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Abstract. Byzantine agreement (BA) is a fundamental primitive in distributed systems
and has received huge interest as an important building block for blockchain systems. Clas-
sical byzantine agreement considers a setting where n parties with �xed, known identities
want to agree on an output in the presence of an adversary. Motivated by blockchain sys-
tems, the assumption of �xed identities is weakened by using a resource-based model. In such
models, parties do not have �xed known identities but instead have to invest some expensive
resources to participate in the protocol. Prominent examples for such resources are compu-
tation (measured by, e.g., proofs-of-work) or money (measured by proofs-of-stake). Unlike
in the classical setting where BA without trusted setup (e.g., a PKI or an unpredictable
beacon) is impossible for t ≥ n/3 corruptions, in such resource-based models, BA can be
constructed for the optimal threshold of t < n/2. In this work, we investigate BA without
a PKI in the model where parties have restricted computational resources. Concretely, we
consider sequential computation modeled via computing a veri�able delay function (VDF)
and establish the following results:
1. Positive result: We present the �rst protocol for BA with expected constant round

complexity and termination under adaptive corruption, honest majority and without a
PKI. Earlier work achieved round complexity O(nκ2) (CRYPTO'15) or O(κ) (PKC'18),
where κ is the security parameter.

2. Negative result: We give the �rst lower bound on the communication complexity of BA
in a model where parties have restricted computational resources. Concretely, we show
that a multicast complexity of O(

√
n) is necessary even if the parties have access to a

VDF-oracle.

Keywords: Byzantine Agreement, Proof of Work, Veri�able Delay Functions, Impossibil-
ity

1 Introduction

In the Byzantine agreement (BA) problem, a set of n parties jointly run a distributed pro-
tocol to agree on a common output in the presence of some minority of t malicious parties.
BA is a well-studied and fundamental problem in distributed computing and has recently
garnered renewed interest in the context of blockchain protocols [1,9,26,8]. Traditionally,
most existing protocols for BA assume a setting in which the parties' identities are �xed
and known at the beginning of the protocol. In the �xed identity setting, two types of
protocols are studied: the �rst type requires setup, e.g., a public key infrastructure (PKI)
or some form of correlated randomness. These protocols typically tolerate the (optimal)
corruption threshold of t < n/2. The second type does not require such assumptions but
can tolerate only t < n/3 corruptions.

More recently, a third type of protocol has emerged [5,25] that gives up on the fun-
damental assumption that parties know each other's identities at the beginning of the
protocol. Moreover, these protocols do not require setup in the classical sense, yet still



achieve the optimal corruption tolerance of t < n/2. Note that if identities are not �xed
then without further measures, every party could pose as many parties and easily obtain
a dishonest majority; this is commonly referred to as a sybil attack [12]. To avoid such at-
tacks, parties must instead invest some expensive resources, such as computation or money,
to participate in this type of protocol. A prominent example is the Proof-of-Work model
(PoW) initially introduced by Bitcoin, where parties have limited access to a computa-
tional resource which they are forced to continuously expend in order to participate in the
protocol.

In this work, we re�ne the PoW model by considering the e�ort it takes to evaluate
veri�able delay functions (VDFs) [7,9] as the main computational resource. VDFs can be
seen as a special type of proof-of-work whose computation cannot be sped up by much.
This is in stark contrast to the typical lottery-type proofs-of-work, whose computation can
be sped up almost arbitrarily, given su�cient parallel computation resources. We explore,
for the �rst time, the implications of bounding the number of VDF evaluations that an
(adaptive) adversary can compute in parallel: 1) We show an expected constant-round BA
protocol that tolerates t < n/2 corrupted parties and does not rely on a PKI or known
identities; 2) we give the �rst non-trivial communication lower bound by showing that any
BA protocol in this setting requires at least O(

√
n) send-to-all steps.

1.1 The VDF Model

Our work introduces the VDF model as a re�nement of the common PoW model to replace
trusted setups and protect against Sybil attacks in permissionless consensus. Similar to the
PoW model, we assume that the adversary only controls less than 1/2 of a computational
resource to invest in producing proofs of computation. In contrast to the PoW model,
however, we require a lower bound on the time it takes to create such proofs. This di�ers
from the PoW model, where proofs can be computed almost arbitrarily fast, given su�cient
parallel resources. We believe that the VDF model is a realistic alternative for the PoW
model. Indeed, there exists various di�erent constructions of VDFs [35,30,14] that leverage
inherently sequential computation, and are used (or envisioned to be used) by blockchain
projects for their consensus protocol (albeit not as an anti Sybil countermeasure as in
our work). Examples include Chia, which relies on VDFs for leader election [9], and ETH
2.0, which plans to leverage VDFs for constructing a random beacon [8]. To make our
model more realistic, we follow Wan et al. [34], and allow the adversary a small speedup
in evaluating the VDF compared to the honest parties.

Let us describe our model with a concrete example. Suppose that the total amount
computational power (over all protocol participants) over a �xed time period of length t
is 1000 VDF evaluations. Then, we demand that the total number of proofs produced by
the adversary be at most 500 in the same time span. This is similar to the case of PoW
model, where it is assumed that the majority of computational power belongs to honest
parties. As mentioned above, we additionally give the adversary a small speedup, meaning
that it can compute proofs a little bit faster than the honest parties.

The VDFδ Oracle. We now explain our formalization of the VDF model in some more
detail. At the center of our model, we introduce the oracle VDFδ, which parties can query
on an input s to obtain one evaluation ϕ of the VDF after δ time. Thus, δ denotes the
di�culty parameter, specifying the number of sequential steps to be computed for one
VDF evaluation. To make the model more realistic, we allow corrupted parties a κ-speedup
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(where κ ≥ 1), meaning that they can obtain an output from VDFδ after δ/κ time. An
adversary A in our model controls some q number of parties, where each party has κ-speed-
up. For some i > 1, let us discuss how many proofs an adversary is able to compute within
time t, where (i−1)·δ < t < i·δ.We can express tmore concretely as t = (i−1)·δ+r·δ, where
r ∈ (0, 1). With a corruption budget of q parties, A can invoke the VDFδ oracle q times
concurrently (once per party). Since each proof is obtained after time δ

κ , at time (i− 1) · δ,
each party computes (i− 1) ·κ proofs. In the remaining r · δ time, each party can compute
(at most) ⌊ r.δ

δ/κ ⌋ = ⌊r ·κ⌋ proofs. Thus, in total A obtains at most ((i− 1) · κ + ⌊r · κ⌋) · q
proofs at time t. Figure 1 illustrates our model with a small example. We refer to this

Fig. 1. Consider i = 3, δ = 5. We have i · δ = 15, (i − 1) · δ = 10. Say an adversary A controls q parties
{P1}i∈[q] with a speed-up κ = 3 compared to an honest party with κ = 1. Consider two time steps: t = 11
and t = 14. In both cases, each Pi can compute (i − 1)κ = 6 proofs in time 10 < i · δ. For the remaining
time r · δ = 1 (for t = 11) and r · δ = 4 (for t = 14), no extra proofs can be computed in the �rst case,
whereas ⌊ 4

5/3
⌋ = 2 extra proofs can be computed in the second case. Thus, A can compute in total 6q and

8q proofs for t = 11 and t = 14 respectively.

property of the VDFδ oracle as its sequentiality and give a formal de�nition in Section 2.

Such oracle abstraction of the VDF computation allows us to give a cleaner and more
modular analysis of our main protocols. In support of our modelling approach, we con-
jecture that the VDFδ oracle can be instantiated in the standard model (Appendix A.1,
Lemma 20) and we prove that it can be instantiated in the strong algebraic group model
for constructions of Wesolowski [35] and Pietrzak [30] (Appendix A.2, Lemma 23).

1.2 Byzantine Agreement in the VDF Model.

As our main technical contribution, we show how to obtain an expected constant-round
Byzantine agreement protocol without any additional trusted setup in the VDF+random
oracle model. This is of particular signi�cance, given that we can also instantiate the VDF
model without any trusted setup, using Wesolowski's construction. Given an upper bound
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n on the number of parties, our protocol tolerates q adaptively corrupted parties with κ-
speed-up, where q(⌊κ⌋+ 1) < n. In particular, our protocols tolerate up to n

2 corruptions
when κ = 1. Our protocol combines several ideas from previous works in a novel way, as
we now describe.

� Step 1: Establishing a Graded Public key Infratsructure (GPKI). We adopt the idea
of Andrychowicz and Dziembowski [5] and start by setting up a precursor to a full
PKI called graded PKI (GPKI) among the parties. Roughly speaking, a GPKI di�ers
from a full PKI in that the keys of the parties are additionally associated with grades.
These grades can di�er between parties, but not by too much. As a �rst step, to reduce
the round complexity of their protocol to O(1) from O(nκ2) (where κ is a security
parameter), we make two modi�cations: 1) We set up a much weaker GPKI with only
two possible grades, whereas [5] sets up n possible grades. 2) We borrow a technique
from Katz et al. [25]3 and rely on VDFs to make the round complexity of our protocol
independent of κ. As a second step, the di�culty parameter δ of the VDFδ must be
adjusted to tolerate adversarial speedup in the VDFδ model.

� Step 2: Graded Consenus from GPKI. One of the ingredients needed in our BA protocol
is a graded consensus protocol. Graded consensus is similar to a BA, with the di�erence
that at the end of the protocol, every party outputs a value with some grade, where
the grades of di�erent parties must satisfy some consistency properties. We build upon
the graded consensus protocol of Micali and Vaikuntanathan [28] where we modify their
protocol such that it requires only a GPKI instead of a full PKI.

� Step 3: Leader election protocol from VDFs. It is well known that expected constant
round protocols are inherently randomized, e.g., by electing a random leader in every
protocol iteration. However, electing a random leader e�ciently is challenging without
prior setup. We overcome this issue by presenting a novel leader election protocol that
leverages the oracle VDFδ to e�ciently elect a random leader that all honest parties
agree on with high probability. Our protocol is inspired by leader elections based on
veri�able random functions [2,3] and implements a leader election lottery with unique
tickets. This makes the tickets hard to bias from the perspective of the adversary.

� Step 4: BA protocol. Finally, we combine all of the above components to adopt the
expected constant round protocol of Katz and Koo [22] to our setting.

We informally state our overall result in the following theorem.

Theorem 1 (Informal). Let n denote an upper bound on the number of parties. Then,

there exists an expected-constant round BA protocol in the VDF model that is secure

against any adversary A that controls at most q parties with κ-speed-up, where q · (⌊κ⌋+
1) < n.

1.3 A Lower Bound on Communication Complexity for BA

As a third contribution, we give the �rst lower bound for communication complexity of BA,
assuming parties have bounded computational resources. Concretely, we show that in the
VDF model without additional trusted setup, no protocol can realize BA with overwhelm-
ing probability by multicasting fewer than O(

√
n) messages in the presence of adaptive

3 The construction in [25] uses only a proof of sequential as opposed to a VDF.
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corruptions. In the multicast model of communication, honest parties are restricted to
sending messages to all parties at once, whereas the adversary can send to only a subset of
the parties. This models a setting in which parties communicate via a gossip network [17,5].
The cost of running the same protocol from the multicast model in the bilateral channel
model [11] would be O(n3/2). We remark, however, that the multicast restriction is cru-
cially used in the lower bound, and thus, a better communication complexity might be
possible in the bilateral channels model. Our lower bound builds on ideas of Abraham et
al. [2] who show a bound for Byzantine broadcast in the multicast model without setup.

Our bound has to overcome several technical challenges that arise when parties have
limited computational resources. The adversary in our attack has to carry out a simulation
of the protocol in its head (this is a standard technique used in lower bounds), which may
require to query the VDF oracle. At the same time, the adversary must also participate
in an actual execution of the protocol it is attacking, which, of course, also results in
queries to the oracle. Thus, the key di�culty in our lower bound is to carefully balance the
adversary's limited budget of queries to VDF over the two executions of the protocol (real
and simulated).

Although our lower bound is relatively weak compared to most existing lower bounds
in this area (which are quadratic, or of the form O(n) in the multicast model, respectively),
we argue that it is still meaningful. Namely, protocols that require signi�cantly above O(κ)
multicasts are deemed impractical for large-scale settings with millions or even billions of
users. This means that our bound essentially rules out e�cient solutions in the VDF model
unless further setup is assumed among the parties. Second, we point out that our lower
bound actually holds in the relatively weak VDF-model and can likely be carried over to a
less restrictive model (e.g., to the PoW model used by Bitcoin). It also leaves room for a
tighter bound in such more general models.

1.4 Implications of Our Results and Related Work

Our model can be instantiated using Wesolowski's VDF, which does not require trusted
setup. Thus, our results show, for the �rst time, how to perform expected-constant round
BA in a permissionless model with a simple honest majority and no trusted setup (beyond
a random oracle). This has many important implications. For example, one could use our
protocol to e�ciently agree on a random string in a permissionless setting. This string
could be used as a genesis block or as a uniform common reference string to perform an
MPC protocol. Our results also signi�cantly improves over the result of Andrychowicz and
Dziembowski, who presented a protocol that achieves essentially the same, but requires
O(n · κ2) rounds to do so [5] . We also improve over a similar (slightly more e�cient)
version of this idea shown by Katz et al. [25]. Another closely related work is that of Garay
et al. [19] who show how to bootstrap the classical Nakamoto consensus protocol [1,18,29]
in the PoW model without trusted setup. However, it requires O(κ) rounds, and therefore
also does not constitute an expected constant round protocol.

Further Related Work. There is a large body of research on BA and related problems
(sometimes colloquially referred to as �consensus�), and we focus here on the most closely
related works. We have already mentioned the works of [5,25,19] who achieve BA in the
PoW model without setup and run in O(nκ2), O(n), and O(κ) rounds, respectively. It
should also be noted that we require stronger assumptions (namely a VDF and the random
oracle model (ROM)) than the protocols in [5,19,20], who require only the ROM that can be
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queried at a bounded rate by any party, but (possibly) weaker assumptions than required
in the work of Katz et al. [25], who also require some form of an unpredictable beacon in
their protocol. The more recent work of Aggarwal et al. [4] presents a setup-free solution
in the PoW model that also runs in expected O(1) rounds, but assumes a static adversary
(while we consider the much stronger adversarial model of adaptive corruptions). Another
related work that focuses on the PoW model is by Garay et al. [20]. They show how to
achieve UC-secure BA and multi-party computation (MPC) protocols in the PoW model.
Similar to [5], their BA takes O(nκ2) rounds.

Although the above-mentioned prior works achieve BA without a PKI [5,25,19], their
techniques are not what we need to achieve O(1)-round BA. In fact, we notice that achiev-
ing O(1)-round BA protocols requires very particular techniques that have been stud-
ied [32,13,22,28,27,3,2] in the classical setting for many years and this round reduction is
very challenging to achieve.

2 De�nitions and Model

Notation. We write for the set of positive real numbers greater than some number n ∈ R
as R>n, the set of natural numbers as N. Throughout this paper, κ will denote the security
parameter. We write x← S to denote that x is sampled uniformly at random from set S.
Similarly, we write y ← A(x) to denote that the output of a probabilistic algorithm A on
input x is y.

2.1 Model

We consider a setting in which n parties P1, . . . , Pn engage in a distributed protocol Π.
We assume that the exact number of parties is unknown but that there is some known up-
per bound n. Additionally, we assume that the majority of the parties follow the protocol
honestly, and the remainder of the parties can be corrupted by the adversary (whose capa-
bilities we will describe in the following). We emphasize that no public key infrastructure
(PKI) needs to be shared among the parties, i.e., the parties do not initially know each
other's public keys. Moreover, the parties are assumed to have synchronized clocks.

Communication Model. Inspired by [2], we consider a communication setting where
parties multicast messages to other parties. In other words, a party may send the same
message to everyone in the network (as opposed to possibly sending n messages separately
to n parties). We say that a protocol has multicast complexity θ, if the total number of
multicasts (i.e., by all honest parties) in the protocol is at most θ. This implies that in
the classical communication model with bilateral channels, the (same) protocol requires
sending nθ messages. We consider the synchronous model, where any message sent by an
honest party over the multicast channel is received by all honest parties after at most time
∆. As is usual in this model, any of our protocols proceeds in rounds of duration ∆, where
round r of the protocol starts at time (r − 1) · ∆ (assuming parties run the protocol at
time 0).

Random Oracle Model (ROM). We model hash functions as random oracles [6]. The
code of a hash function H is de�ned as follows. On input x from the domain of the hash
function, H checks whether H(x) has been previously de�ned. If so, it returns H(x). Else,
it sets H(x) to a uniformly random element from the range of H and then returns H(x).
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Model of Computation. We consider the running time of parties in some �xed but
unspeci�ed model of computation, e.g., the Turing machine model or the arithmetic circuit
model. This allows us to both simplify and generalize our results, as we discuss below. In
addition to H, parties in our model have access to oracle VDFδ, which is used to restrict
parties to performing certain computations sequentially. VDFδ has the following properties.

� Evaluation: On input (Eval, S,κ),κ ≥ 1 from party P at time t, VDFδ generates a
proof of computation ϕ according to some (�xed) output distribution D and returns ϕ
at time t+ δ

κ . It ignores any further inputs of the form (Eval, S,κ) from P before time

t+ δ
κ . We call the maximum value of κ over all queries of P to VDFδ the speedup of P .

� Veri�cation: On input (Verify, ϕ, S), VDFδ (immediately) returns 1, if ϕ is a valid
proof with respect to input S and 0 otherwise.

Intuitively, VDFδ corresponds to a veri�able delay function (VDF) that takes δ time
to evaluate. Here, δ can be set conservatively s.t. any honest party is able to compute an
evaluation of the VDF within this timeframe. However, since not all parties run at the
same speed, we allow for some speedup when evaluating the VDF. In our protocols, honest
parties will always call VDF with κ = 1. The adversary, on the other hand, may set κ to
some value above 1. We summarize this in the following de�nition.

De�nition 1 ((q, tp,κ)-Algorithm). A is a (q, tp,κ)-adversary if it has full control over

q parties with speedup at most κ and runs for at most tp steps.

Sequentiality of VDFδ. For a (q, tp,κ)-adversary A, we now de�ne a natural notion of
sequentiality. Intuitively, it should be impossible for A to compute more evaluations of
the VDF than its allotted budget of computation over a certain period of time. Here, A's
budget spans over all q parties it controls and includes speedups quanti�ed by κ. Therefore,
we expect A to be unable to compute much more that (i− 1) ·κ · q proofs in less than i · δ
time.

In a bit more detail, for any i ≥ 1, when A has less than i · δ time, with an κ-speedup
it can compute exactly ⌊(i − 1) · κ⌋ · q proofs at time (i − 1) · δ. The remaining time left
is less than δ (i · δ − (i − 1) · δ). A can compute only a few more proofs in this time. In
particular, denoting this remaining fractional time as r · δ, where r ∈ (0, 1), A can only
compute at most ⌊r · κ⌋ · q proofs. Thus A computes in total ⌊(i− 1 + r) · κ⌋ · q proofs at
time (i− 1 + r) · δ.

Of course, such a notion only makes sense if A can not start computing before a
certain time T . Hence, we begin by de�ning what it means for a random variable to be
unpredictable in A's view. For convenience, we will say that S is determined at time T if
its value is �xed in the view of at least one honest party at time T .

De�nition 2 ((k, T, ϵ)-Unpredictable). Let S = (S1, . . . , Sk) be a vector of k random

variables whose outcome is determined at time T . We say that S is (k, T, ϵ)-unpredictable,
if for all (q, tp,κ)-adversaries A, PrŜ1,...,Ŝk←A

H,VDFδ
T

[∃j ∈ [k] : Sj = Ŝj ] ≤ ϵ, where the prob-

ability is over the random coins of A, H, VDFδ and the random choice of S.

We say, that S′ depends on S if S′ = H(·||S||·), or if S′ = H(·||S′′||·) with S′′ = H(·||S||·).
We now de�ne the sequentiality property of VDFδ oracle relative to a sequence of inputs
{S′1, . . . , S′τ}, where each S′j depends on some (k, T, ϵ)-unpredictable vector S.
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De�nition 3 ((i, r, β)-Sequentiality). Let A be a (q, tp,κ)-adversary and �x T > 0.
Let S be (k, T, ϵ)-unpredictable for some ϵ > 0. For any i ∈ N, r ∈ (0, 1), let Ti,r :=
T + (i − 1 + r) · δ and τi,r := ⌊(i − 1 + r) · κ⌋ · q. Let {S′1, ..., S′τi,r+1} be a sequence of

length τi,r+1, where each S′j depends on at least one component of S. We say that VDFδ is

(i, r, β)-sequential, if for all i ∈ N, r ∈ (0, 1) s.t. A outputs ϕ̂1, ..., ϕ̂τi,r+1 before or at time

Ti,r, we have

Pr
ϕ̂1,...,ϕ̂τi,r+1←A

H,VDFδ
Ti,r

[∀j ∈ [τi,r + 1] : VDFδ(Eval, S
′
j ,κ) = ϕ̂j ] ≤ ϵ+ β.

The above probability holds over the random coins of A, H, VDFδ and the random choice

of S.

Relevance of our VDFδ oracle. As mentioned earlier, we consider the VDF construction
due to Wesolowski [35], which is based on solving the classical RSW time-lock puzzle over
class groups of an imaginary quadratic �eld. It uses a hash function HG : {0, 1}∗ → G, where
G is a class group of an imaginary quadratic �eld. On input s ∈ {0, 1}∗, the construction
computes h := HG(s) and outputs the value h2

δ
. Veri�cation can be done using δ

log(δ)

group elements and using a storage of
√
δ group elements. This concrete instantiation

would translate to our model by setting the output distribution D to the distribution that
�rst draws s ← S, computes h = HG(s), and then evaluates the repeated squaring as
described above. Note that the adversary A may guess the outcome of the random variable
D before time T+δ, and we compensate for this in the de�nition via the factor β. Moreover,
the adversary may guess correctly the outcome s of S and try to compute VDFδ before
time T + δ. However, this is only possible with probability ϵ due to the unpredictability of
S.

We remark that for concrete constructions of VDFs such as Pietrzak's or Wesolowski's
VDF [30,35], a simpler (and less idealized) way of modeling might be to consider adversaries
A in the sequentiality de�nition from the class of arithmetic circuits of depth at most δ.
Indeed, this would not require to model the VDF as an oracle, as one could simply bound
the adversary's probability of computing the VDF on unpredictable inputs according to the
computational model. Since the focus of this work is on constructions and lower bounds of
BA, we choose to model VDFs more abstractly to give a cleaner and more modular analysis
of our main protocols. Moreover, as we use the VDF as a anti-Sybil protection, we need
some way of quantifying the adversary's resource budget, which is most commonly done
via bounding oracle access. To support our modeling approach, we prove in Appendix A
the sequentiality of our VDFδ oracle in the strong algebraic group model [33,24]. Although
our proof holds for both constructions from [30,35], we choose to analyze Wesolowski's
VDF to obtain our results without additional trusted setup assumptions.

Protection against Homomorphic Computation of a VDFδ. Some concrete construc-
tions of VDFs (or of the related primitive time-lock encryption) may have an homomorpism,
where for any two inputs s1, s2, VDF(s1) ·VDF(s2) = VDF(s1 · s2). This may enable an ad-
versary to speed-up multiple evaluations of VDFδ on related inputs. In case of Wesolowski's
VDF [35], it already prevents such an homomorphism due to the use of the hash function
HG : {0, 1}∗ → G. Recall that here, �rst, a group element h1 = HG(s1) is computed, then

output ϕ1 is computed as ϕ1 = h1
2δ in δ steps. Interestingly, this issue is also inherently

prevented in our VDF model due to the following reason. Recall that in our de�nition of
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sequentiality, we require that inputs to the oracle go via a hash function H(·). Even if the
VDF itself exhibits a homomorphism, this e�ectively prevents any homomorphic evaluation
for our concrete application.

Adversary Model. The adversary in our protocol is modelled as a (q, tp,κ)-algorithm
A as de�ned above. A can control at most q parties each with a maximum speedup of κ,
such that q < n

⌊κ⌋+1 holds. In particular, the number of adversarial parties can be at most

< n
2 (this is the case for κ = 1). We consider an adaptive adversary which can corrupt a

party at any point during the protocol execution. Once a party has been corrupted, it can
arbitrarily deviate from the protocol execution. Furthermore, it can deliver a message over
the multicast channel only to a subset of honest parties. In this way, it can send di�erent
messages to di�erent subsets of honest parties over the multicast channel. However, the
adversary can not drop the messages of honest parties from the channel or delay them for
longer than ∆. Our adversary is rushing, which means it can observe all the messages that
the honest parties send in any round of the protocol, and then choose its own messages
for that round adaptively. We notice that we consider the standard notion of an adaptive,
rushing adversary, as opposed to the stronger notion of a strongly rushing (or strongly
adaptive) adversary (see for e.g., [3,2,10]) who can adaptively corrupt parties and then
delete messages that they sent in the same round (prior to corruption).

Lifting the Assumption on Clock Synchronization. Here, we discuss how to overcome
the assumption that parties have synchronized clocks. Since we focus on a setting, where
parties do not share any PKI, it is crucial to relax this assumption, so that parties can
work with their respective local clocks. Lets say, local clocks of individual parties can di�er
by at most time interval α. When parties are instructed to send some messages in any
round, they can always send messages at one particular time of the day, say 10:00 AM,
local time. The duration of each round ∆ can be set as ∆ := 2α, to make sure that every
party received messages sent back from all other parties before the current round ends and
the next round begins.

2.2 De�nitions

In this work, we focus on n-party protocols that reach consensus a.k.a. Byzantine agree-
ment when up to q out of n parties are corrupted. All the following de�nitions consider a
synchronous setting of communication.

De�nition 4 (Byzantine Agreement). A protocol executed among n parties where each

party Pi holds initial input xi and parties output upon terminating yi achieves Byzantine
Agreement if the following properties hold whenever at most q parties are corrupted:

� Consistency: If two honest parties Pi, Pj output values yi, yj respectively, then yi =
yj.

� Validity: If all honest parties Pi have the same input xi = x, then all honest parties

output yi = x.

� Termination: All honest parties terminate.

We also study the sender-centric version of Byzantine Agreement, which is called Byzantine
Broadcast.
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De�nition 5 (Byzantine Broadcast). A protocol executed among n parties, where a

designated sender S holds an input x at the beginning of the protocol and parties output yi
upon terminating, achieves Byzantine Broadcast if the following holds whenever at most q
parties are corrupted:

� Consistency: If two honest parties Pi, Pj output values yi, yj respectively, then yi =
yj.

� Validity: If the sender S is honest, then all honest parties output yi = x.
� Termination: All honest parties terminate.

Graded byzantine agreement (also known as graded consensus) is a weaker variant of
byzantine agreement, while graded broadcast (or gradecast, for short) is a weaker variant of
byzantine broadcast. They have been used in various previous works (cf. graded byzantine
agreement in [16] and [15], gradecast in [28] and [23]). Both of them are very useful building
blocks for byzantine agreement and byzantine broadcast protocols.

De�nition 6 (Graded Byzantine Agreement). A protocol Π executed among n par-

ties, where each party holds initial input xi and parties output upon terminating a value yi
and a grade ζi, achieves Graded Byzantine Agreement if the following holds whenever at

most q parties are corrupted:

� Consistency: If there is an honest party that outputs yi with grade ζi = 2, then every

other honest party outputs yj = yi with grade ζj ≥ 1.
� Validity: If all honest parties input xi = x, then every honest party outputs yi = x

with grade ζi = 2.
� Termination: All honest parties terminate.

De�nition 7 (Graded Broadcast). A protocol Π among n parties, where a designated

sender S holds an input x at the beginning of the protocol and parties output a value yi and
a grade ζi upon terminating, achieves Graded Broadcast if the following holds whenever at
most q parties are corrupted.

� Consistency: If there is an honest party that outputs yi with grade ζi = 2, then every

other honest party outputs yj = yi with grade ζj ≥ 1.
� Validity: If S is honest, then every honest party Pi outputs yi = x with grade ζi = 2.
� Termination: All honest parties terminate.

For the following de�nition, let KeySet be the local key set of a party P , which keeps tuples
of the form (pkj , ζj). pkj is the public key of some party Pj and ζj ∈ {1, 2} is the grade
assigned to this key.

De�nition 8 (Graded Public Key Infrastructure). A protocol Π among n parties,

where parties output a set KeySet upon terminating achieves Graded PKI (tolerating q
corrupted parties) if the following holds for any two honest parties Pi, Pj.

� Graded Validity: Pi's public key pk is assigned grade 2 by Pj (i.e., (pki, 2) ∈ KeySetj).
� Graded Consistency: If Pi assigns grade 2 to a public key pk, i.e., (pk, 2) ∈ KeySeti),

then Pj assigns at least grade 1 to the same key, i.e., (pk, ζ) ∈ KeySetj, where ζ ≥ 1.
� Bounded Number of Identities: Let N := |

⋃
i∈[n]Pi∈H

KeySeti| be the total number

of keys in the combined key sets of all honest parties H, then the total number of keys

that belong to corrupted parties is < 1
2N.
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� Termintaion: All honest parties terminate.

We remark that we require the properties in the above de�nitions to hold with probability
1− 2−κ (where κ is the security parameter), but we omit this detail from the de�nition for
ease of presentation.

Signature Schemes.We use the following standard de�nition of digital signature schemes.

De�nition 9 (Signature Schemes). A digital signature scheme is a triple of algorithms

(KeyGen,Sign,VrfySig) with the following properties. On input the security parameter κ,
the randomized key generation algorithm KeyGen outputs a key pair (sk, pk). On input

a message m ∈ {0, 1}∗ and a secret key sk, the randomized signing algorithm Sign out-

puts a signature σ. On input a public key pk, a message m ∈ {0, 1}∗, and a signature σ,
the deterministic veri�cation algorithm VrfySig outputs 1 if the signature is correct or 0
otherwise.

Assume for convenience of notation that to each signed message implicitly has the public
key of the signer and a fresh nonce appended. We require that the scheme satis�es (per-
fect) correctness, i.e., for all m ∈ {0, 1}∗ and (sk, pk) output by KeyGen it holds that:
VrfySig(pk,Sign(sk,m),m) = 1. In line with most works in this area, we treat signa-
ture schemes as idealized objects satisfying perfect unforgeability. This means that it is
information-theoretically impossible to forge a signature under some public key pk with-
out knowing the corresponding secret key sk. It is easy to instantiate our schemes with a
concrete scheme satisfying unforgeability under chosen message attack [21].

3 Graded Public Key Infrastructure (GPKI)

In a public key infrastructure (PKI) setting, parties have a globally consistent view of a
keyset, containing n public keys, where n is the total number of parties. As a starting
point, we present a construction which is similar to such a PKI. The challenge that we face
without an a-priori setup is that we can not easily achieve a globally consistent view on
the protocol participants. As discussed in the last Section 2.1, we do not know the exact
number of parties, but a known upper bound n. We address this problem by building a
so-called graded PKI. A graded PKI di�ers from a �real� PKI since the local views of parties
Pi, Pj on their respective key sets KeySeti,KeySetj can di�er. Here we present ΠKeyGrade

(c.f. Figure 2), which achieves a graded PKI in the VDF + random oracle model. Our pro-
tocol builds on earlier works [25,5] which achieve a stronger notion of GPKI with n grades
but require O(nκ2) rounds to do so. In contrast, we run a 2-graded protocol requiring only
a constant number of rounds. We begin by giving some intuition about our protocol and
identifying the main challenges that it has to overcome. We describe the protocol from the
view of a (honest) party P with κ = 1.

Challenge Phase. The protocol begins with a two-round challenge phase. For i ∈ {1, 2},
we denote i-th challenge message as (chal||i, ·).

� First round: P samples a uniform challenge c ← {0, 1}κ+log(tp)+2 log(κ)+1. P then mul-
ticasts the message (chal||1, c). Let c := (c1, . . . , cθ), where θ ≤ n, denote the vector
of challenges that P receives from parties (including its own) by the end of the �rst
round.
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� Second round: P computes its second round challenge d as d := H(c) and multicasts the
message (chal||2, d). Denote d := (d1, . . . , dθ′), where θ

′ ≤ n, as the challenges that P
receives over the course of the second round (including its own) and denote χ := H(d)
as their hash.

Proof of Computation Phase. The challenge phase is immediately followed by a proof
of computation phase. At the beginning of this round, P generates a fresh pair of keys as
(sk, pk) ← KeyGen(1λ). P then calls VDFδ on input (Eval, s := {χ, pk}, 1) to compute the
proof ϕ.

Key Grading Phase. After computing ϕ in the proof of computation phase, a party
P runs a phase of key grading, during which the public key of each other party will be
assigned a grade in {1, 2}. This phase consists of three rounds, where parties send around
messages of the form (rank||i, ·), i ∈ {1, 2}, for assignment of the i-th grade.

� First round: P multicasts the message (rank||2, pk, χ, ϕ,d).
� Second round: For each such message (rank||2, pkj , χj , ϕj ,dj) that was received by
time 3∆ + δ from some party Pj , P checks whether it was correctly formed. More
precisely, P �rst checks that ϕj is a proof that passes veri�cation for the input {χj , pkj},
i.e., VDFδ(Verify, ϕj , {χj , pkj}) = 1. Next, it checks that χj is consistent with dj , i.e.,
χj = H(dj). Lastly, P checks if its second round challenge d ∈ dj . If all these checks
verify, P is convinced that Pj could not have started computing ϕj earlier than at
round 2∆, as ϕj depends on a value that P chose uniformly at random at this time.
Hence, it assigns the highest grade 2 to pkj , i.e., it adds (pkj , 2) to KeySet. To make sure
that every other honest party assigns pkj at least grade 1, P multicasts the message
(rank||1, pkj , χj , ϕj ,dj , c). Note that, party Pj also follows the same steps as above
for each received message (rank||2, pkl, χl, ϕl,dl) from Pl and accordingly sends around
(rank||1, pkl, χl, ϕl,dl, cj), if it has assigned grade 2 to Pl.

� Third round: Let (rank||1, pkl, χl, ϕl,dl, cj) (for l ̸= j), be the message received by
the end of the previous round from Pj , where Pj 's key pkj was already assigned grade
2 by P in the �rst grading step. It assigns grade 1 to pkl (i.e., it adds (pkl, 1) to
KeySet), if it has not assigned grade 2 to pkl in the previous round but is convinced
from Pj 's perspective (i.e., from the messages received from Pj) that pkl should have
been marked with grade 2. In addition, P needs to be convinced that the proof ϕl
depended on some unpredictable value and could not have been computed earlier than
at time 2∆. To make sure of this, P does the following. It �rst checks that the proof
ϕl passes veri�cation for the input {χl, pkl}, i.e., VDFδ(Verify, ϕl, {χl, pkl}) = 1. Note,
however, that since Pl is a dishonest party (otherwise, P would have already graded
pkl in the �rst grading step), it may have computed χl = H(dl) independently of P 's
second round challenge d. In this case, it veri�es instead that χl depends on c, by
checking that both H(cj) ∈ dl and c ∈ cj . If all these checks pass, P adds (pkl, 1) to
KeySet. Once all messages of this form have been processed, P outputs KeySet.

It is easy to verify that each honest party's key is assigned grade 2 by every honest party,
thus proving graded validity. Additionally, the second step of the key grading ensures any
key that an honest party has assigned grade 2 is assigned a grade of at least 1 by all honest
parties � this implies graded consistency. Finally, an honest party only accepts keys if it
is convinced that its corresponding proof could not have been precomputed prior to the
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beginning of the proof of computation phase. The duration of the proof of computation
phase is set to δ according to the VDFδ oracle. While an honest party (with no speed-up)
computes one proof within δ time, an adversarial party with κ-speed-up of computational
power computes ⌊κ⌋ proofs within the same time δ. Below, we will set the parameter δ such
that no adversarial party can make more than ⌊κ⌋ calls to VDFδ for the entire duration
of the protocol, given that it calls VDFδ earliest at the beginning of the Challenge phase.
Taken together, the total number of adversarial keys accepted by honest parties can not
exceed half of the total number of keys. This implies bounded number of identities.

Protocol ΠKeyGrade

We describe the protocol from the view of an honest party P with no speed-up of computational
power, where P has access to a random oracle H : {0, 1}∗ → {0, 1}κ+log(tp)+2 log(κ)+1 and an
oracle VDFδ. P executes the following phases.

Challenge Phase.

� At time 0: Sample c
$← {0, 1}κ+log(tp)+2 log(κ)+1 and multicast the message (chal||1, c).

� At time ∆: Add all θ(≤ n) challenges received by time ∆ to the set ci = (c1, . . . , cθ).
Compute d = H(c) and multicast the message (chal||2, d).

Proof of Computation Phase.

� At time 2∆: Add all θ′(≤ n) challenges received in round 2 to the set d = (d1, . . . , dθ′) and
compute its hash χ = H(d). Then, sample key pair (sk, pk) ← KeyGen(1λ) and compute
ϕ = VDFδ(Eval, s := {χ, pk}, 1).

Key Ranking Phase. De�ne the following Boolean conditions:

� C2(j): VDFδ(Verify, ϕj , {χj , pkj}) = 1, χj = H(dj), and d ∈ dj .
� C1(j, l): (pkj , 2) ∈ KeySet, (pkl, ·) /∈ KeySet, VDFδ(Verify, ϕl, {χl, pkl}) = 1, χl = H(dl),

H(cj) ∈ dl, and c ∈ cj .

Do:

� At time 2∆+ δ: Multicast (rank||2, pk, χ, ϕ,d).
� At time 3∆+δ: For each received message (rank||2, pkj , χj , ϕj ,dj) from Pj , such that C2(j),

add (pkj , 2) to KeySet and multicast the message (rank||1, pkj , χj , ϕj ,dj , c).
� At time 4∆ + δ: For each received message (rank||1, pkl, χl, ϕl,dl, cj) from Pj such that
C1(j, l), add (pkl, 1) to KeySet. After processing each message, output KeySet.

Fig. 2. A protocol for establishing a GPKI with 2 grades run between n parties, where parties have access
to a random oracle H and an oracle VDFδ. Duration of the ΠKeyGrade protocol is (5∆+δ). For the subsequent
Sections we set δ := 11∆, which sets the duration of the protocol to 16∆.

The following sequence of lemmas prove the security of ΠKeyGrade. Lemmas 1 to 3,
respectively, show that ΠKeyGrade satis�es the properties of graded validity, graded consis-
tency and bounded number of identities as per De�nition 8. Due to space limitation, we
defer the proofs of Lemmas 1 and 2 to Appendix B.

Lemma 1. Protocol ΠKeyGrade achieves graded validity.

Lemma 2. Protocol ΠKeyGrade achieves graded consistency.

Lemma 3. Suppose that A is a (q, tp,κ)-algorithm where q < n
⌊κ⌋+1 , For k ∈ N, let

δ = k∆. If k > 5κ, and VDFδ is (2, 5k , β)-sequential, then ΠKeyGrade achieves bounded

13



number of identities with probability at least 1− (2−κ−2 log(κ)−1 + β). In particular, if N :=
|
⋃

i∈[n]Pi∈H
KeySeti| be the total number of keys in the combined key sets of all honest

parties H, then the total number of keys that belong to corrupted parties is < 1
2N.

Proof. Suppose that parties run ΠKeyGrade at time T . Let E be the event that A predicts
the �rst round challenge value ci of at least one honest party Pi at time T ′ < T . Since A
runs for at most tp steps and each honest party Pi samples ci uniformly from the space
{0, 1}κ+log(tp)+2 log(κ)+1, E occurs with probability at most 2−κ−2 log(κ)−1. By De�nition 2,
this means that the sequence of honest challenges {c}i,Pi∈H is ((n − q), T, 2−κ−2 log(κ)−1)-
unpredictable. Since the duration of ΠKeyGrade is δ + 5∆, the protocol terminates at T +
δ + 5∆. From (2, 5k , β)-sequentiality of VDFδ, we have

T2, 5
k
= T + (δ + 5∆) = T + (1 +

5∆

δ
) · δ = T + (1 +

5

k
) · δ

τ2, 5
k
= τ = ⌊(1 + 5

k
) · κ⌋ · q = ⌊κ +

5κ
k
⌋ · q = ⌊κ⌋ · q (Since, k > 5κ)

Let χ1, . . . , χτ+1 depend on {c}i,Pi∈H and let pk1, ..., pkτ+1 be pairwise distinct. A is
able to compute at most q ·⌊κ⌋ VDFs within time (T+δ+5∆) via honest invocations of the
VDFδ oracle. It follows from (2, 5k , β)-sequentiality of VDFδ that A can output {ϕi}i∈[τ+1]

before or at time (T + δ+5∆) such that for all j ∈ [τ +1], VDFδ(Verify, ϕj , {χj , pkj}) = 1

with probability at most 2−κ−2 log(κ)−1+β. (Note that if χj does not depend on {c}i,Pi∈H,
no honest party accepts pkj). As a result, the number of identities produced by A is

bounded by τ with probability at least 1− (2−κ−2 log(κ)−1 + β). The total number of keys
from honest and corrupted parties can be given by N = (n− q)+ τ = (n− q)+ q · ⌊κ⌋, and
the total number keys belonging to corrupted parties is τ = q · ⌊κ⌋ < (n− q) (given that
q < n

⌊κ⌋+1) or, q⌊κ⌋ <
1
2N.

⊓⊔

Corollary 1. Since δ > 5κ ·∆ ≥ (5κ+1) ·∆, the duration of ΠKeyGrade is set as δ+5∆ :=
(5κ + 6) ·∆.

Corollary 2. If n be the number of parties in the ΠKeyGrade protocol, q be the number

of adversarial parties, each with speedup at most κ, then the total number of keys in the

combined keysets of all honest parties is given as

N := |
⋃

i∈[n]Pi∈H

KeySeti| = (n− q) + q · ⌊κ⌋ = n+ q · (⌊κ⌋ − 1).

Parameter Selection. For the remaining sections of the paper we set κ = 2, which gives
us: δ > 10 ·∆ ≥ 11∆. We assign δ := 11∆, and accordingly duration of ΠKeyGrade := 16∆.
To tolerate a higher speed-up of adversarial parties the parameters need to be adjusted
accordingly.

4 Construction of Graded Broadcast (GBC) from GPKI

As a next step, we construct a graded broadcast protocol that is an adaptation of the
protocol in [28]. The resulting protocol ΠGBC only requires a graded PKI whereas the
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original required a full PKI. In the GPKI setting, parties neither have a global consistent
view of all parties' keys, nor do they know the exact number of parties (only an upper bound
n). Henceforth, parties rely on their local KeySet obtained as an output of the ΠKeyGrade

protocol. The total number of keys obtained after running the ΠKeyGrade protocol is set to
N = n + q · (⌊κ⌋ − 1). Before describing protocol ΠGBC in Figure 3, we introduce some
nomenclatures that will help to present our protocol succinctly. In the following, we assume
a �xed sender S.

� A signature ⟨x⟩i is valid in the view of party P , if (i) P has assigned grade 2 for pki,
i.e., (pki, 2) ∈ KeySetP and (ii) VrfySig(⟨x⟩i , pki) = 1.

� A signature ⟨x⟩i is weakly valid in the view of party P , if (i) (pki, gi) ∈ KeySetP , where
gi ≥ 1 and (ii) VrfySig(⟨x⟩i , pki) = 1.

� We refer to an iterated signature of the form ⟨⟨x⟩S⟩j (i.e., by S and some party Pj) as
a countersignature and say that Pj is the outer signer.

� A countersignature ⟨⟨x⟩S⟩j is said to be valid in the view of party P if the following
holds. (i) (pkS , 2) ∈ KeySetP , (ii) VrfySig(⟨x⟩S , pkS) = 1, (iii) (pkj , 2) ∈ KeySetP , and
(iv) VrfySig(⟨⟨x⟩S⟩j , pkj) = 1.

� A countersignature ⟨⟨x⟩S⟩j is said to be weakly valid in the view of party P if the
following holds. (i) (pkS , gS) ∈ KeySetP , gS ≥ 1 (ii) VrfySig(⟨x⟩S , pkS) = 1, (iii)
(pkj , gj) ∈ KeySetP , gj ≥ 1, and (iv) VrfySig(⟨⟨x⟩S⟩j , pkj) = 1.

� A set of signatures ψ(x) is said to be consistent for x in the view of party P , if it
contains valid countersignatures on x from at least N

2 distinct outer signers.

� A set of signatures ψ(x) is said to be weakly consistent for x in the view of party P , if
it contains weakly valid countersignatures on x from at least N

2 distinct outer signers.

The following sequence of lemmas proves security of ΠGBC. Due to lack of space, we
defer the respective proofs to Appendix C.

Lemma 4. If the sender S is honest and inputs x, then every honest party P multicasts

a set of signatures ψP (x) at time 2∆ which is consistent for x in the view of every honest

party.

Lemma 5. If, at time 3∆, an honest party receives at least N
2 sets of signatures which are

all consistent with (the same) x, no honest party receives a set of signatures that is weakly

consistent with x′ ̸= x.

Lemma 6. Protocol ΠGBC achieves graded validity.

Lemma 7. Protocol ΠGBC achieves graded consistency.

4.1 Construction of a Graded Byzantine Agreement from GBC

We de�ne a simple graded byzantine agreement protocol ΠGBA in �g. 4 from ΠGBC. As a
�rst step, each party runs ΠGBC as the sender with their input. In the following step, a
value is output with grade 2 or 1 depending on the message/grade outputs of the ΠGBC

initiated by other parties. The security of ΠGBA follows from the following sequence of
lemmas.

Lemma 8. Protocol ΠGBA achieves graded validity.

Lemma 9. Protocol ΠGBA achieves graded consistency.
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Protocol ΠGBC

We describe the protocol from the view of party P with a sender S. P executes the following
three phases.

� At time 0: If P is the sender S, it computes signature on message x as ⟨x⟩S and multicasts
(x, ⟨x⟩S) to all parties.

� At time ∆: If P sees (x, ⟨x⟩S), where ⟨x⟩S is a valid signature on message x, then P
multicasts (x,

〈
⟨x⟩S

〉
P
) to all parties.

� At time 2∆: Party P collects all valid countersignatures of the form (x′,
〈
⟨x′⟩S

〉
k
) from

parties Pk with same input x′. P constructs the signature set ψ(x′) with message x′ as(
ψ(x′) :=

{〈〈
x′
〉
S

〉
k

}
k

)
.

If ψ(x′) is a consistent signature set from P 's view and it has not received a countersignature
of the form

〈
⟨x′′⟩S

〉
k
, where x′′ ̸= x′ then P multicasts ψ(x′). (Otherwise, P multicasts

nothing).
� At time 3∆: Let ψk(x

′) be a weakly consistent signature set received from party Pk (note
that this includes consistent sets).To determine its output, P does as follows:
• If P sees at least N

2
consistent signature sets of the form ψk(x

′) (for distinct k) on x′,
then P outputs (x′, 2).

• If P sees at least one weakly consistent signature set ψk(x
′) for some x′, and no weakly

consistent signature set for a di�erent value x′′ ̸= x′, then it outputs (x′, 1).
• Else, P outputs (⊥, 0).

Fig. 3. Gradecast protocol ΠGBC, where each party has a local KeySet from ΠKeyGrade protocol. Duration
of ΠGBC is 4∆. N = n+ q · (⌊κ⌋ − 1) (c.f Corollary 2).

5 Achieving Byzantine Agreement

As the �nal step, we build our Byzantine agreement protocol ΠBA (c.f. Figure 5). Though
our protocol is an adaptation of the same from [22], it uses as main ingredients the graded
PKI protocol ΠKeyGrade (Figure 2) and the graded byzantine agreement protocol ΠGBA

(Figure 4) from Sections 3 and 4.1 respectively. One subtle di�erence because of the use of
a graded PKI is that each party P relies on their local KeySetP . To make the BA protocol
work, we need one more ingredient � a leader election protocol. More precisely, as one of
the steps of the ΠBA protocol, it is necessary to elect one of the parties as a leader in an
unpredictable manner such that an honest party will be elected with constant probability.
For the description of ΠBA, we assume a protocol ΠLeader that is run as a subroutine
to ΠBA, in parallel with protocol ΠKeyGrade. As we will explain later, the subprotocols
ΠKeyGrade and ΠLeader share a common state. For our purposes, we will require that the
subprotocol ΠLeader has the following properties for all k ∈ N and all pairs of honest parties
P, P ′, assuming that parties initiate ΠBA at time 0:

� ΠLeader outputs a value ℓP to P at time (12 · k + 27) ·∆.

� With probability at least n−q
N ≥ 1

2 , ℓP = ℓP ′ = ℓ and Pℓ is an honest party at round
(12 · k + 24) ·∆.

We present an instantiation ΠLeader based on VDF in Section 5.1. The following theorem
summarizes the properties of our ΠBA protocol.

Theorem 2. Suppose that ΠKeyGrade be a graded public key infrastructure protocol, ΠGBA be

a graded byzantine agreement protocol and ΠLeader be a leader election protocol run between
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Protocol ΠGBA

We describe the protocol from the view of party P , where P executes the following two steps.

� At time 0: Initiate ΠGBC as the sender with input x.
� At time 4∆: Let (xj , gj) be the message/grade that P outputs in the gradecast initiated

by Pj . For all v that were received in at least one invocation of ΠGBC, P sets Sv :=
{j : xj = v ∧ gj = 2} and S̃v := {j : xj = v ∧ gj ≥ 1} .
• If there exists v s.t. |S̃v| ≥ N

2
, then prepare a tuple t of value, grade pair s.t. t := (v, 1),

otherwise t := (⊥, 0).
• If |Sv| ≥ N

2
, then t := (v, 2).

• output t.

Fig. 4. Graded Byzantine Agreement protocol ΠGBA, where each party has a local KeySet from ΠKeyGrade

protocol. Duration of ΠGBA is 4∆. N = n+ q · (⌊κ⌋ − 1) (c.f Corollary 2).

n parties. Then ΠBA is a Byzantine agreement protocol tolerating q corrupted parties with at
most 2-speedup of computational power, where q < n

3 . Moreover, it terminates within O(1)
rounds in expectation for all honest parties, and with probability 1−2−κ within 16+12·(κ+1)
rounds.

Our proof for Theorem 2 is almost identical to [22, Theorem 13] which is why we defer
it to Appendix E. After an initial setup phase in which parties agree on a graded PKI
via ΠKeyGrade and run the setup steps for ΠLeader, the ΠBA protocol proceeds in iterations.
In every such iteration, we invoke two graded byzantine agreement subroutines and one
multicast subroutine, and update the values lock and m until they converge on a common
value for m. Here, the variable lock indicates the number of iterations after which the
protocol may terminate. In particular, lock = ∞ means that the protocol could keep
running for an unbounded number of iterations, lock = 1 means that termination will be
reached after one more iteration and lock = 0 means that the protocol terminates in the
next iteration. Overall, each iteration requires 12∆ time.

To enter termination mode, i.e., to set lock = 1, parties rely on a randomly elected
leader who is chosen in the last round of an iteration via ΠLeader. In our construction
of ΠLeader, honest parties learn the identity of the leader for the k-th iteration at time
(12 · k + 27) ·∆. On the other hand, dishonest parties learn it at round (12 · k + 25) ·∆ �
this is because dishonest parties, controlled by a rushing adversary can start the proof of
computation phase of the ΠKeyGrade at time 0 instead of at time 2∆. Hence, the idea is to
have all parties perform a multicast instruction in the protocol at round (12 · k + 24) ·∆,
i.e., one round prior to the adversary learning about the identity of the the leader. If the
elected leader executed this instruction honestly (which happens with probability at least
1
2), the protocol enters termination mode, meaning that all honest parties set lock = 1.
Overall, the protocol enters the termination routine after at most κ many iterations with
probability all but 2−κ.

Generalization of Theorem 2. Our Theorem 2 can be expressed more generically in the
following Theorem 3, for any speedup parameter κ ∈ R>0, where the number of rounds of
ΠKeyGrade is (5κ + 6) ·∆ (c.f Corollary 1). In particular, for the lowest value of κ = 1, our
ΠBA protocol tolerates at most < n

2 corrupted parties.

Theorem 3. Suppose that ΠKeyGrade be a graded public key infrastructure protocol, ΠGBA

be a graded byzantine agreement protocol and ΠLeader be a leader election protocol run
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between n parties. Then ΠBA is a Byzantine agreement protocol tolerating q corrupted

parties with at most κ-speedup of computational power, where q < n
(⌊κ⌋+1) . Moreover, it

terminates within O(1) rounds in expectation for all honest parties, and with probability

1− 2−κ within (5κ + 6) + 12 · (κ+ 1) rounds.

Proof of Theorem 3 follows similar to that of Theorem 2.

Protocol ΠBA

We describe the following protocol from the view of party P with input mP .

Setup Phase.

� At time 0: Participate in a run of ΠKeyGrade. In parallel, participate in a run of ΠLeader.
� At time 16∆: Denote KeySetP the set of keys output in ΠKeyGrade. (Hereafter, it is assumed

that parties share a graded PKI.)

Agreement Phase. Initialize lock := ∞, m := mP and k := 0. Repeat the following loop
forever:

� At time (12k + 16) ·∆: Initiate ΠGBA on input m.
� At time (12k + 20) ·∆:
• Let (v, g) be the output of P . If lock =∞ then:

* If g = 2, set lock := 1.
* If g = 1, then set m := v.
* If g = 0, then set m = ⊥.

• Initiate ΠGBA on input m.
� At time (12k + 24) ·∆:
• Let (v, g) be the output of P . If lock =∞ then:

* If g = 1, then set m := v.
* If g = 0, then set m = ⊥.

• Multicast m.
� At time (12k + 27) ·∆:
• Set k := k + 1 and denote mj the message received from Pj . Let ℓ denote the output

obtained from ΠLeader.
• If lock =∞ and m = ⊥, then P sets m := mℓ.
• If lock = 0, P outputs m and terminates.
• If lock = 1, then P sets lock := 0.

Fig. 5. A Byzantine agreement protocol ΠBA, where parties share a graded PKI by running the ΠKeyGrade

protocol. ΠBA internally invokes two other subprotocols: graded byzantine agreement protocol ΠGBA and a
leader election protocol ΠLeader. N = n + q · (⌊κ⌋ − 1) (c.f Corollary 2). We set N = n + q (for adversarial
speedup κ = 2). All parties have access to random oracles H : {0, 1}∗ → {0, 1}κ+log(tp)+2 log(κ)+1, HN :
{0, 1}∗ → N and an oracle VDFδ.

5.1 The Protocol ΠLeader

In this section, we present our construction of the leader election protocol ΠLeader (cf. Fig-
ure 6) that relies on a VDF accessed as an oracle. The idea of our protocol is for each
party to compute a proof of (sequential) computation on some value that could not have
been predicted before commencing the current run of ΠLeader. More concretely, parties are
asked to present an evaluation of VDF at periodic steps in ΠLeader and spend the time
interval between these steps in computing of the next evaluation. Such a chain of sequen-
tial evaluations of VDF is only accepted in round r if it accounts for r sequential steps of
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computation. In addition, it must be possible to ensure that the computation could not
have started before the onset of the �rst round.

The key observation is that per party, there can be at most one such sequence of evalu-
ations that accounts for the entire duration of ΠLeader up to that round (since evaluations
of a VDF can not be parallelized). Moreover, the adversary can not predict the sequences
produced by honest parties due to its limited budget of computation. Hence, parties can
use (hashes of) these sequences as unique (per party) and unpredictable sources of random-
ness, which can be veri�ed by everyone e�ciently. In each election, the party who produces
the smallest hash, computed according to hash function HN : {0, 1}∗ → N, will be elected
as the leader in ΠLeader. Since an honest party sends its hash to everyone and each party
produces the smallest hash with the same (uniform) probability, parties agree on the hash
of an honest leader as the minimal hash with probability at least 1

2 in every election We
note that this idea closely mimics the standard approach of electing leaders in Byzantine
agreement protocols using veri�able random functions (VRFs). However, to use VRFs, it
is required that a trusted dealer generates and distributes the keys or some unpredictable
random string at the beginning of the protocol. Since we can not rely on either of these
setup assumptions, we choose to instead rely on the above approach that uses VDFs.

Protocol ΠLeader

We describe the protocol from the view of an honest party P with κ = 1. Initialize a set
L := {}. P participates (in parallel) in a run of ΠKeyGrade. (We make this explicit below).

Setup Phase.

� At time 0: In parallel, participate in a run of ΠKeyGrade.
� At time 13∆: Denote ϕ0 = VDF11∆(Eval, χ, 1) the proof computed during the proof of

computation phase of ΠKeyGrade. Call VDF13∆(Eval,HN(ϕ
0), 1) to compute ϕ1.

� At time 16∆: Denote KeySet the set of keys output in ΠKeyGrade.

Leader Election Phase. Initialize k := 1 and badj := false, for all j ∈ [n] s.t. there exists
(pkj , gj) ∈ KeySet. (We refer to the owner of pkj as Pj below). Denote ϕ

0
j the proof of computa-

tion received together with pkj during ΠKeyGrade. Repeat the following sequence of steps forever:

� At time (26 + 12(k − 1)) · ∆: Upon completing computation of ϕk, call
VDF12∆(Eval,HN(ϕ

k), 1) to compute ϕk+1. Multicast ϕk.
� At time (27 + 12(k − 1)) · ∆: For all j ∈ [n], denote ϕk

j the proof received from party Pj

and do:

• Set badj := true if nothing was received from Pj in this iteration.
• If k = 1 and VDF13∆(Verify, ϕk

j ,HN(ϕ
0
j )) = 0, set badj := true.

• If k = 1 and VDF13∆(Verify, ϕk
j ,HN(ϕ

0
j )) = 1, and ¬badj then L := L ∪ {HN(ϕ

0
j )}.

• If k > 1 and VDF12∆(Verify, ϕk
j ,HN(ϕ

k−1
j )) = 0, set badj := true.

• If k > 1 and VDF12∆(Verify, ϕk
j ,HN(ϕ

k−1
j )) = 1 and ¬badj then L := L ∪ {HN(ϕ

k
j )}.

� If k = 1: Output ℓ, s.t. HN(ϕ
0
ℓ) = minL. Set k := 2.

� If k > 1: Output ℓ, s.t. HN(ϕ
k
ℓ ) = minL. Set k := k + 1.

Fig. 6. Leader election protocol ΠLeader, where all parties have access to random oracles H : {0, 1}∗ →
{0, 1}κ+log(tp)+2 log(κ)+1, HN : {0, 1}∗ −→ N and an oracle VDFδ. ΠLeader is run for k ≥ 1 iterations
when the byzantine agreement protocol ΠBA, that invokes ΠLeader internally terminates after k iterations.
N = n+ q · (⌊κ⌋ − 1) (c.f Corollary 2). We set N = n+ q (for adversarial speedup κ = 2).
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Our ΠLeader protocol is formally described in Figure 6. Below, we elaborate on the two
phases of the protocol from the view of (an honest) party P in a bit more detail and give
some intuition about them.

Setup Phase. The protocol begins at time 0 with a one-time setup phase which is exe-
cuted in parallel with a run of ΠKeyGrade. Recall that ΠKeyGrade begins with two rounds of
exchanging (unpredictable) challenges among parties. At the end of the second round of
exchanges, P creates a hash χ from these values. During the subsequent proof of computa-
tion phase, it then computes ϕ0 = VDF11∆(Eval, {χ||pk}, 1). When ϕ0 becomes available at
time 13∆, P immediately starts computing ϕ1 as VDF13∆(Eval,HN(ϕ

0), 1). At time 16∆,
P outputs KeySet in ΠKeyGrade.

Leader Election Phase. The setup phase is followed by a leader election phase, which
begins at time 26∆ and is repeated until P terminatesΠLeader from within the invocation of
ΠBA. (The time interval between these two phases is spent computing VDF13∆(Eval,HN(ϕ

0)),1).
P keeps a �ag badj (initialized to false) for each key pkj that it has previously accepted
during ΠKeyGrade. The purpose of badj is to indicate whether Pj (the owner of pkj) has
ever stopped investing computational e�ort during this run of ΠLeader. Note that since P
has accepted pkj in ΠKeyGrade, it has already received a proof ϕ0j associated with pkj . This
ensures that computational e�ort was invested with respect to pkj up to time 13∆. Below,
k denotes the current iteration of the protocol ΠBA and is initialized as k := 1. The leader
election phase now proceeds in following two rounds:

� During the �rst round, P completes the computation of ϕk and immediately commences
computation of ϕk+1 by calling VDF12∆(Eval,HN(ϕ

k), 1). It multicasts ϕk.

� In the second round, upon receiving ϕkj from party Pj , P veri�es that Pj has contin-
uously been investing computational e�ort in ΠLeader. To do so, it checks that ¬badj
holds and that VDF12∆(Verify, ϕ

k
j ,HN(ϕ

k−1
j )) = 1. If either of these conditions is vio-

lated (or nothing was received from Pj), P sets ¬badj to indicate that Pj has broken
the chain of continuous computation from the beginning of ΠLeader and can never again
be trusted as an honest leader.

� P completes the iteration by computing the hash of every proof ϕkj that it has received

for which ¬badj still holds. It elects the party Pℓ to be the leader if HN(ϕ
k
ℓ ) was the

minimal value among all hashes. (Ties can be resolved by �xing some arbitrary rule in
the protocol description).

We say that a party, upon receiving a proof ϕkj from another party Pj , accepts it,
provided it does not set badj = true. With this, we proceed to state Lemmas 10 to 12
below formally. To prove our results, we consider (2, 5

11 , β), (2,
1
6 , β), (2,

2
13 , β) sequentiality

of VDF11∆, VDF12∆ and VDF13∆ respectively in presence of a (q, tp, 2) adversary. We defer
the corresponding proofs to Appendix D due to space limitations.

Lemma 10. Let A be a (q, tp, 2)-algorithm, where q < n
3 and suppose that VDF11∆,

VDF12∆ and VDF13∆ are respectively (2, 5
11 , β), (2,

1
6 , β) and (2, 2

13 , β) sequential. If ΠLeader

is run at time 0, then with probability at least 1 − (2−κ−2 log(κ)−1

+β), for all k ≥ 1, A outputs at most τ = 2q proofs ϕk1, ..., ϕ
k
τ within time (12·(k−1)+26)·∆,

such that for all i ∈ [τ ], ϕki is accepted by at least one honest party in ΠLeader.

Using the above lemma, we can now view the entire set of proofs that are accepted
by at least one honest party in any iteration k of ΠLeader as a vector of random variables
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hk = (ϕk1, ..., ϕ
k
p), where p ≤ n. We now prove that hk is unpredictable from the view of A

before time (25 + 12 · (k − 1)) ·∆, for all k ≥ 1.

Lemma 11. Suppose that VDF11∆,VDF12∆, and VDF13∆ are (2, 5
11 , β), (2,

1
6 , β), (2,

2
13 , β)

sequential respectively. Then for all k ≥ 1, the vector hk is (n − q, (25 + 12(k − 1)) ·
∆, 2−κ−2 log(κ)−1 + (k + 1) · β)-unpredictable.

Lemma 12. Assume that the conditions of Lemma 11 hold. Set β = 2−2 log κ−κ−2. Then
with probability at least 1

2 and for all 1 ≤ k ≤ κ, all honest parties output ℓ in ΠLeader such

that Pℓ is honest at time (12(k − 1) + 24) ·∆.

6 Communication Complexity in the VDF Model

In this section, we provide the �rst lower bound for the communication complexity of
Byzantine broadcast in the multicast model (c.f. De�nition 10) in presence of a VDF ora-
cle. More concretely, inspired by [2, Section 7], we consider a setting without a PKI where
parties are connected via multicast channels. In addition � and in contrast to previous
work [2] � we assume that parties have access to a VDF oracle. This adds additional tech-
nical challenges to the analysis. To state our theorem, we re�ne our de�nition of Byzantine
broadcast to make failure probabilities and communication complexity of the protocol ex-
plicit.

De�nition 10 (Byzantine Broadcast in the Multicast Model). Consider a protocol

that is executed between n parties, where a designated sender S holds an input xS at the

beginning of the protocol and all parties output upon terminating. We call this a (q, p)-secure
protocol for Byzantine broadcast with multicast complexity Θ, if the following properties

hold (simultaneously) with probability at least p when at most q parties are adaptively

corrupted:

� Consistency: Every honest party Pi outputs the same value xi = x.

� Validity: If the sender S is honest, then all honest parties output xi = xS.

� Termination: All parties terminate.

� Multicast Complexity: The multicast complexity of the protocol is at most Θ.

Theorem 4. Let c = O(1) and n ≥ (64c2 + 2c). Then there is no (q, p)-secure protocol

for Byzantine broadcast (among n parties) with
⌊√

2q
8

⌋
multicast complexity (relative to a

VDF oracle VDF), when p > 19
20 and q = n

2 − c.

Our proof is inspired by the lower bound of [2] (Section 7) for Byzantine broadcast
without a PKI in the multicast model. (Note that our lower bound for Byzantine broadcast
implies a lower bound for Byzantine agreement.) The goal of our proof is to show that the
view of a special (honest) party P that is not the sender S can be made identical in a
protocol execution where the input bit of S is either 0 or 1. This leads to a violation of the
consistency property of Byzantine agreement. For the formal proof, we de�ne four worlds:
Worldc,b, Worldc,1−b, Worldh,b and Worldh,1−b. In Worldc,∗, we consider a protocol execution
where the special party P is statically corrupted, whereas in Worldh,∗ this party remains
honest throughout the protocol. Moreover, in World∗,b, the sender has input bit b.

To show the violation of the consistency property, we then proceed as follows. In both
worlds, Worldc,b and Worldh,b, we show that honest parties have the same view. Moreover,
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the special party P acts in both worlds as if it receives messages according to world
World∗,b and World∗,1−b. Notice that in world Worldc,b, this can be done since P is statically
corrupted, and hence it can be instructed by the adversary to behave accordingly. In world
Worldh,b, this is done by adaptively corrupting parties that multicast messages in a certain
round, and instructing the freshly corrupted party to also multicast messages according to
the (honest) party P 's view of world Worldh,1−b. (This is also the reason for restricting the
number of multicasts in the theorem, since each multicast requires to corrupt the party
that multicast). This confuses P as to which world it is actually being run in, and hence
the honest P in worlds Worldh,1−b and Worldh,b behaves as the malicious party in worlds
Worldc,1−b,Worldc,b. It is now possible to show that with high probability, P 's confusion
leads to it outputting an inconsistent bit in one of these worlds.

A crucial di�erence between our setting and the setting of [2] is the way in which
the adversary collapses the views of worlds Worldh,1−b and Worldh,b from that of P . In a
nutshell, this requires the adversary to simulate the execution of the protocol in one of
these worlds. Unfortunately, when parties have access to a VDF oracle, a simple simulation
strategy ceases to work. At a high level, in VDF-based protocols, the simulation depends
on oracle queries to the VDF oracle, and hence can only be completed if the adversary
has su�cient query budget for the VDF. In our simulation, we achieve this by letting the
adversary statically corrupt some set of parties which do not participate in the protocol
(the adversary crashes them in every one of the worlds). We can then use their VDF oracle
budget to complete the simulation for those parties who do participate.

We defer some details of the proof of Theorem 4 to Appendix F, but provide an overview
below.

Proof (Of Theorem 4). Suppose for the sake of contradiction, there exists a (q, p)-secure

protocol Π for Byzantine broadcast with
√
2q
8 multicast complexity such that p > 19

20 , q =
n
2 − c, and n ≥ (64c2 + 2c). We proceed by presenting the strategy of an adversary A
that violates consistency of Π with probability at least 1

20 . Throughout the rest of the

description, we denote ϱ =
⌊√

2q
8

⌋
.

We explain A's strategy separately for each of the worlds Worldc,b,Worldh,b as intro-
duced above. In each of the worlds, the adversary statically corrupts an arbitrary set of
(q−ϱ) parties R that does not include P or the sender S at the beginning of the execution
of Π in that world. These parties behave as if they are crashed (i.e., they never send any
messages). We remark that R is �xed through all worlds. Furthermore, let us denote C as
the event that two distinct (but possibly dependent) executions of Π satisfy validity and
consistency and have multicast complexity at most ϱ. The following lemma lower bounds
the probability of the event C.

Lemma 13. Let the event C be de�ned as above. Then Pr[C] ≥ 2p− 1.

Behavior in Worldc,b: A statically corrupts the parties in R and uses their computational
resources in the simulation of Worldc,1−b. It corrupts one additional special party P (which
is not the sender S) and directs P to behave honestly in Worldc,b and the simulation as if
it were receiving messages from two executions of the protocol in which the sender holds
either 0 or 1. P 's precise strategy is described below. The remaining (n+ϱ− q)− 1 parties
remain honest throughout the execution Worldc,b (including the sender S). Denote this set
of parties as L.

In more detail, A's strategy is as follows.
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� A chooses random coins for all parties in L and simulates an execution of Π where the
sender holds input 1− b, the parties in R are crashed throughout the execution of Π,
and the only other corrupted party is P . (In other words, A simulates Worldc,1−b).

� It selects (q − ϱ) parties in the set L uniformly at random.

� If the simulation directs a party Q ∈ L to query VDF, A instructs a party Q′ ∈ R
to make the same query (unless that party is already waiting VDF to reply to a prior
query). When VDF returns ϕ to Q′, the adversary returns ϕ to Q in the simulation.

� The party P behaves as if it receives messages from both Worldc,b and the simulation
that it is running in its head. It reacts to these messages as an honest party P would
do in an execution of Π where everybody holds input b.

� If P sends a message in Worldc,b or in the simulation, A delivers this message to all
honest parties in Worldc,b and in the simulation.

Observe that for a small set of (n − 2q + 2ϱ) parties in L, A is not able to simulate the
VDF calls in the simulation (it can only simulate such calls for |R| many parties in L).
Denote this set of parties by U . Clearly, the simulation of the adversary fails if any party
from U attempts to multicast a message in Π within the �rst ϱ multicasts. Let F1 denote
the event that simulation of the adversary fails in Worldc,b, (conditioned on the event C).
Lemma 14 below bounds the probability Pr[F1|C].
Lemma 14. Let F1 denote the event that A's simulation fails inWorldc,b. Then Pr[F1|C] <
1
6 .

Note that since the number of corrupted parties is strictly less than n
2 , by the validity prop-

erty of Byzantine broadcast, all the honest parties in Worldc,b output bit b with probability
greater than p in case the failure event F1 does not occur.

Behaviour in Worldh,b: Initially, A statically corrupts the parties in R which will be
used as the resource to simulate Worldh,1−b. The remaining (n+ ϱ− q) parties (excluding
crashed parties in R) is denoted by set L′. Note that the special party P (which is not
the sender S) is not among the aforementioned statically corrupted parties and remains
honest throughout the protocol, i.e., P ∈ L′. Note that the sender S ∈ L′ \ P .
A now simulates the world Worldh,1−b for all parties in set L′ \ {P} as follows.

� A chooses random coins for all parties in L′ \ {P} and simulates Worldh,1−b. More
precisely, it simulates an execution of Π where the sender holds input 1 − b and the
parties in R are crashed throughout the execution of Π (the remaining parties act
honestly).

� It selects (q − ϱ) parties in set L′ uniformly at random.

� When the simulation directs a party Q ∈ L′ \ {P} to multicast in some round r, A
adaptively corrupts Q in round r of the real execution of Π (i.e., in Worldh,b), unless
Q is already corrupted. Note that the designated sender S might get corrupted in this
step.

� A corrupted party Q continues to send honest messages in Worldh,b to all remaining
parties in L′ but it forwards to P all messages from both Worldh,b and Worldh,1−b.

� To produce the simulated messages of Worldh,1−b, when the simulation directs a party
Q ∈ L′ \ P to query VDF, A acts as follows: it instructs a party Q′ ∈ R to make the
same query (unless that party is already waiting for the VDF to reply to a prior query).
When the VDF returns ϕ to Q′, the adversary returns ϕ to Q in the simulation.
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� When P multicasts a message in Worldh,b, that message is also multicast in the simu-
lation.

Observe that there is a gap of (n−2q+2ϱ)−1 parties for which the adversary could not
simulate, but it might be the case that one of these parties want to speak in the protocol.
Denote the set of these parties as U ′. Let F2 denote the event that the simulation of the
adversary fails. For q = (n2 − c), Lemma 15 below proves that Pr[F2|C] < 1

6 .

Lemma 15. Let F2 denote the event that A's simulation fails inWorldh,b. Then Pr[F2|C] <
1
6 .

We now state two technical lemmas below and defer their proofs to Section F so as not
to deviate from describing the main proof structure. We �rst give an indistinguishability
lemma about the worlds Worldc,b and Worldh,b for forever honest parties.

Lemma 16. Conditioned on the events C and ¬F1, Worldc,b is indistinguishable from

Worldh,b for parties that are forever honest in both Worldc,b and Worldh,b.

Next, we give an indistinguishability lemma about the worlds Worldh,b and Worldh,1−b for
party P .

Lemma 17. Conditioned on C and ¬F2, Worldh,b is indistinguishable from Worldh,1−b for
party P .

In Worldc,b, since the sender S is honest, the validity property of Byzantine broadcast
implies that all honest parties output b. Using the indistinguishability between Worldc,b
and Worldh,b guaranteed by Lemma 16, we can use consistency to ensure that party P
which is honest in Worldh,b, outputs b in world Worldh,b. We formalize this intuition in the
following Lemma (and defer it proof also to Section F).

Lemma 18. Let Y denote the event that the forever honest parties in Worldh,b output b.
Then Pr[Y |C ∩ ¬F1] = p.

Similarly, using indistinguishability betweenWorldh,b andWorldh,1−b guaranteed by Lemma 17,
we obtain:

Lemma 19. Let X denote the event that P does not output 1 in Worldh,1. Then Pr[X|C∩
¬F2] =

1
2 .

Thus, the probability that consistency of the Byzantine broadcast is violated in Worldh,1
is at least Pr[X ∩ Y ] which we bound from below as follows:

Pr[X ∩ Y ] = Pr[X] + Pr[Y ]− 1

≥ Pr[X ∩ C ∩ ¬F2] + Pr[Y ∩ C ∩ ¬F1]− 1

= Pr[X|C ∩ ¬F2] · Pr[C ∩ ¬F2] + Pr[Y |C ∩ ¬F1] · Pr[C ∩ ¬F1]− 1

= Pr[X|C ∩ ¬F2] · Pr[¬F2|C] · Pr[C] + Pr[Y |C ∩ ¬F1] · Pr[¬F1|C] · Pr[C]− 1

=
1

2
· 5
6
· (2p− 1) + p · 5

6
· (2p− 1)− 1 =

20p2 − 17

12

=
7

80
>

1

20
= 1− p.

This contradicts the supposition that Π achieves consistency with probability more than
19
20 and within complexity ϱ.
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A Sequentiality of Our VDFδ Oracle

In this section, we will instantiate the VDFδ oracle and argue its sequentiality as per
De�nition 3. To this end, we �rst recall the de�nition of Abelian group family from [33]
and then introduce some new de�nitions.

De�nition 11 (Abelian Group Family). An Abelian group family {Gκ}κ∈Z>0, is a

family of probability distributions over �nite Abelian groups de�ned with:

1. An e�cient sampling algorithm GGen that, on input 1κ, samples uniformly at random

a group G ∈ Gκ and outputs a group description of G and the identity element 1G.

2. An e�cient sampling algorithm GSample which, given a group description of G, outputs
a group element x ∈ G sampled uniformly at random.

3. E�cient algorithms GMul and GInv that, respectively, multiplies two group elements,

and inverts a group element.

4. A group order upper bound U(κ) : ∀κ∀G ∈ Gκ : U(κ) ≥ |G|, such that logU(κ) ∈ poly(κ)
and 1/U(κ) ∈ negl(κ).

5. A random group generator count n(κ) ∈ Z>0 and n(κ) ∈ poly(κ) such that

Pr[⟨g⟩ ≠ G|G← Gκ;g← Gn(κ)] ∈ negl(κ).

De�nition 12 (q-fold Group Algorithm relative to GGen). For any κ ∈ N, we
say that A is a q-fold group algorithm for Gκ, if ∀G ∈ Gκ (i.e., for all G in the support

of GGen(1κ)) it can compute up to q group operations over G in parallel. Every group

operation is assumed to take unit time. Further, A = (A1,A2) is expressed as a stateful

algorithm operating in two phases, where A1 denotes the �rst �preprocessing� phase that

outputs A2 computing the second �online� phase.

De�nition 13 (Generalized One-More Time-Lock Experiment). Fix parameters

Γ, q, i, δ, where Γ > (i − 1)q and δ ∈ N denotes an arbitrary time. For any κ ∈ Z>0,

an Abelian group family Gκ and any q-fold group algorithm A = (A1,A2), we de�ne the

experiment General-TLA,GκΓ,q,i,δ as follows:

1. Sample (G, 1G)← GGen(1κ) and g := (g1, . . . , gn)← Gn.

2. Run A1 in a preprocessing phase on inputs (G, 1G,g). When A1 outputs an algorithm

A2, set τ = (i− 1) · q.
3. Sample a sequence of Γ elements {X1, . . . , XΓ } ← GΓ .

4. Run A2 in an online phase on inputs (g, {X1, . . . , XΓ }).
5. When A outputs the set {(Y1, Xℓ1), . . . , (Yτ+1, Xℓτ+1)} , where {Xℓ1 , . . . , Xℓτ+1} ⊊
{X1, . . . , XΓ }, return 1 if ∀j ∈ [τ + 1], Yj = X2δ

ℓj
. Return 0 otherwise.

Denote Gen-TLA,GκΓ,q,i,δ the random variable associated to the output of General-TLA,GκΓ,q,i,δ. For

some β > 0, we say that the experiment General-TLA,GκΓ,q,i,δ is (tp, β)-hard, if for all q-fold
group algorithms A = (A1,A2), running for time at most tp in the preprocessing phase and

time less than i · δ in the online phase

Pr
[
Gen-TLA,GκΓ,q,i,δ = 1

]
≤ β.
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Denote 1G as the identity of G. Initialize x := 1G and r := 1. Repeat the following δ many
times:

� b := ⌊2r/l⌋ ∈ {0, 1} and r := 2r (mod l)
� x := x2gb

Output π := x.

Fig. 7. Procedure Alg(g, l, δ)

Wesolowski's VDF [35]

Parameters:

� Primes(2κ) is the set of the �rst 22κ prime numbers.
� Hprime : {0, 1}∗ → Primes(2κ) is a random oracle.
� d is a (large) negative square free integer such that d ≡ 1 (mod 4).
� G = Cl(d) is a class group of an imaginary quadratic �eld Q(

√
d).

� HG : {0, 1}∗ → G is a random oracle.

Proof Generation. On input (Eval, s) do:

� g ← HG(s), y := g2
δ

, l := Hprime(g, s).

� Compute π := g⌊2
δ/l⌋ = Alg(g, l, δ), as de�ned in Figure 7.

� Output ϕ := (y, π).

Proof Veri�cation. On input (Verify, ϕ = (y, π), s) do:

� g ← HG(s), l := Hprime(g, s). Set r = 2δ (mod l).
� If πlgr = y, output 1. Output 0 otherwise.

Fig. 8. Construction of VDFδ via Wesolowski's VDF.

A.1 Proof of VDF Sequentiality

We recall Wesolowski's VDF construction based on class groups [35] in Figure 8 and show
that it satis�es the sequentiality property as stated in De�nition 3. To this end, we �rst
instantiate the group family Gκ in De�nitions 11 to 13 above with the class groups as
described in Figure 8. In particular, we de�ne Gκ := {Cl(d) : d ∈ dκ}, where dκ is family of
(su�ciently large) negative square free integers d with d ≡ 1(mod 4) and Cl(d) are class
groups of an imaginary quadratic �eld Q(

√
d) based on some d ∈ dκ. We now proceed to

describe the proof of VDF sequentiality in Lemma 20 below.

Lemma 20. If General-TLR,Gκ
Γ,q,i,δ is (Γ, β)-hard, then the VDFδ construction from Figure 8

is (i, β)-sequential as per De�nition 3.

Remark 1. Before proving Lemma 20, we want to highlight that we choose to instantiate
the group family with class groups, and the VDF itself from [35] as in Figure 8. This
is because it does not require any trusted setup assumptions which is bene�cial for our
main protocols in Figures 2, 5 and 6. However, we also emphasize that the same proof for
Lemma 20 with minor changes will also hold for the RSW based VDF from [31], though
this requires a trusted setup assumption to generate the initial modulus N for our main
protocols.
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Proof. Assume A to be a (q, Γ, 1)-algorithm (as per De�nition 1)4 that breaks the (i, β)-
sequentiality of VDFδ from Figure 8 (as per De�nition 3). We then construct a q-fold
group algorithm R = (R1,R2) that internally executes A and breaks the (Γ, β) hardness
of the General-TLR,Gκ

Γ,q,i,δ experiment. In particular, the q-fold group algorithm R = (R1,R2)
simulates VDFδ (as per Figure 8) and the oracles HG,Hprime to A. Note that since R
can compute q group operations in parallel, it can indeed run the (q, Γ, 1)-algorithm A
internally. Here, we assume A is able to evaluate VDFδ at most q many times in parallel.

In more detail, for an arbitrary time T 5 and some k ∈ Z>0, consider a (k, T, ϵ)-
unpredictable vector S (as per De�nition 2). For a security parameter κ, the General-TLR,Gκ

Γ,q,i,δ

experiment samples (G, 1G) ← GGen(1κ),g ← Gn and sends it to R1. On input (G,g),
R1 �xes the oracles HG,Hprime implicitly and simulates them along with the VDFδ ora-

cle to A. When R1 outputs R2, General-TL
R,Gκ
Γ,q,i,δ sends (g, {X1, . . . , XΓ }) to R2 where

{X1, . . . ,XΓ } ← GΓ . R2 sends S to A at time T . Note that A can issue hash oracle queries
both before and after time T . Accordingly, R simulates such queries as follows.

Simulation of HG and Hprime. Simulation of Hprime is trivial. For all oracle calls to HG

before time T , simulate HG in a straightforward manner � on any input, return a uniform
output and maintain a table of all input/output tuples to answer consistently to repeated
queries. R1 executes at most Γ many steps in the preprocessing phase, since A can exe-
cute the same by de�nition. For oracle calls after time T , proceed as follows. R2 gets its
challenges in the online phase as (g, {X1, . . . , XΓ }) from General-TLR,Gκ

Γ,q,i,δ and stores them
in a list as L := {X1, . . . , XΓ }. On some input S′ to HG, sample a generator X ← L, set
X := HG(S

′) and update the table of HG accordingly. Update list L as L := L \X. There
are two possible cases to consider:

Case 1: A outputs Sj ∈ S for some j ∈ [k] before time T . In this case, HG has not

been programmed to output an element X ∈ {X1, . . . , XΓ } in case A queries it on an
input that depends on S. Hence, when A returns output {ϕ̂1, . . . , ϕ̂τ+1}, R cannot use
it to win its own game. Since S is considered to be (k, T, ϵ)-unpredictable, this happens
with probability at most ϵ.

Case 2: A outputs some Sj ∈ S for some j ∈ [k] after time T . In this case, R has

used one of the elements X ∈ {X1, . . . , XΓ } to �program� the oracle HG on input any
component of S. WhenA outputs {ϕ̂1, . . . , ϕ̂τ+1}, where ∀j ∈ [τ+1], VDFδ(Verify, ϕ̂j , S

′
j) =

1 using less than i·δ time,R can return {(Y1, Xℓ1), . . . , (Yτ+1, Xℓτ+1)} := {(ϕ̂1, Xℓ1), . . . , (ϕ̂τ+1, Xℓτ+1)}
as an answer to its own game, where {X1, . . . , Xℓτ+1} ⊊ {X1, . . . , XΓ }. Since (parallel)
time used in the online phase is less than i · δ, R wins the experiment General-TLR,Gκ

Γ,q,i,δ.
Thus, we have in case 2

Pr
ϕ̂1,...,ϕ̂τ+1←
AHG,Hprime,,VDFδ

[
∀j ∈ [τ + 1] : VDFδ(Eval, S

′
j , 1) = ϕ̂j

]
≤ Pr

[
Gen-TLR,Gκ

Γ,q,i,δ = 1
]
≤ β

Since case 1 occurs with probability at most ϵ, combining the two cases we have

Pr
ϕ̂1,...,ϕ̂τ+1←
AHG,Hprime,,VDFδ

[
∀j ∈ [τ + 1] : VDFδ(Eval, S

′
j , 1) = ϕ̂j

]
≤ β + ϵ.

⊓⊔
4 We assume that the computational speed-up factor κ associated with (q, tp,κ)-algorithm A to be 1
relative to that of any q-fold group algorithm in General-TLR,Gκ

Γ,q,i,δ.
5 T is �xed in the context of the individual protocols where it is used.
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A.2 Generalized One-More Time-Lock Experiment in SAGM

Katz et al. [24] introduced and de�ned the strong algebraic group model (SAGM) as a
stronger variant of the algebraic group model (AGM). Baarsen and Stevens [33] recently
extended this model to include their setting of �nite Abelian groups, where they provided
several results on connections between various hardness assumptions. In particular, they
identi�ed a generic template for showing connections between various problems on any
�nite Abelian group family in any given Abelian hidden-order group model (AHO-GM),
where GM can be instantiated with standard model (SM) or AGM or SAGM.

In this section, we analyse the hardness of the generalized one-more time-lock problem
from De�nition 13 in the SAGM. In particular, we reduce the hardness of the multiple

of group order (MO) problem to that of the General-TLA,GΓ,q,i,δ in the AHO-SAGM for any
general Abelian group family G = {Gκ}κ∈Z>0 . To this end, we �rst recall some necessary
de�nitions and lemmas from [33] below.

De�nition 14 (Strongly algebraic algorithm). An algorithm A over a group G is

called strongly algebraic if it has one or more output rounds (between which it may perform

arbitrary local computation). An output round is called algebraic if it contains one or more

group elements. For each group element X it outputs, it must also output a tuple of one of

the following forms:

1. (X,X1,X2) ∈ G3 such that X = X1 · X2, where X1,X2 were either provided as input to

A or were output by A in some previous step(s).

2. (X,X1) ∈ G2 such that X = X−11 , where X−11 was either provided as input to A or were

output by A in some previous step(s);

The algebraic running time of A is the number of algebraic steps it takes, and is denoted

by ATime(A).

De�nition 15 (Multiple of Group Order (MO)). For any κ ∈ Z>0, an Abelian group

family Gκ, consider the experiment MOAGκ w.r.t. any algorithm A:

1. Sample (G, 1G)← GGen(1κ) and g := (g1, . . . , gn)← Gn.

2. Run A(G, 1G,g) to get an output N .

3. Return 1, if (N ̸= 0 ∧N ≡ 0 (mod |G|)). Else, return 0.

Then, MOAGκ is (t, ϵ)-hard, if for all A running in time t,Pr
[
MOAGκ = 1

]
< ϵ.

Notation. We introduce some notations for the lemmas that we describe next. Let g =
(g1, . . . , gn) ∈ Gn where G ∈ Gκ is some Abelian group family. For any vector v =
(v1, . . . , vn) ∈ Zn and matrix A = [a1, . . . ,an] ∈ Zn×n, de�ne gv =

∏n
i=1 g

vi
i and gA :=

(ga1 , . . . ,gan) respectively. By det(A), we mean the determinant of the square matrix A.
We now recall the de�nition of a relation from [33]. Given a system of generators g =

(g1, . . . , gn) ∈ Gn from a �nite Abelian group (G, 1G), we call any vector e = (e1, . . . , en) ∈
Zn a �relation� for g when ge = 1G. Baarsen and Stevens [33] provided a generic template
for reducing the MO problem (De�nition 15) to another computational problem (say G)
on any �nite Abelian group in the AHO-GM. We recall this template in the SAGM in
Lemma 21 below.

Lemma 21 ([33, Lemma 5.4]). Let G = {Gκ}κ∈Z>0 be an Abelian group family. Let G
be some computational game which, given κ, is based on sampling a group G ← Gκ and
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elements g = (g1, . . . , gn)← Gn uniformly at random. Let RelA be a relation sampler that

takes as input a group G ∈ Gκ,g = (g1, . . . , gn) ∈ Gn, and has oracle access to an adversary

A for game G. Assume RelA satis�es the following properties for any given adversary A in

the SAGM:

1. RelA(G,g) outputs ⊥ (failure) or a relation e such that ge = 1G.
2. When G = ⟨g⟩, each execution of RelA(G,g) has an independent and identical suc-

cess probability p′G,g with |p′G,g − pG| ∈ negl(κ), where pG := AdvGG,A|G(κ) denotes the

advantage of A in G conditioned on the event G← Gκ.
Essentially, it says that every execution of RelA outputs with a probability p′G,g that is

independent of all other executions. Further, p′G,g is separated negligibly apart from the

advantage of A winning in G, conditioned on the random choice of G← Gκ.
3. For G = ⟨g⟩, given n relation outputs {e1, . . . , en} from n independent and suc-

cessful executions of RelA(G,g), it holds that Pr [det(E) = 0] ∈ negl(κ), where E :=
[e1, . . . , en] ∈ Zn×n.

4. The (expected) runtime of Rel is asymptotically equivalent to that of A.

Then the following holds: MORel
Gκ is (t, ϵ)-hard implies GA is (t′, ϵ′)-hard, where t, t′ and ϵ, ϵ′

are polynomially related.

Remark 2. The original statement of Lemma 21 in [33, Lemma 5.4] relates the hardness
of MO to that of the group-theoretic problem G with some more parameters: a constant
S ≥ 4, CS ≥ 1 (is a function of S) and p = AdvGG,A is the probability that de�nes the
adversary's advantage in G. Based on this, the underlying relation sampler Rel needs to be
invoked ⌈Sn/p⌉ times in order to sample n linearly-independent relations with overwhelm-
ing probability. However, our �nal proof for Lemma 23, that reduces the hardness of MO
to that of General-TLΓ,q,i,δ, follows mostly from that of the [33, Theorem 8.2] with similar
arguments. Thus, we avoid stating these parameters explicitly in Lemma 21 for brevity
and will only provide an informal statement with a proof sketch for Lemma 23.

Before showing the �nal reduction in Lemma 23, we recall [33, Lemma 8.1] that helps to
bound the size of the representation coe�cients of the output elements of strongly algebraic
algorithms.

Lemma 22 ([33, Lemma 8.1]). Let G be a �nite Abelian group and let g = (g1, . . . , gn)
be a tuple of elements of G. Let A be any strongly algebraic algorithm running in at

most t rounds on input g and X = gr =
∏n

i=1 g
ri
i for r = (r1, . . . , rn) ∈ Zn

>0 (i.e.,

ATime(A(g, X)) ≤ t). Let Y be any output of A and let (Ys, Ys,1, Ys,2) or (Ys, Ys,1) be the

corresponding tuples for each element Ys being output at round s ∈ [t]. (Note that A is in

fact allowed to output arbitrary many tuples in each round, but we can always pick a path

of sequential computation leading to Y .) Then the following two statements hold.

1. The generalized discrete logarithm DLogA(g, Y ) w.r.t. g and A, can be recursively com-

puted as follows:
� DLogA(g, gi) = 1i (the vector with a 1 in the i-th place and 0 on all others) for

i ∈ [n], DLogA(g, X) = r;
� For s = 1, . . . , t, let

DLogA(g, Ys) =

{
DLogA(g, Ys,1) + DLogA(g, Ys,2), if Ys = Ys,1Ys,2

−DLogA(g, Ys,1), if Ys = Y −1s,1
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2. The generalized discrete logarithm d = (d1, . . . , dn) := DLogA(g, Y ) satis�es |di| <
2tri,∀i ∈ [n].

Lemma 23 (Informal). MORel
Gκ is (t, ϵ)-hard implies General-TLA,GκΓ,q,i,δ is (t

′, ϵ′)-hard, where
t, t′ and ϵ, ϵ′ are polynomially related.

Proof (Sketch). Let A = (A1,A2) be a q-fold group algorithm (adversary) breaking the
General-TLA,GκΓ,q,i,δ experiment, where A1 runs in the standard model on input (G,g) during
the preprocessing phase and produces A2 ← A1(G,g) which runs in the strong algebraic
group model during the online phase. In particular, A2 uses i · δ − 1 parallel algebraic
steps (or less) in the online phase. Using the generic template from Lemma 21, we then
construct an adversary BA1 against MORel

Gκ , that takes as input (G,g) for G ∈ Gκ,g ∈ Gn.

Accordingly, we de�ne a relation sampler RelA1 similar to [33] in Figure 9 below, where
we assume that the variable state keeps an account of the internal variables across all the
subroutines in all the invocations and denote tk := ATime(A2(g̃k,Xk)).

RelA1(G,g):

1. Run
(
g̃k,Xk := {Xk

γ}γ∈[Γ ]

)
← Sample(G,g).

2. Run A2 ← A1 (G, g̃k).

3.
(
Xk

ℓj
, Y k

j ,
([
Y k
j,s

])tj
s=1

)
j∈[τ+1]

←A2(g̃k,Xk), where {Xk
ℓj
}j∈[τ+1] ⊊ Xk.

4. W.l.o.g., choose the �rst Y k
j ∈ {Y k

1 , . . . , Y
k
τ+1} where tj < δ.

5. Update state = state ∪
(
Xk

ℓj
, Y k

j , [Y
k
j,s]

tj

s=1

)
.

6. Return Ext(G,g, state).

Sample(G,g):

1. Ak := [ak
1 , . . . ,a

k
n]←

(
U3

)n2

, where U is as per De�nition 11(4).a

2. For γ = 1 to Γ , do:

(a) Sample rkγ ←
(
U3

)n
.

(b) Compute Xk
γ := gAkr

k
γ .

3. Return (gAk , {Xk
1 , . . . , X

k
Γ }).

Ext(G,g, state):

1. If
(
Y k
j = (Xk

ℓj
)2

δ

∧ tj < δ
)
, do:

(a) Set dk = DLog(g̃k, Y
k
j ).

(b) Return 2δAkr
k
ℓj
−Akdk.

2. Else, return ⊥.

a ak and rk must be chosen from U3 to satisfy condition (3) of Lemma 21.

Fig. 9. Relation sampler Rel for Lemma 23

For any k ∈ [⌈Sn/p⌉], let (g̃k,Xk = {Xk
1 , . . . , X

k
Γ }) be the input to A2 in the online

phase. A2, being a q-fold group algorithm, can compute q algebraic steps in parallel. Thus,
to generate τ +1 = (i−1) · q+1 proofs in i · δ−1 or less steps, A2 must evidently compute
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at least one of these proofs in a way that deviates from the honest computation (i.e., as
prescribed via the interface of the VDF).

When A2 outputs

(
Xk

ℓj
, Y k

j ,

([
Y k
j,s

]tj
s=1

))
j∈[τ+1]

, the reduction BA1 picks j ∈ [τ+1] as

the �rst such index w.l.o.g. for which tj = ATime(A2(g̃k,Xk)) < δ. In this case, the correct-
ness of DLog algorithm from Lemma 22 enforces that the vector zk := (2δAkr

k
ℓj
−Akdk)

returned by Ext forms a relation w.r.t. g, thus proving Lemma 21-(1). Further, conditioned
on the event that G = ⟨g⟩ (that holds by our assumption in Lemma 21), the instances(
g̃k,Xk = {Xk

γ}γ∈[Γ ]

)
have negligible statistical distance to the uniform distribution on

Gn+Γ . This ensures Lemma 21-(2), i.e., each execution of RelA1(G,g) has independent and
identical success probability. Note that the time complexity for each call to RelA1(G,g) is
asymptotically dominated by that of A up to a factor of at most Γ . Thus, so long as Γ is
some poly(κ), their runtimes are asymptotically equivalent, and this proves Lemma 21-(4).

Lemma 21-(3) follows similar to that of [33, Theorem 8.2]. That is, we assume w.l.o.g.
that A succeeds on all instances k ∈ [n]. Then, for the k-th successful run, there exists

a smallest index j ∈ [τ + 1] with tj < δ and Y k
j = (Xk

ℓj
)2

δ
for some ℓj ∈ [Γ ]. As stated

before, Ext(G,g, state) returns the relation vector zk = (2δAkr
k
ℓj
− Akdk) accordingly.

Recall rkℓj =
(
rkv,ℓj

)
v∈[n]

,dk = (dkv)v∈[n] are vectors of length n. We drop the coe�cients

j ∈ [τ + 1], ℓj ∈ [Γ ] from now on for brevity. Thus, for Ak =
[
ak1, . . . ,a

k
n

]
:=

[
aku,v

]
u,v∈[n],

we express aku,v = a′′ku,v ·Ov+a
′k
u,v, where Ov := |⟨gv⟩| is de�ned as the order of the Abelian

group generated by gv. With this, we expand the coe�cients of zk = (zk,u)u∈[n] as:

zk,u =

n∑
v=1

a′′
k
u,v · ζk,v ·Ov +

n∑
v=1

a′
k
u,v · ζk,v, where ζk,v = (2δrkv − dkv).

Lemma 22 and ATime(A2(g̃k,Xk)) < δ ensures that ζk,v ̸= 0, ∀k ∈ [n]. We can now split
the above coe�cients as ẑk,u + z̃k,u, with

ẑk,u := a′′
k
1,v · ζk,1 ·Ov and z̃k,u := a′

k
1,v · ζk,1 +

∑
u̸=1

aku,v · ζk,v

The rest of the proof follows exactly similar to [33, Theorems 7.2, 6.5].
⊓⊔

B Deferred Proofs for ΠKeyGrade Protocol

Proof of Lemma 1.

Proof. It is easy to verify that all honest parties' keys are assigned the highest grade 2 by
all other honest parties from the protocol description. Hence, the protocol satis�es graded
validity (for any number of corrupted parties). ⊓⊔

Proof of Lemma 2.

Proof. Let Pi and Pj be honest parties. We show that if Pj assigns grade 2 to some party
Pl's public key pkl, then Pi assigns pkl at least grade 1. Since (pkl, 2) ∈ KeySetj , in the
second round of the Key Grading Phase, Pj must have received a correctly formed message
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(rank||2, pkl, χl, ϕl,dl) from Pl, i.e., such that VDFδ(Verify, ϕl, {χl, pkl}) = 1, and that χl

depends on Pj 's �rst round challenge dj , i.e., χl = H(dl) and dj ∈ dl. Thus, Pj multicasts
the message (rank||1, pkl, χl, ϕl,dl, cj) to all parties at the beginning of the third round
of the Key Grading Phase. Pi receives this message by the end of the third round of the
Key Grading Phase and has, at that point, already assigned pkj grade 2. It is then able to
verify that Pj 's message is correctly formed and depends on ci (by performing Pj 's checks
and the additional checks ci ∈ cj and dj = H(cj)). Hence, it assigns pkl the grade 1 at this
point, unless it has previously assigned it the grade 2. ⊓⊔

C Deferred Proofs for ΠGBC, ΠGBA Protocols

Proof of Lemma 4.

Proof. If the sender S is honest, then it multicasts x with a valid signature ⟨x⟩S at time 0.
Let P be an honest party. From the protocol description, P generates a valid countersigna-
ture as ⟨⟨x⟩S⟩P and multicasts it at time ∆. At time 2∆, P collects valid countersignatures
of the form ⟨⟨x⟩S⟩k from all parties Pk with gk = 2 into its set of signatures ψP (x). Note
that due to the graded validity property of the underlying graded PKI, if Pk is honest, then
Pk's public key has grade 2 for P , i.e., ((pkk, 2) ∈ KeySetP ). As there are at least

N
2 honest

parties, this implies that P 's signature set ψP (x) contains at least N
2 countersignatures

from honest parties. Moreover, since honestly generated countersignatures are valid in the
view of each honest party, this implies that ψP (x) is a consistent signature set in the view
of every honest party. Due to the unforgeability of underlying digital signature scheme,
there is no valid countersignature of the form ⟨⟨x′⟩S⟩k, where gk = 2 and x′ ̸= x. Hence, P
multicasts a set ψP (x) at time 2∆ which consistent in the view of every honest party.

⊓⊔
Proof of Lemma 5.

Proof. Let us assume that at time 3∆, honest party Pi receives at least
N
2 signature sets

which are all consistent with some value x. This implies that among them, there is at least
one set ψP (x) which was sent by an honest party P at time 2∆. Now, towards contradiction,
suppose honest party Pj receives the set ψP ′(x′) of countersignatures from party P ′ such
that ψP ′(x′) is weakly consistent with x′ ̸= x. By de�nition, ψP ′(x′) contains at least
N
2 weakly valid countersignatures on x′ from distinct outer signers. Among these N

2 outer
signers, there is at least one honest party P ∗. Since P ∗ would have sent the countersignature
⟨⟨x′⟩S⟩P ∗ at time ∆, all honest parties would have received it by time 2∆. Hence, no honest
party would have sent a consistent set of signatures for x at time 2∆. This contradicts that
P sends such a set at time 2∆.

⊓⊔
Proof of Lemma 6.

Proof. If S is honest, then by Lemma 4 every honest party P multicasts a signature set
ψP (x) at time 2∆ which is consistent with x. At time 3∆, every honest party hence receives
at least N

2 such signature sets. Moreover, by Lemma 5, no honest party receives a set of
signatures that is weakly consistent with some x′ ̸= x. This implies that all honest parties
output (x, 2).

⊓⊔
Proof of Lemma 7.
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Proof. Let P be a honest party that outputs (x, 2). We want to show that every honest
party P ′ outputs (x, g′ ≥ 1). Since P outputs grade 2 for value x, it receives at least N

2
signature sets from distinct parties which are all consistent with x. One of these sets must
have been sent by an honest party P ∗ and received by time 3∆. Therefore, P ′ must have
also received this set ψP ∗(x) from P ∗ by time 3∆. From the graded consistency property of
the underlying graded PKI, each countersignature that is valid in P ∗'s view, is weakly valid
in each honest parties view. This implies that ψP ∗(x) is a weakly consistent signature set
in the view of party P ′. By Lemma 5, P ′ receives no signature set that is weakly consistent
with x′ ̸= x. Hence, P ′ outputs (x, 2) or (x, 1).

⊓⊔

Proof of Lemma 8

Proof. If Pi output vi with grade 2, this means Pi must have set |Svi | ≥ N
2 . Due to the

graded consistency property of ΠGBC, Pj must have |Svj | ⊇ |Svi | ≥ N
2 , such that vj = vi.

This implies Pj outputs value vj = vi with grade at least 1.

⊓⊔

Proof of Lemma 9

Proof. Due to the graded validity property of ΠGBC, the result follows immediately.

⊓⊔

D Deferred Proofs of ΠLeader Protocol

Proof of Lemma 10.

Proof. From the arguments of Lemma 3 and due to (2, 5
11 , β) sequentiality of VDF11∆,

A computes at most ⌊(2 + 5·2
11 )⌋q = 2q proofs of the form ϕ0i = VDF11∆(Eval, χi,κ),

(κ ≤ 2), earliest at time 11∆. Next, A can make at most 2q di�erent calls of the form
VDF13∆(Eval,HN(ϕ

0
i ),κ) at 11∆, which returns 2q proofs of the form ϕ1i at 24∆. An hon-

est party computes its ϕ0 and ϕ1 at time 13∆ and 26∆ respectively. Due to the (2, 2
13 , β)

sequentiality of VDF13∆, A cannot complete any additional proof ϕ1i within the remain-
ing time (26 − 24)∆ = 2∆. Applying the same argument inductively for k ≥ 2 and
VDF12∆(Eval,H(ϕ

k−1
i ),κ) completes the proof.

⊓⊔

Proof of Lemma 11.

Proof. We prove this statement by induction on k. From the arguments of Lemma 3, we
know that the probability of a (q, tp, 2)-algorithm guessing any element of h0 is at most
2−κ−2 log(κ)−1 + β before (earliest) time 11∆. Thus, h0 is (n − q, 11∆, 2−κ−2 log(κ)−1 +
β)-unpredictable and the base case k = 1 follows directly from combining (2, 2

13 , β)-

sequentiality of VDF13∆ with (n − q, 11∆, 2−κ−2 log(κ)−1 + β)-unpredictability of h0. For
the step case, assume that hk is (n − q, (25 + 12(k − 1)) ·∆, 2−κ−2 log(κ)−1 + (k + 1) · β)-
unpredictable. Combining this with (2, 16 , β)-sequentiality of VDF12∆ immediately yields

that hk+1 is (n− q, (25 + 12(k − 1)) ·∆, 2−κ−2 log(κ)−1 + (k + 2) · β)-unpredictable.
⊓⊔

Proof of Lemma 12.
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Proof. For k ≥ 1 denote Ek the event that A queries H on an element of hk before time
(12(k − 1) + 25) · ∆. By Lemma 11, Ek occurs with probability at most 2−κ−2 log(κ)−1 +
(k+1) ·β. By a union bound, E :=

⋃
1≤k≤κEk occurs with probability at most 2κ2 ·β+κ ·

2−κ−2 log(κ)−1 ≤ 2·2−κ−1 ≤ 2−κ. Unless E occurs, the values HN(hk,i) are uniformly random
values in the range [N] from the view of A for all 1 ≤ i ≤ N at time (12(k − 1) + 25) ·∆.
Hence, conditioned on ¬E, the component ℓ which minimizes HN(hk,ℓ) corresponds to an
honest party with probability at least n−q

N , where N = n+ q. Overall, ℓ corresponds to an
honest party at time (12(k − 1) + 24) ·∆ with probability at least n−q

N = n−q
n+q ≥

1
2 (since

q < n
3 ).

⊓⊔

E Proof of Theorem 2.

Proof. Let P be an honest party with input mP and let us refer to an execution of the
main 12-round protocol loop as an iteration. It is easy to see that lock (initially set to
∞) is a monotonically decreasing value. Moreover, once P sets lock := 1 in iteration I, it
terminates the protocol by the end of iteration I + 2 and the value of m which P holds
at this point in time (i.e., when setting lock = 1) remains unchanged until the protocol
terminates. Now let us proceed with the proof of validity, consistency and termination
properties of ΠBA protocol below.

Proof of Validity. Suppose that immediately prior to an iteration I, each honest party Pi

holds the same value v. Then, each honest party runs �rst iteration ofΠGBA on input v. Due
to the validity property of ΠGBA, each honest party Pi outputs (v, 2), hence sets lock := 1
(unless of course, it has already set lock := 0) and m := v. By the above argumentation,
each honest party outputs v by the end of iteration I+2 at the latest. This already su�ces
to prove validity of the protocol, since if all honest parties start the protocol with the same
value v, then the �rst iteration is indeed such an iteration.

Proof of Consistency. To prove consistency, we argue that if an honest party P is the �rst
party to set lock := 1 after the �rst invocation of ΠGBA in some iteration I, then every
honest party terminates at the end of iteration I+2, at the latest, with output v. Consider
the �rst iteration I in which some honest P sets lock := 1 after outputting (v, 2) in the �rst
invocation of ΠGBA. Due to the consistency property of ΠGBA, every other honest party
must output v with at least grade 1, setting m := v. Hence, every honest Pj inputs v to
the second invocation of ΠGBA in iteration I. Again due to the validity property of ΠGBA,
each honest party outputs v with grade 2 after second invocation of ΠGBA in iteration I.
Since I is the �rst iteration in which some honest party sets lock := 1, no honest party
terminates at the end of I. Observe now that each honest party holds the same value v
immediately prior to iteration I + 1. By what we have argued above, each honest party
will terminate at the latest at the end of iteration I+3 (and with the same output v). The
above ensures consistency of the protocol.

Proof of Termination. It remains to argue that the protocol terminates within expected
constant rounds and with overwhelming probability after κ rounds. Consider the scenario
where an honest leader Pℓ is elected and each honest Pi has still set lock := ∞ in some
iteration I. If all honest parties have m = ⊥ after the second round of ΠGBA invocations,
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then each party Pi holds the same value m at the end of iteration I, because Pℓ was honest
at the time where it multicast and all honest parties use Pℓ's value. Now lets say, there is
an honest party P that has lock = ∞ and set m = v after the second ΠGBA invocation.
Consider another honest party Pj that either has mj = vj or mj = ⊥. Due to the graded
consistency property of ΠGBA, if mj = vj , then vj = v. If mj = ⊥, then later Pj sets
mj = ml. But again from the graded consistency property of ΠGBA, since Pl was honest
when it multicast ml, ml = m.

Thus, by the end of iteration I, each honest party has updated their value to mℓ = m.
It is easy to see that the expected number of iterations until an honest leader is elected
is 2 (by the properties of ΠLeader). Thus by the above, the protocol terminates within an
expected two iterations and terminates with probability 1− 2−κ after κ iterations.

⊓⊔

F Deferred Proofs of Theorem 4

Proof of Lemma 13.

Proof. Let A1 and A2 denote the events that two (possibly dependent) executions (labeled
one and two for the purpose of this lemma) of protocol Π (in any of the worlds) achieve
Byzantine Broadcast and have ϱ multicast complexity. By assumption, Pr[A1] ≥ p and
Pr[A2] ≥ p, and hence Pr[C] = Pr[A1 ∩A2] ≥ Pr[A1] + Pr[A2]− 1 = 2p− 1.

⊓⊔
Proof of Lemma 14.

Proof. To bound the probability of event F1 (conditioned on C), we �rst de�ne the following
events. Let S denote the event that a uniformly chosen party Pi ∈ L ever multicasts in the
simulation. Conditioned on C, the simulation directs parties to multicast at most ϱ many
times. Since party Pi is chosen uniformly from the set L, Pr[S|C] = ϱ

|L| . Now, observe that
the set U is a uniformly created subset of set L chosen by the adversary according to its
simulation strategy. By the previous calculation, the probability that any particular party
in set U ever multicasts in the simulation coincides with the probability of event S. Now,
let T1 denote the event that at least party uniformly chosen from set U ever multicasts in
the protocol. By a union bound, we see that

Pr[T1|C] ≤
|U|∑
i=1

Pr[S|C].

Hence, with multicast complexity up to ϱ, Pr[T1|C] ≤
|U|∑
i=1

Pr[S|C]. Since F1 can only occur

as a result of an unsimulated party attempting to multicast when we have conditioned on
C, we can infer that Pr[F1|C] = Pr[T1|C].

Now,

Pr[F1|C] ≤
|U|∑
i=1

(Pr[S|C]) = ϱ · |U|
n− q + ϱ

= (n− 2q +

√
2q

4
) ·

⌊
√
2q
8 ⌋

(n− q +
√
2q
8 )

)

≤

√
2q
8 (n− 2t+

√
2q
4 )

(n− q +
√
2q
8 )

.
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By setting t = n
2 − c, for c = O(1), we bound

(n−2t+
√
2t
4

)

(n−t+
√
2t
8

)
as

(2c+
√
n−2c
4 )

n
2 + c+

√
n−2c
8

=
(2c+

√
n−2c
4 )

n
2 − c+

√
n−2c
8 + 2c

=

√
n−2c
4 ( 8c√

n−2c + 1)

n−2c
2 +

√
n−2c
8 + 2c

=

√
n−2c
4 ( 8c√

n−2c + 1)
√
n−2c
8 (4

√
n− 2c+ 1 + 16c√

n−2c)
=

2( 8c√
n−2c + 1)

(4
√
n− 2c+ 1 + 16c√

n−2c)
<

2 · 2
3
√
n
=

4

3
√
n
,

where the last inequality holds for n ≥ (64c2 +2c). By substituting q = (n2 − c) in
√
2q
8 , we

�nally obtain Pr[F1|C] ≤
√
n−2c
8 · 4

3
√
n
=
√
n−2c
6
√
n

< 1
6 .

⊓⊔
The proof of Lemma 15 is similar to that of 14.

Proof of Lemma 16.

Proof. The statement holds due to the following reasons. 1) In Worldc,b, the forever honest
parties always receive honest messages. 2) InWorldc,b, parties that are adaptively corrupted
by A send correct messages to the honest parties except for party P . 3) The behavior of
the corrupted party P in Worldc,b is exactly like that of honest party P in Worldh,b. 4) The
multicast complexity in both worlds Worldc,b and Worldh,b is at most ϱ, according to the
de�nition of the event C. Therefore, conditioned on events C and ¬F1, the views of the
parties that are forever-honest in Worldc,b and Worldh,b are identically distributed.

⊓⊔

Proof of Lemma 17.

Proof. The statement of the lemma holds due to the following reasons. 1) In Worldh,b, P
always receives messages of both worlds (Worldh,0 and Worldh,1) from adaptively corrupted
parties. 2) Both the worlds Worldh,0 and Worldh,1 have multicast complexity at most ϱ
according to the de�nition of the event C. Therefore, conditioned on events C and ¬F2,
the views of the party P in the worlds Worldh,0 and Worldh,1 are identically distributed.

⊓⊔

Proof of Lemma 18.

Proof. Since the sender S is honest in Worldc,b, by the validity property of the Byzantine
Broadcast, all the forever honest parties output b with at least probability p in Worldc,b.
From Lemma 16, Worldc,b is indistinguishable from Worldh,b for forever honest parties. We
infer that Pr[Y |C ∩ ¬F1] ≥ p.

⊓⊔

Proof of Lemma 19.

Proof. By Lemma 17, conditioned on events C and ¬F2, the views of the party P in the
worlds Worldh,0 and Worldh,1 are identically distributed. Therefore, conditioned on the
events C and ¬F2, the probability of P not outputting 1 in Worldh,1 is given as Pr[X|C ∩
¬F2] ≥ 1

2 .
⊓⊔
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