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Abstract: Machine learning algorithms crucially depend
on non-linear mathematical functions such as division (for
normalization), exponentiation (for softmax and sigmoid),
tanh (as an activation function), logarithm (for cross-
entropy loss), and square root (for back-propagation of
normalization layers). However, when machine learning is
performed over secure computation, these protocols incur
a large communication overhead and high round complex-
ity. In this work, we propose new multi-party computa-
tion (MPC) protocols for such functions. Our protocols
achieve constant round complexity (3 for semi-honest, 4
for malicious), an order of magnitude lower communica-
tion (54−121× lower than prior art), and high concrete
efficiency (2−1163× faster runtime). We rely on recent ad-
vances in function secret sharing (FSS) to construct these
protocols. Our contributions can be summarized as follows:

(1) A constant round protocol to securely evaluate non-
linear functions such as division, exponentiation, log-
arithm, and tanh (in comparison to prior art which
uses round complexity proportional to the rounds of
iterative methods/required precision) with high accu-
racy. This construction largely follows prior work in
look-up style secure computation.

(2) Our main contribution is the extension of the above
protocol to be secure in the presence of malicious ad-
versaries in the honest majority setting. We provide
a malicious sketching protocol for FSS schemes that
works over rings and in order to prove its security, we
extend (and prove) a corresponding form of Schwartz-
Zippel lemma over rings. This is the first such extension
of the lemma and it can be of independent interest in
other domains of secure computation.

(3) We implement our protocol and showcase order of
magnitude improvements in runtime and communi-
cation. Given the low round complexity and substan-
tially lower communication, our protocols achieve even
better performance over network constrained environ-
ments such as WAN. Finally, we showcase how such
functions can lead to scalability in machine learning.

Note that techniques presented are applicable beyond the
application of machine learning as the protocols effectively
present an efficient 1-out-of-N oblivious transfer or an effi-
cient private information retrieval protocol.

1 Introduction
Secure Multi-party Computation (SMC/MPC) is becom-
ing an increasingly popular way to perform computation
over data while maintaining privacy. Applications such as
machine learning are uniquely positioned to benefit from
access to more data while remaining privacy compliant.
Such ML applications have been the focus of a number of
recent works [31, 41, 59, 63, 64, 72, 86, 88]. While plaintext
computation provides no privacy, MPC techniques intro-
duce privacy into the computation at an overhead. Over
the past few years, advances in protocol design coupled
with systems improvements have led to reductions in the
overhead of secure computation protocols.

Machine learning (ML) algorithms require both linear
and non-linear computation. In plaintext computation, the
non-linear operations are extremely efficient and most of
the efforts are geared towards improving the efficiency of
the linear layers. However, the balance of the overhead of
the linear and non-linear layers is different under linear
secret sharing-based secure computation - the non-linear
layers are more expensive, requiring large communication
and high round complexity. To circumvent these draw-
backs, non-linear layers are usually replaced using “MPC
friendly” functions.

However, ML algorithms crucially rely on non-linear
functions. Normalization is essential for stable convergence.
Sigmoid and logarithm (for cross-entropy) are necessary
to achieve high learning accuracy. Inverse square root is
critical to enable backward propagation over normalization
layers and thus fundamental to training neural networks.
Tanh enables trained models to achieve much better per-
formance on certain machine learning tasks such as natural
language processing. Non-linear functions are thus essen-
tial for improved learning, better convergence, and high
accuracy [51, 52] and consequently are a fundamental
component of the machine learning ecosystem.

Even though these non-linear functions are essential,
they incur large overheads when implemented in secure
computation [21, 22, 54, 71, 88]. Furthermore, for more
complex non-linear functions such as exponentiation and
logarithm, the set of techniques is restricted to either
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some form of iterative methods or Taylor series expansions.
These require running the iterative methods until suffi-
ciently good convergence has been achieved. These factors
make the use of such non-linear functions prohibitively
expensive within secure computation. Additionally, secure
computation frameworks for machine learning algorithms
typically use fixed-point arithmetic. This makes the com-
putations, particularly multiplications, inherently approxi-
mate. Non-linear functions, which are typically computed
using polynomial approximations, also rely on sequential
multiplications and thus incur further approximation in
their computation. When these errors accumulate over
computations of high depth, the overall accuracy of the
computations is diminished. Thus, without the use of func-
tions such as sigmoid or integer division (as normalization),
scaling such computations to larger depths is extremely
difficult. To truly enable secure machine learning over large
scales, support for highly efficient protocols to compute
non-linear functions is the need of the hour.

In this work, we design highly efficient protocols for
non-linear functions such as normalization, exponentiation,
logarithm, and square root. Our protocols can be used for
both private training of ML models as well as for private
inference (where the model may be trained elsewhere). Our
protocols exhibit constant round complexity in contrast
to prior work that requires round complexity proportional
to the number of iterations of the Newton’s method. We
focus on MPC over finite rings and design protocols for
both semi-honest and malicious security with high concrete
efficiency (three non-colluding servers).

1.1 Our Contributions

Below, we describe our main contributions in detail.

Constant Round Protocols for Non-linear Func-
tions. We demonstrate constant round protocols for func-
tions such as normalization, exponentiation, logarithm,
square root, tanh etc – functions that are critical to present
day machine learning algorithms and frameworks. In par-
ticular we ask the following question:

Can we design constant round protocols for non-linear
functions that achieve high concrete efficiency when
considering MPC over finite rings?

and answer it affirmatively by constructing protocols to
compute these functions within MPC. To achieve this
goal, we use Function Secret Sharing (FSS), a primitive
introduced by Boyle et al. [15] at Eurocrypt 2015. FSS
provides a way for additively secret sharing a function
that can be evaluated locally. We adopt a look-up style
approach [36, 42, 55] to show that in the setting of machine
learning applications, our FSS based protocols achieve or-

ders of magnitude better runtime and require substantially
less communication. While recent works such as [9] share
our goals, they rely on a fundamentally different usage of
FSS schemes. In particular, these constructions still require
iterative methods to compute the functions and thus do
not enjoy a truly constant round complexity.

Malicious Sketching Scheme over Rings. Our main
contribution is the extension of our semi-honest protocol to
achieve malicious security with abort in the presence of an
honest majority corruption. The challenge in this extension
is to ensure the FSS keys are well formed. These techniques
are known as sketching schemes in the literature ([16] Sec-
tion 4). They use the Schwartz-Zippel lemma [79, 92] (refer
to Lemma 5.1 in Section 5 for an informal statement and to
Appendix G.2 for a historical overview of the lemma) to en-
sure that malicious behavior escapes detection with a prob-
ability inversely proportional to the size of the finite field.
In our work, to achieve high concrete efficiency, we focus on
MPC over finite rings. This is a problem as the Schwartz-
Zippel lemma (SZ) does not hold over rings. A polynomial
over a finite ring can have many more roots than its de-
gree (this is the basis for the SZ lemma). For instance, the
polynomial p(x) = 2`−1x over Z2` is a linear polynomial
but every even value is a root. To address this, we state
(and prove) a new lemma that enables us to achieve effi-
cient malicious sketching over rings. The formal statement
is presented in Lemma 5.4 and is informally stated below:

Lemma 1.1. (Special Form of Schwartz-Zippel
lemma over Rings (Informal)) Let p(x1, ... , xn) be a
n-variable bilinear polynomial over Z2`+2s that is not iden-
tically zero over Z2` The probability that p evaluates to 0
over randomly sampled points from {0,1,...,2s−1} is bounded
above by 21−s.

Note that all prior works that use malicious sketching rou-
tines [8, 16, 28, 45] use finite fields to perform the malicious
sketching. Thus, to the best of our knowledge, this is the
first time such a result has been extended to hold over
rings. Secure computation over finite rings is increasingly
being used due to the ease of implementation and improved
performance [26, 29, 32, 64, 67, 88]. We discuss other ex-
tensions of the SZ lemma in Section 7 and Appendix G.

Implementation and Concrete Efficiency. We imple-
ment and benchmark our protocol against state-of-the-art
implementations from ABY3 [63] and MP-SPDZ [38]. We
also compare against a state-of-the-art 2PC protocol from
SiRnn [71] and the size revealing but efficient 3PC pro-
tocol from Falcon [88] and show impressive gains. Our
protocols achieve up to 128× higher throughput while
using 23× lower communication compared to ABY3 for
smaller batch sizes. When compared to the more versa-
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tile codebase MP-SPDZ, our protocols achieve up to 25×
higher throughput using 74× lower communication.

Where our protocols shine even more is when consid-
ering a network constrained environment such as WAN.
For instance, over a 100 Mbps network link, our protocols
provide an impressive 770× improvement compared to
MP-SDPZ - while our computational costs are dominant,
the protocols consume 100−200× less communication and
over just 3 rounds (4 for malicious; 2 rounds if consider-
ing online only). The dominant cost of our protocol comes
from the full domain EvalAll and the inner product required
for the look-up (refer to Appendix D for these building
blocks). While we leverage parallelism and a few other
optimizations in our evaluation (refer to Section 6 for op-
timizations), we expect that additional optimizations such
as more efficient implementations of the inner product will
further improve the performance of our protocols.

Finally, we also run important experiments over neural
networks to showcase how our protocols can pave the way
for scaling neural networks to larger depths. We show that
the errors due to the approximate nature of MPC com-
putation accumulate over a large depth (as low as 5 or 6
layers) and soon start affecting the overall performance of
the computation. In order to scale neural networks, avoid-
ing overflow in the MPC computation and preventing the
snowballing of errors is of utmost importance. The known
techniques ML experts use in order to avoid this problem
are normalizations layers (or functions such as sigmoid
that convert vectors into probability distributions). We
show that the use of normalizations not only improves
the training accuracy and convergence (already known to
ML experts) but also that the relative error remains at
an acceptable constant thus allowing for arbitrary depth
computations. This is critical for scaling deep learning.

2 Background
In this section, we describe some important techniques and
concepts that are critical to this work.

2.1 Machine Learning using MPC

Applications of secure computation, in particular machine
learning, heavily rely on the ability to compute over ratio-
nal numbers. Designing secure computation protocols over
rational numbers has been a known challenge. Rational
numbers are implemented using fixed-point representation
and the precision is set according to the application in
consideration.

Support for non-linear functions is critical in secure
computation for two reasons. Firstly, non-linear functions
such as normalization, sigmoid, tanh are commonplace and
crucial in present day machine learning applications. They
enable improved learning (by using non-linear activation
functions such as ReLU and tanh) and provide better con-
vergence (by using batch normalization and appropriate
loss functions). While approximate techniques are shown
to work in certain applications over standard datasets
such as MNIST, the results do not always generalize [39].
Thus, it is important to support high precision non-linear
function computation.

Secondly, secure computation necessitates support
for such functionalities. When MPC protocols are imple-
mented, the actual values involved in computations can be
integers or floating-point values (converted into fixed-point
values) and are assumed to lie within some integer range
(−2k−1,2k−1] (refer to Section 3 for details). When compu-
tation is performed over large depths, the values increase
in size and may overflow such a range. In this case, MPC
output loses its correctness. MPC frameworks deal with
this issue by having the MPC user ensure that the previ-
ously mentioned constraints are met (for example, Section
14.8.1 in [1]). When the computation is large and the val-
ues are unknown, it is hard to know that the invariant is
broken. This is where non-linear functions are extremely
important. Functions such as normalization, sigmoid, and
tanh enable mapping inputs from an arbitrary range to
a fixed bounded range. This allows for arbitrary depth
computations without worrying about overflows and thus
is extremely critical to scaling secure computation.

Techniques for Normalization, Exponentiation.
Prior work decomposes the above set of non-linear func-
tions into two basic primitives: normalization (integer
division) and exponentiation. Other functions can then be
computed as a composition of these and other basic MPC
primitives. Given an input x (say as a fixed-point number),
normalization deals with computing b1/xe (the nearest
integer) where 1 is interpreted as a fixed-point value. Pro-
tocols for these are usually adaptations of the seminal
work in [21, 22]. The protocols typically come in two
flavors – approaches based on piece-wise linear computa-
tion [9, 64, 80] and approaches based on iterative methods
(Newtons methods or series expansion) [22, 54, 88]. The
former are better suited for computations with fewer pieces
while the latter enjoy fast convergence and leverage “MPC
friendly” computation. These functions all follow a similar
structure and differ in how they implement each step:

(1) Start with an initial approximation.
(2) Recast the input to an appropriate range.
(3) Finally, run the iterative methods for a certain number

of rounds till sufficient convergence is achieved.
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Note that because of their structure, these techniques incur
a round complexity that is dependent on the precision de-
sired. Furthermore, such approaches provide approximate
computation for two reasons - the first is the approx-
imation involved in the MPC computation itself (such
as multiplication/polynomial evaluations over fixed-point)
and the second is the function itself is approximated to a
polynomial expression due to the use of iterative methods.

Other Applications. While the focus of this work is to
provide lightweight cryptographic protocols for machine
learning applications, these primitives (normalization, sig-
moid, tanh, logarithm etc.) are also required in other
applications of secure computation such as secure cluster-
ing [18, 43], secure auctions [65], genomic computations [4],
and anti-money laundering [77].

2.2 Function Secret Sharing

Function Secret Sharing (FSS), a primitive introduced by
Boyle et al. [15] at Eurocrypt 2015, provides a way for
additively secret sharing a function that can be evaluated
locally. Thus, given a function f (more generally a family
of functions), f can be split into m succinctly described
functions f1,...,fm such that any strict subset of {f1,...,fm}
hides f but f = f1 + ··· + fm at each point within the
domain. FSS is motivated by two types of applications:
those that require privately reading from a database and
those that require privately writing to a database. In both
these cases, FSS can be used to significantly reduce the
communication overhead.

An example of a database reading application is a
primitive known as private information retrieval (PIR). In
this case, the problem of private database reading can be
described as follows: A number of servers (say 2 servers)
hold a database D∈F`2 and a client would like to retrieve
the element dk without revealing the index k. The central
ideas can be traced back to the seminal work by Chor et
al. [27]. The client generates two bit vectors y0,y1, each of
the size of the database, such that

y0⊕y1 =ek (1)

where ek is the unit vector with 1 at the index k. The
client sends the vector yσ to server Sσ for σ = 0,1 and
the server responds with the inner product of the entries
of the database with the vector yσ. The client can XOR
the two received values to extract the database entry of
interest (this requires that the database be considered over
a field of characteristic 2). Note that the vectors y0,y1 are
linear in N, the size of the database. This makes their
communication linear in the size of the database. FSS is
ideally suited to address this problem providing an elegant
construction for expanding y0,y1 from shorter seeds k0,k1,

thus significantly reducing the communication footprint of
the protocol. This is because y0,y1 are shares of a function
(distributed point function, see below) for which efficient
FSS constructions are known in practice.

As an example of a solution to problems concern-
ing privately writing to a database, consider Oblivious
RAMs [49, 50]. This primitive considers reading and
writing from an outsourced database. FSS has also
shown promise in improving Oblivious RAM schemes
by (1) reducing communication and (2) scaling to
larger database sizes [42]. Furthermore, a long line of
work [8, 9, 11, 12, 17, 71] has explored the use of FSS in
constructing efficient protocols for other MPC primitives.

Distributed Point Functions. Distributed Point Func-
tions (DPFs) are a class of functions that evaluate to a non-
zero value at exactly one index in their domain [15, 16, 47].
More formally, such a function can be defined as

fα,β(x)=

{
β if x=α
0 otherwise

(2)

Over the past few years, highly efficient FSS constructions
have been proposed for this class of functions. The succinct
size of the FSS keys allows secret sharing a “one-hot” vec-
tor of size N = 2n with only O(logN) bits of information.
This property is useful in designing protocols for PIR-style
applications [27]. More formally, a FSS scheme for the
DPF function fα,β(x) where the range is over a group
G (which may be a ring or field) is defined by a pair of
algorithms (Gen,Eval) where:

– Gen(α,β) −→ (k0,k1) takes as input the location α ∈
{0,1}n and the value β∈G of the function when eval-
uated at α and outputs two FSS keys (one per party).

– Eval(σ,kσ,i)−→G takes as input an FSS key and the
location at which the function is to be evaluated and
outputs the share of the fα,β(i).

The correctness of the FSS construction ensures that
fα,β(i)=Eval(0,k0,i)+Eval(1,k1,i) where (k0,k1)←−Gen(α,β).
Similarly, the security of the DPF implies that an adver-
sary who learns one of k0 or k1 but not both learns nothing
about α or β. We also use a subroutine EvalAll that is sim-
ply the algorithm Eval computed at each location i∈ [N].
For formal definitions and more details, we refer the reader
to [15, 16, 47].

3 Technical Overview
Multi-party computation protocols come in a variety of fla-
vors - from garbled circuits based to arithmetic or boolean
secret sharing based. Our work is inspired by ideas that
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perform a look-up style computation [36, 55]. In fact, all
garbled circuit based protocols can be considered since the
Garbler sends the table, and the Evaluator evaluates the
table at the function inputs. These approaches enjoy the
benefit that the protocols are oblivious to the function as
they simply involve “looking-up” the function value.

In a seminal work by Doerner and shelat [42], this
idea of look-up computation is used to construct a 2-party
Distributed Oblivious RAM scheme with high concrete
efficiency. The idea there is to perform the look-up in a
database using a secret shared index using a Chor style
protocol (described in Section 2.2). The important com-
ponent of Chor’s protocol is the generation of two vectors
that differ in the index of interest. However, these are ex-
actly the outputs of a distributed point function. With the
advances in function secret sharing, particularly efficient
FSS constructions for a DPF [16], two vectors differing in
one element can be efficiently generated within MPC. It
is precisely in this blueprint that we construct our proto-
cols. However, we encounter the following two challenges
when naively constructing such protocols for non-linear
functions:

(1) Most MPC frameworks require a representation of
at least 32 bits. Doing a look-up table of this size is
known to be impractical (typical sizes for which FSS
provides performance comparable to general purpose
MPC are around 20-25 bits [16, 42]).

(2) We focus on MPC over rings (with modulus Z2`)
and thus require the output of the FSS scheme to be
over such a group. However, most known techniques to
check for ill-formed FSS keys require finite fields [8, 16].

We solve the first challenge by leveraging the inherent
structure of MPC implementations. The second challenge
is overcome by proving an extension of Schwartz-Zippel
lemma over finite rings. We briefly describe each of these
insights in further detail below.

Challenge 1: About MPC implementations. When
MPC protocols are implemented, the actual values to be
computed (called data) can be integers or floating point val-
ues. However, in order to utilize cryptography and achieve
strong security, we require the values used to encode this
data when performing secure computation (called the rep-
resentation) to be within a structured algebraic set such
as a finite ring or field. The encoding of the data into
the representation is one of the design choices of secure
computation. Secure computation over finite rings such as
Z2` has the advantage that the modular arithmetic occurs
without any additional checks. Thus, compared to the use
of general-purpose number theoretic libraries, performance
significantly improves as the size of the computation scales.
When considering the implementation of MPC protocols

over finite rings, integers are naturally encoded into native
data types such as uint32_t or uint64_t. Floating point
values are encoded using a technique known as fixed-point
encoding where each floating point value x is converted
into an integer bx·2fc where f is the fixed-point precision.
Typical values of the floating precision f used in litera-
ture [64, 88] are about 9 to 17 bits - which translates to
3 to 6 decimal digits. Thus, the lower f bits encode the
fractional part and the higher bits encode the integer part.

Now suppose we consider an exponential function
g(x)=2x to be computed within secure computation (such
a function with base e is required for sigmoid, tanh). If we
use a 64-bit data type for the representation of the data, we
know that the largest value we can represent is 264 (ignor-
ing the sign and the fixed-point precision). Thus, any data
whose integer value exceeds 64, i.e., is more than 6-bits,
would inherently impede any secure computation protocol.
Most MPC frameworks work around this by assuming a
bound on the inputs [1, 37, 54, 64, 88]. Thus for the expo-
nential function, the inputs have to be less than 64. When
translated into the fixed-point values, the representation is
assumed to be bounded by f+7 bits (one additional bit for
the sign). For the typical values of the floating precision
used in state of the art frameworks, f+7≈16−24 bits.

We use this observation to our advantage. We leverage
such bounds on the input to quantize/reduce them into
a smaller domain. The look-up is then performed using
the FSS schemes for DPFs. Thus, we identify and use the
constraints of MPC data representations as a feature in
our protocols to achieve low round complexity and high
concrete efficiency protocols. In order to scale computa-
tions to large depths, the above constraints on the bounds
have to be maintained. This further motivates the need for
normalization protocols, which is the focus of this work.

Challenge 2: Malicious Security for FSS over Rings.
State-of-the-art FSS schemes [16] crucially rely on fields
of characteristic 2. Thus, operations have to be performed
over finite fields such as F2,F2`. However, when considering
the broader MPC implementation, there is a significant
overhead to converting data representations between F2`

and Z2`. Thus it is important to ensure that the inputs
and outputs of the FSS scheme are elements of the finite
ring over which computation is to be performed.

Given the structure of our protocol, we use the party
P2 to generate the FSS keys that the parties P0 and P1 use
in their computation. Designing an MPC protocol over a
finite ring such as Z2` requires an intricate protocol design,
particularly when considering malicious security1. In this
setting, we have to defend against two types of corruptions:

1 Once again note that naively considering the ring elements as
an additive subgroup of a larger field does not work for our setting.
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(1) Party P2 being malicious. In this case, the correlated
randomness provided could be ill-formed and needs to
be verified.

(2) One of party P0,P1 is malicious. In this case, the entire
MPC computation has to be performed in a “dishon-
est majority style” computation given our asymmetric
protocol design.

Our insight here is to solve both these problems at once
using a SPDZ2k style data representation [29]. In this set-
up each secret value is secret shared between P0,P1 along
with a MAC on that secret (refer to Section 5 for more
details). Thus in our set-up, we require that the party P2
generate not just the FSS keys for the DPF shares but
also for shares of the MAC on the DPF. The interesting
observation here is that since the original shares are of a
DPF, i.e., Hamming weight one, the MAC is also a DPF
and can thus be represented using a DPF key with a
different payload. While this solves the second corruption
difficulty, we still need to address the first one.

To provide checks against ill-formed keys, we use the
blueprint from [16] for malicious sketching. However, due to
the requirement of both the DPF and the MAC DPF, the
Schwartz-Zippel lemma does not provide any meaningful
security. This is because the SZ lemma crucially relies on
operations over a finite field. Simply considering the output
groups as a subgroup of a larger field does not work when
dealing with malicious servers. To address this, we prove a
version of the SZ lemma over rings (Lemma 5.4) and use
that to detect ill-formed FSS keys with a given statistical
security. Security can be argued in the arithmetic black box
model in both the semi-honest and malicious settings [35].

Limitations of our Approach. We briefly discuss the
limitations of our protocols which will assist in determining
which scenarios are best suited for our protocols. The bot-
tleneck of our constructions is the full domain evaluation
of the FSS scheme and thus our protocols provide best con-
crete efficiency where values are bounded within smaller
ranges or can be quantized into smaller ranges. Further-
more, our protocols achieve constant round complexity and
thus provide the most impressive gains when considering
deployments in network constrained environments such as
wide area network (WAN). Finally, the structure of our
protocols is asymmetric and thus the distribution of load is
unequal between the parties (P2 performs different compu-
tation than P0,P1; however being entirely pre-computable,
it may actually be a useful feature in certain applications).
In cases where an evenly distributed workload is required,
symmetric protocols such as [2, 46, 63, 88] would be more
desirable.

4 Semi-honest Secure Protocol
In this section, we present a protocol that is secure against
a semi-honest adversary. The protocol forms a basis for
the maliciously secure protocol presented in Section 5.

4.1 Protocol Overview

We first describe the secret sharing set-up and then pro-
ceed to the protocol construction (Πsh:Func). Notice that
our protocol description is oblivious to the function be-
ing computed (normalization, exponentiation, square root,
trigonometric functions).

Set-up and Notation. The secret sharing set-up is as
follows: we consider all the data to be 2-out-of-2 secret
shared between P0,P1 and the modulus is 2`. The party
P2 does not hold shares of the data but will be used to
generate common randomness required for the function
computation. The function computation is parametrized
by f, the fixed-point precision used for that function com-
putation, and is denoted by Func. The data representation
is bounded within the range (−2k−1, 2k−1] for a fixed
constant k depending on the application. Thus, for any
plaintext value afloat, the data is encoded as secret shares

arepr =a0+a1 (mod 2`) (3)

Where arepr is the nearest integer to afloat ·2f and aσ∈Z2` is
held by party Pσ for σ=0,1. This set-up mimics prior works
such as [76, 86]. Furthermore, we assume that unsigned
integer data types are used and thus a negative value of
−1 will be the element of Z2` consisting of all 1’s. For the
rest of the paper, we will drop the subscript of arepr and
use [a] to denote the secret sharing with the implicit under-
standing that it refers to the representation. For malicious
security, we use the technique of Message Authentication
Code (MAC) from the SPDZ-line of work [29, 34, 37]. The
details of these are presented in Section 5.1.

Protocol Intuition. The protocol is formally described in
Fig. 1. Our protocol starts with sharing of the inputs [a]2`
and outputs a sharing [b]2`, where b = Func(a) for some
publicly computable function Func. Examples of such a
function include (1) reciprocal computation, where b=1/a
computed within fixed-point arithmetic of precision f, (2)
sigmoid, where b = 1/(1 + e−a), once again computed as
fixed-point value with precision f, or (3) square root, where
b=
√
a with fixed-point precision f.
First, the parties P0,P1 locally construct a database of

the function values, i.e., a databaseDFunc with entries di for
i∈2k such that di=Func(i) where the input i is also consid-
ered as a fixed-point value (thus the database is a function
of the fixed-point precision f). The problem of computing
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the function on the secret input [a]2` then translates into
the problem of database look-up. However, given that the
shares are in 2`, we need to reduce them into shares over
a smaller ring. Here we use the structure of the data en-
coding to reduce the input [a] into 2k given the bounds
on the input. Then we use the PIR protocol (described in
Section 2.2) to perform a look-up on the database.

To perform the PIR protocol, we need access to two
vectors u0,u1 that differ only at the location a. However,
since a is secret, it cannot be revealed to any party. This
is where we can make use of the party P2 to generate
correlated randomness. Party P2 simply samples a random
value r ∈ 2k and generates FSS keys with shares of the
DPF corresponding to the value 1 at location r. Note that
we can optimize the protocol to generate the output over
F2 (cf Section 2.2) and thus avoid evaluating the last few
layers of the FSS GGM tree (the last few layers contain
the largest overhead of the evaluation [42]). However, since
we want to support computation natively over Z2`, we
need to convert the Boolean shares into shares over Z2`

which requires interaction. We avoid this by having each
party locally convert Boolean values into Z2`. However, as
a consequence, the Z2` shares can be shares of +1 or -1.
We correct for this issue by having party P2 also generate
shares of the “sign” of the DPF (this bit is denoted by w).

Sign of the Distributed Point Function. The output of the
DPF is two vectors y0,y1 of size N = 2k such that the
following constraint holds:

y0[i]⊕y1[i]=

{
1 if i=r
0 otherwise

Thus, y0[i],y1[i] ∈ F2 such that y0[i]⊕ y1[i] = δi,r where
δi,j is the Kronecker delta function. However, when these
shares are naively lifted into Z2`, then y0[i]+y1[i] can be
0, 1, or 2 modulo 2`. To address this, we generate the FSS
keys for a subtractive DPF, i.e., the vectors y0,y1 when ex-
panded from the FSS keys satisfy the following constraint
y0[i]−y1[i]=δi,r. This modification requires no changes to
the FSS construction because the conditions y0[i]⊕y1[i] and
y0[i]−y1[i] are equivalent over F2. However, when we per-
form the same naive lifting over y0,y1 into Z2`, y0[i]−y1[i]
takes on the values 1 or −1 if i=r and 0 otherwise. Thus,
along with the FSS keys we also require party P2 to send
over shares of this sign value, i.e., shares of ±1 depending
on the FSS keys. Note that this sign can be read off, with
no additional cost, from the FSS Gen routine by simply
examining the value of the variable t(ν)

0 (refer to Fig. 7).

Function look-up. The final component of the protocol is to
use this randomness to compute the function look-up on
the input [a]. We use a standard masking trick to achieve
this. Party P2 supplies arithmetic shares of r (the index of
the non-zero DPF value) to parties P0,P1 who then use it

Semi-honest protocol for function computation Πsh:Func

Auxiliary variables: Parameters `,k,f for bit-size, bound and
fixed-point precision of inputs. The function to be computed Func
and the function database DFunc of size 2k with each entry di in
Z2` equal to Func(i) for i∈ [2k].
Inputs: Secret shared values [a]2` .
Outputs: Secret shares [b]2` where b=Func(a).

Protocol:
(0) Parties P0,P2 and P1,P2 invoke FRand to generate values

r0,r1∈Z2` such that r0 is known to P0,P2 and r1 is known
to P1,P2. This step is non-interactive.

(1) Party P2 generates the following correlated randomness:
(a) Let fr be the single-bit DPF at r.
(b) Generate (k0,k1)←Gen(r,1) for the DPF fr (Figure 7).
(c) Set w=1 if t(ν)

0 =1 (final layer control bit, refer Figure 7)
and w=−1 otherwise. Generates shares (w0,w1)∈Z2

2` of
w and send the tuple (kσ,wσ) to party Pσ for σ∈{0,1}.

(2) Party Pσ for σ∈{0,1} evaluates the following:
(a) Reconstruct x≡r−a (mod 2k)
(b) Compute yσ ← EvalAll(σ,kσ) (refer Fig. 7) where the

components of y are {yσ[0],yσ[1],...,yσ[2k−1]}
(c) Set uσ[i] = yσ[i+x] for i∈{0,1,...,2k−1} and compute

v=(−1)σ〈uσ,DFunc〉, i.e.,

vσ=(−1)σ
2k−1∑
i=0

uσ[i]·di

where the product between a bit {0,1} with an element
of Z2` is performed by static casting {0,1}→Z2` .

(d) Invoke FRand to generate a random value β that is used
to re-randomize v: v←−v+(−1)σβ

(3) Parties P0,P1 output [c]2`=[v·w]2` using a Beaver triple.

Fig. 1. Protocol for semi-honest secure computation of a given
function Func (such as division, sigmoid, exponentiation, tanh).

to reveal the value of x≡r−a (mod 2k). Note that due to
the fixed-point encoding, the database DFunc encodes the
function computation on negative values in the lower half of
the table which is consistent with the desired function com-
putation. Finally, the output of the full domain evaluation
yσ is appropriately shifted by x (modulo 2k) and an inner
product of the database is computed with this shifted vec-
tor2. Since the PIR is performed using subtractive shares,
party P1 multiplies the output of its inner product by −1.
Finally, to correct for the sign of the DPF, the parties mul-
tiply their output with shares of w, the sign of the DPF
provided by party P2. This computation can be performed
efficiently using one Beaver triple [7] provided by party P2.

2 The database can also be shifted but for efficiency reasons, it
is much easier to shift the vector y
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Correctness. The correctness of the protocol is easy to
follow from the correctness of the DPF:

uσ[i]=yσ[i+x]
6=0 iff i+x=r

(4)

In other words, the last condition can be rephrased as iff
i= r−x= a (all equalities are modulo 2k), thus the PIR
results in “selecting” the entry corresponding to da, as
desired. Finally, the sign bit w, corrects the final answer
for whether y0[r]−y1[r]=+1 or −1.

Complexity. Altogether, the party P2 provides shares of
r, the sign of the DPF and one Beaver triple, in addition to
the DPF keys. In the semi-honest case, the shares of r can
simply be sent as one element of Z2k per party. The sign
of the DPF w is sent as one element of Z2` per party. The
Beaver triple can be optimized by generating the random
values using PRGs and thus only sending one element of
Z2` per party3. Finally, with the tree-trimming optimiza-
tion [42], the DPF keys themselves are λ+(λ+2)·ν+2k−ν
(where ν is defined by Eq. 34). Thus, the total communi-
cation is 2`+k+(ν+2)λ+2ν bits (note that 2k−ν6λ).

The round complexity of our protocol is 3 rounds
in total. The first round is the sharing of the correlated
randomness and can be done in the offline/pre-processing
phase. The second round is used to reconstruct the masked
value x. And the final round is used for the beaver multipli-
cation. Thus the online round complexity is just 2 rounds.
Comparing this in terms of concrete efficiency, prior art
requires 9-60 rounds [54, 71, 76, 88]. Furthermore, our com-
munication protocol reduces communication by anywhere
between 25× to two orders of magnitude.

5 Protocol for Malicious Security
In this section, we extend the semi-honest protocol
(Πsh:Func) to be secure against malicious corruptions
(Πmal:Func) in the standard UC Model [20]. Our central
result here is a new result for malicious sketching (protocol
to verify correctness of DPF keys) over the ring Z2`. We
prove the security of our protocol in Appendix B.

5.1 Protocol Overview

To make protocol in Fig. 1 secure against malicious ad-
versaries with an honest majority corruption, we need to
provably defend against adversarial generation of the DPF

3 Note that all these communications can be further reduced by
sending shares to a single party say P0 and using PRGs on the
other party P1.

keys and other correlated randomness (assuming P2 is
corrupt) as well as prevent one of parties P0,P1 acting
maliciously (assuming one of them is corrupt). To this
end, we first describe how we modify Πsh:Func to Πmal:Func
and then provide a proof for it’s security (and correctness).
The protocol is formally described in Fig. 2. We begin by
describing the parameters used in the protocol followed by
a brief description of secret sharing scheme.

Parameters. Throughout our protocol, we will use the
following parameters: `, the size of the inputs (in bits) over
which we wish to perform computation would typically be
set to either 32 or 64. Similar to the semi-honest set-up, we
consider that the underlying secrets are bounded within
a range (−2k−1,2k−1] where practical values of k∈ [16,24].
Finally, we use two different statistical security parameters
t and s. Given the security proofs and bounds offered by
Lemma 5.5, 5.6, and 5.4, these parameters will be related
to the desired level of statistical security secs as follows:
t=2s, s=secs+1 where secs is set to 40 or more.

Notation. Our starting point is the secret sharing scheme
from the SPDZ2k protocol [29]. Each data item x will
consist of a secret sharing JxK2`+t to denote secret sharing
of x which contains 3 components (xi,mxi,αi) where xi
is the share, mxi is the MAC and αi is the MAC key.
The values xi,mxi ∈Z2`+t and αi ∈Z2t and the following
relation holds for a valid sharing:

mx0+mx1≡(x0+x1)·(α0+α1) (mod 2`+t) (5)

Note that although x ∈ Z2`+t, only the lower `-bits of x
matter and the MAC check protocols from [29] take this
into account. For the broader MPC computation, we main-
tain the invariant that parties P0,P1 hold such a 2-out-of-2
secret sharing of each intermediate value. In other words,
we consider the secret sharing scheme instantiated with
the standard 2PC dishonest majority set-up. We show
how our protocols can be modified to achieve malicious
security using such a secret sharing scheme. Given two
vectors x,y of the same length, we use 〈x,y〉 to denote the
inner product. We use ≡m to denote congruence relations
modulo 2m and 6≡m for relations that do not hold. Thus,
the congruence a≡ b (mod 2m) is abbreviated as a≡m b.
We use [n] to denote the set {1,2,...,n} and S to denote
the set {0,1,...,2s−1}. Notation specific to the proofs will
be mentioned within the proofs themselves.

Protocol Intuition. The protocol follows the same high
level idea as the semi-honest protocol described (Fig. 1).
To analyze security against malicious clients, we break
down the analysis into two cases: one of P0,P1 is malicious
or P2 is malicious. Below, we describe the challenges in
each and how we overcome these challenges.
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(1) P0 or P1 is malicious. This is the easier of the two
cases. Here we know that the correlated randomness
is well formed but the challenge is in ensuring that
the parties correctly compute the function value. Our
idea here is to use a dishonest majority secret sharing
scheme to perform the computation between P0,P1.
We then modify the DPF to provide keys that enable
P0,P1 to locally expand not just shares of function
value but also the shares of the MAC on the function
values. We note that this can be achieved using a single
DPF key with a larger payload, thus reducing the cost
of the EvalAll (which is the bottleneck, cf. Section 6)
by 2× compared to a naïve implementation.

(2) P2 is malicious.In this case, the challenge lies in en-
suring that the keys as well as the other correlated
randomness provided by P2 is “well formed.” This is
known as Verifiable FSS in the literature and cor-
responding verification algorithms are also known as
malicious sketching schemes (based on the linear sketch
used for the verification) [16]. However, all prior ver-
ifiable FSS schemes are over fields and the ones that
operate over small rings such as Z2 simply cast the
outputs into a larger field to perform the verification.
However, since our protocols need to work over rings
(including theMACs), we need a sketching scheme over
rings. However, at the heart of the sketching scheme
is the Schwartz-Zippel lemma [79, 92] which states
that a random linear combination of ill-formed inputs
will be caught with high probability. However, the SZ
lemma does not hold over rings (refer to Section 1.1).
To address this challenge, we state and prove a special
form of SZ lemma over rings that enables us to design
a maliciously secure sketching scheme suitable for our
protocol.

Thus, the maliciously secure protocol Πmal:Func follows the
same skeleton as the semi-honest protocol Πsh:Func but (1)
changes the underlying secret sharing scheme (2) generates
DPF keys with higher payload to also provide sharing of
the MACs and (3) uses a maliciously secure sketching
subroutine that P0,P1 run before the second part of the
protocol. The entire protocol is described in Fig. 2. Next,
we describe our sketching scheme in detail.

5.2 Malicious Sketching Scheme over Rings

Our central contribution here is a technique for the parties
P0,P1 to verify that the DPF keys provided by P2 are
well formed over rings, i.e., the keys on EvalAll expand into
shares of two vectors y,my such that both vectors are of
hamming weight one (have a single non-zero entry) and
my=αy.

We use the same structure as the sketching protocol
described in [8, 16] where a random linear combination is
used to ensure that the output of EvalAll is one-hot. The ex-
pand on this to further use a procedure similar to the MAC
Check protocol from the SPDZ-line of work [29, 34, 37]
that enables detecting any malicious behaviour with high
probability. We divide this into 2 components, a check to
ensure correctness of the MACs and a check to ensure the
correctness of the keys. However, the key ingredient for
the latter, i.e., detecting ill-formed keys in prior sketch-
ing schemes is the Schwartz-Zippel lemma [79, 92], stated
below informally:

Lemma 5.1 (Schwartz-Zippel lemma informal). Given a
non-zero multivariate polynomial of degree d, the probabil-
ity that it evaluates to 0 over randomly chosen inputs is
bounded by d/|S| where S is any subset of the finite field
over which the polynomial is defined.

The lemma rests on the fact that a polynomial over a fi-
nite field cannot have more zeros than it’s degree. However,
such a statement does not hold over rings. For instance the
polynomial 2`−1x is a linear polynomial over the ring Z2`

but has every even number as a zero. Thus, the Schwartz-
Zippel lemma in its current form does not hold over rings.
However, the SZ lemma is critical for the verification in
the sketching schemes. In order to address this issue, we
state and prove a new lemma that enables us to devise a
sketching scheme over rings. Note that in order to ensure
security and correctness against malicious behaviour, we
require that P0 and P1 verify that the shares sent by party
P2 in Πsh:Func are valid. Since we need the DPF keys to
provide shares of the output as given by Eq. 5, we do not
require the shares of w to be shared by P2. We achieve
these goals in a one-shot computation and establish the
following two informal statements:

(1) kσ form shares of a well formed DPF.
(2) rσ form shares of the index of the DPF.

Next we present the details of the sketching scheme.

5.3 Instantiating the Sketching Scheme

Let N =2k be the size of the DPF look-up. Suppose that
the DPF keys shared by P2 expand into the vectors y,my,
each of size N. Now, the goals of the sketching schemes are
twofold. First, given that the keys were generated honestly,
the verification should succeed. And second, an invalid y or
my should be accepted only with a negligible probability.
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We consider the following linear sketch L∈Z4×N
2`+t :

L=


a1,1 a1,2 ... a1,N
a2,1 a2,2 ... a2,N
a3,1 a3,2 ... a3,N
a4,1 a4,2 ... a4,N

 (6)

where for i∈ [N ], we have a1,i,a2,i randomly sampled from
Z2s (in practice P0,P1 share PRG seeds and expand into
these values), a3,i = a1,i · a2,i (mod 2`+t) and a4,i = i−1.
For an intuitive understanding of the choice, refer to Eq. 8.
Note that this matrix needs to be sampled only once
and thus can be reused as long as no party aborts in the
protocol. Let L1,L2,L3,L4 denote the rows of L.

Verification. Define zj=〈Lj,y〉∈Z2`+t for j=1,2,3,4. Fur-
thermore, let z∗= 〈L1,my〉 ∈Z2`+t. Note that in practice,
each party only holds a share of these values, i.e., y (and
thus each zj) is secret shared over Z2`+t between P0,P1.
The parties then evaluate the following expression (within
MPC) and check if the value (as an element of Z2`+t) is
equal to 0, i.e.,

(z1z2−z3)+(z4−r)
?=0 (7a)

(αz1−z∗)
?=0 (7b)

Parties P0,P1 run this verification over MPC and use
this verification as an indication of correct/incorrect keys.
We provide a more complete description of this MAC
check over shares along with possible optimizations in
Appendix E.

Completeness. The completeness of this sketching
scheme is easy to verify. For honestly generated corre-
lated randomness, (z4−r) by the construction of the DPF
scheme equals zero (the DPF outputs 1 at r). At the same
time, since y is of hamming weight one, the first term is
zero as shown below:

z1z2−z3 =
N∑
i

a1,ia2,i(y2
i −yi)+

N∑
i6=j

a1,ia2,j(yiyj)

=0

(8)

where the first term is zero because each yi ∈ {0,1} and
the second term is zero because if at most one of yi,yj is
non-zero for any pair of distinct i,j. Thus each term equals
zero for Eq. 7a. Finally, the verification Eq. 7b is valid by
honest construction.

Correctness. The correctness of the protocol follows the
exact same argument as that of the semi-honest version
(for both the shares and the MACs).

Soundness. In order to establish the soundness of this
verification scheme, we need to prove that for any invalid
inputs y,my, the verification condition given by Eq. 7 is

Malicious protocol for function computation Πmal:Func

Auxiliary variables: Parameters `,k,f, t for bit-size, bound,
fixed-point precision of inputs, and a statistical security parameter.
The function Func and the function database DFunc of size N=2k
with each entry di in Z2`+t for i∈ [N].
Inputs: Secret shared values JaK2`+t .
Outputs: Secret shares JbK2`+t where b=Func(a).

Protocol:
(0) Parties P0,P2 and P1,P2 invoke FRand to generate values

r0,r1 ∈ Z2`+t and α0,α1 ∈ Z2t such that r0,α0 are known
to P0,P2 and r1,α1 are known to P1,P2. Party P2 computes
r≡r0 +r1 (mod 2`+t) and α≡α0 +α1 (mod 2t). This step
is non-interactive.

(1) Party P2 generates the following correlated randomness:
(a) Let fr be the a DPF with output 1 at r and gr be the

DPF with output α at r (and 0 everywhere else). Use
a single DPF with longer payload (over Z2`×Z2`+t) to
generate keys for the two DPFs fr and gr, i.e.,

(k0,k1)←{Gen(r,1),Gen(r,α)}

(b) Generate a sharing of αr over Z2`+t . Send each share
and the corresponding DPF key kσ to Pσ.

(2) Parties P0, P1 jointly sample a linear sketch L ∈ G4×N

(cf Section 5.3 for details) where G = Z2`+t . Note that is
generated one time and is private from P2. For σ=0,1, party
Pσ computes the following within secure computation:
(a) Set JrK2`+t to be the output of FRand along with the set

of shares of αr sent by P2.
(b) Compute y,my ← EvalAll(σ, kσ) where the vector

y={y[1],...,y[2k]} and my={my[1],...,my[2k]}
(c) Set zj=〈y,Lj〉 for j=1,2,3,4 and z∗=〈my,L1〉.
(d) Within the secure two party computation, the parties

verify:
(z1z2−z3)+(z4−r)∈Z2`+t

equals 0 and if the MAC check succeeds on (αz1−z∗). If
it does, proceed to Step (3) below else abort the protocol.

(3) Party Pσ for σ∈{0,1} evaluates the following:
(a) Perform an authenticated opening of x≡r−a (mod 2k)

using authenticated shares JrK2`+t and JaK2`+t .
(b) Set u[i] = y[i+x] and mu[i] = my[i+x] for i ∈
{0,1,...,2k−1} and the addition is computed modulo 2k.

(c) Compute v=〈u,DFunc〉, and mv=〈mu,DFunc〉 i.e.,

v=
2k−1∑
i=0

u[i]·di and mv=
2k−1∑
i=0

mu[i]·di

where the product between an element of Z2` with an
element of Z2`+t is done by static casting Z2`→Z2`+t .

(d) Invoke FRand to generate two random values β,mβ that
are used to re-randomize v,mv:

v←−v+(−1)σβ and mv←−mv+(−1)σmβ

(4) Party P0,P1 output their share c :=(v,mv,ασ).

Fig. 2. Protocol for maliciously secure computation of a given
function Func (such as division, exponentiation, tanh)
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non-zero with high probability. We prove this in two steps,
the first establishes the validity of y and the second es-
tablishes the validity of my. The latter follows naturally
from the standard MAC check routine with minimal mod-
ifications and the details are provided in Appendix E. To
establish the former, we prove the following theorem:

Theorem 5.2. Let y ∈ Z2`+t and let t = 2s. For a fixed
value r, if either of these two statements is false:
(1) y (mod 2`) is either a unit vector or the all-0 vector
(2)

∑
i∈[N](i−1)·yi≡` r

then, the probability that the secure computation check in
Eq. 7a succeeds is bounded above by 21−s.

Proof. Note that when the computation is performed over
a field F, the Schwartz-Zippel lemma [79, 92] gives a fail-
ure probability O(1/|F|) which is small for sufficiently large
field sizes. However, in our case, we need to prove a special
form of the Schwartz-Zippel lemma that applies over rings.
We first introduce the notion of a s-distinct set before we
state our general lemma.

Definition 5.3. Let A be any subset of Z and let s be a
fixed positive integer. A is said to be s-distinct if no two
elements of A are congruent modulo 2s. In other words,
for any two values x,y∈A, 2s -x−y.

Note that the maximum cardinality of any s-distinct set is
at most 2s and we call such a set a maximal s-distinct set.
The set {0,1,...,2s−1} is an example of a maximal s-distinct
set. We state our generalization as the following lemma:

Lemma 5.4. (Bilinear Schwartz-Zippel lemma over
Rings) Let p(x1,...,xn) be an n-variable polynomial over
Z2`+2s of the following form:

p(x1,...,xn)=
∑
i6=j

aijxixj+
∑
i

bixi+c (9)

where the sums are over all indices in [n] such that p(·)
is not identically zero over Z2`. Let S be any s-distinct
subset of Z2`+2s. If points y1,...,yn are sampled randomly
and uniformly from S, then the probability that p(y1,...,yn)
evaluates to 0 over Z2`+2s is bounded above by 21−s.

We prove Lemma 5.4 in Section 5.4. Assuming Lemma 5.4,
we can complete the proof of Theorem 5.2 by observing
that the LHS of the condition given in Eq. 7a can be
expanded out as:(

N∑
i=1

a1,ia2,i(y2
i −yi)

)
+

∑
i6=j

a1,ia2,jyiyj


+

(
N∑
i=1

a4,iyi

)
−r

(10)

We observe that the above Eq. 10 is a bilinear function of
the variables {a1,i,a2,i,a4,i}Ni=1. Furthermore, Step 0 (from
Fig. 2) ensures that r is chosen uniformly at random. Thus,
assuming at least one of the conditions of Theorem 5.2 is
true, the above bilinear polynomial is not identically zero
over Z2` and using Lemma 5.4, we get the required bound
on the success probability.

5.4 Proof of Lemma 5.4

We split this proof into multiple parts. First we provide a
high level proof structure, then describe and prove two in-
termediate lemmas, and finally use these lemmas together
to prove the result.

Proof structure. To establish Lemma 5.4, we prove
two additional lemmas which informally can be stated as
follows:

(1) A univariate version of the lemma that establishes the
statement for an arbitrary polynomial degree. This is
Lemma 5.5.

(2) A multi-variate version, that establishes the statement
albeit only for linear polynomials. This is Lemma 5.6.

Finally, we combine these two lemmas to prove Lemma 5.4,
the general n-variable, bilinear polynomial version. A more
general quadratic form of the lemma is discussed in Ap-
pendix G.2.

Univariate lemma. We first state and prove the lemma
for a polynomial over a single variable for any degree d.

Lemma 5.5. Let p(x) be a polynomial of degree d over
Z2`+ds that is not identically zero over Z2`. Then p(x) has
at most d distinct roots in any s-distinct set, i.e., the set
R= {x | p(x) = 0 ∈ Z2`+ds} has at most d distinct values
when reduced modulo 2s.

Proof. We use ≡m to denote congruence relations modulo
2m and 6≡m for relations that do not hold (i.e., the con-
gruence a ≡ b (mod 2m) is abbreviated as a ≡m b). The
statement holds trivially for the base case d= 0, i.e., con-
stant polynomial in Z2` is either identically zero or has no
roots. For the base case d=1, suppose that p(x)=p1x+p0.
If p1 ≡` 0 then, either p0 ≡` 0 in which case we have the
polynomial is identically zero in Z2`, or p0 6≡` 0, in which
case it has no roots as p0 =p(r)−p1r≡` 0, a contradiction.
If p1 6≡` 0, then there exists at most one root in the set S.
To see this, suppose p1 = 2νpodd where ν < ` and podd is
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odd. Then r can be uniquely solved in S as,

p(r)≡`+s0
⇒ p1r≡`+s−p0

⇒ r≡`+s−ν−p0/podd

⇒ r≡s−p0/podd

(11)

Below we provide a proof for d=2 that also provides
the intuition for the general case (by sequential reduction)
and defer the proof of the general case to Appendix A.

Suppose that d=2 and p(x)=p2x
2+p1x+p0 and that

p(x) is not identically 0 over Z2`. We prove the lemma by
contraposition. Suppose that p(x) evaluates to 0 for points
r1,r2,r3 such that ri∈Z2s for all i∈ [3] and ri 6=rj for i 6=j.
Then the system of equations p(ri)=0 can be written as:r2

1 r1 1
r2

2 r2 1
r2

3 r3 1

·
p2
p1
p0

≡`+2s0 (12)

Linearly modifying the system of equations, we get(r1−r3)(r1+r3) (r1−r3) 0
(r2−r3)(r2+r3) (r2−r3) 0

r2
3 r3 1

·
p2
p1
p0

≡`+2s0 (13)

Let 2ν1 , 2ν2 denote the highest powers of 2 dividing
(r1 − r3), (r2 − r3) respectively, i.e., 2νi ‖ (ri − r3) for
i={1,2}. Since r1,r2,r3 are distinct in Z2s, we know that
νi<s. Thus, if ν=max{ν1,ν2}, then the following system
of equations hold:r1+r3 1 0

r2+r3 1 0
r2

3 r3 1

·
p2
p1
p0

≡`+2s−ν 0≡`+s0 (14)

Repeating the same process, we get that p2(r1−r2)≡`+s0
which implies that p2 ≡` 0. Plugging this into the second
constraint from Eq. 14, we get that p1 ≡` 0 and finally
combining these two statements with the third constraint
in Eq. 14 we get that p0≡`0. Thus p is identically zero over
Z2` contradicting our initial assumption. This completes
the proof for d=2.

Multivariate lemma for linear polynomials. Next
we state and prove the lemma for linear polynomials over
multiple variables.

Lemma 5.6. Let p(x1,...,xn) be a n-variable linear polyno-
mial over Z2`+s such that it is not identically zero over Z2`.
Let S be any maximal s-distinct set. If y1,...,yn are sampled
randomly and uniformly from S, then the probability that
p(y1,...,yn) evaluates to 0 over Z2`+s is bounded above by
2−s.

Proof. Let p(x1,...,xn)=c+
∑
iaixi. If ai≡`0 for all i∈ [n],

then either p is identically zero in Z2` (when c≡` 0) or p

has no roots (when c 6≡` 0). Either way, the statement of
the lemma is true. Thus, w.l.o.g let us assume that a1 6≡`0.
Suppose that ν is the highest power of 2 dividing a1, i.e.,
2ν ‖a1. Suppose that y2,...,yn are randomly sampled values
of x2,...,xn from S. Let y denote the following quantity:

y=−

c+ n∑
j=2

ajyj

 (15)

Then, p(x1,y2,...,yn)≡`+s0 implies that:

a1x1≡`+sy

⇒
(a1

2ν
)
x1≡`+s−ν

y

2ν

⇒ x1≡`+s−ν
(a1

2ν
)−1
· y2ν

(16)

where the inverse of a1/2ν exists because it is co-prime to
the modulus. Now since a1 6≡` 0, we know that ν < ` and
thus Eq. 16 shows that x1 can be uniquely solved over
s-distinct set S. Thus, for any random choice of y2,...,yn
there exist a single value y1 of x1 (among |S| possibilities)
that makes p(y1, ... , yn) evaluate to 0 making the over-
all probability 2−s if S is a maximal s-distinct set. This
completes the proof of the lemma.

Proving Lemma 5.4 using Lemma 5.5, 5.6. Fi-
nally, we establish Lemma 5.4 using the now established
Lemma 5.5 and Lemma 5.6.

Proof. If n= 1, then this is simply a linear equation and
thus has at most one zero in Z2s by Lemma 5.5. Sup-
pose n > 2. Furthermore, suppose that aij ≡`+s 0 for all
i 6= j. Then, p(x1,x2,...,xn)≡`+2s 0 can be reduced to the
constraint p̃(x1,x2,...,xn) ≡`+s 0 where p̃(x1,x2,...,xn) =∑
i bixi + c. Using Lemma 5.6, we know that either p̃

is identically zero over Z2` (and consequently p) or the
probability that p̃(x1,x2,...,xn) = 0 for randomly sampled
x1,x2,...,xn from S is bounded above by 2−s621−s.

Thus, w.l.o.g, let us assume that a12 6≡`+s 0. We can
re-write p(x1,x2,...,xn) as follows:

p(x1,...,xn)=x1q1(x2,...,xn)+q0(x2,...,xn) (17)

where we know that q1(x2,...,xn) is a linear function of its
variables and is not identically zero over Z2`. Now let us
randomly sample y2,...,yn for x2,...,xn from S (note that
q0 is a constant for a given sample y2,...,yn). Since q1(·) is
not identically zero over Z2`, Lemma 5.6 implies that

Pr[q1(y2,...,yn)≡`+s0]6 1
2s (18)

On the contrary, if q1(y2,...,yn) 6=0 (i.e., 6≡`+s 0), then the
polynomial p̂(x1)=p(x1,y2,...,yn) is a univariate linear poly-
nomial (not identically zero over Z2`) and by Lemma 5.5
has at most one root. Thus,

Pr[p̂(x1)=0 | q1(y2,...,yn) 6=0]6 1
2−s (19)
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If event E1 is p(x1, ... , xn) ≡`+2s 0 and event E2 is
q1(y2,...,yn) ≡`+s 0 (where all variables are sampled uni-
formly from S) then,

Pr[E1]=Pr[E1∧E2]+Pr[E1∧¬E2]
=Pr[E1∧E2]+Pr[E1 | ¬E2]·Pr[¬E2]
6Pr[E2]+Pr[E1 | ¬E2]
621−s

(20)

This completes the proof.

6 Evaluation
In this section, we demonstrate how the theoretical con-
tributions translate into concrete efficiency gains. For
implementing the FSS, we use the libPSI/PIR library [74]
and the Falcon codebase [88] is used for end-to-end testing
and the neural network experiments. All our experiments
are run over Azure Machines with the following configura-
tion - Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz, 36
cores (72 threads), 64 GB of RAM. Our networking set-up
includes LAN with a bandwidth of 10 Gbps and ping time
of 0.2 ms and WAN with a bandwidth of 100 Mbps and
70 ms ping time. We use 16 threads for our experiments.

For comparison with prior work, we use the state-of-
the-art protocols and implementations fromMP-SPDZ [54]
and ABY3 [63]. In Appendix G.3, we also compare and
show improvements against two other state-of-the-art pro-
tocols that use different adversarial models – SiRnn [71]
and Falcon [88]. We compare the protocols in the semi-
honest and malicious adversarial models and in the LAN
and WAN settings. We also run experiments specific to
neural networks to establish the importance of our pro-
tocols in scaling secure machine learning. All numbers
reported for prior work were run on the same Azure set-up
for an apples-to-apples comparison. Finally, we describe
the optimizations used in Appendix G.1.

6.1 Comparison in the Semi-honest Setting

Our protocol is oblivious to the function in consideration
and thus takes the same amount of time to compute nor-
malization, sigmoid, tanh, logarithm, etc. We use the sig-
moid function to enable comparison with the most number
of prior state of the art frameworks. For the semi-honest
setting, Table 1 presents a comparison of the proposed
protocols against prior state-of-the-art works with varying
batch sizes for k= 16 and l= 32 (effect of k is studied in
Appendix F). For MP-SPDZ (replicated-ring-party.x)
we set the same 16 bit precision for sfix. To achieve sim-
ilar precision, we use 19 piece approximation [78] for the
ABY3 comparison.

Mode 100 101 102 103 104 105

T
im
e

MP-SPDZ

LA
N

0.018 0.018 0.110 0.935 9.575 93.199
ABY3 0.090 0.092 0.096 0.104 0.221 1.445
Pika 0.0007 0.001 0.006 0.059 0.539 5.329

MP-SPDZ

W
AN

3.225 3.327 16.903 160.293 1605.170 -
ABY3 1.487 1.489 1.493 1.501 1.619 2.851
Pika 0.183 0.195 0.198 0.356 1.375 9.030

Co
m
m
. MP-SPDZ 0.163 0.183 1.271 12.705 126.493 1265.160

ABY3 0.046 0.124 0.945 9.234 92.327 923.252
Pika 0.0002 0.002 0.017 0.174 1.745 17.452

Table 1. Time (in seconds) and communication (in MB) for semi-
honest secure protocols. The computation is a sigmoid function
on a batch of size 100,101,···,105 in the LAN and WAN settings.
MP-SPDZ ran over an hour for the largest batch size and the
communication numbers reported are for the LAN setting.

As can be seen, our protocols generally outperform
prior work in both the run-time and communication over-
head. The amortized cost of computing one single function
evaluation is only 53µs and requires less than 190 Bytes
in the LAN setting. This is about 5× faster than ABY3

and uses 23× less communication. Compared to the im-
plementation in MP-SPDZ, this is over 119× faster and
uses 153× less communication. In the WAN setting, our
protocols outperform MP-SPDZ by one to three orders of
magnitude and these improvements persist even for large
batch sizes. ABY3 which uses garbled circuits achieves
comparable performance for large batch sizes. Finally, our
protocols use 54×-74× lower bandwidth compared to prior
state-of-the-art protocols.

Since our protocols are computation heavy, their per-
formance shines for smaller batch sizes. In the LAN setting,
this breakeven point occurs for batch sizes of about 102−
103; however in theWAN setting, our protocol outperforms
prior work for batch sizes up to 104−105. Note that typical
sizes over which such function computation is performed
in a neural network is small. For instance, Sigmoid is com-
puted over vectors of size equal to the number of classes
(10 for MNIST, CIFAR-10 datasets) and normalizations
occur per batch or channel (between 32 to 512) – which is
precisely the domain in which our protocols perform best.

6.2 Comparison in the Malicious Setting

Table 2 presents a comparison of our protocols with prior
art for the malicious setting (`=128,s=40)4. In the LAN
setting, when comparing against MP-SPDZ (malicious-
rep-ring-party.x), the prior state-of-the-art implementa-
tion, our protocol is about 20× faster for a single function
evaluation and the improvement reduces to 2× for larger
batch sizes. However, when considering the WAN setting,

4 The malicious protocol of ABY3 was not implemented in their
repo.
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Mode 100 101 102 103 104 105

T
im
e

MP-SPDZ

LA
N 0.069 0.070 0.391 3.717 36.853 368.547

Pika 0.003 0.018 0.168 1.670 17.033 170.865

MP-SPDZ
W
AN 4.988 4.993 27.682 250.803 2513.140 -

Pika 0.203 0.218 0.370 2.299 25.186 196.726

Co
m
m
. MP-SPDZ 0.905 0.945 5.697 54.777 544.556 5445.560

Pika 0.0004 0.004 0.045 0.448 4.483 44.835

Table 2. Time (in seconds) and communication (in MB) for
maliciously secure protocols. The computation is a sigmoid
function on a batch of size 100,101,···,105 in the LAN and WAN
settings. ABY3 [63] does not implement their malicious protocol.

our protocol is about 25× faster for smaller batch sizes and
about two orders of magnitude faster for larger batch sizes.

This improvement can be attributed in part to the
2-3 orders of magnitude lower communication used by our
protocol. Bulk of the overhead of the maliciously secure
scheme is caused by (1) EvalAll not benefiting from the
tree-truncation optimization (as the output is no longer
a single bit) and (2) the large inner products to compute
z1,···,z4,z∗. These factors together make our protocol com-
pute dominated and consequently, the protocol provides
significant improvements in the WAN setting.

6.3 Machine Learning Applications

In this study, we show how our normalization can improve
the scalability of machine learning algorithms. MPC pro-
tocols when used with fixed-point representation, provide
inherently approximate computation when compared with
plaintext computation over floating point data types. With-
out protocols such as normalization or sigmoid, the error
accumulates with the depth of the computation and quickly
blows up to cause integer overflows that render the compu-
tationmeaningless.We show that adding normalization not
only improves the convergence and final accuracy (known
from ML) but crucially keeps the overall error in the
network from snowballing across the depth of the network.

To establish this, we consider the simple LeNet archi-
tecture and modify it to increase the depth from the initial
4-layer network all the way up to an 8-layer network (a
more detailed summary of the architectures is provided in
Appendix C). We then initialize two networks: a plaintext
network (computing over 64-bit floating point data-types)
and a corresponding secure computation network (com-
puting over 32-bit fixed-point data-types), trained over the
MNIST dataset. We then compare the relative error, the
accuracy, and the prediction confidence as a function of
the depth. These results are shown with the green lines in
Fig 3. As can be seen, the average relative error at each
neuron output can grow to a staggering 400% with just
an 8-layer network. At the same time, the accuracy and
confidence also goes down significantly.

We then consider the same two networks, modified by
adding normalization layers after the convolution layers
as is typically done in machine learning. The impact of
this modification is immediately obvious. These results
are shown with orange lines in Fig 3. The average rela-
tive error remains nearly a constant independent of the
depth. Furthermore, there is minimal/no loss in accuracy
and confidence over deeper networks. Finally, the use of
batch normalization also improves the training time, the
final model accuracy, and the convergence (seen in the
accuracies of Table 4).

Evaluation of DNNs. We also evaluate our work on
deep neural network architectures and compare against
prior work. We consider two DNNs studied in the literature
before – a Long short-term memory (LSTM) architecture
from [61] which consists of 800 instances of sigmoid and
200 instances of tanh to predict next likely words and a
benchmark from [75] which consists of two tanh layers with
2000 and 500 instances to classify sensor data into physi-
cal activities. As can be seen from the results in Table 3,
our protocol improves the run-time by 8.13× using 53×
less communication for the LSTM architecture. Over the
DeepSecure DNN architecture, our work improves the run-
time by over 35× while using merely 0.02% communication
from the best prior work.

Benchmark Protocol Runtime Communication

MiniONN 1.1 182 MB
MiniONN LSTM [61] SiRnn 0.48 9.32 MB

Pika 0.059 0.1745 MB

DeepSecure 465 83.7 GB
DeepSecure B4 [75] SiRnn 5.3 1.94 GB

Pika 0.1489 0.4375 MB

Table 3. Comparison with prior art over deep neural networks.

6.4 Measuring Computational Accuracy

ULPs or Units in Last Place is a way to measure the ac-
curacy of approximate computation when using finite-bit
representations such as floating-point or fixed-point [48].
It measures the maximum number of “representable num-
bers” between the rounding of the exact answer and the
representation. This measure has a number of important
robustness properties and hence is widely used in measur-
ing the performance of standard math libraries such as
GNU Scientific Library and Intel’s libm [71]. Our protocols
guarantee a maximum ULP error of 1 as the look-up ta-
ble provides exact function computation within the given
fixed-point precision – ABY3 achieves 32 ULPs [63] of
precision while MP-SDPZ that achieves 266 ULPs [38] for
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(a) Normalization maintains computa-
tion accuracy over deeper networks.

(b) Normalization enables achieving
high accuracy over deeper networks.

(c) Normalization ensures high predic-
tion confidence over deep networks.

Fig. 3. These figures establish the importance of normalization for applications of secure computation. Without the use of normaliza-
tion, the relative error quickly increases up with network depth (Fig 3a), the inference accuracy plummets (Fig. 3b), and so does the
prediction confidence (Fig. 3c).

the same computation and SiRnn [71] and Falcon [88]
achieve 3 and 42 ULPs respectively.

7 Related Work
Privacy-preserving protocols for non-linear functions such
as normalization, exponentiation, and more widely secure
computation over fixed point values was presented in these
two seminal works [21, 22]. They gave a general framework
of securely computing these protocols using approximate
methods. A number of general purpose frameworks [1, 54]
use these primitives (or the same protocol structure [30, 31,
57]) to implement these functions within secure computa-
tion. Below, we briefly describe some relevant prior works.

Applications of Function Secret Sharing schemes.
A recent closely related work [83] constructs a similar
look-up based PIR protocol improved using FSS. However,
their LUTs are populated with polynomial approximations
in the vicinity of the inputs providing them with a con-
struction that can tune the approximation errors to small
values. Concurrent works SiRnn [71], AriaNN [76] share
the goals of this work and focus on efficient primitives for
non-linear operations used in machine learning. While the
latter focuses on the use of FSS primarily for comparison,
the former provides a new suite of protocols for an entire
library of functions. Boyle et al. [9] also proposes the use
of FSS for mixed-mode computation to improve the per-
formance of ML functionalities. Another recent work by
Boyle et al. [17] demonstrates the use of FSS to enable
highly efficient protocols for secure comparisons. The work
by Doerner and shelat [42] uses FSS to construct concretely
efficient protocols for distributed ORAMs. Works such
as [10–14] build upon the foundational work of Boyle et
al. [16] to provide efficient pseudorandom correlation gen-

erators for commonly required correlated randomness such
as Vector OLE or OT Extensions.

3-Party Computation frameworks. A number of
frameworks have focused on the 3-party computation mod-
els. The initial works in this space have been [63] which
extends the original work on Arithmetic, Boolean, Yao in-
terconversions [41] into a 3 party setting. The more recent
ABY2.0 [68] provides improvements in the 2PC setting.
SecureNN [86], Falcon [88] demonstrate efficient protocols
for comparison using arithmetic secret sharing only. Other
frameworks such as SWIFT, Astra, BLAZE [23, 58, 69]
further show impressive theoretical and concrete efficiency
gains. 4-party frameworks such as SWIFT, FLASH, Tri-
dent [19, 58, 70] provide stronger MPC guarantees such as
fairness and guaranteed output delivery.

Secure Computation over Rings. The simplicity of
implementations and consequently the concrete efficiency
of protocols has made secure computation over finite rings
an attractive design point in a number of recent frame-
works. In addition to the works already mentioned above,
there are a number of other works in this space. Work such
as [29, 44] operate in the arithmetic blackbox model while
other works [63, 64, 84, 85] focus on specific adversarial
models and number of parties. Overdrive2k [67] provides
efficient preprocessing in the dishonest majority setting
which is relevant in tying this work with the broader MPC
computation. A recent work by Vadapalli et al. [82] also
provides an alternative approach to verification of FSS –
known as an audit protocol. The idea there is to use secure
computation to verify every level of the tree has exactly
one identical child node and then expand the other node.
However, their audit protocol requires the servers to be
semi-honest whereas in Pika, one of the servers may be
maliciously corrupt.

Other MPC frameworks. In recent years, a number
of frameworks have been proposed that focus on secure
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computation for machine learning applications.Works such
as [59, 72] propose new protocols in 2PC, 3PC computation
models tailored for neural networks along with an auto-
mated compiler for converting TensorFlow code into MPC
code. The two recent works [44, 62] propose extremely effi-
cient comparison protocols that are secure in the arithmetic
blackbox model and thus hold over arbitrary corruptions.
For dishonest majority setting, which is similar in spirit to
our maliciously secure protocol, has a long line of work,
most important and closely related are [5, 24, 29, 34, 37,
56, 67]. We refer the reader to this survey by Emmanuela
Orsini [66] for more details. Other works such as Weng et
al. [90], Yang et al. [91], and Baum et al. [6], show alterna-
tive ways to perform efficient secure computation that can
be combined with standard iterative techniques to achieve
concretely efficient protocols. This work can also benefit ap-
plications of MPC in other cryptographic applications [87].
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A Generalized Proof of Lemma 5.5
Proof. We follow a similar line of argument as sketched in
Section 5.4 for d=2. We prove the statement by contrapo-
sition. Suppose that

p(x)=
d∑
i=0

pix
i∈Z2`+ds

such that not all pi ≡` 0. Furthermore, suppose that p(·)
evaluates to 0 at d+ 1 distinct points in Z2s, i.e., there
exists values r1,r2,...rd+1 such that p(ri) = 0 and ri ∈Z2s
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for all i∈ [d+1] and ri 6≡s rj for i 6= j. Then the system of
equations p(ri)=0 can we written as:

rd1 rd−1
1 ... 1

rd2 rd−1
2 ... 1

...
...

...
rdd+1 rd−1

d+1 ... 1

·
pd...
p0

≡`+ds0 (21)

Let us denote the above Vandermonde matrix by A(0)

and the column vector as P . Then the above equation
can be succinctly written as A(0) ·P ≡`+ds 0. The central
idea of the proof is to perform a set of linear equations to
simplify the above equations and to arrive at pi ≡` 0 for
all i ∈ {0,...,d}, contradicting our assumption. Before we
describe the procedure in general, we demonstrate one step
of the process and then formally describe the entire process.
In the first step, we subtract the last row from every other
row to reduce the set of equations to the following:

rd1−rdd+1 rd−1
1 −rd−1

d+1 ... 0
rd2−rdd+1 rd−1

2 −rd−1
d+1 ... 0

...
...

...
rdd+1 rd−1

d+1 ... 1

·
pd...
p0

≡`+ds0 (22)

Now note that for each i∈ [d], ri−rd+1 is a factor of all
the elements of the row i. Thus, we can pull out the com-
mon factor. However, to cancel out this factor, we need
to crucially observe that since this factor is not co-prime
to the modulus 2`+ds, we have to reduce the modulus by
their common factor. In particular, suppose ti = ri−rd+1
for i∈ [d]. Let 2νi denote the highest power of 2 dividing
ti, i.e., 2νi ‖ ti. Then we can divide row i by 2νi and then
the congruence relation holds modulo 2`+ds−νi where we
divide ti/2νi. Now since ti/2νi is odd and thus co-prime to
2`+ds−νi, we know that it has an inverse modulo 2`+ds−νi
and thus we can cancel it out. In summary, if g(x,y,m) is
defined as the following expansion:

g(x,y,m)= (xm−ym)
(x−y) =

m−1∑
i=0

xiym−1−i (23)

Let fi,m = g(ri,rd+1,m). We know because the values ri
are distinct modulo 2s, if ν = max{ν1,...,νd} then ν < s.
Thus we can cancel a factor νi from row i and still have
the following constraints hold:

f1,d f1,d−1 ... 1 0
f2,d f2,d−1 ... 1 0
...

...
...

fd,d fd,d−1 ... 1 0
rdd+1 rd−1

d+1 ... rd+1 1

·
pd...
p0

≡`+(d−1)s0 (24)

The goal of the proof is to establish that after repeating
this process d times, we arrive at the following form of

constraints:
1 0 0 ··· 0 0
∗ 1 0 ··· 0 0
...

...
...

∗ ∗ ∗ ··· 1 0
∗ ∗ ∗ ··· ∗ 1

·
pd...
p0

≡`0 (25)

where * indicates terms we do not care about. Note that
Eq. 25 immediately implies that pi≡`0 for all i∈{0,1,...,d}
which contradicts our initial assumption that p(·) is not
identically zero in Z2`. Thus it remains to show that this
sequential reduction arrives at Eq. 25. To do that we
establish some further notation.

Notation. Let η denote the steps, i.e., η = 0 refers to
the constraint matrix A(0) and given by the expression
in Eq. 21 but η = 1 refers to the constraint matrix A(1)

given by the expression in Eq. 24. η takes values from 1
to d (η=0 is defined for convenience). The process can be
formally defined as following reduction:

Procedure at iteration η

For each i∈{1,2,...,d+1−η} perform the following operations:

(1) Subtract d+2−ηth row of matrix A(η−1) from it’s ith row.
(2) Pull out the common factor ri−rd+2−η from the ith row.
(3) Cancel out the factor ri − rd+2−η from the ith row,

consequently reducing the modulus of the constraint system
to 2`+(d−η)s

Thus, the matrix A(η) at the end of step η is a
(d+1)×(d+1) matrix encoding the constraints, i.e.,

A(η)
1,d A(η)

1,d−1 ··· A(η)
1,0

A(η)
2,d A(η)

2,d−1 ··· A(η)
2,0

...
...

...
...

A(η)
d+1,d A(η)

d+1,d−1 ··· A(η)
d+1,0

·
pd...
p0

≡`+(d−η)s0

(26)
We are interested in computing the A(η) for η = d. Note
that after step η, rows 1,2,...,(d+1−η) contain the same
expression in their corresponding variables ri, i.e., row i

can be transformed into row j by replacing ri with rj for
i,j∈{1,2,...,(d+1−η)}. Thus, to assist with computing these
expressions, we define another (d+1)×(d+1) dimensional
matrix T (η) to keep a track of each entry in the first row.
In other words, T (η) has the following entries (note that
the rows and columns of T (η) are differently numbers from
the rows and columns of A(η)):

T (η) =


t
(η)
d,1 t

(η)
d,2 ··· t

(η)
d,d+1

t
(η)
d−1,1 t

(η)
d−1,2 ··· t

(η)
d−1,d+1

...
...

...
...

t
(η)
0,1 t

(η)
0,2 ··· t

(η)
0,d+1

 (27)
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1

1
∗ ··· 1 0 0 0
∗ ··· ∗ 1 0 0
∗ ··· ∗ ∗ 1 0
∗ ··· ∗ ∗ ∗ 1



... O(d−η)×η

=

 ∗ ··· ∗ 1 0 0
∗ ··· ∗ ∗ 1 0
∗ ··· ∗ ∗ ∗ 1



O(d+1−η)×(d+1)

+



rd1 rd−1
1 1

rd
d+1−η rd−1

d+1−η 1

O(η)×(d+1)

······

...
...

...

······

×



0 0

0

1

∗

∗ ∗ 1 0 0


Fig. 4. To prove Claim A.2, we need to show that after the inductive step η, the matrix relation on the right hand side (the form of
these is established because of the inductive hypothesis, Claims A.1, or by Eq. 33) imply the structure of the selected row and column
on the left hand side as well as the zero matrix on the top right (zero matrices are denoted by O)

where, t(η)
x,y is the coefficient of the yth power of the root

corresponding to that row (i.e., ri) and corresponding to
the entry in the xth column of A(η). Note that the ini-
tial matrix T (0) is simply the identity matrix. For ease of
exposition, we explicitly write down T (1) below:

T (1) =


0 0 0 ··· 0
1 0 0 ··· 0

rd+1 1 0 ··· 0
...

...
...

...
rd−1
d+1 rd−2

d+1 rd−3
d+1 ··· 0

 (28)

Now, following the steps of the procedure at iteration η, we
can compute coefficients corresponding to different powers
of ri in A(η) using a recurrence relation for T (η). In the ηth

step, we subtract the (d+1−η)th row of A(η−1) from each
row and then “divide” the ith row by ri−rd+1−η. We know
that when we expand the expression for g(ri,rd+1−η,m) for
a general power m (Eq. 23), each power of ri occurs ex-
actly once. Thus, for computing the expression for t(η)

x,y, we
can combine the appropriate powers of ri and note that a
contribution for power x can only come from t

(η−1)
i,y if i>x.

Thus, we can write the following recurrence relation for
t
(η)
x,y for η∈ [d] (starting from the initial condition T (0) =I):

t
(η)
x,y=

d∑
i=x+1

t
(η−1)
i,y ri−x−1

d+2−η (29)

Calculating the general expression of T (η) is messy but we
note that it is not necessary to compute that to establish
A(d) as given by the form in Eq. 25. We will use the
following claims:

Claim A.1. For η∈ [d], the coefficients of T (η) (given by
Eq. 27) satisfies the following two conditions:
(1) t

(η)
x,y=0 if x+y>d+2−η

(2) t
(η)
x,y=1 if x+y=d+1−η

To prove these claims, use use induction on η. First note
that these conditions are satisfied for T (0) and T (1). Let

us assume that these hold for T (η−1). Then using Eq. 29
if x+y>d+2−η then for every i∈{x+1,...,d}

i+y>x+1+y
>d+3−η
=d+2−(η−1)

(30)

Thus every coefficient on the RHS of Eq. 29 is 0, thus es-
tablishing Claim A.1(1). Similarly, to prove Claim A.1(2),
note that if x+y= d+1−η, then Eq. 29 can be split into
the first summation term and the rest:

t
(η)
x,y=t(η−1)

x+1,y+
d∑

i=x+2
t
(η−1)
i,y ri−x−1

d+2−η

=t(η−1)
x+1,y

(31)

where the second equality follows from the fact that for
i∈{x+2,...,d}, the coefficients are all zero t(η−1)

i,y as

i+y>x+2+y
=d+1−η+2
=d+2−(η−1)

(32)

This establishes Claim A.1. Now, using the lower left tri-
angular form of T (η) and noting that we only apply a
transformation over rows in [d+ 1−η], we can write the
following recurrence relation for the entire matrix Aη:

A(η) =Bottomη

(
A(η−1)

)
+Topd+1−η

(
A(0)

)
×T (η) (33)

where Bottomη(·) retains only the bottom η rows of the ma-
trix and zeros the top (d+1−η) rows and Topd+1−η(·) zeros
the bottom η rows and retains the top (d+1−η) rows and
A(0) is simply the Vandermonde matrix in Eq. 21. The final
set of claims to establish the form of A(d) is the following:

Claim A.2. For η∈ [d], the coefficients of A(η) satisfy the
following conditions:
(1) A(η)

i,j =1 if j6η and i+j=d+1
(2) A(η)

i,j =1 if j=η and i+j6d+1
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(3) A(η)
i,j =0 if j<η and i+j<d+1

Once again, we use induction to prove to the above claims.
Please refer to Fig. 4 as an intuitive visual for proving these
claims. The structure of the matrices is established either
by the inductive hypothesis, Claims A.1, or by Eq. 33. First,
we note that the bottom η rows of A(η−1) are unchanged
thus establishing claim A.2(1) except for the case when
j=η. We handle this case while establishing claim A.2(2).

For claim A.2(2), we note that the entries in this col-
umn are generated by multiplying the rows {1,2,...,d+1−η}
with the (d+1−η)th column of of T (η). Now for this column,
using Claim A.1, we know that the only non-zero value is
t
(η)
0,d+1−η which is equal to 1 (note that the indices of T (η)

are enumerated as shown in Eq. 27).
To establish claim A.2(3), we need to observe that for

y ∈ {d+ 1−η,...,d+ 1}, the yth column of T (η) is all zero.
This proves Claim A.2.

Finally, it is easy to see that Claim A.2 for η = d

implies the lower triangular matrix form of A(d) with ones
over the diagonal (as shown in Eq. 25), thus completing
the proof of Lemma 5.5.

B End-to-end Security Proof
We prove security in the UC paradigm [20]. We first prove
the security of the maliciously secure protocol and the
semi-honest protocol follows from it. In the real interac-
tion, parties P0,P1,P2 run the protocol Πmal:Func and in
the ideal world, a simulator interacts with an ideal func-
tionality (described below in Fig. 5) and the adversary
(controlling 1-out-of-3 parties).

Ideal functionality FIdeal

(1) Receive inputs JaK2`+t from parties P0,P1.
(2) Wait to receive a signal from S.
(3) If the S sends abort, send abort to the honest parties
(4) If the S sends OK, receive value α from S, then compute

b=Func(a), generate random secret shares of b, αb and send
them to the honest parties.

Fig. 5. Description of the ideal functionality.

Let FRand be a pairwise common randomness gen-
eration functionality. Note that such a functionality can
be securely constructed using PRG keys set-up between
parties [46]. The security can be formally stated as:

Theorem B.1. Protocol Πmal:Func securely computes the
functionality FIdeal with abort in the FRand-hybrid model,
in the presence of one malicious party.

Proof. We break down the proof into two cases – (1) one
of P0 or P1 is malicious or (2) P2 is malicious.

P0 or P1 is Malicious. Without loss of generality, let
us suppose the adversarially corrupt party is P0 (denoted
by A). We construct a simulator S that interacts exter-
nally with the ideal functionality and internally with the
adversary A, as follows:

(1) S invokes FRand to get random values for α0,α1,r0,r1.
(2) S generates the DPF keys honestly as described in

Step (1)(a) and sends a share of αr and k0 to A.
(3) S also runs Πmal:Func internally to simulate parties

P1,P2. With the internal run, S proceeds to complete
Step (2)(d) with A. If the protocol aborts, S sends
abort to the ideal functionality FIdeal and aborts.

(4) In the authenticated opening (Step (3)(a) in Fig. 2),
the S uses a1 = 0 (along with the random r shares)
as the share of the input and extracts the adversarial
input a0. It can then verify the MAC share using the
extractor of the MAC check (and abort if incorrect
MAC is used in the opening).

(5) If the protocol does not abort until this step, the S
sends a OK signal (along with the value α) to the
ideal functionality and forwards the adversarial inputs
to the ideal functionality. The output of the ideal
functionality is forwarded as is to A.

First, we show that all the real interaction transcripts can
be simulated. The DPF keys and shares of αr are honestly
generated and hence follow the same distribution in both
the real and ideal world interactions. The opening and the
commitments in Step (2)(d) and Step (3)(a) are masked
by a uniformly random values that are only known to the
simulator (hidden from A) making the transcript indistin-
guishable in the real and ideal world scenario. The output
distribution is indistinguishable in both the scenarios as
the outputs form randomized shares of b=Func(a).

P2 is Malicious. In this case, the adversarially corrupt
party is P2 (denoted by A). We construct a simulator S
that interacts externally with the ideal functionality and
internally with the adversary A, as follows:

(1) S invokes FRand to get random values for α0,α1,r0,r1.
(2) S receives shares of αr and the DPF keys from A,

mimicking the roles of parties P0,P1 via an internal run.
(3) If A does not send valid shares of αr or the expansion

of the DPF keys does not agree with the output of
FRand, then S externally sends a signal abort to FIdeal.
Otherwise, S sends a signal OK to FIdeal.

Note that A does not receive any outputs from the
protocol. Thus the transcript of the protocol for A is in-
distinguishable in the real and ideal worlds. Thus we only
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need to establish that the honest parties receive their out-
puts correctly. First we note that the honest parties abort
the protocol when Steps (2)(d) or (3)(a) fail. Theorem 5.2
along with the MAC check required for Step (3)(a) en-
sure that the real world protocol aborts under the same
conditions as the ideal world protocol. Finally, the out-
puts received by the honest parties are random shares of
b=Func(a) by the correctness argument in Section 5.3.

C Network Architectures
We use modifications of the LeNet architecture [60] for our
experiments. Depending on the depth of the network, we
will refer to these network architectures as 4-layer, 5-layer,
···, 8-layer. The first layer of each network is a convolution
layer, with a 3×3 filter, stride and padding set to 1 each.
The number of output filters is set to 8. The second layer
is another convolution layer with a 3×3 filter, stride 1 and
padding 1, with 8 input channels and 16 output channels.
Each of these convolution layers are followed by a pooling
layer (maxpooling) with a 2×2 filter. The final two layers
are linear (fully connected) layers. The first of these is a
784 to 128 and the second one is 128 to 10. The output of
the network is this size 10 (one-hot encoding) of the label.
The activation function on each of these layers is ReLU.

Layer Type Input Size Parameters Activations Repeat

Convolution 28×28 Filter size 3×3, Stride 1, 2×2 Maxpool 1×Padding 1, Cin =1,Cout =8 and ReLU

Convolution 14×14×8 Filter size 3×3, Stride 1, 2×2 Maxpool 1×Padding 1, Cin =8,Cout =16 and ReLU

Convolution 7×7×16 Filter size 3×3, Stride 1, ReLU (n−4)×Padding 1, Cin =16,Cout =16

Fully connected 784 784×128 ReLU 1×

Fully connected 128 128×10 ReLU 1×

Fig. 6. Network architectures used in this work.

For the n-layer architecture, where n ∈ {4,5,6,7,8},
sandwiched between the two convolution layers and the
two linear layers are n− 4 convolution layers. These lay-
ers all use a 3×3 filter with stride 1 and padding 1 but
with no pooling layer (as that sub-samples the data too
much). In the networks that use batch normalization, the
batch normalization is applied to the output of each of the
convolution layers (before the pooling and the activation).
These architectures are succinctly represented in Fig. 6.

D Construction of the
Function Secret Sharing Scheme

We briefly describe the FSS construction from [16] for
the distributed point functions in Figure 7 (with the tree-
trimming optimization). The evaluation depth of the tree
is given by:

ν=min
(
dn−log λ

log|G|e,n
)

(34)

Fig. 8 describes the ConvertG function for the specifics of
our use case.

E Details of the Sketching Scheme
Here we flush out the details of the sketching scheme with
the underlying MPC computation. Let G1 be the group
Z2` and G2 be the group Z2`+t. Note that the first output
of the DPF keys belongs to G1. To use this in the computa-
tion between P0,P1, we simply consider G1 as a subgroup
of G2. This is fine since only the lower `-bits of the shares
encode the secret. The MACs, which are the second output
of the DPF keys, are already elements of G2.

Thus, we construct a single GGM tree that outputs
two keys such that each key expands can be used to eval-
uate the function at a point and receive an output in
G1×G2. This would require modifying the final correction
word CW (ν+1) to return appropriately a pair of group ele-
ments. Note that given the sizes of `,t we use, ν=n, the full
depth of the tree. Also, note that for the correctness of the
MAC checks, P2 encodes the value α times the first output
over Z2`+t (and not just Z2`). In this section, we use a su-
perscript within parenthesis to denote the share of a party.

Verification of Eq. 7a. Party Pσ for σ = 0,1 locally
expands their DPF keys into two vectors (using the EvalAll
protocol):

y(σ),m
(σ)
y ←−EvalAll(σ,kσ,Pub) (35)

where y(σ) ∈ GN1 and m
(σ)
y ∈ GN2 . Then, party it locally

computes the following terms:

z
(σ)
j =〈y(σ),Lj〉 for j=1,2,3,4 (36)

While this two-party computation can be performed en-
tirely between P0,P1, we can use further correlated ran-
domness provided by P2 to aid this computation. Such an
optimization is akin to using a Beaver triple [7] and is used
in prior works [8, 17]. More specifically, P2 provides the
parties with correlated randomness b(σ)

1 ,b
(σ)
2 ,b

(σ)
3 ,b

(σ)
4 ,b

(σ)
5

which the parties use to reveal the values Zj←− zj+bj for
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FSS Protocol for DPF (Gen,EvalAll)

Let G : {0, 1}λ → {0, 1}2λ+2 be a pseudorandom generator.
Let ConvertG as defined in Figure 8 be a map that converts a
random λ-bit string into bλ/mc pseudorandom elements of G. Let

ν=min
(
dn−log λ

log|G|e,n
)

Gen(α,β):
1 Let α=α1,...,αn∈{0,1}n be the bit decomposition of α
2 Sample random s

(0)
0 ←−{0,1}

λ and s(0)
1 ←−{0,1}

λ

3 Let t(0)
0 =0 and t(0)

1 =1
4 for i = 1 to ν do
5 sLb ||t

L
b ||s

R
b ||t

R
b ←−G(s(i−1)

b
) for b=0,1

6 if αi=0 then
7 Keep←−L,Lose←−R
8 else
9 Keep←−R,Lose←−L

10 end
11 sCW←−sLose

0 ⊕sLose
1

12 tLCW←−t
L
0 ⊕tL1 ⊕αi⊕1 and tRCW←−t

R
0 ⊕tR1 ⊕αi

13 s
(i)
b
←−sKeep

b
⊕t(i−1)
b

·sCW for b=0,1
14 t

(i)
b
←−tKeep

b
⊕t(i−1)
b

·tKeep
CW for b=0,1

15 CW (i) =sCW ||tLCW ||t
R
CW

16 end
17 Let α̂=αν+1,...,αn

18 Let CW (ν+1) =

(−1)t
(ν)
1

[
e2n−ν
α̂,β −ConvertG(s(ν)

0 )+ConvertG(s(ν)
1 )
]

19 Let kb←−s
(0)
b

for b=0,1 and Pub=CW (1)||...||CW (ν+1)

20 return (k0,k1,Pub)

EvalAll(b,kb,Pub):
1 return Traverse(kb,b,Pub,ν+1,1)

Traverse(s,t,Pub,i,j):
1 Parse Pub=CW (1)||...||CW (n+1)

2 if i>1 then
3 Parse CW (i) =sCW ||tLCW ||t

R
CW

4 τ(i) =G(s)⊕t·
(
sCW ||tLCW ||sCW ||t

R
CW

)
5 Parse τ(i) =sL||tL||sR||tR
6 return Traverse(sL,tL,Pub,i−1,j)

|| Traverse(sR,tR,Pub,i−1,j+2n−ν+i−1)
7 else
8 Pj′=ConvertG(s+t·CWν+1)[j′]

for j′=j,...,j+2n−ν+1
9 return Pj||Pj+1||...||Pj+2n−ν+1

10 end

Fig. 7. Function Secret Sharing scheme for DPFs

j = 1,2,3,4 and R←− r+ b5. Finally, P2 also supplied the
parties with shares of A,B,C given by:

A=−b2
B=−b1
C=b1b2+b3−b4+b5

(37)

Subroutine ConvertG

ConvertG(s):
1 Let m=log|G|, b=bλ/mc and parse s=s1,···sλ∈{0,1}λ
2 Let f be a map that converts m-bits into an element of G
3 return f(s1,...,sm),···,f(sbm−m+1,...,sbm).

Fig. 8. Converting a string s∈{0,1}λ to an element in a group
G. We only use ConvertG in the scenario when log|G|6λ.

Note that the checking equation then modifies to the
following:

(z1z2−z3)+(z4−r)=Z1Z2−Z3+Z4−R
+Z1[−b2]+Z2[−b1]+[b1b2+b3−b4+b5]

(38)

Thus, the servers open the masked values and verify the
above expression over two rounds. Note that any malicious
errors added either by P2 or one of P0,P1 will be caught
in this check. Thus the only attack that the corrupt party
can run is a denial of service, which we consider outside
the scope of this work.

Verification of Eq. 7b. The MAC check equation can-
not be verified in the same equation as the verification
for Eq. 7a. This is because, Lemma 5.4 would only al-
low us to detect cheating if my − αy 6≡` 0. However, for
the verifications of the SPDZ2k framework [29] to work
with statistical failure probability corresponding to our
parameters, ensuring my − αy ≡` 0 is not sufficient. We
can overcome this challenge by simply running the MAC
check routine. However, the MAC checks from [29], viz.,
SingleCheck,BatchCheck are protocols from opening and
thus require careful masking of higher order bits. In our
case, we do not wish to reveal any value but only verify the
check and thus we can simply use a single authenticated
value b,mb ∈ Z2`+t to verify this check. Thus, the parties
reveal Z1←−z1+b, commit and reveal the following values:

αz1−z∗=α(Z1−b)−z∗

=α(Z1)−αb−z∗

=
∑

σ∈{0,1}

Z1α
(σ)−m(σ)

b −z
∗(σ)

(39)

The last expression can be computed locally by each party
after the reveal. Note that we can optimize the reveals
across the two verifications by using b = b1. Finally, we
can also verify MAC on r within the same expression by
appending r (and mr) to y (and my resp.) but can also be
deferred to the following secure computation.

Complexity. The shares for b1,b2,b3,b4,b5 can simply be
generated using PRG seeds shared one time between Pσ
and P2 for σ= 0,1. Thus their amortized communication
overhead can be ignored. Ignoring the optimization of
sending shares only to one party (of A,B,C), the commu-
nication is 3 group elements (thus 3(`+t)-bits).



Pika: Secure Computation using Function Secret Sharing over Rings 24

The verification itself (both Eq. 7a, 7b) can be done
over two rounds. The first involves opening the masked val-
ues and the second to perform the check over the computed
values. The opening involves a communication of 5 group
elements and the computed values are one group element
for each verification. Thus, the total communication is 7
group elements (thus 7(`+t)-bits) split over two rounds.

F Microbenchmarks
for Experimental Evaluation

Tables 4 contains the results of training neural networks
with varying number of layers with and without normal-
ization. Table 5 contains the breakdown of the cost of our
protocols as a function of the FSS tree size and compute
and communication. An important observation from Ta-
ble 5 is that our protocols are heavily compute dominated.
For protocols in Falcon [88], the overhead of the normal-
ization layers increases 44×when going from LAN toWAN
(for secure inference; 290× for training). On the contrary,
the overhead of our protocol remains nearly constant across
LAN or WAN (final columns of Table 5). Once again, this
is because our protocols have extremely low communica-
tion overhead and round complexity and thus are heavily
compute dominated. Thus, these protocols, being com-
pute bound, can further benefit by dedicated hardware
implementations such as over GPUs or FPGAs [81, 89].

G Discussion
Here we discuss other aspects of our protocol such as the
optimizations used in our implementation, discussion on
the SZ Lemma and generalizations, and a comparison of
our work with other state-of-the-art protocols.

G.1 Optimizations

Since our protocols are compute heavy, we use two op-
timizations from literature to improve our performance,
viz., tree-trimming and optimized EvalAll. The first is an
algorithm known as EvalAll that evaluates the function at
all the points in its domain. This optimized EvalAll reduces
the computational complexity over a naïve approach of
running Eval at each point by O(logN). We describe this
with along with the FSS scheme from [16] in Appendix D.

The second optimization is known as tree-trimming
and is useful when the size of the output group G is smaller
than the λ, where λ is the size of the length-doubling
PRG used in the FSS constructions. In such a case, the

tree-trimming technique allows extracting multiple group
elements using a single seed and thus the tree is evaluated
up to a depth that is smaller than the actual depth n by
λ/log|G| levels. Since the bulk of the overhead occurs in
the lowest few levels of the evaluation, this optimization
considerably speeds up evaluation. Over and above this, we
parallelize the evaluation of the FSS keys across a batch to
optimize the run-time of our protocol. We use 8 threads in
our benchmarks to parallelize this computation. Note that
the inner product currently is implemented using a simple
for loop. It can be further optimized for larger batches
by implementation using efficient matrix multiplication
algorithms.

G.2 Schwartz-Zippel
Lemma and Generalizations

The Schwartz-Zippel lemma, also known as the DeMillo-
Lipton-Schwartz–Zippel was originally stated in [40, 79, 92]
(it appears that only [79] had the stronger result which is
the widely accepted statement of the lemma). Since then,
there have been a few works that try to extend this to
rings [3, 25]. However, each approach requires some relax-
ation to the original statement such as finding sets A with
the condition that ∀x,y ∈A,x 6= y =⇒ x−y is not a zero
divisor of the modulus or finding large integer domains.
For the particular choice of ring in this work, such sets are
not large enough to provide meaningful statistical security
and hence are not useful for our setting.

In Section 5, we stated and proved a special form
(billinear) of the Schwartz-Zippel lemma which suffices
to construct maliciously secure protocol for look-up style
computation. However, it remains an open question to
state and prove a general statement (for arbitrary degree
polynomials) of the lemma (particularly without signifi-
cantly higher slack), similar to the original Schwartz-Zippel
lemma. For instance, we can prove a SZ lemma for degree
d=2 and for a general n with an additional slack as follows:

Lemma G.1. (Quadratic Schwartz-Zippel lemma
over Rings) Let p(x1, ... ,xn) be a n-variable polynomial
over Z2`+4s and such that p(·) is not identically zero over
Z2`. Let S be a maximal s-distinct set. If points y1,...,yn
are sampled randomly and uniformly from S, then the
probability that p(y1, ... ,yn) evaluates to 0 over Z2`+4s is
bounded above by 21−s.

Proof. The proof follows a similar line of argument to the
proof of Lemma 5.4. Suppose one of the quadratic coeffi-
cients is 6≡`+2s0. Then using Lemma 5.5 over that variable
(with d→ 2 and `→ `+2s) gives a failure probability of
21−s. On the other hand, if all the quadratic coefficients
are≡`+2s0, then we can reduce the equation p(·)≡`+4s0 to
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4-Layer 5-Layer 6-Layer 7-Layer 8-Layer

Without
Normalization

Relative error 0.31 0.44 37.83 85.16 376.75

Training Plaintext Acc. 99.20 99.32 99.41 99.40 99.55

Inference

Plaintext Acc. 98.72 98.64 98.41 98.37 98.39
MPC Acc. 98.72 98.64 93.72 88.21 73.39
Difference 0.00 0.00 -4.69 -10.16 -25.00
Confidence 99.38 99.32 93.91 90.03 72.95

With
Normalization

Relative error 0.61 0.79 2.59 1.09 0.73

Training Plaintext Acc. 99.60 99.65 99.78 99.87 99.92

Inference

Plaintext Acc. 99.01 99.08 99.20 99.25 99.25
MPC Acc. 99.01 99.08 99.20 99.25 99.25
Difference 0.00 0.00 0.00 0.00 0.00
Confidence 99.13 99.37 99.24 99.55 99.46

Table 4. Detailed results of the experiments establishing the use of normalization. The numbers in bold establish the major
observations: without the use of normalization, the relatively error quickly accumulates to high values with the increasing depth of the
network. This can be kept nearly constant with the use of normalization. The inference accuracy matches exactly the accuracy of the
underlying network if normalization techniques are used.

Tree
Size (k)

Comm.
(KB)

Time (ms)

EvalAll Compute Network Total

LAN WAN LAN WAN

16 18.71 3.98 1.26 1.5×10−5 4.6×10−4 5.25 5.25
17 20.33 7.17 1.23 1.6×10−5 5.0×10−4 8.40 8.41
18 21.96 10.89 1.62 1.7×10−5 5.4×10−4 12.51 12.51
19 23.58 15.15 7.47 1.8×10−5 5.9×10−4 22.62 22.62
20 25.21 25.90 18.03 2.0×10−5 6.3×10−4 43.93 43.93
21 26.83 48.34 35.04 2.1×10−5 6.7×10−4 83.39 83.39
22 28.46 120.07 49.06 2.2×10−5 7.1×10−4 169.13 169.13
23 30.08 196.50 148.55 2.4×10−5 7.5×10−4 345.06 345.06
24 31.71 365.56 320.40 2.5×10−5 7.9×10−4 685.96 685.96

Table 5. Breakdown of the overhead of our protocol for any function look-up as a function of the parameter k. The timings are for
a batch size of 100. EvalAll contains the time for DPF evaluations and forms the bottleneck, compute is the rest of the compute cost
(primarily the inner product), and network is the communication overhead of the protocols. Observe that the protocols are purely
compute dominated and show very little increase when implemented over network constraint settings such as WAN.

p̃(·)≡`+2s0, where p̃ is billinear (because all the quadratic
terms are zero over Z2`+2s). Using Lemma 5.4, the probabil-
ity is bounded by 21−s. Thus in either case, the probability
is bounded by 21−s, thus establishing the result.

The most useful features of the Schwartz-Zippel lemma
for rings are (1) the independence of the bound on the
number of variables n and (2) the scaling of the slack with
the degree d. For d= 2, we can achieve the independence
with n with a slack of 4s but it is an open question if
tighter bounds could exist. Thus it remains to see if there
is such a “tight” formulation of the lemma for rings and
for higher polynomial degrees (possibly using sets coprime
to the modulus). Another promising future direction of
research is the construction of malicious sketching schemes
that run the sketching only over a smaller selected domain.
This would significantly reduce the cost of the inner prod-
uct and would require leveraging the structure of the FSS
schemes to prove correctness with high probability.

G.3 2PC and Other Adversarial Models

Two recent works, SiRnn and Falcon, also provide pro-
tocols for non-linear function computation but operate in
slightly different adversarial models. SiRnn is a 2PC semi-
honest secure protocol which uses digit decomposition in
conjunction with oblivious transfers to compute non-linear
functions efficiently. Falcon on the other hand operates
in the same 3PC adversarial model as this work with an
honest majority corruption model (both semi-honest and
malicious corruptions). However, Falcon protocol achieve
a different ideal functionality and the computation thus
reveals the nearest power of 2. This is frequently the bot-
tleneck of the non-linear function computation leading to
different scaling of the protocol with larger batch sizes.

Table 6 shows how this work compares against SiRnn
and Falcon in the semi-honest threat model. In the LAN
setting, our work improves upon these for smaller batch
sizes. In the WAN setting however, our protocols uncon-
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Mode 100 101 102 103 104 105

T
im
e

SiRnn

LA
N

- 0.115 0.116 0.147 0.289 2.089
Falcon 0.024 0.021 0.022 0.041 0.159 1.228
Pika 0.0007 0.001 0.006 0.059 0.539 5.329

SiRnn
W
AN

- 7.683 7.690 7.816 9.313 32.702
Falcon 3.226 3.232 3.253 3.373 4.340 13.577
Pika 0.183 0.195 0.198 0.356 1.375 9.030

Co
m
m
. SiRnn - 0.897 0.988 2.159 23.800 238.085

Falcon 0.0014 0.014 0.137 1.396 13.960 139.600
Pika 0.0002 0.002 0.017 0.174 1.745 17.452

Table 6. Broader comparison against state-of-the-art semi-honest
secure protocols. Note that SiRnn is a 2PC protocol and Falcon
is a 3PC protocol but reveals the size of the input leading to
simpler protocols. Time (in seconds) and communication (in MB)
and the computation is a sigmoid function on a batch of size
100,101,···,105 in the LAN and WAN settings.

Mode 100 101 102 103 104 105

T
im
e

Falcon

LA
N 0.0453 0.0473 0.0477 0.0867 0.4673 4.0399

Pika 0.003 0.018 0.168 1.670 17.033 170.865

Falcon

W
AN 7.6574 7.6630 7.6686 7.8132 11.0553 36.8217

Pika 0.203 0.218 0.370 2.299 25.186 196.726

Co
m
m
. Falcon 0.0100 0.1004 1.0036 10.0360 100.3600 1003.6000

Pika 0.0004 0.004 0.045 0.448 4.483 44.835

Table 7. Broader comparison against state-of-the-art maliciously
secure protocols. Note that Falcon is a 3PC protocol but reveals
the size of the input leading to simpler protocols (SiRnn [71]
does not implement their malicious protocol). Time (in seconds)
and communication (in MB) and the computation is a sigmoid
function on a batch of size 100,101,···,105 in the LAN and WAN
settings.

ditionally improve upon prior work. Finally, our protocols
use 7×-727× lower bandwidth compared to either of these
protocols.

Constructing a 2PC Protocol. Protocols described in
Section 4, 5 are described as 3 party protocols and have
been proven secure in a honest majority setting with semi-
honest and malicious security respectively. These protocols
can be converted into the weaker adversarial model of 2PC
with a trusted third party such as those used in [64, 73, 76].

To convert our protocol into a 2-party computation
protocol, we can use prior work in the semi-honest setting.
Particularly, distributed generation of the FSS keys can be
done with concrete efficiency by the protocol of Doerner
and shelat [42] (see also Appendix A in [9]). The additional
common randomness of generating the shares of the DPF
point r can be done using the input to the distributed FSS
key generation (which have boolean shares of the r) and use
works such as [33, 41, 44] to convert into arithmetic shares
of r. Another option is to use concretely-efficient general-
purpose secure computation protocols such as [1, 53, 54]
to emulate the party P2 (these outperform [42] for larger
domain sizes). We use the implementation by Doerner and
shelat [42] to benchmark the timing required for a dis-
tributed FSS key generation. In the LAN setting, it takes

202µs and in the WAN it requires 50.26ms for a single
generation. Implementation for larger batch sizes can be
optimized to improve run-times. Currently, the distributed
key generations are sequential (since they are implemented
inside an ORAM read functionality) thus rendering the
round complexity linear in the size of the batch. Despite the
round sub-optimal implementation, the overall run-times
of Pika are better/comparable to SiRnn as seen in Table 8.

100 101 102 103 104 105

LA
N Pika-2PC 0.0009 0.0019 0.0122 0.1197 1.1642 11.6794

SiRnn - 0.1147 0.1158 0.1471 0.2886 2.0887

W
AN Pika-2PC 0.2337 0.2482 0.2761 0.6721 4.0554 33.9804

SiRnn - 7.6830 7.6904 7.8164 9.3129 32.7022

Table 8. Run-time (in seconds) comparison between a 2PC
semi-honest construction using Pika with the protocol from SiRnn.

The question of enabling the malicious protocol in
the 2PC case is harder to answer. Firstly, since there is
no notion of party P2 being untrusted (it is simply be-
tween party P0,P1 that the FSS keys are generated), it
may be possible to absorb the verification routine into
the MPC. The second challenge is generating the double
payload FSS keys where neither party has access to the
MAC key α. Finally, the question whether such a protocol
provides concrete efficiency improvements over state of the
art protocols remains to be seen.

G.4 Quantization of inputs

We have seen how the techniques presented in this work
can enable efficient computation of non-linear functions
such as sigmoid, normalization, logarithm, square root etc.
The improvements are most pronounced when (1) the
inputs are/can be transformed into a smaller range (2)
the computation is typically required over smaller batches.
Thus, while the second is application dependent (and we
have seen holds well in typical machine learning applica-
tions), we explore techniques that can enable the inputs
to be transformed into smaller domains (this is driven
by practical numbers used in machine learning, refer to
Section 2.1, 3 and 6).

In applications such as machine learning, good learn-
ing practices typically have try to ensure that output
activations are transformed to follow a normal distribution
N (0,1), i.e., a Gaussian distribution with 0 mean and vari-
ance 1. In this case, the inputs are roughly equal to the size
of the floating precision and in such cases, our protocols are
ideally suited and directly applicable. However, in case the
bounds on the inputs is large, i.e., |x|62m where k<m<`,
then we need additional techniques to use our protocols. In
order to enable a larger range of values, we need to reduce
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the size of the fixed-point precision. This can be achieved
by standard truncation techniques described below:

Semi-honest security. In the semi-honest setting, we
locally truncate the input a using the result from [64]
with one bit loss in accuracy. More specifically, we set
[a]2k←−Πsh:Trunc([a]2`,σ,m−k) and then reconstruct y≡a+r
(mod 2k) where Πsh:Trunc denotes the following protocol:

Πsh:Trunc(x,σ,t)=

{
x�t if σ=0
−(−x�t) if σ=1

(40)

where � denotes a bit-shift operation. Note that Theo-
rem 1 from [64] establishes that if x ∈ Z2`, |x| 6 2m for
k6m6`−2, then Πsh:Trunc(x,σ,m−k) for σ=0,1 are shares
of x/2m−k with at most 1 bit error with probability 1−
2m+1−`. Setting the valuem+1−` small enough, this prob-
ability can be made small enough. Once the value is trun-
cated, the fixed-point precision is set to 0 if f6m−k and
set to f−m+k otherwise. Thus we can then use our pro-
tocols to compute the function on this “quantized” value.

Malicious security. In the case of malicious security, we
can use the truncation protocols to reduce the size of the
fixed-point precision. To this end, we can use a maliciously
secure truncation protocols Πmal:Trunc, which can be in-
stantiated using a general maliciously secure protocol such
as [44] (for probabilistic but more efficient protocols Fig. 9

and for deterministic truncation Fig. 10 from [44]).
Alternatively, we can also use bit-decomposition protocols
from from [33] or digit-decomposition from [71] to extract
appropriate chunks of the input. Once these are com-
pleted, the rest of the process is similar to the semi-honest
case with function computed with appropriate fixed-point
precision.

G.5 Protocols over Finite Fields

While the central contribution of this work is to enable
protocols over rings, the ideas can be directly used for con-
structing protocols over fields as well. The fields setting has
natural advantages in the malicious setting when compared
against the ring setting, viz., the elimination of the slack in
the representation. Suppose that the field is F2λ, then the
size of the FSS payload can be reduced to simply the λ+1
where the single bit is used to extract the bit for the infor-
mation retrieval and is considered as the additive subgroup
of F2λ and the MAC is stored as an element of F2λ. In con-
trast, the size of the FSS payload in the ring case is `+t=
2`+2secs+2. Combining other slack elimination protocols
such as [62], entireML computations can now be performed
over 64-bit data types whereas prior work using such tech-
niques typically require a 128-bit data representation.
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