that takes values
in the set Σk

i , which consists of the transactions that the miner chooses for its
block at round k. A strategy profile for round k is the tuple of the strategies of
all miners for round k and is denoted with σk = (σk1 , . . . , σ

k
n) ∈ Σk. A strategy

profile for rounds from k1 to k2 is the concatenation of the strategy profiles of
rounds k1 to k2 and is denoted with σk1...k2 = σk1 . . . σk2 ∈ Σk1...k2 . The Nash
equilibrium strategy profile for rounds from k1 to k2 is denoted with σk1...k2 . Note
that the latter constitutes a slight abuse of notation since the strategy profiles
in rounds after k2 may in principle influence what is the Nash equilibrium of
rounds up to k2, but in our games of interest every future round has exactly
one Nash equilibrium that is also the unique strictly dominant strategy profile
(ignoring inclusion of a different set of transactions unrelated to the conditionally
timelocked output O of interest, c.f. Definition 1, as such differences do not
change the utility), thus no problem arises. A strategy profile for all rounds
is denoted with σ = σ1...T ∈ Σ. The Nash equilibrium strategy profile for all
rounds is denoted with σ. We denote the tuple of all miners’ strategies apart
from that of the i-th miner with σ−i ∈ Σ−i, and we may add a superscript to
denote one or more rounds as above. Note that our notation cannot represent
games in which there are multiple Nash equilibria. This is not a concern, as we
will not come across such games.

3.2 Conditionally timelocked game and analysis

In this section, we define a game that captures the race between two transactions
tx1 and tx2 that spend the same unspent output but under different conditions.
On the one hand, tx1 allows the output to be spent immediately, while tx2
bounds the output to a timelock. On the other hand, tx1 pays the miner a fee
f1, while tx2 pays a fee f2. Both f1, f2 > f , f the fee of ordinary transactions.

Naturally, if f1 > f2 any rational miner will immediately include tx1. We
are therefore interested in the case where f2 > f1. For this case, we determine
the exact conditions under which all rational miners will wait out the timelock
and include tx2 (irrespective of the timelock). We observe that these conditions
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depend solely on the two fees f1, f2, the minimum mining power λmin, and the
number of necessary bribing transactions m (e.g., 2 for DMC and 1 for LN).

Definition 1 (Conditionally timelocked output). A conditionally time-
locked output is an on-chain transaction output with spending condition cond1∨
cond2 such that cond1 is not encumbered with any timelock and cond2 is encum-
bered with a timelock that expires T blocks after block with height T0.

Definition 2 (Conditionally timelocked game). A conditionally timelocked
game is a game that consists of T rounds, starting from a blockchain of height T0
which includes an unspent conditionally timelocked output O = (·, cond1∨cond2).
From the onset of the game, miners are aware of a set of transactions txs1 that
fits in a single block. txs1 contains a transaction tx1 which spends O by satis-
fying cond1. All other transactions in txs1 spend at least one output of tx1 or
of another transaction in txs1. Miners are also aware of another set of transac-
tions txs2 that fits in a single block as well. txs2 contains a transaction tx2 that
spends O by satisfying cond2. All other transactions in txs2 spend at least one
output of tx2 or of another transaction in txs2. Furthermore, there are at every
round enough valid, “unrelated” transactions to fill a block that do not spend O
or any output spent or produced by any transaction in txs1 ∪ txs2, and each
offers fee f . We denote any set of unrelated transactions with txsu.

Let m = max{|txs1|, |txs2|}. For i ∈ {1, 2}, we denote by fi the maximum
value a miner can extract (as fees or outputs that can be spent by anyone) by
including in her block an m-sized set of transactions that includes txi and by
txs∗i any such set of transactions.

Additionally, for k ∈ [T ] we denote with Γk the subgame of Γ at the beginning
of the k-th round with O still unspent. Likewise we denote with Γ ∗k the subgame
of Γ at the beginning of the k-th round with O having already been spent.

We note the following in the context of a conditionally timelocked game:

– tx1 is an ancestor of all other transactions in txs1,
– tx2 is an ancestor of all other transactions in txs2,
– tx1 and tx2 are mutually exclusive, therefore no pair of transactions from

txs1 and txs2 respectively can coexist in the blockchain.
– For i ∈ {1, 2}, a set of transactions txs∗i that extracts value fi for the miner

may contain anywhere from 1 to m transactions from txsi. The remaining
transactions in txs∗i , as well as the rest of the transactions in the block, are
unrelated transactions.

– If O is unspent at a round before T , a miner cannot mine tx2.
– If O is unspent at round T , a miner may mine either of tx1, tx2.
– If O is spent, a miner cannot mine either of tx1, tx2.
– We ignore games in which O is initially spent, as they provide no opportunity

to bribe.
– Since Γ1 = Γ and O is initially unspent, there is no Γ ∗1 game.
– The notation txsu does not clarify the exact size of the set, but it will always

be clear from context, keeping in mind that each block must contain exactly
N transactions.
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Intuitively, txs1 represent honest and txs2 represent bribing sets of trans-
actions. Looking forward, the reason we consider sets of transactions (as op-
posed to just a single transaction) is because in Lightning a briber cannot offer
the bribe just with tx2 (i.e. “HTLC-Timeout” [1]), since the fee of this trans-
action is agreed upon by both protocol parties; the briber has to publish one
more transaction instead, which would spend HTLC-Timeout and offer the brib-
ing fee. This observation renders the analysis of [26] technically inapplicable to
Lightning. Our model generalizes that of [26] to cover such situations. Further-
more, our approach applies to bribing scenarios in protocols that do not include
hashlocks, such as DMC.

Lemma 1. Consider a conditionally timelocked game Γ . If mf > f1, then at-
tempting to mine tx1 at any round is a strictly dominated strategy for all miners.

Proofs to all lemmas and theorems can be found in Appendix B.

Lemma 2. Consider a conditionally timelocked subgame Γ ∗k in which O has
been spent. ∀σ ∈ Σ,∀i ∈ [n], it is ui(σ, Γ

∗
k ) = λi(T − k + 1)Nf .

Theorem 1. Consider a conditionally timelocked game Γ . If f2 > f1−mf
λmin

+
mf > f1, then the unique Nash Equilibrium is for every miner to attempt to
mine only txsu at each round before T and attempt to mine txs∗2∪txsu at round
T , in other words that σ = (txsu, . . . , txsu︸ ︷︷ ︸

n

)T−1(txs∗2 ∪ txsu, . . . , txs∗2 ∪ txsu︸ ︷︷ ︸
n

).

Intuitively, Theorem 1 asserts that for a big enough bribe, every miner is
incentivized to ignore the honest transactions, wait instead for the timelock to
expire and then mine the bribing transactions, thus ensuring the success of the
bribing attempt. The minimum required size of the bribe is proportional to the
fees of the honest transactions, inversely proportional to the minimum mining
power and independent of the timelock length.

4 Timelock bribe analysis

In this section, we leverage the analysis of Section 3 to examine the race between
a briber that publishes an old transaction alongside with a bribe, and an hon-
est party that follows the protocol specification; meaning that the honest party
attempts to include on-chain the last update transaction or the revocation trans-
action in DMC and Lightning channels respectively. As explained in Section 2,
the old transaction is timelocked but typically offers a bribe, while the honest
transaction can be spent immediately but typically pays the miner less coins.

We first determine the parameter region under which the DMC channels are
susceptible to such bribing attacks. Then, we modify the DMC channels, and
propose a novel scheme, which we term Suborn channels, to limit the bribing
region. The core idea is that, if a party tries to bribe, its coins in the last agreed
transaction are awarded to the miners by-design, in addition to the transaction



10 Z. Avarikioti, O.S. Thyfronitis Litos

fee. We note that a rational briber will at most bribe the miners with its gain
between the two competing transactions. For instance, suppose the cheating
transaction awards 7 coins to the briber and 3 coins to the honest party, while
the last agreed transaction awards 4 and 6 respectively. Then, the 4 coins (of the
briber in the last state) can be claimed by the miner that mines the honest party’s
transaction, while the briber can only profitably bribe for less than 7 − 4 = 3
coins, clearly losing the race. Our construction thus limits the parameter region
in which timelock bribes are effective.

Thereafter, we identify the parameter region in which bribes are effective in
LN. Finally, we propose the use of an increased fee in the revocation transac-
tion, depending on the value of each transaction, to expand the aforementioned
parameter region with similar effects to Suborn channels.

4.1 Timelock bribe

Now, let P1 be an honest party and P2 a rational party which tries to maximize
its coins like the miners. We assume that both parties have no mining power.

Definition 3 (Timelock Bribe). Consider parties P1, P2 and a publicly known
transaction tx with one output O that can be either spent by P1 with a transaction
tx1, possibly after a timelock, such that tx1 offers miners a value f1, or by P2

with a transaction tx2 which has a timelock that is strictly greater than that of
tx1 (if the latter has any). Consider a set of transactions txs2, |txs2| = m, that
contains tx2, offers total value f2 to miners and all transactions in txs2 apart
from tx2 spend at least one output of tx2 or another transaction in txs2. We
say that P2 offers a timelock bribe if P2 publishes all txs2 before the timelock
of tx2 has expired and f2 >

f1−mf
λmin

+mf .

Theorem 1 implies that the excessive fee paid by P2 intends to discourage
miners from including P1’s transaction before P2’s timelock expires and eventu-
ally include P2’s transaction instead. We now prove that the briber prefers to
use the fewer (bribing) transactions possible (denoted by m).

Lemma 3.

∀m ∈ [N − 1],
f1 −mf
λmin

+mf <
(f1 + f)− (m+ 1)f

λmin
+ (m+ 1)f

Note that the (f1+f) in the numerator of the right-hand side of the inequality
stems from the fact that an additional unrelated transaction has to be added
to txs∗1 if the number of briber’s transactions txs2 are increased by 1 while it
is already |txs2| ≥ |txs1|. In other words, Lemma 3 states the following: Given
that briber’s transactions are more than the honest party’s transactions, timelock
bribes involving fewer transactions are cheaper for the briber. This holds because
a lower number of bribe transactions means that the briber has to surpass a lower
minimum bribe in order to incentivize miners in her favor.
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4.2 Timelock bribe in DMC

Let parties P1 and P2 that have a DMC channel and consider one of the two
latest transactions, i.e., the only two non-invalidated, refund transactions gives
cr,1 to P1, cr,2 to P2 and offers fee fr, whereas the latest corresponding update
transaction gives cu,1 to P1, cu,2 to P2 and offers fee fu. Note that the update
transaction is not timelocked, whereas the refund transaction is, and that the
two transactions are mutually exclusive. Assume cr,2 > cu,2. Then in this simple
micropayment channel payments flow from P2 to P1, thus it is in the benefit of
P2 if the refund transaction is put on-chain instead of any of the replacement
update transactions. Furthermore assume that all the timelocks of the opt-in
transactions of the branch of interest have expired and that P1 has published
them along with the latest update transaction of the simple micropayment chan-
nel under discussion, but no child transaction that spends its cu,1 coins – this
is honest behavior according to the DMC protocol. Note that in the other sim-
ple micropayment channel of the current branch, payments flow from P1 to P2,
therefore P2 prefers the latest update transaction to the refund transaction in
that channel and would not attempt to timelock bribe there.

The result intended by the DMC construction is for the update transaction,
and not the refund transaction, to be included on-chain. Unfortunately, under
the assumption of rational miners, there are cases in which this expectation is
violated. In particular, P2 can offer a timelock bribe and turn the inclusion of
the refund transaction into a strictly dominant strategy profile for the miners.
We identify the parameter region for which this is possible.

Theorem 2. A DMC bribe is possible if cr,2 − cu,2 > fu−2f
λmin

+ 2f − fr, where
cr,2, cu,2 are P2’s coins in the refund and update transactions respectively, and
fr, fu are the fees of the refund and updated transactions.

P1 should therefore take care to avoid such a situation by invalidating the cur-
rent refund transaction before such a state is reached. Note that due to Lemma 3
it does not make sense for P2 to attempt to bribe using more transactions than
just the refund transaction and txb, lest she wants to pay a higher bribe. Also
note that it is essentially risk-free for P2 to attempt a timelock bribe, since if
it fails the latest update transaction will be mined and P2 will receive her fair
share without any punishment. Due to symmetry between the two parties, the
analysis above holds with the roles of P1 and P2 reversed.

Observe that in practice parties have the ability to locally re-estimate the
value of λmin on the fly and act accordingly: if a change to apparent mining
power distribution makes one of the two parties decide that the current balance
is reaching risky values, it can ask its counterparty to invalidate the current leaf
and refuse to do any further payments until this is done.

4.3 Improving DMC incentives: simple Suborn channels

Simple Suborn channel design. Our goal is to drastically reduce the ef-
fectiveness of timelock bribing in DMC. To that end, we propose the following
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changes. Remember that the only valid state of a DMC channel is essentially
two unidirectional channels. We denote with (1 → 2) the channel in which P1

pays P2, and with (2→ 1) the reverse; this notation is also used as a superscript.
Each party locally stores a different refund transaction (instead of having

identical ones). In channel (2→ 1), P2’s refund transaction has two outputs: (a)
an output with P1’s coins, spendable just with P1’s signature, (b) an output with
P2’s coins, spendable with P2’s signature and the preimage of a specified hash.
P1’s refund transaction in (2→ 1) is as in DMC (only signatures required).

The update transaction of channel (2→ 1) (held by P1) is changed as follows.
(a) P1’s output can be spent with P1’s signature, whereas (b) P2’s output has
two spending methods: either with P2’s signature, or with the preimage of the
aforementioned hash (same as the refund transaction) without any signature.
Channel (1→ 2) is symmetric. The changes are depicted in Figure 3.

To establish a channel, each party generates a secret preimage and sends to
the counterparty its hash. Upon receiving the hash, the party sends to the coun-
terparty its signature on the refund transaction. To perform a payment, the payer
signs and sends the new update transaction to the counterparty. The closing of a
simple Suborn channel is similar to DMC (collaboratively, or unilaterally with
a refund or update transaction).

When P2 attempts to spend her c2→1
r,2 coins in her own refund transaction,

she has to reveal the preimage. This secret can be used by a miner to claim
P2’s coins from P1’s update transaction. This effectively increases the fee of P1’s
update transaction using P2’s coins. The miner only knows the preimage if P2

attempts to timelock bribe (disclosing the secret in the process) while neither
the refund nor the update transaction is on-chain.

Note that this change does not jeopardize P2’s ability to use her refund
transaction honestly. In case the timelock of P2’s refund transaction expires, she
can publish it, wait for it to be confirmed deep enough in the blockchain, and
only then publish a transaction that spends her cr,2 coins. At that moment it
is safe for P2 to reveal the preimage, since the update transaction cannot be
included on-chain anymore.

Analysis. In order to determine the exact bounds within which our technique
prevents timelock bribes, we perform a similar analysis as for the original DMC.

Theorem 3. A bribe in the simple Suborn channels is possible if cr,2−cu,2(1+
1

λmin
) > fu−2f

λmin
+ 2f − fr, where cr,2, cu,2 are P2’s coins in the refund and up-

date transactions respectively, and fr, fu are the fees of the refund and updated
transactions.

We see that the bounds of balances within which timelock bribes may take
place is much smaller than in the DMC construction. For example, if λmin = 0.02
(as estimated in [22]), then cu,2 may become 51 times smaller than in plain
DMC before a bribing opportunity arises. Unfortunately, these bounds are still
tighter than the ones originally recommended in DMC, which allowed simple
micropayment channels to be completely depleted before moving on to a new
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branch – as we showed, this would risk a timelock bribe opportunity. Once again,
Lemma 3 precludes a case where it is in the benefit of P2 to bribe using more
transactions. Note that this change exposes P2 to some risk if she attempts a
timelock bribe even if the Nash equilibrium for the miners is to ignore P1’s
update transaction. In case any winning miner is irrational and chooses to mine
P1’s update and take P2’s coins, P2 is punished and takes no coins. The analysis
for P1 is symmetric.

Overhead over DMC. When opening the channel, each party has to generate
a single preimage (32 bytes), send its hash (32 bytes) to the counterparty, receive
and store the counterparty’s hash. This has to be done only once for the entire
lifetime of the channel. No additional communication rounds are needed, as the
hashes can be appended to existing messages. When closing the channel, if a
refund transaction is used, then the on-chain overhead is a hash (33 bytes, the
extra byte specifies the length of the hash), its preimage (33 bytes as well) and the
corresponding opcodes for its verification (OP SHA256 & OP EQUAL, 1 byte each,
c.f. Appendix A), adding 68 bytes. If one party publishes its update transaction
and its counterparty is honest, then the on-chain overhead is the branch with the
hashlock in the counterparty’s output, which adds a hash and 4 opcodes (OP IF

& OP ELSE & OP ENDIF, c.f. Appendix A), adding 38 bytes. The overhead of the
update transaction can be eliminated if the taproot4 optimization is used.

4.4 Incentivizing DMC across branches: Suborn channels

Suborn channel design. The previous technique can be extended to discour-
age cross-branch bribes. Suppose the briber attempts to incentivize miners to
ignore the valid branch of the invalidation tree altogether in favor of an invali-
dated branch, i.e., one which is encumbered with a longer timelock than the valid
one. Now the briber may instead use an old update transaction to cheat. To ad-
dress this issue, we require update transactions to include a hashlock as well.
More specifically, the output of P2, both in the refund and in the update trans-
actions of P2, should require the preimage of the hash along with P2’s signature.
The changes are mirrored for the other party. This way all avenues for bribing
are encumbered with preimage revelation. The two hashes (one per party) must
remain the same across branches in all update and refund transactions. This way
bribing in an old branch can be punished in the last branch. See Appendix A
for the exact Script, and Figure 3 for an illustration of Suborn channels.

In our scheme, to decide whether our balance is within safe bounds, we must
consider all past update and refund transactions. This must be taken into account
in the parameter region analysis. Note that in every simple channel the payer
only stores the refund transaction, whereas the payee stores both the refund
and the update transactions. The payee always prefers the update to the refund
transaction, as simple channels are unidirectional.

4 https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki

https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
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Let kl ∈ N be the total number of leaves – the only valid leaf is the kl-th. Let
k ∈ [kl − 1]. Furthermore, assume that branches kl and k have j distinct opt-in
transactions. The coins held in the outputs of the two last update transactions
of the k-th branch that belong to P2 are denoted with c1→2

k,u,2 and c2→1
k,u,2. Analo-

gous notation is used for the refund transactions and P1’s coins. Let fb be the
necessary bribe given by txb to incentivize miners to ignore the latest leaf – P2

may only have txb consume her c2→1
k,r,2 and optionally in addition her c1→2

k,u,2 coins,
as all opt-in transactions only include multisig outputs that can only be spent
according to the protocol. All opt-in, update and refund transactions have a fee
fo, fu and fr respectively.

Theorem 4. A bribe in Suborn channels is possible if ∀k ∈ [kl − 1], c1→2
k,u,2 +

c2→1
k,r,2− (c1→2

kl,u,2
+ c2→1

kl,u,2
)(1 + 1

λmin
) < 1

λmin
(jfo+ 2fu− (j+ 3)f) + (j+ 3)f − jfo−

fr − fu.

Before every payment P1 must ensure that Theorem 4 will still hold to prevent
a timelock bribe from P2. Otherwise P1 should refuse to facilitate the payment
and propose creating a new branch instead. Lemma 3 ensures that it is in the
benefit of P2 to bribe with only one additional transaction txb. Similarly to
the previous subsection, P2 is exposed to some risk if it attempts a timelock
bribe even when the Nash equilibrium is in her favor, since there may be a
winning irrational miner that chooses to mine P1’s transaction and punish P2.
The analysis for P1 is symmetric.

Overhead over Simple Suborn channels. The only additional overhead
compared to Subsection 4.3 is a hash, a preimage and 2 opcodes, for a total of
68 bytes, when the party that publishes an update transaction spends its own
output.

4.5 Timelock bribe in LN

LN is also susceptible to timelock bribes. P2 can timelock bribe by publishing an
old, revoked commitment transaction together with a bribing transaction txb.
txb spends P2’s output of the commitment transaction, offers fee fb and pays the
rest to P2. For big enough fb, this incentivizes miners to ignore P1’s revocation
transaction, which carries a fee fr; the revocation transaction gives all P2’s coins
to P1 (without a timelock) as a punishment for publishing an old commitment
transaction. Let cold and cnew be P2’s coins in the old and new commitment
transactions respectively.

Theorem 5. A bribe in LN channels is possible if cold − cnew > fr−f
λmin

+ 2f .

Therefore, in order to avoid a timelock bribe, P1 must not allow the channel
balance to reach the condition of Theorem 5 for any old channel state. Lemma 3
ensures that it is not in P2’s benefit to attempt to bribe with more than one
transaction. The analysis for P1 is symmetric.
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4.6 Fixing LN incentives

In order to shrink the bounds in which a timelock bribe is possible in LN, we pro-
pose the following change: Instead of having revocation transactions only offer
fee fr, they would instead offer a higher fee f ′r, such that bribes are not possible
(reversing the inequality of Theorem 5). Note that we only consider counter-
measures where the honest party does not lose coins. Figure 4 demonstrates the
proposed modification to the lightning channel construction.

Theorem 6. A bribe in modified LN channels is not possible if f ′r ≥ f +
λmin(cold − cnew − 2f) and λmin ≤ cnew−f

cold−cnew−2f , where cold are the maximum
coins P2 owned in any old channel state and cnew the coins P2 currently owns.

Before each payment, P1 should ensure that Theorem 6 holds for the new
balance. To do so, P1 substitutes the values λmin, f , cold and cnew – the latter
is P2’s coins after the prospective update.

The maximum possible λmin occurs when there are exactly two equal miners,
meaning that λmin = 0.5. Then, cnew−f

cold−cnew−2f ≥ 0.5⇔ 2(cnew−f) ≥ cold−cnew−
2f ⇔ 3cnew ≥ cold, meaning that P1 can always nullify P2’s bribes if 3cnew ≥ cold.
For any lower λmin, the safe region is even larger.

Conveniently for P1, the fee f ′r does not have to be determined in advance; it
can be directly calculated and applied only if P2 attempts to timelock bribe. In-
deed, the revocation transaction can be built unilaterally by P1 when it is needed
and with the desired fee, as the punishment path of a commitment transaction
is locked with a single key (namely “revocationpubkey” [1]) and P1 knows
the corresponding private key (namely “revocationprivkey” [1]). Moreover, f ′r
does not need to be applied at all in case P2 publishes an old commitment trans-
action without bribing. No change in Script is necessary, just a suitable increase
in the fee of revocation transactions, as discussed above. The analysis for P1 is
symmetric.

Overhead over LN. Since our solution does not change any of the data ex-
changed neither adds outputs nor complicates scripts, its only overhead is the
calculation of the new fee f ′r, a local computation that in practice is negligible.

5 Related Work

Bribing attacks on blockchains with Nakamoto-style consensus have been iden-
tified in the past, initially ones that incentivize miners to double-spend transac-
tions [19]. Accepting such bribes carries an associated risk for the miner. Specif-
ically, while the honest miners extend the longest chain, the bribed miner would
have to ignore the last block and instead mine enough new blocks on top of
an older block to catch up with the last block – a high risk/high returns strat-
egy. Furthermore, attempts to fork the blockchain are often publicly visible and
attributable, and could lead to damaged miner reputation.
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Fig. 3: Suborn Channels Fig. 4: Modified Lightning Channels

On the other hand, accepting a timelock bribe is risk-free for the miner, as
it does not involve creating a fork; it simply has the miner ignore a particular
transaction when forming a block and then mining on top of the longest chain.
Previous analyses [22,26,27] of timelock bribes cover slightly different scenarios
with distinct approaches and thus arrive to varying conclusions.

In particular, [22] focuses on the resilience of the HTLC smart contract un-
der a timelock bribe, which is analyzed in the context of LN and Cross-Chain
Atomic Swaps [16] under the assumption of rational miners and for all possible
ranges of bribe values. A simple utility function is used, as it only considers the
miners’ payouts of the competing bribing and honest transactions, not taking
into account fees offered by candidate unrelated transactions that could be in-
cluded instead in a block. Modulo these differences, the subset of their analysis
that treats the same bribe ranges as ours is indeed compatible with the results
of the current work. For smaller bribes, the authors conclude that no opportu-
nity for bribery exists given that the timelock is long enough – its exact length
depends on the honest transaction fee, the bribe and the mining power distribu-
tion. Given the results of their analysis, the authors provide recommendations
on safe parameters for LN and Atomic Swaps.

In [27] three different bribery mechanisms are presented and analyzed for
a general setting of transaction censorship attacks. Fees from unrelated trans-
actions are taken into account in the miners’ utility function. The first attack
involves paying out a separate bribe to each miner if it succeeds, not just to the
winner of the last round. The second attack pays out bribes throughout the exe-
cution to each winning miner as long as the honest transactions are ignored. This
attack can be cheaper than the first, but cannot, to the best of our knowledge,
be implemented in Bitcoin Script without explicit cooperation by the honest
party. The last attack is inspired by feather forks [20]: It bribes a miner with
enough mining power to commit to ignoring blocks with undesired transactions,
effectively threatening other miners to orphan their blocks if they act honestly.
If the committed miner defects, she loses a deposit. This attack is cheaper than
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the other two, but needs a miner that is willing to publicly commit to a malicious
strategy. Due to incompatible assumptions on the setting, particularly on the
payout schedule of the honest transactions, the results of [27] and the current
work are not directly comparable.

Lastly in [26] bribing attacks against standard HTLC contracts are analyzed,
bribing ranges beyond which the attack succeeds are provided, an extension to
the Bitcoin Core code that allows miners to specify arbitrary strategies is imple-
mented and a collateral-based modification of HTLC that provably withstands
bribing attacks is built. Our incentive analysis constitutes a generalization of
the approach of [26]. We further apply our analysis to both DMC and LN. We
also provide an alternative method to discourage bribes, which does not employ
collateral.

6 Conclusion and future work

6.1 Future work

In the context of a conditionally timelocked output, another direction of interest
is to formally analyze miner incentives when fh−mf

λmin
+mf > fb > fh, where fh is

the fee of the timelock-free transaction and fb is the bribe. Such a study would
highlight opportunities for cheaper bribing, formulate the effects of the transition
of the bribe value from one regimen to the other in a unified framework, and
examine the effectiveness of our proposals against such lower bribe values. Ideally
it would also unify the settings of [22,26,27] and the current work.

HTLCs, which are used both in DMC and LN for multi-hop atomic payments,
leverage timelocks for their functionality. The methodology used in this work can
be extended to techniques for mitigating timelock bribing for HTLCs as well.

6.2 Conclusion

In this work, we analyzed the circumstances under which a general form of time-
lock bribes may be carried out by a rational participant of a two-party protocol,
assuming rational miners. We further applied our findings to provide bounds
on the applicability of timelock bribes in DMC [11] and LN [24]. Subsequently,
using specially tailored novel techniques that allow the honest party to use the
rational party’s funds to counter-bribe the miners, we reduced the opportuni-
ties for timelock bribes compared to the original constructions and effectively
expanded their safe operating region.

Acknowledgements This work was partly supported by the German Federal
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Sanchez, and S. Riahi. Bitcoin-compatible virtual channels. In IEEE Symposium
on Security and Privacy, Oakland, USA; 2021-05-23 - 2021-05-27, 2021. https:

//eprint.iacr.org/2020/554.pdf.
4. L. Aumayr, P. Moreno-Sanchez, A. Kate, and M. Maffei. Donner: Utxo-based

virtual channels across multiple hops. Cryptology ePrint Archive, Report 2021/855,
2021. https://eprint.iacr.org/2021/855.

5. Z. Avarikioti, E. K. Kogias, R. Wattenhofer, and D. Zindros. Brick: Asynchronous
incentive-compatible payment channels. In International Conference on Financial
Cryptography and Data Security, 2021.

6. Z. Avarikioti, O. S. T. Litos, and R. Wattenhofer. Cerberus channels: Incentivizing
watchtowers for bitcoin. In International Conference on Financial Cryptography
and Data Security, pages 346–366. Springer, 2020.

7. C. Burchert, C. Decker, and R. Wattenhofer. Scalable funding of bitcoin micro-
payment channel networks. In The Royal Society. 2018.

8. M. M. T. Chakravarty, S. Coretti, M. Fitzi, P. Gazi, P. Kant, A. Kiayias, and
A. Russell. Hydra: Fast isomorphic state channels. Cryptology ePrint Archive,
Report 2020/299, 2020. https://eprint.iacr.org/2020/299.

9. K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Sax-
ena, E. Shi, E. G. Sirer, D. Song, and R. Wattenhofer. On scaling decentralized
blockchains. In International Conference on Financial Cryptography and Data
Security, pages 106–125. Springer, 2016.

10. C. Decker, R. Russell, and O. Osuntokun. eltoo: A simple layer2 protocol for
bitcoin. https://blockstream.com/eltoo.pdf.

11. C. Decker and R. Wattenhofer. A fast and scalable payment network with bitcoin
duplex micropayment channels. In Stabilization, Safety, and Security of Distributed
Systems, pages 3–18. Springer, 2015.

12. M. Dong, Q. Liang, X. Li, and J. Liu. Celer network: Bring internet scale to every
blockchain, 2018.

13. S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski. Perun: Virtual payment
hubs over cryptocurrencies. In 2019 2019 IEEE Symposium on Security and Pri-
vacy (SP), pages 344–361, Los Alamitos, CA, USA, May 2019. IEEE Computer
Society.

14. S. Dziembowski, S. Faust, and K. Hostáková. General state channel networks. In
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A Suborn Transactions Script for Incentivized DMC

OP_IF

<remote_pubkey>

OP_CHECKSIG

OP_ELSE

OP_SHA256

<remote_hash>

OP_EQUAL

OP_ENDIF

Fig. 5: script for P3−i’s output of Pi’s
update transactions, i ∈ {1, 2}

OP_SHA256

<local_hash>

OP_EQUALVERIFY

<local_pubkey>

OP_CHECKSIG

Fig. 6: script for Pi’s output in Pi’s
refund and update transactions, i ∈
{1, 2}

1

<remote_sig>

Fig. 7: witness script spending honest
(“IF”) branch of Fig. 5 script

<preimage>

<local_sig>

Fig. 8: witness script spending Fig. 6
script

0

<preimage>

Fig. 9: witness script spending punish-
ment (“ELSE”) branch of Fig. 5 script
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B Omitted proofs

Proof of Lemma 1. For round k ∈ [T ], the game is either Γk or Γ ∗k . If a miner
attempts to mine tx1 in round k, the maximum value she can extract is if
she chooses to mine txs∗1 and fill the remaining N − m slots with unrelated
transactions. There is no benefit to be gained in this or later rounds if a different
way of including tx1 is chosen, so we ignore such other options. The expected
fee she gains from this round is λi(f1 + (N − m)f) in the first case and 0 in
the second (as her block would be invalid). If instead she attempts to mine
only unrelated transactions, her expected gains from this round are λiNf . It is
mf > f1 ⇔ Nf > f1 + (N −m)f ⇔ λiNf > λi(f1 + (N −m)f) and λiNf > 0,
so attempting to mine only unrelated transactions offers higher value in both
cases. Since the expected utility is the sum of the expected gains of all rounds,
attempting to mine txs∗1 in any round is strictly dominated by attempting to
mine txsu in their place.

Proof of Lemma 2. Since O is spent, all remaining valid transactions offer fee f .
Therefore the i-th miner has a probability λi to obtain fee Nf for each of the
remaining T − k + 1 rounds, for a total expected utility ui(σ, Γ ) = λi(T − k +
1)Nf .

Proof of Theorem 1. We will prove the theorem using induction and iterated
elimination of strictly dominated strategies.

First of all, we note that

f2 > f1 > mf . (1)

The first inequality stems directly from the theorem precondition, whereas the
second arises when we solve f1−mf

λmin
+mf > f1 for f1 while keeping in mind that

0 < λmin < 1.
Consider now the i-th miner, i ∈ [n] when she decides which transaction to

include for the last round, T . If O is unspent, then

∀σT−i ∈ ΣT
−i it is

ui(σ
T
−i;σ

T
i = txsu, ΓT ) = λiNf ,

ui(σ
T
−i;σ

T
i = (txs∗1 ∪ txsu), ΓT ) = λi(f1 + (N −m)f) ,

ui(σ
T
−i;σ

T
i = (txs∗2 ∪ txsu), ΓT ) = λi(f2 + (N −m)f) .

From inequalities (1) we deduce that σTi = txs∗2 ∪ txsu is a strictly dominant
strategy for any i ∈ [n], so σT = ((txs∗2 ∪ txsu), . . . , (txs∗2 ∪ txsu)︸ ︷︷ ︸

n

) in subgame

ΓT with ui(σ
T , ΓT ) = λi(f2 + (N −m)f).

We will now prove via induction that σ1...T−1 = (txsu, . . . , txsu︸ ︷︷ ︸
n

)T−1 for

subgame Γk, in other words that the Nash equilibrium in all rounds prior to
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the last one in which O is unspent is for all players to attempt to mine only
unrelated transactions.

The base of the induction is k = T −1. For i ∈ [n], it is either σT−1i = txs∗1∪
txsu or σT−1i = txsu (as in the proof of Lemma 1, we ignore all configurations
that include tx1 except for txs∗1). Let σT−1−i ∈ Σ

T−1
−i and λu the sum of mining

power of miners who try to mine only unrelated transactions in round T − 1,
excluding the i-th miner. If tx1 is mined, then the last round is Γ ∗T and by
Lemma 2 the utility obtained by the i-th miner at the last round is λiNf . It is

ui((σ
T−1
−i ;σT−1i = txsu)σT , ΓT−1) =

λi(Nf + ui(σ
T , ΓT )) + λuui(σ

T , ΓT ) + (1− λu − λi)λiNf =

λi(Nf + λi(f2 + (N −m)f)) + λuλi(f2 + (N −m)f) + (1− λu − λi)λiNf ,

ui((σ
T−1
−i ;σT−1i = (txs∗1 ∪ txsu))σT , ΓT−1) =

λi((f1 + (N −m)f) + λiNf) + λuui(σ
T , ΓT ) + (1− λu − λi)λiNf =

λi((f1 + (N −m)f) + λiNf) + λuλi(f2 + (N −m)f) + (1− λu − λi)λiNf .

It is

ui((σ
T−1
−i ;σT−1i = txsu)σT , ΓT−1) > ui((σ

T−1
−i ;σT−1i = txs∗1 ∪ txsu)σT , ΓT−1)

⇔ λi(Nf + λi(f2 + (N −m)f)) > λi((f1 + (N −m)f) + λiNf)

⇔ f2 >
f1 −mf

λi
+mf .

It is f1−mf
λi

+ mf ≤ f1−mf
λmin

+ mf so the above is true. Therefore σT−1 =

(txsu, . . . , txsu︸ ︷︷ ︸
n

), thus λu = 1 − λi and ui(σ
T−1...T , ΓT−1) = λi(Nf + λi(f2 +

(N −m)f) + (1− λi)λi(f2 + (N −m)f) = λi((2N −m)f + f2).

Let k ∈ [T − 2]. The inductive assumption for k + 1 is firstly that σk+1 =
(txsu, . . . , txsu︸ ︷︷ ︸

n

) and secondly ui(σ
k+1...T , Γk+1) = λi((T − k)Nf + f2 −mf).

For the inductive step, let once again i ∈ [n]. It is either σki = txs∗1 ∪ txsu
or σki = txsu (again ignoring suboptimal transaction sets that include tx1 but
are not txs∗1). Let σk−i ∈ Σk

−i and λu the sum of mining power of miners who
try to mine only unrelated transactions in round k, excluding the i-th miner. If
tx1 is mined, then the next round is Γ ∗k+1 and by Lemma 2 the utility obtained
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by the i-th miner from all rounds after k is λi(T − k)Nf . It is

ui((σ
k
−i;σ

k
i = txsu)σk+1...T , Γk) =

λi(Nf+ui(σ
k+1...T , Γk+1))+λuui(σ

k+1...T , Γk+1)+(1−λu−λi)λi(T−k)Nf =

λi(Nf + λi((T − k)Nf + f2 −mf))+

λuλi((T − k)Nf + f2 −mf) + (1− λu − λi)λi(T − k)Nf,

ui((σ
k
−i;σ

k
i = txs∗1 ∪ txsu)σk+1...T , Γk) =

λi(f1 + (N −m)f + λi(T − k)Nf)+

λuui(σ
k+1...T , Γk+1) + (1− λu − λi)λi(T − k)Nf =

λi(f1 + (N −m)f + λi(T − k)Nf)+

λuλi((T − k)Nf + f2 −mf) + (1− λu − λi)λi(T − k)Nf.

It is

ui((σ
k
−i;σ

k
i = txsu)σk+1...T , Γk) > ui((σ

k
−i;σ

k
i = txs∗1 ∪ txsu)σk+1...T , Γk)

⇔ λi(Nf + λi((T − k)Nf + f2 −mf)) > λi(f1 + (N −m)f + λi(T − k)Nf)

⇔ f2 >
f1 −mf

λi
+mf .

Like in the induction base, it is f1−mf
λi

+mf ≤ f1−mf
λmin

+mf so the above is true.

Therefore σk = (txsu, . . . , txsu︸ ︷︷ ︸
n

), thus λu = 1− λi and

ui(σ
k...T , Γk) =

λi(Nf + λi((T − k)Nf + f2 −mf)) + (1− λi)λi((T − k)Nf + f2 −mf) =

λi((T − k + 1)Nf + f2 −mf) .

We have proven that ∀k ∈ [T − 1] it is σk = (txsu, . . . , txsu︸ ︷︷ ︸
n

) thus we deduce

that σ = (txsu, . . . , txsu︸ ︷︷ ︸
n

)T−1(txs∗2 ∪ txsu, . . . , txs∗2 ∪ txsu︸ ︷︷ ︸
n

).

Proof of Lemma 3. Let m ∈ [N − 1].

f1 −mf
λmin

+mf <
(f1 + f)− (m+ 1)f

λmin
+ (m+ 1)f ⇔

f1 −mf
λmin

<
f1 −mf
λmin

+ f ⇔ 0 < f

The latter is true, thus the proof is complete.

Proof of Theorem 2. P2 publishes the refund transaction, along with a transac-
tion txb that spends her cr,2 coins, transferring some of them to a new address
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that belongs to P2 and offering the rest as fee fb, such that fr+fb >
fu−2f
λmin

+2f .
Due to Theorem 1, miners will ignore the update transaction, wait for the time-
lock of the refund transaction to expire and mine it along with txb. In order for
this timelock bribe to be beneficial to P2, it must hold that cr,2 − fb > cu,2 ⇔
cr,2−cu,2 > fb. Therefore, a suitable fb exists if cr,2−cu,2 > fu−2f

λmin
+2f−fr.

Proof of Theorem 3. More specifically, consider P2 evaluating whether to time-
lock bribe. Publishing the refund transaction and txb offers to miners a total
fee fr + fb, of which fb is taken from cr,2, therefore bribing makes sense only if
cr,2− fb > cu,2 ⇔ cr,2− cu,2 > fb. In that case the published update transaction
offers an effective fee of fu+ cu,2. Leveraging Theorem 1, we deduce that miners

will accept the bribe if fr + fb >
fu+cu,2−2f

λmin
+ 2f ⇔ fb >

fu+cu,2−2f
λmin

+ 2f − fr.
Therefore, a suitable fb exists if and only if cr,2− cu,2 > fu+cu,2−2f

λmin
+ 2f − fr ⇔

cr,2 − cu,2(1 + 1
λmin

) > fu−2f
λmin

+ 2f − fr.

Proof of Theorem 4. For each k ∈ [kl − 1], P2 prefers the update transaction
of (1 → 2) and the refund transaction of (2 → 1) k-th leaf to the update
transactions of the currently valid leaf if c1→2

k,u,2 + c2→1
k,r,2 − fb > c1→2

kl,u,2
+ c2→1

kl,u,2
⇔

c1→2
k,u,2 + c2→1

k,r,2 − (c1→2
kl,u,2

+ c2→1
kl,u,2

) > fb. Since branches k and kl have j distinct
opt-in transactions, then j + 3 transactions are implicated in the bribe. Thus,
according to Theorem 1 miners will choose the bribe if jfo + fr + fu + fb >

1
λmin

(jfo + 2fu + c2→1
kl,u,2

+ c1→2
kl,u,2

− (j + 3)f) + (j + 3)f ⇔ fb >
1

λmin
(jfo + 2fu +

c2→1
kl,u,2

+ c1→2
kl,u,2

− (j+ 3)f) + (j+ 3)f − jfo− fr− fu. Therefore, a compatible fee

fb exists if c1→2
k,u,2 + c2→1

k,r,2 − (c1→2
kl,u,2

+ c2→1
kl,u,2

) > 1
λmin

(jfo + 2fu + c2→1
kl,u,2

+ c1→2
kl,u,2

−
(j + 3)f) + (j + 3)f − jfo − fr − fu.

Proof of Theorem 5. For the bribe to be profitable for P2, it must be cold−fb >
cnew − f ⇔ cold − cnew − f > fb – the fee f is included because this is the
minimum fee P2 would have to pay anyway in order to use its cnew coins. By
applying Theorem 1, we deduce that miners will accept the bribe if fb >

fr−f
λmin

+f ,

therefore a suitable fb exists if and only if cold − cnew − f > fr−f
λmin

+ f ⇔
cold − cnew > fr−f

λmin
+ 2f .

Proof of Theorem 6. To discourage bribes, from Theorem 5, the fee of the honest

party should satisfy the following: cold−cnew ≤ f ′
r−f
λmin

+2f . This means that f ′r ≥
f+λmin(cold−cnew−2f). We will now ensure that this f ′r does not lead to loss of
coins for P1. Let c be the total channel value, which stays constant throughout
the channel lifetime. P1 has to own enough coins in the old state, so that their
sum with the counterparty’s coins minus the fee f ′r exceeds or matches P1’s coins
in the latest state. Formally, c−cold+cold−f ′r ≥ c−cnew ⇔ cnew ≥ f ′r. Combining
the above, it has to be cnew ≥ f +λmin(cold− cnew− 2f)⇔ λmin ≤ cnew−f

cold−cnew−2f .
The last step is valid since cold − cnew − 2f > 0. This is true since, as we saw
above, P2 only attempts to bribe if cold − cnew − f > fb and we know that
fb ≥ f .
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