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Abstract. We introduce a new security notion that lies right in between pseudorandom permuta-
tions (PRPs) and strong pseudorandom permutations (SPRPs). We call this new security notion
and any (tweakable) cipher that satisfies it a rugged pseudorandom permutation (RPRP). Rugged
pseudorandom permutations lend themselves to some interesting applications, have practical ben-
efits, and lead to novel cryptographic constructions. Our focus is on variable-length tweakable
RPRPs, and analogous to the encode-then-encipher paradigm of Bellare and Rogaway, we can
generically transform any such cipher into different AEAD schemes with varying security prop-
erties. However, the benefit of RPRPs is that they can be constructed more efficiently as they
are weaker primitives than SPRPs (the notion traditionally required by the encode-then-encipher
paradigm). We can construct RPRPs using only two layers of processing, whereas SPRPs typically
require three layers of processing over the input data. We also identify a new transformation that
yields RUP-secure AEAD schemes with more compact ciphertexts than previously known. Further
extending this approach, we arrive at a new generalized notion of authenticated encryption and
a matching construction, which we refer to as nonce-set AEAD. Nonce-set AEAD is particularly
well-suited in the context of secure channels, like QUIC and DTLS, that operate over unreliable
transports and employ a window mechanism at the receiver’s end of the channel. We conclude
by presenting a generic construction for transforming a nonce-set AEAD scheme into an order-
resilient secure channel. Our channel construction sheds new light on order-resilient channels and
additionally leads to more compact ciphertexts when instantiated from RPRPs.
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1 Introduction

The modern view of symmetric encryption follows a nonce-based syntax. At first, this may seem like a su-
perficial detail but it has important ramifications both practically and theoretically. When first conceived
by Rogaway in [35], its primary motivation was to position the security of symmetric encryption on more
solid ground by lifting its reliance on good sources of randomness. It thus replaced an initialization vec-
tor, required to be uniformly random, for a nonce that instead is only required to never repeat. Besides
significantly reducing susceptibility to implementation errors, it added versatility by elegantly aligning
the two main flavours of symmetric encryption— randomized and stateful—into a single unified syntax
from which they can easily be realized. The resistance to misuse was later fortified in the strengthened
security notion by Rogaway and Shrimpton in [36]. On the more theoretical side, this seemingly minor
syntactical change has major consequences on how symmetric encryption and message authentication
compose together to form authenticated encryption. In contrast to the traditional view that only encrypt-
then-MAC results in a generically secure composition [8], all three composition paradigms become secure
under the nonce-based syntax and the mild requirement of tidiness [30].

Secure Channels. A major application of nonce-based AEAD is to realize secure channels in protocols
like TLS, SSH, and QUIC. Here, a number of options arise on how to handle the nonce, initialize it, update
it, and communicate it to the other party. Typically, secure channels need to protect against the replay and
reordering of ciphertexts, which in turn necessitates the receiver to be stateful [7]. Accordingly, a common
approach is to initialize the nonce to a common value and each party increments it (independently) upon
every encryption and decryption. This works well as long as the transport protocol, upon which the secure
channel is realized, is reliable and order-preserving, meaning that ciphertexts are delivered in the same
order as they were sent and without being lost. TLS and SSH operate over TCP, which is reliable and
order-preserving, but at the same time introduces issues such as head-of-line blocking1 which degrades
performance. This motivated the emergence of protocols like DTLS and QUIC, which operate over UDP,
thereby avoiding head-of-line blocking at the expense of having to deal with out-of-order delivery and
dropped ciphertexts.

Operating secure channels over UDP means that the receiver cannot predict the nonce as ciphertexts
may arrive out of order. Accordingly, the nonce has to be communicated together with each ciphertext.
Moreover, if the nonce is set to be a message number, the receiver can use it to recover the correct
ordering of the messages. In fact, because in nonce-based AEAD the nonce is implicitly authenticated,
the above approach works even against adversarial reordering strategies. Indeed, this is roughly the
approach adopted in DTLS 1.3 and QUIC. Thus, while the nonce was originally only intended to diversify
ciphertexts, in these protocols it is ‘overloaded’ to additionally serve a secondary purpose for recovering
the correct message ordering. This is yet another example of the beauty and versatility of a well-crafted
definition like nonce-based AEAD. However, attaching the nonce to the ciphertext in the clear exposes
metadata which can undermine privacy [14] and possibly confidentiality [9]. Accordingly QUIC and DTLS
1.3 separately encrypt the nonce before attaching it to the ciphertext. In turn this has led to the notion
of nonce-hiding AEAD [9], an idea that can be traced back to Bernstein [11].

Encode-then-Encipher. A classical technique for constructing an authenticated encryption scheme
is the encode-then-encipher paradigm by Bellare and Rogaway [10]. The technique builds an authen-
ticated encryption scheme from a variable-input-length cipher by properly encoding the message with
randomness and redundancy in order to obtain confidentiality and integrity. A more modern take on
the encode-then-encipher paradigm was put forth by Shrimpton and Terashima in [38] where it was
extended to obtain nonce-based authenticated encryption with associated data (AEAD) from tweak-
able variable-input-length ciphers. A noteworthy feature of the encode-then-encipher paradigm is that it
yields AEAD schemes that satisfy the strongest possible security—misuse resistance [36] and release-of-
unverified plaintext (RUP) security [1, 4, 22] simultaneously. Despite their strong security, such schemes
are scarce in real-world systems. In all likelihood, this is due to tweakable ciphers generally being heavy
primitives whose performance lags behind that of more efficient AEAD schemes. In this respect, one
exception is AEZ [22] which offers competitive speeds although requiring three layers of processing.
However its security relies on a non-standard heuristic analysis and, in addition, it is also a significantly
complex scheme to implement.

1 https://en.wikipedia.org/wiki/Head-of-line_blocking

https://en.wikipedia.org/wiki/Head-of-line_blocking
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1.1 Contribution

Rugged Pseudorandom Permutations. Our first contribution is a novel security definition for tweak-
able ciphers that sits between a pseudorandom permutation and a strong pseudorandom permutation.
The security definition assumes a cipher defined over a ‘split’ domain, meaning that its inputs and out-
puts will typically consist of a pair of strings, possibly of different sizes, rather than a single string. A
salient characteristic of our security definition is that it imposes stronger security requirements on the
enciphering algorithm than on the deciphering algorithm. Intuitively, we will still require an adversary
to distinguish between the cipher and a random permutation. However, while the adversary will have
full access to the enciphering algorithm its access to the deciphering algorithm will be restricted, thereby
giving rise to the asymmetric security between the two algorithms. Due to the uneven domain and the
asymmetry in the cipher’s security we choose to call such a cipher a rugged pseudorandom permutation
(RPRP).

The benefit of this security definition is that it strikes a new balance in which security is sufficiently
weakened to allow for more efficient cipher constructions while still being strong enough to be of use in
practice. Our RPRP construction is inspired by the PIV construction by Terashima and Shrimpton [38]
and the GCM-RUP construction by Ashur, Dunkelman, and Luykx [2]. More specifically, Unilaterally-
Protected IV (UIV), is directly obtained from the PIV construction by shaving off its last layer. GCM-RUP
is similarly derived from PIV by shaving off the first layer and then augmenting it to obtain a nonce-based
AEAD scheme that is RUP secure. Like GCM-RUP, UIV can be instantiated from GCM components
and benefit from GCM’s now-ubiquitous hardware support that enables its superior performance. The
benefit of drawing the boundary around UIV is that, firstly, it is a length-preserving cipher which is
advantageous in settings such as disk encryption. Secondly, it is a more versatile primitive that, as we
shall see, can be easily augmented to yield different AEAD schemes. Indeed, one specific transformation
recovers GCM-RUP, but our general treatment allows us to uncover several new AEAD schemes with
varying properties and improvements.

Constructing AEAD From RPRPs. We revisit the encode-then-encipher paradigm in the context
of RPRPs. The asymmetry in the RPRP security definition prompts us to consider two variations of
this paradigm: Encode-then-Encipher (EtE) and Encode-then-Decipher (EtD), where the latter uses the
deciphering algorithm to encrypt and the enciphering algorithm to decrypt. We show that EtE yields
misuse-resistant AEAD and that EtD yields RUP-secure AEAD. A notable instantiation of the encode-
then-encipher paradigm is to ‘overload’ the use of the nonce to additionally serve as the redundancy
in the encoding that provides integrity. This approach appears to have been missed in prior works. For
instance, GCM-RUP simultaneously encrypts the nonce and adds redundancy in the message, resulting
in an unnecessary expansion in the ciphertext. On the other hand, when EtD is instantiated this way
with UIV we obtain a RUP-secure scheme with more compact ciphertexts than GCM-RUP.

Nonce-Set AEAD and its Construction From RPRPs. Taking this idea of overloading the nonce
for integrity a step further, we arrive at a new AEAD construction with novel functionality. This func-
tionality is motivated by the use case of AEAD in secure channels like QUIC and DTLS. We formalize
this functionality as a new primitive that we call nonce-set AEAD, which extends and generalizes the
standard definition of nonce-based AEAD. Nonce-set AEAD alters the decryption algorithm to addi-
tionally take a set of nonces instead of a single one. Intuitively decryption will succeed if the correct
nonce is among this set. Moreover, the decryption algorithm will return the nonce in the supplied set
that was deemed correct as part of its output. We show how to generically construct such a scheme from
an RPRP through a construction we call Authenticate-with-Nonce (AwN) and show that it even achieves
misuse-resistance. The AwN construction requires a mechanism for representing nonce sets compactly and
the ability to test efficiently for membership in this set. Of course, since any SPRP is automatically an
RPRP, AwN can also be instantiated using other well-known SPRP constructions.

Order-Resilient Secure Channels From Nonce-Set AEAD. In order-resilient channels, the nonce
is often overloaded to serve as a message number that can be used to recover the correct ordering of
the decrypted messages. Nonce-set AEAD facilitates such an approach and can be plugged in directly
with the window mechanisms that are used in real-world protocols like QUIC and DTLS. Such window
mechanisms can be fairly complex and hard to understand when presented as code. Moreover, they affect
the security of the channel, and as a result, analyzing the security of these channels can become rather
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daunting at times. Our treatment based on nonce-set AEAD will help tame this complexity. The other
reason for introducing nonce-set AEAD is that it will allow for more bandwidth-efficient constructions
from RPRPs by additionally overloading the nonce to provide integrity in a way that is compatible with
the window mechanisms in the channel.

Recent work by Fischlin, Günther, and Janson [18] introduces a formal framework for analyzing the
security of order-resilient secure channels like QUIC and DTLS. Central to the framework is a support
predicate that expresses the expected behaviour of such channels. Many possibilities exist here in terms
of how much reordering should be tolerated, the specific window mechanism to use, and how to handle
replays, but the support predicate neatly captures these variations in their full generality. We build on
the framework in [18] to show how to generically transform any nonce-set AEAD scheme into a secure
channel for any support predicate that may be required. Besides having practical value, that of offering
order-resilient secure channels with more compact ciphertexts, our construction is also instructive in that
it decomposes the structure of complex secure channels into a handful of much simpler and manageable
components. It should be noted that nonce-set AEAD can also be realized through other constructions—
such as the nonce-hiding schemes in [9]. As such, our approach is very general and versatile.

1.2 Related Work

This work stemmed out from other work, concurrent to this one, on the design of Counter Galois Onion
(CGO), a proposal for a new onion encryption scheme for Tor [16]. Under the hood, CGO employs an
extended Rugged PRP to process each layer of encryption. In particular, the notion of a Rugged PRP was
developed in both works in parallel and went through a number of iterations. It was initially conceived
as an abstraction to facilitate the security proof of CGO, but we later realised that it had applications
beyond onion encryption which motivated the research in this paper.

Ashur, Dunkelman, and Luykx introduced GCM-RUP as a minor tweak to GCM which boosts its
security to further be secure under the release of unverified plaintext [2]. In that same work they also
suggest using GCM-RUP in Tor which inspired the design of CGO. In our framework GCM-RUP emerges
as one of several possible instantions of the EtD construction. Through the RPRP abstraction and our
modular approach we identify a variant of GCM-RUP which yields more compact ciphertexts.

Shortly after that the proceedings version of this paper was made available, Minematsu pointed us to
two prior works containing authenticated encryption schemes which use the nonce for authentication. The
first of these, AERO, was proposed in an Internet Draft by McGrew and Foley [26,27]. AERO is a stateful
authenticated encryption which embeds the nonce with the message and encrypts it with a variable-length
tweakable strong pseudorandom permutation (XCB). At the receiver end AERO uses the decrypted nonce
to authenticate the message. In follow-up work [28], Minematsu formalised MiniAE as a stateful variant of
AEAD and generalised AERO (in terms of a tweakable SPRP) in the MiniETE construction. That same
work also proposed MiniCTR as a more efficient construction for achieving MiniAE without employing a
variable- length tweakable cipher. Notably, our AwN construction instantiated with UIV looks very similar
to MiniCTR. However, besides the syntactical differences between MiniAE and nonce-set AEAD, there
is a subtle difference between MiniCTR and UIV which has to do with the security requirements that
the two constructions impose on F. While MiniCTR requires F to be an IND$-CPA IV-based encryption
scheme, UIV reqiures F to be a variable-output-length pseudorandom function. As a result, the F in
UIV is slightly harder to instantiate when its input size is equal to the block size — see Section 3.2. In
particular, MiniCTR as instantiated in [28] does not yield a secure RPRP and cannot be used in our
EtD constructions for instance. Finally, both AERO [27] and its formalisation in [28], MiniAE, somewhat
blur the boundary between AEAD and secure channels. One of the stated goals of AERO is to protect
against replays (a secure-channel goal in our view) and it accordingly adopts a stateful decryption syntax.
However, its security analysis uses a security definition which does not capture replay protection. Here
we draw a sharper boundary between the two by introducing nonce-set AEAD as the target primitive
and then showing how it can be generically transformed into a secure order-resilient channel for any
desired channel functionality.

2 Preliminaries

Notation. For any non-negative integer n ∈ N, {0, 1}n denotes the set of bit strings of size n, {0, 1}∗
denotes the set of all finite binary strings, and {0, 1}≥n denotes the set of all finite bit strings of size
greater or equal to n. The empty string is denoted by ε. For any string X, |X| denotes its length in bits.
Then for any non-negative integer n ≤ |X|, bXcn and dXen denote respectively the substrings of the
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leftmost and rightmost n bits of X, and X � n denotes the bit string of size |X| obtained by truncating
its leftmost n bits and appending n zeros to its right. For any two strings X and Y , of lengths |X| = n
and |Y | = m, where n < m, X ⊕Y denotes the operation of appending m−n zeros to the left of X, and
then XORing the expanded string X with Y . For any pair of strings (X,Y ) we define their combined
length |(X,Y )| as |X| + |Y | and we use 〈X,Y 〉 to denote an injective mapping from string pairs into
single strings.

For any set S, we use |S| to denote its cardinality, P(S) to denote its power set, i.e., the set of all
its subsets, and Perm[S] to denote the set of all permutations over the elements of S. The empty set is
denoted by ∅. For any two sets T and X , IC(T ,X ) denotes the set of all ciphers over the domain X and
key space T , Func(X ,∞) denotes the set of all functions mapping elements in X to elements in {0, 1}∞,
and ±Func(T ,X ) denotes the set of all functions mapping elements in {+,−}×T ×X to elements in X .
In our pseudocode we use lists as an abstract data type. We use [ ] to denote the empty list, and for any
two lists L1 and L2, we use L1‖L2 to denote the list obtained by appending L2 to L1. Lists are indexed
starting at position zero, and L1[i] denotes the element in L1 at position i. For a string X and a list L,
the function index(X,L) returns the smallest index in L in which X is located, if X is contained in L,
and returns ⊥ otherwise.

For events E and F , we use ¬E to denote the complement event of E, Pr[E] to denote the probability
of E, and Pr[E |F ] to denote the probability of E conditioned on F . Finally, Pr[P : E] denotes the
probability of E occuring after executing some random process P .

Tweakable Ciphers. A tweakable cipher is an algorithm

ẼE : K × T × X → X

such that for any (K,T ) ∈ K × T the mapping ẼE(K,T, ·) identifies a permutation over the elements in
X . We refer to K as the key space, T as the tweak space, and X as the domain. We use ẼEK(T, ·) as
shorthand for ẼE(K,T, ·) and ẼE

−1
K (T, ·) to denote the corresponding inverse permutation. A tweakable

cipher is required to be length preserving, meaning that for all (K,T,X) ∈ K × T × X it holds that
|ẼEK(T,X)| = |X|. We also refer to ẼE and ẼE

−1
as the enciphering and deciphering algorithms of the

tweakable cipher. In the special case where X = {0, 1}n, for some positive integer n, we call the cipher a
tweakable blockcipher and denote it by Ẽ. Thus we generally reserve ẼE to denote a variable-input-length
tweakable cipher, which may itself be constructed from an underlying tweakable blockcipher Ẽ.

Security. A tweakable cipher is typically required to satisfy one of two security notions, of which we only
present the stronger one that we use in this work. This is the SPRP notion2, which requires that for
a uniformly sampled key K the tweakable cipher be indistinguishable from an ideal cipher Π̃ sampled
uniformly from IC(T ,X ). The corresponding advantage term is formally defined below.

Definition 1 (SPRP Advantage). Let ẼE be a tweakable cipher defined over (K, T ,X ). Then for any
adversary A its SPRP advantage is defined as:

Advsprp

ẼE
(A) =

∣∣∣Pr[K ←$K : AẼEK(·,·),ẼE−1

K (·,·) ⇒ 1
]
− Pr

[
Π̃ ←$ IC(T ,X ) : AΠ̃(·,·),Π̃−1(·,·) ⇒ 1

]∣∣∣
Nonce-Based AEAD. A nonce-based encryption scheme SE = (Enc,Dec) is a pair of algorithms to
which we associate a key space K, a nonce space N , a header (associated data) space H, a message space
M and a ciphertext space C, all of which are subsets of {0, 1}∗. The encryption algorithm Enc and the
decryption algorithm Dec are both deterministic and their syntax is given by

Enc : K ×N ×H×M→ C and Dec : K ×N ×H× C →M∪ {⊥} .

The special symbol ⊥ serves to indicate that the decryption algorithm deemed its input to be invalid. A
nonce-based encryption scheme is required to be correct and tidy [30]. Correctness requires that for all
(K,N,H,M) ∈ K ×N ×H×M it must hold that

DecK(N,H,EncK(N,H,M)) =M.

2 More precisely this is the tweakable SPRP notion, often denoted as STPRP or S̃PRP, but for ease of notation
we here simply denote it as SPRP.



Overloading the Nonce: RPRPs, NS-AEAD, and OR-Channels 7

VerK(N,H,C)

M ← DecK(N,H,C)

if M ∈M
M ← >

return M

$(N,H,M)

C ←$ {0, 1}clen(|N|,|H|,|M|)

return C

⊥(N,H,C)

return ⊥

Fig. 1: Oracles used to define nAE, MRAE, and RUPAE security.

Tidiness, on the other hand, requires that for any (K,N,H,C) ∈ K ×N ×H× C

if DecK(N,H,C) 6= ⊥ then EncK(N,H,DecK(N,H,C)) = C.

We further require that encryption be length-regular, meaning that the size of ciphertexts depend only
on the sizes of N,H and M . Accordingly, we associate to every nonce-based AEAD scheme a ciphertext
length function clen, mapping the triple (|N |, |H|, |M |) to the ciphertext length in bits.

Security. A nonce-based encryption scheme is said to be AEAD if it additionally satisfies (nAE) security.
We use a variant of nAE from [6] which is equivalent to the usual formulation. Namely we require that
no efficient adversary be able to distinguish between oracle access to the real encryption algorithm
EncK(·, ·, ·) and the real verification algorithm VerK(·, ·, ·) (defined in Fig. 1) from their corresponding
idealisations $(·, ·, ·) and ⊥(·, ·, ·). Throughout this distinguishing game, the adversary is required to be
nonce-respecting, meaning that it never repeats nonce values across encryption queries, and must not
forward queries from the encryption oracle to the decryption oracle, meaning that it cannot make a
query (N,H,C) if it previously queried (N,H,M) and got C in return.

Definition 2 (nAE Advantage). Let SE = (Enc,Dec) be a nonce-based encryption scheme and let A
be a nonce-respecting adversary that does not make forwarding queries. Then the nAE advantage of A
with respect to SE is defined as

Advnae
SE (A) =

∣∣∣Pr[K ←$K : AEncK(·,·,·),VerK(·,·,·) ⇒ 1
]
− Pr

[
A$(·,·,·),⊥(·,·,·) ⇒ 1

]∣∣∣ .
The stronger notion of misuse-resistant AEAD MRAE is defined analogously by replacing the re-

quirement on the adversary that it be nonce-respecting with the requirement that it never repeat an
encryption query.

Definition 3 (MRAE Advantage). Let SE = (Enc,Dec) be a nonce-based encryption scheme and let
A be an adversary that never repeats encryption queries and does not make forwarding queries. Then the
MRAE advantage of A with respect to SE is defined as

Advmrae
SE (A) =

∣∣∣Pr[K ←$K : AEncK(·,·,·),VerK(·,·,·) ⇒ 1
]
− Pr

[
A$(·,·,·),⊥(·,·,·) ⇒ 1

]∣∣∣.
Release of Unverified Plaintext. In practice, in the event of a decryption failure, the decryption
algorithm may leak more information than what is captured by the standard security notions. Prior works
proposed strengthened notions which modelled such leakage as distinguishable decryption failures [12],
release of unverified plaintexts (RUP) [1], and robust authenticated encryption [22]. Then in [4] Barwell
et al. introduced subtle authenticated encryption to compare and unify these three security models.
Here we will utilise the RUPAE security definition as defined by Barwell et al. through their subtle AE
framework.

Subtle AE. (c.f. [4]) A subtle encryption scheme SSE = (Enc,Dec, Λ) is a nonce-based encryption scheme
(Enc,Dec) augmented with a (deterministic) decryption leakage function Λ intended to model the pro-
tocol leakage from decryption failures. The leakage function takes the same inputs as the decryption
algorithm but instead returns either a leakage string or the special symbol >. The symbol > indicates
that decryption was successful, and thus for any subtle encryption scheme it must hold that for any
K,N,H and C exactly one of the following be true:

⊥ ← DecK(N,H,C) or > ← ΛK(N,H,C).
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That is, for any input either decryption returns ⊥ and a leakage string is returned by Λ, or decryption
succeeds thereby returning the full plaintext but Λ returns no leakage string. In practice the leakage
depends on how the scheme is implemented, how it is integrated into the larger system, and the scheme
itself. Thus a subtle encryption scheme aims to model any potential leakage, via Λ, in order to show that
the underlying scheme remains secure even in the presence of this additional leakage. This is formalised
through the following security notion.

Security. In rough terms, RUPAE security can be understood as extending nAE security by additionally
giving the adversary oracle access to the decryption leakage function. For a subtle encryption scheme
to be RUPAE secure we then require the existence of a corresponding leakage simulator S which can
simulate this leakage in the ideal world for any adversary. Intuitively, if the leakage function can be
simulated without the secret key it is of no use to the adversary.

Definition 4 (RUPAE Advantage). Let SSE = (Enc,Dec, Λ) be a subtle AE encryption scheme and let
A be a nonce-respecting adversary that does not forward encryption queries to the decryption and leakage
oracles. Then the advantage of A with respect to SSE and the leakage simulator S is defined as

Advrupae
SSE (A,S) =

∣∣∣Pr[K ←$K : AEncK(·,·,·),DecK(·,·,·),ΛK(·,·,·) ⇒ 1
]
− Pr

[
A$(·,·,·),⊥(·,·,·),S(·,·,·) ⇒ 1

]∣∣∣.
Nonce-Hiding AEAD. Nonce-hiding encryption was recently introduced in [9] and is essentially a
variant of nonce-based encryption in which the nonce is embedded in encrypted form in the ciphertext
and then recovered upon decryption. Thus, this alternative syntax aims to achieve better privacy by
encrypting the nonce. Most of the security notions for nonce-based encryption can be straightforwardly
adapted to this syntax, but this slight difference in syntax automatically gives rise to slightly different
security properties. For the sake of brevity, we will only outline the changes one needs to make to adapt
the prior syntax and security definitions of nonce-based encryption to nonce-hiding encryption.

Syntax. A nonce-hiding encryption scheme NHE = (Enc,Dec) is a pair of algorithms were encryption
behaves exactly as in a nonce-based encryption scheme but the decryption algorithm operates as follows:

Dec : K ×H× C → (N ×M) ∪ {⊥} .

Note that now decryption does not take a nonce as part of its input but instead it returns it as part of its
output. Prior works [2,9] did not generally require decryption to return the nonce as part of its output.
In [9] a nonce-recovering formulation was considered only as a special case through the addition of an extra
algorithm specifically intended for this purpose. In contrast, we require the decryption algorithm to always
return the nonce so that the corresponding security definitions will guarantee that it is authenticated
together with the other outputs. In practice, the nonce is typically used by the higher-level protocols
to recover the correct ordering of messages and possibly other metadata. It is therefore crucial that
decryption returns it and authenticates it.

A nonce-hiding subtle encryption scheme is defined analogously by adapting the decryption algorithm
to the syntax above and simply dropping the nonce from the input to the leakage function, that is:

Λ : K ×H× C → {0, 1}∗ ∪ {>} .

Security. The nAE, MRAE and RUPAE security definitions can be directly adapted to the nonce-hiding
setting by adjusting the syntax of the decryption, verification, leakage, and simulator algorithms in the
natural way. In each of the three games, the restriction on forwarding queries is now redefined to mean
that the adversary cannot make a query of the form (H,C) if it previously queried (N,H,M), for some
N ∈ N , and got C in return.

Encodings and Redundancy Functions. In the encode-then-encipher paradigm one typically requires
some encoding scheme that maps messages to some sparse set of strings [10, 38]. In our case, we will
additionally require the ability to “localize” the redundancy within the encoding. Accordingly we will
instead use a redundancy function for generating the redundancy which will then be joined to the message
to form the encoded input to the tweakable cipher. More specifically, this redundancy function will satisfy
one of the following two syntaxes:

Func2 : N ×H → X
or

Func3 : N ×H×M→ X .
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Furthermore, we will require Func3 to be collision resistant over inputs with distinct nonces. We say that
Func3 is (δ, t)-collision resistant if for all efficient adversaries A running in time t it holds that:

Pr[((N,H,M), (N ′, H ′,M ′))← A : Func3(N,H,M) = Func3(N
′, H ′,M ′) ∧N 6= N ′] ≤ δ.

3 Rugged Pseudorandom Permutations

We now introduce a new security notion for tweakable ciphers that provides intermediate security. We call
this notion, and by extension, any tweakable cipher that satisfies it a rugged pseudorandom permutation
(RPRP). A distinctive characteristic of RPRPs is that they are tweakable ciphers over a split domain
XL ×XR, where we refer to XL as the left set and XR as the right set. Note that the split domain is an
implicit requirement of the security definition which would not make sense otherwise. We will typically let
XL = {0, 1}n and XR = {0, 1}≥m for some non-negative integers n and m, but other choices are possible.
Furthemore, for ease of notation, we will simply write ẼEK(T,XL, XR) instead of ẼEK(T, (XL, XR)) and
apply the same rule to ẼE

−1
.

For sufficiently large n, RPRP security sits right in between PRP security and SPRP security. This
is achieved by giving the adversary only partial access to the decipher algorithm. This partial access is
provided via two separate oracles, a partial decipher oracle and a guess oracle. Each oracle limits access
to the decipher algorithm in a different way. The decipher oracle severely restricts the set of values on
which it can be queried. In contrast, the guess oracle imposes no significant restrictions on the inputs,
but it only returns a single bit of information. The combined effect of these restrictions is to relax the
extent to which the decipher algorithm needs to be pseudorandom. As a result, there is an asymmetry
between the encipher and decipher algorithms in that the former is required to be more pseudorandom
than the latter. The term rugged in the name is meant to reflect this asymmetry in security and the
uneven split in the domain.

The full formal security definition is presented in the next subsection. As we will show in later sections,
this notion suffices to generically transform any tweakable cipher that satisfies it into an AEAD scheme
with strong security properties. In Sections 4 and 5.3 we present three such transformations. At the same
time, the notion is significantly weaker than strong pseudorandom permutations as it allows for more
efficient constructions. Strong pseudorandom permutations typically require three layers of processing,
where each layer consists of processing the data through a block cipher or a universal hash, and both
enciphering and deciphering are two-pass algorithms. In contrast, the UIV construction which we present
in this section consists of two processing layers where enciphering is a two-pass algorithm but deciphering
requires only a single pass over the data as the two layers can be processed in parallel. Admittedly some of
the definitional choices, particularly the restrictions imposed on the decipher oracle and the introduction
of the guess oracle, in the RPRP definition may seem arbitrary at first. Part of the rationale behind
these definitional choices is to require the bare minimum from the tweakable cipher to make the generic
transformations, shown in Sections 4 and 5.3, go through.

3.1 RPRP Security

Let ẼE be a tweakable cipher over a split domain XL × XR with an associated key space K and tweak
space T . Then for any cipher ẼE, RPRP security is defined via the RPRP game shown in Fig. 2. Here
the adversary is given access to either the real tweakable cipher construction ẼE or an ideal cipher Π̃
and its task is to determine which of the two it is interacting with. It interacts with the cipher through
three oracles: encipher (En), decipher (De), and guess (Gu).

The En oracle provides full access to the encipher algorithm, whereas De provides only partial
access to the decipher algorithm. In De access is restricted by checking YL for membership in the sets
F and R and then suppressing the output (via �) when this is the case. This check translates to two
types of decipher queries that the adversary cannot make. The first is a decipher query where the left
value was previously output by the encipher oracle. That is, if an encipher query was made such that
(YL, YR) ← En(T,XL, XR), then no query of the form De(T ′, YL, Y ′R) is allowed for any values of T ′
and Y ′R. The second is a decipher query that repeats a left value from a prior decipher query. Namely, a
query De(T, YL, YR) when a query of the form De(T ′, YL, Y ′R), for some T ′ and Y ′R, was already made.

The Gu oracle provides an additional interface to the decipher algorithm. It takes an input to the
decipher algorithm together with a set of guesses V for the corresponding left output. In the real world,
Gu returns a boolean value indicating whether any of the guesses is correct, whereas it always returns
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Game RPRPA,v

ẼE

K ←$K
b←$ {0, 1}
F ,R,U ← ∅, ∅, ∅
Π̃ ←$ IC(T ,XL ×XR)

b′ ← AEn,De,Gu

return b = b′

En(T,XL, XR)

if b = 0

(YL, YR)← Π̃(T,XL, XR)

else

(YL, YR)← ẼEK(T,XL, XR)

F ∪← {YL} ; U ∪← {(T, YL, YR)}
return (YL, YR)

De(T, YL, YR)

if YL ∈ F ∪R
return �

if b = 0

(XL, XR)← Π̃−1(T, YL, YR)

else

(XL, XR)← ẼE
−1

K (T, YL, YR)

R ∪← {YL}; U ∪← {(T, YL, YR)}
return (XL, XR)

Gu(T, YL, YR,V )

if ((T, YL, YR) ∈ U) ∨ (|V | > v)

return �

if b = 0

return false

else

(XL, XR)← ẼE
−1

K (T, YL, YR)

return XL ∈ V

Fig. 2: The game used to define RPRP security for a tweakable cipher ẼE.

false in the ideal world. To avoid trivial-win conditions, we need to restrict the adversary to only make
guess queries for which it does not already know the answer. Accordingly, guess queries are required
to be “unused”, meaning that they have not been already queried on De or returned by En. The set
U serves to keep track of used triples (T, YL, YR) and suppress the output in Gu when such a query is
detected. Finally, the game is parametrized by a positive integer v, limiting the size of V in every query.
We quantify the RPRP security of a tweakable cipher via the usual advantage measure shown below.

Definition 5 (RPRP Advantage). Let ẼE be a tweakable cipher over a split domain (XL × XR).
Then for a positive integer v and an adversary A attacking the RPRP security of ẼE the corresponding
advantage is defined as

Advrprp

ẼE
(A, v) =

∣∣∣2Pr[RPRPA,v
ẼE
⇒ 1

]
− 1
∣∣∣.

3.2 Unilaterally-Protected IV (UIV)

We next present a variable-input-length tweakable cipher construction, called Unilaterally-Protected IV
(UIV), that achieves RPRP security. It is easily derived from the three-round Protected IV construction
from [38] by simply eliminating the last layer and using a slightly different abstraction. Shrimpton and
Terashima noted that all three rounds are necessary for SPRP security, but as we show in Theorem 1,
two rounds suffice for RPRP security. The construction is composed of a tweakable blockcipher Ẽ over
the domain XL = {0, 1}n with tweak space T ×XR and a matching variable-output-length pseudorandom
function F with domain XL and range XR. The tweak space of the resulting UIV cipher is T . A pseudocode
description of the construction is given in Fig. 3 and Fig. 4 shows a graphical representation of its encipher

ẼEK1,K2(T,XL, XR)

YL ← ẼK1((T,XR), XL)

YR ← FK2(YL, |XR|)⊕XR

return (YL, YR)

ẼE
−1

K1,K2(T, YL, YR)

XR ← FK2(YL, |YR|)⊕ YR

XL ← Ẽ−1
K1((T,XR), YL)

return (XL, XR)

Fig. 3: Pseudocode description of the UIV construction, a variable-input-length tweakable cipher realised
from a tweakable blockcipher Ẽ and a VOL-PRF F.
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XL

ẼK1

T XR

FK2

YL YR

Fig. 4: Graphical representation of the UIV enciphering algorithm.

algorithm. The RPRP security of the UIV construction is stated formally in Theorem 1, the proof of which
can be found in Appendix B.2.

Theorem 1. Let UIV be the construction defined in Fig. 3 over the domain {0, 1}n × {0, 1}≥m. For a
positive integer v and an adversary A making qen encipher queries, qde decipher queries and qgu guess
queries under the constraint that qguv ≤ 2n−1, there exist adversaries B and C such that

Advrprp
UIV (A, v) ≤ Advsprp

Ẽ
(B) +Advprf

F (C) + qguv

2n−1
+
q1(q1 − 1)

2n+1
+
qen(qen − 1)

2n+1
+
q2(q2 − 1)

2n+m+1
,

where q1 = qen+qde+qgu and q2 = qen+qde. The SPRP adversary B makes at most qen encipher queries
and qde + qgu decipher queries, whereas the PRF adversary C makes at most qen + qde + qgu queries.

Concrete UIV Instantiations. We described the UIV construction generically in terms of a fixed-
input-length tweakable cipher (FIL-TBC) with variable tweak length and a variable-output-length pseu-
dorandom function (VOL-PRF). The tweakable cipher can be instantiated either via the LRW2 con-
struction [25] using a blockcipher like AES and an Almost XOR-Universal (AXU) hash function like
POLYVAL [20]. Alternatively one can use an off-the-shelf tweakable blockcipher with a fixed-size tweak,
like Deoxys-TBC [24] or SKINNY [5] and augment it with an AXU hash via the XTX transform [29].

As for the VOL-PRF, it can be instantiated by a blockcipher operated in counter mode. In this
case, the tricky part is to match the block size of the FIL-TBC with the input size of the VOL-PRF
(equivalent to the IV in the counter mode instantiation). If counter mode uses a blockcipher with a
block size equal to the block size of the FIL-TBC then the IV needs to be blinded with an additional
key, acting as a universal hash, to avoid colliding counter values. Alternatively, if one is using an off-
the-shelf tweakable blockcipher, the VOL-PRF can be instantiated using the Counter-in-Tweak mode of
operation [32], circumventing this issue entirely.

Notably, UIV can be fully instantiated from AES and POLYVAL, using LRW2 and counter mode,
which benefit from the native instruction sets on many modern-day processors. The corresponding instan-
tiation, GCM-UIV, shares many similarities with GCM-SIV [20] (e.g. two-pass enciphering/encryption
and one-pass deciphering/decryption), and its performance profile is also similar.

4 Encode-then-Encipher From Rugged PRPs

The encode-then-encipher paradigm is a generic approach, dating back to Bellare and Rogaway [10],
for turning a variable-length cipher into an authenticated encryption scheme. Shrimpton and Terashima
later extended this paradigm to cater for modern primitives such as tweakable ciphers and nonce-based
AEAD [38]. However, both works require that the variable-length cipher satisfy SPRP security for the
resulting authenticated encryption scheme to be secure. In this section, we show how to construct nonce-
based AEAD from tweakable ciphers that are only RPRP secure. The asymmetric security properties
of RPRPs prompt us to consider two schemes with complementary security properties, EtE and EtD, as
well as nonce-hiding variants of each.
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EncK(N,H,M)

N H M

ẼEK

〈·, ·〉 Func2

C1 C2

DecK(N,H,C1, C2)

Z =
?

Z′ M ′

ẼE
−1

K

〈·, ·〉Func2

N H C1 C2

Fig. 5: Graphical representation of EtE encryption (left) and decryption (right) algorithms.

4.1 Encode-then-Encipher (EtE) Scheme

The first scheme, EtE, achieves misuse-resistance (MRAE) security and is the most natural as it uses the
encipher algorithm to encrypt and the decipher algorithm to decrypt. It employs a rugged pseudorandom
permutation ẼE with domain {0, 1}n×{0, 1}≥m and tweak space {0, 1}∗, an injective mapping 〈·, ·〉 from
string pairs to single strings, and a function Func2 : N × H → {0, 1}n. Its pseudocode is presented in
Fig. 6 and a graphical representation of the encryption and decryption algorithm is given in Fig. 5. Note
that since C1 is of fixed size, C1 and C2 can be concatenated into a single-string ciphertext to fit the
usual AEAD syntax, and any such ciphertext can easily be parsed back into such a pair.

Intuitively, the scheme is misuse resistant since altering any of N , H, or M results in an almost uni-
formly random ciphertext, by the pseudorandomness of the encipher algorithm. Authenticity is achieved
via the function Func2 under the sole assumption that it be deterministic. Namely, it can be instantiated
through a hash function or more simply via truncation (assuming (N,H) is always at least n bits long),
or by the constant function (e.g. Func2(N,H) = 0n). Then, by RPRP security, it follows that altering
either C1 or C2 will result in a value of Z ′ that is unpredictable. Accordingly, the condition Z ′ = Z will
only be satisfied with small probability, irrespective of the specific value of Z ← Func2(N,H). It is worth
noting that in reducing the MRAE security of EtE to the RPRP security of ẼE, the reduction only makes
encipher and guess queries (with v = 1), i.e., the decipher oracle is not used at all. This is because in the
EtE construction, the verification algorithm can be simulated entirely through the guess oracle. Below is
the formal security theorem and its proof is presented in Appendix C.1.

Theorem 2. Let EtE be the nonce-based AEAD scheme defined in Fig. 6 realized from a tweakable
cipher over the domain {0, 1}n×{0, 1}≥m. Then for any adversary A making qe encryption queries and
qv verification queries, there exists an adversary B such that

Advmrae
EtE (A) ≤ Advrprp

ẼE
(B, 1) + q2e

2n+m+1
,

where B makes qe encipher queries, qv guess queries, and its runtime is similar to that of A.

EncK(N,H,M)

T ← 〈N,H〉
Z ← Func2(N,H)

(C1, C2)← ẼEK(T,Z,M)

return (C1, C2)

DecK(N,H,C1, C2)

T ← 〈N,H〉
Z ← Func2(N,H)

(Z′,M ′)← ẼE
−1

K (T,C1, C2)

if Z′ = Z then

return M ′

else

return ⊥

Fig. 6: The EtE construction transforming a variable-length RPRP into a misuse-resistant nonce-based
AEAD scheme.
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EncK(N,H,M)

N H M

ẼE
−1

K

〈·, ·〉 Func3

C1 C2

DecK(N,H,C1, C2)

Z =
?

Z′ M ′

ẼEK

〈·, ·〉

Func3

N H C1 C2

Fig. 7: Graphical representation of EtD encryption (left) and decryption (right) algorithms.

4.2 Encode-then-Decipher (EtD) Scheme

In our second scheme, EtD, we switch the roles of the encipher and decipher algorithms, i.e., we decipher
to encrypt and encipher to decrypt. By making this switch, we now obtain an AEAD scheme that is
secure against the release of unverified plaintext (RUPAE). The EtD construction is presented in Fig. 8
together with the associated leakage function used to prove it RUPAE secure. Additionally we provide
a graphical representation of the encryption and decryption algorithms in Fig. 7. In addition to the
variable-length tweakable cipher, the construction makes use of an injective mapping 〈·, ·〉 from string
pairs to single strings and a (δ, t)-collision resistant deterministic function Func3.

The full pseudorandomness of the encipher algorithm, which is now used for decryption, is what
makes the scheme RUPAE secure. However, using the decipher algorithm to encrypt presents some new
challenges in the security proof due to the constraints in the RPRP security definition. The requirement to
never repeat YL values across decipher queries is easily satisfied by ensuring that distinct nonces result
in distinct Z values. In our generic treatment we fulfill this condition by requiring that the function
Func3 be (δ, t)-collision resistant. On the other hand, the requirement to not forward YL values from the
encipher oracle to the decipher oracle is a bit more challenging to address in the security proof. Finally,
a peculiarity of the EtD construction is that the nonce is included both in the evaluation of Z as well as
the tweak, which may seem unnecessary at first. However, its inclusion in the evaluation of Z is necessary
to ensure that YL values do not repeat as it is the only AEAD input that is guaranteed to be distinct
across encryption calls. At the same time its inclusion in the tweak is necessary for RUPAE security, as
otherwise the adversary could forward a ciphertext from the encryption oracle to the leakage oracle with
a different nonce and, in the real world, recover the original message. The security of EtD is formally
stated below in Theorem 3 and its proof can be found in Appendix C.2.

Theorem 3. Let EtD be the subtle AEAD scheme defined in Fig. 8 composed from a tweakable cipher
over the domain {0, 1}n × {0, 1}≥m, and let Func3 be a (δ, t)-collision resistant deterministic function.
Then there exists a leakage simulator S, such that for any adversary A making qe ≤ 2n−1 encryption

EncK(N,H,M)

T ← 〈N,H〉
Z ← Func3(N,H,M)

(C1, C2)← ẼE
−1

K (T,Z,M)

return (C1, C2)

DecK(N,H,C1, C2)

T ← 〈N,H〉

(Z′,M ′)← ẼEK(T,C1, C2)

Z ← Func3(N,H,M
′)

if Z′ = Z then

return M ′

else

return ⊥

ΛK(N,H,C1, C2)

T ← 〈N,H〉

(Z′,M ′)← ẼEK(T,C1, C2)

Z ← Func3(N,H,M
′)

if Z′ = Z then

return >
else

return M ′

Fig. 8: The EtD construction, presented as a subtle AEAD scheme, transforming a variable-length RPRP
into a RUPAE-secure AEAD scheme.
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EncK(N,H,M)

N H M

ẼEK

0n

C1 C2

DecK(H,C1, C2)

0n =
?

XL M ′N ′

ẼE
−1

K

H C1 C2

Fig. 9: Graphical representation of nonce-hiding EtE encryption (left) and decryption (right) algorithms.

queries, qd decryption queries, ql queries to the leakage oracle and running in time t, there exist RPRP
adversaries B and C such that

Advrupae
EtD (A,S) ≤ Advrprp

ẼE
(B, 1) +Advrprp

ẼE
(C, 1) + δ

+
(qe + 1)(qd + ql)

2n−1
+

(qe + qd + ql)
2

2n+m
+
qe(qd + ql)

2n
.

The adversary B makes qe queries to En oracle, qd + ql queries to De oracle, and its runtime is similar
to that of A. The adversary C makes at most qe queries to En oracle, at most qd + ql queries to De
oracle, and its runtime is similar to that of A.

4.3 Nonce-Hiding Variants of EtE and EtD

Up to this point our treatment has focused on the classical nonce-based syntax, but both constructions
can be adapted to the nonce-hiding syntax while retaining analogous security properties. Intuitively, the
main differences are that encryption now needs to embed the nonce in the ciphertext and the nonce is
no longer available during decryption. We describe below how these differences affect each construction.

In the case of EtE, as before the redundancy Z must be located in the left input for security and
consequently the nonce has to be embedded in the right input. As the nonce is not available to the
decryption algorithm, Z can no longer depend on it. Furthermore Z cannot depend on any value contained
in the right part. This is because in the security proof decryption is simulated through the Gu oracle,
which does not return the right part, and thus the reduction would not be able to evaluate Z. As a result,
the possibilities for instantiating the redundancy function are severely restricted here and we simply set
Z = 0n instead.

In the case of EtD, since we are using the decipher algorithm to encrypt the left input must not
repeat, and thus this makes it the natural choice of location for embedding the nonce. Accordingly the
redundant value Z has to be moved to the right input, which is now possible in the case of EtD since the

EncK(N,H,M)

Z ← 0n

(C1, C2)← ẼEK(H,Z,N‖M)

return (C1, C2)

DecK(H,C1, C2)

Z ← 0n

(XL, XR)← ẼE
−1

K (H,C1, C2)

N ′‖M ′ ← XR

if XL = Z then

return (N ′,M ′)

else

return ⊥

Fig. 10: Nonce-hiding variant of the EtE construction. The resulting scheme is MRAE secure if the
underlying tweakable cipher is RPRP secure.
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EncK(N,H,M)

N H M

ẼE
−1

K

Func3

C1 C2

DecK(H,C1, C2)

=
?

Z M ′Z′

ẼEK

Func3

N ′

H C1 C2

Fig. 11: Graphical representation of nonce-hiding EtD encryption (left) and decryption (right) algorithms.

encipher algorithm is fully pseudorandom and non-malleable. Again, the nonce is not an input to the
decryption algorithm, but in this case Z can depend on the nonce as the decryption algorithm can use
the nonce that it recovers from the left part. However the nonce still cannot be included in the tweak.
Interestingly, the attack that required us to include the nonce in the tweak for EtD is no longer applicable
in the nonce-hiding setting, and thus this variant is also RUPAE secure. Note that for this construction
Func3 is only required to be a deterministic function and need not be collision resistant.

Pseudocode descriptions of the nonce-hiding variants of EtE and EtD are given in Fig. 10 and Fig. 12.
The security proofs for these variants proceed in a similar fashion to the original nonce-based schemes
and we omit them to avoid tedious repetition.

4.4 Instantiations and Related Constructions

Compared to prior works [9, 10, 22, 38], our treatment of the encode-then-encipher paradigm is the first
to prove the security of the resulting AEAD by assuming a strictly weaker security notion than SPRP
on the part of the cipher. In this light, our results on the MRAE security of EtE and its nonce-hiding
variant are analogous to the construction in [38] and the HN5 construction in [9], respectively. Similarly,
our result on the RUPAE security of nonce-based EtD is analogous to that in [22] for the closely-related
notion of robust AEAD.

For generality, we specified the nonce-based constructions through the redundancy functions Func2
and Func3 which can be instantiated in a number of ways. Note that the redundancy functions are gener-
ally only required to be deterministic functions, except in nonce-based EtD, which additionally requires
Func3 to be (δ, t)-collision resistant. Thus, one could instantiate these with hash functions or, when ap-
plicable, more simply as constant functions that always return 0n. Clearly, some instantiations are more
advantageous in terms of efficiency, while others may prove to be beneficial in extended security models
that we did not consider here. Instantiating the nonce-hiding variant of EtD with Func3(N,H,M) := 0n

EncK(N,H,M)

Z ← Func3(N,H,M)

(C1, C2)← ẼE
−1

K (H,N,Z‖M)

return (C1, C2)

DecK(H,C1, C2)

(N ′, Y ′R)← ẼEK(H,C1, C2)

Z′‖M ′ ← Y ′R

Z ← Func3(N
′, H,M ′)

if Z′ = Z then

return (N ′,M ′)

else

return ⊥

ΛK(H,C1, C2)

(N ′, Y ′R)← ẼEK(H,C1, C2)

Z′‖M ′ ← Y ′R

Z ← Func3(N
′, H,M ′)

if Z′ = Z then

return >
else

return M ′

Fig. 12: Nonce-hiding variant of the EtD construction. The resulting scheme is RUPAE secure if the
underlying tweakable cipher is RPRP secure.
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and GCM-UIV recovers the GCM-RUP scheme from [2]. However our treatment exposes other possibili-
ties, such as Func3(N,H,M) := N , which is trivially (0,∞)-collision resistant. In particular, instantiating
the nonce-based variant of EtD with this redundancy function gives rise to a RUPAE-secure AEAD scheme
with more compact ciphertexts than GCM-RUP or HN5, as it makes do without the extra n zero bits
(assuming the nonce is also n bits long).

When instantiated with Func3(N,H,M) := N the nonce-based variants of EtE and EtD will also
conceal the nonce, even if decryption does not strictly fit the nonce-hiding syntax. Such a combination of
nonce-concealing and compact ciphertexts is beneficial for constructing secure channels over a transmis-
sion protocol with out-of-order delivery, like UDP. Indeed, DTLS 1.3 and QUIC go through considerable
efforts to achieve this. In Section 6 we will show how this approach, of employing an RPRP and over-
loading the use of the nonce for both authentication and message indexing, can be used to construct
such secure channels more simply and in a more modular fashion. However, we first need to introduce
a new type of authenticated encryption that better fits this purpose and allows the receiver to adopt
different policies as to how to process ciphertexts that are delivered out of order. In the next section,
we present this new and more general type of authenticated encryption and show how it can be realised
generically from any nonce-hiding AEAD scheme or directly from an RPRP with the additional benefit
of more compact ciphertexts.

5 Nonce-Set AEAD

A secure channel protocol operating over UDP, which may deliver ciphertexts out of order, requires
some mechanism to recover the original ordering of the messages. Typically, such secure channels employ
an AEAD scheme and overload the nonce to act as the message number. Here, nonce-hiding AEAD
is advantageous because it attaches the nonce in encrypted form to the ciphertext, thereby making
it available to the receiver for recovering the original ordering of messages without leaking the side
information contained in the nonce. In Section 4.4 we showed how in the encode-then-encipher paradigm
the nonce could be additionally overloaded to act as the redundant bits in the encoding that provide
authenticity. This resulted in more compact ciphertexts, but it required that the nonce be already
available to the receiver before decryption takes place. Thus, our technique of overloading the nonce for
providing authentication is not compatible with a scenario where ciphertexts are delivered out of order,
as the receiver is unable to determine the nonce associated with a ciphertext before decrypting it.

In practice, the amount of reordering that takes place over UDP will, on average, be limited. Accord-
ingly, secure channel protocols will typically employ some form of window mechanism which determines
which message numbers (and corresponding ciphertexts) can be accepted. If the message number of a
ciphertext falls outside the window, it means that the ciphertext is either too old or too far ahead of the
ones received and will be discarded. Such window mechanisms can take various forms and can implement
a variety of different policies that determine how to deal with replays, when and how to change the
window size, and when to advance the window ahead. Nevertheless, at an abstract level, they all specify
a limited set of message numbers that can be accepted at that particular point in time.

We propose nonce-set AEAD as a new type of authenticated encryption that lends itself particularly
well to this kind of scenario. The main change is that decryption will now additionally take a set of
nonces as its input, and for it to succeed, the ciphertext has to be deemed valid with respect to that
set of nonces. The motivation for introducing this primitive is twofold. The first is that it will enable
the generic construction, which we present in the next section, for a secure channel operating over UDP
that can support multiple different window policies. At a very high level, this construction combines a
nonce-set AEAD scheme together with a tuple of algorithms that emulate the window mechanism by
generating the nonce set for the decryption algorithm and updating it accordingly. This construction
is appealing because although the security of the secure channel depends crucially on this tuple of
algorithms, it turns out that they only need to satisfy a “functional” requirement and need not at all be
cryptographic. In addition, this single construction can be tuned to realize various types of secure-channel
behaviour. As such, nonce-set AEAD appears to be the right place for drawing the boundary between
cryptographic and non-cryptographic processing. The second and complementary reason for introducing
nonce-set AEAD is that we can realize it directly from an RPRP through an encode-then-encipher
approach where authentication is achieved by overloading the nonce, thereby yielding more compact
ciphertexts. Thus, by introducing nonce-set AEAD, we are now able to simultaneously accommodate
these two mechanisms, which were otherwise incompatible. Below is the formal definition.
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5.1 Formal Definition

Syntax. A nonce-set encryption scheme NSE = (Enc,Dec) is a pair of algorithms with an associated key
space K, a nonce space N = {0, 1}t for some t ∈ N, a nonce-set space W ⊆ P(N ), a header space H, a
message spaceM and a ciphertext space C.

– The encryption algorithm follows the usual syntax, i.e.,

Enc : K ×N ×H×M→ C.

As before, encryption must be length-regular, thereby requiring the existence of a function clen,
mapping the triple (|N |, |H|, |M |) to the ciphertext length.

– The decryption algorithm works analogously to that in a nonce-hiding encryption scheme but addi-
tionally takes a set of nonces W ∈ W as part of its input. That is, its syntax is given by

Dec : K ×W ×H× C → (N ×M) ∪ {(⊥,⊥)} .

In addition, for all valid inputs (K,W , H,C) it must hold that:

if DecK(W , H,C) = (N ′,M ′) 6= (⊥,⊥) then N ′ ∈W .

Correctness. For every nonce-set encryption scheme, it must hold that for all (K,N,H,M) ∈ K ×N ×
H×M and every W ∈ W such that N ∈W ,

if C ← EncK(N,H,M) then (N,M)← DecK(W , H,C).

Security. As before, security requires that no adversary can distinguish the real encryption and decryption
algorithms (Enc(·, ·, ·), Dec(·, ·, ·)) from the ideal ones ($(·, ·, ·), ⊥(·, ·, ·)), under the condition that its
encryption queries be nonce-respecting and it does not forward queries from the encryption oracle to
the decryption oracle. The main difference to the classical nonce-based AEAD lies in how a forwarding
query is defined. This is a query (W , H,C) to the decryption oracle where C was returned in a prior
encryption query (N,H,M) and N ∈W . In other words, the adversary cannot query a ciphertext under
a nonce-set containing the nonce with which it was produced. The security of a nonce-set encryption
scheme is expressed through the following advantage measure.

Definition 6 (nsAE Advantage). Let NSE = (Enc,Dec) be a nonce-set based encryption scheme with
associated spaces (K,N ,W,H,M, C). Then for any nonce-respecting adversary A that does not make
forwarding queries its advantage is defined as

Advnsae
NSE (A) =

∣∣∣Pr[K ←$K : AEncK(·,·,·),DecK(·,·,·) ⇒ 1
]
− Pr

[
A$(·,·,·),⊥(·,·,·) ⇒ 1

]∣∣∣.

Misuse Resistance. The above security notion can be strengthened to the misuse-resistance setting
in the usual way. Namely by lifting the nonce-respecting requirement and simply requiring that the
adversary never query the same triple (N,H,M) to the encryption more than once.

Unpacking the Definition. Note that if we setW = {{N} : N ∈ N} then nonce-set AEAD effectively
reduces to standard nonce-based AEAD with a nonce space N . Thus, nonce-set AEAD can be seen
as a natural extension of nonce-based AEAD. Our syntax requires that when decryption succeeds, it
associates the decrypted ciphertext to a nonce in W . Conversely, this means that if W is the empty
set then decryption must fail. In addition, correctness guarantees that when W contains the nonce that
was used to produce that ciphertext, decryption will recover the plaintext and will additionally recover
that nonce. Finally, besides ruling out forgeries involving new ciphertexts, security also ensures that an
adversary is unable to associate an honestly generated ciphertext to a different nonce. These features
will come in handy in the next section where we show how to generically transform a nonce-set AEAD
into an order-resilient channel.

A practical scheme must specify a format for representing W as a string. In general, this formatting
must be concise for the scheme to be efficient. This will, in turn, impose heavy restrictions on the space
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EncK(N,H,M)

C ← EncK(N,H,M)

return C

DecK(W , H,C)

(N,M)← DecK(H,C)

if (N,M) = ⊥ then

return (⊥,⊥)
else

if N ∈W then

return (N,M)

else

return (⊥,⊥)

Fig. 13: Nonce-set AEAD from a nonce-hiding AEAD scheme (Enc,Dec).

W of all possible nonce sets that the decryption algorithm can accept. Thus, an important parameter of
a nonce-set AEAD scheme is the maximum nonce set size w, defined as

w := max
W∈W

|W |.

The specific value of this parameter may be a result of the formatting used to represent W , or it
may need to be specifically restricted in order to guarantee a certain level of security. In addition, the
formatting used to represent W will typically require an efficient means to do membership testing. This
aspect of a nonce-set AEAD is beyond our scope. Still, it suffices to say that various instantiations exist
that satisfy these requirements, including the formatting used in the window mechanisms employed by
existing internet protocols.

5.2 Nonce-Set AEAD From Nonce-Hiding AEAD

Nonce-set AEAD can be easily realized from any nonce-hiding AEAD scheme simply by following de-
cryption with a test verifying that the recovered nonce is in W . This construction is shown in Fig. 13.

Thus the nonce-hiding constructions by Bellare, Ng, and Tackmann in [9] which are nonce-recovering,
namely HN1, HN2, HN4, and HN5, can be readily transformed into nonce-set AEAD schemes. However,
these constructions all incur a ciphertext expansion resulting from the underlying integrity mechanism
as well as a second ciphertext expansion arising from the nonce encryption. In contrast, the construction
we present next reduces this overhead by constructing a nonce-set AEAD scheme directly from a RPRP
via the encode-then-encipher paradigm.

5.3 The Authenticate-With-Nonce (AwN) Construction

The Authenticate-with-Nonce (AwN) construction is similar in spirit to the EtE construction instantiated
with Func2(N,H) = N , but it gives rise instead to a nonce-set AEAD scheme. A pseudocode description
is provided in Fig. 15 and graphical representation is given in Fig. 14. Note that the integrity check is

EncK(N,H,M)

H N M

ẼEK

C1 C2

DecK(W , H,C1, C2)

W 3
?

N ′ M ′

ẼE
−1

K

H C1 C2

Fig. 14: Graphical representation of AwN encryption (left) and decryption (right) algorithms.
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EncK(N,H,M)

l← |M |

(C1, C2)← ẼEK(H,N‖bMcn−t, dMel−n+t)

return (C1, C2)

DecK(W , H,C1, C2)

(XL, XR)← ẼE
−1

K (H,C1, C2)

N ′ ← bXLct
M ′ ← dXLen−t‖XR

if N ′ ∈W then

return (N ′,M ′)

else

return (⊥,⊥)

Fig. 15: The AwN construction, transforming an RPRP-secure cipher ẼE over the domain {0, 1}n×{0, 1}≥m
into a nonce-set AEAD scheme that is MRAE secure. The scheme is parametrized by the nonce length
t, where t ≤ n.

now done by verifying that N ′ ∈ W , rather than an equality test as in EtE. By RPRP security, any
mauled ciphertext will produce a left output that is hard to guess, thereby limiting the probability of
this condition being satisfied, as long as W is not too large. As a result, the MRAE security of AwN
depends on the maximum nonce set size w. Moreover, for added generality, we allow the nonce size t to
be smaller or equal to the size of the left domain n. This too bears influence over the security of AwN.
In combination, these two aspects give rise to the w2n−t term in the RPRP advantage term within the
security bound. The MRAE security of AwN is formally stated in Theorem 4, the proof of which can be
found in Appendix D.1.

Theorem 4. Let AwN be the nonce-set AEAD scheme defined in Fig. 15, realized from a tweakable cipher
over the domain {0, 1}n×{0, 1}≥m, with nonce size t and maximum nonce set size w. Then for any MRAE
adversary A making qe encryption queries and qv verification queries, there exists an RPRP adversary
B such that

Advmrae
AwN (A) ≤ Advrprp

ẼE
(B, w2n−t) + q2e

2n+m+1
.

The adversary B makes qe queries to the En oracle and qv queries to the Gu oracle, and runs in time
similar to that of A.

6 Application to Order-Resilient Secure Channels

Equipped with the notion of nonce-set AEAD, we now turn our attention to constructing secure channels
over an unreliable transport. QUIC [23, 39] and DTLS [33, 34], which operate over UDP, are two prime
examples of order-resilient secure channels. Two recent works [17,18] have analyzed the security of QUIC.
Here we will follow in large part the formal security model of Fischlin, Günther, and Janson [18] which
builds on and improves over prior works [7, 13,37] and is the most versatile.

As pointed out already in [13,14] several strategies are possible for dealing with out-of-order delivery
and replay protection. However, their models fail to capture the more elaborate ones that rely on window
mechanisms, as in the case of QUIC and DTLS. These window mechanisms can handle out-of-order de-
livery and replay protection without consuming too much memory and bandwidth. This comes, however,
at the expense of added complexity that is harder to model mathematically. Even formulating correct-
ness for such secure channels becomes rather challenging. To overcome the limitations of prior security
models, [3,18] replace the level sets in the silencing framework of Rogaway and Zhang [37] with a support
predicate, which serves to determine whether a ciphertext should be accepted by the receiver or not. The
point of this predicate is that it considers the receiver’s perspective in making this determination. As is
the case with QUIC and DTLS a ciphertext deemed invalid at a certain point in time (due to it falling
outside the current window) may become valid later (when the window has shifted sufficiently ahead).

Our focus in this section is not to analyze the security of QUIC or DTLS. Instead, we take a fresh
perspective on how such secure channels can be constructed differently and more simply through nonce-
set AEAD. More specifically, we provide a generic construction for transforming any nonce-set AEAD
scheme into a secure channel parametrized by a support predicate. Notably, the construction works for
any desired support predicate by employing a nonce-set-processing scheme consisting of four relatively
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supprr[wr,wf ](CS ,DCR, C)

j ← index(C, CS)
next← max {index(C, CS) : (true, C) ∈ DCR}+ 1

if j = ⊥ then // C 6∈ CS
return false

if (j < next− wr) ∨ (j > next + wf ) then // outside of replay/reordering window

return false

if (true, C) ∈ DCR then // replay

return false

else

return true

Fig. 16: Example support predicate supprr[wr,wf ]
corresponding to a channel functionality with replay

protection and a sliding window of size (wr + wf ).

simple algorithms. In turn, the security of the channel construction relies on the security of the nonce-
set AEAD scheme and a mild requirement on the nonce-set-processing scheme to faithfully implement
the support predicate. We tame the complexity of constructions like QUIC and DTLS by introducing
modularity into the picture and identifying the role of each component. Here the introduction of nonce-
set AEAD plays a key role in glueing the different components together and permitting us to generically
express the logic behind the support predicate as the processing of nonces. We also strengthen the security
definition in [18] to reflect the privacy requirement of concealing message numbers from eavesdroppers.
In contrast, in their security definition, message numbers were required to be transmitted in the clear.

In addition, when the nonce-set AEAD scheme is instantiated with our RPRP-based construction,
we end up with a secure channel construction that is competitive in comparison to QUIC and DTLS. To
start with, it does not require an additional key to encrypt the nonce. Our nonce-set AEAD scheme can
be realized with GCM components, leading to comparable performance to GCM-SIV while also offering
misuse-resistance. QUIC only transmits a partial nonce in the ciphertext in order to save bandwidth at
the expense of an additional window mechanism to reconstruct it. In contrast, our construction transmits
the full nonce, thereby simplifying the processing at the receiver’s end, but saves bandwidth nonetheless
from its overloaded use of the nonce (within the nonce-set AEAD construction) to provide integrity
without a MAC tag.

6.1 Order-Resilient Channels

We start by defining the syntax of order-resilient channels. The definitions below are reproduced from [18]
and we do not claim any novelty in them. We do, however, make some alterations in them which we
point out along the way.

Definition 7 (Channel Syntax). A channel consists of a triple of algorithms Ch = (Init,Send,Recv)
with associated spaces ST S, ST R,MN , A,M and C such that:
• (sts, str)←$ Init(). The probabilistic initialization algorithm that takes no input and returns an initial
sender state sts ∈ ST S and an initial receiver state str ∈ ST R.
• (st′s, C)←$Send(sts, A,M). The send algorithm, may be probabilistic or stateful and takes as input
a sender state sts ∈ ST S, associated data A ∈ A and a message M ∈ M, and returns as output an
updated sender state st′s ∈ ST S and a ciphertext C ∈ C or the error symbol ⊥.
• (st′r,mn,M) ← Recv(str, A,C). The deterministic receive algorithm takes as input a receiver state

str ∈ ST R, associated data A ∈ A and a ciphertext C ∈ C. It then returns an updated receiver state
st′r ∈ ST R together with, either a message number mn ∈ MN and a message M ∈ M, or a pair of
error symbols (⊥,⊥).

In comparison to [18] we augmented the Recv algorithm to return the message number together with
the message. This reflects the real-world necessity that a higher layer needs such information to correctly
position each message in the sequence in which it was sent. We also expanded Send with associated
data A, and removed the auxiliary data and accompanying function as they are no longer needed in our
setting.
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Game CORRACh,supp

(sts, str)←$ Ch.Init()

DCR, CS , T ← [ ], [ ], [ ]

mn← 0

win← false

ASend,Recv

return win

Procedure Send(A,M)

(sts, C)←$ Ch.Send(sts, A,M)

CS ← CS‖C
T ← T ‖(mn,A,M,C)

mn← mn+ 1

return C

Procedure Recv(j)

if j > |T | then
return �

(mn,A,M,C)← T [j]
d← supp(CS ,DCR, C)

if d = false then

return �

(str,mn′,M ′)← Ch.Recv(str, A, C)

if mn′ 6= mn ∨M ′ 6=M then

win← true

DCR ← DCR‖(d, C)

return (mn′,M ′)

Fig. 17: The game CORR used to define channel correctness.

The Support Predicate. There are varying degrees to which a channel may be order resilient. As
explained in [18] the prior models by [13, 37] are not expressive enough to capture the order resilience
of real-world protocols like QUIC and DTLS. To address this, they introduced the support predicate.
In essence, the support predicate expresses the channel’s tolerance to reordered, replayed, or dropped
ciphertexts. It essentially captures the ‘character’ of the channel, which permeates into its every aspect—
from correctness to robustness (which we explain shortly) to security. Indeed, this conforms with and is
reminiscent of the silencing approach in [37], but generalizes it further.

The support predicate takes three inputs: a list CS of the sent ciphertexts, a list DCR of the received
ciphertexts together with a boolean value indicating whether each was deemed supported or not, and a
candidate ciphertext C and returns a boolean indicating whether C is supported or not. Thus, whether
a ciphertext is supported may depend on the ciphertexts sent, the ones received, and how the current
ciphertext relates to them.

In conformance with [18], any ciphertext not in CS must not be supported. However, whereas in [18] the
list CS is allowed to contain repeating ciphertexts, we specifically prohibit this. In particular, we require
that every entry in CS be identified uniquely. Whether two messages encrypt to the same ciphertext
(a possibility with stateful schemes) or not depends on the scheme at hand. Moreover, if two distinct
encryptions result in duplicate entries in CS , the support predicate cannot distinguish between them, and
its semantics would consequently also change for that scheme. Allowing this to occur would render the
support predicate scheme-dependent, thereby introducing a circularity3 in the correctness and security
definitions—which is why we avoid this possibility. Moreover, the representation of ciphertexts should
not bear any weight on the predicate’s value. Therefore, we allow ciphertexts to be identified by integers
or other strings as long as the entries in CS are unique.

There are two other minor points where we deviate from [18]. One is that we require that every
support predicate accept perfectly-in-order delivery. The other is that we allow the support predicate
to only return a boolean value, whereas in the formulation in [18] it could also return an integer. This
seems to have been required due to the possibility of repeating ciphertexts in CS , which we specifically
rule out.

An example support predicate is specified in Fig. 16 reflecting the required functionality of a typical
real-world protocol. First, the submitted ciphertext is checked against the list of sent ciphertexts CS ,
and its corresponding location is assigned to j. If no match is found, it returns false. The variable next
represents the next ciphertext number the receiver expects (calculated as the largest index of a supported
ciphertext that was received plus one). Then the ciphertext is supported if it falls within the window
centred on next and has not already been received.

Channel Correctness. Different support predicates identify different channel functionalities. Never-
theless, we can define channel correctness generically for any possible support predicate. Intuitively,

3 Note that similarly to [18, 37], the upcoming definitions of correctness and security are parameterised by the
support predicate.



22 J.P. Degabriele, V. Karadžić

ROBACh,supp

(sts, str)←$ Ch.Init()

strr ← stcr ← str
CS ,DCR ← [ ], [ ]

win← false

ASend,Recv

return win

Procedure Send(A,M)

(sts, C)←$ Ch.Send(sts, A,M)

CS ← CS‖C
return C

Procedure Recv(A,C)

(strr,mn
r,M r)← Ch.Recv(strr, A, C)

(mnc,Mc)← (⊥,⊥)
d← supp(CS ,DCR, C)

if d = true then

(stcr,mn
c,Mc)← Ch.Recv(stcr, A, C)

DCR ← DCR‖(d, C)

if (mnr,M r) 6= (mnc,Mc) then

win← true

return (⊥,⊥)

Fig. 18: The game ROB used to define robustness for channels.

correctness requires that for any supported (and thus honestly generated) ciphertext, the receiver must
always be able to recover the original message contained in that ciphertext together with its correspond-
ing message number. Thus correctness ensures that the receiver is able to recover the original sequence of
messages in the exact ordering in which they were sent. This is formally defined via the game in Fig. 17.

Definition 8 (Channel Correctness). A channel Ch is said to be correct with respect to a support
predicate supp, if for all possible adversaries A it holds that

Pr
[
CORRACh,supp ⇒ 1

]
= 0.

6.2 The Robustness Property

Unlike TLS and similar protocols, where one invalid ciphertext typically results in the connection being
torn down, order-resilient channels are inherently required to tolerate a significant amount of decryption
failures during their operation. Such decryption failures may arise from the unreliable nature of the under-
lying protocol, or due to manipulation by a malicious adversary. Furthermore, the receiver will generally
be unable to distinguish between these two cases. Thus, order-resilient channels must maintain their cor-
rect operation in the presence of adversarial manipulation. However, the above correctness requirement
does not capture such a scenario as it considers only honestly-generated ciphertexts. Accordingly, [18]
introduced the notion of robustness to capture this stronger requirement.

Robustness is formally defined through the ROB game described in Fig. 18. Here, the Recv oracle
maintains internally two Recv instances, the real one, which is supplied with all queried ciphertexts, and
the correct one, which is only supplied with supported ciphertexts. Then if at any point the adversary
queries a supported ciphertext that causes the outputs of the two Recv instances to differ, it will constitute
a win for the adversary. The advantage of an adversary is quantified as its probability of winning this
game.

Definition 9 (ROB Advantage). For a channel Ch = (Init,Send,Recv) and a support predicate supp,
the corresponding robustness advantage of an adversary A is defined as:

Advrob
Ch,supp(A) = Pr

[
ROBACh,supp ⇒ 1

]
.

Note that in the ROB game both Recv instances are initialized with the same state. Thus, for the
adversary to win, the states of the two instances must at some point diverge. On the other hand, only
unsupported ciphertexts can cause such a divergence in their states. Therefore, a sufficient condition for
satisfying robustness is that unsupported ciphertext do not affect the decryption state.

6.3 Channel Security

We use a single-game definition of channel security that combines confidentiality and integrity into one
notion. It is heavily based on the security definitions from [18], without robustness, and adapted with
some of the ideas from simulatable channels in [15]. Security is defined via the indistinguishability game
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INT-SIM-CCAA,S
Ch,supp

(sts, str)←$ Ch.Init()

CS ,DCR ← [ ], [ ]

b←$ {0, 1}
b′ ← ASend,Recv

return b = b′

Procedure Send(A,M)

if b = 0 then // ideal world

C ←$ S(A, |M |)
else // real world

(sts, C)←$ Ch.Send(sts, A,M)

CS ← CS‖C
return C

Procedure Recv(A,C)

(str,mn,M)← Ch.Recv(str, A,C)

if b = 0 then // ideal world

(mn,M)← (⊥,⊥)
else // real world

d← supp(CS ,DCR, C)

if d = true then

(mn,M)← (⊥,⊥)
DCR ← DCR‖(d, C)

return (mn,M)

Fig. 19: The INT-SIM-CCA game used to define channel security.

INT-SIM-CCA shown in Fig. 19. Here, we essentially require the existence of a stateless algorithm S that
can simulate the Send oracle to the adversary and that the adversary is unable to query an unsupported
ciphertext to Recv that decrypts successfully, i.e., a forgery. Note that, as shown in [15], requiring the
simulator S to be stateless results in a stronger security notion. Namely, it provides key privacy and
ensures that ciphertexts do not leak the message number since the simulator cannot keep track of the
number of messages that are sent. Below is the formal definition.

Definition 10 (INT-SIM-CCA Advantage). Let Ch = (Init,Send,Recv) be a channel protocol realizing
the functionality corresponding to the support predicate supp. Then, Ch is INT-SIM-CCA secure if there
exists a stateless encryption simulator S such that for any adversary A the following quantity is small

Advint-sim-cca
Ch,supp (A,S) =

∣∣∣2Pr[INT-SIM-CCAA,SCh,supp ⇒ 1
]
− 1
∣∣∣.

6.4 From Nonce-Set AEAD to Order-Resilient Secure Channels

We are now ready to present this section’s main contribution - a generic construction for transforming any
nonce-set AEAD scheme into an order-resilient channel. This construction consists of a nonce-set AEAD
scheme combined with a tuple of four basic algorithms which we call the nonce-set-processing scheme.
This construction has some notable features. Firstly, it works for any support predicate. This means that
this template construction can be used to realize any channel functionality that can be expressed via the
support predicate introduced by Fischlin et al. in [18]. In addition, any instantiation will automatically
satisfy robustness and channel security for that support predicate. The main conditions for this to hold
are that the underlying nonce-set AEAD be secure and that the nonce-set-processing scheme faithfully
reproduce the functionality of the support predicate.

As the name implies, the nonce-set-processing scheme is primarily concerned with generating and
updating the nonce-set that is fed to the nonce-set AEAD. The faithfulness property ensures that the
nonce-set-processing scheme accurately reflects the channel behaviour corresponding to the support pred-
icate. Recall that we required the support predicate to be defined over any possible way of identifying
the ciphertexts as long as it uniquely represented each ciphertext in CS . This means that we can identify
each ciphertext with the nonce it is assigned in the Send algorithm. Accordingly, the role of the nonce-
set-processing scheme is to identify the set of supported nonces at every stage of the Recv algorithm. Our
channel construction will then use the set of supported nonces as the nonce set to be fed to the nonce-set
AEAD. Thus our generic construction can be viewed as decomposing a channel into these constituent
components, thereby adding to our understanding of order-resilient channels.

We start by describing the syntax of the nonce-set-processing scheme. A nonce-set-processing scheme
NSP consists of the following constituent algorithms:
• (sts, str)←$StInit(). A probabilistic initialization algorithm, that returns the initial sender state sts

and the initial receiver state str.
• (st′s, N) ← NonceExtract(sts). A deterministic nonce extraction algorithm, that takes as input the

non-key component of the sender state and returns a (possibly) updated state together with a unique
nonce N or the symbol ⊥.
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Game FAITHFULANSP,supp

(sts, str)←$StInit()

NS ,DCR ← [ ], [ ]

win← false

A(sts,str),F-Send,F-Recv

return win

Procedure F-Send()

(sts, N)← NonceExtract(sts)
NS ← NS‖N
return N

Procedure F-Recv(N)

if N 6∈ NS then

return �

W ← NonceSetPolicy(str)
if N ∈W then

(str,mn)← StUpdate(str, N)

else

mn← ⊥
d← supp(NS ,DCR, N)

DCR ← DCR‖(d, N)

if d = true ∧
(N 6∈W ∨N 6= NS [mn]) then

win← true

if d = false ∧N ∈W then

win← true

return (str,mn)

Fig. 20: The game FAITHFUL used to define faithfulness for a nonce-set-processing scheme.

• W ← NonceSetPolicy(str). A deterministic nonce-set policy algorithm that takes as input the non-key
component of the receiver state and returns a nonce set.
• (st′r,mn) ← StUpdate(str, N). A deterministic state-update algorithm that takes as input the non-

key component of the receiver state together with a nonce, and returns an updated state together
with the message number corresponding to that nonce.

The Faithfulness Property. The only property that we require from the nonce-set-processing scheme
is that it faithfully reproduce the functionality of the channel’s support predicate. Note that the nonce-
set-processing scheme does not require a secret key. This is because faithfulness is a property that can
be satisfied without cryptographic means. For any scheme NSP and support predicate supp, faithfulness
is defined via the game FAITHFUL shown in Fig. 20. The adversary’s goal is to cause the nonce-set-
processing scheme and the support predicate to be misaligned or recover the wrong message number
from a nonce. Note that the receiver is only allowed to query nonces to the F-Recv oracle that the
F-Send oracle has returned. A win occurs if the submitted nonce is supported but not contained in the
nonce set returned by NonceSetPolicy, or the message number returned by StUpdate for that nonce is
incorrect. Alternatively, if the nonce is not supported but the nonce set does contain that nonce, this
also constitutes a win for the adversary.

Definition 11 (FAITHFUL Advantage). Let NSP be a nonce-set-processing scheme. Then for any
adversary A and any support predicate supp, the corresponding advantage is defined as

Advfaithful
NSP,supp(A) = Pr

[
FAITHFULANSP,supp ⇒ 1

]
.

We say that a nonce-set scheme NSP faithfully reproduces the support predicate supp, if for all possible
adversaries A it holds that Advfaithful

NSP,supp(A) = 0.

Generic Channel Construction. Our generic construction of an order-resilient secure channel ChNS =
(Init,Send,Recv) from a nonce-set AEAD scheme NSE = (Enc,Dec) and a nonce-set-processing scheme
NSP = (StInit,NonceExtract,NonceSetPolicy,StUpdate) is presented in Fig. 21.

Channel Correctness. The proof of correctness for this generic construction is provided in Ap-
pendix E.1.

Theorem 5. If the nonce-set AEAD scheme NSE is correct and the nonce-set-processing scheme NSP

faithfully reproduces the support predicate supp, then the channel construction ChNS presented in Fig. 21
is correct with respect to supp.
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Init()

(sts, str)←$StInit()

K ←$ {0, 1}k

stks ← (sts,K)

stkr ← (str,K)

return (stks, stkr)

Send(stks, A,M)

(sts,K)← stks
(st′s, N)← NonceExtract(sts)
if N = ⊥ then

return (st′s,⊥)
C ← Enc(K,N,A,M)

stk′s ← (st′s,K)

return (stk′s, C)

Recv(stkr, A,C)

(str,K)← stkr
W ← NonceSetPolicy(str)
(N,M)← Dec(K,W , A, C)

if (N,M) = (⊥,⊥) then
mn← ⊥

else

(st′r,mn)← StUpdate(str, N)

stk′r ← (st′r,K)

return (stk′r,mn,M)

Fig. 21: A generic construction of an order-resilient secure channel ChNS from a nonce-set AEAD scheme
and a nonce-set-processing scheme.

Channel Robustness. We argue robustness based on our earlier observation that a sufficient condition
for robustness is that unsupported ciphertexts never affect the channel state. The faithfulness of NSP
guarantees that only the nonces used to generate supported ciphertexts will be included in the nonce set.
Then, by the nsAE security of NSE, decryption can only succeed as long as the ciphertext was produced
by the sender under one of the nonces contained in the nonce set—otherwise, it would constitute a
forgery. Thus decryption will always fail for unsupported ciphertexts, and by construction, the state is
never updated (StUpdate is not called) when decryption fails.

Channel Security. The security of ChNS is formally stated in the following theorem, the proof of which
is located in Appendix E.2.

Theorem 6 (Security of ChNS). Let ChNS be the generic channel construction described in Fig. 21,
composed from a nonce-set AEAD scheme NSE with associated ciphertext space {0, 1}≥` and a nonce-set-
processing scheme NSP. Then, for any support predicate supp there exists a stateless simulator S, such
that for every INT-SIM-CCA adversary A making qs send queries and qr receive queries, there exist
adversaries B and C such that

Advint-sim-cca
ChNS,supp (A,S) ≤ Advnsae

NSE (B) +Advfaithful
NSP,supp(C) +

qs(qs − 1)

2`
.

Furthermore, B makes qs encryption queries and at most qr decryption queries, whereas C makes qs send
queries and at most qr receive queries. Both adversaries run in time similar to that of A.

A Concrete Nonce-Set-Processing Scheme. We conclude by presenting a concrete instantiation
of a nonce-set-processing scheme. The scheme NSPrr, described in Fig. 22, reproduces a similar nonce
construction and replay-and-reordering-handling mechanism to those deployed in QUIC. The main dif-
ference is that in QUIC, packets carry encoded information regarding the size of the reordering window.
In contrast, in our case, the window size is fixed. We show below that NSPrr faithfully reproduces the
functionality of the support predicate described in Fig. 16.

Claim. The nonce-set-processing scheme NSPrr faithfully reproduces the support predicate supprr[wr,wf ]
.

Proof. We prove the above claim by contradiction. Suppose an adversary A sets the win flag during a
run of the FAITHFUL game. It must then hold that for some adversarial query to F-Recv(N) one of the
following two conditions is true.

1. d = false ∧ N ∈W . Consider the code of the support predicate supprr[wr,wf ]
displayed in Fig. 16;

there exist three possible cases in which it returns false. The first is when j =⊥, which in this
case corresponds to N 6∈ NS . However this constitutes an invalid query and the F-Recv oracle
suppresses this type of query. The second is when the nonce index j is less than next−wr or greater
than next + wf . In this case, by design, the NonceSetPolicy algorithm guarantees that such a nonce
would not be contained in W . A similar argument holds for the third case, where the support
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StInit()

IV ←$ {0, 1}96

mnS ← 0

mnR ← 0

R← 0wr // bitmap for tracking replays

sts ← (IV,mnS)

str ← (IV,mnR, R)

return (sts, str)

NonceSetPolicy(str)

(IV,mnR, R)← str
W ′ ← {mnR − j − 1 | for j s.t. R[j] = 0}
W ′ ←W ′ ∪ {mnR + j | j ≤ wf}

W ←
{
(mn⊕ IV )‖0t−96 | mn ∈W ′}

return W

NonceExtract(sts)

(IV,mnS)← sts

if mnS ≥ 262 − 1 then

return (sts,⊥)
st′s ← (IV,mnS + 1)

return (st′s, (mnS ⊕ IV )‖0t−96)

StUpdate(N, str)

(IV,mnR, R)← str

mn′‖0t−96 ← N

mn← b(mn′ ⊕ IV )c62
if mn < mnR then // set bit in replay map

R[mn−mnR + wr]← 1

else // shift replay map

R << (mn−mnR)

R[wr]← 1

mnR ← mn+ 1

st′r ← (IV,mnR, R)

return (st′r,mn)

Fig. 22: A concrete example of a nonce-set-processing scheme NSPrr, where t denotes the nonce size.

predicate returns false because of a replay. Again the tracking of the received nonces in R by the
NonceSetPolicy algorithm ensures that a replayed nonce will not be contained in W . Combining the
above, it follows that for a valid query F-Recv(N), if d = false then N 6∈W and thus the presumed
condition can never be satisfied.

2. d = true ∧ (N 6∈W ∨ N 6= NS [mn]). This can be further subdivided into the following two separate
cases: (d = true ∧ N 6∈ W ) or (d = true ∧ N 6= NS [mn]). By construction, the NonceSetPolicy
algorithm guarantees that for any queried nonce, if supp(NS ,DCR, N) is true then W will contain N ,
which excludes the first case. Moving on to the second case, it can be verified that if supp(NS ,DCR, N)
is true the recovered message number satisfies N = NS [mn], and is thus also impossible. This
holds because NonceExtract encodes the message number injectively into the nonce, and in turn, the
StUpdate algorithm recovers it unambiguously.

Combining the above, it follows that no adversary can win the faithfulness game with respect to NSPrr
and the support predicate supprr[wr,wf ]

. ut
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Appendix

A Appendix

A.1 Difference Lemma

In the proof of Theorem 3 (EtD construction), presented in Appendix C.2, we make use of the following
difference lemma.

Claim. For events A0, A1, E0 and E1 it holds that:

|Pr[A0]− Pr[A1]| ≤ |Pr[A0 ∧ ¬E0]− Pr[A1 ∧ ¬E1]|+max{Pr[E0],Pr[E1]}.

Proof. Starting from the left hand side we introduce events E0 and E1 to obtain

|Pr[A0]− Pr[A1]| = |Pr[(A0 ∧ E0) ∨ (A0 ∧ ¬E0)]− Pr[(A1 ∧ E1) ∨ (A1 ∧ ¬E1)]| .

Applying the union bound, rearranging terms, and applying the triangle inequality yields

≤ |Pr[A0 ∧ E0] + Pr[A0 ∧ ¬E0]− Pr[A1 ∧ E1]− Pr[A1 ∧ ¬E1]|

≤ |Pr[A0 ∧ ¬E0]− Pr[A1 ∧ ¬E1]|+ |Pr[A0 ∧ E0]− Pr[A1 ∧ E1]|.

We then bound the second term to obtain the claimed result

≤ |Pr[A0 ∧ ¬E0]− Pr[A1 ∧ ¬E1]|+max{Pr[E0],Pr[E1]}. ut

B Appendix

B.1 RRND Security

In order to prove our UIV construction RPRP secure, we will use a related notion called RRND security.
We proceed by first defining and explaining what RRND security is, and then present the Lemma 2
that relates RPRP and RRND security. We use exactly this lemma later in Appendix B.2 to prove UIV

construction is a secure RPRP.
In the case of RRND security, an adversary has access to the same set of oracles as in the RPRP game.

However, it is tasked with distinguishing ẼE from a tweakable two-sided random function R̃R instead of
an ideal cipher. The tweakable two-sided random function is a function sampled uniformly at random
from the set ±Func(T ,XL × XR). In turn, this can be viewed as a family of random functions from
XL×XR to XL×XR indexed by {+,−}×T where each tweak in T identifies a forward (+) function and
a backward (−) function. Note that with high probability, the forward and backward functions will not
be inverses of each other, which would allow the adversary to easily distinguish ẼE from R̃R. Accordingly,
in addition to the restrictions present in the RPRP game, we also prohibit the adversary from forwarding
queries from De to En. This is enforced via the set P. The game defining RRND security is given in
Fig. 23, and the corresponding advantage formula is given below.

Definition 12 (RRND Advantage). Let ẼE be a tweakable cipher over a split domain (XL × XR).
Then for a positive integer v and an adversary A attacking the RRND security of ẼE the corresponding
advantage is defined as

Advrrnd
ẼE

(A, v) =
∣∣∣2Pr[RRNDA,v

ẼE
⇒ 1

]
− 1
∣∣∣.

In [21] Halevi and Rogaway prove a strengthened analogue of the switching lemma stating that for suffi-
ciently large domains an ideal cipher and a tweakable two-sided random function are indistinguishable.
This result is reproduced in the following lemma.

Lemma 1 (Lemma 6. in [21]). Let A be an adversary that does not forward the result of one oracle
to another. Then it holds∣∣∣Pr[Π̃ ←$ IC(T ,X ) : AΠ̃(·,·),Π̃−1(·,·)

]
− Pr

[
R̃R←$±Func(T ,X ) : AR̃R(+,·,·),R̃R(−,·,·)

]∣∣∣ ≤ q(q − 1)

2b+1
,

where q is the total number of A’s queries to both oracles and b is the length of the shortest element in
X .
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Game RRNDA,v

ẼE

K ←$K
b←$ {0, 1}
F ,R,U ,P ← ∅, ∅, ∅, ∅

R̃R←$±Func(T ,XL ×XR)

b′ ← AEn,De,Gu

return b = b′

En(T,XL, XR)

if (T,XL, XR) ∈ P
return �

if b = 0

(YL, YR)← R̃R(+, T,XL, XR)

else

(YL, YR)← ẼEK(T,XL, XR)

F ∪← {YL} ; U ∪← {(T, YL, YR)}
return (YL, YR)

De(T, YL, YR)

if YL ∈ F ∪R
return �

if b = 0

(XL, XR)← R̃R(−, T, YL, YR)

else

(XL, XR)← ẼE
−1

K (T, YL, YR)

R ∪← {YL}; U ∪← {(T, YL, YR)}
P ∪← {(T,XL, XR)}
return (XL, XR)

Gu(T, YL, YR,V )

if ((T, YL, YR) ∈ U) ∨ (|V | > v)

return �

if b = 0

return false

else

(XL, XR)← ẼE
−1

K (T, YL, YR)

return XL ∈ V

Fig. 23: The game used to define RRND security for a tweakable cipher ẼE.

It then follows, by the above lemma, that RRND security implies RPRP security. Intuitively, the result
follows since the main difference between the two corresponding games is that in the ideal world, we
replace an ideal cipher for a tweakable two-sided random function. This is stated formally in the lemma
below.

Lemma 2. Let ẼE be a tweakable cipher over a split domain (XL × XR) where XL ⊆ {0, 1}≥n and
XR ⊆ {0, 1}≥m. Then for a positive integer v and an adversary A making qen encipher oracle queries,
qde decipher oracle queries and qgu guess oracle queries, it holds that

Advrprp

ẼE
(A, v) ≤ Advrrnd

ẼE
(A, v) + q(q − 1)

2n+m+1
,

where q = qen + qde.

Proof. We prove the lemma by using the game-hopping technique. Without loss of generality, we assume
the adversary A does not repeat a query to the En or Gu oracle, nor does it forward De oracle query
result to En oracle.

G0 : This is the RPRP game with the bit b set to 0 (ideal world).

G1 : We replace the ideal cipher Π̃ with a tweakable two-sided random function R̃R to obtain the game
G1, given in Fig. 24.

We bound A’s advantage in distinguishing the games G0 and G1 by applying the Lemma 1. Let
D be an adversary trying to distinguish between the pairs of oracles (Π̃(·, ·), Π̃−1(·, ·)) and (R̃R(+, ·, ·),
R̃R(−, ·, ·)) appearing in Lemma 1. We call Π̃(·, ·) and R̃R(+, ·, ·) forward oracles, and Π̃−1(·, ·) and
R̃R(−, ·, ·) backward oracles. The adversary D runs A and simulates the games G0 and G1 for A using
its forward and backward oracles.

In order to simulate the En oracle, the adversary D uses its forward oracle to query (T,XL, XR) and
get the result (YL, YR), which it forwards back to A. We note that querying (T,XL, XR) to D’s forward
oracle means the tweak T is the first input and the pair (XL, XR) is the second input to the oracle4. In
4 Same principle applies to queries to the D’s backward oracle.
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Game G1

K ←$K
F ,R,U ← ∅, ∅, ∅
b← AEn,De,Gu

return b

En(T,XL, XR)

(YL, YR)← R̃R(+, XL, XR)

F ∪← {YL} ; U ∪← {(T, YL, YR)}
return (YL, YR)

De(T, YL, YR)

if YL ∈ F ∪R
return �

(XL, XR)← R̃R(−, YL, YR)

R ∪← {YL}; U ∪← {(T, YL, YR)}
return (XL, XR)

Gu(T, YL, YR,V )

if ((T, YL, YR) ∈ U) ∨ (|V | > v)

return �

return false

Game G2

K ←$K
F ,R,U ← ∅, ∅, ∅
b← AEn,De,Gu

return b

En(T,XL, XR)

(YL, YR)← ẼE(K,XL, XR)

F ∪← {YL} ; U ∪← {(T, YL, YR)}
return (YL, YR)

De(T, YL, YR)

if YL ∈ F ∪R
return �

(XL, XR)← ẼE
−1

(K,YL, YR)

R ∪← {YL}; U ∪← {(T, YL, YR)}
return (XL, XR)

Gu(T, YL, YR,V )

if ((T, YL, YR) ∈ U) ∨ (|V | > v)

return �

(XL, XR)← ẼE
−1

(K,YL, YR)

return XL ∈ V

Fig. 24: The games G1 and G2 for the proof of Lemma 2.

the case of simulation of the De oracle, the adversary D uses its backward oracle to query (T, YL, YR)
and get the result (XL, XR), which it forwards back to A. As for the Gu oracle simulation, the adversary
D does not need to ask its forward or backward oracle since it is supposed always to return ⊥ to A.
During the whole time, the adversary D keeps track of the restrictions on queries made by A by keeping
track of sets F ,R and U appearing in games G0 and G1.

The adversary D simulates the games G0 and G1 for A correctly. Utilizing the bound from Lemma 1,
it holds that ∣∣Pr[AG0 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]∣∣ ≤ q(q − 1)/2n+m+1, (1)

since the length of the shortest element in XL × XR is at least n +m. The number q is the number of
A’s queries to En and De oracles.

G2 : This is the RPRP game with the bit b set to 1 (real world). It is given in Fig. 24. We claim the
advantage of the adversary A distinguishing between the games G1 and G2 is bounded by its RRND
advantage. Indeed, the games G1 and G2 correspond to the ideal and real world of the RRND game.
Notice how the additional restriction appearing in En oracle in the RRND game (in comparison to G1

and G2) is “satisfied” by the assumption that the adversary A does not forward queries from De to En
oracle. Therefore, ∣∣Pr[AG1 ⇒ 1

]
− Pr

[
AG2 ⇒ 1

]∣∣ ≤ Advrrnd
ẼE

(A, v). (2)

Combining inequalities (1) and (2) one achieves the bound in the lemma statement. ut
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B.2 Proof of Theorem 1 (UIV Construction)

Proof. We structure the proof as follows. First, we show in the following claim that the UIV construction
is RRND secure, and then we utilize the result of Lemma 2 to arrive at the RPRP security bound from
the theorem statement. Without loss of generality, we assume the adversary A does not repeat a query
to the En or Gu oracle.

Claim. For a positive integer v and an adversary A making qen encipher queries, qde decipher queries
and qgu guess queries under the constraint that qguv ≤ 2n−1, there exist adversaries B and C such that

Advrrnd
UIV (A, v) ≤ Advsprp

Ẽ
(B) +Advprf

F (C) + qguv

2n−1
+
q1(q1 − 1)

2n+1
+
qen(qen − 1)

2n+1
,

where q1 = qen + qde + qgu. The SPRP adversary B makes at most qen encipher queries and qde + qgu
decipher queries, whereas the PRF adversary C makes at most q queries.

Proof (of the Claim). We prove the claim by using the game-hopping technique.

G0 : This is the RRND game with the bit set to 1 (real world).

G1 : In the game G1, we replace the tweakable blockcipher Ẽ with an ideal blockcipher Π̃ ←$ IC(T ×
XR,XL). We bound A’s distinguishing advantage with the SPRP advantage of Ẽ by constructing an
SPRP adversary B. The adversary B starts by running A and simulating the games G0 and G1 for it.
In order to simulate the calls to the tweakable blockciper in the UIV construction, B uses its own oracles
from the SPRP game. As for the PRF, B samples a random key K2 and calculates FK2(·, ·) by itself. In
addition, the adversary B keeps track of all the sets appearing in the games G0 and G1 and enforces the
corresponding game rules. In the end, the adversary B returns the same bit that A returns.

The adversary B simulates the games correctly. If it is interacting with the real world of the SPRP
game, it simulates the game G0 to A. Otherwise it is interacting with the ideal world of the SPRP game
and it simulates the game G1 to A. It then holds that∣∣Pr[AG0 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]∣∣ ≤ Advsprp

Ẽ
(B). (3)

G2 : In the game G2, we replace the VOL-PRF F with a truly random VOL function R∞. We bound
A’s distinguishing advantage with the PRF advantage of F by constructing a PRF adversary C. The
adversary C starts by running A and simulating the games G1 and G2 for it. In order to simulate the
ideal blockcipher in the construction, the adversary C lazily samples it and calculates Π̃(·, ·) and Π̃−1(·, ·)
by itself. As for the VOL-PRF, C uses its own oracles from the PRF game to simulate the PRF calls in
the UIV construction. In addition, the adversary C keeps track of all the sets appearing in the games G1

and G2, and enforces the corresponding game rules. In the end, the adversary C returns the same bit
that A returns. The adversary C simulates the games correctly. If it is interacting with the real world of
the PRF game, it simulates the game G1 to A. Otherwise it is interacting with the ideal world of the
PRF game and it simulates the game G2 to A. Hence, it holds that∣∣Pr[AG1 ⇒ 1

]
− Pr

[
AG2 ⇒ 1

]∣∣ ≤ Advprf
F (C). (4)

G3 : In the game G3, we change the guess oracle so that it always returns false. Towards this goal, we
first change the game G2 to G∗2, by rewriting the Gu oracle code and introducing the flag badGu. The
games G2 and G∗2 are given in Fig. 25, and they are equivalent. In G3 one then removes the boxed line
if badGu is set to true, thus leaving the guess oracle in G3 always returning false. It is seen from Fig. 25
that the games G∗2 and G3 are identical-until-bad games, so we can bound A’s distinguishing advantage
between them by using the fundamental lemma of game playing.

In order to calculate Pr[badGu], we first introduce intermediate events badGu,i, where the event
badGu,i is the event that the flag badGu was triggered in A’s i-th query to the guess oracle. Because the
tuple (T, YL, YR) in i-th guess oracle query (T, YL, YR,V ) is unused, we can be sure En and De oracles
did not leak any information about XL. If that tuple (T, YL, YR) is queried to Gu for the first time,
Pr[badGu,i] = v/2n. If it is repeated, Pr[badGu,i] ≤ v/(2n− (i−1)v) since every time A makes a repeated
query, v number of possibilities for XL are removed. Therefore, it holds that∣∣Pr[AG2 ⇒ 1

]
− Pr

[
AG3 ⇒ 1

]∣∣ ≤ Pr[badGu] ≤
qgu∑
i=1

Pr[badGu,i] ≤
qgu∑
i=1

v

2n − (i− 1)v

≤ qguv

2n − qguv
≤ qguv

2n−1
,

(5)
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under the assumption that qguv ≤ 2n−1.

Game G2

F ,R,U ,P ← ∅, ∅, ∅, ∅
Π̃ ←$ IC(T × XR,XL)

R∞ ←$Func(XL,∞)

b← AEn,De,Gu

return b

En(T,XL, XR)

if (T,XL, XR) ∈ P
return �

YL ← Π̃((T,XR), XL)

YR ← bR∞(YL)c|XR|
⊕XR

F ∪← {YL} ; U ∪← {(T, YL, YR)}
return (YL, YR)

De(T, YL, YR)

if YL ∈ F ∪R
return �

XR ← bR∞(YL)c|YR|
⊕ YR

XL ← Π̃−1((T,XR), YL)

R ∪← {YL}; U ∪← {(T, YL, YR)}
P ∪← {(T,XL, XR)}
return (XL, XR)

Gu(T, YL, YR,V )

if ((T, YL, YR) ∈ U) ∨ (|V | > v)

return �

XR ← bR∞(YL)c|YR|
⊕ YR

XL ← Π̃−1((T,XR), YL)

return XL ∈ V

Game G∗2, G3

F ,R,U ,P ← ∅, ∅, ∅, ∅
badGu ← false

Π̃ ←$ IC(T × XR,XL)

R∞ ←$Func(XL,∞)

b← AEn,De,Gu

return b

En(T,XL, XR)

if (T,XL, XR) ∈ P
return �

YL ← Π̃((T,XR), XL)

YR ← bR∞(YL)c|XR|
⊕XR

F ∪← {YL} ; U ∪← {(T, YL, YR)}
return (YL, YR)

De(T, YL, YR)

if YL ∈ F ∪R
return �

XR ← bR∞(YL)c|YR|
⊕ YR

XL ← Π̃−1((T,XR), YL)

R ∪← {YL}; U ∪← {(T, YL, YR)}
P ∪← {(T,XL, XR)}
return (XL, XR)

Gu(T, YL, YR,V )

if ((T, YL, YR) ∈ U) ∨ (|V | > v)

return �

XR ← bR∞(YL)c|YR|
⊕ YR

XL ← Π̃−1((T,XR), YL)

if XL ∈ V then

badGu ← true

return true

return false

Fig. 25: The games G2, G∗2 and G3 for the proof of Theorem 1 (UIV construction). G3 does not contain
the boxed code.

G4 : In the game G4, we replace the ideal cipher Π̃ with a tweakable two-sided random function
R̃. We bound A’s distinguishing advantage between the games G3 and G4 by utilizing Lemma 1. We
construct an adversary D distinguishing between oracle pairs (Π̃(·, ·), Π̃−1(·, ·)) or (R̃(+, ·, ·), R̃(−, ·, ·)),
that will run A and simulate the games G3 and G4 for A. We call Π̃(·, ·) and R̃(+, ·, ·) forward oracles,
and Π̃−1(·, ·) and R̃(−, ·, ·) backward oracles. If D is interacting with oracle pair (Π̃(·, ·), Π̃−1(·, ·)), it
simulates the game G3 for A. Otherwise, it simulates the game G4 for A. During the simulation, D will
keep track of the sets F ,R, U , and P while exercising the restrictions on the queries imposed by these
sets as it is done in G3 and G4. The adversary D will simulate the random VOL function R∞ appearing
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Game G∗4, G5

F ,R,U ,P ← ∅, ∅, ∅, ∅
bad← false; PREV← ∅
R̃←$±Func(T × XR,XL)

R∞ ←$Func(XL,∞)

b← AEn,De,Gu

return b

En(T,XL, XR)

if (T,XL, XR) ∈ P
return �

YL ← R̃(+, (T,XR), XL)

YR ← bR∞(YL)c|XR|
⊕XR

if YL ∈ PREV then

bad← true

YR ← {0, 1}|XR|

PREV ∪← {YL}
F ∪← {YL} ; U ∪← {(T, YL, YR)}
return (YL, YR)

De(T, YL, YR)

if YL ∈ F ∪R
return �

XR ← bR∞(YL)c|YR|
⊕ YR

XL ← R̃(−, (T,XR), YL)

R ∪← {YL}; U ∪← {(T, YL, YR)}
P ∪← {(T,XL, XR)}
return (XL, XR)

Gu(T, YL, YR,V )

if ((T, YL, YR) ∈ U) ∨ (|V | > v)

return �

return false

Fig. 26: The games G∗4 and G5 for the proof of Theorem 1 (UIV construction). G4 does not contain the
boxed code, while G5 does.

in the construction by lazy sampling the needed results. The random function R∞ needs to be sampled
in a consistent way, meaning that for any input string X and any two output lengths l1 and l2, with
l1 ≤ l2, bR∞(X)cl1 needs to be a prefix of bR∞(X)cl2 . The lazy sampling works in this case as follows.
The first time l-bit output of R∞(X) is needed, for some string X, the adversary D samples a random
string of length l and stores it into the function table for input X. Next time, if a l′-bit output of R∞(X)
is needed, with l′ ≤ l, the adversary D reads the stored value, truncates it to l′ bits and outputs the
truncated string. Otherwise, if l′ > l, D reads the l-bit string stored in the function table, extends it
with new random bits up to length l′, stores this l′-bit string back into the table and outputs those l′
bits. We continue with describing the adversary D.

It simulates the En oracle as follows. First, it queries its forward oracle with the pair ((T,XR), XL)
to receive the result YL and then it calculates YR by using the lazily-sampled R∞. After that, it returns
(YL, YR) back to A. The adversary D simulates the De oracle by calculating XR using the lazily-sampled
R∞, then querying its backward oracle with the pair ((T,XR), YL) to receive the result XL. It returns
(XL, XR) back to A. As for the Gu oracle, the adversary D simply returns false to A. Adversary D
correctly simulates the games for A.

It is important to note that in no case will adversary D forward a query either from its forward oracle
to its backward oracle, or the other way around, thus allowing us to utilize the Lemma 1. Therefore, it
holds that ∣∣Pr[AG3 ⇒ 1

]
− Pr

[
AG4 ⇒ 1

]∣∣ ≤ q1(q1 − 1)

2n+1
(6)

G5 : This game is equivalent to the RRND game with the bit set to 0 (ideal world) and it is given in
Fig. 26. In order to arrive at the game G5, we first construct the game G∗4 from G4 by adding the flag
bad and introducing the set PREV. In addition, in the enciphering oracle, we add the check if YL is in
the set PREV and the line where bad is set to true. The games G4 and G∗4 are equivalent. Finally, we
switch from the game G∗4 to the game G5 by introducing the boxed line of code. As seen in the figure,
the games G4 and G5 are identical-until-bad games. Therefore, we again apply the fundamental lemma
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Game G0

K ←$K
C ← ∅
b′ ← AEnc,Ver

return b′

Procedure Enc(N,H,M)

T ← 〈N,H〉
Z ← Func2(N,H)

(C1, C2)← ẼEK(T,Z,M)

C ← C ∪ {(N,H,C1, C2)}
return (C1, C2)

Procedure Ver(N,H,C1, C2)

if (N,H,C1, C2) ∈ C then

return �

T ← 〈N,H〉
Z ← Func2(N,H)

(Z′,M ′)← ẼE
−1

K (T,C1, C2)

v ← ⊥
if Z′ = Z then

v ← >
return v

Fig. 27: The game G0 for the proof of Theorem 2 (EtE scheme).

of game playing. It holds that∣∣Pr[AG4 ⇒ 1
]
− Pr

[
AG5 ⇒ 1

]∣∣ ≤ Pr[bad] ≤ qen(qen − 1)

2n+1
, (7)

where the probability of the event bad is the probability of a collision in the output of R̃(+, ·, ·) happening.
Since the triples queried (T,XL, XR) to En are always unique, the output of R̃ will always be uniformly
random and Pr[bad] reduces to a birthday bound. The only thing left for us is to show that the game
G5 is equivalent to the ideal world of the RRND game. We compare the behaviour of all oracles in G5

with the behavior of their counterparts in the ideal world of the RRND game.
Queries to En: By the assumption that the adversary does not repeat queries, the query triple (T,XL, XR)
is always unique. Therefore YL is always uniformly random. As for the right output YR, there are two
possibilities. In the first case, YL has not been appeared before and that makes bR∞(YL)c|XR| uniformly
random. It follows that YR will then also be uniformly random. In the other case, YR will be sampled
uniformly at random. Thus, the output (YL, YR) will always be uniformly random in the G5, same as it
happens in the ideal world of the RRND game.
Queries to De: For a query triple (T, YL, YR), the game(s) restrict that YL is not repeated to De and that
it has not been output by En oracle. It follows that the output XR will always be uniformly random.
From the same fact, it follows that the output XL will always be uniformly random, since at least the
input YL to R̃(−, ·, ·) is always unique.
Queries to Gu: The oracle always returns false in both games.

Following the analysis above, we conclude that the adversary A cannot distinguish between the game
G5 and the ideal world of the RRND game since the corresponding oracles in the two games behave the
same.

By combining inequalities (3), (4), (5), (6) and (7) we achieve the claimed bound for RRND security
of the UIV construction. Together with the result of Lemma 2, the bound from the theorem statement
for RPRP security of UIV holds as well. ut

C Appendix

C.1 Proof of Theorem 2 (EtE Construction)

Proof. We prove the MRAE security of the EtE construction by using the following sequence of games.

G0 : This is the real world of the MRAE game and it is given in Fig. 27.

G1 : In the game G1, we replace the tweakable cipher ẼE with a lazily-sampled ideal cipher Π̃ in the
encryption oracle and change the Ver oracle always to return ⊥. The game G1 is given in Fig. 28.

For any adversary A distinguishing between the games G0 and G1 we construct an RPRP adversary
B, that runs A and simulates G0 and G1 for A. The adversary B works as follows. On A’s encryption
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Game G1, G2

K ←$K
C ← ∅
b′ ← AEnc,Ver

return b′

Procedure Enc(N,H,M)

T ← 〈N,H〉
Z ← Func2(N,H)

if Π̃[T,Z,M ] = ⊥ then

C1‖C2 ←$ {0, 1}n+|M|

if Π̃−1[T,C1, C2] 6= ⊥ then

bad← true

S ← rng(Π̃[T, ·, ·])

C1‖C2 ←$ {0, 1}n+|M| \ S

Π̃[T,Z,M ]← (C1, C2)

Π̃−1[T,C1, C2]← (Z,M)

(C1, C2)← Π̃[T,Z,M ]

C ← C ∪ {(N,H,C1, C2)}
return (C1, C2)

Procedure Ver(N,H,C1, C2)

if (N,H,C1, C2) ∈ C then

return �

return ⊥

Fig. 28: The games G1 and G2 for the proof of Theorem 2 (EtE scheme). G2 does not contain the boxed
code.

oracle query (N,H,M), the adversary B first calculates T and Z itself and forwards the triple (T,Z,M)
to its own enciphering oracle. Upon receiving the result, it forwards it back to A and updates the set
C. On A’s verification oracle query (N,H,C1, C2), B tests whether this query is in C and returns � if
it is. Otherwise, B goes on to construct T and Z. Finally, the adversary B makes a guess oracle query
(T,C1, C2, {Z}). If Gu oracle returns true B returns > back to A, else B returns ⊥ to A.

If B interacts with the real world of the RPRP game, it simulates the game G0 to A. Otherwise, it
simulates the game G1. We note that the verification oracle behaviour in the game G0 corresponds to
the guess oracle code in the real world of RPRP game. From the above, it follows that∣∣Pr[AG0 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]∣∣ ≤ Advrprp

ẼE
(B, 1). (8)

G2 : This is the ideal world of the MRAE game, and it is given in Fig. 28. We obtain the game G2 by
removing the boxed code from the game G1. By removing the boxed code, the ciphertext pair (C1, C2)
returned by the encryption oracle in the game G2 will always be sampled uniformly at random.

We bound A’s distinguishing advantage by introducing an event bad and utilizing the fundamental
lemma of game playing. The event bad is an event that a collision in the range of a lazily-sampled ideal
cipher Π̃[T, ·, ·] occurs. It then holds that

∣∣Pr[AG1 ⇒ 1
]
− Pr

[
AG2 ⇒ 1

]∣∣ ≤ Pr[bad] ≤ q2e
2n+m+1

, (9)

with the bound being a birthday bound on a variable-length domain of size at least n+m.
Finally, by combining the inequalities (8) and (9) one obtains the theorem bound. ut

C.2 Proof of Theorem 3 (EtD Construction)

Proof. We prove the RUPAE security of the EtD construction by using a sequence of games. We will
give the initialization and finalization code of the games only for the first two games for the sake of code
readability. Without loss of generality, we assume the adversary A does not repeat queries to the Dec
and Leak oracles.

G0 : This is the real world of the RUPAE game, with an extra “bookkeeping” involving the set Q. The
game is given in Fig. 29.



Overloading the Nonce: RPRPs, NS-AEAD, and OR-Channels 37

Game G0, G1

K ←$K
C ← ∅
Q ← ∅
b′ ← AEnc,Dec,Leak

return b′

Procedure Enc(N,H,M)

T ← 〈N,H〉
Z ← Func3(N,H,M)

if Z ∈ Q then

bad← true

if Π̃−1[·, T, Z,M ] = ⊥ then

C1‖C2 ←$ {0, 1}n+|M|

if Π̃[·, T, C1, C2] 6= ⊥ then

S ← dom(Π̃[·, T, ·, ·])
C1‖C2 ←$ {0, 1}n+|M| \ S

Π̃[‘E’, T, C1, C2]← (Z,M)

Π̃−1[‘E’, T, Z,M ]← (C1, C2)

(C1, C2)← Π̃−1[·, T, Z,M ]

(C1, C2)← ẼE
−1

K (T,Z,M)

Q ← Q∪ {Z}
C ← C ∪ {(N,H,C1, C2)}
return (C1, C2)

Procedure Dec(N,H,C1, C2)

if (N,H,C1, C2) ∈ C then return �

T ← 〈N,H〉
if Π̃[·, T, C1, C2] = ⊥ then

Z′‖M ′ ←$ {0, 1}n+|C2|

if Π̃−1[·, T, Z′,M ′] 6= ⊥ then

S ← rng(Π̃[·, T, ·, ·])
Z′‖M ′ ←$ {0, 1}n+|C2| \ S

Π̃[‘D’, T, C1, C2]← (Z′,M ′)

Π̃−1[‘D’, T, Z′,M ′]← (C1, C2)

(Z′,M ′)← Π̃[·, T, C1, C2]

(Z′,M ′)← ẼEK(T,C1, C2)

Q ← Q∪
{
Z′
}

Z ← Func3(N,H,M
′)

if Z′ = Z then

return M ′

else

return ⊥

Procedure Leak(N,H,C1, C2)

if (N,H,C1, C2) ∈ C then return �

T ← 〈N,H〉
if Π̃[·, T, C1, C2] = ⊥ then

Z′‖M ′ ←$ {0, 1}n+|C2|

if Π̃−1[·, T, Z′,M ′] 6= ⊥ then

S ← rng(Π̃[·, T, ·, ·])
Z′‖M ′ ←$ {0, 1}n+|C2| \ S

Π̃[‘L’, T, C1, C2]← (Z′,M ′)

Π̃−1[‘L’, T, Z′,M ′]← (C1, C2)

(Z′,M ′)← Π̃(T,C1, C2)

(Z′,M ′)← ẼEK(T,C1, C2)

Q ← Q∪
{
Z′
}

Z ← Func3(N,H,M
′)

if Z′ = Z then

return >
else

return M ′

Fig. 29: The games G0 and G1 for the proof of Theorem 3 (EtD scheme). G1 does not contain the boxed
code.

G1 : In the game G1, we replace the tweakable cipher ẼE with an ideal cipher. We represent this ideal
cipher with two independent but consistent tables Π̃ and Π̃−1. The entries in tables Π̃ and Π̃−1 will
also have a value ‘E’, ‘D’ or ‘L’ as their first coordinate. We use these values to mark where the entry
to the table was made (‘E’ means the entry was made during a query to the encryption oracle, ‘D’
during decryption, and ‘L’ during leakage, respectively). We additionally impose on the tables Π̃ and
Π̃−1 a requirement that if an entry [·, T,X, Y ] is added to the table, any other entry that is indexed by
(T,X, Y ) is implicitly removed from the table. That is, it cannot happen that Π̃ or Π̃−1 contains an
entry (·, T,X, Y ) for two different ‘E’, ‘D’ or ‘L’.



38 J.P. Degabriele, V. Karadžić

We want to reduce the adversary’s advantage in distinguishing the games G0 and G1 to the RPRP
security of the underlying tweakable cipher. Let B be an adversary playing the RPRP game. It runs A
and simulates the games G0 and G1 for it. Note that the adversary A can make B trigger a “forbidden”
RPRP query. Namely, suppose that during the simulation of Enc oracle, the triple (N,H,M) encodes
to Z which was either:

1. Already used as a left input to the decipher algorithm (in some previous encryption oracle query),
or

2. Already output by the encipher algorithm (in some previous decryption or leakage oracle query).

Both of those would lead to a forbidden RPRP query. Therefore, we introduce the set Q, to be able to
explicitly mark when the “bad” event happens. Formally, we denote this bad event with E and define it
as

E: an event that adversary A makes an encryption query (N,H,M) s.t. Func3(N,H,M) ∈ Q.

Let E0 be an event that E occurs in the game G0, and let E1 be an event that E occurs in the game
G1. We distinguish here these two events since in G0 the real cipher is used for generating values stored
in Q. On the other hand, in G1 the ideal cipher is used. Next, we use the difference lemma given in
Appendix A.1 to bound A’s distinguishing advantage as follows.∣∣Pr[AG0 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]∣∣ ≤ ∣∣Pr[AG0 ⇒ 1 ∧ ¬E0

]
− Pr

[
AG1 ⇒ 1 ∧ ¬E1

]∣∣+max{Pr[E0],Pr[E1]}.

If the events E0 and E1 do not happen, the absolute value term reduces to the B’s RPRP advantage. The
adversary B works as follows. Adversary B is answering A’s encryption queries by calculating T and Z
itself, and then forwarding (T,Z,M) to its backward oracle De. The result (C1, C2) is forwarded back to
A. It simulates the decryption and leakage oracle for A as follows. Upon receiving a query (N,H,C1, C2),
B calculates T and then queries its forward oracle En with (T,C1, C2). When it receives the result, it
calculates Z, checks if it is equal to Z ′ and returns to A the appropriate answer. The adversary B
guesses what A guesses. Assuming the event E does not occur, the adversary B simulates the games for
A perfectly. Hence, it holds that∣∣Pr[AG0 ⇒ 1 ∧ ¬E0

]
− Pr

[
AG1 ⇒ 1 ∧ ¬E1

]∣∣ ≤ Advrprp

ẼE
(B, 1).

In order to bound the term max{Pr[E0],Pr[E1]}, we construct another adversary C that is playing
the RPRP game. The adversary C will internally keep track of the set Q during the simulation of G0 and
G1 for the adversary A. The decryption and leakage oracles are simulated the same way the adversary B
simulates them. As for the encryption oracle and A’s query (N,H,M), C first checks if Func3(N,H,M)
would be in Q. If it would, the adversary C halts and outputs 1. Otherwise, C continues simulating the
oracle. In the end, the adversary C outputs 0. Note that the adversary C needs to keep track of the set
Q (and it indeed can) in order to be a valid RPRP adversary, that is, an adversary that does not make
a forbidden query.

We see that C outputs 1 if it was interacting with the real cipher only when the event E0 occurs.
Similarly, it outputs 1 if it was interacting with the ideal cipher only when the event E1 occurs. Therefore,

|Pr[E0]− Pr[E1]| ≤ Advrprp

ẼE
(C, 1).

Furthermore, it holds that max{Pr[E0],Pr[E1]} ≤ Advrprp

ẼE
(C, 1) + Pr[E1]. Summarizing the findings so

far, we have that∣∣Pr[AG0 ⇒ 1
]
− Pr

[
AG1 ⇒ 1

]∣∣ ≤ Advrprp

ẼE
(B, 1) +Advrprp

ẼE
(C, 1) + Pr[E1]. (10)

We are left to bound the term Pr[E1]. We delay this calculation until we arrive at the gameG4. Letting
Ei correspond to the event of E occuring in the game Gi, we first bound the term |Pr[E1]− Pr[E4]|. By
a simple subtraction and addition of the same term Pr[Ei], for i ∈ {2, 3}, it holds that

|Pr[E1]− Pr[E4]| = |Pr[E1]− Pr[E2] + Pr[E2]− Pr[E3] + Pr[E3]− Pr[E4]|
≤ |Pr[E1]− Pr[E2]|+ |Pr[E2]− Pr[E3]|+ |Pr[E3]− Pr[E4]|.

Then, with the transfer of Pr[E4] to the right-hand side of the equation we get

Pr[E1] ≤ |Pr[E1]− Pr[E2]|+ |Pr[E2]− Pr[E3]|+ |Pr[E3]− Pr[E4]|+ Pr[E4].

The absolute value terms can be bounded by the adversary’s advantage in distinguishing the correspond-
ing games, effectively doubling its advantage in distinguishing the games G1 and G2, G2 and G3, and
G3 and G4. In the end, we are left to bound the term Pr[E4] in the game G4.
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G∗2, G3

Procedure Enc(N,H,M)

T ← 〈N,H〉
Z ← Func3(N,H,M)

if Z ∈ Q then

bad← true

C1‖C2 ←$ {0, 1}n+|M|

if Π̃−1[‘D’, T, Z,M ] 6= ⊥ then

(C1, C2)← Π̃−1[‘D’, T, Z,M ]

if Π̃−1[‘L’, T, Z,M ] 6= ⊥ then

(C1, C2)← Π̃−1[‘L’, T, Z,M ]

if Π̃−1[‘E’, T, Z,M ] 6= ⊥ then

(C1, C2)← Π̃−1[‘E’, T, Z,M ]

if Π̃−1[·, T, Z,M ] = ⊥ then

Π̃[‘E’, T, C1, C2]← (Z,M)

Π̃−1[‘E’, T, Z,M ]← (C1, C2)

Q ← Q∪ {Z}
C ← C ∪ {(N,H,C1, C2)}
return (C1, C2)

Procedure Dec(N,H,C1, C2)

if (N,H,C1, C2) ∈ C then

return �

T ← 〈N,H〉
Z′‖M ′ ←$ {0, 1}n+|C2|

if Π̃[‘E’, T, C1, C2] 6= ⊥ then

badD,2 ← true

(Z′,M ′)← Π̃[‘E’, T, C1, C2]

if Π̃[‘L’, T, C1, C2] 6= ⊥ then

(Z′,M ′)← Π̃[‘L’, T, C1, C2]

if Π̃[‘D’, T, C1, C2] 6= ⊥ then

(Z′,M ′)← Π̃[‘D’, T, C1, C2]

if Π̃[·, T, C1, C2] = ⊥ then

Π̃[‘D’, T, C1, C2]← (Z′,M ′)

Π̃−1[‘D’, T, Z′,M ′]← (C1, C2)

Q ← Q∪
{
Z′
}

Z ← Func3(N,H,M
′)

if Z′ = Z then

return M ′

else

return ⊥

Procedure Leak(N,H,C1, C2)

if (N,H,C1, C2) ∈ C then

return �

T ← 〈N,H〉
Z′‖M ′ ←$ {0, 1}n+|C2|

if Π̃[‘E’, T, C1, C2] 6= ⊥ then

badL,2 ← true

(Z′,M ′)← Π̃[‘E’, T, C1, C2]

if Π̃[‘D’, T, C1, C2] 6= ⊥ then

(Z′,M ′)← Π̃[‘D’, T, C1, C2]

if Π̃[‘L’, T, C1, C2] 6= ⊥ then

(Z′,M ′)← Π̃[‘L’, T, C1, C2]

if Π̃[·, T, C1, C2] = ⊥ then

Π̃[‘L’, T, C1, C2]← (Z′,M ′)

Π̃−1[‘L’, T, Z′,M ′]← (C1, C2)

Q ← Q∪
{
Z′
}

Z ← Func3(N,H,M
′)

if Z′ = Z then

return >
else

return M ′

Fig. 30: The games G∗2 and G3 for the proof of Theorem 3 (EtD scheme). G3 does not contain the boxed
code.

G2 : In the game G2, we apply Lemma 1 to make Π̃ be a tweakable two-sided random function instead
of an ideal cipher. In principle, we achieve that by removing the code that resamples values if they are in
the domain or range of Π̃ from G1. Let D be an adversary with access to either ideal cipher or tweakable
two-sided random function, both having the tweak space T and over the domain XL×XR. The adversary
D can simulate the games G1 and G2 for A. For the sake of proof simplicity, we briefly describe how
D works and do not give the details. The adversary D will construct the tables Π̃ and Π̃−1 in which it
will store the results of its own queries to the forward or backward oracle that it made while simulating
the oracles Enc, Dec, and Leak. In case the adversary A made a query such that the corresponding
entry in the table Π̃ or Π̃−1 already exists, D will not make a repeated query to its own oracles but just
read the needed result from either table Π̃ or Π̃−1. D will make at most qe queries to its forward oracle
and at most qd + ql queries to its backward oracle. Applying the result of Lemma 1, we can reduce A’s
distinguishing advantage between the games G1 and G2 to D’s distinguishing advantage between ideal
cipher and tweakable two-sided random function. Therefore, it holds

∣∣Pr[AG1 ⇒ 1
]
− Pr

[
AG2 ⇒ 1

]∣∣ ≤ (qe + qd + ql)
2

2n+m+1
. (11)

G3 : In the game G3, we intend to remove the dependency in the decryption and verification oracles on
the entries made in the encryption oracle. We start by transforming all the procedures in the game G2 to
obtain the game G∗2. The games G∗2 and G3 are given in Fig. 30. We explain the transformation for the
encryption oracle, and the same principle holds for the other two oracles. In G2 the encryption oracle
first checks if the entry for the triple (T,Z,M) is defined in the table Π̃−1, if it is not, the oracle samples
the ciphertext at random, and fills the corresponding entries in Π̃ and Π̃−1. After exiting the if branch,
it sets (C1, C2) to Π̃−1[·, T, Z,M ] which also covers the case if the entry for the triple (T,Z,M) in Π̃−1
was already defined before entering Enc oracle. In G∗2, the encryption oracle first samples the ciphertext,
and then overwrites it with Π̃−1[·, T, Z,M ] if the entry (for the corresponding ‘D’, ‘L’ or ‘E’) already
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exists. If the entry does not exist, the encryption oracle fills the appropriate entries in Π̃ and Π̃−1. The
encryption oracles behave the same in both games and deliver the identical result for any queried triple
(N,H,M). The analogous explanation holds for the decryption and leakage oracle. In addition, we add
the flags badL,2 and badD,2 during this code transformation transformation. The games G2 and G∗2 are
hence equivalent.

Going further, the games G∗2 and G3 are identical-until-bad games, where the game G3 does not con-
tain the boxed code from G∗2. Pr[badD,2] = 0, since otherwise (N,H,C1, C2) that “triggers”
Π̃[‘E’, T, C1, C2] would be a forward query from Enc, which is forbidden. Same holds for Pr[badL,2].
Thus, we have∣∣Pr[AG2 ⇒ 1

]
− Pr

[
AG3 ⇒ 1

]∣∣ = ∣∣∣Pr[AG∗2 ⇒ 1
]
− Pr

[
AG3 ⇒ 1

]∣∣∣ ≤ Pr[badD,2] + Pr[badL,2] = 0. (12)

G4 : In the game G4, we want to remove the possibility of a forgery happening in either the decryption
or leakage oracle. We add flags badD,3 and badL,3 to the game G3, and obtain an equivalent game
G∗3. We then remove the boxed code from G∗3 to arrive at the game G4. The games G∗3 and G4 are
given in Fig. 31. Using the identical-until-bad games approach, we bound the adversary’s advantage in
distinguishing between the games G∗3 and G4 with Pr[badD,3] + Pr[badL,3]. Let us denote with badiD,3
the event that the flag badD,3 was set during i-th query to Dec oracle.

Pr[badD,3] ≤
qd∑
i=1

badiD,3 =

qd∑
i=1

1

2n
=
qd
2n
,

since the probability that calculated Z is equal to a randomly generated Z ′ at the start of each Dec
query is exactly 1/2n. Using the same principle, we know Pr[badL,3] ≤ ql/2n. In total,∣∣Pr[AG3 ⇒ 1

]
− Pr

[
AG4 ⇒ 1

]∣∣ = ∣∣∣Pr[AG∗3 ⇒ 1
]
− Pr

[
AG4 ⇒ 1

]∣∣∣
≤ Pr[badD,3] + Pr[badL,3] ≤

qd + ql
2n

.
(13)

Finally, as promised, we bound the probability of the event E4 happening. In order to do that, we first
alter the process of adding elements to the set Q by adding a label ‘R’ or ‘F’ together with the element.
The label ‘R’ is added during the expansion of Q in the encryption procedure, while the label ‘F’ is
added during the expansion of Q in the decryption and leakage procedures. The label should help us
differentiate whether Z that would potentially trigger the flag bad is a repeat to the decipher algorithm
left input (labeled with ‘R’) or is a forward from encipher algorithm output to the decipher algorithm
left input (labeled with ‘F’). Consequently, we are able to split the set Q into two sets QR and QF, each
of which contains elements with label ‘R’ and ‘F’, respectively.

Let R4 be the event where, during some encryption oracle query, the flag bad is triggered by Z being
in QR. Similarly, let F4 be the event where, during some encryption oracle query, the flag bad is triggered
by Z being in QF. We can than look at the event E4 as being the union of R4 and F4. By the union
bound, it holds that

Pr[E4] ≤ Pr[R4] + Pr[F4].

We bound the probability of R4 happening by constructing an adversary Ecol that will play the collision
experiment for the function Func3. The adversary Ecol internally runs A and simulates the game G4 for
it while keeping a list of all the queries A makes. During the simulation of the encryption procedure, Ecol
looks at whether for a new query (N,H,M) a collision in the locally simulated set QR would occur. If yes,
the adversary Ecol aborts and outputs the corresponding colliding triples. Since the adversary A is nonce-
respecting, such collision would also be a winning pair for the collision experiment. Clearly, the Ecol’s
probability of finding a collision equals the probability of A making a valid encryption query (N,H,M)
such that Func3(N,H,M) is already in the set QR. The former (and thus the latter) is bounded by δ.

Pr[R4] = Pr[Ecol outputs a valid collision] ≤ δ.

Going further, we define an event F i4 as the event that F4 occurs within A’s first i encryption queries.
Then we can write event F4 as

F4 = F 1
4 ∨ (F 2

4 ∧ ¬F 1
4 ) ∨ · · · ∨ (F qe4 ∧ ¬F

qe−1
4 ).



Overloading the Nonce: RPRPs, NS-AEAD, and OR-Channels 41

G∗3, G4

Procedure Enc(N,H,M)

T ← 〈N,H〉
Z ← Func3(N,H,M)

if (Z, ·) ∈ Q then

bad← true

C1‖C2 ←$ {0, 1}n+|M|

if Π̃−1[‘D’, T, Z,M ] 6= ⊥ then

(C1, C2)← Π̃−1[‘D’, T, Z,M ]

if Π̃−1[‘L’, T, Z,M ] 6= ⊥ then

(C1, C2)← Π̃−1[‘L’, T, Z,M ]

if Π̃−1[‘E’, T, Z,M ] 6= ⊥ then

(C1, C2)← Π̃−1[‘E’, T, Z,M ]

if Π̃−1[·, T, Z,M ] = ⊥ then

Π̃[‘E’, T, C1, C2]← (Z,M)

Π̃−1[‘E’, T, Z,M ]← (C1, C2)

Q ← Q∪ {(Z, ‘R’)}
C ← C ∪ {(N,H,C1, C2)}
return (C1, C2)

Procedure Dec(N,H,C1, C2)

if (N,H,C1, C2) ∈ C then

return �

T ← 〈N,H〉
Z′‖M ′ ←$ {0, 1}n+|C2|

if Π̃[‘L’, T, C1, C2] 6= ⊥ then

(Z′,M ′)← Π̃[‘L’, T, C1, C2]

if Π̃[‘D’, T, C1, C2] 6= ⊥ then

(Z′,M ′)← Π̃[‘D’, T, C1, C2]

if Π̃[·, T, C1, C2] = ⊥ then

Π̃[‘D’, T, C1, C2]← (Z′,M ′)

Π̃−1[‘D’, T, Z′,M ′]← (C1, C2)

Q ← Q∪
{
(Z′, ‘F’)

}
Z ← Func3(N,H,M

′)

if Z′ = Z then

badD,3 ← true

return M ′

else

return ⊥

Procedure Leak(N,H,C1, C2)

if (N,H,C1, C2) ∈ C then

return �

T ← 〈N,H〉
Z′‖M ′ ←$ {0, 1}n+|C2|

if Π̃[‘D’, T, C1, C2] 6= ⊥ then

(Z′,M ′)← Π̃[‘D’, T, C1, C2]

if Π̃[‘L’, T, C1, C2] 6= ⊥ then

(Z′,M ′)← Π̃[‘L’, T, C1, C2]

if Π̃[·, T, C1, C2] = ⊥ then

Π̃[‘L’, T, C1, C2]← (Z′,M ′)

Π̃−1[‘L’, T, Z′,M ′]← (C1, C2)

Q ← Q∪
{
(Z′, ‘F’)

}
Z ← Func3(N,H,M

′)

if Z′ = Z then

badL,3 ← true

return >
else

return M ′

Fig. 31: The games G∗3 and G4 for the proof of Theorem 3 (EtD scheme). G4 does not contain the boxed
code.

By the union bound and the definition of conditional probability, it holds

Pr[F4] ≤
qe∑
i=1

Pr
[
F i4 ∧ ¬F i−14

]
=

qe∑
i=1

Pr
[
F i4
∣∣¬F i−14

]
Pr
[
¬F i−14

]
≤

qe∑
i=1

Pr
[
F i4
∣∣¬F i−14

]
.

The event in the final summand above corresponds to an event that for A’s i-th encryption query
(Ni, Hi,Mi), it happens that Func3(Ni, Hi,Mi) ∈ QF. Therefore, we expand the single summand
Pr
[
F i4
∣∣¬F i−14

]
over all elements Z ′j ∈ QF and get

Pr[F4] ≤
qe∑
i=1

∑
Z′j∈QF

Pr
[
Func3(Ni, Hi,Mi) = Z ′j

∣∣¬F i−14

]
.

To bound the term ∑
Z′j∈QF

Pr
[
Func3(Ni, Hi,Mi) = Z ′j

∣∣¬F i−14

]
we use the principle of deferred decision. We “fix” the value of Func3(Ni, Hi,Mi) and think of the values Z ′j
as being randomly sampled at the moment of check if Func3(Ni, Hi,Mi) ∈ QF. Conditioned on the event
F i−14 not happening, i−1 random values are excluded from the sample space of random variables Z ′j , since
in that case one knows that for none of the previous encryption queries, i.e. (Nk, Hk,Mk), k < i, the value
Func3(Nk, Hk,Mk) was contained in the set QF. Therefore, the probability that Func3(Ni, Hi,Mi) ∈ QF,
given the event F i−14 did not occur, is bounded by

qd + ql
2n − (i− 1)

,

as the size of the set QF at any point in the game is at most qd + ql. That leads us to the final bound
for the event F4 occurring,

Pr[F4] ≤
qe∑
i=1

qd + ql
2n − (i− 1)

≤
qe∑
i=1

qd + ql
2n − qe

=
qe(qd + ql)

2n − qe
≤ qe(qd + ql)

2n−1
,
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G∗4,G5

Procedure Enc(N,H,M)

T ← 〈N,H〉
Z ← Func3(N,H,M)

C1‖C2 ←$ {0, 1}n+|M|

if Π̃−1[‘D’, T, Z,M ] 6= ⊥ then

badE,2 ← true

(C1, C2)← Π̃−1[‘D’, T, Z,M ]

if Π̃−1[‘L’, T, Z,M ] 6= ⊥ then

badE,3 ← true

(C1, C2)← Π̃−1[‘L’, T, Z,M ]

if Π̃−1[‘E’, T, Z,M ] 6= ⊥ then

(C1, C2)← Π̃−1[‘E’, T, Z,M ]

if Π̃−1[·, T, Z,M ] = ⊥ then

Π̃[‘E’, T, C1, C2]← (Z,M)

Π̃−1[‘E’, T, Z,M ]← (C1, C2)

C ← C ∪ {(N,H,C1, C2)}
return (C1, C2)

Procedure Dec(N,H,C1, C2)

if (N,H,C1, C2) ∈ C then

return �

T ← 〈N,H〉
Z′‖M ′ ←$ {0, 1}n+|C2|

if Π̃[‘L’, T, C1, C2] 6= ⊥ then

(Z′,M ′)← Π̃[‘L’, T, C1, C2]

if Π̃[‘D’, T, C1, C2] 6= ⊥ then

(Z′,M ′)← Π̃[‘D’, T, C1, C2]

if Π̃[·, T, C1, C2] = ⊥ then

Π̃[‘D’, T, C1, C2]← (Z′,M ′)

Π̃−1[‘D’, T, Z′,M ′]← (C1, C2)

return ⊥

Procedure Leak(N,H,C1, C2)

if (N,H,C1, C2) ∈ C then

return �

T ← 〈N,H〉
Z′‖M ′ ←$ {0, 1}n+|C2|

if Π̃[‘D’, T, C1, C2] 6= ⊥ then

(Z′,M ′)← Π̃[‘D’, T, C1, C2]

if Π̃[‘L’, T, C1, C2] 6= ⊥ then

(Z′,M ′)← Π̃[‘L’, T, C1, C2]

if Π̃[·, T, C1, C2] = ⊥ then

Π̃[‘L’, T, C1, C2]← (Z′,M ′)

Π̃−1[‘L’, T, Z′,M ′]← (C1, C2)

return M ′

Fig. 32: The games G∗4 and G5 for the proof of Theorem 3 (EtD scheme). G5 does not contain the boxed
code.

under the assumption qe ≤ 2n−1.
Finally, we can bound the probability of E4 happening. It holds that

Pr[E4] ≤ Pr[R4] + Pr[F4] ≤ δ +
qe(qd + ql)

2n−1
.

Together with the bounds in (11), (12) and (13), we arrive at the final bound for Pr[E1],

Pr[E1] ≤
(qe + qd + ql)

2

2n+m+1
+
qd + ql
2n

+ δ +
qe(qd + ql)

2n−1
. (14)

G5 : In the game G5, we intend to remove the dependency in the encryption oracle on the entries made
in the decryption and verification oracles. Towards this goal, we add the flags badE,2 and badE,3 to the
game G4 to obtain an equivalent game G∗4. In the hop to G5, we remove the boxed code from G∗4. The
games G∗4 and G5 are given in Fig. 32. Using the identical-until-bad games paradigm, we bound the
adversary’s advantage in distinguishing the games G∗4 and G5 with Pr[badE,2] + Pr[badE,3].

Suppose Π̃−1[‘D’, T, Z ′,M ′] was set in some query to the decryption oracle. The pair (N,H) that the
adversary submits to the decryption oracle in that query uniquely determines T . If A aims to “trigger”
the flag badE,2, it needs to ask (N,H,M) to the encryption oracle, for some M from the message space.
Moreover, the left part Z would have to be equal to the randomly generated Z ′ in that previous query to
the decryption oracle. In addition, the adversary may try to increase its chances of guessing by making
multiple decryption queries with the same nonce and the header, which would lead to multiple defined
values Π̃−1[‘D’, T, ·, ·]. Since only unique nonces are queried to the encryption oracle, for all defined
entries Π̃−1[‘D’, T, ·, ·] the adversary A has a single attempt to “guess” one of them. Therefore, it follows
that

Pr[badE,2] ≤
qe∑
i=1

qd
2n

=
qeqd
2n

,
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G6

Procedure Enc(N,H,M)

T ← 〈N,H〉
Z ← Func3(N,H,M)

(C1, C2)← {0, 1}n+|M|

C ← C ∪ {(N,H,C1, C2)}
return (C1, C2)

Procedure Dec(N,H,C1, C2)

if (N,H,C1, C2) ∈ C then

return �

return ⊥

Procedure Leak(N,H,C1, C2)

if (N,H,C1, C2) ∈ C then

return �

Z′‖M ′ ←$ {0, 1}n+|C2|

return M ′

Fig. 33: The game G6 for the proof of Theorem 3 (EtD scheme).

where 1/2n is the probability of Z being equal to the randomly generated5 Z ′ in a previous query to
Dec, and the qd in the numerator is the bound on the maximal number of Z ′, for which Π̃−1[‘D’, T, Z ′, ·]
was defined. Similarly, it holds that Pr[badE,3] ≤ qeql

2n . In total,

∣∣Pr[AG4 ⇒ 1
]
− Pr

[
AG5 ⇒ 1

]∣∣ = ∣∣∣Pr[AG∗4 ⇒ 1
]
− Pr

[
AG5 ⇒ 1

]∣∣∣
≤ Pr[badE,2] + Pr[badE,3] ≤

qe(qd + ql)

2n
.

(15)

G6 : This is the ideal world of the RUPAE game. We make a couple of changes in the game G5 to obtain
G6 and then argue the games are equivalent. The game G6 is given in Fig. 33.

The encryption oracle is reformatted such that it always returns random bits. In the game G5, the
encryption oracle is not reading from the table entries made in Dec and Leak. It is only relying on the
entries made during Enc. Moreover, the Dec and Leak oracles are not accessing entries in Π̃ or Π̃−1
made in the encryption oracle. Thus, we can also remove the writing of the sampled ciphertext (C1, C2)

to the Π̃ and Π̃−1 tables. Note that Enc does not even need to check if Π̃−1[‘E’, T, Z,M ] has been
defined, as the assumption is the adversary always submits fresh nonce to the encryption oracle, and by
the injective property of 〈·, ·〉 and Func3 it leads to a fresh triple (T,Z,M). Hence, it will never happen
that Π̃−1[‘E’, T, Z,M ] was already defined. When the redundant code is removed, the encryption oracle
simply returns random bits.

The leakage oracle needs to be an independent simulator, so in the game hop from G5 to G6, we
need to remove the reading from table Π̃[‘D’, ·, ·, ·] in Leak oracle. In the case Π̃[‘D’, T, C1, C2] is already
defined, Leak needs to return M ′ that was sampled and written to the table in the decryption oracle.
Anyhow, theM ′ sampled in Dec is a random bit string, not known to the adversary, since the decryption
oracle in the game G5 does not leak any information. If we remove that part of code from Leak and
rewrite the Leak oracle as just always returning random bits, the adversary’s view does not change, as
it will always get randomly sampled M ′, both in G5 and G6. The leakage oracle also does not need to
read from Π̃[‘L’, ·, ·, ·], since it does not make repeat queries and thus is sure that Π̃[‘L’, T, C1, C2] has
not been defined so far. As the decryption oracle also does not need to read from Π̃[‘L’, ·, ·, ·] (see next
paragraph), we can remove the writing to Π̃[‘L’, ·, ·, ·]. So we come to the final form of leakage oracle
code, now an independent leakage simulator S.

In the decryption oracle, we can remove the reading from Π̃[‘L’, ·, ·, ·], as the adversary always returns
⊥, and reading from Π̃[‘L’, ·, ·, ·] does not influence oracle’s answer. There is also no need to either read
from Π̃[‘D’, ·, ·, ·] or to write to it. We showed the game G5 is equivalent to the game G6, the ideal world
of the RUPAE game. It holds that∣∣Pr[AG5 ⇒ 1

]
− Pr

[
AG6 ⇒ 1

]∣∣ = 0. (16)

Combining the inequalities (10), (11), (12), (13), (14), (15) and (16), the theorem bound is achieved.
ut

5 We again use the principle of deferred decision, and think of value Z′ being generated after the value Z has
been “fixed”.
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Game G0

K ←$K
C ← ∅

b
′ ← AEnc,Ver

return b
′

Procedure Enc(N,H,M)

(C1, C2)← ẼEK(H,N‖bMcn−t, dMel−n+t)

C ← C ∪ {(N,H,C1, C2)}
return (C1, C2)

Procedure Ver(W , H,C1, C2)

if C ∩ {(N,H,C1, C2) | N ∈W } 6= ∅ then
return �

(XL, XR)← ẼE
−1

K (H,C1, C2)

N ′ ← bXLct
v ← ⊥
if N ′ ∈W then

v ← >
return v

Fig. 34: The game G0 for the proof of Theorem 4 (AwN scheme). l is the length of the message M .

D Appendix

D.1 Proof of Theorem 4 (AwN Construction)

Proof. We prove the MRAE security of the AwN construction by using the following sequence of games.

G0 : This is the real world of the MRAE game and it is given in Fig. 34.

G1 : In the game G1, we replace the tweakable cipher ẼE with a lazily-sampled ideal cipher Π̃ in the
encryption oracle and change the Ver oracle always to return ⊥. The game G1 is given in Fig. 35.

For any adversary A distinguishing between the games G0 and G1 we construct an RPRP adversary
B, that runs A and simulates G0 and G1 for A. The adversary B works as follows. On A’s encryption
oracle query (N,H,M), the adversary B asks its enciphering oracle with the corresponding triple and re-
turns the result back to B, while also updating the set C. On A’s verification oracle query (W , H,C1, C2),
B first tests, for all N ∈ W , whether a tuple (N,H,C1, C2) is in C. If it is, B returns �. Otherwise, it
goes on to construct a set

W ′ =
{
X‖Y | X ∈W , Y ∈ {0, 1}n−t

}
.

Finally, the adversary B makes a guess oracle query (H,C1, C2,W
′). If Gu oracle returns true B returns

> back to A, else B returns ⊥ to A. Observe that the size of the set W ′ the adversary B passes to its
Gu oracle will be at most w2n−t.

If B interacts with the real world of the RPRP game, it simulates the game G0 to A. Otherwise, it
simulates the game G1. We note that the verification oracle behaviour in the game G0 corresponds to
the guess oracle code in the real world of RPRP game. It follows that∣∣Pr[AG0 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]∣∣ ≤ Advrprp

ẼE
(B, v). (17)

G2 : This is the ideal world of the MRAE game, and it is given in Fig. 35. We obtain the game G2 by
removing the boxed code from the game G1. By removing the boxed code, the ciphertext pair (C1, C2)
returned by the encryption oracle in the game G2 will always be sampled uniformly at random.

We bound A’s distinguishing advantage by introducing an event bad and utilizing the fundamental
lemma of game playing. The event bad is an event that a collision in the range of a lazily-sampled ideal
cipher Π̃[T, ·, ·] occurs. It then holds that

∣∣Pr[AG1 ⇒ 1
]
− Pr

[
AG2 ⇒ 1

]∣∣ ≤ Pr[bad] ≤ q2e
2n+m+1

, (18)

with the bound being a birthday bound on a variable-length domain of size at least n +m. Finally, by
combining the inequalities (17) and (18) one obtains the theorem bound. ut
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Game G1, G2

K ←$K
C ← ∅

b
′ ← AEnc,Ver

return b
′

Procedure Enc(N,H,M)

if Π̃[H,N‖bMcn−t, dMel−n+t] = ⊥ then

C1‖C2 ←$ {0, 1}t+|M|

if Π̃−1[H,C1, C2] 6= ⊥ then

bad← true

S ← rng(Π̃[H, ·, ·])

C1‖C2 ←$ {0, 1}t+|M| \ S

Π̃[H,N‖bMcn−t, dMel−n+t]← (C1, C2)

Π̃−1[H,C1, C2]← (N‖bMcn−t, dMel−n+t)

(C1, C2)← Π̃[H,N‖bMcn−t, dMel−n+t]

C ← C ∪ {(N,H,C1, C2)}
return (C1, C2)

Procedure Ver(W , H,C1, C2)

if C ∩ {(N,H,C1, C2) | N ∈W } 6= ∅ then
return �

return ⊥

Fig. 35: The games G1 and G2 for the proof of Theorem 4 (AwN scheme). G2 does not contain the boxed
code. l is the length of the message M .

E Appendix

E.1 Proof of Theorem 5 (Nonce-set Channel Construction Correctness)

Proof. We start by assuming the contrapositive is true. If the channel ChNS is not correct, then either
the underlying nonce-set AEAD NSE is not correct, or the underlying nonce-set-processing scheme does
not faithfully reproduce the support predicate supp. Suppose the adversary A successfully breaks the
correctness of the channel, and without loss of generality, assume A queries Recv oracle only with
indices j that correspond to the supported ciphertexts. We then show the contrapositive by introducing
two “complementary” reductions. The adversary B, being a reduction to the faithfulness of NSP, will run
A and simulate the correctness game to it. In this case, we show that under the assumption NSE is correct,
the adversary B breaks faithfulness of NSP when A wins in the channel correctness game. The other case
is the reduction to the correctness of NSE. In this case, we argue that if NSP faithfully reproduces the
support predicate supp, and that the adversary A wins in the channel correctness game, the nonce-set
scheme NSE would not be correct.
Reduction to the faithfulness of NSP: The adversary B needs to simulate CORR game (Fig. 17) to A. To
do that, it will keep track of all the variables and sets appearing in the correctness game. In addition,
the adversary B samples a random key K for the NSE scheme and constructs an empty list NS that will
represent a local copy of the same set appearing in the faithfulness game.

On A’s Send(A,M) oracle query, B queries its oracle F-Send to receive the nonce N . Then it
encrypts (N,A,M) under the key K to obtain C. It extends the list T with tuple (mn,A,M,C) and the
list NS with N , and increments mn. In the end, it returns C back to A.

On A’s Recv(j) oracle query, B fetches corresponding (mn,A,M,C) from the list T , sets the nonce
N to be NS [j], and M ′ to be M . It then queries F-Recv(N) to obtain (strr,mn′) back. The adversary
B then returns (mn′,M ′) back to A. If the adversary A triggered the win flag in this Recv(j) query it
means that mn′ 6= j (since M = M ′ by construction). By inspecting the code of F-Recv(N) oracle, it
can be seen that, in this case, a winning condition in the faithfulness game would be triggered as well.
The faithfulness game calls the NonceSetPolicy algorithm and gets W back. If the queried nonce is not
in W , that constitutes a win since we know the nonce will be supported. Otherwise, queried nonce is in
W , and StUpdate returns mn′. This mn′ is not equal to j in B’s correctness game simulation, meaning
that in the F-Recv oracle, the condition N 6= NS [mn′] would be triggered. That conclusion follows
from the fact that N = NS [j] and j 6= mn′, and the property of nonce-set-processing scheme algorithm
NonceExtract always outputting unique nonces (thus nonces in NS are all unique). Now, assume the
adversary A did not trigger the win flag in this Recv(j) query. Then B correctly simulates the response
for A, that is, returns the correct (mn′,M). This follows from the fact that N ∈W , and with assumed
NSE correctness, we know Recv algorithm would output (mn′,M) for a ciphertext that was encrypted
under the nonce NS [j] and message M .
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G0, G∗0

(sts, str)←$ StInit()

K ←$ {0, 1}k

CS ← DCR ← [ ], [ ]

b← ASend,Recv

return b

Procedure Send(A,M)

(sts, N)← NonceExtract(sts)
if N = ⊥ then

return ⊥
C ← Enc(K,N,A,M)

R[A,C]← (N,M)

CS ← CS‖C
return C

Procedure Recv(A,C)

W ← NonceSetPolicy(str)
d← supp(CS ,DCR, C)

(N,M)← Dec(K,W , A, C)

if R[A,C] 6= ⊥ then // genuine

(N ′,M ′)← R[A,C]

if N ′ ∈W then

(N,M)← (N ′,M ′)

if N ′ 6∈W then

(N,M)← Dec(K,W , A, C)

if R[A,C] = ⊥ then // malicious

(N,M)← Dec(K,W , A, C)

if (N,M) = (⊥,⊥) then
mn← ⊥

else

(str,mn)← StUpdate(str, N)

if d = true then

(mn,M)← (⊥,⊥)
DCR ← DCR‖(d, C)

return (mn,M)

Fig. 36: The games G0 and G∗0 for the proof of Theorem 6. G0 does not contain the solid-line boxed
code, and G∗0 does not contain the dashed-line boxed code.

Reduction to the correctness of NSE: Under the assumption that NSP faithfully reproduces the support
predicate supp, we know that if an adversary A wins in correctness game, it must be that for some query
Recv(j), it happened that M ′ 6=M (otherwise mn′ 6= mn, and that reduces to breaking faithfulness, as
we showed previously). The received message M ′ is part of the pair (N ′,M ′) that was output by the Dec
algorithm on an input (K,W , A,C), where W was the output of NonceSetPolicy algorithm. Moreover, it
holds that N ′ = NS [j] and N ′ ∈W (otherwise this would again reduce to breaking faithfulness). Since
C was encrypted with the nonce NS [j], we would have that NSE is not correct since it outputs a M ′ that
was not encrypted initially. ut

E.2 Proof of Theorem 6 (Nonce-set Channel Construction Security)

Proof. We prove the bound using the game hopping technique, and show the existence of a simulator S
by constructing it through the course of the proof.

G0 : This is the game INT-SIM-CCA with the bit b set to 0 (real world), and the code of channel
construction algorithms (Send and Recv) embedded into it. Right away, we make a small change in Recv
oracle and move the support predicate calculation to the second line. The game is given in Fig. 36. We
make changes to the game in order to obtain G∗0, given in same Fig.. We will use the table R to track
which (N,A,M) triples were queried to the encryption algorithm and what the result was. We call the
pairs (A,C) in R genuine. Otherwise, they are malicious. The games are identical. That is evident in
Send oracle. For Recv oracle, suppose the queried pair (A,C) is genuine. If the NonceSetPolicy algorithm
returns a nonce-set containing the nonce C was encrypted with, by the correctness of the NSE scheme,
the decrypted message will be exactly M ′. In this case, we see both games will continue the execution
with the same (N ′,M ′). If the nonce-set does not contain the nonce C was encrypted with, or if the
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(A,C) is a malicious pair, the result (N,M) will be a result of the nonce-set decryption algorithm in
both G0 and G∗0.

G1 : In the game G1, we replace the real nonce-set oracles with the ideal ones. We reduce A’s distin-
guishing advantage to the nsAE security of NSE. Let B be an adversary playing nsAE game of NSE. The
adversary B runs A and simulates the games G∗0 and G1 to it. The adversary B will locally generate
sending sender and receiver states sts and str, that it needs in order to simulate the games for A. It
will also track the sets CS and DCR to be able to calculate support predicate decisions itself. When an
encryption or decryption oracle query in G∗0 or G1 is due, B calls its oracles. If B is playing the real
game, it correctly simulates the game G∗0. Otherwise, it correctly simulates the game G1. Therefore, it
holds that ∣∣∣Pr[AG∗0 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]∣∣∣ ≤ Advnsae
NSE (B). (19)

G2 : In the game G2, we remove the possibility of collisions in ciphertexts (output by Send oracle)
happening. We arrange this in order to have unique ciphertexts in the set CS . That way, in the next
game hop where we construct a reduction to the NSP faithfulness, we can have an equivalency between
the support predicate in FAITHFUL game, that has nonces as unique identifiers, and support predicate
in games G2 and G3, that has ciphertexts as unique identifiers.

Therefore, in the Send oracle, we resample the ciphertext if it appeared already. The distinguishing
bound between G1 and G2 then reduces to a birthday bound. It holds that

∣∣Pr[AG1 ⇒ 1
]
− Pr

[
AG2 ⇒ 1

]∣∣ ≤ qs(qs − 1)

2`+1
, (20)

where ` is the length of the shortest ciphertext C in the channel’s ciphertext space.

G3 : In order to arrive at the game G3, we first rewrite part of the code in Recv oracle in G2 to get the
equivalent game G∗2. We expand the check if N ′ ∈W to two separate subcases, one where the support
predicate decision was false and the other where the support predicate decision was true. The game
G∗2, together with G3, is given in Fig. 37. The difference between G∗2 and G3 occurs when for a genuine
ciphertext, N ′ ∈W and d = false. In this case, we set N and M to ⊥ in G3. We construct an adversary
D, playing the faithfulness game of NSP, that runs A and simulates the games G∗2 and G3 to it. D works
as follows.

On A’s Send(A,M) query, it queries F-Send oracle to receive the nonce N . Then it continues
executing the rest of the code in Send oracle and returns the resulting C to A.

On A’s Recv(A,C) query, D executes the first two lines of code in the games to receive the nonce
set W and support predicate decision d. Then it checks if an entry in the table R[A,C] exists. Here we
differentiate two possible cases:

1. R[A,C] 6= ⊥. The adversary D reads (N ′,M ′) from the table R. If N ′ is not in the set W , D assigns
(⊥,⊥) to (N,M). Otherwise, the adversary D queries F-Recv(N ′) and receives a pair (str,mn) back.
If mn = ⊥, it assigns (⊥,⊥) to (N,M), else, it assigns (N ′,M ′) to (N,M). Finally, the adversary D
checks if the flag bad would be set6. If it would D aborts, otherwise it continues.

2. R[A,C] = ⊥. The adversary D assigns (⊥,⊥) to the pair (N,M).

From there on, D finishes executing the Recv oracle code in the games as specified.
We claim the adversary D simulates the games for A correctly unless the event bad happens. By

inspecting the code of Recv oracle, and the description of the adversary D, it can be seen that the
support predicates in FAITHFUL game and the games G∗2 and G3 will be in-sync during the whole
simulation. In addition, the channel states will be in-sync as well. We see that the games G∗2 and G3 are
identical-until-bad hence it holds that∣∣∣Pr[AG∗2 ⇒ 1

]
− Pr

[
AG3 ⇒ 1

]∣∣∣ ≤ Pr[bad].

If the event bad happens on A’s receiving query to D, it means D triggered the win condition in its own
FAITHFUL game with the corresponding query to F-Recv. The flag bad means the nonce set contained
6 By checking if N ′ ∈W and if d = false.
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G∗2, G3

(sts, str)←$StInit()

K ←$ {0, 1}k

CS ← DCR ← [ ]

b← ASend,Recv

return b

Procedure Send(A,M)

(sts, N)← NonceExtract(sts)
if N = ⊥ then

return ⊥
C ←$ {0, 1}clen(|N|,|A|,|M|)

if C ∈ CS then

S ←
{
C′ | C′ ∈ CS

}
C ←$ {0, 1}clen(|N|,|A|,|M|) \ S
R[A,C]← (N,M)

CS ← CS‖C
return C

Procedure Recv(A,C)

W ← NonceSetPolicy(str)
d← supp(CS ,DCR, C)

if R[A,C] 6= ⊥ then // genuine

(N ′,M ′)←R[A,C]

if N ′ ∈W ∧ d = false then

bad← true

(N,M)← (N ′,M ′)

(N,M)← (⊥,⊥)

if N ′ ∈W ∧ d = true then

(N,M)← (N ′,M ′)

if N ′ 6∈W then

(N,M)← (⊥,⊥)
if R[A,C] = ⊥ then // malicious

(N,M)← (⊥,⊥)
if (N,M) = (⊥,⊥) then
mn← ⊥

else

(str,mn)← StUpdate(str, N)

if d = true then

(mn,M)← (⊥,⊥)
DCR ← DCR‖(d, C)

return (mn,M)

Fig. 37: The games G∗2 and G3 for the proof of Theorem 6. G∗2 does not contain the solid-line boxed
code, and G3 does not contain the dashed-line boxed code.

the nonce used to encrypt the queried ciphertext, but the ciphertext was not supported. Furthermore,
since the support predicates are in-sync, the condition

d = false ∧ N ′ ∈W

would evaluate to true, which means the win flag in FAITHFUL would be set to true. Therefore, it holds
that ∣∣Pr[AG2 ⇒ 1

]
− Pr

[
AG3 ⇒ 1

]∣∣ ≤ Pr[bad] = Adv
faithful(supp)
NSP (D). (21)

G4 : This is the game INT-SIM-CCA with the bit set to 0 (ideal world). In comparison to the game G3,
we make a change in Send oracle by “switching back” to sampling random ciphertexts—the oracle does
not resample C anymore if it already appeared in CS . It follows that∣∣Pr[AG3 ⇒ 1

]
− Pr

[
AG4 ⇒ 1

]∣∣ ≤ qs(qs − 1)

2`+1
. (22)

We can then replace the Send oracle with a simple stateless simulator S defined as follows.

Simulator S(A, p)

s← clen(t, |A|, p)
C ←$ {0, 1}s

return C

The clen is the ciphertext length function of NSE, t is the fixed length of nonces from the nonce space,
and p is the message length. The Recv oracle is always returning (⊥,⊥), same as the Recv oracle in the
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ideal world of INT-SIM-CCA. Therefore, the game G4 is equivalent to the ideal world of INT-SIM-CCA
game.

Combining the inequalities (19), (20), (21) and (22) we achieve the bound in the theorem statement.
ut
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