
Public-Coin 3-Round Zero-Knowledge from
Learning with Errors and Keyless Multi-Collision-Resistant Hash

Susumu Kiyoshima

NTT Research
susumu.kiyoshima@ntt-research.com

June 23, 2022

Abstract

We construct a public-coin 3-round zero-knowledge argument for NP assuming (i) the sub-exponential
hardness of the learning with errors (LWE) problem and (ii) the existence of keyless multi-collision-resistant
hash functions against slightly super-polynomial-time adversaries. These assumptions are almost identical
to those that were used recently to obtain a private-coin 3-round zero-knowledge argument [Bitansky et
al., STOC 2018]. (The difference is that we assume sub-exponential hardness instead of quasi-polynomial
hardness for the LWE problem.)

This article is a full version of the following article: Public-Coin 3-Round Zero-Knowledge from Learning with Errors and Keyless
Multi-Collision-Resistant Hash, CRYPTO 2022, ©IACR 2022.

1

Contents
1 Introduction 3

2 Overview of Our Techniques 3
2.1 Techniques of Bitansky et al. [BKP18] . 4
2.2 Our Techniques . 5

3 Preliminaries 7
3.1 Notations . 7
3.2 (Keyed) Hash Functions . 7
3.3 Keyless Multi-Collision Resistant Hash Functions . 8
3.4 Zero-Knowledge Arguments . 8
3.5 Weak Memory Delegations . 9
3.6 Oracle Memory Delegations . 10
3.7 Low-Degree Extensions . 11
3.8 Circuits . 12

4 Public-Coin Tree-Hash Oracle Memory Delegation 12
4.1 Public-Coin Weak Tree-Hash Oracle Memory Delegation . 12
4.2 Proof of Lemma 1 . 17

5 Public-Coin Oracle Memory Delegation 21
5.1 Preliminary: RAM delegation . 21
5.2 Proof of Lemma 6 . 23

6 Public-Coin Weak Memory Delegation 27
6.1 Preliminary: Multi-Collision-Resistant Hash with Local Opening 28
6.2 Proof of Lemma 7 . 29

7 Public-coin 3-round Zero-Knowledge Argument 32
7.1 Preliminary: Witness Indistinguishability with First-Message-Dependent Instances 33
7.2 Proof of Theorem 3 . 34

A Additional Preliminaries 40
A.1 The Learning with Errors (LWE) Assumption . 40
A.2 The Fiat–Shamir Transformation . 40
A.3 Algorithms for Low-Degree Polynomials . 40

B Proof of Corollary 1 43

C Proof of Lemma 5 44
C.1 Circuit C . 44
C.2 Parameters (H,m) . 44
C.3 Functions {ãddi, m̃ulti}i∈[D] . 44
C.4 GKR Compatibility . 48

2

1 Introduction
This paper concerns computational zero-knowledge (ZK) arguments, i.e., ZK proofs where soundness and zero-
knowledge are both defined against polynomial-time adversaries.

A central research topic about ZK arguments is 3-round ZK arguments, which are optimal in terms of round
complexity due to the impossibility of 2-round ZK arguments [GO94]. Obtaining 3-round ZK arguments is
notoriously hard, and obtaining 3-round ZK arguments with black-box simulations is known to be impossible
[GK96]. Until recently, 3-round ZK arguments had been obtained only under unfalsifiable knowledge-type
assumptions (e.g., [HT98, BP04, CD08, BCC+17, BEP20]) or under weak security definitions (e.g., [Pas03,
BCPR14, BBK+16, JKKR17, KS17, BGJ+18, BL18, BKP19, Den20]1).

Recently, Bitansky, Kalai, and Paneth [BKP18] obtained a 3-round ZK argument by relying on super-
polynomial hardness of the learning with errors (LWE) assumption [Reg09] and keyless multi-collision-resistant
hash functions.2 Multi-collision resistance [BDRV18, BKP18, KNY18] is a natural relaxation of the standard
collision resistance. In the standard keyed setting, K-collision resistance (K ∈ N) of a hash function family
H is defined by requiring that for a random hash function h ∈ H, any polynomial-time adversary cannot find a
K-collision, i.e., any (x1, . . . , xK) such that h(x1) = · · · = h(xK). In the keyless setting, multi-collision resis-
tance is defined by allowingK to grow with the adversary’s size. That is, K-collision resistance of a keyless hash
function h is defined by requiring that any polynomial-time adversary with any polynomial-size non-uniform
advice z cannot find a K(|z|)-collision. It is unknown whether keyless multi-collision-resistant hash functions
can be obtained from more standard cryptographic primitives (including keyed collision-resistant hash function
families), but they have a simple falsifiable definition. Recently, they were used to obtain new results about, e.g.,
ZK proofs/arguments [BKP18, BL18, BP19], succinct arguments [BKP18], and non-malleable commitments
[BL18]. (See [BKP18] for more about keyless multi-collision-resistant hash functions.)

Given the result of Bitansky et al. [BKP18], a natural question is whether we can obtain public-coin 3-round
ZK arguments by relying on the LWE assumption and keyless multi-collision-resistant hash functions. Recall
that an interactive argument is called public coin if (i) the verifier only sends the outcome of a coin toss in each
round and (ii) the final output of the verifier is deterministically computed from the transcript. (Well-known ex-
amples of public-coin ZK proofs/arguments include the classical ZK proofs of Goldreich, Micali, and Wigderson
[GMW91] and Blum [Blu86].) In addition to being simple, public-coin ZK arguments have useful properties
such as (i) they are publicly verifiable, i.e., verifying a proof does not require any secret information, and (ii)
they can be used to achieve additional security such as leakage-soundness [GJS11] and resettable soundness
[BGGL01]. The 3-round ZK argument of Bitansky et al. [BKP18] (as well as the subsequent 3-round statistical
ZK argument of Bitansky and Paneth [BP19]) is not public coin.

Our result. In this paper, we give a positive result about public-coin 3-round ZK arguments.

Main Theorem (informal). Assume the existence of polynomially compressing keyless hash functions3 that
are multi-collision resistant against slightly super-polynomial-time (e.g., quasi-polynomial-time) adversaries,
and additionally assume the sub-exponential hardness of the LWE assumption. Then, there exists a public-coin
3-round zero-knowledge argument for NP.

(The formal description of this theorem is given in Section 7 as Theorem 3.) The assumptions that we use
are similar to those that are used by Bitansky et al. [BKP18] for their (private-coin) 3-round ZK argument.
The difference is that we assume the sub-exponential hardness of the LWE assumption whereas Bitansky et al.
[BKP18] assume the quasi-polynomial hardness of the LWE assumption.

2 Overview of Our Techniques
Our starting point is the (private-coin) 3-round ZK argument of Bitansky, Kalai, and Paneth [BKP18]. Thus,
we first recall their techniques before explaining our techniques.

1Some of these works constructed even 2-round or non-interactive ZK arguments under weak security definitions.
2More precisely, they obtained it by relying on various cryptographic primitives that can be based on these assumptions.
3e.g., those that hash length-λ2 strings to length-λ strings.

3

2.1 Techniques of Bitansky et al. [BKP18]
The main component of the 3-round ZK argument of Bitansky et al. [BKP18] is a memory delegation scheme
[CKLR11, BBK+16]. In the setting considered in [BBK+16, BKP18], memory delegation schemes proceed in
3 rounds.

1. The prover sends the verifier a short digest of a long memory string. (Importantly, the digest is created
non-interactively.)

2. The verifier chooses a computation to be executed on the memory, and sends the prover the description
of the computation (e.g., a Turing machine) and a challenge string.

3. The prover responds with the computation output and a proof of correctness.

It is required that the verifier runs in polynomial time even when the length of the memory (and the running time
of the computation to be evaluated on it) is slightly super-polynomial, such as λlog λ for the security parameter
λ. For security, the soundness notion given by Bitansky et al. [BKP18] requires that no prover can generate
an accepting proof for a randomly sampled output (which is sampled after a digest and a computation to be
evaluated on the memory are fixed).

Bitansky et al. [BKP18] obtained a memory delegation scheme by using a keyless multi-collision-resistant
hash function and the 2-round delegation scheme of Kalai, Raz, and Rothblum [KRR14] (the KRR delegating
scheme in short). Specifically, their scheme was obtained based on the following two observations.

1. The first observation is that the KRR delegating scheme can be converted to a memory delegation scheme
if there exists a keyless multi-collision-resistant hash function with a local opening property (i.e., a prop-
erty that any location of a hashed string can be opened without revealing the entire string). In the KRR
delegating scheme, for an input x and a Turing machine M , the verifier sends a challenge string to the
prover, and the prover responds with the output y := M(x) and a proof of the correctness of y. A nice
property of the KRR delegating scheme is that soundness holds even when the verifier only has oracle ac-
cess to (an encoding of) the input x, where the verifier only makes a small number of non-adaptive queries.
Given this property, the KRR delegation scheme can be converted to a memory delegation scheme as fol-
lows. The digest is created by hashing a memory with the keyless hash function. The verifier sends a
challenge string and input queries of the KRR delegation scheme.4 The prover responds with the com-
putation output y, a proof of the KRR delegation scheme for the correctness of y, and local opening of
the queried locations of the memory. Intuitively, if local opening of the keyless hash function satisfies
a sufficiently strong multi-collision-resistant property, the prover can only create accepting proofs for a
small number of values of y. Thus, the prover cannot generate an accepting proof for a randomly chosen
value of y.

2. The second observation is that any multi-collision-resistant hash functions can be converted to those that
have a local opening property. It should be noted that the standard tree-hashing technique cannot be used
for this purpose. Indeed, in the case of multi-collision resistance, an adversary might be able to open
each location to two values, and thus, it might be able to open λ locations to 2λ combinations of such
values. The conversion given in Bitansky et al. [BKP18] yields a multi-collision resistant hash function
for long inputs while avoiding this exponential deterioration of multi-collision resistance. (Details about
this conversion, including the formal definition of multi-collision resistance of local opening, are not
important to this overview.) A notable limitation is that when multiple locations are opened, they must
be opened simultaneously so that the above “mixed-and-match” attack can be prevented. That is, opening
each location individually as in the case of the standard tree-hashing is not allowed. Fortunately, this
limitation does not cause a problem for the current purpose since the KRR delegation scheme only makes
non-adaptive input queries.

The memory delegation scheme of Bitansky et al. [BKP18] is private coin, and this is the reason why their
3-round ZK argument is private coin. Specifically, their 3-round ZK argument is obtained from a memory

4In Bitansky et al. [BKP18], the input queries need to be encrypted by an FHE scheme so that the prover cannot learn the input
queries. We ignite this detail in this overview.

4

delegation scheme by following the idea of an earlier work [BBK+16] (roughly speaking, the idea is to reduce
the round complexity of the public-coin ZK argument of Barak [Bar01] by using a memory delegation scheme),
and if the underlying memory delegation scheme is public coin, this step can be simplified straightforwardly and
yields a public-coin 3-round ZK argument.

2.2 Our Techniques
We obtain a public-coin memory delegation scheme (and as a result a public-coin 3-round ZK argument) by using
recent results about succinct non-interactive arguments (SNARGs) for deterministic computations [JKKZ21,
HLR21b, CJJ22].

Failed attempt #1. First, let us consider using the result of Choudhuri, Jain, and Jin [CJJ22] that gives a
SNARG for RAM computations. When their scheme is viewed as a public-coin 2-round RAM delegation
scheme,5 a memory DB is tree-hashed to a digest by using a keyed collision-resistant hash function (the key
is sampled by the verifier), the verifier chooses a RAM machine R and a challenge string, and the prover re-
sponds with the output y = RDB and a proof of correctness of y. Choudhuri et al. [CJJ22] showed that their
scheme works for all polynomial-time RAM computations under the polynomial hardness of the LWE assump-
tion, and their analysis can be trivially extended for λω(1)-time RAM computations under the λω(1)-hardness of
the LWE assumption. (The verifier still runs in polynomial time.) Since the prover needs to compute a digest
non-interactively in memory delegation schemes, a natural approach is to modify the RAM delegation scheme of
Choudhuri et al. [CJJ22] so that it works even when the memory is hashed by a keyless multi-collision-resistant
hash function. Unfortunately, this approach does not work (at least when naively implemented) since the scheme
of Choudhuri et al. [CJJ22] requires each memory location to be locally opened individually on a locating-by-
location basis as explained below. (Recall that the local opening method given by Bitansky et al. [BKP18] for
multi-collision-resistant hash functions does not allow such individual opening.) At a high level, the scheme of
Choudhuri et al. [CJJ22] proves the correctness of a RAM computation by proving the correctness of multiple
evaluations of a single small circuit. Intuitively, this small circuit represents a single step of the RAM compu-
tation. That is, it takes as input a local state of the RAM machine, a digest of the memory, and local opening
of a single location of the memory, and it outputs an updated local state of the RAM machine along with an
updated digest of the memory and a corresponding certificate. The circuit size depends on the memory length
only polylogarithmically since local opening of a single location is given as input rather than the entire memory.
Since this polylogarithmic dependence is essential for the verifier efficiency of the RAM delegation scheme, it
is required that each location of the memory can be locally opened individually.

Failed attempt #2. Next, let us consider using the result of Jawale, Kalai, Khurana, and Zhang [JKKZ21] that
obtains a SNARG from the public-coin interactive proof of Goldwasser, Kalai, and Rothblum [GKR15] (the
GKR interactive proof in short). The scheme of Jawale et al. [JKKZ21], when viewed as a public-coin 2-round
delegation scheme,6 has the same syntax as the KRR delegation scheme (cf. Section 2.1). In addition, it has
the same additional property as the KRR delegation scheme, i.e., soundness holds even when the verifier only
makes a small number of non-adaptive queries to (an encoding of) the input. Therefore, just like Bitansky et
al. [BKP18] obtained a (private-coin) memory delegation scheme from the KRR delegation scheme, we can
obtain a (public-coin) memory delegation scheme from the scheme of Jawale et al. [JKKZ21] by combining it
with a keyless multi-collision-resistant hash function. (We need to assume the sub-exponential hardness of the
LWE assumption since the scheme of Jawale et al. [JKKZ21] requires it.) The problem is that the scheme of
Jawale et al. [JKKZ21] is only shown to work for log-uniform7 bounded-depth computations. As a result, the
memory delegation scheme that we can obtain from it has the same limitation. Unfortunately, for the application
to 3-round ZK arguments, memory delegation schemes for such limited computations are insufficient.

Our approach. Given the above two failed attempts, we obtain a public-coin memory delegation scheme by
using both the scheme of Choudhuri et al. [CJJ22] and the scheme of Jawale et al. [JKKZ21]. We obtain our

5Their SNARG works in the common random string model and therefore can be viewed as a public-coin 2-round delegation scheme.
6Their SNARG works in the common random string model and therefore can be viewed as a public-coin 2-round delegation scheme.
7A computation is log-uniform if it has a circuit that can be generated by a log-space Turing machine.

5

memory delegation scheme in two steps.

1. First, we obtain a public-coin tree-hash memory delegation scheme, i.e., a public-coin memory delegation
scheme for proving the correctness of tree-hash computations. We obtain such a scheme by combining
the scheme of Jawale et al. [JKKZ21] and a keyless multi-collision-resistant hash function as suggested
above. The key point is that, as already observed by Goldwasser et al. [GKR15], the GKR interactive
proof works not only for log-uniform computations but also for any computations that have a certain form
of succinct descriptions. Tree-hash computations have the required form of succinct descriptions because
of their simple tree structure. Thus, the GKR interactive proof can be used to prove the correctness of tree-
hash computations. Then, since the scheme of Jawale et al. [JKKZ21] inherits this property, the memory
delegation scheme that we obtain from it also inherits this property, i.e., works for tree-hash computations.

2. Next, we use the above tree-hash memory delegation scheme to obtain a public-coin memory delegation
scheme for all λω(1)-time computations on memories of length λω(1). A key observation is that the tree-
hash memory delegation scheme can be used to verify whether a digest is correctly computed for the RAM
delegation scheme of Choudhuri et al. [CJJ22]. More concretely, we consider the following scheme.

(a) The digest of a memoryDB is obtained as in the tree-hash memory delegation scheme using a keyless
multi-collision-resistant hash function.

(b) The verifier sends the prover (i) a (keyed) collision-resistant hash function h together with a chal-
lenge string of the tree-hash delegation scheme and (ii) the description R of the computation to be
evaluated on the memory (modeled as a RAM machine) together with a challenge string of the RAM
delegation scheme of Choudhuri et al. [CJJ22].

(c) The prover responds with (i) the tree-hash rt := TreeHashh(DB) of the memory DB w.r.t. h together
with the proof of the tree-hash delegation for the correctness of rt and (ii) the output y := RDB of
the computation together with the proof of the RAM delegation scheme for the correctness of y,
where rt is used as the digest in the RAM delegation scheme.

In the above scheme, the digest rt of the RAM delegation scheme is chosen adaptively after the prover
learns the challenge string. Still, the tree-hash memory delegation scheme guarantees that rt is correctly
computed based on the memory DB, and as a result, we can think as if rt is fixed non-adaptively. Thus, we
can use the soundness of the RAM delegation scheme to show the correctness of the computation output
y. (In a little more detail, we can show that a cheating prover can give accepting proofs for at most a small
number of values of rt and therefore can give accepting proofs for at most a small number of values of y.)

Before concluding the technical overview, we give remarks about the actual construction given in the sub-
sequent sections.
Remark 1 (On tree-hash memory delegation). Firstly, obtaining a tree-hash memory delegation scheme from
the scheme of Jawale et al. [JKKZ21] is actually not trivial. To explain the difficulty, we first note that for the
soundness of the GKR interactive proof to hold, the verifier should be given oracle access to an encoding of
the input x, and the length of the encoding is determined by various parameters of the GKR interactive proof.
Now, the problem is that if we obtain a tree-hash memory delegation scheme from the scheme of Jawale et al.
[JKKZ21] naively, the encoding needs to be super-polynomially long since the scheme of Jawale et al. [JKKZ21]
uses the GKR interactive scheme with slightly modified parameters.8 (This super-polynomially long encoding
is not problematic in the settings of SNARGs and 2-round delegation since the encoding is never written down
entirely, but it is problematic in the setting of memory delegation since the prover needs to hash the encoding.)
Almost the same problem was already observed in a different context by Bronfman and Rothblum [BR22], and
we avoid our problem as in their work. Namely, instead of directly using the result of Jawale et al. [JKKZ21], we
use the result of Holmgren, Lombardi, and Rothblum [HLR21b] that shows, based on Jawale et al. [JKKZ21],
that a SNARG can be obtained from the GKR interactive proof without modifying its parameters.

Secondly, we focus on tree-hash memory delegation schemes for tree-hash computations w.r.t.
polylogarithmic-depth collision-resistant hash functions. (By doing so, we can work with the GKR interac-
tive proof in a typical setting, i.e., for polylogarithmic-depth computations.) Such tree-hash memory delegation

8If the reader is familiar with the GKR interactive proof, we note that the scheme of Jawale et al. [JKKZ21] uses the GKR interactive
proof with a super-polynomially large field, and as a result, the low-degree encoding of the input is super-polynomially long.

6

schemes are sufficient for our purpose since the sub-exponential hardness of the LWE assumption implies the
existence of polylogarithmic-depth collision-resistant hash functions.9 ♢

Outline of the rest of this paper. After giving necessary notations and definitions in Section 3, we prove our
main result from Section 4 to Section 7. Like Bitansky et al. [BKP18], in the actual proof we first consider oracle
memory delegation schemes, which are simpler than memory delegation schemes in that the verifier publishes
(an encoding of) the memory in the clear at the beginning. Specifically, in Section 4, we give a public-coin
oracle memory delegation scheme for tree-hash computations, and in Section 5, we upgrade it to a one for all
λω(1)-time computations. Then, in Section 6, we obtain a public-coin memory delegation scheme from our
oracle memory delegation scheme and a keyless multi-collision-resistant hash function. In Section 7, we use it
to obtain a public-coin 3-round ZK argument.

3 Preliminaries
We denote the security parameter by λ. For editorial simplicity, some definitions are deferred to Appendix A.

3.1 Notations
For any n ∈ N, we use [n] to denote the set {1, . . . , n}. We use poly to denote an unspecified polynomial, negl
to denote an unspecified negligible function, and PPT as an abbreviation of “probabilistic polynomial-time.”
For any NP language L and an instance x ∈ L, we use RL to denote the witness relation (i.e., RL is the set of all
instance-witness pairs of L) and use RL(x) to denote the set of all witnesses of x. For any pair of probabilistic
interactive Turing machines (P, V), we use ⟨P (w), V (z)⟩(x) for any x,w, z ∈ {0, 1}∗ to denote the random
variable representing the output of V in an interaction between P (x,w) and V (x, z).

For a vector v = (v1, . . . , vλ) and a set S ⊆ [λ], let v|S := {vi}i∈S . Similarly, for a function f : D → R and
a set S ⊆ D, let f |S := {f(i)}i∈S . For a set S, we denote by s← S the process of obtaining an element s ∈ S
by a uniform sampling from S. For any probabilistic algorithm Algo and an input x, we denote by y ← Algo(x)
the process of obtaining an output y by running Algo(x) with uniform randomness. For a sufficiently long
string r ∈ {0, 1}∗, we denote by y := Algo(x; r) the process of obtaining an output y by running Algo(x) with
randomness r.

3.2 (Keyed) Hash Functions
Recall that a (keyed) hash function family can be modeled by two algorithms (Gen,Hash) and two functions
ℓ1, ℓ2 : N→ N as follows.

• h ← Gen(1λ): Gen is a PPT algorithm that takes as input a security parameter 1λ, and it outputs a key
h.

• y := Hash(h, x): Hash is a deterministic polynomial-time algorithm that takes as input a key h ∈ Gen(1λ)
and a string x ∈ {0, 1}ℓ1(λ), and it outputs a string y ∈ {0, 1}ℓ2(λ).

A hash function family is called public coin [HR04] if Gen(1λ) outputs a uniformly random string. Unless
otherwise stated, we assume ℓ1(λ) = 2λ and ℓ2(λ) = λ.

In this paper, we use the following simplified notations. For a hash function family H = (Gen,Hash), we
use Hλ to denote the range of Gen(1λ, ·), use h ← Hλ as a shorthand of h ← Gen(1λ), and use h(x) as a
shorthand of Hash(h, x).

3.2.1 Collision resistance.

Recall that collision resistance of a hash function family can be defined as follows.
9For example, polylogarithmic-depth collision-resistant hash functions can be obtained by using a sub-exponentially hard collision-

resistant hash function with a polylogarithmic security parameter.

7

Definition 1. A hash function family H is collision resistant if for any PPT adversary A and any sequence of
polynomial-size advice {zλ}λ∈N, there exists a negligible function negl such that for every λ ∈ N,

Pr

[
h(x1) = h(x2) ∧ x1 ̸= x2

∣∣∣∣ h← Hλ

(x1, x2)← A(h, zλ)

]
≤ negl(λ).

We note that a public-coin collision-resistant hash function family can be obtained under the LWE assump-
tion.10

Remark 2 (Polylogarithmic-depth hash function family). We say that a collision-resistant hash function family
is polylogarithmic depth if every hash function in the family can be evaluated by a polylogarithmic-depth circuit.
Such a hash function family can be obtained from any sub-exponentially secure collision-resistant hash function
family as follows. Assume that there exist a hash function family H and a constant 0 < ϵ < 1 such that H
with security parameter κ is collision resistant against 2κϵ-time adversaries. Then, consider a hash function
family such that on security parameter λ, we useH with security parameter κ := (log λ)2/ϵ. This hash function
family is collision resistant against λlog λ-time adversaries, and it is polylogarithmic depth (in λ) since every hash
function in it can be evaluated by a circuit of size poly(κ) = poly(log λ). The domain of each hash function
can be extended to {0, 1}poly(λ) without increasing the depth by using each hash function in parallel. ♢

3.2.2 Tree hash.

Recall that for any function h : {0, 1}2λ → {0, 1}λ, the (binary) tree-hash of a string x ∈ {0, 1}2ℓλ (ℓ ∈ N) is
obtained as follows.

1. Separate x into 2ℓ blocks x0, . . . , x2ℓ−1 such that |x0| = . . . |x2ℓ−1| = λ.

2. For each σ ∈ {0, 1}i (0 ≤ i ≤ ℓ), define Xσ ∈ {0, 1}λ recursively as follows.

(a) For each σ ∈ {0, 1}ℓ, letXσ := xσ, where σ is identified with an integer in {0, . . . , 2ℓ−1} naturally.
(b) For each σ ∈ {0, 1}i (0 ≤ i ≤ ℓ− 1), let Xσ := h(Xσ0Xσ1).

3. Let the tree-hash of x be Xε, where ε is the empty string.

We use TreeHashh(x) to denote the tree-hash of x.

3.3 Keyless Multi-Collision Resistant Hash Functions
We recall the definition of multi-collision resistant hash functions from [BKP18], focusing on the keyless version.

Definition 2. For any functions K : N × N → N and γ : N → N, a keyless hash function Hash is said to
be weakly (K, γ)-collision-resistant if for every probabilistic γO(1)-time adversary A and every sequence of
polynomial-size advice {zλ}λ∈N, there exists a negligible function negl such that for every λ ∈ N, the following
holds for K = K(λ, |zλ|).

Pr

[
y1 = · · · = yK
∧ ∀i ̸= j : xi ̸= xj

∣∣∣∣ (x1, . . . , xK)← A(1λ, zλ)
∀i : yi := Hash(1λ, xi)

]
≤ negl(γ(λ)).

As in [BKP18], we focus on the case that Hash is polynomially compressing. In particular, we assume that
Hash(1λ, ·) takes a string of length λ2 as input and outputs a string of length λ.

3.4 Zero-Knowledge Arguments
We recall the standard definition of zero-knowledge arguments (see, e.g., [Gol01]).

Definition 3 (Interactive arguments). For any NP language L, a pair of interactive Turing machines (P, V) is
called an interactive argument for L if it satisfies the following.

10For example, the (somewhere statistically binding) hash function of [HW15], which we use indirectly through a result of a prior
work [CJJ22], is public coin and collision resistant.

8

• Completeness. There exists a negligible function negl such that for every (x,w) ∈ RL,

Pr [⟨P (w), V ⟩(x) = 1] ≥ 1− negl(|x|) .

• Soundness. For every PPT interactive Turing machine P ∗, there exists a negligible function negl such
that for every x ∈ {0, 1}∗ \ L and z ∈ {0, 1}∗,

Pr [⟨P ∗(z), V ⟩(x) = 1] ≤ negl(|x|) .

Definition 4 (Zero-knowledge). An interactive argument (P, V) for an NP language L is called (computational)
zero-knowledge if for any PPT interactive Turing machine V ∗, there exists a PPT Turing machine S such that
for any sequence {wx}x∈L such that wx ∈ RL(x), the following ensembles are computationally indistinguish-
able.

• {viewV ∗⟨P (wx), V
∗(z)⟩(x)}x∈L,z∈{0,1}∗

• {S(x, z)}x∈L,z∈{0,1}∗

The following definition of public-coin interactive argument is taken from [HLR21b].

Definition 5 (Public coin). An interactive argument (P, V) is said to be public coin if the following hold.

• For some ℓ(λ) ≤ poly(λ) and every x ∈ {0, 1}∗, the messages sent by V (x) are independently and
identically distributed uniformly random ℓ(|x|)-bit strings.

• The final output of V (x) when interacting with a prover is a fixed polynomial-time computable function
of x and the transcript τ of its interaction with the prover.

3.5 Weak Memory Delegations
We recall the definition of 2-round weak memory delegation schemes [BKP18] (which are weaker than those in
[CKLR11, BBK+16] because of the soundness definition). We focus on the keyless setting, and use the publicly
verifiable version of the definition.

Definition 6. We say that an efficiently samplable distribution ensemble {Yλ}λ∈N is entropic if

H∞(Yλ) := − log max
y∈supp(Yλ)

Pr [Yλ = y] = Ω(λ) .

Definition 7. A publicly verifiable 2-round weak memory delegation scheme consists of four algorithms
(Mem,Query,Prove,Ver) that have the following syntax and efficiency.

Syntax.

• digest := Mem(1λ,DB): Mem is a deterministic polynomial-time algorithm that takes as input a security
parameter 1λ and a memory DB, and it outputs a digest digest of the memory.

• q ← Query(1λ): Query is a probabilistic polynomial-time algorithm that takes as input a security pa-
rameter 1λ, and it outputs a query q.

• π := Prove(DB, ⟨M, t, y⟩, q): Prove is a deterministic algorithm that takes as input a memory DB, a
deterministic Turing machine M (possibly with some hardwired inputs), a time bound t, an output y, and
a query q, and it outputs a proof π.

• b := Ver(digest, ⟨M, t, y⟩, q, π): Ver is a deterministic algorithm that takes as input a digest digest, a
deterministic Turing machine M (possibly with some hardwired inputs), a time bound t, an output y, a
query q, and a proof π, and it outputs a bit b.

9

Efficiency. For any polynomial p, there exists polynomials polyP , polyV such that for every λ ∈ N, ⟨M, t, y⟩ ∈
{0, 1}p(λ), and DB ∈ {0, 1}∗ such that M(DB) outputs y within t steps and |DB| ≤ t ≤ λlog λ,

• Prove(DB, ⟨M, t, y⟩, q) runs in time polyP (λ, t), and

• Ver(digest, ⟨M, t, y⟩, q, π) runs in time polyV (λ).

Security. For any function t̄ : N→ N, a publicly verifiable 2-round weak memory delegation scheme is called
sound for computation-time bound t̄ if it satisfies the following.

• Correctness. For every λ ∈ N, ⟨M, t, y⟩ ∈ {0, 1}poly(λ), and DB ∈ {0, 1}∗ such that M(DB) outputs y
within t steps and |DB| ≤ t ≤ t̄(λ),11

Pr

Ver(digest, ⟨M, t, y⟩, q, π) = 1

∣∣∣∣∣∣
digest := Mem(1λ,DB)
q ← Query(1λ)
π := Prove(DB, ⟨M, t, y⟩, q)

 = 1 .

• Soundness for computation-time bound t̄. For every pair of PPT adversaries (A1,A2) and every se-
quence of polynomial-size advice {zλ}λ∈N, there exists a negligible function negl such that for every
samplable entropic distribution ensemble {Yλ}λ∈N, every λ ∈ N, and every t ≤ t̄O(1)(λ),

Pr

Ver(digest, ⟨M, t, y⟩, q, π) = 1

∣∣∣∣∣∣∣∣
(digest,M, st)← A1(1

λ, zλ)
q ← Query(1λ)
y ← Yλ
π ← A2(q, y, st)

 ≤ negl(λ) .

A publicly verifiable 2-round weak memory delegation scheme is called public coin if the query algorithm Query
is public coin, i.e., it just outputs a string that is sampled uniformly randomly.

3.6 Oracle Memory Delegations
We recall the definition of 2-round oracle memory delegation schemes [BKP18]. We use the publicly verifi-
able version of the definition, and for technical reasons, use a slightly modified version of the definition (see
Remark 3).

Definition 8. A publicly verifiable 2-round oracle memory delegation scheme consists of five algorithms
(Mem,Query1,Prove,Query2,Ver) that have the following syntax and efficiency.

Syntax.

• D̂B := Mem(1λ,DB): Mem is a deterministic polynomial-time algorithm that takes as input a security
parameter 1λ and a memory DB, and it outputs an encoding D̂B of the memory.

• (q, σ)← Query1(1
λ): Query1 is a probabilistic polynomial-time algorithm that takes as input a security

parameter 1λ, and it outputs a query q and a random string σ.

• π := Prove(DB, ⟨M, t, y⟩, q): Prove is a deterministic algorithm that takes as input a memory DB, a
deterministic Turing machine M (possibly with some hardwired inputs), a time bound t, an output y, and
a query q, and it outputs a proof π.

• I := Query2(LDB, σ, π): Query2 is a deterministic algorithm that takes as input a length parameter LDB,
a random string σ, and a proof π, and it outputs a set I ⊆ N of oracle queries.

• b := Ver(·)(LDB, ⟨M, t, y⟩, q, σ, π): Ver is a deterministic oracle algorithm that takes as input a length
parameter LDB, a deterministic Turing machine M (possibly with some hardwired inputs), a time bound
t, an output y, a query q, a random string σ, and a proof π, and it outputs a bit b.

11We consider a slightly weaker notion of correctness where t is at most t̄(λ). (In [BKP18], t is at most 2λ.) In this paper, t̄ is a
super-polynomial function, and this version of correctness is sufficient for our purpose.

10

Efficiency. For any polynomial p, there exists polynomials polyP , polyV such that for every λ ∈ N, ⟨M, t, y⟩ ∈
{0, 1}p(λ), and DB ∈ {0, 1}∗ such that M(DB) outputs y within t steps and |DB| ≤ t ≤ λlog λ,

• Prove(DB, ⟨M, t, y⟩, q) runs in time polyP (λ, t), and

• Ver(·)(|DB|, ⟨M, t, y⟩, q, σ, π) runs in time polyV (λ).

Security. For any functions γ, t̄ : N → N, a publicly verifiable 2-round oracle memory delegation scheme is
called γ-sound for computation-time bound t̄ if it satisfies the following.

• Correctness. For every λ ∈ N, ⟨M, t, y⟩ ∈ {0, 1}poly(λ), and DB ∈ {0, 1}∗ such that M(DB) outputs y
within t steps and |DB| ≤ t ≤ t̄(λ),

Pr

VerD̂B|I (|DB|, ⟨M, t, y⟩, q, σ, π) = 1

∣∣∣∣∣∣∣∣
D̂B := Mem(1λ,DB)
(q, σ)← Query1(1

λ)
π := Prove(DB, ⟨M, t, y⟩, q)
I := Query2(|DB|, σ, π)

 = 1 .

• γ-soundness for computation-time bound t̄. For every pair of probabilistic γO(1)-time adversaries
(A1,A2) and every sequence of polynomial-size advice {zλ}λ∈N, there exists a negligible function negl
such that for every λ ∈ N and t ≤ t̄O(1)(λ),

Pr


y ̸= y′

∧ VerD̂B|I (LDB, ⟨M, t, y⟩, q, σ, π) = 1

∧ VerD̂B|I′ (LDB, ⟨M, t, y′⟩, q, σ, π′) = 1

∣∣∣∣∣∣∣∣∣∣
(D̂B, LDB,M, y, y′, st)← A1(1

λ, zλ)
(q, σ)← Query1(1

λ)
(π, π′)← A2(q, σ, st)
I := Query2(LDB, σ, π)
I ′ := Query2(LDB, σ, π

′)


≤ negl(γ(λ)) .

A publicly verifiable 2-round oracle memory delegation scheme is called public coin if the query algorithm
Query1 is public coin, i.e., it just outputs a string that is sampled uniformly randomly.

Remark 3 (Differences from the original definition [BKP18]). First, the syntax is slightly more general since we
split the query algorithm into two, Query1 and Query2, so that input queries can be chosen based on the proof π.
(An additional minor syntax difference is that Ver (and Query2) is given the memory length, i.e., |DB|.) Second,
soundness is slightly stronger since we allow the adversary A2 to learn σ (which allows A2 to learn the input
queries I, I ′). This stronger soundness definition is required for our application. ♢

3.7 Low-Degree Extensions
Let F be a finite field, H ⊆ F be a subset of F, and m ∈ N be an integer. Any function f : Hm → {0, 1} can
be extended into a (unique) function f̂ : Fm → F such that (i) f̂(z) = f(z) for every z ∈ Hm and (ii) f̂ is
an m-variate polynomial of degree at most |H| − 1 in each variable. This function f̂ (or the truth table of it) is
called the low-degree extension (LDE) of f .

Low-degree extensions of strings. The LDE of a binary string x of length N can be obtained by choosing H
and m such that N ≤ |H|m, identifying {1, . . . , |H|m} with Hm in the lexicographical order, and viewing x as
a function x : Hm → {0, 1} such that x(i) = xi for ∀i ∈ [N] and x(i) = 0 for ∀i ∈ {N + 1, . . . , |H|m}. We
use LDEF,H,m(x) to denote the LDE of x. We note that for any z ∈ Fm, the LDE of x can be evaluated on z
in time |H|m · poly(m, |H|), where we assume that we have |F| = poly(|H|) and field operations over F can be
done in time poly(log|F|) = poly(log|H|) (see, e.g., [GKR15, Claim 2.3]).

11

3.8 Circuits
We consider arithmetic circuits that have addition and multiplication gates with fan-in 2 over a finite field. We
focus on “layered circuits,” i.e., we assume that the gates in a circuit can be partitioned into layers such that (i)
the first layer contains the input gates and the last layer contains the output gates, and (ii) the gates in the i-th
layer have children in the (i− 1)-st layer. By adding dummy gates, we assume that all layers in a layered circuit
have the same width. (The dummy gates always take 0 as their values and their output wires are never connected
to any gate.)

4 Public-Coin Tree-Hash Oracle Memory Delegation
In this section, we construct a public-coin tree-hash oracle memory delegation scheme. Tree-hash oracle mem-
ory delegation schemes are oracle memory delegation schemes that are focused on proving the correctness of
tree-hash computations. (For convenience, we consider those that satisfy a tailored soundness notion.) The
formal definition, as well as the main lemma of this section, is given below.

Definition 9. For any hash function family H, publicly verifiable 2-round tree-hash oracle memory delega-
tion schemes are defined in the same way as publicly verifiable 2-round oracle memory delegation schemes
(Definition 8) except for the following differences.

1. Correctness is defined for a statement of the form ⟨Mh, t, y⟩ and a memory DB of length 2iλ for λ ∈
N, h ∈ Hλ, t ∈ N, y ∈ {0, 1}λ, and i ∈ [⌊log2 λ⌋], where Mh is a Turing machine that takes as input a
string DB ∈ {0, 1}∗ and outputs TreeHashh(DB) using the hash function h that is hardwired in it.12

2. The soundness condition is replaced with the following one.

• γ-soundness. There exists a probabilistic polynomial-time algorithm Decode such that for every
pair of probabilistic γO(1)-time adversaries (A1,A2) and every sequence of polynomial-size advice
{zλ}λ∈N, there exists a negligible function negl such that for every λ ∈ N and h ∈ Hλ,

Pr


rt ̸= TreeHashh(D̃B)

∧ VerD̂B|I (LDB, ⟨Mh, tLDB
, rt⟩, q, σ, π) = 1

∣∣∣∣∣∣∣∣∣∣∣

(D̂B, LDB, st)← A1(1
λ, zλ)

(q, σ)← Query1(1
λ)

(rt, π)← A2(h, q, σ, st)
I := Query2(LDB, σ, π)

D̃B← Decode(D̂B, LDB)


≤ negl(γ(λ)) ,

where tLDB
is the running time of Mh for inputs of length LDB, and Decode(·, LDB) always outputs

an LDB-bit string (or ⊥).

Lemma 1. Assume the sub-exponential hardness of the LWE assumption. Then, for any polylogarithmic-depth
hash function family and any sufficiently small super-polynomial functions γ (e.g., γ(λ) = λlog log λ), there
exists a public-coin 2-round tree-hash oracle memory delegation scheme with γ-soundness.

4.1 Public-Coin Weak Tree-Hash Oracle Memory Delegation
Before proving Lemma 1, we first construct a scheme with a weak soundness guarantee (where soundness is only
required to hold when the prover provides a valid encoding of a memory). Specifically, we show the following
lemma.

Lemma 2. Assume the sub-exponential hardness of the LWE assumption. Then, for any polylogarithmic-depth
hash function family H and any sufficiently small super-polynomial functions γ (e.g., γ(λ) = λlog log λ), there
exists a public-coin 2-round tree-hash oracle memory delegation scheme with the following weaker soundness
guarantee. (The differences from Definition 9 are highlighted by underlines.)

12We assume that h ∈ Hλ hashes a string of length 2λ to a string of length λ. Therefore, TreeHashh hashes a string of length 2iλ to
a string of length λ by depth-i tree-hashing (cf. Section 3.2.2).

12

• Weak γ-soundness. There exists a deterministic polynomial-time algorithm Decode
and a predicate Valid such that for every pair of probabilistic γO(1)-time adversaries (A1,A2)
and every polynomial-size advice {zλ}λ∈N, there exists a negligible function negl such that for every
λ ∈ N and h ∈ Hλ,

Pr


rt ̸= TreeHashh(D̃B)

∧ VerD̂B|I (LDB, ⟨Mh, tLDB
, rt⟩, q, σ, π) = 1

∧ Valid(D̂B, LDB) = 1

∣∣∣∣∣∣∣∣∣∣∣

(D̂B, LDB, st)← A1(1
λ, zλ)

(q, σ)← Query1(1
λ)

(rt, π)← A2(h, q, σ, st)
I := Query2(LDB, σ, π)

D̃B← Decode(D̂B, LDB)


≤ negl(γ(λ)) ,

where tLDB
is the running time of Mh for inputs of length LDB, and Decode(·, LDB) always outputs an

LDB-bit string (or ⊥).

Furthermore, (i)Mem(1λ,DB) outputs LDEF,H,m(DB) for some (F,H,m), where (F,H,m) are the parameters
that are determined based on |DB| and satisfy 2m|H| < |F| = poly(log λ) and |DB| ≤ |H|m ≤ |F|m ≤
poly(|DB|), and (ii) Valid(D̂B, LDB) outputs 1 if and only if D̂B is (the truth table of) a polynomial x̂ : Fm → F
of degree at most m(|H| − 1).

We prove Lemma 2 by relying on recent results [JKKZ21, HLR21b] about soundly applying the Fiat–Shamir
transformation to the public-coin interactive proof of Goldwasser, Kalai, and Rothblum [GKR15] (the GKR
interactive proof in short). Therefore, we start by recalling the GKR interactive proof and the results about the
Fiat–Shamir transformation [JKKZ21, HLR21b].

4.1.1 Preliminary 1: the GKR interactive proof.

We recall the “bare-bones” version of the GKR interactive proof [GKR15, Section 3], focusing on the parts that
are relevant to us. (As in [JKKZ21], we use a slightly modified version of it [KPY18] so that we can use the
recent results about the Fiat–Shamir transformation [JKKZ21, HLR21b].)

The GKR interactive proof is a public-coin interactive proof for proving the correctness of computations.
The statement consists of a circuit C and an input x, and the prover proves C(x) = 0. The circuit C is an
arithmetic circuit over a finite field F. The circuit C is assumed to be layered, i.e., the gates in C can be
partitioned into layers such that (i) the starting layer consists of the input gates and the last layer consists of the
output gates, and (ii) the gates in the i-th layer take their inputs from the gates in the (i−1)-st layer. For a circuit
of depth D and W , we denote the gates in the i-th layer by (gi,0, . . . , gi,W−1) for each i ∈ {0, . . . , D}. We note
that we start the index of layers from 0, i.e., the starting layer (which contains the input gates) is “the 0-th layer.”

The GKR interactive proof is associated with several parameters. When the statement contains a circuit of
depth D and width W , important parameters include the finite field F over which the circuit is defined, as well
as a subset H ⊂ F and an integer m ∈ N. How exactly these parameters are used in the GKR interactive proof is
not important to this paper (essentially, the parameters (F,H,m) are used to obtain the LDE of the gate values
of each layer). These parameters can be set relatively freely as long as they satisfy certain constraints, such as (i)
|F| is sufficiently larger than D, |H|, and m and (ii) |H|m is larger than the width W . When D = poly(logW),
a typical choice is |H| = poly(logW), m = ⌈log|H|W ⌉ = O(logW/ log logW), and |F| = poly(|H|) =
poly(logW).

Importantly, in the GKR interactive proof, the verifier does not explicitly take a statement as input. Indeed,
if the verifier explicitly takes a circuit C as input, the running time of the verifier becomes Ω(|C|), and the GKR
interactive proof cannot have significant efficiency benefits. In the bare-bones version of the GKR interactive
proof, the verifier learns about C by making queries to certain polynomials that are guaranteed to satisfy the
following conditions. LetD andW be the depth and width ofC. For each i ∈ [D], let addi : {0, . . . ,W−1}3 →
{0, 1} be the function such that on input (u, v, w), it outputs 1 if and only if gi,u = gi−1,v + gi−1,w, i.e., the u-th
gate in the i-th layer is an addition gate such that its inputs come from the v-th and w-th gates in the (i − 1)-
st layer. Let {multi}i∈[D] be defined similarly about multiplication gates. The functions {addi,multi}i∈[D]

are called the functions that specify C. Then, the verifier of the GKR interactive proof is given oracle access
to extensions {ãddi, m̃ulti}i∈[D] of {addi,multi}i∈[D], where each ãddi, m̃ulti : F3m → F are guaranteed to

13

satisfy the following for each (zu, zv, zw) ∈ H3m. Let α : Hm → {0, . . . , |H|m−1} be the mapping that returns
the lexicographic order of the input.

ãddi(zu, zv, zw) =

{
addi(α(zu), α(zv), α(zw)) if α(zu), α(zv), α(zw) ≤W − 1

0 otherwise
.

m̃ulti(zu, zv, zw) =

{
multi(α(zu), α(zv), α(zw)) if α(zu), α(zv), α(zw) ≤W − 1

0 otherwise
.

Extensions {ãddi, m̃ulti}i∈[D] do not need to be the LDEs of {addi,multi}i∈[D]. Still, for the soundness to hold,
they need to be low-degree polynomials, which roughly means that the individual degree δ of each ãddi, m̃ulti
is much smaller than the field size |F|.

In [GKR15], the bare-bones version of the GKR interactive proof is used as a stepping-stone toward their
main results. For example, the bare-bones version is used to obtain an interactive proof for log-space uniform
bounded-depth circuit computations. (The verifier can evaluate extensions {ãddi, m̃ulti}i∈[D] efficiently for
such computations.13) It is also used to obtain an interactive proof for any (not necessarily log-space uniform)
bounded-depth circuit computations by considering a model where the verifier evaluates {ãddi, m̃ulti}i∈[D] in
an offline pre-processing phase. Jumping ahead, we use the bare-bones version to obtain a protocol for a circuit
that is not necessarily log-space uniform. The key point is that for the circuit that we consider, the verifier can
evaluate {ãddi, m̃ulti}i∈[D] efficiently because of the simple structure of the circuit.

Below, we summarize the properties of the GKR interactive proof that we use. (It is based on [GKR15,
Theorem 3.1] and its analysis with slight adaptation. The differences are explained in footnotes.)

Lemma 3 (Soundness and efficiency of the GKR interactive proof). There exists a constant cgkr ∈ N such
that the GKR interactive proof is sound (with constant soundness error) when it is used with a finite field F, an
arithmetic circuit C over F, and parameters H ⊂ F, m ∈ N that satisfy the following condition.

• GKR compatibility: LetW andD be the width and the depth ofC. Then, there exists δ ∈ N (m(|H|−1) ≤
δ < |F|) for which the following hold.14

1. The field F is sufficiently large. Concretely, it satisfies cgkrDmδ ≤ |F| ≤ poly(|H|).
2. The parameters H and m satisfy max(D, logW) ≤ |H| ≤ poly(D, logW) and W ≤ |H|m ≤

poly(W).
3. There exist polynomials {ãddi, m̃ulti}i∈[D] such that (i) each ãddi, m̃ulti are of individual degree at

most δ and (ii) {ãddi, m̃ulti}i∈[D] are extensions of the functions {addi,multi}i∈[D] that specify C.

Furthermore, soundness holds even in a model where the verifier is not given the statement (C, x) and in-
stead given (i) oracle access to {ãddi, m̃ulti}i∈[D] and (ii) oracle access to a polynomial x̂ : Fm → F that
is of (total) degree at most m(H − 1) and has x as a prefix of x̂|Hm .15 In such a model, the verifier runs in
time poly(D, logW) while the prover runs in time poly(D,W). The verifier queries the encoding x̂ at two
points16 (where the queries are determined by the (public) randomness of the verifier) and makes O(D) queries
to {ãddi, m̃ulti}i∈[D].

4.1.2 Preliminary 2: the Fiat–Shamir transformation for the GKR interactive proof.

We next recall a recent result by Holmgren, Lombardi, and Rothblum [HLR21b], where it is shown (based on an
observation by Jawale, Kalai, Khurana, and Zhang [JKKZ21]) that we can obtain a public-coin non-interactive

13More precisely, in [GKR15], it is observed that the verifier can delegate the evaluation of {ãddi, m̃ulti}i∈[D] to the prover, and in
a subsequent work [Gol17b], it is observed that the verifier can evaluate {ãddi, m̃ulti}i∈[D] efficiently.

14For convenience, we use a slightly stronger lower bound for δ. (In [GKR15], the requirement is |H|−1 ≤ δ < |F|.) See Footnote 15.
15In [GKR15, Theorem 3.1], the encoding x̂ is required to be the LDE of x. However, the only requirement that is used in the

analysis of [GKR15, Theorem 3.1] is that the individual degree of x̂ is upper bounded by the degree parameter δ. Since we guarantee
δ ≥ m(|H| − 1), it suffices to require that the total degree of x̂ is at most m(H− 1) (which implies that the individual degree is at most
δ).

16Unlike the original version of the GKR interactive proof [GKR15], the version given in [KPY18] (which is the version that we use)
requires the verifier to read x̂ at two points.

14

argument by applying the Fiat–Shamir transformation to the parallel repetition of the GKR interactive proof.
(As stated in Lemma 3, the GKR interactive proof without repetitions has constant soundness.) The result that
we use is summarized in the following lemma, which is a rephrasing of a result given in [HLR21a, Section 6.2.2]
(see also [JKKZ20, Corollary 6.6, Theorem 4.5]).

Lemma 4. Let W,D, δ : N → N be functions such that W (λ) ≤ poly(λlog λ),17 D(λ) ≤ poly(log λ), and
δ(λ) ≤ poly(D(λ), logW (λ)). Then, under the sub-exponential hardness of the LWE assumption, there exists
a public-coin hash family HFS that satisfies the following for t(λ) = poly(λ,D(λ), logW (λ)) and a sub-
exponential function T .

Let Π = (Setup, P, V) be the public-coin non-interactive argument that is obtained by applying the
Fiat-Shamir transformation to the t-repetition of the GKR interactive proof w.r.t. the hash family
HFS (cf. Section A.2).

1. Correctness. For every λ ∈ N, fix any (C,F,H,m) such that (i) F is a finite field such that
|F| = poly(D(λ), logW (λ)) is sufficiently large, (ii) C is a layered arithmetic circuit over
F with output length λ, where the width and the depth of C are at most W (λ) and D(λ)
respectively, and (iii) (C,F,H,m) is GKR compatible for δ ≤ δ(λ) (cf. Lemma 3). Then,
when Π is used with λ and (C,F,H,m), the following hold for every input x to C and y :=
C(x).

Pr

[
V F (crs, x, y, π) = 1

∣∣∣∣ crs← Setup(1λ)
π ← P (crs, C, x, y)

]
= 1 ,

where F := {ãddi, m̃ulti}i∈[D] are the polynomials that are guaranteed to exist by the GKR
compatibility of (C,F,H,m).

2. T -soundness. For every probabilistic poly(T)-time prover P ∗ and every sequence of
polynomial-size advice {zλ}λ∈N, there exists a negligible function negl such that for every
λ ∈ N, every (C,F,H,m) as above, and every input x to C,

Pr

[
y ̸= C(x)
∧ V F (crs, x, y, π) = 1

∣∣∣∣ crs← Setup(1λ)
(y, π)← P ∗(crs, C, x, zλ)

]
≤ negl(T (λ)) ,

where F is defined as above.
3. Efficiency. For every λ ∈ N and every (C,F,H,m) as above, the prover P runs in

time D(λ) · poly(λ,D(λ), logW (λ)) + TGKR,P and the verifier V runs in time D(λ) ·
poly(λ,D(λ), logW (λ)) + TGKR,V , where TGKR,P and TGKR,V are the running time of
the prover and the verifier in the t-repetition of the GKR interactive proof.

Remark 4 (On how we obtain Lemma 4 from [HLR21b]). In [HLR21b], it is observed that once we fix several
parameters of the GKR interactive proof, we can set the parameters of the hash function of [HLR21b] accordingly
so that we can obtain a hush function family HFS for soundly applying the Fiat–Shamir transformation to the
GKR interactive proof (see [HLR21a, Section 6.2.2]). In particular, once we fix upper bounds W,D, δ for the
circuit depth, the circuit width, and the degree parameter, we can fix upper bounds for other relevant parameters
of the GKR interactive proof (namely |F|, |H|, and m) using the conditions in Lemma 3, and then based on
these bounds, we can obtain HFS. Although the analyses in [JKKZ21, HLR21b] only consider the case of log-
uniform bounded-depth computations, the same analyses can be used for the case of any computation with GKR
compatible (C,F,H,m).18 ♢
Remark 5 (On adaptive choice of y in the definition of soundness). Lemma 4 differs from what is shown in
[JKKZ21, HLR21b] in that (i) the output length of the circuit C is λ and (ii) the cheating prover in the definition
of soundness is allowed to choose the output y adaptively. (In [JKKZ21, HLR21b], the output length of C is 1,
and as in the GKR interactive proof described above, the output y is fixed to be 0). Still, it is easy to see that

17This is a super-polynomial upper bound that is sufficient for our purpose.
18We note that HFS does not depend on the evaluation time of F = {ãddi, m̃ulti}i∈[D]. (In particular, the function BAD, which is

used to define the size of hash functions of HFS in [JKKZ20, Section 6.2], depends on F only via polynomial-size non-uniform advice.)

15

the results in [JKKZ21, HLR21b] can be used to obtain Lemma 4. Consider, for simplicity, that C outputs a
binary output. (This is the case that we are interested in.) First, if the output length of C is 1 and the cheating
prover adaptively chooses the output y ∈ {0, 1}, it suffices to consider a protocol where the verifier initiates the
protocol of [JKKZ21, HLR21b] twice in parallel, one for the statement C(x) = 0 and the other for the statement
C(x) = 1, and the prover chooses one of them according to the actual output. Next, if the output length of C
is λ, the prover and the verifier run this single-bit protocol λ times in parallel, one for each output bit. In total,
the protocol of [JKKZ21, HLR21b] is executed 2λ times in parallel, and it is easy to see that if there exists a
cheating prover that breaks the multi-bit version with probability ϵ, there exists a cheating prover that breaks the
original version with probability at least ϵ/λ. ♢
Remark 6 (On soundness when the verifier is not given (C, x) explicitly). The Fiat–Shamir transformation pre-
serves the furthermore part of Lemma 3, i.e., soundness (and completeness) holds even when the verifier only
has (i) oracle access toF = {ãddi, m̃ulti}i∈[D] and (ii) oracle access to a low-degree polynomial x̂ that encodes
x. Also, the number of queries to F and x̂ is not increased by the Fiat–Shamir transformation.19 Furthermore,
since the queries to x̂ are determined by the verifier randomness in the GKR interactive proof, they are de-
termined by the proof π after the Fiat–Shamir transformation. Thus, there is a deterministic polynomial-time
algorithm InpQuery such that the correctness and soundness of Π hold even when we replace V F (crs, x, y, π)
with V x̂|I ,F (crs, y, π), where I := InpQuery(π). Since Π is obtained from t-repetition of the GKR interactive
proof for t(λ) = poly(λ,D(λ), logW (λ)), we have |I| = poly(λ,D(λ), logW (λ)). ♢

4.1.3 Proof of Lemma 2.

We are ready to give our weak tree-hash memory delegation scheme. Our approach is to use Lemma 4 for tree-
hash computations. That is, we consider the GKR interactive proof for tree-hash computations and then obtain
the desired protocol by applying the Fiat–Shamir transformation. By Lemma 3, we need a circuit that computes
tree-hashing in a “GKR friendly” way, i.e., we need a tree-hashing circuit that satisfies properties such as having
efficiently computable low-degree extensions {ãddi, m̃ulti}i∈[D]. Motivated by this observation, we prove the
following lemma in Appendix C.

Lemma 5. Let H be any polylogarithmic-depth hash function family. Then, there exist polynomials
polyW , polyD, polyδ such that for any λ, ℓ ∈ N (ℓ ≤ log2 λ) and any finite field F of sufficiently large size
|F| ≤ poly(log λ), there exist a subset H ⊂ F and an integer m ∈ N such that for any h : {0, 1}2λ → {0, 1}λ ∈
Hλ, there exists a layered arithmetic circuit C : FL → Fλ that satisfies the following, where L is defined as
L := 2ℓλ.

1. The circuitC computesTreeHashh for every input x ∈ {0, 1}L, and it outputs values in Fλ\{0, 1}λ for in-
puts in x ∈ FL\{0, 1}L. The circuit C is of width W := polyW (λ,L) and of depth D := polyD(log λ, ℓ).

2. There exist {ãddi, m̃ulti}i∈[D] such that the tuple (C,F,H,m) is GKR compatible for δ :=

polyδ(D, logW) and {ãddi, m̃ulti}i∈[D]. Furthermore, {ãddi, m̃ulti}i∈[D] can be evaluated in time
poly(λ) given the description of h.

Furthermore, the parameters (H,m) can be obtained in polynomial time given λ and ℓ.

The proof of this lemma is straightforward. The circuit C is defined by connecting many copies of the
polylogarithmic-depth circuit Ch of h in the tree structure. The key point is that, because of the tree struc-
ture of C, there exist extensions {ãddi, m̃ulti}i∈[D] that can be evaluated almost as efficiently as the LDEs of
the functions that specify Ch, which in turn can be evaluated in time poly(λ) since Ch is of size poly(λ). For a
formal proof, see Appendix C.

Now, we proceed to the proof of Lemma 2.

Proof of Lemma 2. We first note that from Lemma 3, Lemma 4, Remark 6, and Lemma 5, we have the following
corollary. (See Appendix B for the proof.)

19Note that the Fiat–Shamir transformation only requires hashing the transcript (excluding x) as shown in [JKKZ20, Figure 1] (cf.
Section A.2).

16

Corollary 1. LetH be any polylogarithmic-depth hash function family. Then, under the sub-exponential hard-
ness of the LWE assumption, there exists a public-coin non-interactive argument Π = (Setup, P, V) and a
deterministic polynomial-time algorithm InpQuery such that the following hold for a sub-exponential function
T .

1. Parameters. For each λ, ℓ ∈ N such that ℓ ≤ log2 λ, the non-interactive argument Π has (F,H,m) as
parameters, where F is a finite field, H ⊂ F is a subset, and m ∈ N is an integer such that 2m|H| <
|F| = poly(log λ) and L ≤ |H|m ≤ |F|m ≤ poly(L), where L = 2ℓλ.

2. Completeness. For every λ, ℓ ∈ N (ℓ ≤ log2 λ), h ∈ Hλ, x ∈ {0, 1}L, x̂ := LDEF,H,m(x), and
y := TreeHashh(x),

Pr

 V x̂|I (crs, ℓ, h, y, π) = 1

∣∣∣∣∣∣
crs← Setup(1λ)
π ← P (crs, h, x, y)
I := InpQuery(π)

 = 1 .

3. T -soundness. For every probabilistic poly(T)-time prover P ∗ and every sequence of polynomial-size
advice {zλ}λ∈N, there exists a negligible function negl such that for every λ, ℓ ∈ N (ℓ ≤ log2 λ), every
h ∈ Hλ, and every polynomial x̂ : Fm → F that is of degree at most m(H− 1),

Pr

 y ̸= TreeHashh(x)

∧ V x̂|I (crs, ℓ, h, y, π) = 1

∣∣∣∣∣∣
crs← Setup(1λ)
(y, π)← P ∗(crs, h, x, zλ)
I := InpQuery(π)

 ≤ negl(T (λ)) ,

where x is the length-L prefix of x̂|Hm if it is in {0, 1}L and x := ⊥ otherwise, where L := 2ℓλ.

4. Efficiency. The prover P runs in time poly(λ,L) and the verifier V runs in time poly(λ).

Given Corollary 1, the proof of Lemma 2 is trivial. Consider the delegation scheme given in Algorithm 1. The
efficiency and security conditions can be verified by inspection. (We note that Mem runs in polynomial time
since we have |F|m ≤ poly(|DB|).) This completes the proof of Lemma 2.

4.2 Proof of Lemma 1
We are ready to explain how we obtain our tree-hash oracle memory delegation scheme. The idea is to upgrade
the soundness of our weak tree-hash oracle memory delegation scheme (Lemma 2) by considering a verifier that
additionally checks the validity of the encoded memory. Fortunately, such a check can be implemented easily by
relying on well-known techniques about low-degree polynomials, namely low-degree tests and self-correction
(cf. Section A.3). As stated in Lemma 2, in our weak tree-hash oracle memory delegation scheme, an encoding
of a memory is valid if it is a polynomial of degree at most m(|H| − 1). Thus, the verifier can use low-degree
tests to check whether it is given an encoding D̂B that is close to a valid encoding D̂B

′
, and then it can use

self-correction to make queries to D̂B
′
through D̂B. Details are given below.

First, we list the building blocks. Let (LDTest.Q, LDTest.D) and (SelfCorr′.Q,SelfCorr′.Rec) be the algo-
rithms for low-degree tests and public-coin local self-correction as described in Section A.3. Let wTHDel =
(wTHDel.Mem,wTHDel.Query1,wTHDel.Prove,wTHDel.Query2,wTHDel.Ver) be the public-coin 2-round
weak tree-hash oracle memory delegation scheme that is given in Lemma 2, and wTHDel.Decode and
wTHDel.Valid be the corresponding algorithm and predicate that are guaranteed to exist by the definition of
weak soundness.

Our tree-hash oracle memory delegation schemeTHDel is described in Algorithm 2 (including the decoding
algorithm Decode that is required to exist by the definition of soundness). Since wTHDel is public coin, THDel
is also public coin. Completeness can be verified by inspection. The efficiency condition of THDel follows from
the efficiency condition of wTHDel. (We note that |F|, |H|, and m are poly(log λ) even when |DB| = λlog λ (cf.
the furthermore part of Lemma 2), and thus, both Query1 and Query2 output queries of total length poly(λ).)
In the rest of this proof, we focus on soundness.

17

Algorithm 1 Public-coin weak oracle memory tree-hash delegation wTHDel.
Let Π = (Setup, P, V) and InpQuery be the public-coin non-interactive argument and the deterministic algo-
rithm given by Corollary 1.

• D̂B := Mem(1λ,DB):

1. Let ℓ∗ be the integer such that |DB| = 2ℓ
∗
λ, and let (F,H,m) be the parameters that Π uses for λ

and ℓ∗. Then, output D̂B := LDEF,H,m(DB).

• (q, σ)← Query1(1
λ):

1. Run crs← Setup(1λ).
2. Output q := crs and σ := ⊥.

• π := Prove(DB, ⟨Mh, t|DB|, rt⟩, q):

1. Parse q as crs.
2. Output π ← P (crs, h,DB, rt), where h is the hash function that is hardwired in Mh.

• I := Query2(|DB|, σ, π):

1. Output I := InpQuery(π).

• b := VerD̂B|I (|DB|, ⟨Mh, t|DB|, rt⟩, q, σ, π):

1. Obtain ℓ∗ as in Mem, and obtain crs from q as in Prove. (If there does not exist ℓ∗ such that |DB| =
2ℓ

∗
λ, output 0.)

2. Output b := V D̂B|I (crs, ℓ∗, h, rt, π).

• D̃B← Decode(D̂B, LDB):

1. Let D̃B be the length-LDB prefix of D̂B|Hm .

2. Output D̃B if D̃B ∈ {0, 1}LDB , and output ⊥ otherwise.

18

Algorithm 2 Public-coin tree-hash oracle memory delegation THDel.

• D̂B := Mem(1λ,DB):

1. Output D̂B := wTHDel.Mem(1λ,DB). As stated in Lemma 2, it holds D̂B = LDEF,H,m(DB) for
some (F,H,m) that is determined based on |DB|.

• (q, σ)← Query1(1
λ):

1. Run (qwTHDel, σwTHDel)← wTHDel.Query1(1
λ).

2. Sample a random string r1 that is long enough to run the λ2-repetition of LDTest.Q for D̂B. Since
Query1 does not know (F,H,m), the length of r1 is determined assuming that DB has the longest
possible length, i.e., |DB| = λlog λ.

3. Sample a random string r2 that is long enough to run SelfCorr′.Q for D̂B, where the length of r2 is
determined as above.

4. Output q := qwTHDel and σ := (σwTHDel, r1, r2).

• π := Prove(DB, ⟨Mh, t|DB|, rt⟩, q):

1. Output π := wTHDel.Prove(DB, ⟨Mh, t|DB|, rt⟩, q).

• I := Query2(|DB|, σ, π):

1. Parse σ as (σwTHDel, r1, r2).
2. Run the λ2-repetition of LDTest.Q using r1 as randomness, where the parameters F, m, and d :=

m(|H| − 1) are determined based on |DB|. Let ((st1, Q1), . . . , (stλ2 , Qλ2)) denote the output.
3. Run IwTHDel := wTHDel.Query2(|DB|, σwTHDel, π), and for each v ∈ IwTHDel, run (stv, Qv) :=

SelfCorr′.Q(v; r2) with the parameters (F,m, d) that are determined as above.
4. Output I := (

∪
i∈[λ2]Qi) ∪ (

∪
v∈IwTHDel

Qv).

• b := VerD̂B|I (|DB|, ⟨Mh, t|DB|, rt⟩, q, σ, π):

1. Parse σ as (σwTHDel, r1, r2), and obtain {(sti, Qi)}i∈[λ2] and {(stv, Qv)}v∈IwTHDel
as in Query2.

2. Output 1 if both of the following hold.
– LDTest.D(sti, D̂B|Qi) = 1 for ∀i ∈ [λ2].

– wTHDel.VerD̂B
′
(|DB|, ⟨Mh, t|DB|, rt⟩, q, σwTHDel, π) = 1, where D̂B

′
is defined by D̂B

′
(v) :=

SelfCorr′.Rec(stv, D̂B|Qv) for ∀v ∈ IwTHDel.
Otherwise, output 0.

• D̃B← Decode(D̂B, LDB):

1. Apply the global self-correction of low-degree polynomials to D̂B (cf. Section A.3.3). Let D̂B
′
be

the result.
2. Output wTHDel.Decode(D̂B

′
, LDB).

19

Assume for contradiction that soundness does not hold w.r.t. Decode, i.e., there exists a pair of probabilistic
γO(1)-time adversaries (A1,A2), a polynomial-size advice {zλ}λ∈N, and a polynomial p such that for infinitely
many λ ∈ N, there exists h ∈ Hλ such that

Pr


rt ̸= TreeHashh(D̃B)

∧ VerD̂B|I (LDB, ⟨Mh, tLDB
, rt⟩, q, σ, π) = 1

∣∣∣∣∣∣∣∣∣∣∣

(D̂B, LDB, st)← A1(1
λ, zλ)

(q, σ)← Query1(1
λ)

(rt, π)← A2(h, q, σ, st)
I := Query2(LDB, σ, π)

D̃B← Decode(D̂B, LDB)

 ≥
1

p(γ(λ))
. (1)

We use (A1,A2) to obtain a pair of γO(1)-time adversaries (B1,B2) that breaks the weak soundness of
wTHDel. For any λ ∈ N, the pair (B1,B2) is described in Algorithm 3. Note that (B1,B2) run in time γO(1)(λ)
since (A1,A2) run in time γO(1)(λ).

Algorithm 3 Pair of adversaries (B1,B2) against the weak soundness of wTHDel.

• (D̂B, LDB, st)← B1(1λ, zλ):

1. Run (D̂BTHDel, LDB, st)← A1(1
λ, zλ).

2. Apply the global self-correction of low-degree polynomials to D̂BTHDel as in Decode. Let D̂B be
the result.

3. Output (D̂B, LDB, st).

• (rt, π)← B2(h, q, σ, st):

1. Sample sufficiently long random strings r1, r2 as in Query1.
2. Output (rt, π)← A2(h, q, σTHDel, st), where σTHDel := (σ, r1, r2).

Let us see that the pair (B1,B2) indeed breaks the soundness of wTHDel. Fix any λ ∈ N and h ∈ Hλ for
which we have (1). Unless otherwise stated, in the following each probability is taken over the randomness of
the following experiment, which is obtained from the experiment considered in (1) by inlining Query1, Query2,
and Decode.

(D̂B, LDB, st)← A1(1
λ, zλ)

(q, σ)← wTHDel.Query1(1
λ)

r1, r2 ← {0, 1}∗
(rt, π)← A2(h, q, (σ, r1, r2), st)

{(sti, Qi)}i∈[λ2] ← LDTest.Q⊗λ2
(r1)

I := wTHDel.Query2(LDB, σ, π)
∀v ∈ I, (stv, Qv) := SelfCorr′.Q(v; r2)
Obtain D̂B

′
by global self correction to D̂B

D̃B← wTHDel.Decode(D̂B
′
, LDB)

(In the above experiment, LDTest.Q⊗λ2
(r1) is the λ2-repetition of LDTest.Q.) Since the above experiment is

identical with the experiment considered in (1), we obtain the following from (1) and our construction of Ver.

Pr

 rt ̸= TreeHashh(D̃B)

∧ ∀i ∈ [λ2], LDTest.D(sti, D̂B|Qi) = 1

∧ wTHDel.VerD̂B
′′
(LDB, ⟨Mh, tLDB

, rt⟩, q, σ, π) = 1

 ≥ 1

p(γ(λ))
,

where D̂B
′′

is defined by D̂B
′′
(v) := SelfCorr′.Rec(stv, D̂B|Qv) for ∀v ∈ I . Then, since D̂B must be 1/λ-close

20

to a degree-m(|H| − 1) polynomial when the λ2-repetition of LDTest passes (Corollary 2), we have

Pr

 rt ̸= TreeHashh(D̃B)

∧ D̂B is 1/λ-close to a degree-m(|H| − 1) polynomial
∧ wTHDel.VerD̂B

′′
(LDB, ⟨Mh, tLDB

, rt⟩, q, σ, π) = 1

 ≥ 1

p(γ(λ))
− negl(γ(λ)) .

Then, since D̂B
′

is obtained by applying global self correction to D̂B, when D̂B is 1/λ-close to a degree-
m(|H|−1) polynomial, D̂B

′
must be such a polynomial (Corollary 2), and it holds wTHDel.Valid(D̂B

′
, LDB) =

1 from the definition of wTHDel.Valid. Thus, we have

Pr


rt ̸= TreeHashh(D̃B)

∧ wTHDel.Valid(D̂B
′
, LDB) = 1

∧ D̂B is 1/λ-close to D̂B
′

∧ wTHDel.VerD̂B
′′
(LDB, ⟨Mh, tLDB

, rt⟩, q, σ, π) = 1

 ≥ 1

p(γ(λ))
− negl(γ(λ)) .

Then, since D̂B
′′

(which is given to wTHDel.Ver in the above expression) is defined by D̂B
′′
(v) :=

SelfCorr′.Rec(stv, D̂B|Qv) for ∀v ∈ I , when D̂B is 1/λ-close to D̂B
′
, we have D̂B

′′
= D̂B

′
|I from the security

of SelfCorr′ (Corollary 2). Thus, we have

Pr

 rt ̸= TreeHashh(D̃B)

∧ wTHDel.Valid(D̂B
′
, LDB) = 1

∧ wTHDel.VerD̂B
′
|I (LDB, ⟨Mh, tLDB

, rt⟩, q, σ, π) = 1

 ≥ 1

p(γ(λ))
− negl(γ(λ)) . (2)

We can rewrite (2) as follows by rewriting the above-specified experiment by using (B1,B2) and removing
unnecessary parts.

Pr


rt ̸= TreeHashh(D̃B)

∧ wTHDel.Valid(D̂B
′
, LDB) = 1

∧ wTHDel.VerD̂B
′
|I (LDB, ⟨Mh, tLDB

, rt⟩, q, σ, π) = 1

∣∣∣∣∣∣∣∣∣∣∣

(D̂B
′
, LDB, st)← B1(1λ, zλ)

(q, σ)← wTHDel.Query1(1
λ)

(rt, π)← B2(h, q, σ, st)
I := wTHDel.Query2(LDB, σ, π)

D̃B← wTHDel.Decode(D̂B
′
, LDB)


≥ 1

p(γ(λ))
− negl(γ(λ)) .

Thus, the pair (B1,B2) indeed breaks the soundness of wTHDel. This completes the proof of Lemma 1.

5 Public-Coin Oracle Memory Delegation
In this section, we construct a public-coin oracle memory delegation scheme.

Lemma 6. Assume the sub-exponential hardness of the LWE assumption. Then, there exists a public-coin 2-
round oracle memory delegation scheme with γ-soundness for computation-time bound γ for any (sufficiently
small) super-polynomial function γ (e.g., γ(λ) = O(λlog log λ)).

As explained in Section 2, our strategy is to combine our tree-hash memory delegation scheme (Lemma 1)
with the RAM delegation scheme of Choudhuri, Jain, and Jin [CJJ22]. Therefore, we start by recalling the
definition of RAM delegation schemes and the scheme of Choudhuri et al. [CJJ22].

5.1 Preliminary: RAM delegation
We recall the definition of publicly verifiable non-interactive RAM delegation schemes from [KPY19, CJJ22].
(We straightforwardly generalize the definition to consider security against slightly super-polynomial-time ad-
versaries.)

21

A RAM machine R with word size ℓ is modeled as a deterministic machine with random access to a memory
of at most 2ℓ bits and a local state of O(ℓ) bits. At every step, the machine reads or writes a single memory bit
and updates its state. For simplicity, we use the security parameter λ as the word size. Also, for convenience,
we consider a slightly more general model than [KPY19, CJJ22] and think of a RAM machine that has access
to a memory of at most 2ℓ bits and additionally takes a short input. (In [KPY19, CJJ22], a RAM machine has
access to a memory of (exactly) 2ℓ bits and takes no input other than the memory and the initial local state.)
In this paper, the memory and state of a RAM machine at a given time-step are referred to as its memory-state
pair.20 For any RAM machine R, let UR denote the language such that (ℓ, x,ms,ms′, T) ∈ UR if and only if R
with word size ℓ and on input x transitions from memory-state pair ms to memory-state pair ms′ in T steps.

Definition 10. For any RAM machine R, a publicly verifiable non-interactive RAM delegation scheme for R
consists of four algorithms (Setup,Mem,Prove,Ver) that have the following syntax.

Syntax.

• (pk, vk, dk)← Setup(1λ, T): Setup is a probabilistic algorithm that takes as input a security parameter
1λ and a time bound T , and it outputs a triple of public keys: a prover key pk, a verifier key vk, and a
digest key dk.

• digest := Mem(dk,ms): Mem is a deterministic algorithm that takes as input a digest key dk and a
memory-state pair ms, and it outputs a digest digest of the memory-state pair.

• π := Prove(pk, x,ms,ms′): Prove is a deterministic algorithm that takes as input a prover key pk, an
input x to R, source and destination memory-state pairs ms,ms′, and it outputs a proof π.

• b := Ver(vk, x, digest, digest′, π): Ver is a deterministic algorithm that takes as input a verifier key vk,
an input x to R, source and destination digests digest, digest′, and a proof π, and it outputs a bit b.

Efficiency. For any functions TSetup : N × N → N and Lπ : N × N × N → N, a publicly verifiable non-
interactive RAM delegation scheme is said to have setup time TSetup and proof length Lπ if it satisfies the follow-
ing: For every λ, T ∈ N such that T ≤ 2λ and for every x,ms,ms′ ∈ {0, 1}∗ such that (λ, x,ms,ms′, T) ∈ UR:

• Setup(1λ, T) runs in time TSetup(λ, T).

• Mem(dk,ms) runs in time |ms| · poly(λ) and outputs a digest of length λ.

• Prove(pk, x,ms,ms′) runs in time poly(λ, T, |x|, |ms|) and outputs a proof of length Lπ(λ, T, |x|).

• Ver(vk, x, digest, digest′, π) runs in time O(Lπ(λ, T, |x|)) + poly(λ, |x|).

Security. For any function γ : N→ N, a publicly verifiable non-interactive RAM delegation scheme is called
γ-sound if it satisfies the following.

• Correctness. For every λ, T ∈ N such that T ≤ 2λ and for every x,ms,ms′ ∈ {0, 1}∗ such that
(λ, x,ms,ms′, T) ∈ UR,

Pr

Ver(vk, x, digest, digest′, π) = 1

∣∣∣∣∣∣∣∣
(pk, vk, dk)← Setup(1λ, T)
digest := Mem(dk,ms)
digest′ := Mem(dk,ms′)
π := Prove(pk, x,ms,ms′)

 = 1 .

• γ-collision resistance. For every probabilistic γO(1)-time adversaryA and every sequence of polynomial-
size non-uniform advise {zλ}λ∈N, there exists a negligible function negl such that for every λ ∈ N and
T ≤ γ(λ),

Pr

[
ms ̸= ms′

∧Mem(dk,ms) = Mem(dk,ms′)

∣∣∣∣ (pk, vk, dk)← Setup(1λ, T)
(ms,ms′)← A(pk, vk, dk, zλ)

]
≤ negl(γ(λ)) .

20Unlike [KPY19, CJJ22], we refrain from using the term “configuration” to refer to the memory and state since we allow RAM
machines to additionally have inputs.

22

• γ-soundness. For every probabilistic γO(1)-time adversaryA and every sequence of polynomial-size non-
uniform advise {zλ}λ∈N, there exists a negligible function negl such that for every λ ∈ N and T ≤ γ(λ),

Pr


Ver(vk, x, digest, digest′, π) = 1
∧ (λ, x,ms,ms′, T) ∈ UR

∧ digest = Mem(dk,ms)
∧ digest′ ̸= Mem(dk,ms′)

∣∣∣∣∣∣∣∣
(pk, vk, dk)← Setup(1λ, T)
(x,ms,ms′, digest, digest′, π)← A(pk, vk, dk, zλ)


≤ negl(γ(λ)) .

A publicly verifiable non-interactive RAM delegation scheme is called public coin if the setup algorithm Setup
is public coin, i.e., it just outputs a triple of strings that are sampled uniformly randomly.

We use the following prior result [CJJ22] with straightforward adaptation.

Theorem 1. Let γ be any (sufficiently small) super-polynomial function (e.g., γ(λ) = λlog log λ), and assume
the γ-hardness of the LWE assumption. Then, for any RAM machine R, there exists a publicly verifiable non-
interactive RAM delegation scheme with γ-soundness, where the setup time is TSetup(λ, T) = poly(λ, log T)
and proof length isLπ(λ, T, |x|) = poly(λ, log T, |x|). Furthermore, this scheme is public coin, and (i) the setup
algorithm Setup outputs a hash function as a digest key, where the hash function is sampled from a collision-
resistant hash function family that is independent of the computation-time bound T , and (ii) the digest algorithm
Mem, on input a digest key dk and a memory-state pair ms = (DB, st), outputs a triple digest = (st, rt, |DB|)
that consists of the local state st, the tree-hash rt := TreeHashdk(DB) of the memory DB, and the memory
length |DB|, where the tree-hash is computed by using the digest key dk as a hash function.

Two remarks about Theorem 1 are given below.

1. The first part of Theorem 1 differs from what is shown in [CJJ22] in that (i) RAM machines are defined
in a slightly more general model where a RAM machine has access to a memory of at most 2ℓ bits (rather
than exactly 2ℓ bits) and takes a short input in addition to a local state and a memory, and (ii) soundness
is required to hold for λω(1)-time adversaries and λω(1)-time RAM computations. (In [CJJ22], soundness
is shown for polynomial-time adversaries and polynomial-time RAM computations under the polynomial
hardness of the LWE assumption.) Still, the first part of Theorem 1 can be easily obtained from [CJJ22].
In particular, the analysis given in [CJJ22] can be easily extended (i) for memories of at most 2ℓ bits by
appending the length |DB| of the memory to the digest digest so that the verification algorithm Verify can
learn |DB|, (ii) for RAM machines that take additional short inputs by allowing the proof length to be
polynomial in the input length (but still polylogarithmic in the computation-time bound T),21 and (iii) for
λω(1)-time adversaries and λω(1)-time RAM computations by assuming the λω(1)-hardness of the LWE
assumption.

2. Regarding the furthermore part of Theorem 1, the public-coin property is implicitly mentioned in [CJJ22].
In particular, it is mentioned that the RAM delegation scheme (or more precisely its main component)
works in the common random string model rather than the common reference string model, implying that
its setup algorithm Setup outputs uniformly random strings.22 The properties of Setup and Mem can be
easily verified by inspecting the scheme description given in [CJJ21, Figure 5].23

5.2 Proof of Lemma 6
Fix any sufficiently small super-polynomial function γ. Let R be the following RAM machine.

21For those who are familiar with the RAM delegation of [CJJ22], we note that we allow the statements of the batch-NP argument to
contain the input of the RAM machine.

22Technically, the public-coin property can be verified by observing that under the LWE assumption, all the components of the scheme
of [CJJ22] can be made public coin by using, e.g., an FHE scheme with pseudorandom public keys and ciphertexts.

23Actually, Mem in [CJJ21, Figure 5] outputs a pair digest = (st, rt), but as noted above, we consider an extended version that
additionally includes |DB| in digest.

23

• R is given as input a description of a Turing machine M and given as memory a string DB. Then, R
internally executes M(DB).24 When M terminates, R writes (y, t) at the beginning of the memory and
terminates, where y is the output of M and t is the running time of M .

Without loss of generality, we assume that there exists a (non-decreasing) polynomial polyR such that when
the running time of M(DB) is t, the running time of RDB(M) is polyR(t), and RDB(M) only reads and
writes the first polyR(t) bits of DB (hence, we assume that DB is of length polyR(t)). Let RDel =
(RDel.Setup,RDel.Mem,RDel.Prove,RDel.Ver) be the public-coin non-interactive RAM delegation scheme
given by Theorem 1 for the RAM machine R with γ-soundness. Recall that RDel.Setup outputs as a digest
key a hash function that is sampled from a collision-resistant hash family (see the furthermore part of Theo-
rem 1). We can assume that this hash function family is polylogarithmic depth (and secure against λlog λ-time
adversaries) since we assume the sub-exponential hardness of the LWE assumption, which implies the existence
of sub-exponentially secure collision-resistant hash function families (see Remark 2 in Section 3.2.1). For this
hash function family, let THDel = (THDel.Mem,THDel.Query1,THDel.Query2,THDel.Prove,THDel.Ver)
be any public-coin 2-round tree-hash oracle memory delegation scheme with γ-soundness (e.g., the one given
in Lemma 1).
Remark 7 (Simplified syntax of RDel.Setup). Without loss of generality, we can think as if RDel.Setup only
takes 1λ as input (rather than (1λ, T) as defined in Definition 10). This is because the output length of
RDel.Setup(1λ, T) is bounded by polySetup(λ) for any T ≤ 2λ for a fixed polynomial polySetup. (Recall that
the setup time is TSetup(λ, T) = poly(λ, log T).) Indeed, in this case, we can assume without loss of generality
that RDel.Setup outputs a triple of sufficiently long random strings (p̄k, v̄k, d̄k) (whose length is longer than
polySetup(λ)), and RDel.Mem, RDel.Prove, and RDel.Ver use prefixes of p̄k, v̄k, and d̄k as the actual keys.25

Thus, in the following, we use this simplified syntax of RDel.Setup. Also, since RDel.Mem, RDel.Prove,
and RDel.Ver need to know T to determine the lengths of the actual keys, we write them as RDel.MemT ,
RDel.ProveT , and RDel.VerT to make it explicit what value of T they depend on. ♢

Our oracle memory delegation schemeODel = (Mem,Query1,Prove,Query2,Ver) is given in Algorithm 4.
(A high-level idea is explained in Section 2.) Since THDel and RDel are public coin, ODel is also public coin.
Completeness holds due to the furthermore part of Theorem 1 (in particular, the part about the digest algorithm
RDel.Mem).26 The efficiency condition of ODel follows from the efficiency conditions of THDel and RDel. (In
particular, Prove runs in time poly(λ, t, T) = poly(λ, t), and Ver runs in time poly(λ, log t, log T) = poly(λ).)
In the following, we focus on soundness.

Assume for contradiction that soundness does not hold, i.e., there exist a pair of probabilistic γO(1)-time
adversaries (A1,A2), a sequence of polynomial-size advice {zλ}λ∈N, and a polynomial p such that for infinitely
many λ ∈ N, there exists t ≤ γO(1)(λ) such that

Pr


y0 ̸= y1

∧ VerD̂B|I0 (LDB, ⟨M, t, y0⟩, q, σ, π0) = 1

∧ VerD̂B|I1 (LDB, ⟨M, t, y1⟩, q, σ, π1) = 1

∣∣∣∣∣∣∣∣∣∣
(D̂B, LDB,M, y0, y1, st)← A1(1

λ, zλ)
(q, σ)← Query1(1

λ)
(π0, π1)← A2(q, σ, st)
I0 := Query2(LDB, σ, π0)
I1 := Query2(LDB, σ, π1)

 ≥ 1

p(γ(λ))
.

(3)

We use (A1,A2) to obtain a γO(1)-time adversaryB that breaks the soundness ofRDel. A high-level strategy
is as follows. As defined in Definition 10, breaking the soundness of RDel requires generating an input x, source
and destination memory-state pairs (ms,ms′), source and destination digests (digest, digest′), and a proof π
such that (i) π is accepting w.r.t. (digest, digest′), (ii) ms′ is the correct destination memory-state pair that can
be obtained by running R starting from input x and memory-state pair ms, (iii) digest is the correct digest of
ms, but (iv) digest′ is not the correct digest of ms′. Now, suppose the adversary pair (A1,A2) generates two
proofs of ODel that are accepting w.r.t. a single encoded memory D̂B and two different outputs as shown in (3).

24R emulates the working tape of M by writing it to the memory DB. (It is assumed that DB contains a padding string as a suffix so
that it is long enough for the emulation of the working tape. It is also assumed that M is designed to ignore this padding part of DB.)

25Recall that RDel.Setup is public coin.
26Formally, completeness holds under a slightly modified definition where for each ⟨M, t, y⟩ ∈ {0, 1}poly(λ), we only consider a

memory DB that contains a padding string as a suffix so that it is of length T := polyR(t) (cf. Footnote 24).

24

Algorithm 4 Public-coin oracle memory delegation scheme ODel.

• D̂B := Mem(1λ,DB):

1. Output D̂B := THDel.Mem(1λ,DB).

• (q, σ)← Query1(1
λ):

1. Run (qTHDel, σTHDel)← THDel.Query1(1
λ).

2. Run (pk, vk, dk)← RDel.Setup(1λ).
3. Output q := (qTHDel, pk, vk, dk) and σ := σTHDel.

• π := Prove(DB, ⟨M, t, y⟩, q):

1. Parse q as (qTHDel, pk, vk, dk), and let T := polyR(t).
2. Run RDB(M). If RDB(M) does not terminate in T steps, abort. Otherwise, let DB′ denote the

content of the memory at the termination of RDB(M).
3. Run πRDel := RDel.ProveT (pk,M,ms,ms′) forms := (DB, ststart) andms′ := (DB′, stend), where

ststart and stend are the initial and the terminating states of R.
4. Run πTHDel := THDel.Prove(DB, ⟨Mh, t|DB|, rt⟩, qTHDel), where Mh and t|DB| are defined as in

Definition 9 for the hash function h := dk (more precisely, h is a prefix of dk; cf. Remark 7) and rt
is the tree-hash that is obtained by rt := TreeHashdk(DB).

5. Let (y′, t′) be the prefix of DB′ that R wrote before the termination, rt′ be the tree-hash that is
obtained by rt′ := TreeHashdk(DB

′), and πTreeHash be the local opening for (y′, t′) w.r.t. rt′.
6. Output π := (rt, rt′, (y′, t′), πRDel, πTHDel, πTreeHash).

• I := Query2(|DB|, σ, π):

1. Parse π as (rt, rt′, (y′, t′), πRDel, πTHDel, πTreeHash).
2. Output I := THDel.Query2(|DB|, σ, πTHDel).

• b := VerD̂B|I (|DB|, ⟨M, t, y⟩, q, σ, π):

1. Parse q as (qTHDel, pk, vk, dk) and π as (rt, rt′, (y′, t′), πRDel, πTHDel, πTreeHash). Also, obtain T as
in Prove, and abort if |DB| ̸= T . Let digest := (ststart, rt, T) and digest′ := (stend, rt

′, T).
2. Output 1 if all of the following hold.

(a) y = y′ and t′ ≤ t.
(b) RDel.VerT (vk,M, digest, digest′, πRDel) = 1.
(c) THDel.VerD̂B|I (|DB|, ⟨Mh, t|DB|, rt⟩, qTHDel, σ, πTHDel) = 1, where h := dk.
(d) πTreeHash is a valid local opening for (y′, t′) w.r.t. rt′.
If any of the above does not hold, output 0.

25

Then, at least one of the proofs must be accepting w.r.t. an incorrect output (i.e., an output that differs from the
correct output that is obtained based on D̂B). In that case, one of the proofs must contain a proof of RDel that is
accepting w.r.t. an incorrect destination digest (i.e., a digest that differs from the correct destination digest that
is obtained based on D̂B). We consider an adversary that internally runs (A1,A2) and outputs such a proof.

Formally, we obtain the adversary B as follows. Let DecodeTHDel be the algorithm that is guaranteed to
exist by the soundness of THDel (cf. Definition 9). Then, for any λ ∈ N and t ≤ γO(1)(λ), the adversary B is
described in Algorithm 5. Note that B runs in time γO(1)(λ) sinceA1 andA2 are γO(1)-time adversaries and B
runs RDB(M) at most T = polyR(t) ≤ poly(γ(λ)) steps.

Algorithm 5 Adversary B against the soundness of RDel.
On input (pk, vk, dk), do the following. Let T := polyR(t).

1. Run (D̂B, LDB,M, y0, y1, st)← A1(1
λ, zλ).

2. Run (qTHDel, σTHDel)← THDel.Query1(1
λ).

3. Run (π0, π1)← A2(q, σ, st), where q := (qTHDel, pk, vk, dk) and σ := σTHDel.

4. For each b ∈ {0, 1}, parse πb as (rtb, rt′b, (y′b, t′b), πRDel,b, πTHDel,b, πTreeHash,b), and let digestb := (ststart,
rtb, T) and digest′b := (stend, rt

′
b, T).

5. Find b∗ ∈ {0, 1} that satisfies all of the following.

(a) RDel.VerT (vk,M, digestb∗ , digest
′
b∗ , πRDel,b∗) = 1.

(b) RDel.MemT (dk,ms) = digestb∗ , where ms := (D̃B, ststart) for D̃B← DecodeTHDel(D̂B, LDB).
(c) RDel.MemT (dk,ms′) ̸= digest′b∗ , where ms′ is the memory-state pair of R after T steps starting

from input M and memory-state pair ms.

If such b∗ exists, output (M,ms,ms′, digestb∗ , digest
′
b∗ , πRDel,b∗). Otherwise, abort.

Let us see that B indeed breaks the soundness of RDel. Fix any λ ∈ N and t ≤ γO(1)(λ) for which we have
(3). Let T := polyR(t). We start by giving a sequence of claims about various values that B computes. The first
claim says that in B, the internally emulated (A1,A2) succeed with non-negligible probability as shown in (3).

Claim 1. In an execution of B(pk, vk, dk) for (pk, vk, dk)← RDel.Setup(1λ),

Pr


y′0 ̸= y′1
∧ LDB = T
∧ ∀b ∈ {0, 1} : RDel.VerT (vk,M, digestb, digest

′
b, πRDel,b) = 1

∧ ∀b ∈ {0, 1} : THDel.VerD̂B|Ib (LDB, ⟨Mdk, tLDB
, rtb⟩, qTHDel, σ, πTHDel,b) = 1

∧ ∀b ∈ {0, 1} : πTreeHash,b is a valid opening for (y′b, t′b) w.r.t. rt′b

 ≥
1

p(γ(λ))
,

where Ib := THDel.Query2(LDB, σ, πTHDel,b).

Proof . This claim follows immediately from (3) (specifically, it suffices to rewrite (3) by inlining Query1,
Query2, and Ver). We note that when π0 and π1 are accepted and y0 ̸= y1, we have y′0 ̸= y′1 and LDB = T since
Ver checks yb

?
= y′b and LDB

?
= T .

The second claim says that in B, if the internally emulated (A1,A2) output an accepting proof πTHDel,b of
THDel, the corresponding tree-hash rtb is correctly computed.

Claim 2. In an execution of B(pk, vk, dk) for (pk, vk, dk)← RDel.Setup(1λ), for each b ∈ {0, 1},

Pr

[
rt ̸= TreeHashdk(D̃B)

∧ THDel.VerD̂B|Ib (LDB, ⟨Mdk, tLDB
, rtb⟩, qTHDel, σ, πTHDel,b) = 1

]
≤ negl(γ(λ)),

where Ib := THDel.Query2(LDB, σ, πTHDel,b).

26

Proof . This claim follows immediately from the γ-soundness of THDel.

The third claim says that in B, if the internally emulated (A1,A2) output two distinct outputs y′0, y
′
1 and the

corresponding openings πTreeHash,0, πTreeHash,1 are valid, the corresponding destination digests digest′0, digest′1
must be distinct.

Claim 3. In an execution of B(pk, vk, dk) for (pk, vk, dk)← RDel.Setup(1λ),

Pr

 digest′0 = digest′1
∧ y′0 ̸= y′1
∧ ∀b ∈ {0, 1} : πTreeHash,b is a valid opening for (y′b, t′b) w.r.t. rt′b

 ≤ negl(γ(λ)).

Proof . Since digest′0 = digest′1 implies rt′0 = rt′1 (recall digest′b := (stend, rt
′
b, T)), this claim follows immedi-

ately from the binding property of tree-hashing.

Now, we analyze B. Combined with Claim 2 and Claim 3, Claim 1 implies the following when executing
B(pk, vk, dk) for (pk, vk, dk)← RDel.Setup(1λ).

Pr


digest′0 ̸= digest′1
∧ LDB = T
∧ ∀b ∈ {0, 1} : RDel.VerT (vk,M, digestb, digest

′
b, πRDel,b) = 1

∧ ∀b ∈ {0, 1} : rt = TreeHashdk(D̃B)

 ≥ 1

p(γ(λ))
− negl(γ(λ)) .

Note that LDB = T ∧ rt = TreeHashdk(D̃B) implies RDel.MemT (dk,ms) = digestb since
RDel.MemT (dk,ms) = (ststart, rt, |D̃B|) = (ststart, rt, LDB) = (ststart, rt, T) = digestb (the first equal-
ity holds due to the furthermore part of Theorem 1 and the second equality holds since D̃B is obtained by
DecodeTHDel(D̂B, LDB), which outputs an LDB-bit string as stated in Definition 9). Thus, we obtain

Pr

 digest′0 ̸= digest′1
∧ ∀b ∈ {0, 1} : RDel.VerT (vk,M, digestb, digest

′
b, πRDel,b) = 1

∧ ∀b ∈ {0, 1} : RDel.MemT (dk,ms) = digestb

 ≥ 1

p(γ(λ))
− negl(γ(λ)) .

Then, since digest′0 ̸= digest′1 implies ∃b∗ ∈ {0, 1} s.t. RDel.MemT (dk,ms′) ̸= digest′b∗ , we obtain

Pr


∃b∗ ∈ {0, 1} :
RDel.MemT (dk,ms′) ̸= digest′b∗
∧ RDel.VerT (vk,M, digestb∗ , digest

′
b∗ , πRDel,b∗) = 1

∧ RDel.MemT (dk,ms) = digestb∗

 ≥ 1

p(γ(λ))
− negl(γ(λ)) .

Thus, B does not abort with probability at least 1/p(γ(λ)) − negl(γ(λ)). Then, since the definition of ms′

guarantees (λ,M,ms,ms′, T) ∈ UR in B when it does not abort, we have the following about the output
(M,ms,ms′, digestb∗ , digest

′
b∗ , πRDel,b∗) of B.

Pr


RDel.VerT (vk,M, digestb∗ , digest

′
b∗ , πRDel,b∗) = 1

∧ (λ,M,ms,ms′, T) ∈ UR

∧ RDel.MemT (dk,ms) = digestb∗
∧ RDel.MemT (dk,ms′) ≠ digest′b∗

 ≥ 1

p(γ(λ))
− negl(γ(λ)) .

Thus, B breaks the γ-soundness of RDel. This completes the proof of Lemma 6.

6 Public-Coin Weak Memory Delegation
In this section, we construct a public-coin memory delegation scheme.

Lemma 7. Assume the sub-exponential hardness of the LWE assumption, and assume the existence of a keyless
weakly (K, γ)-collision-resistant hash function forK(λ, ζ) = poly(λ, ζ) and γ(λ) = λτ(λ) for a super-constant
function τ(λ) = ω(1). Then, there exists t̄(λ) = λω(1) such that there exists a two-round memory delegation
scheme with weak soundness for computation-time bound t̄.

27

As suggested in Section 2, our strategy is to combine our oracle memory delegation scheme (Lemma 6) with
the keyless multi-collision-resistant hash function with local opening of Bitansky, Kalai, and Paneth [BKP18].
Therefore, we start by recalling the definition of multi-collision-resistant hash functions with local opening and
the result of Bitansky et al. [BKP18].

6.1 Preliminary: Multi-Collision-Resistant Hash with Local Opening
We recall the definition of (the keyless version of) multi-collision-resistant hash functions with local opening
[BKP18]. Roughly speaking, they are hash functions that hash a long string to a short digest in such a way
that any locations of the hashed string can be opened without opening the entire string. Their multi-collision
resistance is formalized as an extractability property, which roughly guarantees that if an adversary makes local
opening about a length-L string, we can extract a set of length-L strings such that any local opening by the
adversary must agree with one of the strings in the set. (When the adversary locally opens multiple locations
simultaneously, the opened values are guaranteed to agree with a single length-L string in the set.) The formal
definition is given below.

Definition 11. A keyless multi-collision-resistant hash functions with local opening consists of four algorithms
(Hash,Chal,Auth,Ver) that have the following syntax and security.

Syntax.

• rt := Hash(1λ, x): Hash is a deterministic polynomial-time algorithm that takes as input a security
parameter 1λ and an input x ∈ {0, 1}L of length L ≤ 2λ, and it outputs a digest rt ∈ {0, 1}λ.

• ch ← Chal(1λ, 1ρ): Chal is a probabilistic polynomial-time algorithm that takes as input a security
parameter 1λ and an opening-size parameter 1ρ, and it outputs a challenge ch.

• π := Auth(1λ, x, I, ch): Auth is a deterministic polynomial-time algorithm that takes as input a security
parameter 1λ, an input x ∈ {0, 1}L, an index set I ⊆ [L], and a challenge ch, and it outputs a proof π.

• b := Ver(1λ, L, rt, I, A, ch, π): Ver is a deterministic polynomial-time algorithm that takes as input a
security parameter 1λ, an input length L ∈ N, a digest rt ∈ {0, 1}λ, an index set I , an assignment
A : I → {0, 1}, a challenge ch, and a proof π, and it outputs a bit b.

Security.

• Correctness. For every λ, ρ, L ∈ N such that L ≤ 2λ, every x ∈ {0, 1}L, and every I ⊆ [L],

Pr

Ver(1λ, L, rt, I, A, ch, π) = 1

∣∣∣∣∣∣
rt← Hash(1λ, x)
ch← Chal(1λ, 1ρ)
π ← Auth(1λ, x, I, ch)

 = 1 .

• Succinctness. For every λ, ρ, L ∈ N such that L ≤ 2λ, every x ∈ {0, 1}L, every I ⊆ [L], and every ch ∈
{0, 1}∗ that has the same length as ch′ ← Chal(1λ, 1ρ), the authentication algorithm Auth(1λ, x, I, ch)
outputs a proof π such that |π| = poly(λ, ρ, |I|).

• K-collision resistance for length bound L̄. There exists a PPT extractor Ext such that for every PPT
adversary A = (A1,A2), every sequence of polynomial-size advice {zλ}λ∈N, every noticeable function
ε, every function L such that L(λ) ≤ L̄O(1)(λ), every sufficiently large security parameter λ ∈ N, and
every opening-size parameter ρ ≤ L(λ), the following holds for L := L(λ) and K := K(λ, |zλ|, L).

Pr

 |I| ≤ ρ
∧ Ver(1λ, L, rt, I, A, ch, π) = 1
∧ A ̸∈ {x|I | x ∈ S}

∣∣∣∣∣∣∣∣
(rt, st)← A1(1

λ, zλ)
ch← Chal(1λ, 1ρ)
(I, A, π)← A2(ch, st)

S ← ExtA2(·,st)(1λ, 1ρ, 1L, 1K , 11/ε(λ))

 ≤ ε(λ) .

Furthermore, in the above experiment, Ext always outputs a set S of size at most K.

28

A multi-collision-resistant hash function with local opening is called public coin if the query algorithm Chal is
public coin, i.e., it just outputs a string that is sampled uniformly randomly.

We use the following theorem, which is shown in Bitansky et al. [BKP18].

Theorem 2. For any (arbitrarily small) τ(λ) = ω(1), there exists L̄(λ) = λω(1) such that if there exists a
keyless weakly (K, γ)-collision-resistant hash function for K(λ, ζ) = poly(λ, ζ) and γ(λ) = λτ(λ), there exists
a public-coin27 keyless Kτ -collision-resistant hash function with local opening for input-length bound L̄.

6.2 Proof of Lemma 7
Let us first describe the building blocks of our memory delegation scheme. Fix any τ(λ) = ω(1) such that we
have a weakly (KH, γ)-collision-resistant hash function for KH(λ, ζ) = poly(λ, ζ) and γ(λ) = λτ(λ).

• HLO = (HLO.Hash,HLO.Chal,HLO.Auth,HLO.Ver): a public-coin keyless KHLO-collision-resistant
hash function with local opening for input-length bound L̄, where L̄ is an arbitrarily small super-
polynomial function and KHLO(λ, ζ, L) := KH(λ, ζ)

τ(λ). (Such a hash function is guaranteed to exist by
Theorem 2.) Without loss of generality, we assume L̄(λ) ≤ λτ(λ).

• ODel = (ODel.Mem,ODel.Query1,ODel.Query2,ODel.Prove,ODel.Ver): a public-coin 2-round oracle
memory delegation scheme with γ-soundness for computation-time bound t̄, where γ is defined as above
and t̄ is an arbitrarily small super-polynomial function. (Such an oracle memory delegation scheme is
guaranteed to exist by Lemma 6.)
Let ℓ

D̂B
be an upper bound such that for a memory of length LDB ≤ t̄(λ), the encoding algorithm

ODel.Mem outputs an encoding of length at most ℓ
D̂B

(LDB). Without loss of generality, we assume
ℓ
D̂B

(LDB) ≤ L̄(λ) for every LDB ≤ t̄(λ) by assuming that t̄ is sufficiently smaller than L̄.
Let ℓI be an upper bound such that for any LDB ≤ t̄(λ), the input query algorithm ODel.Query2(LDB, ·, ·)
outputs an input query of length at most ℓI(LDB). Since ODel.Query2(LDB, ·, ·) queries to an encoding
of length ℓ

D̂B
(LDB), we have ℓI(LDB) ≤ ℓ

D̂B
(LDB). Also, from the efficiency condition of ODel.Ver,

we have ℓI(LDB) = poly(λ) for any LDB ≤ t̄(λ).

Using these building blocks, we obtain a two-round memory delegation scheme with weak soundness for
computation-time bound t̄.
Remark 8 (Simplified syntax ofHLO.Chal). In this paper, without loss of generality we can think as ifHLO.Chal
only takes 1λ as input (rather than (1λ, 1ρ) as defined in Definition 11). This is because we only use HLO.Chal
with ρ := ℓI(LDB) for LDB ≤ t̄(λ). (Recall that ρ is the upper bound of the number of locations that can be
locally opened.) Indeed, in this case, we have ρ ≤ polyρ(λ) for a fixed polynomial polyρ as observed above, and
thus, we can assume without loss of generality that HLO.Chal just outputs a sufficiently long random string c̄h
(which is longer than the output of HLO.Chal(1λ, 1ρ) for any ρ ≤ polyρ(λ)), and HLO.Auth and HLO.Ver just
use a prefix of c̄h as the actual challenge.28 Thus, in the following, we use this simplified syntax of HLO.Chal.
Also, since HLO.Auth and HLO.Ver need to know ρ = ℓI(LDB) to determine the length of the actual challenge,
we write them as HLO.AuthLDB

and HLO.VerLDB
to make it explicit what value of ρ they depend on. ♢

Our memory delegation scheme Del = (Mem,Query,Prove,Ver) is described in Algorithm 6. Since HLO
and ODel are public coin, Del is also public coin. Completeness can be verified by inspection. The efficiency
condition of Del follows from the efficiency condition of ODel and the succinctness of HLO. In the rest of this
proof, we focus on soundness.

Assume for contradiction that there exists a pair of PPT adversaries (A1,A2), a sequence of polynomial-
size advice {zλ}λ∈N, a samplable entropic distribution ensemble {Yλ}λ∈N, and a polynomial p such that for
infinitely many λ ∈ N, there exists t ≤ t̄O(1)(λ) such that

Pr

Ver(digest, ⟨M, t, y⟩, q, π) = 1

∣∣∣∣∣∣∣∣
(digest,M, st)← A1(1

λ, zλ)
q ← Query(1λ)
y ← Yλ
π ← A2(q, y, st)

 ≥ 1

p(λ)
. (4)

27The public-coin property of the construction of [BKP18] is mentioned in [BKP18] and can be verified by inspection.
28Recall that HLO.Chal is public coin.

29

Algorithm 6 Public-coin weak memory delegation scheme Del.

• digest := Mem(1λ,DB):

1. Run D̂B := ODel.Mem(1λ,DB).

2. Run digestHLO ← HLO.Hash(1λ, D̂B).
3. Output digest := (digestHLO, |DB|).

• q ← Query(1λ):

1. Run (qODel, σODel)← ODel.Query1(1
λ).

2. Run ch← HLO.Chal(1λ).
3. Output q := (qODel, σODel, ch).

• π := Prove(DB, ⟨M, t, y⟩, q):

1. Parse q as (qODel, σODel, ch).
2. Run πODel := ODel.Prove(DB, ⟨M, t, y⟩, qODel).
3. Run I := ODel.Query2(|DB|, σODel, πODel).

4. Run πHLO ← HLO.AuthLDB
(1λ, D̂B, I, ch), where LDB := |DB|.

5. Output π := (πODel, I, D̂B|I , πHLO).

• b := Ver(digest, ⟨M, t, y⟩, q, π):

1. Parse digest as (digestHLO, LDB), parse q as (qODel, σODel, ch), parse π as (πODel, I, D̂B|I , πHLO),
and let L

D̂B
:= ℓ

D̂B
(LDB).

2. Output 1 if all of the following hold.
(a) L

D̂B
≤ L̄(λ).

(b) ODel.VerD̂B|I (LDB, ⟨M, t, y⟩, qODel, σODel, πODel) = 1.
(c) ODel.Query2(LDB, σODel, πODel) = I .
(d) HLO.VerLDB

(1λ, L
D̂B

, digestHLO, I, D̂B|I , ch, πHLO) = 1.

30

We use (A1,A2) to obtain a pair of γO(1)-time adversaries (B1,B2) that breaks the soundness of ODel.
Roughly speaking, the pair (B1,B2) works as follows. Since A1 outputs a digest while B1 is required to output
an encoded memory in the clear, B1 needs to extract a memory from (A1,A2). Naturally, B1 uses the multi-
collision resistance of HLO for this purpose. Specifically, B1 uses the extractor of HLO to extract a set of
memories such that local opening from A2 is guaranteed to be consistent with one of the memories in the set.
Then, B1 simply outputs a memory that is randomly chosen from the set, and B2 usesA2 to obtain a proof while
hoping that the obtained proof is accepting w.r.t. the memory that was chosen by B1. The key point is that B2
obtains such a proof with non-negligible probability since the size of the extracted set is guaranteed to be not
too large. The formal description of (B1,B2) is given below.

• (D̂B, LDB,M, y, y′, st)← B1(1λ, zλ):

1. Run (digest,M, stDel) ← A1(1
λ, zλ), and parse digest as (digestHLO, LDB). Define L

D̂B
:=

ℓ
D̂B

(LDB). If L
D̂B

> L̄(λ), abort.
2. Use the extractor ExtHLO of HLO to extract a set S of memories that A2 can locally open. Con-

cretely, let C2(·, stHLO) for stHLO := (λ, stDel) be the adversary that converts A2 to an adver-
sary against HLO as follows: On input ch, (i) run (qODel, σODel) ← ODel.Query1(1

λ), (ii) sam-
ple y ← Yλ, (iii) run πDel ← A2(qDel, y, stDel) for qDel := (qODel, σODel, ch), (iv) parse πDel as
(πODel, I, A, πHLO), and (v) output (I, A, πHLO). Then, the extractor ExtHLO is used against C2
with parameters (ρ, L,K, ε) := (ℓI(LDB), LD̂B

,KHLO(λ, |zλ|, LD̂B
), 1/2p(λ)).

3. Sample D̂B← S and y, y′ ← Yλ, and output (D̂B, LDB,M, y, y′, st), where st := (y, y′, stDel).

• (πODel, π
′
ODel)← B2(qODel, σODel, st):

1. Parse st as (y, y′, stDel).
2. ch← HLO.Chal(1λ).
3. Run πDel ← A2(qDel, y, stDel) and π′

Del ← A2(qDel, y
′, stDel) for qDel := (qODel, σODel, ch).

4. Parse πDel as (πODel, I, A, πHLO), and parse π′
Del as (π′

ODel, I
′, A′, π′

HLO).
5. Output (πODel, π

′
ODel).

We note that B1 and B2 indeed run in time poly(γ(λ)) since their running time is dominated by the running time
of ExtHLO, which is bounded by poly(L

D̂B
,KHLO(λ, |zλ|, LD̂B

)) = poly(λτ(λ)).
Now, we show that the pair (B1,B2) indeed breaks the soundness of ODel. First, we rewrite (4) by inlining

Query and Ver to obtain

Pr


L
D̂B
≤ L̄(λ)

ODel.VerA(LDB, ⟨M, t, y⟩, qODel, σODel, πODel) = 1
ODel.Query2(LDB, σODel, πODel) = I
HLO.VerLDB

(1λ, L
D̂B

, digestHLO, I, A, ch, πHLO) = 1

∣∣∣∣∣∣∣∣∣∣∣

((digestHLO, LDB),M, st)← A1(1
λ, zλ)

(qODel, σODel)← ODel.Query1(1
λ)

ch← HLO.Chal(1λ)
q := (qODel, σODel, ch)
y ← Yλ

(πODel, I, A, πHLO)← A2(q, y, st)

 ≥
1

p(λ)
,

where L
D̂B

:= ℓ
D̂B

(LDB). Then, since the multi-collision resistance of HLO and the construction of the adver-
sary C2 guarantee that we can extract a set of memories with which the adversary’s local opening must agree,
we have

Pr


L
D̂B
≤ L̄(λ)

ODel.VerA(LDB, ⟨M, t, y⟩, qODel, σODel, πODel) = 1
ODel.Query2(LDB, σODel, πODel) = I

A ∈ {D̂B|I | D̂B ∈ S}

∣∣∣∣∣∣∣∣∣∣∣∣∣

((digestHLO, LDB),M, st)← A1(1
λ, zλ)

S ← Ext
C2(·,stHLO)
HLO (1λ, 1ρ, 1L, 1K , 11/ε(λ))

(qODel, σODel)← ODel.Query1(1
λ)

ch← HLO.Chal(1λ)
q := (qODel, σODel, ch)
y ← Yλ

(πODel, I, A, πHLO)← A2(q, y, st)


≥ 1

p(λ)
− 1

2p(λ)
=

1

2p(λ)
,

31

where stHLO := (λ, st) and (ρ, L,K, ε) := (ℓI(LDB), LD̂B
,KHLO(λ, |zλ|, LD̂B

), 1/2p(λ)) when the extractor
ExtHLO is used. Then, since ExtHLO outputs a set of size at most K = KHLO(λ, |zλ|, LD̂B

), under the condition
that the extraction succeeds, a memory that is randomly chosen from the extracted set is consistent with the
adversary’s local opening with probability 1/K. Therefore, by using a randomly chosen extracted memory in
the verification, we obtain

Pr


L
D̂B
≤ L̄(λ)

ODel.VerD̂B|I (LDB, ⟨M, t, y⟩, qODel, σODel, πODel) = 1
ODel.Query2(LDB, σODel, πODel) = I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((digestHLO, LDB),M, st)← A1(1
λ, zλ)

S ← Ext
C2(·,stHLO)
HLO (1λ, 1ρ, 1L, 1K , 11/ε(λ))

D̂B← S
(qODel, σODel)← ODel.Query1(1

λ)
ch← HLO.Chal(1λ)
q := (qODel, σODel, ch)
y ← Yλ

(πODel, I, A, πHLO)← A2(q, y, st)


≥ 1

2Kp(λ)
.

From an average argument, when we consider sampling two random outputs y, y′ from Yλ and obtaining a proof
from A2 for each of them, we obtain accepting proofs for both of them with non-negligible probability, i.e., we
have

Pr



L
D̂B
≤ L̄(λ)

ODel.VerD̂B|I (LDB, ⟨M, t, y⟩, qODel, σODel, πODel) = 1
ODel.Query2(LDB, σODel, πODel) = I

ODel.VerD̂B|I′ (LDB, ⟨M, t, y′⟩, qODel, σODel, π
′
ODel) = 1

ODel.Query2(LDB, σODel, π
′
ODel) = I ′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((digestHLO, LDB),M, st)← A1(1
λ, zλ)

S ← Ext
C2(·,stHLO)
HLO (1λ, 1ρ, 1L, 1K , 11/ε(λ))

D̂B← S
(qODel, σODel)← ODel.Query1(1

λ)
ch← HLO.Chal(1λ)
q := (qODel, σODel, ch)
y, y′ ← Yλ

(πODel, I, A, πHLO)← A2(q, y, st)
(π′

ODel, I
′, A′, π′

HLO)← A2(q, y
′, st)


≥

(
1

4Kp(λ)

)3

. (5)

Note that Pr [y ̸= y′ | y, y′ ← Yλ] ≥ 1− 2−Ω(λ) since Yλ is a samplable entropic distribution. Therefore, from
(5) and the constructions of (B1,B2), we have

Pr


y ̸= y′

ODel.VerD̂B|I (LDB, ⟨M, t, y⟩, qODel, σODel, πODel) = 1

ODel.VerD̂B|I′ (LDB, ⟨M, t, y′⟩, qODel, σODel, π
′
ODel) = 1

∣∣∣∣∣∣∣∣∣
(D̂B, LDB,M, y, y′, st)← B1(1λ, zλ)
(qODel, σODel)← ODel.Query1(1

λ)
(πODel, π

′
ODel)← B2(qODel, σODel, st)

I := ODel.Query2(LDB, σODel, πODel)
I ′ := ODel.Query2(LDB, σODel, π

′
ODel)


≥

(
1

4Kp(λ)

)3

− 1

2Ω(λ)
.

Since K = KHLO(λ, |zλ|, LD̂B
) = poly(λτ(λ)), the above implies that the pair (B1,B2) indeed breaks the

γ-soundness of ODel. This concludes the proof of Lemma 7.

7 Public-coin 3-round Zero-Knowledge Argument
In this section, we construct a public-coin 3-round zero-knowledge argument.

Theorem 3. Assume the sub-exponential hardness of the LWE assumption, and assume the existence of a keyless
weakly (K, γ)-collision-resistant hash function forK(λ, ζ) = poly(λ, ζ) and γ(λ) = λτ(λ) for a super-constant
function τ(λ) = ω(1). Then, there exists a public-coin 3-round zero-knowledge argument for NP.

Following prior works [BBK+16, BKP18], we prove Theorem 3 by using our weak memory delegation
scheme (Lemma 7) to reduce the round complexity of Barak’s public-coin zero-knowledge argument [Bar01].

32

In particular, as in the prior works [BBK+16, BKP18], we combine our weak memory delegation scheme with
a primitive called a witness-indistinguishable argument of knowledge with first-message-dependent instances
[BBK+16, BKP18]. Thus, we start by recalling this primitive.

7.1 Preliminary: Witness Indistinguishability with First-Message-Dependent Instances
We recall the definition of witness-indistinguishable arguments of knowledge with first-message-dependent in-
stances from [BBK+16, BKP18], where we make straightforward modifications to focus on public-coin ones.

Definition 12 (WIAOK with first-message-dependent instances). For any NP language L, a public-coin 3-round
argument (P, V) for L is said to be a public-coin witness-indistinguishable argument of knowledge (WIAOK)
with first-message-dependent instances if it satisfies the following.

• Completeness with first-message-dependent instances: For any instance choosing function X and any
λ, ℓ ∈ N,

Pr

V (x,wi1,wi2,wi3) = 1

∣∣∣∣∣∣∣∣
(wi1, stP)← P (1λ, ℓ)
(x,w)← X(wi1), where x ∈ L ∩ {0, 1}ℓ and w ∈ RL(x)
wi2 ← V (1λ, ℓ)
wi3 ← P (x,w,wi1,wi2, stP)

 = 1 .

Furthermore, the honest prover’s first message wi1 is of length λ, independent of the length ℓ of the state-
ment x.

• Adaptive witness indistinguishability: For every polynomial ℓ, every PPT interactive Turing machine
V ∗, and every sequence of polynomial-size advice {zλ}λ∈N, there exists a negligible function negl such
that for every λ ∈ N,

Pr

V ∗(x,wi1,wi2,wi3, stV) = b

∣∣∣∣∣∣∣∣∣∣
(wi1, stP)← P (1λ, ℓ(λ))
(x,w0, w1,wi2, stV)← V ∗(wi1, zλ),

where x ∈ L ∩ {0, 1}ℓ(λ) and w0, w1 ∈ RL(x)
b← {0, 1}
wi3 ← P (x,wb,wi1,wi2, stP)

 ≤ 1

2
+ negl(λ) .

• Adaptive argument of knowledge: There exists a uniform PPT oracle Turing machine Ext such that for
every polynomial ℓ and every deterministic polynomial-time interactive Turing machine P ∗ (possibly with
some hardwired inputs), there exists a negligible function negl such that for every sufficiently large λ ∈ N
and every ε > 0, if

Pr

V (x,wi1,wi2,wi3) = 1

∣∣∣∣∣∣
wi1 ← P ∗

wi2 ← V (1λ, ℓ(λ))
(x,wi3)← P ∗(wi1,wi2)

 ≥ ε ,

then

Pr

 V (x,wi1,wi2,wi3) = 1
∧ w ̸∈ RL(x)

∣∣∣∣∣∣∣∣
wi1 ← P ∗

wi2 ← V (1λ, ℓ(λ))
(x,wi3)← P ∗(wi1,wi2)

w ← ExtP
∗
(11/ε, x,wi1,wi2,wi3)

 ≤ negl(λ) .

It is observed in [BKP18] that a public-coin 3-round WIAOK with first-message-dependent instances can
be obtained from a keyless multi-collision-resistant hash function.

Theorem 4 ([BKP18]). Assume the existence of a weakly K-collision-resistant hash function for K(λ, ζ) =
poly(λ, ζ). Then, for any language in NP, there exists a public-coin 3-round WIAOK with first-message-
dependent instances.

33

7.2 Proof of Theorem 3
Let us first lists the building blocks of our 3-round zero-knowledge argument.

• Com: a non-interactive perfectly binding commitment scheme (which can be constructed under the LWE
assumption [GHKW17, LS19]). Without loss of generality, we assume that the committer algorithm uses
λ-bit randomness.

• (PWIAOK, VWIAOK): a public-coin 3-round WIAOK with first-message-dependent instances (e.g., the one
that we can obtain by Theorem 4).

• Del = (Del.Mem,Del.Query,Del.Prove,Del.Ver): a public-coin 2-round memory delegation scheme
with weak soundness for slightly super-polynomial computation-time bound t̄ (e.g., the one that we can
obtain by Lemma 7). We assume for simplicity that Del.Mem outputs a digest of length λ, and we use ℓπ
to denote the proof length. (Because of the efficiency condition of memory delegation schemes, we have
ℓπ(λ) = poly(λ).)

For an NP language L, our 3-round zero-knowledge argument (P, V) is described in Algorithm 7. Clearly,
the prover and the verifier run in polynomial time. (Importantly, because of the efficiency condition of weak
memory delegation schemes, the language L′ is NP, and thus, (PWIAOK, VWIAOK) for the statement Ψ can be
executed in polynomial time.) Also, since (PWIAOK, VWIAOK) and Del are public coin, (P, V) is public coin.
Now, since the completeness of (P, V) can be verified by inspection, in the following, we show the soundness
and zero-knowledge of (P, V).

7.2.1 Proof of soundness.

Assume for contradiction that there exists a PPT cheating prover P ∗ and a polynomial p such that for infinitely
many x ̸∈ L, there exists z ∈ {0, 1}∗ such that

Pr [⟨P ∗(z), V ⟩(x) = 1] ≥ 1

p(λ)
. (6)

Without loss of generality, we assume that P ∗ is deterministic. Let us call a pair (x, z) be bad if we have (6) for
(x, z). Let Λ ⊆ N be the set such that we have λ ∈ Λ if and only if there exists a bad (x, z) such that |x| = λ.

We use P ∗ to obtain a pair of adversaries (A1,A2) that breaks the weak soundness of Del. Since P ∗ is
deterministic, for any (x, z), the first-round message (wi1, cmt) that P ∗(x, z) outputs is uniquely determined;
thus, due to the perfect binding property of Com, the committed value of cmt, denoted as digest∗|t∗, is also
uniquely determined. For each λ ∈ Λ, pick any bad (x, z) such that |x| = λ, and let zλ := (x, z, digest∗, t∗).
Then, we consider the following adversaries (A1,A2).

• (digest,M, st)← A1(1
λ, zλ):

1. Parse zλ as (x, z, digest∗, t∗).
2. Run (wi1, cmt, stP ∗) := P ∗(x, z).
3. Output (digest∗,Mwi1,cmt, st), where st = (x, z, digest∗, t∗,wi1, cmt, stP ∗).

• π ← A2(q, y, st):

1. Parse st as (x, z, digest∗, t∗,wi1, cmt, stP ∗).
2. Run wi3 := P ∗(y,wi2, q, stP ∗), where wi2 is obtained by wi2 ← VWIAOK(1

λ, ℓΨ(λ)).
3. Use the extractor ExtWIAOK of (PWIAOK, VWIAOK) to extract a witness w from P ∗. Concretely,

let P ∗
WIAOK be the cheating prover that converts P ∗ to a prover against the adaptive argument-of-

knowledge property of (PWIAOK, VWIAOK) as follows. P ∗
WIAOK has (x, z, q, y) as a hardwired in-

put. In Round 1, P ∗
WIAOK runs (wi1, cmt, stP ∗) := P ∗(x, z) and outputs wi1. After receiving wi2,

P ∗
WIAOK runs wi3 := P ∗(y,wi2, q, stP ∗) and outputs Ψ = (x,wi1, cmt, y, q) and wi3 in Round 3.

Then, the extractor ExtWIAOK is used against P ∗
WIAOK with parameter ε = 1/2p(λ) to obtain a

witness w. If w is not a valid witness for (wi1, cmt, y, q) ∈ L′, abort.

34

Algorithm 7 Public-coin 3-round zero-knowledge argument (P, V).

• Input. Let x ∈ L be the common input to the prover P and the verifier V , and w ∈ RL(x) be the private
input to P . Let λ := |x| be the security parameter.

• Round 1. The prover P does the following.

1. Run (wi1, stP) ← PWIAOK(1
λ, ℓΨ(λ)), where ℓΨ is the length of the statement Ψ that is defined in

Round 3 below.
2. Run cmt ← Com(0λ|0log t̄(λ)), where 0λ|0log t̄(λ) is the concatenation of 0λ and 0log t̄(λ). (Recall

that t̄ is the computation-time bound that is defined in the soundness of Del.)
3. Send (wi1, cmt) to V .

• Round 2. On receiving (wi1, cmt), the verifier V does the following.

1. Sample a uniformly random string y ∈ {0, 1}λ.
2. Run wi2 ← VWIAOK(1

λ, ℓΨ(λ)).
3. Run q ← Del.Query(1λ).
4. Send (y,wi2, q) to P .

• Round 3. On receiving (y,wi2, q), the prover P does the following.

1. Let L′ be the language defined by

L′ :=

(wi1, cmt, y, q)

∣∣∣∣∣∣
∃digest, rcmt ∈ {0, 1}λ, π ∈ {0, 1}ℓπ(λ), t ≤ t̄(λ)
s.t. Com(digest|t; rcmt) = cmt

Del.Ver(digest, ⟨Mwi1,cmt, t, y⟩, q, π) = 1

 ,

where Mwi1,cmt is a Turing machine that has (wi1, cmt) as a hardwired input, and on input DB ∈
{0, 1}∗, it does the following: (i) view DB as a Turing machine M (possibly with some hardwired
inputs), (ii) run M(wi1, cmt), (iii) parse the output of M as (y,wi2, q), and (iv) output y.

2. Let Ψ = (x,wi1, cmt, y, q) be the following statement: x ∈ L ∨ (wi1, cmt, y, q) ∈ L′. (Note that
the length of Ψ is determined by λ = |x| alone.)

3. Send wi3 ← PWIAOK(Ψ, w,wi1,wi2, stP) to V .

• Verification. On receiving wi3, the verifier does the following.

1. Output b := VWIAOK(Ψ,wi1,wi2,wi3).

35

4. Parse w as (digest, rcmt, π, t), and output π.

We show that the pair (A1,A2) indeed breaks the weak soundness of Del. For any λ ∈ Λ, let zλ =
(x, z, digest∗, t∗) be defined as above and Yλ be the samplable entropic distribution that outputs a uniformly
random string y ∈ {0, 1}λ. Consider the experiment for the weak soundness ofDel (Definition 7) w.r.t. (A1,A2),
{zλ}λ∈Λ, {Yλ}λ∈Λ, λ ∈ Λ, and t∗. First, since the pair (A1,A2) perfectly emulates an honest verifier of (P, V)
for P ∗, the transcript (wi1,wi2,wi3) that is obtained in A2 is accepting with probability at least 1/p(λ). Then,
from an average argument, with probability at least 1/2p(λ) over the choice of the input (q, y) to A2, the input
(q, y) toA2 is “good” in the sense that when the input toA2 is (q, y), the transcript (wi1,wi2,wi3) that is obtained
in A2 is accepting with probability at least 1/2p(λ) over the choice of wi2. Then, since x ̸∈ L, the adaptive
argument-of-knowledge property of (PWIAOK, VWIAOK) guarantees that under the condition that the input (q, y)
toA2 is good,A2 obtains a valid witness w for (wi1, cmt, y, q) ∈ L′ with probability at least 1/2p(λ)−negl(λ).
Now, the definition of L′ and the binding property of Com guarantee that when w = (digest, rcmt, π, t) is a valid
witness for (wi1, cmt, y, q) ∈ L′, we have Del.Ver(digest∗, ⟨Mwi1,cmt, t

∗, y⟩, q, π) = 1 and t∗ ≤ t̄(λ). Thus,
A2 outputs an accepting proof π with probability at least (1/2p(λ)− negl(λ)) · 1/2p(λ), and therefore, the pair
(A1,A2) breaks the weak soundness of Del.

7.2.2 Proof of zero-knowledge.

For any polynomial-time cheating verifier V ∗ (which is assumed to be deterministic without loss of generality),
our simulator S is described in Algorithm 8. Because of the efficiency condition of memory delegation schemes,
S runs in time poly(λ, t∗) = poly(λ). Also, by the definition of L′ and the trivial fact that V ∗

x,z(wi1, cmt) =

(y,wi2, q), the witness w in Round 3 is a valid witness for (wi1, cmt, y, q) ∈ L′.29 Thus, the indistinguishability
between honest executions and simulation can be shown by using a standard hybrid argument relying on the
hiding property of Com and the adaptive witness indistinguishability of (PWIAOK, VWIAOK).

Algorithm 8 Simulator S(x, z).
S internally invokes V ∗(x, z) and emulates an interaction of (P, V) for V ∗ as follows. In the following, we use
V ∗
x,z to denote the description of V ∗ in which (x, z) is hardwired as the input. Let λ := |x|.

• Round 1.

1. Run (wi1, stP)← PWIAOK(1
λ, ℓΨ(λ))

2. Run digest := Del.Mem(1λ, V ∗
x,z).

3. Run cmt := Com(digest|t∗; rcmt) for a uniformly random string rcmt ∈ {0, 1}λ, where t∗ is an
upper bound of the running time of Mwi1,cmt(V

∗
x,z). (It can be assumed without loss of generality

that t∗ depends on |wi1| and |cmt| but otherwise does not depend on wi1, cmt. Therefore, there is
no circularity, i.e., t∗ can be defined before obtaining cmt.) Note that since V ∗ runs in polynomial
time, t∗ = poly(λ) ≤ t̄(λ).

4. Send (wi1, cmt) to V ∗.

• Round 3. On receiving (y,wi2, q) from V ∗, the simulator S does the following.

1. Run π := Del.Prove(V ∗
x,z, ⟨Mwi1,cmt, t

∗, y⟩, q).
2. Send wi3 ← PWIAOK(Ψ, w,wi1,wi2, stP) to V ∗, where w := (digest, rcmt, π, t

∗).

Then, S outputs the view of V ∗ in the above interaction.

This completes the proof of Theorem 3.
29Since Del is public coin, its correctness guarantees that the proof π in Round 3 is accepting for any q.

36

References
[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd FOCS, pages 106–115.

IEEE Computer Society Press, October 2001.

[BBK+16] Nir Bitansky, Zvika Brakerski, Yael Tauman Kalai, Omer Paneth, and Vinod Vaikuntanathan. 3-
message zero knowledge against human ignorance. In Martin Hirt and Adam D. Smith, editors,
TCC 2016-B, Part I, volume 9985 of LNCS, pages 57–83. Springer, Heidelberg, October / Novem-
ber 2016.

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein,
and Eran Tromer. The hunting of the SNARK. Journal of Cryptology, 30(4):989–1066, October
2017.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable one-way
functions. In David B. Shmoys, editor, 46th ACM STOC, pages 505–514. ACM Press, May / June
2014.

[BDRV18] Itay Berman, Akshay Degwekar, Ron D. Rothblum, and Prashant Nalini Vasudevan. Multi-
collision resistant hash functions and their applications. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 133–161. Springer,
Heidelberg, April / May 2018.

[BEP20] Nir Bitansky, Noa Eizenstadt, and Omer Paneth. Weakly extractable one-way functions. In Rafael
Pass and Krzysztof Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS, pages 596–626.
Springer, Heidelberg, November 2020.

[BGGL01] Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda Lindell. Resettably-sound zero-
knowledge and its applications. In 42nd FOCS, pages 116–125. IEEE Computer Society Press,
October 2001.

[BGJ+18] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana,
and Amit Sahai. Promise zero knowledge and its applications to round optimal MPC. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages
459–487. Springer, Heidelberg, August 2018.

[BKP18] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resistance: a paradigm for
keyless hash functions. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, 50th
ACM STOC, pages 671–684. ACM Press, June 2018.

[BKP19] Nir Bitansky, Dakshita Khurana, and Omer Paneth. Weak zero-knowledge beyond the black-box
barrier. In Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages 1091–1102. ACM
Press, June 2019.

[BL18] Nir Bitansky and Huijia Lin. One-message zero knowledge and non-malleable commitments. In
Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part I, volume 11239 of LNCS, pages
209–234. Springer, Heidelberg, November 2018.

[Blu86] Manuel Blum. How to prove a theorem so no one else can claim it. In Proceedings of the Interna-
tional Congress of Mathematicians, volume 2, pages 1444–1451, 1986.

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages
273–289. Springer, Heidelberg, August 2004.

[BP19] Nir Bitansky and Omer Paneth. On round optimal statistical zero knowledge arguments. In Alexan-
dra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 128–156. Springer, Heidelberg, August 2019.

37

[BR22] Liron Bronfman and Ron D. Rothblum. PCPs and Instance Compression from a Cryptographic
Lens. In Mark Braverman, editor, ITCS 2022, volume 215, pages 30:1–30:19. LIPIcs, January
2022.

[CD08] Ran Canetti and Ronny Ramzi Dakdouk. Extractable perfectly one-way functions. In Luca
Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and
Igor Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS, pages 449–460. Springer,
Heidelberg, July 2008.

[CJJ21] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. Cryptology
ePrint Archive, Report 2021/808, Version 20211108:181325, 2021. https://eprint.iacr.
org/2021/808. An extended version of [CJJ22].

[CJJ22] Arka Rai Choudhuri, Abhihsek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In 62nd
FOCS, pages 68–79. IEEE Computer Society Press, February 2022.

[CKLR11] Kai-Min Chung, Yael Tauman Kalai, Feng-Hao Liu, and Ran Raz. Memory delegation. In Phillip
Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 151–168. Springer, Heidelberg,
August 2011.

[Den20] Yi Deng. Individual simulations. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part III, volume 12493 of LNCS, pages 805–836. Springer, Heidelberg, December 2020.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signa-
ture problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194.
Springer, Heidelberg, August 1987.

[GHKW17] Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters. A generic approach to
constructing and proving verifiable random functions. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017, Part II, volume 10678 of LNCS, pages 537–566. Springer, Heidelberg, November 2017.

[GJS11] Sanjam Garg, Abhishek Jain, and Amit Sahai. Leakage-resilient zero knowledge. In Phillip Rog-
away, editor, CRYPTO 2011, volume 6841 of LNCS, pages 297–315. Springer, Heidelberg, August
2011.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof systems. SIAM
Journal on Computing, 25(1):169–192, 1996.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Interactive
proofs for muggles. Journal of the ACM, 62(4):27:1–27:64, 2015.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(3):691–729,
1991.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems. Jour-
nal of Cryptology, 7(1):1–32, December 1994.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge University
Press, Cambridge, UK, 2001.

[Gol17a] Oded Goldreich. Introduction to Property Testing. Cambridge University Press, Cambridge, UK,
2017. A draft is available at http://www.wisdom.weizmann.ac.il/~oded/PDF/pt-v3.pdf.

[Gol17b] Oded Goldreich. On the doubly-efficient interactive proof systems of GKR. Electronic Colloquium
on Computational Complexity, 2017.

38

https://eprint.iacr.org/2021/808
https://eprint.iacr.org/2021/808
http://www.wisdom.weizmann.ac.il/~oded/PDF/pt-v3.pdf

[HLR21a] Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. Fiat-Shamir via list-recoverable codes
(or: Parallel repetition of GMW is not zero-knowledge). Cryptology ePrint Archive, Report
2021/286, Version: 20210307:022349, 2021. https://eprint.iacr.org/2021/286. An ex-
tended version of [HLR21b].

[HLR21b] Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. Fiat–Shamir via list-recoverable codes
(or: parallel repetition of GMW is not zero-knowledge). In Samir Khuller and Virginia Vassilevska
Williams, editors, 53rd ACM STOC, page 750–760. ACM Press, June 2021.

[HR04] Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do secure hash
functions need secret coins? In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS,
pages 92–105. Springer, Heidelberg, August 2004.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols. In
Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 408–423. Springer, Heidel-
berg, August 1998.

[HW15] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function evaluation
with long output. In Tim Roughgarden, editor, ITCS 2015, pages 163–172. ACM, January 2015.

[JKKR17] Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and Ron Rothblum. Distinguisher-
dependent simulation in two rounds and its applications. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 158–189. Springer, Heidelberg,
August 2017.

[JKKZ20] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Zhang. SNARGs for bounded
depth computations and PPAD hardness from sub-exponential LWE. Cryptology ePrint Archive,
Report 2020/980, Version 20200819:035531, 2020. https://eprint.iacr.org/2020/980.
An extended version of [JKKZ21].

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Zhang. SNARGs for bounded
depth computations and PPAD hardness from sub-exponential LWE. In Samir Khuller and Vir-
ginia Vassilevska Williams, editors, 53rd ACM STOC, page 708–721. ACM Press, June 2021.

[KNY18] Ilan Komargodski, Moni Naor, and Eylon Yogev. Collision resistant hashing for paranoids: Dealing
with multiple collisions. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part II, volume 10821 of LNCS, pages 162–194. Springer, Heidelberg, April / May 2018.

[KPY18] Yael Kalai, Omer Paneth, and Lisa Yang. On publicly verifiable delegation from standard assump-
tions. Cryptology ePrint Archive, Report 2018/776, 2018. https://eprint.iacr.org/2018/
776.

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly. In
Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages 1115–1124. ACM Press, June
2019.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations: the power of
no-signaling proofs. In David B. Shmoys, editor, 46th ACM STOC, pages 485–494. ACM Press,
May / June 2014.

[KS17] Dakshita Khurana and Amit Sahai. How to achieve non-malleability in one or two rounds. In Chris
Umans, editor, 58th FOCS, pages 564–575. IEEE Computer Society Press, October 2017.

[LS19] Alex Lombardi and Luke Schaeffer. A note on key agreement and non-interactive commitments.
Cryptology ePrint Archive, Report 2019/279, 2019. https://eprint.iacr.org/2019/279.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005.

39

https://eprint.iacr.org/2021/286
https://eprint.iacr.org/2020/980
https://eprint.iacr.org/2018/776
https://eprint.iacr.org/2018/776
https://eprint.iacr.org/2019/279

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol composition. In
Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 160–176. Springer, Heidel-
berg, May 2003.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of
the ACM, 56(6), 2009.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications to
program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

A Additional Preliminaries
A.1 The Learning with Errors (LWE) Assumption
The formal definition of the learning with errors assumption [Reg09] is not needed to understand this paper since
we only use it indirectly to use several results of prior works [CJJ22, HLR21b, JKKZ21]. The sub-exponential
hardness of the LWE assumption requires that there exists a constant 0 < ϵ < 1 such that any non-uniform
2λ

ϵ-time adversary cannot break the LWE assumption with advantage more than 2λ
ϵ .

A.2 The Fiat–Shamir Transformation
In this paper, the Fiat–Shamir transformation [FS87] is used to transform a multi-round public-coin interactive
proof into a non-interactive argument. Let (P, V) be a public-coin interactive proof for a language L. By adding
dummy rounds if necessary, we assume that there exists ℓ ∈ N such that P and V interact in 2ℓ rounds and the
prover sends the first message. Then, for a hash function family H (with some appropriate domain and range),
the Fiat–Shamir transformation transforms (P, V) into a non-interactive argument (PFS, VFS) in the CRS model
as follows. (The following description is based on [JKKZ20, Figure 1].)

• The common reference string is crs := (h1, . . . , hℓ), where hi ← Hλ for ∀i ∈ [λ].

• The prover PFS takes as input (crs, x) and does the following.

1. Set i := 1 and τ0 := ∅.
2. Compute αi ← P (x, τi−1) and βi := hi(τi−1|αi), where τi−1|αi is the concatenation of τi−1 and

αi.
3. Set τi := τi−1|αi|βi.
4. If i = ℓ, output τi. Otherwise, set i := i+ 1 and go to item 2.

• The verifier VFS takes as input (crs, x, τ) and does the following.

1. Parse crs as (h1, . . . , hℓ), and parse τ as α1|β1| · · · |αℓ|βℓ.
2. Output 1 if and only if V (x, τ) = 1 and βi = hi(τi−1|αi) for every i ∈ [ℓ], where τi−1 :=

α1|β1| · · · |αi−1|βi−1.

Note that whenH is public coin, the common reference string crs is uniformly random.

A.3 Algorithms for Low-Degree Polynomials
We recall some basic notations and definitions about low-degree polynomials. These are used only in Section 4
to work with the interactive proof of Goldwasser, Kalai, and Rothblum [GKR15].

Notations. For any finite field F, integers m, d ∈ N, and a constant 0 < ϵ < 1, we say that a function
f : Fm → F is ϵ-close to degree-d polynomials if there exists a polynomial f̂ : Fm → F of (total) degree at most
d such that the relative Hamming distance between f and f̂ is at most ϵ, i.e., Pr[f(x) ̸= f̂(x) | x← Fm] ≤ ϵ.

40

A.3.1 Low-degree tests.

We first recall a basic result about low-degree tests, which check whether a function f is close to a low-degree
polynomial by making a small number of queries.

Lemma 8 ([Gol17a]; see also [RS96]). Let F be a finite field of prime order, m, d ∈ N be integers such that
d < |F|/2, and 0 < ϵ < 1 be a constant. Then, the algorithms (LDTest.Q, LDTest.D) in Algorithm 9 satisfy
the following.

1. For any polynomial f : Fm → F of degree at most d,

Pr [LDTest.D(st, f |Q) = 1 | (st, Q)← LDTest.Q] = 1 .

2. For any function f : Fm → F that is not ϵ-close to degree-d polynomials,

Pr [LDTest.D(st, f |Q) = 0 | (st, Q)← LDTest.Q] ≥ min
(ϵ

2
,Ω(d−2)

)
.

Algorithm 9 Low-degree test LDTest = (LDTest.Q, LDTest.D).

• LDTest.Q:

1. Choose uniformly random points x, h ∈ Fm.
2. Output st := (x, h) and Q := {x+ ih}i∈{0,...,d+1}.

• LDTest.D(st, A):

1. Reconstruct a (unique) degree-d polynomial g : F → F that satisfies g(i) = A(x + ih) for every
i ∈ [d+ 1] (where i is viewed as an element of F when it is given to g).

2. Output 1 if g(0) = A(x) and output 0 otherwise.

A.3.2 Local self-correction.

We next recall a basic result about (local) self-correction. When given a function f that is close to a low-degree
polynomial f̃ , self-correction allows us to evaluate f̃ by making a small number of queries to f .

Lemma 9. Let F be a finite field of prime order, m, d ∈ N be integers such that d < |F|, and 0 < ϵ1, ϵ2 < 1 be
constants such that ϵ1 < min((1− d/|F|)/2, ϵ2/(d+ 1)). Then, for any v ∈ Fm and any function f : Fm → F
that is ϵ1-close to a degree-d polynomial f̃ ,30 the algorithms (SelfCorr.Q, SelfCorr.Rec) in Algorithm 10 satisfy
the following.

Pr
[
SelfCorr.Rec(st, f |Q) = f̃(v)

∣∣∣ (st, Q)← SelfCorr.Q(v)
]
≥ 1− ϵ2 . (7)

Furthermore, if f itself is a degree-d polynomial,

Pr [SelfCorr.Rec(st, f |Q) = f(v) | (st, Q)← SelfCorr.Q(v)] = 1 .

Proof . We have (7) since from a union bound, we have

Pr
[
∀i ∈ [d+ 1], f(v + ih) = f̃(v + ih)

∣∣∣ h← Fm
]
≥ 1− (d+ 1)ϵ1 > 1− ϵ2 .

The furthermore part can be verified by inspection.
30f̃ is the unique degree-d polynomial that is ϵ1-close to f since ϵ1 < (1− d/|F|)/2.

41

Algorithm 10 Self-correction SelfCorr = (SelfCorr.Q, SelfCorr.Rec)

• SelfCorr.Q(v):

1. Choose a uniformly random point h ∈ Fm.
2. Output st := (v, h) and Q := {v + ih}i∈[d+1].

• SelfCorr.Rec(st, A):

1. Reconstruct a (unique) degree-d polynomial f : F → F that satisfies f(i) = A(v + ih) for every
i ∈ [d+ 1] (where i is viewed as an element of F when it is given to f).

2. Output f(0).

We next give a “public-coin” version of self-correction, which is public coin in the sense that even when the
randomness of the query algorithm is published, no one can find a point for which self-correction fails (as such
a point does not exist with high probability).

Lemma 10. Let F, m, d, ϵ1, ϵ2 be as in Lemma 9, and additionally assume ϵ2 ≤ 1/12. Then, for any
λ ∈ N and any function f : Fm → F that is ϵ1-close to a degree-d polynomial f̃ , the algorithms
(SelfCorr′.Q,SelfCorr′.Rec) in Algorithm 11 satisfies the following.

Pr

∀v ∈ Fm, av = f̃(v)

∣∣∣∣∣∣
h̄ = (h1, . . . , hλ)← (Fm)λ

∀v ∈ Fm, (stv, Qv) := SelfCorr′.Q(v; h̄)
∀v ∈ Fm, av := SelfCorr′.Rec(stv, f |Qv)

 ≥ 1− |F|
m

2λ/2
. (8)

Furthermore, if f itself is a degree-d polynomial,

Pr

∀v ∈ Fm, av = f(v)

∣∣∣∣∣∣
h̄ = (h1, . . . , hλ)← (Fm)λ

∀v ∈ Fm, (stv, Qv) := SelfCorr′.Q(v; h̄)
∀v ∈ Fm, av := SelfCorr′.Rec(stv, f |Qv)

 = 1 .

Algorithm 11 Public-coin self-correction SelfCorr′ = (SelfCorr′.Q,SelfCorr′.Rec)

• SelfCorr′.Q(v):

1. For every i ∈ [λ], sample a uniformly random point hi ∈ Fm and run (sti, Qi) := SelfCorr.Q(v;hi).
2. Output st := (st1, . . . , stλ) and Q :=

∪
i∈[λ]Qi.

• SelfCorr′.Rec(st, A):

1. For every i ∈ [λ], run ãi := SelfCorr.Rec(sti, A|Qi).
2. Output the most frequent value ã among {ã1, . . . , ãλ}.

Proof . For every v ∈ Fm, we have av ̸= f̃(v) only when SelfCorr with randomness hi fails to output f̃(v) for
at least λ/2 values of i ∈ [λ]. That is, we have

Pr

av ̸= f̃(v)

∣∣∣∣∣∣
h̄ = (h1, . . . , hλ)← (Fm)λ

(stv, Qv) := SelfCorr′.Q(v; h̄)
av := SelfCorr′.Rec(stv, f |Qv)


≤ Pr

[∣∣∣{i ∈ [λ] | SelfCorr.Rec(sti, f |Qi) ̸= f̃(v)}
∣∣∣ ≥ λ

2

∣∣∣∣ ∀i ∈ [λ],
(sti, Qi)← SelfCorr.Q(v)

]
(9)

Since the expected number of such i is at most ϵ2λ ≤ λ/12 due to Lemma 9, we can use a suitable version of the
Chernoff bound (e.g., [MU05, Theorem 4.4]) to upper bound the probability in (9) by 2−λ/2. Thus, we obtain
(8) from a union bound. The furthermore part can be verified by inspection.

42

A.3.3 Global self-correction.

In a setting where Lemma 10 holds, we can make global self-correction of low-degree polynomials. That is, for
F, m, d, ϵ1, and ϵ2 for which Lemma 10 holds, when we are given a function f : Fm → F that is ϵ1-close to a
degree-d polynomial f̃ : Fm → F, we can obtain (the truth table of) f̃ from f efficiently by just using SelfCorr′

for every point in Fm. The error probability is at most |F|m/2λ/2.

A.3.4 The setting that we consider.

We use the above lemmas in the setting where |F|, m, and d are poly(log λ) and satisfy |F| ≫ d. In this setting,
we have the following.

Corollary 2. Assume |F|, m, and d are poly(log λ) and satisfies |F| ≫ d.31

• LDTest: Lemma 8 with ϵ = 1/λ guarantees that we can reject any function f that is not 1/λ-close to
degree-d polynomials with error probability 1/2λ/2 by using the λ2-repetition of LDTest. The total length
of the queries is poly(λ), and the total length of the randomness is poly(λ).

• SelfCorr: Lemma 9 with ϵ1 = 1/λ and ϵ2 = (d + 2)/λ guarantees that when we are given oracle
access to a function f that is 1/λ-close to a degree-d polynomial f̃ , we can evaluate f̃ using f with
error probability poly(log λ)/λ. The total length of the queries is poly(log λ) and the total length of the
randomness is poly(log λ).

• SelfCorr′: Lemma 10 with ϵ1 = 1/λ and ϵ2 = (d + 2)/λ guarantees that for sufficiently large λ (in
particular, if (d + 2)/λ < 1/12), when we are given oracle access to a function f that is 1/λ-close to
a degree-d polynomial f̃ , we can evaluate f̃ using f in the public-coin manner with error probability
|F|m/2λ/2. The total length of the queries is λ · poly(log λ) and the total length of the randomness is
λ · poly(log λ).

B Proof of Corollary 1
Let polyW , polyD, polyδ be the polynomials that are guaranteed to exist by Lemma 5, and for ℓmax(λ) = ⌊log2 λ⌋
andLmax(λ) = 2ℓmax(λ)λ, letW (λ) := polyW (λ,Lmax(λ)) = poly(λlog λ),D(λ) := polyD(log λ, ℓmax(λ)) =
poly(log λ), and δ(λ) := polyδ(D(λ), logW (λ)). Then, the desired non-interactive argument Π is obtained by
using Lemma 4 for W , D, and δ with straightforward adaptation. For completeness, we give more details below.

• For each λ, ℓ ∈ N such that ℓ ≤ log2 λ, the parameters (F,H,m) is determined by obtaining (H,m)
from Lemma 5 with sufficiently large field F. The conditions about the parameters are satisfied because
of GKR compatibility (Lemma 3).

• Setup is identical with the one obtained from Lemma 4.

• The prover P is identical with the one obtained from Lemma 4 except for the following modifications:
instead of taking a circuit as input as in Lemma 4, the prover takes a hash function h as input, and it obtains
a circuit C of TreeHashh on its own by using Lemma 5, where the value ℓ for Lemma 5 is determined
based on |x|.

• The verifier V is identical with the one obtained from Lemma 4 except for the following modifications:
(i) instead of being given oracle access to F as in Lemma 4, the verifier takes a length parameter ℓ and a
hash function h as input, and evaluates F = {ãddi, m̃ulti}i∈[D] on its own by relying on Lemma 5; (ii)
instead of being given x as input as in Lemma 4, the verifier is given oracle access to x̂ as in Remark 6;
(iii) the verifier outputs 0 whenever y ̸∈ {0, 1}λ.

• The input query algorithm InpQuery is obtained as in Remark 6.
31In particular, it is assumed that it holds 1/(d+ 1) < (1− d/|F|)/2.

43

C Proof of Lemma 5
Fix any λ, ℓ ∈ N (ℓ ≤ log2 λ) and h ∈ Hλ, where h : {0, 1}2λ → {0, 1}λ. Let F be a finite field of sufficiently
large size |F| ≤ poly(log λ). (Concrete requirements about |F| are discussed at the end of the proof.) Let
L := 2ℓλ.

Let Ch : F2λ → F be a layered arithmetic circuit that computes h for every input x ∈ {0, 1}2λ. Since H
is polylogarithmic depth, we assume that the death Dh of Ch is bounded by poly(log λ). Also, since h can be
computed in polynomial time, we assume that the width Wh of Ch is bounded by poly(λ). We assume without
loss of generality that Wh is a power of 2 and all layers of Ch have width Wh, where the first 2λ gates in the
input layer are the input gates and the first λ gates in the output layer are the output gates. (The other gates in the
input and output layers are dummy gates.) Also, for convenience, we assume that the last gate of each layer is
guaranteed to be a dummy gate. Let {addh,i,multh,i}i∈[Dh] denote the functions that specify Ch. Without loss
of generality, we assume that Ch outputs a value in Fλ \ {0, 1}λ when the input is in F2λ \ {0, 1}2λ.

We note that layers of a depth-D circuit are indexed by {0, . . . , D}, where the input layer is “the 0-th layer”
and the output layer is “the D-th layer.”

C.1 Circuit C
We obtain the circuit C straightforwardly by using many copies of Ch in a tree structure as described below.
First, we have L/2λ copies of Ch, which we call the level-0 circuits, and their input gates serve as the input
gates of C. Next, just above the level-0 circuits, we have L/22λ copies of Ch, which we call the level-1 circuits,
and their input layer are replaced with the output layer of the level-0 gates appropriately. (That is, for every
k ∈ {0, . . . , L/22λ− 1}, the first λ input gates of the k-th level-1 circuit are replaced with the λ output gates of
the 2k-th level-0 circuit, and the other λ input gates of the k-th level-1 circuit are replaced with the λ output gates
of the (2k+1)-st level-0 circuit.32) We repeat this process until we have a single copy of Ch as the level-(ℓ−1)
circuit, and the output gates of this copy serve as the output gates of C. Finally, we add dummy gates to each
layer so that all layers in C have the same width.

Clearly, C computes TreeHashh for every input x ∈ {0, 1}L, and it outputs a value in Fλ \ {0, 1}λ when
the input is in FL \ {0, 1}L because of our assumption about Ch. The width of C is W := Wh · L/2λ, and the
depth of C is D := Dh · ℓ. We assume without loss of generality that Ch has the same width and depth for every
h ∈ Hλ. Therefore, we have W = polyW (λ,L) and D = polyD(log λ, ℓ) for polynomials polyW , polyD that
depend only onH.

C.2 Parameters (H,m)

Fix a subset H ⊂ F such that |H| is the smallest power-of-2 that satisfies |H| ≥ max(D, logW) = poly(log λ),
and let m := ⌈log|H|W ⌉ = poly(log λ) so that W ≤ |H|m ≤ poly(W). Note that H and m can be determined
once polyW , polyD, λ, ℓ, and F are fixed.

C.3 Functions {ãddi, m̃ulti}i∈[D]

For any k ∈ N, let numk : Hk → {0, . . . , |H|k − 1} be the function that outputs the lexicographical order of
the input. Recall that {addh,i,multh,i}i∈[Dh] are the functions that specify Ch. Let {ãddh,i, m̃ulth,i : F3mh →
F}i∈[Dh] denote the LDE of {addh,i,multh,i}i∈[Dh] w.r.t. F, H, and mh, where mh := ⌈log|H|Wh⌉ so that
|H|mh−1 < Wh ≤ |H|mh . Note that {ãddh,i, m̃ulth,i}i∈[Dh] have individual degree at most |H|, and since we
haveWh = poly(λ), they can be evaluated in time |H|3mh ·poly(mh, |H|) ≤ poly(λ) givenCh (cf. Section 3.7).

We now describe the polynomials {ãddi, m̃ulti}i∈[D]. Recall that {ãddi, m̃ulti}i∈[D] need to be extensions
of the functions {addi,multi}i∈[D] that specify C. Below, we define ãddi by considering 3 cases depending on
the value of i ∈ [D]. (m̃ulti can be defined similarly.) In the following, we say that layer i of C corresponds to
layer ih of Ch if the i-th layer of C is the ih-th layer of the level-κ circuits for some κ.

32The dummy gates in the input layer of each level-1 circuit (which we have added to Ch so that the input layer of Ch has width Wh)
are simply removed so that we have layer 1 of the level-1 circuits just above the output layer of the level-0 circuits.

44

Case 1. Layer i of C corresponds to layer ih of Ch for some ih ≥ 2. Let κ ∈ N be the integer such that both
the i-th and the (i−1)-st layers of C belong to the level-κ circuits. (Such κ is guaranteed to exist because of the
condition of this case.) We note that by the construction of C, the level-κ circuits consist of L/2κ+1λ = 2ℓ−κ−1

copies of Ch.
As a preliminary step, we first give a pseudocode that computes addi : {0, . . . ,W − 1}3 → {0, 1}. Note

that for any j1, j2, j3 ∈ {0, . . . ,W − 1}, we can compute addi(j1, j2, j3) by using addh,ih trivially if gates
gi,j1 , gi−1,j2 , gi−1,j3 of C belong to the same copy of Ch, and we have addi(j1, j2, j3) = 0 in any other cases.
Thus, observing that gate gi,j1 corresponds to the (j1 mod Wh)-th gate in the ih-th layer of the ⌊j1/Wh⌋-th
level-κ circuit (assuming that the ⌊j1/Wh⌋-th level-κ circuit exist, i.e., ⌊j1/Wh⌋ ≤ 2ℓ−κ−1 − 1) and observing
the same for gi−1,j2 and gi−1,j3 , we consider computing addi(j1, j2, j3) as follows.

1: if ⌊j1/Wh⌋ = ⌊j2/Wh⌋ = ⌊j3/Wh⌋ and ⌊j1/Wh⌋ ≤ 2ℓ−κ−1 − 1 then
2: return addh,ih(j1 mod Wh, j2 mod Wh, j3 mod Wh)
3: else
4: return 0
5: end if

Now, we define ãddi based on the above pseudocode.

1. First, we obtain a polynomial ˜sameCh : F2m → F that checks whether two gates belong to the same
copy of Ch. Concretely, when given (v, v′) ∈ H2m as input, ˜sameCh outputs 1 if ⌊numm(v)/Wh⌋ =
⌊numm(v′)/Wh⌋ and outputs 0 otherwise. (Recall that numm : Hm → {0, . . . , |H|m − 1} is the func-
tion that outputs the lexicographical order of the input.) Let EQ : H2 → {0, 1} be the function that
outputs 1 if and only if the input (v, v′) ∈ H2 satisfies v = v′, and let ẼQ : F2 → F be its LDE.
Let EQ′ : H2mh → {0, 1} be the function that outputs 1 if and only if the input (v, v′) ∈ H2mh sat-
isfies ⌊nummh

(v)/Wh⌋ = ⌊nummh
(v′)/Wh⌋, and let ẼQ

′
: F2mh → F be its LDE. Then, for any

z = (zm, . . . , z1), z
′ = (z′m, . . . , z′1) ∈ Fm, let

˜sameCh(z, z
′) := ẼQ′(z≤mh

, z′≤mh
)

m∏
k=mh+1

ẼQ(zk, z
′
k) ,

where z≤mh
:= (zmh

, . . . , z1) and z′≤mh
:= (z′mh

, . . . , z′1).

It is easy to see that given (v, v′) ∈ H2m as input, ˜sameCh indeed outputs 1 if ⌊numm(v)/Wh⌋ =

⌊numm(v′)/Wh⌋ and outputs 0 otherwise.33 Note that ẼQ has individual degree at most |H| and can be
evaluated in time |H|2 ·poly(|H|), and ẼQ

′
has individual degree at most |H| and can be evaluated in time

|H|2mh · poly(mh, |H|). Thus, ˜sameCh has individual degree at most |H| and can be evaluated in time
poly(λ).

2. Next, we obtain a polynomial ṽalid : Fm → F that checks whether a gate belongs to a copy of Ch.
Concretely, when given v ∈ Hm as input, ṽalid outputs 1 if ⌊numm(v)/Wh⌋ ≤ 2ℓ−κ−1 − 1 and
outputs 0 otherwise. Let m′ := ⌈log|H| 2

ℓ−κ+logWh⌉ so that we have (m′ − 1) log|H| < ℓ − κ +

logWh ≤ m′ log|H|. Let ẼQ be defined as above. Let EQ′′ : H2 → {0, 1} be the function that
outputs 1 if and only if the input (v, v′) ∈ H2 satisfies ⌊num1(v)/2

ℓ−κ−1+logWh−(m′−1) log|H|⌋ =

⌊num1(v
′)/2ℓ−κ−1+logWh−(m′−1) log|H|⌋, and let ẼQ

′′
: F2 → F be its LDE. Then, for any z =

(zm, . . . , z1) ∈ Fm, let

ṽalid(z) := ẼQ
′′
(zm′ , 0)

m∏
k=m′+1

ẼQ(zk, 0) .

33To see this, observe the following. Since we assume that Wh is a power of 2, we have ⌊numm(v)/Wh⌋ = ⌊numm(v′)/Wh⌋ if and
only if the binary representations of numm(v) and numm(v′) are equal except for the least significant logWh bits. Also, since we assume
that |H| is a power of 2, the binary representation of numm(v) (resp., numm(v′)) is the concatenation of the binary representations
of num1(vm), . . . , num1(v1) (resp., num1(v

′
m), . . . , num1(v

′
1)). Therefore, we have ⌊numm(v)/Wh⌋ = ⌊numm(v′)/Wh⌋ if and

only if (i) the binary representations of nummh(v≤mh
) and nummh(v

′
≤mh

) are equal except for the least significant logWh bits (i.e.,
⌊nummh(v≤mh

)/Wh⌋ = ⌊nummh(v
′
≤mh

)/Wh⌋) and (ii) num1(vk) = num1(vk) for every k ∈ {mh + 1, . . . ,m}.

45

It is easy to see that given v ∈ Hm as input, ṽalid indeed outputs 1 if ⌊numm(v)/Wh⌋ ≤ 2ℓ−κ−1 − 1

and outputs 0 otherwise.34 Note that ẼQ
′′

has individual degree at most |H| and can be evaluated in time
|H|2 · poly(|H|). Thus, ṽalid has individual degree at most |H| and can be evaluated in time poly(log λ).

3. Next, we obtain a set of polynomials ˜relative-index = (˜relative-indexmh
, . . . , ˜relative-index1) that take

an index of a gate in C and convert it to the index that the gate has as a gate in Ch. Concretely,
it holds ˜relative-indexk : Fmh → F for each k ∈ [mh], and for any input v = (vm, . . . , v1) ∈
Hm, the output v′ := ˜relative-index(v) := (˜relative-indexmh

(v≤mh
), . . . , ˜relative-index1(v≤mh

)) ∈
Hmh satisfies nummh

(v′) = numm(v) mod Wh. Let relative-index = (relative-index1, . . . ,
relative-indexmh

) be the set of the functions such that relative-indexk : Hmh → H for each
k ∈ [mh], and for any input v = (vmh

, . . . , v1) ∈ Hmh , the output v′ := relative-index(v) :=
(relative-indexmh

(v), . . . , relative-index1(v)) ∈ Hmh satisfies nummh
(v′) = nummh

(v) mod Wh.
Then, each ˜relative-indexk is the LDE of relative-indexk.

It is easy to see that given v ∈ Hm as input, ˜relative-index indeed outputs v′ ∈ Hmh such that
nummh

(v′) = numm(v) mod Wh. Note that each ˜relative-indexk has individual degree at most |H|
and can be evaluated in time |H|mh · poly(mh, |H|) = poly(λ).

4. Finally, we define ãddi as follows. For every z1, z2, z3 ∈ Fm,

ãddi(z1, z2, z3) := ˜sameCh(z1, z2) · ˜sameCh(z2, z3) · ṽalid(z1)

× ãddh,ih(
˜relative-index(z1), ˜relative-index(z2), ˜relative-index(z3)) .

It is easy to see that ãddi is indeed an extension of addi (cf. the above pseudocode). It has individual degree at
most 3mh|H|2 and can be evaluated in time poly(λ).

Case 2. Layer i of C corresponds to layer 1 of the level-0 circuits. In this case, the i-th and the (i − 1)-st
layers belong to the level-0 circuits. Therefore, it suffices to define ãddi as in Case 1.

Case 3. Layer i of C corresponds to layer 1 of the level-κ circuits for some κ > 0. As a preliminary step,
we first give a pseudocode that computes addi : {0, . . . ,W − 1}3 → {0, 1}. Note that the (i − 1)-st layer
of C corresponds to the output layer of the level-(κ − 1) circuits. Thus, for any j1, j2, j3 ∈ {0, . . . ,W − 1},
we can compute addi(j1, j2, j3) by using addh,1 if the copy of Ch that the gate gi,j1 belongs to is the parent
of those that the gates gi−1,j2 , gi−1,j3 belong to (i.e., if ⌊j1/Wh⌋ = ⌊⌊j2/Wh⌋/2⌋ = ⌊⌊j3/Wh⌋/2⌋). Also, by
construction, each copy of Ch in the level-κ circuits uses the λ output gates of its left-child Ch as the first λ
gates of its input layer, and uses the λ output gates of its right-child as the next λ gates of its input layer. Thus,
we consider computing addi(j1, j2, j3) as follows.35

1: if ⌊j1/Wh⌋ = ⌊⌊j2/Wh⌋/2⌋ = ⌊⌊j3/Wh⌋/2⌋ and ⌊j1/Wh⌋ ≤ 2ℓ−κ−1 − 1 then
2: j′1 := j1 mod Wh

3: if j2 mod Wh < λ then
4: j′2 := j2 mod Wh + (⌊j2/Wh⌋ mod 2) · λ
5: else
6: j′2 := Wh − 1
7: end if
8: if j3 mod Wh < λ then
9: j′3 := j3 mod Wh + (⌊j3/Wh⌋ mod 2) · λ

10: else
11: j′3 := Wh − 1

34To see this, observe that we have ⌊numm(v)/Wh⌋ ≤ 2ℓ−κ−1 − 1 if and only if each bit in the binary representation of numm(v)
is 0 except for the least significant ℓ− κ− 1 + logWh bits.

35This pseudocode relies on our assumption that the last gate of each layer of Ch (i.e., the (Wh − 1)-st gate) is guaranteed to be a
dummy gate. In particular, it is used to force addh,1 to output 0 when j2 mod Wh ≥ λ and j3 mod Wh ≥ λ.

46

12: end if
13: return addh,1(j

′
1, j

′
2, j

′
3)

14: else
15: return 0
16: end if

Now, we define ãddi following the above pseudocode.

1. First, we obtain a polynomial c̃hild : F2m → F that takes two gates as input and checks whether the copy
of Ch that the second gate belongs to is a child of the one that the first one belongs to. Concretely, when
given (v, v′) ∈ H2m as input, c̃hild outputs 1 if ⌊numm(v)/Wh⌋ = ⌊⌊numm(v′)/Wh⌋/2⌋ and outputs 0
otherwise. Let right-shift : H2 → H be the function such that when given input (v, v′) ∈ H2, it outputs
v̄′ ∈ H such that num1(v̄

′) = ⌊num1(v
′)/2⌋+ (num1(v) mod 2) · |H|/2, and ˜right-shift be its LDE. Let

˜sameCh be the polynomial that is defined in Case 1. Then, for any z = (zm, . . . , z1), z
′ = (z′m, . . . , z′1) ∈

Fm, let

c̃hild(z, z′) := ˜sameCh(z, z̄
′),

where z̄′ := (˜right-shift(0, z′m), ˜right-shift(z′m, z′m−1), . . . , ˜right-shift(z′2, z′1)) .

It is easy to see that given (v, v′) ∈ H2m as input, c̃hild indeed outputs 1 if ⌊numm(v)/Wh⌋ =

⌊⌊numm(v′)/Wh⌋/2⌋ and outputs 0 otherwise.36 Note that ˜right-shift has individual degree at most |H|
and can be evaluated in time |H|2 · poly(|H|), and ˜sameCh has individual degree at most |H| and can be
evaluated in time poly(λ). Thus, c̃hild has individual degree at most 2|H|2 and can be evaluated in time
poly(λ).

2. Next, we obtain a set of polynomials ˜relative-index′ = (˜relative-index′mh
, . . . , ˜relative-index′1) such that

it holds ˜relative-index′k : Fmh+1 → F for each k ∈ [mh], and for any input v = (vm, . . . , v1) ∈ Hm, the
output v′ := ˜relative-index′(v) := (˜relative-index′mh

(v≤mh+1), . . . , ˜relative-index′1(v≤mh+1)) ∈ Hmh

satisfies

nummh
(v′) =

{
numm(v) mod Wh + (⌊numm(v)/Wh⌋ mod 2) · λ (if numm(v) mod Wh < λ)
Wh − 1 (otherwise)

Let relative-index′ = (relative-index′mh
, . . . , relative-index′1) be the set of the functions such that it holds

relative-index′k : Hmh+1 → H for each k ∈ [mh], and for any input v = (vmh+1, . . . , v1) ∈ Hmh+1, the
output v′ := relative-index′(v) := (relative-index′mh

(v), . . . , relative-index′1(v)) ∈ Hmh satisfies

nummh
(v′) =

{
nummh+1(v) mod Wh + (⌊nummh+1(v)/Wh⌋ mod 2) · λ (if nummh+1(v) mod Wh < λ)
Wh − 1 (otherwise)

Then, each ˜relative-index′k is the LDE of relative-index′k.

It is easy to see that given v ∈ Hm as input, ˜relative-index′ outputs the desired point in Hmh . Note
that each ˜relative-index′k has individual degree at most |H| and can be obtained and evaluated in time
|H|mh+1 · poly(mh, |H|) = poly(λ).

3. Finally, we define ãddi as follows. Let ṽalid and ˜relative-index be defined as in Case 1. Then, for every
z1, z2, z3 ∈ Fm,

ãddi(z1, z2, z3) := c̃hild(z1, z2) · c̃hild(z1, z3) · ṽalid(z1)

× ãddh,1(˜relative-index(z1), ˜relative-index′(z2), ˜relative-index′(z3)) .
36To see this, observe that we have ⌊numm(v)/Wh⌋ = ⌊⌊numm(v′)/Wh⌋/2⌋ if and only if the most significant (m log|H|−logWh)

bits of the binary representation of numm(v) are equal to the most significant (m log|H|− logWh−1) bits of the binary representation
of numm(v) with preceding 0.

47

It is easy to see that ãddi is indeed an extension of addi (cf. the above pseudocode). It has individual degree at
most 6mh|H|2 and can be evaluated in time poly(λ).

C.4 GKR Compatibility
Let polyδ be a polynomial such that 6mh|H|2 ≤ polyδ(D, logW) ≤ poly(log λ). Note that from the above
analysis, the extensions {ãddi, m̃ulti}i∈[D] have individual degree at most δ := polyδ(D, logW). Also, we have
δ > m(|H| − 1). Finally, since |H| is determined by D and logW , the polynomial polyδ can be determined by
H.

For the field F, we require that cgkrDmδ ≤ |F| ≤ poly(|H|), where cgkr is the constant that is used in
the definition of GKR compatibility (Lemma 3). Since m, |H|, and δ := polyδ(D, logW) are determined by
D = polyD(log λ, ℓ) and W = polyW (λ,L), the field F can be determined once λ and ℓ are fixed.

Now, the GKR compatibility of (C,F,H,m) can be verified by inspection. This completes the proof of
Lemma 5.

48

	Introduction
	Overview of Our Techniques
	Techniques of Bitansky et al. STOC:BitKalPan18
	Our Techniques

	Preliminaries
	Notations
	(Keyed) Hash Functions
	Keyless Multi-Collision Resistant Hash Functions
	Zero-Knowledge Arguments
	Weak Memory Delegations
	Oracle Memory Delegations
	Low-Degree Extensions
	Circuits

	Public-Coin Tree-Hash Oracle Memory Delegation
	Public-Coin Weak Tree-Hash Oracle Memory Delegation
	Proof of Lemma 1

	Public-Coin Oracle Memory Delegation
	Preliminary: RAM delegation
	Proof of Lemma 6

	Public-Coin Weak Memory Delegation
	Preliminary: Multi-Collision-Resistant Hash with Local Opening
	Proof of Lemma 7

	Public-coin 3-round Zero-Knowledge Argument
	Preliminary: Witness Indistinguishability with First-Message-Dependent Instances
	Proof of Theorem 3

	Additional Preliminaries
	The Learning with Errors (LWE) Assumption
	The Fiat–Shamir Transformation
	Algorithms for Low-Degree Polynomials

	Proof of Corollary 1
	Proof of Lemma 5
	Circuit C
	Parameters (H, m)
	Functions {add"0365addi, mult"0365multi }i[D]
	GKR Compatibility

