
Traceable Receipt-Free Encryption

Henri Devillez, Olivier Pereira, and Thomas Peters

UCLouvain – ICTEAM – Crypto Group

B-1348 Louvain-la-Neuve – Belgium

Abstract. CCA-like game-based security definitions capture confidentiality by asking an adversary

to distinguish between honestly computed encryptions of chosen plaintexts. In the context of voting

systems, such guarantees have been shown to be sufficient to prove ballot privacy (Asiacrypt’12). In this

paper, we observe that they fall short when one seeks to obtain receipt-freeness, that is, when corrupted

voters who submit chosen ciphertexts encrypting their vote must be prevented from proving how they

voted to a third party.

Since no known encryption security notion can lead to a receipt-free ballot submission process, we

address this challenge by proposing a novel publicly verifiable encryption primitive coined Traceable

Receipt-free Encryption (TREnc) and a new notion of traceable CCA security filling the definitional

gap underlined above.

We propose two TREnc instances, one generic achieving stronger guarantees for the purpose of relating

it to existing building blocks, and a dedicated one based on SXDH. Both support the encryption of

group elements in the standard model, while previously proposed encryption schemes aiming at offering

receipt-freeness only support a polynomial-size message space, or security in the generic group model.

Eventually, we demonstrate how a TREnc can be used to build receipt-free protocols, by following a

standard blueprint.

Keywords. New primitive, public-key encryption, receipt-freeness.

Table of Contents

Traceable Receipt-Free Encryption . 1

Henri Devillez, Olivier Pereira, and Thomas Peters

1 Introduction . 2

2 Traceable Receipt-Free Encryption . 5

2.1 Syntax. 6

2.2 Security definitions . 7

3 Towards a generic TREnc . 10

3.1 Extractable TREncs . 10

3.2 A TREnc flavored variant of pd-RCCA security . 10

3.3 Building a pd?-RCCA-secure extractable TREnc . 12

4 Pairing-Based Construction under SXDH . 13

4.1 Computational setting . 14

4.2 Linearly Homomorphic Structure-Preserving Signatures . 14

4.3 Intuition of our construction . 14

4.4 Description . 16

4.5 Security . 18

4.6 Efficiency . 19

5 Voting scheme based on Traceable Receipt-Free Encryption . 19

5.1 Definitions and notations . 19

5.2 Receipt-freeness . 21

5.3 Voting scheme . 23

5.4 Security of the voting scheme . 24

A Related security definitions . 29

A.1 RCCA security . 29

A.2 pd-RCCA . 29

B Relation between the security definitions . 30

B.1 pd?-RCCA and extractability implies TCCA . 30

B.2 Link between TCCA and RCCA security . 31

B.3 TCCA implies q-TCCA . 32

C Generic construction . 33

C.1 Signatures on Randomizable Ciphertexts . 33

C.2 Tag-based encryption . 34

C.3 Building Blocks . 35

C.4 Description and security of the generic construction . 37

C.5 Instantiation . 40

D Proofs of security of the construction under SXDH . 41

D.1 Verifiability . 41

D.2 Traceability . 42

D.3 Strong Randomizability . 44

D.4 Traceable Chosen-Ciphertext Security . 44

E Asymmetric Waters Signature . 48

F Belenios RF model . 48

G Ballot privacy . 50

H The need of strong validity . 53

1 Introduction

A protocol offers receipt-freeness when players are unable to demonstrate to a third party which

input they provided during a protocol execution. The need for receipt-freeness is most acute in order

to prevent vote selling in the context of elections [7], which is our motivating application, .

Receipt-free voting. In voting protocols, the random coins used by the voters can often be used as a

receipt. For instance, in the famous protocol by Cramer et al. [19], of which a variant is used by the

IACR in its own elections, a voter encrypts his vote with the election public key, and the resulting

ciphertext is posted on a public bulletin board in order to support the verifiability of the election. If

the voter decides to reveal to a third party the randomness used in the encryption process, that

party can re-encrypt the claimed vote intent with the randomness provided by the voter and verify

that the resulting ciphertext appears on the bulletin board: the randomness used for encryption is,

in effect, a receipt for the vote.

Since the seminal work of Benaloh [7], numerous protocols explored mechanisms that would

guarantee that the random coins used by a voter are insufficient to explain his ballot as it is posted

on the bulletin board for the needs of verification. In a first line of works [7,36,23], every possible

voting choice is encrypted, the resulting ciphertexts are rerandomized and shuffled by the election

authorities and made available to the voter. Furthermore, the permutations applied during the shuffle

are also transmitted to the voter using secure channels. The voter then picks the ciphertext encoding

his choice, and submits it for display on the bulletin board. Such a protocol guarantees that the

voter ignores the randomness used to encrypt his ballot, and the protocol is designed in such a way

that the voter is unable to prove which permutation he received, typically using designated-verifier

zero-knowledge proofs. Such protocols are however quite demanding in terms of resources, as they

require to encrypt a number of ciphertext proportional to the number of voting options, and a

communication bandwidth to the voters that is proportional to the number of authorities. The more

recent protocol of Kiayias et al. [26] faces similar challenges in terms of complexity, and also only

considers a weaker form of receipt-freeness that focuses on voters preparing their ballot honestly.

More recently, Blazy et al. [10] proposed a simpler voting flow supporting receipt-freeness based

on signatures on randomizable ciphertexts (SRC): the voters encrypt their vote and sign the resulting

ciphertext, which is then transmitted to a re-encryption authority that re-randomizes the ciphertext,

adapts the signature accordingly and posts the result on the bulletin board. The voter remains able

to verify that a vote with a valid signature is posted on the board on his behalf, but is unable to

explain the vote content thanks to the re-randomization step. Furthermore the SRC guarantees

that the content of the encrypted ballot cannot be modified during the re-encryption process. This

approach was further refined by Chaidos et al. [14], who also propose a simple game-based definition

of receipt-freeness, which we adopt here, and more efficient SRCs keep being proposed [14,5].

This approach makes the ballot submission process asymptotically optimal for the voter, in the

sense of Cramer et al. [19]: the protocol complexity for the voter becomes logarithmic in the number

of voting options and independent of the number of election authorities, contrary to a dependency

that is at least linear in both these factors when the approaches of [7,36,23,26] are used.

2

Receipt-free ballot submission. These works, by offering a simple ballot submission process in one

pass, raise the natural question of identifying a public key encryption primitive that would support a

receipt-free ballot submission process. Such a primitive would support a modular analysis of voting

protocols that would be built around it, including various tallying approaches (based on mix-nets

and homomorphic tallying for instance), and approaches to individual verifiability (based on the

so-called Benaloh challenge [6] or on code voting for example [16]).

This question has been answered in the context of private (rather than receipt-free) ballot

submission: it is well-known that a CCA-secure encryption scheme can be used to obtain a private

ballot submission, a requirement that can be relaxed to NM-CPA security when the tally takes

place in a single decryption round [20,39,9].

These works highlight the importance of some form of non-malleability in a submission process.

From a practical point of view, non-malleability is needed in order to be able to detect (and prevent)

non-independent ballot submissions (e.g., ballot copies) that would violate the privacy of the vote.

From a technical point of view, security proofs require the availability of a decryption oracle used to

extract the votes submitted by the adversary.

CCA security is however problematic in the context of receipt-free ballot submission, since

we need to be able to re-randomize encrypted votes, so that the voter cannot explain the vote

content anymore. The exploration of CCA-like security notions that would support some form of

controlled malleability has been a fertile research area, which resulted in the definition of the notions

of replayable-CCA (RCCA) security[13], homomorphic-CCA (HCCA) security [34], and controlled-

malleable CCA (CM-CCA) security [15] for instance. As far as we know, all these works rely on

the same CCA blueprint, in which an adversary submits one or more messages to a challenger,

who answers either with a honest encryption of the messages or with something else, and the

adversary must decide what he received with the help of a decryption oracle that accepts to decrypt

any ciphertext that is not “recognizably” related to the challenge ciphertexts. The same holds

in any other encryption primitives with CCA-like security with enhanced decryption capabilities.

While they give more flexible ways to decrypt ciphertexts (based on identities, attributes and so on

[37,24,35,11]), the challenge ciphertext is computed when the adversary sends a chosen message.

This blueprint is however inadequate when turning to encryption schemes that would support

the design of protocols that support receipt-freeness: in such a setting, we need to consider an

adversary who sends chosen ciphertexts, that may not be computed as a random encryption of a

plaintext vote.

Our contributions

1) TCCA security. In this work, we investigate for the first time the implication of defining the

notion of traceable CCA security (TCCA), a CCA-like security notion in which adversarially-

chosen ciphertexts are submitted in the challenge phase. The challenge ciphertext is produced by

randomizing one ciphertext or another, and we recognize derivatives of the challenge ciphertext

thanks to a non-malleable public trace which is present in any ciphertext. To avoid trivial attacks,

both ciphertexts given in the challenge phase must trace to each other, i.e., they must have the

same trace.

3

This makes it possible for voters to submit a ciphertext of their choice, which will then be

re-randomized by an authority, and can still be tracked by the voters using the trace.

For honestly produced ciphertexts, our security notion also implies traditional confidentiality

properties, so that ballot privacy remains guaranteed should the re-randomizing authority be

corrupted. So, non-malleability really serves two purposes here: (1) it guarantees that the re-

randomizing authority cannot produce a ciphertext that would be related to a honestly produced

one and have a different trace (which would violate ballot privacy), and (2) it guarantees that the

re-randomizing authority cannot produce a ciphertext that would have the same trace as a given

one but would decrypt to a different plaintext.

2) TREnc. We introduce Traceable Receipt-free Encryption (TREnc) as a new primitive with the

following features:

– Traceability. Honestly generated ciphertexts are traceable in the sense that it is infeasible to

modify the encrypted message;

– Randomizability. Valid ciphertexts are fully re-randomizable, up to the trace;

– TCCA security. Given a pair of ciphertexts that trace to each other, it is unfeasible to guess

which one is randomized, even with access to a decryption oracle which decrypts any ciphertexts

that do not trace to the challenge ciphertext, except before the challenge phase.

We also provide:

1. A generic TREnc that can be instantiated from existing building blocks that offer security in

the standard model, and whose CRS is public-coin;

2. A pairing-based TREnc under the SXDH assumption in the standard model, where the public

key only contains 13 first-source group elements and 6 second-source group elements, and the

ciphertext contains 13 first-source group elements and 5 second-source group elements.

Both approaches improve on the state of the art: the previous SRC-based solutions either require

costly bit-by-bit encryption [10,14], or only offer security in the generic group model [5].

3) A TREnc based voting scheme. Eventually, we show how to turn a TREnc into a simple voting

scheme in a generic way, following the Enc2Vote blueprint previously used to turn a CCA-secure

encryption scheme into a private voting scheme [9].

We demonstrate that the resulting voting scheme satisfies a notion of receipt-freeness that is

equivalent in spirit to the one of Chaidos et al. [14], but fixes a small technical issue in that definition

that makes their security game trivial to win (making it impossible to build a protocol that is

receipt-free according to their definition).

Other related works. We focus on offering receipt-freeness in the context of voting, which is

the context in which receipt-freeness was introduced [7], and which remains the main application

context in which receipt-freeness is desired. Voting can however be seen as a special type of secure

function evaluation protocol, in which specific tallying functions are evaluated and, as such, the

notion of receipt-freeness, and the related notion of coercion-resistance have also been defined in the

4

general multi-party computation setting [12,33,38,4]. We keep our focus on the voting context in

order to clarify various design choices that are most meaningful in the voting setting compared to

the general MPC setting: our primitive is targetted for a ballot submission process in which voters

submit their ballot in one pass and do not communicate with each other, contrary to most MPC

protocols, and we design mechanisms in which the ballot submission process can be fast, even on

devices with limited computational power, while the verification of an election may require a longer

period of time and use a dedicated computing infrastructure. Despite our focus on voting, it may be

the case that TREnc mechanisms find applications in other contexts.

2 Traceable Receipt-Free Encryption

We propose a new public key encryption primitive and associated security notions that would support

the receipt-free submission of votes in a protocol. As a first task, we identify the fundamental

ingredients that are needed for our new encryption primitive.

An encryption scheme. We expect voters to submit their vote in an encrypted form, in order to

guarantee the privacy of the votes.

Receipt-free encryption. Voters willing to sell their vote may choose to submit an arbitrary encrypted

vote, which may be in the range of honestly produced ciphertexts but sampled according to a

different distribution, or even just a sequence of bits that would not be within the range of the

encryption mechanism. By deviating from the normal encryption process, the voter hopes to obtain

a receipt that could be used to demonstrate his vote intent to a third party.

If the encrypted vote that is tallied is produced by the voter only, then the voter will always

have a receipt: the random coins used to encrypt the ballot. In order to avoid this, we rely on the

existence of a semi-trusted authority: that authority will be trusted to prevent a dishonest voter

from obtaining a receipt for his vote, but will not be trusted for the correctness of the election result,

and will not be trusted for the privacy of votes encrypted by honest voters.

Concretely, in order to achieve receipt-freeness, this semi-trusted authority tests the validity of

a voter submitted ciphertext (without the need of any secret key) and re-randomizes every valid

ciphertext before posting it on a public bulletin board.

Traceable Receipt-Free Encryption. In order to make it possible for a voter to check that his ballot

has not been unduly modified by this semi-trusted re-randomizing authority, it must be possible to

extract a trace from any valid ciphertext. A honest re-randomization process would keep the trace

is unchanged, hence making ciphertexts traceable, while no corrupted authority should be able to

modify a ciphertext in such a way that it would decrypt to a different vote while keeping the trace

unchanged.

Furthermore, we need to make sure that this trace cannot serve as a receipt for the vote. In

order to make sure that it is the case, we split the encryption process in two steps, that guarantee

that any trace can be associated to any possible vote intent. Concretely, an encryption starts with

the generation of a secret link key, which is then used, together with the encryption public key, to

5

encrypt any possible vote. This guarantees that, even if a voter leaks the link key associated to his

ballot as a receipt, the ballot could still encrypt any vote.1

2.1 Syntax

We now have the ingredients that we need to define a Traceable Receipt-Free Encryption scheme, or

TREnc.

Definition 2.1 (Traceable Receipt-Free Encryption). A Traceable

Receipt-Free Encryption scheme (TREnc) is a public key encryption scheme (Gen,Enc,Dec) that is

augmented with a 5-tuple of algorithms (LGen, LEnc,Trace,Rand,Ver):

– LGen(pk; r): The link generation algorithm takes as input a public encryption key pk in the range

of Gen and randomness r, and outputs a link key lk.

– LEnc(pk, lk,m; r): The linked encryption algorithm takes as input a pair of public/link keys

(pk, lk), a message m and randomness r and outputs a ciphertext.

– Trace(pk, c) : The tracing algorithm takes as input a public key pk, a ciphertext c and outputs a

trace t. We call t the trace of c.

– Rand(pk, c; r): The randomization algorithm takes as input a public key pk, a ciphertext c and

randomness r and outputs another ciphertext.

– Ver(pk, c): The verification algorithm takes as input a public key pk, a ciphertext c and outputs 1

if the ciphertext is valid, 0 otherwise.

In many cases, we will omit the randomness r from our notations. It is then assumed that it is

selected uniformly at random.

We require several correctness properties from the additional algorithms of a TREnc. The

first requires that encrypting a message m by picking a link key lk using LGen and computing

LEnc(pk, lk,m) produces a ciphertext that is identically distributed to a fresh encryption of m using

Enc. The second requires that the Trace of a ciphertext does not depend on the message that is

encrypted. The third requires that randomizing a ciphertext does not change the corresponding

plaintext neither the corresponding trace. The last requires that every honestly computed ciphertext

passes the verification algorithm.

Definition 2.2 (TREnc correctness). We require that a TREnc scheme satisfies the following

correctness requirements.

Encryption compatibility For every pk in the range of Gen and message m, the distributions of

Enc(pk,m) and LEnc(pk, LGen(pk),m) are identical.

1 Of course, this also means that, if a corrupted re-randomizing authority obtains a voter’s secret link key (e.g., by
corrupting the voter’s voting client), then it might be able to produce a ciphertext that encrypts a different vote
intent but would still trace to the original voter trace. Just as other attacks related to corrupted voting clients,
such attacks can be prevented by traditional continuous ballot testing procedures [6], in which a voter would have
the option to ask an authority to spoil a ballot posted on the bulletin board, which would then be verifiability
decrypted for verification, and later replaced by a fresh new ballot produced by the voter, using a fresh link key.

6

Link traceability For every pk in the range of Gen, every lk in the range of LGen(pk), the

encryptions of every pair of messages (m0,m1) trace to the same trace, that is, it always holds

that Trace(pk, LEnc(pk, lk,m0)) = Trace(pk, LEnc(pk, lk,m1)).

Publicly Traceable Randomization For every pk in the range of Gen, every message m and ev-

ery c in the range of Enc(pk,m), we have that Dec(sk, c) = Dec(sk,Rand(pk, c)) and Trace(pk, c) =

Trace(pk,Rand(pk, c)).

Honest verifiability For every pk in the range of Gen and every messages m, it holds that

Ver(pk,Enc(pk,m)) = 1

2.2 Security definitions

Verifiability We require several security properties from a TREnc. Our first property is fairly

standard: a TREnc is verifiable if the Ver algorithm guarantees that a ciphertext is within the range

of Enc. In other words, the ciphertext can be explained by some message m, some link key lk, and

some coins, even if they are not easily computable.

Definition 2.3 (Verifiability). A TREnc is verifiable if for every PPT adversary, the following

probability is negligible in λ:

Pr[Ver(pk, c) = 1 and c 6∈ Enc(pk, ·)|(pk, sk)← Gen(1λ); c← A(pk, sk)].

TCCA security. We now turn to our central security definition, security against traceable chosen

ciphertexts attacks, or TCCA security, which differs from all existing CCA-like notions by letting the

adversary submit pairs of ciphertexts instead of pairs of messages, reflecting that we need security in

front of adversarially chosen ciphertexts. In the TCCA security game (Fig. 1), the adversary receives

the public key and has access to a decryption oracle, as usual. It then submits a pair of ciphertexts

that must be valid and have identical traces. One of the ciphertexts is randomized and returned

to the adversary, who must decide which one it is. After receiving this challenge ciphertext, the

adversary can still query the decryption oracle, but only on ciphertexts that have a trace different

of his challenge ciphertext. So, the challenger must faithfully decrypt pre-challenge ciphertexts that

have the same trace as the challenge ciphertext. Looking ahead, this decryption capability offers an

easy but necessary mean allowing simulating the result of an election when proving receipt-freeness.

TCCA security guarantees that, if a voter submits a ciphertext that is randomized before it is

posted on a public bulletin board, then the resulting ciphertext becomes indistinguishable from

any other ciphertext that would have the same trace, and we know from the link traceability that

the encryption of any vote could have that trace. This essentially guarantees the absence of a vote

receipt.

Definition 2.4 (TCCA). A TREnc is TCCA secure if for every PPT adversary A = (A1,A2) the

experiment Exptcca
A (λ) defined in Figure 1 (left) returns 1 with a probability negligibly close in λ to

1
2 .

It is naturally possible to write a multi-challenge version of the Exptcca
A (λ) experiment, which we

call q-TCCA, in which the adversary can submit q pairs of ciphertexts. This leads to an equivalent

7

Exptcca
A (λ)

(pk, sk)←$Gen(1λ)

(c0, c1, st)←$ADec(·)
1 (pk)

b←$ {0, 1}
if Trace(pk, c0) 6= Trace(pk, c1) or

Ver(pk, c0) = 0 or Ver(pk, c1) = 0 then return b

c? ←$Rand(pk, cb)

b′ ←$ADec?(·)
2 (c?, st)

return b′ = b

Exptrace
A (λ)

(pk, sk)←$Gen(1λ)

(m, st)←$A1(pk, sk)

c←$Enc(pk,m)

c? ←$A2(c, st)

if Trace(pk, c) = Trace(pk, c?) and
Ver(pk, c?) = 1 and Dec(sk, c?) 6= m

then return 1

else return 0

Fig. 1. TCCA and trace experiments. In the TCCA experiment, A2 has access to a decryption oracle Dec?(·) which,
on input c, returns Dec(c) if Trace(pk, c) 6= Trace(pk, c?) and test otherwise.

definition, as demonstrated in Appendix B. We also stress that in the challenge query the adversary

may know the random coins underlying c0 and c1 and may have drawn them from a specific

secret distribution. The randomization leading to the challenge ciphertext c? should thus erase any

subliminal information binding c? to the message in cb. This definition introduces some technical

difficulty when it comes to proving the TCCA security as it becomes harder to program the public

key to ease the transition toward a game where we are able to inject an independent message in the

plaintext in an undetectable way. Indeed, we have no clue at the setup time about the distribution

of (c0, c1) and their common trace while the emulation of Rand(pk, cb) must preserve it without even

knowing the underlying link keys.

TCCA security is reminiscent of the notion of publicly detectable replayable-CCA (pd-RCCA)

security proposed by Canetti et al. [13]. The pd-RCCA security game is essentially the same as the

CCA game, except for two main differences: a publicly computable equivalence relation is defined

on ciphertexts and, after the challenge ciphertext has been received, the challenger will refuse to

decrypt any ciphertext that is equivalent to this challenge ciphertext. Furthermore, ciphertexts

that are in the same equivalence class must decrypt to the same message (for completeness, the

full definition is available in Appendix A.2). The pd-RCCA security game looks appealing in the

context of voting, because it captures this idea of having the possibility to re-randomize ciphertexts

while also keeping a trace that could be detected through the equivalence relation. And, indeed,

RCCA-secure encryption has been used in previous proposals of receipt-free voting schemes [14].

There are three central differences, though, which motivate the introduction of the TCCA

security game.

– The challenge ciphertexts of the pd-RCCA security game are always honestly computed and, as

such, pd-RCCA security does not offer any guarantee in front of maliciously produced ciphertexts,

as it would be the case when a voter tries to obtain a receipt for his vote.

– Contrary to pd-RCCA security, it can be observed that TCCA security says nothing about the

hiding property of the Enc algorithm, since the adversary must distinguish based on outputs of

Rand. An extreme case could define Enc as the identity function, Trace as mapping to a single

constant trace, and Rand actually performing the encryption work, and this could still offer

a TCCA secure scheme. The confidentiality requirements on Enc will be handled through the

traceability and strong randomization properties below.

8

– There is no requirement for TCCA security that trace equivalent ciphertexts decrypt to the same

message: a single link key can be used to encrypt any message, and all the resulting ciphertexts

would have the same trace (by the link traceability correctness property). We recall that this

non-binding feature is essential for receipt-free voting.

As such, TCCA security is not comparable to pd-RCCA security. We show in Appendix B that,

under (different) additional conditions, implications can be proven in both directions for a natural

variant of pd-RCCA security adapted to TREnc schemes.

Traceability and Strong Randomization. While TCCA security relates to a model in which the

voting client may be corrupted but the re-randomization server is honest, we now focus on two

central properties that are important when the voting client is honest and the re-randomization

server might be corrupted.

The traceability property guarantees to the sender of a honestly encrypted message that no

efficient adversary would be able to produce another ciphertext that traces to the same trace and

would decrypt to a different message, even if the adversary knows the secret decryption key. So, even

if a TREnc offers some form of ciphertext malleability, its traceability implies the non-malleability

of the plaintexts. This is an important feature for the verifiability of a voting system: as long as the

link key used to encrypt a vote remains secret, and the voter submits a single ciphertext encrypted

with that link key, the voter is guaranteed that any ciphertext that would trace to his original

ciphertext encrypts his original vote. (But, of course, using the link key, it remains possible to

produce ciphertexts with the same trace that would decrypt to any vote.)

Definition 2.5 (Traceability). A TREnc is traceable if for every PPT adversary A = (A1,A2),

the experiment Exptrace
A (λ) defined in Figure 1 (right) returns 1 with a probability negligible in λ.

The second property, strong randomization, requires that the output of the Rand algorithm

applied to any valid ciphertext is distributed just as a random encryption of the same message with

the same link key.

Definition 2.6 (Strong Randomization). A TREnc is strongly randomizable if for every

c ∈ LEnc(pk, lk,m) with pk in the range of Gen and lk in the range of LGen(pk), the following

computational indistinguishability relation holds:

Rand(pk, c) ≈c LEnc(pk, lk,m)

Requiring strong randomization together with TCCA security guarantees that Enc actually

hides messages. CPA security comes easily: when the CPA adversary sends (m0,m1) to the TCCA

adversary, the TCCA adversary can encrypt the 2 messages using a single random link key and

send them to the TCCA challenger, which will return a randomization of one of them. Strong

randomization guarantees that this is distributed exactly like an encryption of one of the two

messages, and we can send the result to the CPA adversary, who will then offer the answer expected

for the TCCA game. We show a stronger implication to RCCA security in Appendix B.2.

9

3 Towards a generic TREnc

We are now interested in exploring how a TREnc could be designed from existing tools. The core

TREnc security feature comes from the TCCA security game, in which the adversary submits a

pair of ciphertexts with identical traces and receives a re-randomization of one of them. If we want

relate this game to a more standard RCCA-style security definition in which the adversary submits

a pair of plaintext and receives an encryption of one of them, we need to be able to translate a

re-randomization query on two ciphertexts into an encryption query on the two corresponding

plaintexts. But there is an additional constraint that needs to be satisfied: the ciphertext resulting

from the encryption query needs to have the same trace as the original ciphertexts. In other words,

we need to be able to decrypt the challenge ciphertexts from the TCCA game, but also to extract

the link key that they contain. We capture this last idea in an augmented version of a TREnc, which

we call extractable TREnc.

3.1 Extractable TREncs

Essentially, an extractable TREnc makes it possible to produce encryption keys together with a

trapdoor using a TrapGen algorithm. Using that trapdoor, it becomes possible to extract, from any

ciphertext, a link key that makes it possible to produce new ciphertexts with the same trace as the

original one. This in turn implies the possibility to break the traceability of the scheme.

Definition 3.1 (Extractable TREnc). An extractable TREnc is a TREnc with two additional

algorithms TrapGen and LExtr:

– TrapGen(1λ): The trapdoor generation algorithm takes as input the security parameter and outputs

a tuple of public/secret/trapdoor keys (pk, sk, tk). We require the distribution of the (pk, sk) pairs

produced by TrapGen(1λ) to be identical to the one of the outputs of Gen(1λ).

– LExtr(tk, c): The link extraction algorithm takes as input the trapdoor key and a ciphertext and

returns a link key lk such that, if c is in the range of Enc(pk, ·) with pk in the range of Gen, then

c is in the range of LEnc(pk, lk, ·).

It is fairly natural to require that ciphertexts can only be consistent with one single link key,

hence guaranteeing a unique link key extraction.

Definition 3.2 (Unique Extraction). An extractable TREnc has unique extraction if, for every

(pk, sk, tk) in the range of TrapGen and lk in the range of LGen(pk), we have that:

– LExtr(c, tk) = lk whenever c ∈ LEnc(pk, lk, ·);
– LExtr(c0, tk) = LExtr(c1, tk) whenever we have Trace(pk, c0) = Trace(pk, c1) and c0, c1 ∈ Enc(pk, ·).

3.2 A TREnc flavored variant of pd-RCCA security

Based on an extractable TREnc, we now propose an RCCA-like security definition, pd?-RCCA-

security, which shares much of the spirit of the pd-RCCA notion of Canetti et al. [13], but is

10

rather tailored as a useful intermediary notion for achieving TCCA security: we will show that any

pd?-RCCA-secure extractable TREnc is also TCCA secure. Eventually, we will show how to achieve

pd?-RCCA-security from existing tools.

Definition 3.3 (pd?-RCCA). An extractable TREnc is pd?-RCCA-secure if for any PPT adver-

sary A = (A1,A2), the experiment Exppd?-rcca
A (λ) in Figure 2 returns 1 with a probability negligibly

close on λ to 1
2 .

Exppd?-rcca
A (λ)

(pk, sk, tk)←$TrapGen(1λ)

(m0,m1, lk, st)←$ADec(sk,·),LExtr(tk,·)
1 (pk)

b←$ {0, 1}
if lk = ⊥ then c? ←$Enc(pk,mb)
else c? ←$ LEnc(pk, lk,mb)

b′ ←$ADec?(sk,·),LExtr(tk,·)
2 (c?, st)

return b = b′

Fig. 2. pd?-RCCA experiment. Here, Dec?(sk, c) is a decryption oracle that returns test if Trace(pk, c) = Trace(pk, c?)
and Dec(sk, c) otherwise.

Just as in the pd-RCCA security definition, our adversary receives a public key, then can make

decryption queries, make a challenge query on a pair of plaintexts, receive an encryption c? of one

of them, and then make more decryption queries, provided that they are not about ciphertexts that

are equivalent to c?. Here the notion of equivalent ciphertext is defined by ciphertexts with identical

traces, which does not imply that they decrypt to the same plaintext, contrary to the compatibility

requirement of pd-RCCA security. The extra features of pd?-RCCA security, which come naturally

in the context of an extractable TREnc, are that:

– On top of having access to a decryption oracle, the adversary has access to a LExtr oracle that

gives him the possibility to extract the link key from any ciphertext.

– During his challenge query, the adversary can provide a link key on top of its two plaintexts: the

challenge ciphertext will then be computed using that link key.

As announced, a pd?-RCCA-secure and strongly randomizable extractable TREnc is also TCCA-

secure.

Theorem 3.4. If a TREnc scheme T is extractable, strongly randomizable, and pd?-RCCA-secure,

then it is TCCA secure. More precisely, if the advantages of any PPT adversary at strong ran-

domization and pd?-RCCA experiment are respectively bounded by εSR and ε, then for any PPT

adversary A, we have Pr[Exptcca
A,T (λ) = 1] ≤ 1

2 + εSR + ε.

Proof. (See Appendix B.1 for details.) The decryption queries from the TCCA adversary are

forwarded to the pd?-RCCA challenger. When the TCCA adversary makes his challenge query on

(c0, c1), the reduction obtains the corresponding link key and plaintexts by querying the pd?-RCCA

11

challenger, and sends them as pd?-RCCA challenge. The resulting ciphertext is correctly distributed

thanks to strong randomizability, and has the correct trace thanks to the extractability. The winning

probability of the TCCA adversary is then negligibly close to the winning probability of the resulting

pd?-RCCA adversary. ut

3.3 Building a pd?-RCCA-secure extractable TREnc

We are now ready to build a TREnc. As a first natural building block, we use a signature on

randomizable ciphertexts (SRC), as introduced by Blazy et al. [10]. In an SRC, any signed ciphertext

can be publicly re-randomized, and the signature can be publicly adapted so that it remains valid

for the new ciphertext.

We can easily obtain the structure of a TREnc from an SRC by defining the LGen function as

setting lk as a fresh signing key for the SRC, and the LEnc function as encrypting the plaintext using

a randomizable encryption scheme, then signing that ciphertext using lk. The trace of a ciphertext

would then be the signature verification key.

This offers a promising skeleton, but it is not sufficient to obtain pd?-RCCA security: as it is,

the adversary could simply remove the signature from the challenge ciphertext, sign that ciphertext

with a fresh key in order to obtain a different trace, and ask for the decryption of the result, which

would be granted.

A natural solution to this problem is to link the trace to the ciphertext using tag-based

encryption [27] mechanism. In a tag-based encryption scheme, the encryption and decryption

functions take an arbitrary tag as an extra input, and the decryption of a ciphertext with an incorrect

tag will fail. We rely on the standard notion of weak-CCA security for tag based encryption [32],

which is the CCA security game excepted that the challenge ciphertext is produced using an

adversarially chosen tag, and that no decryption query can be made using that tag (only) after

the challenge phase. This security game nicely fits our pd?-RCCA security game, in which the

trace derived from the link key submitted by the adversary can be used as a tag, and guarantees

that no ciphertext can be modified in such a way that it successfully decrypts with a tag that is

different of the original one. We note that we must be able to decrypt pre-challenge queries that

already contains the “challenge tag” of the adversary, which prevents us from only relying on (weak)

selective-tag security.

But we still need to be able to extract the link key from a tag-based ciphertext. This can be

done fairly easily, by augmenting our encryption process with the requirement to encrypt the link

key using a randomizable CPA-secure encryption scheme, and to add a randomizable ZK proof that

the encrypted link key is indeed the one that is used as tag for the tag-based encryption. Extraction

would then simply proceed by decrypting that CPA ciphertext. (In particular, it does not rely on

any extraction property of the ZK proof system: we just need its soundness.)

So, to summarize we build an extractable TREnc from the following ingredients:

– A randomizable weakly CCA secure tag-based encryption scheme (TBGen, TBEnc,TBDec).

– An SRC compatible with the tag-based encryption scheme, which includes a signature scheme

(SGen,Sign,SVer).

12

– A randomizable CPA secure public key encryption scheme (EGen,EEnc,EDec).

– A randomizable NIZK proof system (Prove,VerifyProof) that, on input (ctbe, cextr) and associated

public keys, demonstrates that cextr is an encryption with EEnc of the signing key whose

corresponding verification key has been used as a tag in order to compute ctbe using TBEnc.

And the blueprint of our TREnc is as follows:

– TrapGen uses TBGen to produces a key pair (tpk, tsk), and EGen to produce a key pair (eextr, dextr).

It returns pk = (tpk, eextr), sk = tsk and tk = dextr.

– LGen sets lk as a signing key obtained from Sign. We assume that the corresponding signature

verification key vk can be derived from lk.

– LEnc encrypts the message m as follows:

• ctbe = TBEnc(tpk, lk,m);

• σ = Sign(lk, ctbe);

• cextr = EEnc(eextr, lk);

• π = Prove(ctbe, cextr; lk)

The ciphertext is made of these 4 elements, together with vk.

– Dec returns TBDec(tsk, vk, ctbe)

– Trace returns vk.

– Rand re-randomizes ctbe, adapts σ accordingly, re-randomizes cextr, and re-randomizes and adapts

π.

– Ver accepts a TREnc ciphertext if the two ciphertexts that it contains are valid, if the signature

is valid, and if the ZK proof verifies.

– LExtr returns EDec(tsk, cextr).

A complete description of this generic TREnc, together with proofs of its security, is available

in Appendix C. This section showed that the notion of extractable TREnc offers a convenient

companion for a TREnc: it is possible to build an extractable TREnc from relatively common,

yet strong, building blocks, and the proof of TCCA security of this TREnc comes relatively easily

because we can design a pd-RCCA-like security notion for extractable TREnc that implies our new

TCCA security notion. The resulting construction is however expected to be fairly expensive since,

in the standard model, all known instantiations of the building blocks (see Section C, for instance)

relies on a bit-by-bit decomposition of the message or the secret singing key of which the ciphertext

must contain a (malleable) ZK proof of. Nevertheless, providing this extractability feature is an

artifice for the construction that is not necessary for the security of the TREnc, but as far as we

know there is no obvious generic construction leading to a TREnc without extractability. In the

next section we turn to the construction of an ad-hoc efficient instance of a TREnc based on a

standard computational assumption that also avoid the costly bit-by-bit decomposition.

4 Pairing-Based Construction under SXDH

This section provides a secure TREnc in the standard model, only relying on the SXDH assumption

and on a CRS. Contrary to our previous construction, this one is not extractable – extractability

13

was just a convenience but does not offer and security benefit. This allows us to get a more efficient

solution, here, in asymmetric bilinear groups. Moreover, our construction enjoys a short public-key

and short ciphertexts as they only contain a constant number of group elements to encrypt a full

group element, contrary to previous proposals that required to process the message bit by bit [10,14].

We first introduce the cryptographic assumptions on which we will rely, as well as the main

existing building block that we will use: linearly homomorphic structure-preserving signatures.

4.1 Computational setting

We rely on an efficient Setup algorithm that generates common public parameters pp. Given a

security parameter λ, Setup(1λ) generates a bilinear group pp = (G, Ĝ,GT , p, e, g, ĝ, ĥ) of prime

order p > 2poly(λ) for some polynomial poly, where g←$G and ĝ, ĥ←$ Ĝ are random generators

and e : G × Ĝ → GT is a bilinear map. In this setting, we rely on the SXDH assumption, which

states that the DDH problem must be hard in both G and Ĝ. Following the Groth-Sahai standard

notation, we also define the linear map ι : G→ G2 with ι : Z 7→ (1, Z).

4.2 Linearly Homomorphic Structure-Preserving Signatures

A central tool for our efficient TREnc construction is linearly homomorphic structure-preserving

signatures. The structure preserving [2][1] property makes it possible to sign messages that are

group elements (and not just bits as in schemes based on the Waters signature), while the additional

linearly homomorphic feature, introduced by Libert et al. [30], will be used to make the signatures

randomizable while guaranteeing the non-malleability of the plaintext.

Keygen(pp, n): given the public parameter pp and the (polynomial) space dimension n ∈ N, choose

χi, γi←$Zp and compute ĝi = ĝχi ĥγi , for i = 1 to n. The private key is sk = {(χi, γi)}ni=1 and

the public key is pk = {ĝi}ni=1 ∈ Gn.

Sign(sk, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Gn using sk = {(χi, γi)}ni=1, output

σ = (Z,R) =
(∏n

i=1M
χi
i ,
∏n
i=1,M

γi
i

)
.

SignDerive(pk, {(ωi, σ
(i))}`i=1): given pk as well as ` tuples (ωi, σ

(i)), parse σ(i) as σ(i) =
(
Zi, Ri

)
for i = 1 to `. Return the triple σ = (Z,R) ∈ G, where Z =

∏`
i=1 Z

ωi
i , R =

∏`
i=1R

ωi
i .

Verify(pk, σ, (M1, . . . ,Mn)): given σ = (Z,R) ∈ G2 and (M1, . . . ,Mn), return 1 if and only if

(M1, . . . ,Mn) 6= (1G, . . . , 1G) and (Z,R) satisfies

e(Z, ĝ) · e(R, ĥ) =
n∏
i=1

e(Mi, ĝi) . (1)

4.3 Intuition of our construction

To encrypt a message m ∈ G, we combine a CPA encryption c = (c0, c1, c2) of the form c0 = m · fθ,
c1 = gθ, c2 = hθ and and a randomizable publicly verifiable proof that logg c1 = logh c2, à la

Cramer-Shoup. For that purpose, we can rely on the idea to include a one-time LHSP signature on

14

top of c as first suggested in [30]. That means that the public key contains an LHSP signature Σ on

(g, h) so that we can derive a signature on (g, h)θ if indeed (c1, c2) lies in span〈(g, h)〉 by computing

π = Σθ. Such a proof is quasi-adaptive [25] as the CRS depends on the language of which we have to

prove membership. Here, the public key includes a CRS that contains a signature on the basis of the

linear subspace span〈(g, h)〉 of G2. Given c and the LHSP signature π one can easily randomize the

ciphertext as follows: compute c′ = c ·(f, g, h)θ
′
, and adapt the proof π′ = π ·Σθ′ . While this solution

is perfectly randomizable and the signing key allows to perfectly simulate the proof, it only provides

a CCA1 security. Still, this technique has been enhanced to provide tag-based simulation-sound proof

system which is reminiscent to building CCA-like secure encryption. The underlying technique is to

generate a one-time key pair (opk, osk) of some one-time signature scheme that will be discussed in

the next paragraph, and to define the tag as τ = H(opk), for some collision-resistant hash function

H,2 before computing π that (c1, c2) lies in span〈(g, h)〉 based on τ . The ciphertext is then completed

by signing (c, π) with osk, resulting in the ciphertext (c, π, σ, opk). A natural solution would be

to borrow the first solution due to [31] but it only provides selective-tag simulation soundness.

Since we will be using opk as the trace of our TREnc construction, the TCCA security implies that

our underlying tag-based encryption must achieve tag-based weak CCA security, and selective-tag

security is not enough (see Section C.2). Indeed, the tag τ∗ = H(opk∗) involved in the challenge

ciphertext may be chosen by the adversary at any time. Furthermore, we must be able to answer any

pre-challenge decryption queries, so even those that already used τ∗. That means that we cannot

program the public key to embed τ∗ that will help us to incorporate an SXDH instance in the

computation of the challenge ciphertext. Fortunately, by including a signature Σu on (g, h, 1, 1) and

another signature Σv on (1, 1, g, h) in the public key, given a tag τ , the computation of π = (Στ
uΣv)

θ

due to [28] is an LHSP signature on (cτ1 , c
τ
2 , c1, c2) which gives us the expected security and still

enjoys a perfect randomizability, but for the given tag τ (and trace opk), only, which is still what

we were looking for.

Now, we come back on the signature σ of (c, π). Usually, (opk, osk) is a key pair of a strongly

unforgeable signature scheme providing non-malleability of ciphertext. However, we want to keep

the malleability of the ciphertext as we want to be able to fully randomize it up to opk that will

serve as our trace, but we also want to retain the non-malleability of the encrypted message m

to satisfy traceability. Here again, in the standard model under SXDH, LHSP signature scheme

comes in handy. If our fresh key pair (opk, osk) is generated from a one-time LHSP signature

scheme, we can fix the message and preserve the randomizability of (c, π) by computing one-

time LHSP signatures σ1 on (g, c0, c1, c2) and σ2 on (1, f, g, h). Like this, when we randomize

(c, π, σ1, σ2) as c′ = c · (f, g, h)θ
′
, π′ = π · (Στ

uΣv)
θ′ we can also adapt the signature σ′1 = σ1 · σθ

′
2

on (g, c′0, c
′
1, c
′
2) = (g, c0, c1, c2) · (1, f, g, h)θ

′
, and simply keep σ2. While the correctness follows by

inspection, we have several comments to make that are less obvious. First, the reason why we are no

more able to modify m is due to the presence of the constant g that must be the first component of

the signed vector associated to σ1 and any adaptation σ′1. Modifying m requires computing a one-time

LHSP signature on a vector necessarily outside the span generated by (g, c0, c1, c2) and (1, f, g, h).

Second, the signature σ2 is unchanged during the randomization. Still, it is a signature on a fixed

2 H must not only be second-preimage resistance as in [27] since the adversary can choose opk∗ adaptively.

15

vector and the one-time LHSP signing algorithm is deterministic. Moreover, if we have two distinct

signatures on a single vector we can solve SXDH. That means that any other adversarially generated

ciphertext for opk (as the adversary might know osk) will have to share σ2 and our randomizability

holds. Third, while the tag-based simulation-sound QA-NIZK proof π can be simulated if we embed

a random triple (F,G,H) into (c0, c1, c2) we also have to produce a valid looking adaptation of σ1
while we do not know osk∗. To avoid extracting osk from a costly bit-by-bit proof of knowledge in

the standard model since osk consists of random scalars,3 we would like to add (1, F,G,H) in the

public key and requires the ciphertext to further compute a signature σ3 on it with osk. However,

if we reveal (1, F,G,H), computing (g, c∗0, c
∗
1, c
∗
2) = (g, c0, c1, c2) · (1, f, g, h)θ

∗ · (1, F,G,H)ρ∗ allows

deriving a valid σ∗1 = σ1 ·σθ
∗

2 ·σ
ρ∗

3 but c∗ = (c∗0, c
∗
1, c
∗
2) will not be random even if (F,G,H) is random.

Fortunately, it is actually sufficient for the traceability to use (opk, osk) to sign the shorter vectors

(g, c0, c1), (1, f, g) and (1, F,G), and keep H away from the adversary’s view to have a statistically

random c∗ in the reduction. When (1, F,G) is not in span〈(1, f, g)〉, the proof π simply prevents

the adversary from randomizing ciphertexts with (1, F,G) without losing validity.

For technical reason, we hide σ1 in the ciphertext and make a randomizable NIWI Groth-Sahai

proof to show the randomizability and the TCCA security of the scheme. While we can adapt the σ1
component when we randomize one of the two ciphertexts given by the adversary in the challenge

phase (or in the randomization experiment), and that trace to each other, since the adversary might

know osk it might infer more information about how we adapt this signature into σ∗1 if we left it in

the clear.

4.4 Description

Gen(1λ): Choose bilinear groups (G, Ĝ,GT) of prime order p > 2poly(λ) together with g, h←$G
and ĝ, ĥ←$ Ĝ.

1. Pick random α, β←$Zp and set f = gαhβ.

2. Pick δ←$Zp and compute (F,G,H) = (f, g, h)δ.

3. Generate a Groth-Sahai CRS crsw = (~w1, ~w2) ∈ G4 to commit to groups elements of G,

where ~w1 = (w11, w12) and ~ww = (w21, w22) are generated in the perfect NIWI mode, i.e.,

crsw←$G4.

4. Define the vector v = (g, h) and generate 2 key pairs (sku, pku) and (sku, pku) for the one-time

linearly homomorphic signature of Section 4.2 in order to sign vectors of dimension n = 2,

given the common public parameters ĝ, ĥ. Let pku = {û1, û2} and pkv = {v̂1, v̂2}. Using sku
(resp. skv), generate a one-time LHSP signature Σu = (Zu, Ru) (resp. Σv = (Zv, Rv)) on v.

In other words, for pkqazk
lhsp = {û1, û2, v̂1, v̂2}, Σu, Σv are one-time LHSP signatures on the

rows of the matrix

P =

(
g h 1 1

1 1 g h

)
.

3 There is no fully structure-preserving signature schemes under SXDH and none with full randomizability (except
in the generic group model [22]), which might still not be enough to be combined with a ciphertext as an SRC).
And, we are not aware of any fully structure-preserving LHSP signature scheme, where the secret keys only contain
source group elements.

16

The private key consists of SK = (α, β) and the public key PK ∈ G13 × Ĝ6 is

PK =
(
f, g, h, F, G, crsw, Σu, Σv, pkqazk

lhsp , ĝ, ĥ
)
.

Enc(PK,m): to encrypt a message m ∈ G, first run LinkGen(PK): Generate a key pair (osk, opk)

for the one-time linearly homomorphic signature of Section 4.2 from the public generators ĝ, ĥ in

order to sign vectors of dimension 3. Let lk = osk = {(ηi, ζi)}3i=1 be the private key, of which the

corresponding public key is opk = {f̂i}3i=1. Then, conduct the following steps of LEnc(PK, lk,m):

1. Pick θ←$Zp and compute the CPA encryption c = (c0, c1, c2), where c0 = mfθ, c1 = gθ and

c2 = hθ, and keep the random coin θ.

Next steps 2-3 are dedicated to the tracing part.

2. To allow tracing, authenticate the row space of the matrix T=
(
Ti,j
)
1≤i,j≤3

T =


g c0 c1

1 f g

1 F G

 (2)

by using lk = osk. Namely, sign each row ~Ti = (Ti,1, Ti,2, Ti,3) of T resulting in σ = (σi)
3
i=1 ∈

G6, where σi = (Zi, Ri) ∈ G2.

3. To allow strong randomizability, commit to σ1 using the Groth-Sahai CRS crsw by computing

CZ = ι(Z1)~w
z1
1 ~wz22 and CR = ι(R1)~w

r1
1 ~wr22 . To ensure that σ1 is a valid one-time LHSP

signature on (g, c0, c1) compute the proof π̂sig = (P̂1, P̂2) ∈ Ĝ2 such that P̂1 = ĝz1 ĥr1 and

P̂2 = ĝz2 ĥr2 .

Next step 4 shows the validity of c associated to the tag τ = H(opk).

4. Given θ and τ = H(opk), compute a randomizable simulation-sound proof that (c1, c2) ∈
span〈(g, h)〉. Namely, derive the LHSP signature π = (Στ

uΣv)
θ =: (Zπ, Rπ) on the vector

(cτ1 , c
τ
2 , c1, c2)=((g, h, 1, 1)τ (1, 1, g, h))θ.

Output the ciphertext

CT =
(
c,CZ ,CR, σ2, σ3, π, π̂sig, opk = {f̂i}3i=1

)
∈ G13 × Ĝ5

Trace(PK,CT): Parse PK and CT as above, and output opk in the obvious way.

Rand(PK,CT): If PK and CT do not parse as the outputs of Gen and Enc, abort. Otherwise,

conduct the following steps:

1. Parse the CPA encryption part c = (c0, c1, c2), pick θ′←$Zp and compute c′ = c · (f, g, h)θ
′
,

so that c′0 = c0f
θ′ , c′1 = c1g

θ′ and c′2 = c2h
θ′ .

2. Implicitly adapt the committed signature σ1 of the tracing part. First, compute σ̃1 =

(Z̃1, R̃1) = (Zθ
′

2 , R
θ′
2) = σθ

′
2 , which consists of a one-time LHSP signature on (1, f, g)θ

′
for

opk. Second, adapt the commitments C ′Z = CZ · ι(Z̃1)~w
z′1
1 ~w

z′2
2 and C ′R = CR · ι(R̃1)~w

r′1
1 ~w

r′2
2 ,

for some random scalars z′1, z
′
2, r
′
1, r
′
2←$Zp, which should commit to the valid one-time

LHSP signature σ′1 = σ1σ
θ′
2 on (g, c′0, c

′
1) for opk. Third, adapt the proof π̂sig = (P̂1, P̂2) as

π̂′sig =(P̂ ′1, P̂
′
2), where P̂ ′1= P̂1 · ĝz

′
1 ĥr

′
1 and P̂ ′2= P̂2 · ĝz

′
2 ĥr

′
2 .

17

3. Adapt the proof of the validity of the CPA ciphertext. Namely, computes π′ = π · (Στ
uΣv)

θ′=

(Zπ(ZτuZv)
θ′, Rπ(RτuRv)

θ′), where τ = H(opk).

Output the re-randomized ciphertext

CT =
(
c′,C ′Z ,C

′
R, σ2, σ3, π

′, π̂′sig, opk
)
.

Ver(PK,CT): First, abort and output 0 if PK or CT does not parse properly. Second, verify the

validity of the signatures σ2 and σ3 on the 2 last rows {~Ti}3i=2 of the matrix T, and output 0 if

it does not hold. Third, verify that:

1. The committed signature of the tracing part is valid, i.e., σ1 = (Z1, R1) is a valid one-time

LHSP signature on the vector (g, c1, c2). To hold, the commitments CZ ,CR and the proof

π̂sig = (P̂1, P̂2) must satisfy

E(CZ , ĝ) · e(CR, ĥ) = E(ι(g), f̂1) · E(ι(c0), f̂2) · E(ι(c1), f̂3) (3)

· E(~w1, P̂1) · E(~w2, P̂2)) ;

2. The proof that the CPA ciphertext is valid, i.e., π = (Zπ, Rπ) is a valid one-time LHSP

signature on the vector (cτ1 , c
τ
2 , c1, c2), which must satisfy

e(Zπ, ĝ) · e(Rπ, ĥ) = e(c1, û
τ
1 v̂1) · e(c2, ûτ2 v̂2), (4)

where τ = H(opk).

If at least one of theses checks fails, output 0, otherwise, output 1.

Dec(SK,PK,CT): If Ver(PK,CT) = 0, output ⊥. Otherwise, given SK = (α, β) and c = (c0, c1, c2)

included in CT, compute and output m = c0 · c−α1 · c
−β
2 .

The correctness follows by inspection.

4.5 Security

The security of our pairing-based TREnc relies solely on the SXDH assumption. We first show

the verifiability of this TREnc as it eases the analysis of the traceability and the randomizability

properties. The verifiability essentially relies on the unforgeability of LHSP signatures since it also

implies the (simulation-) soundness of the (quasi-adaptive) proof of (subspace) membership.

Theorem 4.1. The above TREnc is verifiable under the SXDH assumption. More precisely, for

any adversary A, we have Pr[Expver
A (λ) = 1] ≤ εsxdh + 1/p.

Proof. See Appendix D. ut

Theorem 4.2. The above TREnc Π is traceable under the SXDH assumption. More precisely, for

any adversary A, we have Pr[Exptrace
A,Π (λ) = 1] ≤ 2 · εsxdh + 2/p.

Proof. See Appendix D. ut

18

Strong randomizability essentially relies on the verifiability, which shows that computationally-

bounded adversary only produces (except with negligible probability) valid ciphertexts that are

honest (but, possibly with biased randomness), and the perfect randomization of honest ciphertexts.

Theorem 4.3. The above TREnc is strongly randomizable under the SXDH assumption. More

precisely, for any adversary A = (A1,A2), where A2 is possibly unbounded, we have Pr[Exprand
A (λ) =

1] ≤ εsxdh + 2/p.

Proof. See Appendix D. ut

Theorem 4.4. The above TREnc is TCCA-secure under the SXDH assumption and the collision

resistance of the hash function. More precisely, we have Pr[Exptcca
A,Π(λ) = 1] ≤ 1

2+εcr+2·εsxdh+Ω(2−λ).

Proof. See Appendix D. ut

4.6 Efficiency

This TREnc instance is reasonably efficient. In particular, in order to encrypt a message, which

is typically the bottleneck in voting applications because it must run more or less transparently

on low-end voter devices, we can encrypt one group element using 29 exponentiations in G and 10

exponentiations in Ĝ. This group element would make it possible to encode up to a few hundred

bits in practice, depending on the chosen security parameter.

In contrast, the SRC aiming at similar applications and used in the BeleniosRF election system

[14] requires 33 exponentiations in G and 22 exponentiations in Ĝ for the (signed) encryption of

only 1 bit. In general, their construction requires 11k + 22 exponentiations in G and 10k + 12

exponentiations in Ĝ in order to encrypt k bits. These estimates are based on the reference code of

the SRC, since the paper does not entirely specify the algorithms (especially how commitments and

proofs are computed).

5 Voting scheme based on Traceable Receipt-Free Encryption

Traceable Receipt-Free Encryption schemes are particularly well suited for the design of voting

systems offering receipt freeness, that is, systems in which voters cannot demonstrate how they

voted to a third party.

We are now formalizing the notion of voting system (Sec. 5.1) and receipt-freeness (Sec. 5.2),

using a definition closely related to the one of Chaidos et al. [14], while fixing two technical issues

that it contains, then show how to build a receipt-free voting scheme from a TREnc (Sec. 5.3).

5.1 Definitions and notations

We define voting protocols in a way that largely follows the SOK from Bernhard et al. [8] and

BeleniosRF [14]. In our voting protocols, we consider the following parties:

– The voters are participating in the election and are willing to cast a ballot representing their

vote intent.

19

– The election administrator is organizing the election and is responsible for coordinating the

protocol execution.

– The ballot box manager is gathering the ballots of the voters on a bulletin board BB and provides

a public view PBB of those ballots, for verifiability.

– The trustees are responsible for correctly tallying the ballot box and providing a proof of the

correctness of the tally. We consider a k-threshold tallying system, that is k honest trustees are

required to compute the tally of the election.

These parties are standard entities in the voting literature. In some cases, we will also refer to

the ballot box manager as the rerandomizing server, in order to make its receipt-freeness related

role more visible. We also define a family of deterministic results functions ρm which given m votes,

returns the result of the election for these votes. The following definition encompasses the procedures

used in a voting system.

Definition 5.1 (Voting System). A Voting System is a tuple of probabilistic polynomial-time

algorithms (SetupElection, Vote, ProcessBallot, TraceBallot, Valid, Append, Publish, VerifyVote, Tally,

VerifyResult) associated to a result function ρm : Vm ∪ {⊥} → R where V is the set of valid votes

and R is the result space such that:

– SetupElection(1λ): on input security parameter 1λ, generate the public and secret keys (pk, sk) of

the election.

– Vote(id, v): when receiving a voter id and a vote v, outputs a ballot b and auxiliary data aux. It

will also be possible to call Vote(id, v, aux) in order to obtain a ballot (without auxiliary data this

time) for vote v using aux. This auxiliary data will be useful to define security and enables the

creation of ballots that share the same aux.

– ProcessBallot(b): on input ballot b, outputs an updated ballot b′. In our case, b′ would be a

rerandomization of b.

– TraceBallot(b): on input ballot b, outputs a tag t. The tag is the information that a voter can

use to trace his ballot, using VerifyVote.

– Valid(BB, b): on input ballot box BB and ballot b, outputs 0 or 1. The algorithm outputs 1 if and

only if the ballot is valid.

– Append(BB, b): on input ballot box BB and ballot b, appends ProcessBallot(b) to BB if Valid(BB, b) =

1.

– Publish(BB): on input ballot box BB, outputs the public view PBB of BB, which is the one that

is used to verify the election. Depending on the context, it may be used to remove some voter

credentials for instance.

– VerifyVote(PBB, t): on input public ballot box PBB and tag t, outputs 0 or 1. This algorithm is

used by voters to check if their ballot has been processed and recorded properly.

– Tally(BB, sk): on input ballot box BB and private key of the election sk, outputs the tally r and a

proof Π that the tally is correct w.r.t. the result function ρm.

– VerifyResult(PBB, r,Π): on input public ballot box PBB, result of the tally r and proof of the tally

Π, outputs 0 or 1. The algorithm outputs 1 if and only if Π is a valid proof that r is the election

result, computed w.r.t. ρm, corresponding to the ballots on PBB.

20

For all of these algorithms except SetupElection, the public key of the election pk is an implicit

argument.

These algorithms are used as follows in a typical election, the election authorities first generate

the election public and secret keys with SetupElection. Then, using the public key of the election,

each voter can prepare a ballot bwith the Vote algorithm and send it to the ballot box manager. The

voter also keeps TraceBallot(b) in order to be able to trace its ballot on the election public bulletin

board. Each time the ballot box manager receives a ballot, it checks if it is valid with the Valid

algorithm. If this is the case, it runs the ProcessBallot algorithm on it and appends the resulting

ballot to the ballot box using Append.

The ballot box manager also applies Publish on the ballot box in order to obtain the content

that is made available on a public bulletin board PBB. Voters can check that their ballot has been

correctly recorded on PBBusing VerifyVote.

Eventually, the trustees run the Tally algorithm on the ballot box in order to compute the

election result and a proof of correctness of this result. Anyone can use these, together with the

content of PBB, in order to verify the election result using VerifyResult.

This definition differs from [8] and [14] in two important ways. First, we introduce the TraceBallot

algorithm. Such a procedure is implicit other voting system descriptions, often because voters simply

check the presence on PBBof their ballot, in which case TraceBallotwould simply be the identity

function. In our case, TraceBallotmust extract the signature verification key that is generated at

voting time by Vote, making this algorithm non-trivial.

The correctness guarantees of the various algorithms listed above are as usual and follow the

intuitions given above. We only formalize the correctness guarantee of TraceBallot, which is novel.

Definition 5.2 (Tracing correctness). For every v, BB, (b, aux)← Vote(id, v) and t← TraceBallot(b),

after Append(BB, b) we have that VerifyVote(Publish(BB), t) = 1 with overwhelming probability.

As a second difference, we omit the voter registration procedure, of which we make no use here:

it is used in some protocols in order to obtain some forms of delegated verifiability where an extra

authority is partially trusted to handle voter credentials, but this is not our focus. To make things

concrete here, one can imagine that voter authentication is handled with a process similar to the

one used in Helios [3], where the ballot box manager distributes credentials (e.g., passwords) to the

voters and publishes the voter names next to their ballot on PBB. Voters who did not vote can then

verify that there is no ballot recorded for them, and auditors can sample voters and contact them

to perform similar verification steps. (We make no claim regarding the effectiveness of this process

in practice – it is just here for context.)

5.2 Receipt-freeness

We adopt here a definition of receipt-freeness that is similar to the one of Chaidos et al [14], which

is copied in Appendix F for completeness. Various other definitions exist, but they are either too

informal for our purpose (e.g., [23]), or focus on the stronger notion of coercion resistance, in

which voters need to adopt a specific counter-strategy depending on instructions of the coercer

(e.g., [33,38,29,4]).

21

This definition requires that voters should not be able to pick a ballot, possibly from a distribution

that deviates from the honest one, in such a way that no third party, by looking at the election

public bulletin board, and knowing exactly how the voter’s announced ballot was built, is able

to decide whether that ballot was submitted by the voter rather than another ballot that could

encode a vote for a different candidate. This definition also considers that the channels between the

voters and the ballot box manager is private and, indeed, without the assumption that such private

channels are available, achieving receipt-freeness in a verifiable election is impossible [17].

Definition 5.3 (Receipt-Freeness). A voting system V has receipt-freeness if there exists algo-

rithms SimSetupElection and SimProof such that no PPT adversary A can distinguish between games

Expsrf,0
A,V (λ) and Expsrf,1

A,V (λ) defined by the oracles in Figure 3, that is for any efficient algorithm A:∣∣∣Pr [Expsrf,0
A,V (λ) = 1

]
− Pr

[
Expsrf,1

A,V (λ) = 1
]∣∣∣

is negligible in λ.

Oinit(λ)

if β = 0 then (pk, sk)← SetupElection(1λ)

else (pk, sk, τ)← SimSetupElection(1λ)

BB0 ← ⊥;BB1 ← ⊥
return pk

OreceiptLR(b0, b1)

if TraceBallot(b0) 6= TraceBallot(b1)
or Valid(BB0, b0) = 0 or Valid(BB1, b1) = 0
then return ⊥
else Append(BB0, b0);Append(BB1, b1)

Oboard()

return Publish(BBβ)

Otally()

(r,Π)← Tally(BB0, sk)
if β = 1 then Π← SimProof(BB1, r)
return (r,Π)

Fig. 3. Oracles used in the Expsrf,β
A,V (λ) experiment. The adversary first calls Oinit and then can call Oboard and

OreceiptLR as much as it wants. Finally, the adversary calls Otally, receives the result of the election and must return
its guess, which is the output of the experiment.

In this game, parameterized by a bit β, the adversary has access to the following oracles:

– Oinit: initializes the voting system. It generates the public and privates keys of election and

returns the public key to the adversary. When β = 1, a simulated setup may be performed,

depending on the computational model, which will offer some trapdoor information that may

be needed to produced a simulated tally correctness proof for instance. Eventually, two empty

ballot boxes are created: the real ballot box BB0 that will be tallied and the fake ballot box BB1.

Both boxes will be populated during the game, but the adversary will only see Publish(BBβ).

– OreceiptLR(b0, b1): Lets the adversary cast ballots b0 in the real ballot box BB0 and b1 in the

fake ballot box BB1, as long as both ballots are valid and have the same trace. This oracle is the

central one for receipt-freeness.

– Oboard: Returns Publish(BBβ), which represents its view of the public bulletin board.

22

– Otally: Returns the result of the election based on the ballots on BB0, as well as a proof of

correctness of the tally. If β = 1, this proof is simulated w.r.t. the content derived from BB1.

Several observations can be made about this game. First, and as expected, it can be seen that

the ballot box manager is considered to behave honestly. A dishonest ballot box manager could

simply replace ProcessBallot and Publish with the identity function, which would make the game

trivial to win, independently of any cryptographic operation. The Tally operation is also performed

honestly: dishonest talliers could decrypt all the ballots individually, which would again make the

game trivial to win. In practice, this assumption can be mitigated by using a distributed decryption

process, which is always possible using MPC but can typically be done more efficiently.

Second, this game prompts for the introduction of an extra correctness requirement on the

definition of Vote and TraceBallot, in order to make sure that ballots that encode different votes

and have the same tag can be computed.

Definition 5.4 (Ballot traceability for receipt freeness). For every public key pk in the range

of SetupElection, the ballots produced for every pair of voting choices (v0, v1) with the same auxiliary

data trace to the same tag. That is, for b0, aux←$ Vote(id, v0), b1←$ Vote(id, v1, aux), we have

TraceBallot(b0) = TraceBallot(b1).

Without this extra constraint, we could imagine a TraceBallot algorithm which returns a tag

depending on the vote inside the ballot. For example if TraceBallot(b) = b as we discussed earlier,

then Oreceipt(b0, b1) does nothing except if the two ballots are identical and the adversary can

never win the receipt-freeness game. It is thus natural to require that a tag returned by TraceBallot

can be reached with any possible voting choice.

The related constraint that TraceBallot(b0) = TraceBallot(b1) is actually missing from Chaidos’

definition[14], and makes their game trivial to win in most natural case, including with their own

protocol: an adversary could simply submit two ballots that have different traces (or are signed with

different keys in the wording of their paper), and immediately identify which bulletin board he sees.

Compared to Chaidos’ definition, we also removed the Ocorrupt oracle, as we simply assume

that all the voters are under adversarial control. We also omitted their Ocast and OvoteLR oracles,

because OreceiptLR subsumes them.

5.3 Voting scheme

We now explain how a generic voting system can be built from a TREnc. The protocol in itself is of

little interest: it essentially follows previous proposals [10,14]. Its central interest is that defining it

from a TREnc makes the proof of its receipt-freeness almost immediate, and independent of any

specific TREnc instance.

A detailed pseudocode description is proposed in Figure 5.3. The protocol executes as follow.

The election authorities set-up the election in the following way. They create an empty bulletin

board and create the pair of public and private keys (pk, sk) of the election by running the Gen

algorithm of the TREnc scheme with the desired security parameter. pk is distributed to every

party taking part to the election and sk is given to the tallier. Note that sk can be generated in

23

a distributed way, so that decryption requires the contribution of multiple trustees – our TREnc

constructions are compatible with standard threshold key generation protocols for discrete log based

cryptosystems, which can be used as usual since the decryption of a ciphertext is independent from

the link key and the Trace algorithm [18,21]. We consider a unique tallier in the following.

When a user wants to cast a vote v, they first generate a link key lk by running the LGen(pk)

algorithm, then encrypts the vote with the LEnc(pk, lk, v) algorithm in order to obtain a ballot b,

while aux is defined as lk. The voter then sends the encrypted ballot to the ballot box manager

of the voting system. It is utterly important that the user erases the link key as soon as possible,

as the integrity of their vote may rely on the secrecy of this key. The voter will however store

TraceBallot(b) = Trace(b) in order to verify that a ballot with the correct trace eventually appears

on the public bulletin board.

When the ballot box manager receives a new ballot b, he verifies the validity of the ballot by

checking that Ver(b) succeeds and that no ballot with the same trace was recorded before. Invalid

ballots are dropped and valid ones are going through Append(BB, b), which runs ProcessBallot(b) =

Rand(pk, b) and appends the result to BB.

The user can verify that their vote is on the bulletin board by checking with the TraceBallot

algorithm if any entry in the public bulletin board has the same trace as the one they recorded when

they produced their ballot. The traceability property of the TREnc then guarantees that nobody

(including the rerandomizing server and the election authorities who hold the decryption key)

could have forged another valid ciphertext of another vote linked to this ballot with non-negligible

probability.

Once every voter has cast a vote, the tallier can gather the ballots on the bulletin board and

compute the result of the election r, as well as a proof of correctness Π. The exact details of this

process will depend on the ballot format and the result function ρm that the voting protocol requires.

One standard way of performing this operation would be to process all the published ballots through

a verifiable mixnet: our TREnc ciphertexts are compatible with various standard options that

operate on votes encrypted as vectors of group elements, including the Verificatum mixnet [40].

5.4 Security of the voting scheme

This voting scheme has receipt freeness, as claimed in the following theorem.

Theorem 5.5. If the TREnc used in the voting scheme is TCCA secure and verifiable and if the

proof system used to prove the correctness of the tally is zero-knowledge, then the voting scheme

has receipt freeness. More precisely, if the advantage of any adversary at distinguishing a simulator

from an honest prover of the proof system is bounded by εZK and if the advantage of any adversary

at the TCCA experiment is bounded by a negligible function εTCCA, then every adversary at the

receipt freeness game making qr OreceiptLR requests has an advantage bounded by εZK + qrεTCCA.

Proof. The proof uses two different games, where the first one is the receipt-freeness game. In each

of those games, we pick a random bit β corresponding to either the real ballot box (β = 0) or the

fake ballot box (β = 1). The adversary is expected to guess in which case it is and to output a

24

SetupElection (λ)

(pk, sk)← Gen(1λ)
return pk

Vote(id, v[, aux])

if aux is specified then lk← aux
else lk←$ LGen(pk)
b← LEnc(pk, lk, v)
if aux is not specified then return b
else return b, lk

TraceBallot(b)

return Trace(b)

Valid(BB, b)

if Ver(b)∧
∀b′ ∈ BB,TraceBallot(b′) 6= TraceBallot(b)
then return 1 else return 0

ProcessBallot(b)

return Rand(pk, b)

VerifyVote(PBB, t)

if ∃b ∈ PBB : Valid(b) ∧ t == TraceBallot(b)

then return 1 else return 0

Fig. 4. Instantiation of our voting scheme from a generic TREnc scheme. Publish is simply the identity function. Tally
and VerifyResult are instantiated via standard techniques, depending on the result function (homomorphic tallying,
verifiable mixnet, . . .).

bit β′. We note Si the event that β = β′ in the i-th game. We show that S0, the probability of an

adversary to win the receipt freeness game, is negligibly close in λ to 1
2 .

Game0(λ): We define Game0(λ) as the original receipt freeness experiment and A as a PPT adversary

for the game. We set SimSetup as the simulation trapdoor for the proof systems used in the

tally and SimProof(BB, r) as an algorithm simulating fake proofs of the decryption of the cipher-

texts in BB into the plaintexts listed in r. By definition, A wins the game with probability Pr[S0].

Game1(λ): If β = 0, we generate the keys of the election with SimSetup instead of the honest Setup

algorithm. We also give a simulated proof of the tally as in the case β = 1.

Game0(λ)→ Game1(λ) : Since the proof system of the tally is zero-knowledge, |Pr[S0]−Pr[S1]| ≤
εZK .

In the second game, the only difference between β = 0 and β = 1 are now in the OreceiptLR

oracle. We can reduce the q-TCCA experiment (the q challenge variant of the TCCA game, which

is proven to be equivalent to TCCA security up to a factor q in Appendix B) to Game1(λ) in the

following way. We build an adversary against the q-TCCA challenger by instantiating the voting

system and simulating an efficient adversary for Game1(λ). Each time we are asked to append ballots

to the bulletin board from a OreceiptLR oracle call, we ask the challenger to decrypt them. Then,

we give both ballots as a challenge to the challenger and receive a randomized ballot that we append

to our bulletin board. There are qr such requests. After all the requests, we can compute the result

of the election as we have the plaintext of every ballot in BB0. Moreover, we can use SimProof to

simulate a proof that our bulletin board has been correctly tallied. Hence, this adversary wins the

q-TCCA game with the same probability as the simulated adversary wins the second game and

25

Pr[S1] ≤ qrεTCCA. We conclude that the probability that the adversary wins the receipt freeness

experiment, Pr[S0], is bounded by εZK + qrεTCCA. ut

It is immediate that our voting scheme also satisfies ballot traceability (Def. 5.4), thanks to the

link traceability of the TREnc (Def. 2.2).

This demonstrates the receipt-freeness of our protocol against an adversary who sees the public

bulletin board, and assuming a honest ballot box manager. Our protocol also offers privacy against

a malicious ballot box manager, as demonstrated in Appendix G. As can be expected, proving

privacy against such an adversary requires taking advantage of the strong-randomization property

of the TREnc, which was not necessary for receipt-freeness.

It is also important to note that the notions of receipt-freeness and ballot privacy only make sense

when applied to voting protocols that satisfy some extra correctness requirements (see Bernhard

et al. [8] for instance) – a pathological Valid process that would just drop all but one ballot could

result in this ballot been tallied alone, which could satisfy the definition or receipt-freeness but

would obviously be problematic from a privacy point of view. The notions of strong consistence,

correctness, and validity, defined in Appendix G, address these questions.

We do not detail the verifiability of our voting system, which would require to introduce a

substantial machinery. We outline how this could work here:

– Individual verifiability requires that a voter who successfully completes the VerifyVote verification

steps can be convinced that his vote is properly recorded. If the voter’s voting client is honest,

this follows from the traceability property of the TREnc and the single use of lk, which guarantee

that any ballot with the same trace as the ballot submitted by the voter would decrypt to the

right vote. Detecting a malicious voting client that may encrypt a vote different of the one

chosen by the voter is more tricky. One option would be to consider a variation on the Benaloh

challenge, in which voters would have the option to decide to spoil a ballot that has been posted

on the public bulletin board, and either ask for its decryption, or for the randomness used both

during the Vote process and during ProcessBallot. Any newly created ballot would need to be

generated using a fresh lk.

– Eligibility verifiability could proceed by adding the voter’s name next to each ballot on the

public bulletin board, and let auditors check whether these are legitimate voters. Weaker but

more convenient options include relying on a trusted authentication server and/or on a PKI.

– Universal verifiability, which guarantees that the tally is computed correctly, would result from

the tallying process, e.g., from a verifiable mix-net.

Acknowledgments. Henri Devillez is a research fellow of the Belgian FRIA. Thomas Peters is

research associate of the Belgian Fund for Scientific Research (F.R.S.-FNRS). This work has been

funded in parts by the F.R.S.–FNRS SeVote project.

26

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commit-

ments to group elements. In: Advances in Cryptology – CRYPTO 2010. pp. 209–236. Springer (2010)

2. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for modular protocol design.

Cryptology ePrint Archive, Report 2010/133 (2010), https://ia.cr/2010/133

3. Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.: Electing a university president using open-audit voting:

Analysis of real-world use of helios. In: 2009 Electronic Voting Technology Workshop / Workshop on Trustworthy

Elections, EVT/WOTE ’09. USENIX Association (2009)

4. Alwen, J., Ostrovsky, R., Zhou, H., Zikas, V.: Incoercible multi-party computation and universally composable

receipt-free voting. In: Advances in Cryptology - CRYPTO 2015. LNCS, vol. 9216, pp. 763–780. Springer (2015)

5. Bauer, B., Fuchsbauer, G.: Efficient signatures on randomizable ciphertexts. In: Security and Cryptography for

Networks. pp. 359–381. Springer International Publishing (2020)

6. Benaloh, J.: Simple verifiable elections. In: 2006 USENIX/ACCURATE Electronic Voting Technology Workshop,

EVT’06. USENIX Association (2006)

7. Benaloh, J.C., Tuinstra, D.: Receipt-free secret-ballot elections (extended abstract). In: Proceedings of the

Twenty-Sixth Annual ACM Symposium on Theory of Computing. pp. 544–553. ACM (1994)

8. Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: Sok: A comprehensive analysis of game-based

ballot privacy definitions. In: 2015 IEEE Symposium on Security and Privacy. pp. 499–516 (2015)

9. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of the fiat-shamir heuristic and

applications to helios. In: Advances in Cryptology - ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer

(2012)

10. Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on randomizable ciphertexts. In: Public Key

Cryptography – PKC 2011. pp. 403–422. Springer (2011)

11. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges. In: Theory of Cryptography.

pp. 253–273. Springer (2011)

12. Canetti, R., Gennaro, R.: Incoercible multiparty computation (extended abstract). In: 37th Annual Symposium

on Foundations of Computer Science, FOCS ’96. pp. 504–513. IEEE Computer Society (1996)

13. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In: Advances in Cryptology -

CRYPTO 2003. pp. 565–582. Springer (2003)

14. Chaidos, P., Cortier, V., Fuchsbauer, G., Galindo, D.: Beleniosrf: A non-interactive receipt-free electronic voting

scheme. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS).

pp. 1614–1625 (2016)

15. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems and applications. In: Advances

in Cryptology – EUROCRYPT 2012. pp. 281–300. Springer (2012)

16. Chaum, D.: Surevote: technical overview. In: Proceedings of the Workshop onTrustworthy Elections (WOTE

2001) (2001)

17. Chevallier-Mames, B., Fouque, P., Pointcheval, D., Stern, J., Traoré, J.: On some incompatible properties of

voting schemes. In: Towards Trustworthy Elections, New Directions in Electronic Voting. LNCS, vol. 6000, pp.

191–199. Springer (2010)

18. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Distributed elgamal à la pedersen: Application to helios. In:

Proceedings of the 12th annual ACM Workshop on Privacy in the Electronic Society, WPES 2013. pp. 131–142.

ACM (2013)

19. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority election scheme. In:

Advances in Cryptology - EUROCRYPT ’97. LNCS, vol. 1233, pp. 103–118. Springer (1997)

20. Gennaro, R.: Achieving independence efficiently and securely. In: Proceedings of the Fourteenth Annual ACM

Symposium on Principles of Distributed Computing. pp. 130–136. ACM (1995)

21. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based

cryptosystems. J. Cryptol. 20(1), 51–83 (2007)

22. Groth, J.: Efficient fully structure-preserving signatures for large messages. In: Advances in Cryptology – ASI-

ACRYPT 2015. pp. 239–259. Springer (2015)

27

https://ia.cr/2010/133

23. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption. In: Advances in Cryptology

- EUROCRYPT 2000, International Conference on the Theory and Application of Cryptographic Techniques

Proceeding. LNCS, vol. 1807, pp. 539–556. Springer (2000)

24. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Advances in Cryptology — EUROCRYPT

2002. pp. 466–481. Springer (2002)

25. Jutla, C.S., Roy, A.: Shorter quasi-adaptive nizk proofs for linear subspaces. In: Advances in Cryptology -

ASIACRYPT 2013. pp. 1–20. Springer (2013)

26. Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the standard model. In: Advances in

Cryptology - EUROCRYPT 2015. LNCS, vol. 9057, pp. 468–498. Springer (2015)

27. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Theory of Cryptography. pp. 581–600. Springer

(2006)

28. Kiltz, E., Wee, H.: Quasi-adaptive nizk for linear subspaces revisited. Cryptology ePrint Archive, Report 2015/216

(2015), https://ia.cr/2015/216

29. Küsters, R., Truderung, T., Vogt, A.: A game-based definition of coercion-resistance and its applications. In:

Proceedings of the 23rd IEEE Computer Security Foundations Symposium, CSF 2010. pp. 122–136. IEEE

Computer Society (2010)

30. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-preserving signatures and their

applications. In: Advances in Cryptology - CRYPTO 2013. LNCS, vol. 8043, pp. 289–307. Springer (2013)

31. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability: Simulation-sound quasi-adaptive nizk

proofs and CCA2-secure encryption from homomorphic signatures. In: Advances in Cryptology – EUROCRYPT

2014. pp. 514–532. Springer (2014)

32. MacKenzie, P.D., Reiter, M.K., Yang, K.: Alternatives to non-malleability: Definitions, constructions, and

applications (extended abstract). In: Theory of Cryptography, TCC. LNCS, vol. 2951, pp. 171–190. Springer

(2004)

33. Moran, T., Naor, M.: Receipt-Free Universally-Verifiable Voting with Everlasting Privacy. In: Advances in

Cryptology - CRYPTO 2006. pp. 373–392. LNCS, Springer (2006)

34. Prabhakaran, M., Rosulek, M.: Homomorphic encryption with cca security. In: Automata, Languages and

Programming. pp. 667–678. Springer (2008)

35. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Advances in Cryptology – EUROCRYPT 2005. pp.

457–473. Springer (2005)

36. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme - A practical solution to the implementation of a voting

booth. In: Advances in Cryptology - EUROCRYPT ’95. LNCS, vol. 921, pp. 393–403. Springer (1995)

37. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Advances in Cryptology. pp. 47–53. Springer

(1985)

38. Unruh, D., Müller-Quade, J.: Universally composable incoercibility. In: Proceedings of the 30th Annual Conference

on Advances in Cryptology. p. 411–428. CRYPTO’10, Springer-Verlag (2010)

39. Wikström, D.: Simplified submission of inputs to protocols. In: Security and Cryptography for Networks, 6th

International Conference, SCN 2008, Proceedings. LNCS, vol. 5229, pp. 293–308. Springer (2008)

40. Wikström, D.: A commitment-consistent proof of a shuffle. In: Information Security and Privacy, 14th Australasian

Conference, ACISP 2009 Proceedings. LNCS, vol. 5594, pp. 407–421. Springer (2009)

28

https://ia.cr/2015/216

A Related security definitions

A.1 RCCA security

We recall the RCCA security definition introduced by Canetti et al.[13]:

Definition A.1. An encryption scheme (Gen,Enc,Dec) is RCCA-secure if for every PPT adversary

A = (A1,A2) the experiment Exprcca
A (λ) defined in Figure 5 returns 1 with a probability negligibly

close in λ to 1
2 .

Exprcca
A (λ)

(pk, sk)←$Gen(1λ)

(m0,m1, st)←$ADec(sk,·)
1 (pk)

b←$ {0, 1}
c? ←$Enc(pk,mb)

b′ ←$ADecpost(sk,·)
2 (c?, st)

return b = b′

Fig. 5. RCCA experiment. In the experiment, A2 has access to a decryption oracle Decpost(·) which, on input c,
returns Dec(sk, c) if Dec(sk, c) /∈ {m0,m1} and test otherwise.

A.2 pd-RCCA

We recall the pd-RCCA security definition introduced by Canetti et al. [13]:

Definition A.2. Let S = (Gen,Enc,Dec) be an encryption scheme.

1. We say that a family of binary relations ≡pk (indexed over the public keys of S) on ciphertext

pairs is a compatible relation for S if for all key-pairs (pk, sk) of S we have:

– For any two ciphertexts c, c′, if c ≡pk c′ then Dec(sk, c) = Dec(sk, c′) with overwhelming

probability.

– For any plaintext m in the domain of S, if c and c′ are two ciphertexts obtained as independent

encryptions of m, then c ≡pk c′ with negligible probability.

2. We say that a relation family as above is publicly computable if for all key pairs (pk, sk) and all

pair of ciphertexts (c, c′), it can be determined whether c ≡pk c′ using a PPT algorithm taking as

inputs (pk, c, c′).

3. We say that S is publicly-detectable replayable-CCA (pd-RCCA in short) if there exists a

compatible and publicly computable relation family ≡pk such that S is secure according to the

traditional definition of CCA security with the following modification. In the post-challenge

decryption requests, the oracle returns test for the decryption of c if and only if c ≡pk c? where

c? is the challenge ciphertext.

29

B Relation between the security definitions

B.1 pd?-RCCA and extractability implies TCCA

Theorem B.1. If a TREnc scheme T is extractable, strongly randomizable and pd?-RCCA-secure,

then it is TCCA secure. More precisely, if the advantages of any PPT adversary at strong ran-

domization and pd?-RCCA experiment are respectively bounded by εSR and ε, then for any PPT

adversary A, we have Pr[Exptcca
A,T (λ) = 1] ≤ 1

2 + εSR + ε.

Proof. The proof uses a sequence of games starting with the TCCA game and ending with the

pd?-RCCA game. In each of those games, we pick a random bit b and the adversary is expected

to output a bit b′. We note Si the event that b = b′ in the i-th game, that is the event that the

adversary correctly guesses which message was encrypted in the challenge ciphertext. We show that

S0, the probability of an adversary to win the TCCA game, is bounded by 1
2 + εSR + ε.

Game0(λ): Let A be a PPT adversary. We define Game0(λ) as the original TCCA game Exptcca
A,T (λ)

as defined in Definition 2.4. By definition, A wins the game with probability Pr[S0].

Game1(λ): We transform Game0(λ) into Game1(λ) by replacing the honest key generation algorithm

Gen by the trapdoor algorithm TrapGen of Definition 3.1.

Game0(λ)→ Game1(λ) : From the trapdoor indistinguishability of Definition 3.1, the distribution

of the pairs of keys (pk, sk) outputted by Gen and TrapGen are identical. Since the trapdoor tk

is not used yet, the two games are thus statistically indistinguishable and Pr[S0] = Pr[S1] .

Game2(λ): We transform Game1(λ) into Game2(λ) in the following way. After receiving the two

challenge ciphertexts, we run LExtr(tk, c0) and LExtr(tk, c1) to extract the link keys lk0 and lk1.

If lk0 6= lk1, we return a random bit. Otherwise, we continue the execution of the experiment.

Game1(λ) → Game2(λ) : Because the scheme has unique extraction, we always have lk0 = lk1.

Hence, Pr[S1] = Pr[S2].

Game3(λ): We transform Game2(λ) into Game3(λ) by modifying the way the challenge ciphertext is

created. Given cb, we decrypt the plaintext m = Dec(sk, cb) and compute the challenge ciphertext

c? as LEnc(pk, lkb,m).

Game2(λ)→ Game3(λ) : The initial challenge ciphertext is computed as in the left part of the

strong randomization equation of Definition 2.6 while the new challenge ciphertext is computed

exactly as in the right part. The unique extraction property guarantees that both cb and c? are

in the range of LEnc(pk, lkb,m). Since the TREnc is strongly randomizable, the distributions of

these two ciphertexts are indistinguishable and |Pr[S2]− Pr[S3]| ≤ εSR.

30

Game4(λ): We transform Game3(λ) into Game4(λ) by modifying the way the challenge ciphertext is

created. In this game, we do not generate the pair of public/secret keys anymore and instantiate

a pd?-RCCA experiment instead. Each time we decrypt a ciphertext or extract a link key in

Game3(λ), we request the pd?-RCCA challenger. Instead of computing ourselves the challenge,

we send (m0,m1, lk0) to the challenger (Note that lk0 = lk1) and receive a ciphertext c? that we

send to the adversary.

Game3(λ) → Game4(λ) : In this new game, the challenge ciphertext and the post-challenge

decryption requests are computed exactly as in the previous game. Hence, Pr[S3] = Pr[S4]

Finally, Game4(λ) is equivalent to the pd?-RCCA experiment. Since the scheme is pd?-RCCA

secure, we conclude that Pr[4] ≤ 1
2 + ε and thus that the scheme is TCCA secure. ut

B.2 Link between TCCA and RCCA security

Theorem B.2. If a TREnc is traceable and TCCA secure, then it is RCCA secure. More precisely,

if

– The TREnc is traceable. That is, the advantage of any traceability adversary is bounded by a

negligible function εTR.

– The TREnc is randomizable. That is, the advantage at distinguishing the randomization of an

honest ciphertext from a fresh re-encryption is bounded by a negligible function εRAND.

– The TREnc is TCCA secure. That is, the advantage of any TCCA adversary is bounded by a

negligible function εTCCA

then the advantage of any RCCA adversary is bounded by the negligible function εTR + εRAND +

εTCCA.

Proof. The proof uses a sequence of games starting with the RCCA game and ending with the

TCCA game. In each of those games, we pick a random bit b and the adversary is expected to output

a bit b′. We note Si the event that b = b′ in the i-th game, that is the event that the adversary

correctly guesses which message was encrypted in the challenge ciphertext. We show that S0, the

advantage of an adversary at the RCCA game is bounded by 1
2 + εTR + εRAND + εTCCA, where

εTR, εRAND and εTCCA are respectively the advantages of some efficient adversaries playing the

traceability, randomizability and TCCA experiments.

Game0(λ): Let A = (A1,A2) be a PPT adversary. We define Game0(λ) as the original RCCA game

Exprcca
A (λ) of Definition A.2. By definition, A wins the game with probability Pr[S0].

Game1(λ): We transform Game0(λ) into Game1(λ) by modifying the post-challenge decryption oracle

in the following way. We replace Decpost(sk, c) with the oracle DecpostR(sk, c) that returns test if

Dec(sk, c) ∈ {m0,m1} or if Trace(c) = Trace(c?). It returns Dec(sk, c) otherwise.

31

Game0(λ)→ Game1(λ) : Let F be the event in Game1(λ) that at least one of the post-challenge

decryption request is such that Trace(c) = Trace(c?) and Dec(c) /∈ {m0,m1}. It is clear that

the two games are identical unless F occurs. Thus, |Pr[S0]− Pr[S1]| ≤ Pr[F]. We claim that

Pr[F] ≤ εTR, where εTR is the advantage at the traceability game of the following adversary

B. We build B as a PPT algorithm simulating an adversary for Game1(λ) and receiving the

pair of public-secret keys from the Exptrace
B (λ) challenger. B forwards the decryption requests

of the simulated adversary to its challenger and chooses the challenge bit b. Once it receives

the challenge plaintexts m0 and m1, it sends mb to its challenger and forwards the resulting

ciphertext to the simulated adversary. For each of the following ciphertext, B checks if the

ciphertext is in relation with the challenge ciphertext and if it is decrypted into a message

different than mb. In that case, it sends it to the traceability challenger and wins the game.

Hence B has an advantage that is at least Pr[F].

Game2(λ): We transform Game1(λ) into Game2(λ) by modifying how the challenge is built in the

following way. After encrypting the challenge ciphertext, we also rerandomize it. That is, we

compute c′←$ Enc(pk,mb), c
?←$ Rand(pk, c′) and return c?.

Game1(λ)→ Game2(λ) : Because the TREnc is randomizable, the randomization of a ciphertext

is statistically indistinguishable from a fresh encryption and those two games are indistinguish-

able.

Thus |Pr[S1]− Pr[S2]| ≤ εRAND.

Game3(λ): We transform Game2(λ) into Game3(λ) by instantiating a TCCA game. Now, we only

receive the public key pk from our TCCA challenger but we use the challenger to simulate the

decryption requests. In the challenge phase, we compute a ciphertext for both messages such

that they are in relation (by using lk←$ LGen(pk), cb←$ LEnc(pk, lk,mb)) and send them to the

challenger. We receive a ciphertext c? that is the randomization of either c0 or c1. We return it as

the challenge ciphertext. Finally, we receive the adversary’s guess b and send it to the oracle as

our own guess. It is clear that Pr[S3] is equal to the probability of winning the rerandomization

indistinguishability game.

Game2(λ)→ Game3(λ) : Even though we do not compute ourselves the answers of the requests

anymore in Game3(λ), they are computed exactly as in Game2(λ) and thus Pr[S2] = Pr[S3].

Also, this final game is identical to the TCCA security game, hence Pr[S3] ≤ εTCCA. From this

sequence of games, we conclude that the probability of winning of any RCCA adversary is bounded

by a negligible function εTR + εRAND + εTCCA. ut

B.3 TCCA implies q-TCCA

We define the q-TCCA experiment as the TCCA experiment with the following modification: instead

of submitting only one pair of challenge ciphertexts, the adversary can ask for the randomization of

q such pairs.

32

Theorem B.3. If a TREnc is TCCA secure then it is q-TCCA as well. More precisely, if for any

PPT adversary A the experiment Exptcca
A (λ) returns 1 with a probability bounded by 1

2 + εTCCA, then

every PPT adversary wins the q-TCCA experiment with a probability bounded by 1
2 + qεTCCA.

Proof. We build a sequence of q+ 1 hybrid games by modifying the rerandomization requests of the

q-TCCA game in the following way. In the i-th hybrid, the game rerandomizes c0 for the i-th first

requests and c1 for the remaining requests. It is clear that the first and last games correspond to

the two games that the adversary tries to distinguish. We define Si as the event that the adversary

wins in the i-th hybrid.

We observe that an adversary A distinguishing the i-th hybrid from the i+ 1-th hybrid can be

used to build a TCCA adversary B with identical advantage. B simulates A and answers its i-th first

requests with a rerandomization of c0. Then, it asks its oracle for the i-th request. Finally, it answers

the remaining requests with randomized versions of c1. It is clear that if b = 0, then B simulates

the i− th hybrid. Otherwise, it simulates the i+ 1-th hybrid. Hence Pr[Si+1]− Pr[Si] ≤ εTCCA for

each i ∈ [q − 1], where εTCCA is the advantage of an efficient adversary playing the TCCA games.

Finally,

|Pr[Sq]− Pr[S0]| = |
q−1∑
i=0

Pr[Si+1 − Si]| ≤ qε,

which concludes the proof that TCCA implies q-TCCA. ut

C Generic construction

We provide a generic construction of a secure extractable TREnc, denoted ΠG. It is mainly based

on two primitives, which we introduce prior to specifying our TREnc: signatures on randomizable

ciphertexts and tag-based encryption.

C.1 Signatures on Randomizable Ciphertexts

Signatures on Randomizable Ciphertexts (SRC), introduced by Blazy et al. [10], consists in a joint

randomizable public-key encryption scheme and adaptable signature scheme on the ciphertexts and

public key of the encryption scheme. These features can be used as an ingredient in order to obtain

receipt-freeness, as they allow a third party to rerandomize a ciphertext and the associated signature,

making it infeasible for the party who produced the original ciphertext to prove the content of the

randomized ciphertext, while remaining able to trace the ciphertext thanks to the valid signature.

However, by default, an SRC offers none of the privacy guarantees that we identified above.

Definition C.1 (Signatures on Randomizable ciphertexts). A scheme of signatures on ran-

domizable ciphertexts (SRC in short) consists of the following algorithms : (Setup, SKeyGen,EKeyGen,Enc,Dec, Sign,Ver,Rand,Adapt).

Setup(1λ) outputs the public parameter pp of the scheme, as defined in Sec. 4.1. Each of the

following algorithms takes pp as an implicit argument.

33

(EKeyGen,Enc,Dec) represents an encryption scheme. EKeyGen(1λ) outputs the pair (ek, dk) con-

taining the public and secret keys of the encryption scheme. Enc(ek, vk,m; r) and Dec(dk, vk, c)

respectively encrypts a message m with randomness r and decrypts a ciphertext c. The ciphertext

can be signed with a signing key related to vk.

(SKeyGen,Sign,Verify) represents a signature scheme. SKeyGen(1λ) outputs the pair (sk, vk) contain-

ing the signing and verification keys of the signature scheme. Sign(sk, ek, c; s) and Verify(vk, ek, c, σ)

respectively signs a ciphertext and its encryption key, using randomness s, and verify the validity

of a signature.

Rand(ek, vk, c; r) outputs a re-randomization of c using randomness r and Adapt(vk, ek, c, σ; r, s)

outputs a new adapted signature.

Besides the standard correctness properties of randomizable encryption schemes and signature

schemes, we also require the scheme to follow the signature-adaptation property: For every ek, dk in

the range of EKeyGen, every vk, sk in the range of SKeyGen, message m and random coins r and

s, for c = Enc(ek, vk,m; r) and σ = Sign(sk, ek, c; s), {c′ = Enc(ek, vk,m; r′), σ′ = Sign(sk, ek, c′; s′)}
and {c′ = Rand(ek, vk, c; r′), σ′ = Adapt(vk, ek, c, σ; r′, s′)} are statistically indistingui-shable.

Definition C.2 (SRC Unforgeability). An SRC is unforgeable if for every PPT adversary A,

the experiment Expuf
A (λ) defined in Figure 6 returns 1 with a probability negligible in λ.

Expsrc−uf
A (λ)

(ek, dk)←$EKeyGen(1λ)

(vk, sk)←$ SKeyGen(1λ)

(c, σ)←$ASign(sk,ek,·)(vk, (ek, dk))

m←$Dec(dk, vk, c)

if m 6= ⊥ and m 6∈ Q and Ver(vk, ek, c, σ) = 1

then return 1

Fig. 6. Unforgeability experiment. A has a signing oracle Sign(sk, ek, ·) that takes as input a ciphertext c. It outputs a
signature on c with sk if this is a valid ciphertext and add Dec(dk, c) to the list of used messages Q.

Both Blazy et al. [10] and Chaidos et al. [14] build their SRC on top of the Waters signature

scheme, which is reminded in its variant on asymmetric pairings in Appendix E. A similar approach

can be used to instantiate our generic construction, but we present a much more efficient solution in

Section 4, that offers security in the standard model.

C.2 Tag-based encryption

Our generic TREnc construction starts from a tag-based encryption scheme, as proposed by Kiltz [27],

where the tag will be the trace of the ciphertext.

Definition C.3. A tag-based encryption scheme (TBGen,TBEnc,TBDec) is a standard encryption

scheme in which the encryption and decryption algorithms take an extra parameter t, that is,

TBEnc(pk, t,m) encrypts m with public key pk and tag t, and TBDec(sk, t, c) decrypts c with secret

key sk and tag t.

34

We require our tag-based encryption scheme to offer weak CCA security in the sense of MacKenzie

et al. [32].

Definition C.4 (TBE-wCCA). A tag-based encryption scheme is said to be weakly secure against

chosen ciphertext attacks (TBE-wCCA) if for every adversary A = (A1,A2), the experiment

Exptbe-wcca
A (λ) defined in Figure 7 returns 1 with a probability negligibly close in λ to 1

2 .

Exptbe-wcca
A (λ)

(pk, sk)←$TBGen(1λ)

(m0,m1, t
?, st)←$ATBDec(sk,·,·)

1 (pk)

b←$ {0, 1}
c? ←$TBEnc(pk, t?,mb)

b′ ←$ATBDec?(sk,·,·)
2 (c?, st)

return b = b′

Fig. 7. Weakly CCA security experiment for tag-based encryption. In the experiment, A2 has access to a decryption
oracle TBDec? which, on input (t, c), returns TBec(sk, t, c) if t 6= t? and test otherwise.

C.3 Building Blocks

All the following building blocks are assumed to satisfies a natural notion of verifiability in the sense

of Definition 2.3.

A tag-based encryption scheme (TBGen,TBEnc,TBDec).

We require the scheme to have two additional algorithms, a randomizing algorithm TBRand and

a verification algorithm TBVer. More precisely, TBRand provides statistical randomizability for the

same tag of a given ciphertext as long as it is in the range of honest encryptions. For verifiability: for

any PPT adversary that receives a pair of public/secret keys as input and outputs a ciphertext ctbe,

the probability that TBVer(pktbe, ctbe) = 1 and ctbe is not in the range of TBEnc(pk, ·, ·) is bounded

by a negligible function εTBV ER.

For the confidentiality, the tag-based encryption must be TBE-wCCA secure. More precisely,

the advantage of any PPT adversary in the TBE-wCCA experiment (see Definition C.4) is bounded

by a negligible function εwCCA.

A signature on ciphertexts scheme (SGen,Sign,SVer).

Altogether with the tag-based encryption scheme, we require the signature on ciphertext scheme

to form an SRC that has the signature adaptation property (regarding a signature adapting

algorithm SAdapt). More precisely, the advantage of any unbounded adversary at distinguishing a

randomization of a ciphertext-signature pair in the range of honestly generated pairs from a fresh

re-encryption is negligible in λ. (See Definition C.1)

35

Additionally, we desire a signature scheme for which there exists an injective key derivation

function φ that computes the verification key vk from the signing key sk: vk = φ(sk). Since the key

derivation function is injective, every verification key is associated to an unique signing key.

We further require the signature scheme to be verifiable in a stronger sense. More precisely, for

any PPT adversary that takes as input the public parameters of SGen and outputs a signing key sk, an

encryption key ek, a signature σ on a ciphertext ctbe, the probability that SVer(φ(sk), ektbe, ctbe, σ) = 1

and that σ is not in the range of Sign(sk, ·, ·) is bounded by a negligible function εSV ER.

Finally, the signature on ciphertexts scheme should be unforgeable: the advantage of any

PPT adversary in the unforgeability experiment is bounded by a negligible function εUF (see

Definition C.2).

A randomizable CPA-secure encryption scheme (Gen′,Enc′,Dec′).

The encryption scheme is required to be IND-CPA secure. More precisely, the advantage of any

PPT adversary in the indistinguishability under chosen plaintext attacks experiment is bounded by

a negligible function εCPA.

We also want the encryption scheme to have an additional randomizing algorithm Rand′ and to be

randomizable. That is, the advantage of any unbounded adversary at distinguishing a randomization

of an honestly generated ciphertext from a fresh re-encryption is negligible in λ.

A NIZK malleable proof (CRSGen,Prove,PVer,SimCRSGen, SimProve).

The proof system proves statement of the form: ((ekextr, cextr, vk), (sk, r)) ∈ R if and only if

vk = φ(sk) and cextr = Enc(ekextr, sk; r).

The proof system is required to be zero-knowledge. More precisely, the advantage of any

PPT adversary at distinguishing between an honest CRS and a simulation CRS is bounded by a

negligible function εsimcrs. Likewise, the advantage of any PPT adversary at distinguishing between

an honest prover and a simulated prover is bounded by a negligible function εsimproof . We let

εsimcrs + εsimproof = εZK .

Moreover, the proof system should also be sound. More precisely, for any PPT adversary that

receives an honestly generated crs as input and outputs a pair of statement/proof (x, π), the

probability that x is not a true statement but PVer(crs, x, π) = 1 is bounded by a negligible function

εPSOUND.

The proof system should also be verifiable. More precisely, for any PPT adversary that receives

a crs as input and outputs a proof π for a statement x, the probability that PVer(crs, x, π) = 1 and

π is not in the range of Prove(crs, x, ·) is bounded by a negligible function εPV ER.

Finally, we require the proofs generated by the proof system to be adaptable with regard to

the randomizing procedure of the encryption (with an algorithm PAdapt). With regard to this

malleability, the proof system should be derivation private. More precisely, the advantage of any

unbounded adversary at distinguishing a derivation of a verified proof from a fresh proof of the

same adapted statement is negligible in λ.

We stress that we do not need any form of simulation-soundness. In particular, we do not require

the system to be simulation-sound extractable as defined for malleable proof systems in [15].

36

C.4 Description and security of the generic construction

Our generic extractable TREnc ΠG follows.

Setup(1λ): Generate the public parameters pp of the building blocks.

Gen(1λ, pp): Generate the public/secret keys (ektbe, dktbe) ← TBGen(1λ, pp), (ekextr, dkextr) ←
Gen′(1λ, pp), and a CRS crs ← CRSGen(1λ, pp) of the proof system. Set SK = (dktbe), and

PK = (ektbe, ekextr, crs).

Enc(PK,m): This is computed as LEnc(PK, LGen(PK),m).

LGen(PK): Generate a verifying/signing key vk, sk←$ SKeyGen(1λ, pp) of the SRC. Output

lk = sk.

LEnc(PK, lk = sk,m):

1. Compute vk = φ(sk), and ctbe ← TBEnc(ektbe, vk,m).

2. Compute σ ← Sign(sk, ctbe) to get an SRC ciphertext.

3. Pick a random coin r and compute cextr = Enc′(ekextr, sk; r).

4. Generate a proof π ← Prove(crs, (ekextr, cextr, vk), (sk, r)) given crs, the encrypted message sk

inside cextr under the randomness r, ensuring that vk = φ(sk) and cextr = Enc(ekextr, sk; r).

5. Output the ciphertext c = (vk, ctbe, σ, cextr, π).

Ver(PK,CT): Run the verification algorithm of each scheme and output 1 if and only if they all

returned 1.

Dec(sk,CT): If Ver(PK,CT)=0, output ⊥. Otherwise, return Dec(dktbe, vk, ctbe).

Trace(PK,CT): If Ver(PK,CT) = 0, output ⊥. Otherwise, output vk.

Rand(PK,CT): Randomize ctbe: c
′
tbe ← TBRand(ektbe, ctbe; r

′
tbe) with random coin r′tbe and adapt

the signature: σ′ ← SAdapt(vk, ektbe, σ, ctbe; r
′
tbe, s

′
tbe) with random coin s′tbe. Randomize cextr

as well: c′extr ← Rand′(ekextr, cextr; r
′
extr). Adapt the proof: π′ ← PAdapt(crs, π, r′extr). Return

(vk, c′tbe, σ
′, c′extr, π

′).

Extractability:

TrapGen(1λ, pp): Behave like Gen(1λ, pp) but output tk = dkextr as well.

LExtr(lk,CT): Output lk = Dec′(dkextr, cextr).

Theorem C.5. ΠG is verifiable. More precisely, for any PPT adversary A, we have Pr[Expver
A,Π(λ) =

1] ≤ εTBV ER + εSV ER + εPSOUND + εPV ER.

Proof. Let A be a PPT adversary. Given PK, SK←$ Gen(1λ), we have to show that the probability

that A outputs a ciphertext CT such that Ver(PK,CT) = 1 but that is not in the range of

Enc(PK, ·) is negligible. If Ver(PK,CT) = 1 then TBVer(ektbe, vk, ctbe) = 1, SVer(vk, ek, c, σ) = 1

and PVer(crs, π, (ekextr, cextr, vk)) = 1. With a probability bounded by εPSOUND, π is a sound

proof and vk = φ(Dec′(ekextr, cextr)). We note sk = Dec′(dkextr, cextr). Also, with a probability

bounded by εTBV ER + εPV ER, ctbe is in the range of TBEnc(pk, vk, ·) and π is in the range of

Prove(crs, ·, ·). Finally, σ is in the range of Sign(sk, ek, ctbe) with a probability bounded by εSV ER.

Putting everything together, Pr[Expver
A,Π(λ) = 1] ≤ εTBV er + εSV ER + εPSOUND + εPV ER. ut

Theorem C.6. ΠG is traceable. More precisely, for any PPT adversary A, we have Pr[Exptrace
A,ΠG(λ) =

1] ≤ εZK + εCPA + εUF .

37

Proof. The proof uses a sequence of games starting with the traceability experiment and ending

with the unforgeability of signatures on ciphertexts experiment. We note Si the event that the game

outputs 1 in the i-th game. We show that S0, the probability of an adversary to win the traceability

experiment, is bounded by εZK + εCPA + εUF .

Game0(λ): Let A be a PPT adversary. We define Game0(λ) as the original traceability experiment

Exptrace
A,ΠG(λ) as defined in Definition 2.5. By definition, A wins the game with probability Pr[S0].

Game1(λ): Instead of generating an honest CRS of the proof system, we use the SimCRSGen algo-

rithm to set up a simulation CRS crs and a trapdoor τ that enables the generation of simulated

proofs: crs, τ ←$ SimCRSGen(1λ, pp)

Game0(λ) → Game1(λ) : From our assumption about the proof system, we have directly that

|Pr[S0]− Pr[S1]| ≤ εsimcrs.

Game2(λ): Instead of computing honestly the proof of the challenge ciphertext, we now use the

simulation crs and the trapdoor to simulate the proof: π←$ SimProve(crs, τ, (vk, cextr))

Game1(λ) → Game2(λ) : From our assumption about the proof system, we have directly that

|Pr[S1]− Pr[S2]| ≤ εsimproof .

Game3(λ): Instead of computing cextr as an encryption of sk in the challenge ciphertext, we now

encrypt a random signing key.

Game2(λ)→ Game2(λ) : Instead of computing ourselves the part cextr of the challenge, we could

instantiate an IND-CPA experiment and use the challenger to encrypt either sk (in Game1(λ))

or a random signing key (in Game2(λ)). The proof that the ciphertext is well constructed is

simulated from the previous game. Hence any distinguisher between Game1(λ) and Game2(λ)

could be used to create an IND-CPA adversary and |Pr[S2]− Pr[S3]| ≤ εCPA.

Game4(λ): We transform Game3(λ) into Game4(λ) by modifying the way the ciphertext is created.

In this game, we do not generate the pair of public/secret keys anymore and instantiate an

unforgeability of signatures on ciphertexts experiment instead. We receive from the unforgeability

challenger a verification key vk and a pair of public/secret key (ektbe, dktbe) of the tag-based

encryption scheme. Then we generate the remaining parts of the TREnc keys with the Gen′

and the trapdoor CRS generation algorithm, send the public and secret keys to A and re-

ceive a message m from A. We encrypt m with TBGen and send the resulting ciphertext as

a signing request to the unforgeability challenger. We compute cextr and π as in the previous game.

Game2(λ)→ Game3(λ) : Everything is computed as before but through the challenger. Pr[S3] =

Pr[S4].

38

Finally, Game3(λ) is equivalent to the unforgeability experiment. Since the scheme is unforgeable,

Pr[4] is bounded by neglUF (λ). Thus Pr[S0] ≤ εZK + εCPA + εUF and the scheme is traceable. ut

Theorem C.7. ΠG is strongly randomizable. More precisely, for every c ∈ LEnc(pk, lk,m) with pk

in the range of Gen and lk in the range of LGen(pk), the following computational indistinguishability

relation holds:

Rand(pk, c) ≈c LEnc(pk, lk,m)

Proof. We parse pk = (ektbe, ekextr, crs) and c as (vk, ctbe, σ, cextr, π) where vk = φ(lk) (otherwise c

would not be in the range of LEnc(pk, lk, ·)).
Since (ctbe, σ) is in the range of (TBEnc(ektbe, vk,m), Sign(lk, ctbe)), and the tag-based encryption

scheme coupled to the signature scheme form a SRC, the signature adaptation property guarantees

that {TBEnc(ektbeφ(lk),m; r′), Sign(lk, ektbe, c
′; s′)} and {TBRand(ektbe, vk, c; r′), SAdapt(vk, ektbe, ctbe, σ; r′, s′)}

are indistinguishable.

Likewise, {Enc′(ekextr, lk; r′extr),Prove(crs, (ekextr, cextr, vk), (lk, r′extr))} is computationally indis-

tinguishable from {Rand′(ekextr, cextr; r
′
extr),PAdapt(crs, π, r′extr)} because the encryption scheme is

randomizable and the proof system is adaptable. ut

Theorem C.8. ΠG is extractable. More precisely, ΠG satisfies the trapdoor indistinguishability

and unique extractability properties.

Proof. Trapdoor indistinguishability The public and secret keys are computed in the exact

same way in Gen and TrapGen.

Unique Extraction Since (pk, sk, tk) is in the range of TrapGen, the second entry of pk and tk

form a pair of public and secret keys (pkextr, dkextr) of the CPA-secure scheme.

– If a ciphertext c is in the range of LEnc(pk, lk, ·), then the cextr part of c is also in the range of

Enc′(ekextr, lk). Because Enc′ and Dec′ are part of a CPA-secure encryption scheme, LExtr(c, tk) =

Dec′(dkextr, cextr) = lk.

– Since c0 and c1 are both in the range of Enc(pk, ·), there are two link keys lk0 and lk1 in

the range of LGen(pk) such that ci ∈ LEnc(pk, lki, ·) for i = 0, 1. Also, they both have a

component vki such that vki = φ(lki). Since Trace(pk, c0) = Trace(pk, c1), vk0 = vk1 and the

injectivity of φ garantees that lk0 = lk1. Finally, the first item of the definition implies that

LExtr(tk, c0) = lk0 = lk1 = LExtr(tk, c1).

ut

Theorem C.9. ΠG is pd?-RCCA. More precisely, for any adversary PPT A, we have Pr[Exppd?-rcca
A,ΠG (λ) =

1] ≤ εwCCA.

Proof. The proof is a direct reduction. Let A be an adversary for the pd?-RCCA experiment winning

with an advantage greater than εwCCA(λ). Using A, we build an adversary B for the TBE-wCCA

experiment that also wins with the same advantage.

At the beginning of the experiment, B receives from the challenger the pair of public/private key

of the tag-based encryption scheme used by the challenger. In addition to these keys, B computes

39

ekextr, dkextr and crs to generate the public, secret and trapdoor keys of the TREnc used to interact

with a pd?-RCCA adversary. B sends the public key to A. For each of the decryption request that

it receives from A, B verifies that the ciphertext is valid. It then sends vk, ctbe to the TBE-wCCA

challenger and returns the output to A.

At some point, B receives the challenge (m0,m1, lk) from A. If lk = ⊥, it generates itself

a link key by running the LEnc(PK) algorithm and computes the verification key vk = φ(lk).

B chooses (m0,m1, vk) as its challenge and receives a tag-based encryption c? of either m0 or

m1 from the challenger. It generates a signature σ on c? using sk and computes an encryp-

tion of sk as well as the accompanying proof respectively with cextr = Enc′(ekextr, sk; r) and

π←$ Prove(crs, (ekextr, cextr, vk), (sk, r)). CT? = (vk, c?, σ, cextr, π) forms a challenge ciphertext that

has the same distribution as ciphertexts directly computed with the Enc algorithm of the TREnc.

B deals with the post-challenge decryption requests exactly as before, except if the ciphertext

has the same trace as CT?. In that case, it returns test to A. Especially, it never asks the challenger

for a decryption using the challenge trace vk since such a ciphertext would have the same trace as

CT?. Finally, when A sends a guess b′, B returns it to the challenger.

As the probability of B to win the TBE-wCCA experiment is the same as the probability of

A to win the pd?-RCCA experiment, we have a contradiction and the advantage of A has to be

bounded by εwCCA(λ). ut

Since ΠG is extractable and pd?-RCCA-secure, it follows from Theorem B.1 that ΠG is TCCA-

secure as well.

C.5 Instantiation

To build an extractable TREnc, we briefly sketch how to instantiate each building blocks in

asymmetric bilinear groups. For the SRC, we start from BeleniosRF and use the Waters’ signature

scheme adapted to asymmetric pairings [10], see Appendix E.4 For the weak CCA secure randomizable

tag-based encryption, we depart from BeleniosRF [14] as their TBE is only selective-tag weakly

CCA secure. While it is easy to show that this enough to generically implies RCCA security, it is

not enough to reach our natural variant of pd-RCCA, even without extractor, which is necessary to

get TCCA security. We thus borrow the scheme due to [32], which is the Cramer-Shoup ciphertext

where the hashed value is replaced by the tag. It is easy to see that this provides our desired

notion of randomizability and that we can turn it into a randomizable SRC by adding the same

additional components of [14] to allow adapting the signature after the randomization of the TBE.

However, we also have to turn it into a publicly verifiable TBE/CRS, and include a randomizable

simulation-sound proof that we indeed encrypt the Waters’ hash of the signed message that is

decomposed bit by bit. As in BeleniosRF, we can rely on the Groth-Sahai proof system which

provides perfect NIWI proofs for quadratic statement of pairing-product equations (when the CRS is

generated in the hiding mode). To turn them into a simulation-sound ZK proof, we can combine them

4 It is easy to see that the signature has all the security guarantees that we want. Valid signatures are always in the
range of honest signatures, and the public key unequivocally defines the secret key.

40

with a structure-preserving signature on Waters’ public key, and prove that either the statement is

true or that we have such a valid signature as suggested in [15].5

The remaining part is more straightforward. We can take a perfectly randomiz-able ElGamal

encryption to encrypt the Waters’ signing key (which is a single group element) and use its decryption

key for extraction. For the randomizable NIZK proof that we indeed faithfully encrypt the signing

key, we can take the same modified Groth-Sahai proof system described above.

D Proofs of security of the construction under SXDH

D.1 Verifiability

Theorem D.1. The above TREnc is verifiable under the SXDH assumption. More precisely, for

any adversary A, we have Pr[Expver
A (λ) = 1] ≤ εsxdh + 1/p.

Proof. Let A be an efficient adversary. Given (PK, SK) ← Gen(1λ), we have to show that any

ciphertext CT ← A(PK,SK) which passes the verification equations so that Ver(PK,CT) = 1

is necessarily in the range of the honestly generated encryptions of Dec(SK,CT) that traces to

Trace(PK,CT).

During the key generation we keep δ such that F = f δ, and G = gδ. We also keep the secret

keys sku and skv to compute one-time LHSP signatures. We denote by skqazk
lhsp the concatenation of

these keys which corresponds to the signing key associated to the public key pkqazk
lhsp = {û1, û2, v̂1, v̂2}.

We recall that only SK = (α, β) that satisfies f = gαhβ is the secret key. The other public elements

compose the CRS of the scheme.

Now, let (c,CZ ,CR, σ2, σ3, π, π̂sig, opk) = CT ← A(PK,SK) that satisfies Ver(PK,CT) = 1,

where we have c = (c0, c1, c2), π = (Zπ, Rπ), π̂sig = (P̂1, P̂2) and Trace(PK,CT) = opk = (f̂1, f̂2, f̂3).

First, we show that the validity of π = (Zπ, Rπ) ensures the existence of m ∈ G and θ ∈ Zp such

that c0 = m · fθ, c1 = gθ and c2 = hθ. Indeed, the verification equation (4) implies that π is a valid

one-time LHSP signature on the vector (cτ1 , c
τ
2 , c1, c2), where τ = H(opk). Now, we assume that

(c1, c2) is not in the span generated by (g, h). That is c1 = gθ1 and c2 = hθ2 , for some θ1, θ2 ∈ Zp
with θ1 6= θ2. Therefore, the vector (cτ1 , c

τ
2 , c1, c2) = (gθ1τ , hθ2τ , gθ1 , hθ2) is not in the span generated

by the vectors (g, h, 1, 1) and (1, 1, g, h) that are signed in PK under pkqazk
lhsp . By the property of the

LHSP signature scheme, the honest deterministic signature on (cτ1 , c
τ
2 , c1, c2) that would use skqazk

lhsp

remains statistically unpredictable. That is because skqazk
lhsp still contains enough entropy that are

only revealed when signing vectors outside the span of the vectors that are already signed. As a

consequence, (Z†, R†) = Sign(skqazk
lhsp , (c

τ
1 , c

τ
2 , c1, c2)) also satisfies the verification equation (4) with

the same right-hand side member, and Z† 6= Zπ and R† 6= Rπ, but with probability 1/p. By dividing

both equations we get e(Z†/Zπ, ĝ) · e(R†/Rπ, ĥ) = 1, which implies a DP solver and thus an SXDH

distinguisher. To conclude this step, there exists θ ∈ Zp such that c1 = gθ and c2 = hθ, except with

negligible probability. Moreover, we can write c0 = m ·fθ, for some m ∈ G, so that Dec(SK,CT) = m.

Eventually, even if we do not know θ, π must be equal to π† := (Z†, R†) = (Στ
uΣv)

θ as otherwise the

same reduction to solving the DP instance (ĝ, ĥ) would work. Indeed, it is enough to have distinct

5 In BeleniosRF, there is no such a composition and the proofs seems to only be WI.

41

valid signatures on the same vector to solve the problem. By the way, we also showed that π has

the right distribution.

Second, we show that the Groth-Sahai commitments CZ and CR and the proof π̂sig are reachable

by an honest run of the encryption algorithm for some random coin. Since crsw is generated in the

perfect NIWI mode, the resulting commitments and proofs are distributed among all the possible

group elements that satisfy the verification equation. That means that, as long as the adversarially

generated CZ , CR and π̂sig are valid, they can necessarily be explained by an honest computation

given the group elements involved in the verification equation (ĝ, ĥ, g, c0, c1) and opk. We stress that

we can explained the committed signature σ1 = (Z1, R1) by a random pair of group elements since

the commitments are perfectly hiding and the CRS crsw forms a basis of G2. That is, the view is

actually independent of any honest σ1, which therefore does not give any constraint on the LHSP

signatures for the tracing part. Moreover, an honest opk is uniform in G3, so any triple is reachable

for this tracing value.

Third, we show that opk and the associated LHSP signatures σ2 and σ3 related to the tracing

part of the ciphertext can also be explained as an honest run of the encryption algorithm. We are

looking for some lk = osk = {(ηi, ζi)}3i=1 such that f̂i = ĝηi ĥζi , for i = 1 to 3, and that also satisfy

σj = Sign(osk, ~Tj), for j = 1 to 2, where ~Tj = (Tj,1, Tj,2, Tj,3) is the j-th row of the matrix T of

equation (2). Since ~T3 = (1, F,G) = (1, f, g)δ = ~T δ2 , we must have σ3 = σδ2 if they were honestly

computed. However, if σ3 6= σδ2 we would have two distinct LHSP signatures on the vector ~T3, which

again implies a DP solver and thus an SXDH distinguisher. We note that any group elements can be

reached by the public key and the signatures (up to the validity of the verification equation) during

an honest execution of the LHSP algorithms as they are all uniform constrained to the validity. We

thus only have one signature σ2 that imposes a linear constraint on the secret key osk (since the

Groth-Sahai proof does not reveal any purported honest σ1) while opk leaves 3 degrees of freedom.

It remains 2 degrees of freedom to define all the possible honest secret keys osk corresponding to the

view. This is largely enough to assert that this tracing part is in the range of an honest encryption.

In conclusion, a valid ciphertext CT is in the range of all the honestly generated encryption

of Dec(SK,CT) that traces to Trace(PK,CT), except if the proof π 6= Sign(skqazk
lhsp , (c

τ
1 , c

τ
2 , c1, c2)) or

the signature σ3 6= σδ2 that are both related to the public parameters (ĝ, ĥ). Given a single DP

problem instance (ĝ, ĥ) it is straightforward to build an efficient adversary B that solves it with the

same probability as A produces a valid CT with at least one of these inequalities. We thus have

Pr[Expver
A (λ) = 1] ≤ εsxdh + 1/p. ut

D.2 Traceability

Theorem D.2. The above TREnc Π is traceable under the SXDH assumption. More precisely, for

any adversary A, we have Pr[Exptrace
A,Π (λ) = 1] ≤ 2 · εsxdh + 2/p.

Proof. Let A be an efficient adversary against the traceability of our TREnc Π. We consider a

sequence of games. In Game i, we denote by Si the event that A(PK,SK) wins by producing

a valid ciphertext CT∗ = (c∗,C∗Z ,C
∗
R, σ

∗
2, σ
∗
3, π
∗, π̂∗sig, opk∗) that traces to CT ← Enc(PK,m) but

Dec(SK,CT∗) 6= m, where the message m was chosen by the adversary.

42

Game 0: This is the real game, where (PK, SK)← Gen(1λ) with SK = (α, β) and PK = (f, g, h, F,G, crsw, Σu, Σv, pkqazk
lhsp , ĝ, ĥ).

Then, (m, st) ← A1(PK,SK), (c,CZ ,CR, σ2, σ3, π, π̂sig, opk) := CT ← Enc(PK,m), and CT∗←
A2(st,CT). By definition, the event S0 occurs if Ver(PK,CT∗) = 1, Dec(SK,CT∗) 6= m, and

opk∗ = Trace(PK,CT∗)=Trace(PK,CT) = opk. We thus have Pr[S0] = Pr[Exptrace
A,Π (λ) = 1].

Game 1: This game is as the real game except that the Groth Sahai CRS crsw = (~w1, ~w2) of the

public key is now generated in the extractable mode. Namely, instead of picking ~w1, ~w2←$G2

uniformly at random, we pick ~w1←$G2 and ξ←$Zp, and compute ~w2 = ~wξ1. Now, the CRS crsw
forms a random DH tuple over G.

Any distinct behavior of A between Game 0 and Game 1 leads to an SXDH distinguisher (DDH

in G). We have, |Pr[S0]− Pr[S1]| ≤ εsxdh.

Game 2: We bring the following modification to the previous game. When we sample crsw = (~w1, ~w2)

as a random DH tuple over G, we first pick w11←$G and γ←$Zp to compute ~w1 = (w11, w12),

where w12 = wγ11. The distribution of the public key is unchanged, but we keep γ as an ElGamal

secret key to extract the committed group elements of the Groth-Sahai commitments. More

precisely, given C∗Z ,C
∗
R ∈ G2, we extract/decrypt some Z∗1 , R

∗
1 ∈ G. Now, we abort and output

0 if σ∗1 := (Z∗1 , R
∗
1) is not a valid one-time LHSP signature on (g, c∗0, c

∗
1), where c∗ = (c∗0, c

∗
1, c
∗
2)

from CT∗, under opk∗ = opk.

The perfect soundness of the Groth-Sahai proofs in the extractable mode ensures that the

probability to abort in the case of a invalid σ∗1 := (Z∗1 , R
∗
1) is 0. We thus find that Pr[S1] = Pr[S2].

Game 3: This game is as Game 2 except in the way we consider A successful. First, when we

generate PK, we keep skqazk
lhsp := (sku, skv) associated to pkqazk

lhsp = {û1, û2, v̂1, v̂2} and that was used

to compute Σu and Σv. Second, when we create the encryption CT of the message m given by

A1(PK, SK), we first pick lk← LGen(PK) ourself. That is, we honestly generate a private key of the

LHSP signature scheme lk = osk = {(ηi, ζi)}3i=1 and compute the corresponding public key opk =

{f̂i}3i=1. Then, we honestly generate LEnc(PK, osk,m) to get CT = (c,CZ ,CR, σ2, σ3, π, π̂sig, opk),

but we keep osk. As soon as we get CT∗ from adv2, we extract σ∗1 := (Z∗1 , R
∗
1) as in Game 2. Now,

we also abort and output 0 if σ∗1 6= Sign(osk, (g, c∗0, c
∗
1)) or π∗ 6= Sign(skqazk

lhsp , (c
∗τ
1 , c

∗τ
2 , c

∗
1, c
∗
2)),

where τ = H(opk).

The view of Game 2 and Game 3 have the same distribution as long as we do not consider

A unsuccessful, and somehow reject the validity of CT∗, in Game 3 while A would have been

deemed successful in Game 2. Therefore, |Pr[S2]− Pr[S3]| is bounded by the probability that A
(implicitly) produces a valid σ∗1 6= Sign(osk, (g, c∗0, c

∗
1)) or a valid π∗ 6= Sign(skqazk

lhsp , (c
∗τ
1 , c

∗τ
2 , c

∗
1, c
∗
2)).

However, given the public parameter (ĝ, ĥ) of the LHSP scheme, and given any 2 distinct one-time

LHSP signatures on a same vector, we have straightforward reduction to a DP solver. Hence,

|Pr[S2]− Pr[S3]| ≤ εsxdh.

Now we conclude by showing that Pr[S3] = 2/p. We use the same argument about the one-time

LHSP security scheme (recalled in Section 4.2) that we used in the proof of verifiability, Theorem D.1.

First, we show that in Game 3 (c∗1, c
∗
2) is of the form (g, h)θ

∗
except with probability 1/p. That is,

c∗ = (m∗fθ
∗
, gθ

∗
, hθ

∗
), for some m∗ ∈ G, and then m∗ = Dec(SK,CT∗). Indeed, PK only contains

43

one-time LHSP signatures Σu and Σv on the vectors (g, h, 1, 1) and (1, 1, g, h), respectively. Then, if

c∗ is not an honest CPE encryption of m∗, (c∗τ1 , c
∗τ
2 , c

∗
1, c
∗
2) is not in the span generated by the vectors

(g, h, 1, 1) and (1, 1, g, h), and the honest one-time LHSP signature π† := Sign(skqazk
lhsp , (c

∗τ
1 , c

∗τ
2 , c

∗
1, c
∗
2))

remains unpredictable even in front of an unbounded adversary. Then, the probability to guess

the right π† = (Z†, R†) so that π∗ := (Z∗, R∗) = (Z†, R†) is equal to the probability to have

Z∗ = Z∗ since the verification equation would necessarily implies R∗ = R∗ in that case. But,

the probability to have Z∗ = Z∗ is 1/p. Finally, since c and c∗ are CPA encryptions of distinct

messages m and m∗ respectively, the vector (g, c∗0, c
∗
1) = (g,m∗fθ

∗
, gθ

∗
) is necessarily outside the

span generated by the vectors (g, c0, c1) = (g,mfθ, gθ), (1, f, g) and (1, F,G) (for which we provide

the one-time LHSP signatures σ1, σ2 and σ3) which is of dimension 2 since (1, F,G) = (1, f, g)δ

(and σ3 = σδ2). Indeed, (g, c∗0, c
∗
1), (g, c0, c1) and (1, f, g) form a basis of G3 as long as m∗ 6= m.

Therefore, by a similar argument as above the probability to guess the honest one-time LHSP

signature σ†1 := Sign(osk, (g, c∗0, c
∗
1)) is also 1/p (since σ3 contains no more information than σ2 about

osk).

Eventually, Pr[Exptrace
A,Π (λ) = 1] = Pr[S0] ≤ 2 · εsxdh + 2/p, as expected. ut

D.3 Strong Randomizability

Theorem D.3. The above TREnc is perfectly strongly randomizable.

Proof. Let CT be a ciphertext in the range of LEnc(PK, osk,m), where the link key is osk =

{(ηi, ζi)}3i=1 and the associated trace is opk = {f̂i}3i=1. Even if the coin explaining c might have been

taken from any dishonest distribution, we show that the randomization of CT is indistinguishable

from a fresh and honest linked encryption of m with osk.

In item 2 of the encryption algorithm, the CPA encryption c = (c0, c1, c2) = (mfθ, gθ, hθ) is

perfectly randomizable for any original coin θ ∈ Zp that explains c since c′ = (c0, c1, c2) · (f, g, h)θ
′

is equal to (mfθ+θ
′
, gθ+θ

′
, hθ+θ

′
) which is distributed exactly as a fresh CPA encryption of m since

θ + θ′ is random over Zp. In the same manner, it is easy to see that π = (Στ
uΣv)

θ is also perfectly

strongly randomizable, where τ = H(opk) is a constant in both distributions.

By definition, Rand does not modify σ2, σ3. Moreover, the signing algorithm is deterministic,

so that given osk that explains σ2, σ3 as signatures on the last two rows of T of equation (2) that

are fixed by PK, any fresh run of the signing algorithm with osk gives that them back. As σ1 only

appears implicitly in the Groth-Sahai commitments CZ ,CR and proof π̂sig in the perfect NIWI

setting, the perfect randomization holds even after the adaptation in item 2 of Rand. That is

re-randomized (linear) Groth-Sahai (commitments and) proofs are perfectly re-distributed among

all the (commitments and) valid proofs that satisfy verification equations that are, here, chosen

with the same distribution parametrized by the c0 and c1 components. ut

D.4 Traceable Chosen-Ciphertext Security

Theorem D.4. The above TREnc is TCCA-secure under the SXDH assumption and the collision

resistance of the hash function. More precisely, we have Pr[Exptcca
A,Π(λ) = 1] ≤ 1

2+εcr+2·εsxdh+Ω(2−λ).

44

Proof. Let A = (A1,A2) be an efficient adversary against the TCCA security of our TREnc Π.

We consider a sequence of games. In Game i, we denote by Si the event that A wins by correctly

guessing the internal random bit b of the game, which makes to game to output 1.

Game 0: This is the real game, where (PK, SK)← Gen(1λ) with SK = (α, β) and PK = (f, g, h, F,G, crsw, Σu, Σv, pkqazk
lhsp , ĝ, ĥ).

Then, we input A1 with PK and we get back two ciphertexts CT0 and CT1. If opk0 =

Trace(PK,CT0) 6= Trace(PK,CT1) = opk1 or Ver(PK,CT0) 6= 1 6= Ver(PK,CT1), abort the

game and output a random bit. Otherwise, we pick a random bit b←$ {0, 1}, and we return

CT∗ ← Rand(PK,CTb) to A2 which outputs its guess b′. If b = b′, we output 1, else, we output

0. We recall that A1 is allowed to make any (pre-challenge) decryption queries and that A2 is

allowed to make any (post-challenge) decryption queries for any ciphertext that does not trace

to opk∗ := opk0 = opk1. By definition, Pr[S0] = Pr[Exptcca
A,Π(λ) = 1].

Game 1: This game is as the real game except that we abort and output a random bit if the

adversary produces two valid ciphertexts CT and CT′ such that H(opk) = H(opk′) but opk 6= opk′.

Such an abort implies a collision on H. Thus, |Pr[S0]− Pr[S1]| ≤ εcr.

Game 2: In this game, we introduce a failure event with respect to the previous game which

causes this game to abort and output a random bit. First of all, when we generate PK, we keep

skqazk
lhsp := (sku, skv) associated to pkqazk

lhsp = {û1, û2, v̂1, v̂2} that is used to compute Σu and Σv
included in PK. Now, the failure event occurs if during the entire game the adversary produces

a valid ciphertext CT = (c,CZ ,CR, σ2, σ3, π, π̂sig, opk) at any time such that the one-time

LHSP signature π 6= Sign(skqazk
lhsp , (c

τ
1 , c

τ
2 , c1, c2)), where c = (c0, c1, c2) and τ = H(opk), except

if opk = opk∗ in a post-challenge decryption query. So this can happen in any other case in a

decryption queries or also during the challenge phase. Moreover, the failure event also occurs

if during the challenge phase the given ciphertexts CTi = (c(i),C
(i)
Z ,C

(i)
R , σ

(i)
2 , σ

(i)
3 , π

(i), π̂
(i)
sig, opki),

for i = 0, 1, are valid but (σ(0)

2 , σ(0)

3) 6= (σ(1)

2 , σ(1)

3). Still, the generation of the challenge ciphertext

computed by randomizing CTb remains unchanged. This randomization preserves the (σ2, σ3)-

signature components. Then, if the game does not abort we must have opk∗ = opk0 = opk1,

σ∗2 = σ(0)

2 = σ(1)

2 and σ∗3 = σ(0)

3 = σ(1)

3 . Note that we do not abort if a pre-challenge decryption

query involves a valid ciphertext CT that trace to CT∗, i.e., opk = opk∗ but the (σ2, σ3)-signature

components differ (as it will not be harmful).

Clearly, |Pr[S1]− Pr[S2]| is bounded by the probability that (σ(0)

2 , σ(0)

3) 6= (σ(1)

2 , σ(1)

3) occurs or

that at least one signature π of a valid ciphertext is not the honest one that would be computed

with skqazk
lhsp . Given the public parameters ĝ, ĥ of the one-time LHSP signature scheme, we can

build a straightforward reduction to DP if we have any 2 distinct valid one-time LHSP signatures

on the same vector. We thus have, |Pr[S1]− Pr[S2]|≤ εsxdh.

Game 3: This game is as Game 2 except in the way we generate the challenge ciphertext by

randomization. First, when we generate PK, we keep skqazk
lhsp := (sku, skv) as before. Second,

when we create the encryption CT∗ by randomizing CTb, we simulate the proof π∗ by re-

signing (c∗1, c
∗
2) from scratch using the secret key skqazk

lhsp at Step 3. That is, when we randomize

CTb by picking θ∗←$Zp and first computing c∗ = c(b) · (f, g, h)θ
∗

so that c∗ =: (c∗0, c
∗
1, c
∗
2) =

45

(c(b)0 · fθ
∗
, c(b)1 · gθ

∗
, c(b)2 · hθ

∗
), we no more compute the proof as π∗ = π(b) · (Στb

u Σv)
θ∗ , where

τb = H(opkb), as Rand would do.

Game 2 and Game 3 abort the game in the same cases. Moreover, when they do not abort, the view

in both games are actually exactly the same. Indeed, since π(b) = Sign(skqazk
lhsp , (c

(b)τb
1 , c(b)τb2 , c(b)1 , c

(b)

2))

when there is no abort, we have π(b) · (Στb
u Σv)

θ∗ = Sign(skqazk
lhsp , (c

∗τb
1 , c∗τb2 , c∗1, c

∗
2)) by the homo-

morphic property of the deterministic one-time LHSP signature scheme since (Στb
u Σv)

θ∗ =

Sign(skqazk
lhsp , (g

θ∗τb , hθ
∗τb , cθ

∗
1 , c

θ∗
2)). We thus have Pr[S2] = Pr[S3].

Game 4: In this game we bring yet another modification in the way we generate the challenge

ciphertext CT∗ by randomizing CTb with respect to the previous game. During the generation

of the public key, we keep the value H such that (F,G,H) = (f, g, h)δ. At Step 1 of the

randomization algorithm we now compute the CPA encryption part as c∗ = c(b) · (f, g, h)θ
∗ ·

(F,G,H)ρ
∗
, for random θ∗, ρ∗←$Zp. Then, we also have to modify the way we derive a committed

valid one-time LHSP signature on (g, c∗, c∗1) at Step 2. We now compute σ̃∗1 := (Z̃∗1 , R̃
∗
1) =

(Z(b)θ∗

2 · Z(b)ρ∗

3 , R(b)θ∗

2 · R(b)ρ∗

3) = σ(b)θ∗

2 · σ(b)ρ∗

3 , which consists of a one-time LHSP signature on

(1, f, g)θ
∗· (F,G,H)ρ

∗
. The remaining part of that step is done as in Rand. That is, we adapt

and randomize the commitments C∗Z = C(b)

Z · ι(Z̃∗1)~w
z∗1
1 ~w

z∗2
2 and C∗R = C(b)

R · ι(R̃∗1)~w
r∗1
1 ~w

r∗2
2 , for

some random scalars z∗1 , z
∗
2 , r
∗
1, r
∗
2←$Zp, as well as the proof so that π̂∗sig := (P̂ ∗1 , P̂

∗
2) = (P̂ (b)

1 ·
ĝz
∗
1 ĥr

∗
1 , P̂ (b)

2 · ĝz
∗
2 ĥr

∗
2), where π̂(b)

sig = (P̂ (b)

1 , P̂ (b)

2).

Since c∗ = c(b) · (f, g, h)θ
∗+δρ∗, the CPA encryption part is randomized exactly as in Game 3 as

well as the simulated proof π∗= Sign(skqazk
lhsp , (c

∗τb
1 , c∗τb2 , c∗1, c

∗
2)), where τ∗ = H(opk∗). Moreover,

the Groth-Sahai commitments and proofs are fully randomized and redistributed among all

the valid commitments and proofs that satisfy the verification equation with the constants

g, c∗0, c
∗
1 ∈ G and ĝ, ĥ ∈ Ĝ, and opk∗ = opkb. Indeed, since CTb contains a valid signature σ(b)

3 on

the vector (1, F,G) and a valid Groth-Sahai commitments-and-proof related to opkb if the game

does not abort (and it aborts in the same way in Game 3 and Game 4), the same holds for CT∗

which has thus exactly in the same distribution in both games. We have Pr[S3] = Pr[S4].

Game 5: In this game, we change the way we compute (F,G,H) during the generation of the public

key. Now, we pick random G,H←$G and compute F = GαHβ using the secret key SK = (α, β).

We recall that f = gαhβ and that H is not included in PK. The remaining part of the public

key is unchanged as well as the way we deal with decryption queries and the computation of the

challenge ciphertext CT∗ = (c∗,C∗Z ,C
∗
R, σ

∗
2, σ
∗
3, π
∗, π̂∗sig, opk∗) by randomization. Still, as a side

effect c∗ = (c∗0, c
∗
1, c
∗
2) is no more in the range of the honest CPA encryptions of Dec(SK,CTb)

except with probability 1/p. This also implies that π∗ is a valid proof of a false statement.

Obviously, we have |Pr[S4] − Pr[S5]| ≤ εsxdh since the only distinction between Game 4 and

Game 5 is that (g, h,G,H) ∈ G4 is a random DH tuple in the former game and random quadruple

in the latter game.

Game 6: In this game, we still generate (g, h,G,H) ∈ G4 uniformly at random but we compute

h = gγ for a known random scalar γ←$Zp. Then, we introduce one more failure event which

causes the game to abort and output a random bit. This event occurs if the adversary manages

to compute a ciphertext CT that it is deemed valid in the previous game but cγ1 6= c2 if at least

46

one of the following situations: in any pre-challenge decryption query, in the challenge phase

with CT0 or CT1, or in any post-challenge decryption query with Trace(PK,CT) 6= opk∗. In other

words, we reject all the valid ciphertexts in the sense of Game 4 for which π is a valid proof for

c while this CPA ciphertext is not in the range of the honest encryptions of Dec(SK,CT), and γ

is a trapdoor membership key that allows us to figure out whether π is actually a fake proof.

It is clear that |Pr[S5] − Pr[S6]| is bounded by the probability that the new failure event

occurs. From Game 2, and the successive additional abort rules, a valid ciphertext CT =

(c,CZ ,CR, σ2, σ3, π, π̂sig, opk) that is not rejected satisfies π = Sign(skqazk
lhsp , (c

τ
1 , c

τ
2 , c1, c2)), where

c = (c0, c1, c2) and τ = H(opk). Now, we show that all such ciphertexts must also satisfy cγ1 = c2,

except with negligible probability (q + 2)/(p− q − 2).

Indeed, let us consider what a computationally unbounded adversary A can infer skqazk
lhsp =:=

{(µ1, µ2, µ3, µ4, ν1, ν2, ν3, ν4)} during the whole game, where sku =: {(µ1, ν1), (µ2, ν2)} and skv =:

{(µ3, ν3), (µ4, ν4)}. In the public key pklhspqazk, the discrete logarithms of {ûi = ĝµi · ĥνi , v̂i =

ĝµi+2 · ĥνi+2 , }2i=1 provide 4 linear equations and those of {(Zu, Ru), (Zv, Rv)} included in PK

provide A with two additional independent linear equations. In addition, {Ru, Rv} are uniquely

determined {Zu, Zv} and do not reveal any more information than them. As a consequence,

from A’s point view, the vector (µ1, µ2, µ3, µ4, ν1, ν2, ν3, ν4) is uniformly distributed in a two-

dimensional subspace at the beginning of the game. Hence, at the first pre-challenge decryption

query such that cγ1 = c2 and then (cτ1 , c
τ
2 , c1, c2) is not in the span generated by the vectors

(g, h, 1, 1) and (1, 1, g, h) for which we gave the signatures Σu = (Zu, Ru) and Σv = (Zv, Rv), the

equalities

Z = cτµ11 · cτµ22 · cµ31 · c
µ4
2 , R = cτν11 · cτν22 · cν31 · c

ν4
2 (5)

can only hold with probability 1/p. However, each query potentially allows A to eliminate

one candidate for the vector (µ1, µ2, µ3, µ4, ν1, ν2, ν3, ν4). At the k-th pre-challenge query, the

equalities (5) thus hold with probability smaller than 1/(p − k). After the challenge phase,

since c∗γ1 6= c∗2 with probability 1/p, we give one more independent linear equation about skqazk
lhsp

and it still remains one-degree of freedom. Now, in the next valid post-challenge queries with

τ = H(opk) 6= H(opk∗) = τ∗ assuming that we do not abort (we relied on the collision resistance

in Game 1), we will also have a probability smaller than 1/(p− q1− 2− k) to fulfill the equalities

(5) at the k-th post-challenge query, where q1 is the number of pre-challenge queries and the

2 counts for CT0 and CT1. Indeed, if we write c = (cτ1 , c
τ
2 , c1, c2) = (gϑ1τ , gγϑ2τ , gϑ1 , gγϑ2) and

c∗ = (c∗τ
∗

1 , c∗τ
∗

2 , c∗1, c
∗
2) = (gθ1τ

∗
, gγθ2τ

∗
, gθ1 , gγθ2) for some ϑ1 6= ϑ2 and θ1 6= θ2, we see that

det


1 γ 0 0

0 0 1 γ

θ1τ
∗ γθ2τ

∗ θ1 γθ2
ϑ1τ γϑ2τ ϑ1 γϑ2

 = γ2(τ∗ − τ)(θ1 − θ2)(ϑ1 − ϑ2).

where the first two rows represent (g, h, 1, 1) and (1, 1, g, g). The inequality |Pr[S5]− Pr[S6]| ≤
(q + 2)/(p− q − 2) follows.

47

To conclude, we argue that A’s view in Game 6 is statistically independent of the hidden bit b. If

the game aborts and outputs a random bit, the probability to return 1 is 1/2. So, let us evaluate the

probability that A returns b at the end of the game when there is no abort. Since there is no abort,

all the ciphertexts CT for which we compute Dec(SK,CT) = (c0 · c−α1 · c−β2) does not reveal any

additional information about the secret key SK = (α, β) beyond what can be inferred from f = gαhβ

and F = GαHβ which thus remain independent since H is kept secret until the computation of

the challenge ciphertext CT∗. Let us write G = gx and H = hxfz, for random x, z ∈ Zp, so that

F = fx+βz. The computation of c∗= c(b)· (f, g, h)θ
∗· (F,G,H)ρ

∗
, for random θ∗, ρ∗←$Zp, introduced

in Game 4 implies that c∗0 = c(b)0 · fθ
∗+ρ∗(x+βz), c∗1 = c(b)1 · gθ

∗+ρ∗x, and c∗2 = c(b)2 · hθ
∗+ρ∗x · fρ∗z.

Therefore, as long as x, z, ρ∗ 6= 0, c∗ is a random triple over G3 since H is still not added to A’s

view. Hence, Pr[S6] = 1/2 + 3/p.

In summary, we find

Pr[Exptcca
A,Π(λ) = 1] ≤ 1

2
+ εcr + 2 · εsxdh +

q + 2

p− q − 2
+

3

p
.

ut

E Asymmetric Waters Signature

We define the Waters signature scheme for messages m = (m1, . . . ,mk) ∈ {0, 1}k.

Setup(1λ): Generate (p,G, Ĝ, g, ĝ,GT , e) as in Sec. 4.1, pick z←$G as well as u = (u0, . . . , uk)←$Gk+1.

Output pp = (p,G, Ĝ,GT , e, g, ĝ, z,u).

SKeyGen(pp): Choose x←$Zp, define X = gx, X̂ = ĝx, Y = zx; output the public key vk =

(pp,X, X̂) and the secret key sk = (pp, Y).

Sign(sk,m; s): Define F(m) := u0Π
k
i=1u

mi
i . For randomness s ∈ Zp, return the signature σ defined

as:

(σ1 = Y · F(m)s, σ2 = gs, σ3 = ĝs)

Verif(vk,m, σ): Output 1 if both of the following hold and 0 otherwise:

e(σ1, ĝ) = e(z, X̂) · e(F(m), σ3) and e(σ2, ĝ) = e(g, σ3)

Random(vk, F, σ; s′): For F = F(m) and randomness s′ ∈ Zp, output σ′ = (σ1 ·F s
′
, σ2 ·gs

′
, σ3 · ĝs

′
)

F Belenios RF model

As our receipt-freeness definition for a voting scheme is inspired from BeleniosRF[14], we find it

useful to remind their model. The main difference with our model is the following: in addition to

the parties used in our model, there is an additional party, the registrar, which provides to the

users voting credentials (upkid, uskid) when they register to the election. Voters make use of these

credentials to craft a valid ballot and verify that their ballot is included in the tally. Even though

there is no explicit TraceBallot algorithm, the public credentials upk can be used to trace ballots

computed with the associated usk.

48

Definition F.1 (Voting System). A Voting System is a tuple of probabilistic polynomial-time

algorithms (SetupElection,Register,Vote,Valid,Append,Publish,VerifyVote,Tally,VerifyResult) associ-

ated to a result function ρm : Vm ∪ {⊥} → R where V is the set of valid votes and R is the result

space such that:

– SetupElection(1λ): on input security parameter 1λ, generate the public and secret keys (pk, sk) of

the election.

– Register(id): on input an identifier id, outputs the secret part of the credential uskid and its public

credential upkid, which is added to the list L = {upkid}
– Vote(v, upk, usk, v): is run by a voter idwith credentials upk, usk to cast their vote v ∈ V. It

outputs a ballot b, which is sent to the voting server (possibly through an authenticated channel).

– Valid(BB, b) takes as input the ballot box BB and a ballot b and checks the validity of the latter.

Outputs 1 if the ballot is valid and 0 otherwise (e.g. ill-formed, containing duplicated ciphertext

from the ballot box...).

– Append(BB, b) updates BB with the ballot b. Typically, this consists in adding b as a new entry

to BB, but more involved actions might be possible.

– Publish(BB): on input ballot box BB, outputs the public view PBB of BB.

– VerifyVote(PBB, id, upk, usk, b) is run by voters for checking that their ballots will be included in

the tally. On inputs the public board PBB, a ballot b, and the voter’s identity and credentials

id, uskupk, it returns 1 or 0.

– Tally(BB, sk): on input ballot box BB and private key of the election sk, outputs the tally r

(consistent with the result function ρ applied on the votes contained in the ballots of BB) and a

proof Π of correct tabulation.

– VerifyResult(PBB, r,Π): on input public ballot box PBB, result of the tally r and proof of the tally

Π, checks that the result of the tally is correct with regard to PBB and the associated proof.

Outputs 1 if the tally is valid and 0 otherwise.

For all of these algorithms except SetupElection, the public key of the election pk is an implicit

argument.

Regarding the receipt-freeness definition, the main difference is the absence of the trace check

in the OreceiptLR oracle. However, this check is implicitly done in the Valid algorithm: if b0 and

b1 are associated to different credentials, then the bulletin boards will be distinguishable. Hence,

Valid has to somehow verify that the ballot is indeed corresponding to the voter that sent it! These

credentials helps to achieve receipt-freeness, however the voting system rests on the honesty of the

registrar producing these credentials. Indeed, a corrupted registrar can vote in any voter’s place

without any way to detect it.

Definition F.2 (Receipt-Freeness). Let V be a voting protocol for a set ID of voter identities and

a result function ρ. We say that V has strong receipt-freeness if there exist algorithms SimSetup and

SimProof such that no efficient adversary can distinguish between games Expsrf,0
A,V (λ) and Expsrf,0

A,V (λ)

defined by the oracles in Figure 8; that is, for any efficient algorithm A the following is negligible in

λ:

49

∣∣∣Pr [Expsrf,0
A,V (λ) = 1

]
− Pr

[
Expsrf,1

A,V (λ) = 1
]∣∣∣

is negligible in λ.

Oinit(λ)

if β = 0 then (pk, sk)←$SetupElection(1λ)

else (pk, sk, τ)←$SimSetup(1λ)

return pk

OvoteLR(id, v0, v1)

if v0 /∈ V or v1 /∈ V then return ⊥
b0 = Vote(id, upkid, uskid, v0)

b1 = Vote(id, upkid, uskid, v1)

Append(BB0, b0);Append(BB1, b1)

Oreg(id)

if id was not previously queried,

then run Register(id) and set,

U = U ∪ {(id, upkid, uskid)}
return upkid

OreceiptLR(id, b0, b1)

if id /∈ CU then return ⊥
if Valid(BB0, b0) = 0 or Valid(BB1, b1) = 0
then return ⊥
else Append(BB0, b0);Append(BB1, b1)

OcorruptU(id)

On a registered voter id, output (upkid)

Set CU = CU ∪ {(id, upkid)}

Oboard()

return Publish(BBβ)

Ocast(id, b)

if Valid(BBβ , b) = 0 then return ⊥
else Append(BB0, b);Append(BB1, b)

Otally()

(r,Π)←$Tally(BB0, sk)
if β = 1 then Π ←$ SimProof(BB1, r, τ)
return (r,Π)

Fig. 8. Oracles used in the strong receipt-freeness games of the BeleniosRF model. The β = 0 game corresponds to
the real ballot box, while the β = 1 game correspond to the fake ballot box

G Ballot privacy

Receipt-freeness can naturally be seen as a stronger form of ballot privacy as replacing the OreceiptLR

oracle in the receipt-freeness game with the OvoteLR and Ocast of Figure 9 yields the BPRIV game

[8], and those two oracles can be simulated by OreceiptLR.

OvoteLR(id, v0, v1)

if v0 /∈ V or v1 /∈ V then return ⊥
b0, aux = Vote(id, v0)

b1 = Vote(id, v1, aux)

Append(BB0, b0);Append(BB1, b1)

Ocast(b)

if Valid(BBβ , b) = 0 then return ⊥
else Append′(BB0, b);Append′(BB1, b)

Fig. 9. Additional oracles used to transform the receipt-freeness game into the BPRIV game. Both OvoteLR and
Ocast can be simulated by OreceiptLR.

50

When BPRIV is supplemented by two additional security properties, strong consistency and

strong correctness, it has been shown that for a voting scheme secure in this regard, an adversary

can extract as much information as it can extract from only seeing the result and nothing more.

Definition G.1 (Strong consistency). A scheme V has strong consistency if there an extraction

algorithm Extract that takes as input a secret key sk and a ballot b and outputs v ∈ V which satisfies

these conditions:

– For any (pk, sk) in the range of SetupElection, for any vote v and any aux, if b, aux←$ Vote(id, v)

then Extract(sk, b) = v with overwhelming probability.

– Consider an adversary A which is given pk and consider the experiment Expstrong consistency
A,V (λ)

given in Figure 10. We require that the probability Pr[Expstrong consistency
A,V (λ) = 1] is negligible in

λ.

Expstrong consistency
A,V (λ)

(pk, sk)←$SetupElection(1λ)

BB←$A(pk)

(r,Π)←$Tally(BB, sk)

if r 6= ρ(Extract(sk, b1), . . . ,Extract(sk, bn))

then return 1else return 0;

Fig. 10. Strong consistency experiment. We consider an adversary A that returns BB of the form [b1, . . . , bn] such
that Valid(BB, bi) = 1 for i = 1, . . . , n.

Definition G.2 (Strong correctness). A scheme V has strong correctness if for any adversary

A that takes as input pk, the probability

Pr[(id, v,BB)←$A(pk); b, aux←$ Vote(id, v); Valid(BB, b) = 0]

is negligible in λ.

The protocol we propose in Section 5 has strong consistency and strong correctness. The strong

consistency comes from the consistency of the tallying algorithm. Regarding the strong correctness,

the ballot b←$ Vote(id, v) of any voter id and any vote v is not valid only if

– Ver(b) = 0, which can only happen with a negligible probability on λ because of the honest

verifiability of the TREnc (Definition 2.2)

– There is already a ballot on BB that has the same trace, which can only happen with a negligible

probability because of the traceability property.

Hence, the scheme has ballot privacy against every party except the rerandomizing server, who is

supposed to be honest in the receipt-freeness game! Now if the rerandomizing server is corrupted (in

the honest-but-curious model), we have to slightly modify the BPRIV game since it has an additional

view of the election (it sees the ballots sent by the voters before the ProcessBallot algorithm), In the

51

following alternative game, the OvoteLR algorithm returns bβ, the ballot sent by the voter which

will end up in the adversary’s ballot box after ProcessBallot.

Definition G.3 (Ballot privacy). A voting system V has ballot privacy against the rerandomizing

server if there exists algorithms SimProof and SimSetupElection such that no PPT adversary A can

distinguish between games Expbpriv,0
A,V (λ) and Expbpriv,1

A,V (λ) defined by the oracles in Figure 11, that is

for any efficient algorithm A:∣∣∣Pr [Expbpriv,0
A,V (λ) = 1

]
− Pr

[
Expbpriv,1

A,V (λ) = 1
]∣∣∣

is negligible in λ.

Oinit(λ)

if β = 0 then (pk, sk)←$SetupElection(1λ)

else (pk, sk, τ)←$SimSetupElection(1λ)

return pk

OvoteLR(id, v0, v1)

if v0 /∈ V or v1 /∈ V then return ⊥
b0, aux = Vote(id, v0)

b1 = Vote(id, v1, aux)

Append′(BB0, b0);Append′(BB1, b1)

return bβ

Ocast(b)

if Valid(BBβ , b) = 0 then return ⊥
else Append′(BB0, b);Append′(BB1, b)

Oboard()

return BBβ

Otally()

(r,Π)←$Tally(BB0, sk)
if β = 1 then Π ←$ SimProof(BB1, r, τ)
return (r,Π)

Fig. 11. Oracles used in the ballot privacy against the rerandomizing server games. The β = 0 game corresponds
to the real ballot box, while the β = 1 game correspond to the fake ballot box. Except the lack of the OreceiptLR
oracle and the addition of the OvoteLR and Ocast oracles, the only other differences with the receipt-freeness oracles
of Figure 3 are that the Oboard oracle returns BB instead of Publish(BB) and Append is replaced by Append′ which
runs Append and returns the randomness used in the execution. Here, since the rerandomizing server is corrupted, the
OvoteLR oracle returns to the adversary the ballot that will end up in the adversary’s ballot box after ProcessBallot.

Indeed, nothing prevents so far the Vote algorithm to return the plaintext of the vote and the

ProcessBallot algorithm to provide all the randomness necessary to hide the vote on PBB. This

clearly offers no privacy against the rerandomizing server and we thus want a property analogous to

the strong randomizability of a TREnc (see Definition 2.6). To achieve ballot privacy against the

rerandomizing server, we need the following property:

Definition G.4 (Strong validity). A voting scheme V has strong validity if:

– For every pk in the range of SetupElection(1λ), every ballot box BB and every ballot b such that

Valid(BB, b) = 1, we have that b is in the range of Vote(·).

52

– For every pk in the range of SetupElection(1λ) and every b, aux in the range of Vote(id, v), the

following computational indistinguishability relation holds:

{ProcessBallot(b)} ≈c {Vote(id, v, aux)}

We only sketch the proof here, which is similar to the receipt-freeness proof. Like the receipt-

freeness proof, we also simulate the proofs of the tally if β = 0 in the first transition. Then, we add

another transition that modify the OvoteLR in the following way. Instead of running ProcessBallot on

bβ in the Append′ procedure, bβ is directly appended to BBβ and the oracle return ProcessBallot(bβ).

This is indistinguishable from a normal OvoteLR execution (given in Figure 9) because of the strong

validity and the rerandomizing server has now the same view as anyone else in the BPRIV game.

The protocol we propose satisfies strong validity. Indeed, the two items are respectively implied

by the verifiability security (see 2.3) and the strong randomizability (see 2.6) of the TREnc. Hence

our protocol offers ballot privacy against the rerandomizing server.

H The need of strong validity

In this section we provide a modified version of our practical SXDH-based TREnc of Section 4.

This new scheme is still TCCA secure but it only satisfies the correctness requirement of publicly

traceable randomization statistically (and, not perfectly) and for honestly computed ciphertext

c← Enc(pk,m) (rather than all the ciphertexts in the range of Enc(pk,m)), but still for any message

m. Therefore, this new scheme is not a TREnc. Moreover, it also only satisfies a relaxed notion of

strong randomization (Definition 2.6), where indistinguishability holds for any message m and link

key lk, but only when ciphertexts are generated honestly.

However, this scheme still enjoys properties that are sufficient to realize a strong receipt-free

e-voting in the sense of the BeleniosRF receipt-freeness definition, recalled in Appendix F.2 (and

modified with the extra requirement that OreceiptLR checks that b0 and b1 are signed with the

same key, that is, have identical traces in our setting, which is needed if we do not want to make

this game trivial to win). Still, we will observe that this scheme is obviously not receipt-free, in the

sense that a voter submitting a carefully chosen ciphertext as his ballot will be able to prove how

he voted to any third-party.

This stresses that the BeleniosRF definition of receipt-freeness cannot be meaningful alone: we

also need the voting scheme to satisfy our strong validity property and, indeed, a voting scheme

built from our modified encryption scheme won’t be strongly valid.

The idea behind this scheme is that it might exist valid ciphertexts, in the sense of Definition 2.3

(i.e., that are in the range of Enc(pk,m), for some m) that a TREnc must fulfill, that trigger a

pathological behavior of both the randomization and the tracing algorithms while honestly generated

ciphertexts will never trigger that but with negligible probability. This behavior is defined in such

a way that Rand is the identity function on that pathological ciphertexts. Moreover, computing

such valid pathological ciphertexts is easy. That means that it is possible to satisfy the strong

receipt-freeness of BeleniosRF while the answer of OreceiptLR can be to simply broadcast a ballot

containing a pathological ciphertext without changing a single bit of it.

53

We turn to the description of the encryption scheme. The key generation is unchanged and we

show how we slightly adapt the other algorithms of our TREnc below.

Enc′(PK,m): to encrypt a message m ∈ G, first run (osk, opk) ← LinkGen(PK) Then, conduct

the following steps of LEnc′(PK, lk,m): first pick a random bit b so that b = 1 with negligible

probability 2−λ. Then, run LEnc(PK, lk,m) with the slight modification in the computation of

the tag in item 4, where we now compute the tag as τ ′ = H(opk||b) instead of τ = H(opk).

Output the ciphertext CT′ = CT||b.
Trace′(PK,CT′): Given CT′ = CT||b, compute opk = Trace(PK,CT) and return τ ′ = H(opk||b).

That is we redefine the trace as the new tag that depends on b.

Rand′(PK,CT′): Given CT′ = CT||b, either return CT′ with no modification if b = 1 or do the

following. Compute τ ′ = Trace′(PK,CT′) and (honestly) run Rand(PK,CT) except that the

adaptation of the validity proof π in step 3 is made for the tag τ ′ (and not τ = H(opk)). We

thus get a randomized C̃T from our TREnc and we return C̃T
′
= C̃T||0 in that case.

Ver′(PK,CT′): Given CT′ = CT||b, return Ver(PK,CT) where the validity check in Equation 4 is

made for the tag τ ′ = H(opk||b) (and not τ = H(opk)).

Dec′(SK,PK,CT′): If Ver(PK,CT′)=0, output ⊥. Otherwise, given SK=(α, β) and c = (c0, c1, c2)

included in CT′, compute and output m = c0 · c−α1 · c
−β
2 .

In the TCCA experiment, the adversary can send (CT′,CT′) in the challenge phase, where

CT′ = CT||1. This pair will not be rejected as long as CT′ is valid since the trace is trivially the

same. We also note that a pair of ciphertext CT′0,CT′1 of the form CT′0 = CT0||0 and CT′1 = CT1||1,

so with distinct bits, will not have the same trace except if we can compute a collision H(opk0||0) =

H(opk1||1). Moreover, the adversary cannot hope to flip the bit of the challenge ciphertext (CT∗||b)
and receive its decryption by modifying the trace without contradicting the TBC-security of (c∗, π∗)

for the tag τ∗ = H(opk∗, b). Thus, the TCCA security still holds and it is easy to see that the other

relaxed notions are satisfied.

So, the BeleniosRF receipt-freeness definition will be satisfied for a voting scheme built from

this encryption scheme, even though CT′ appears, without any modification, on the public bulletin

board, and the randomness used to compute it can then be used as a receipt. However this voting

scheme won’t satisfy the second condition of the definition of strong validity (Def. G.4).

54

	Traceable Receipt-Free Encryption
	Introduction
	Traceable Receipt-Free Encryption
	Syntax
	Security definitions

	Towards a generic TREnc
	Extractable TREncs
	A TREnc flavored variant of pd-RCCA security
	Building a pdRCCA-secure extractable TREnc

	Pairing-Based Construction under SXDH
	Computational setting
	Linearly Homomorphic Structure-Preserving Signatures
	Intuition of our construction
	Description
	Security
	Efficiency

	Voting scheme based on Traceable Receipt-Free Encryption
	Definitions and notations
	Receipt-freeness
	Voting scheme
	Security of the voting scheme

	Related security definitions
	RCCA security
	pdRCCA

	Relation between the security definitions
	pdRCCA and extractability implies TCCA
	Link between TCCA and RCCA security
	TCCA implies q-TCCA

	Generic construction
	Signatures on Randomizable Ciphertexts
	Tag-based encryption
	Building Blocks
	Description and security of the generic construction
	Instantiation

	Proofs of security of the construction under SXDH
	Verifiability
	Traceability
	Strong Randomizability
	Traceable Chosen-Ciphertext Security

	Asymmetric Waters Signature
	Belenios RF model
	Ballot privacy
	The need of strong validity

