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Abstract. In this paper, we study batch private information retrieval
with private preprocessing. Private information retrieval (PIR) is the
problem where one or more servers hold a database of n bits and a client
wishes to retrieve the i-th bit in the database from the server(s). In PIR
with private preprocessing (also known as offline-online PIR), the client is
able to compute a private r-bit hint in an offline stage that may be lever-
aged to perform retrievals in t online time. For privacy, the client wishes
to hide index i from an adversary that has compromised some of the
servers. We will focus on the batch PIR setting where the client performs
queries to retrieve the contents of multiple entries simultaneously.
We present a tight characterization for the trade-offs between hint size
and online query time. For any ℓ = O(1) and ℓ-server PIR scheme that
enables clients to perform batch retrievals of k entries, we prove a lower
bound of tr = Ω(nk) when r ≥ k. When r < k, we prove that t = Ω(n).
Our lower bounds hold when the scheme errs with probability at most
1/15 and against PPT adversaries that only compromise one server. Our
results also improve the best known lower bounds for the single query
setting by a logarithmic factor. On the positive side, we show there exists
a construction with a single-round query algorithm such that tr = Õ(nk)
that matches our lower bound up to logarithmic factors.

1 Introduction

Private information retrieval (also known as PIR) is a powerful cryptographic
primitive that enables privacy-preserving retrieval of entries from a database
held by one or more servers where a subset of the servers may be untrusted
and colluding. For a database with n entries uniquely indexed by integers from
[n], PIR enables a client to retrieve the i-th entry of the database without re-
vealing the query index i to the subset of colluding adversarial servers. The
primitive of PIR was first introduced by Chor, Kushilevitz, Goldreich and Su-
dan [20] in the multi-server information-theoretic setting where the adversary
compromises a strict subset of the servers with many follow-up work in this area
(see [4,19,7,9,66,31,30] and references therein). Kushilevitz and Ostrovsky [47]
first studied PIR in the single-server setting against computationally bounded
adversaries. Many further works have also studied single-server PIR includ-
ing [16,8,27,48,34,54,2,5,33,55,3,53] to list some examples.



PIR is an important cryptographic tool due to its endless implications to
real-world settings. As some examples, PIR could enable users to access infor-
mation about medical or financial data without revealing their interests to the
data provider that could include the queried health condition or investment in-
strument. PIR has been used as a critical component in the design of many
practical privacy-preserving applications such as advertising [37,61], communi-
cation [52,6], friend discovery [11], media consumption [39] and publish-subscribe
systems [18] to list some examples.

Despite the potential applicability of PIR, the computational overhead of
PIR remains a significant bottleneck that prohibits wide spread usage of PIR in
large-scale real-world settings. Beimel, Ishai and Malkin [10] proved that linear
server computation is always required even in the multi-server setting where only
a strict subset of servers is compromised. This phenomenon is easy to see in the
single-server setting where, if a single database entry is not processed during
query time, the adversarial server can determine the user’s lack of interest in the
untouched entry.

In an attempt to surpass this barrier, many prior works have considered
variants of PIR that have successfully overcome the linear server computation
obstacle. We present two of these successful variants in PIR with preprocessing
and batch PIR below.

PIR with Preprocessing. Beimel, Ishai and Malkin [10] introduced the notion
of PIR with preprocessing where the server may compute a public r-bit hint in
an offline, preprocessing stage. During query time, the server will aim to leverage
the hint to answer PIR queries with sub-linear computational time t. We will
denote this the public preprocessing setting as the hint is made available to
the adversary’s view. For this model, Beimel, Ishai and Malkin [10] presented
constructions that had O(n1/2+ϵ) query time but required polynomial nO(1) sized
hints. On the other hand, Beimel, Ishai and Malkin [10] proved a tr = Ω(n)
lower bound that was further improved to tr = Ω(n log n) in [60]. This model
has also been studied under the name of public-key doubly-efficient PIR [15].
There remains a large gap between the best upper and lower bounds in the
public preprocessing setting.

As an analog, one can also consider the private preprocessing setting (also
known as offline-online PIR) where the r-bit hint H is computed and stored
by the client hidden from the adversary’s view. This model has been studied in
many works including [26,15,17,56,14,40,62,22]. Corrigan-Gibbs and Kogan [24]
presented a tight trade-off between the hint size r and online server time t of
tr = Θ̃(n). Note, this means that one can obtain sub-linear server time such as
t = Õ(

√
n) using a Õ(

√
n)-bit hint. In the rest of the paper, we will focus on

the private preprocessing model as it enables efficient constructions with more
immediate implications towards practical applications.

Batch PIR. Another approach to obtain sub-linear server computation for PIR
is to consider batch queries. In this setting, the client knows a batch of k entries
that it wishes to retrieve ahead of time. The goal is to obtain amortized sub-
linear server time across all k queries to beat the naive approach of executing k
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independent queries that results in t = O(nk). Batch PIR has been studied in a
large number of works including [10,44,58,38,42,51,6,5]. Excitingly, it has been
shown that one can execute batch PIR queries with minimal overhead compared
to single-query PIR. Ishai, Kushilevitz, Ostrovsky and Sahai [44] showed the
existence of a batch PIR that uses total server time t = Õ(n) or amortized query
time of Õ(n/k) when retrieving k entries simultaneously. Furthermore, prior
works [6,5] have also presented probabilistic batch PIR constructions aiming for
concrete efficiency with similar asymptotic overhead, but only have experimental
analysis to bound error probabilities.

Combining Batching and Preprocessing. An intriguing idea to further im-
prove the computational overhead of PIR would be to combine the techniques
from batching and private preprocessing. First, we can take a look at what seems
possible. As stated earlier, one can perform batch PIR queries with almost no
overhead compared to single-query PIR. The dream would be to obtain the
same result when performing batch queries for state-of-the-art PIR with private
preprocessing schemes. In more detail, this dream construction would enable
performing batch queries to k entries while maintaining the trade-off tr = Õ(n)
that results in amortized sub-linear query time Õ(n/(rk)) when using r-bit hints.

On the other hand, we can consider the efficiency achieved by straightforward
approaches. The simplest construction is to execute k queries in parallel by
storing k hints and performing k query algorithms resulting in tr = Õ(nk2).
Another option is to perform k queries in sequence using a construction that
enables multiple queries for a single preprocessing stage (such as the two-server
schemes in [24,62] or the single-server scheme in [22]). This results in tr = Õ(nk)
but requires k rounds of client-server interaction. There remains a gap between
the potential dream construction and the straightforward approaches. This leads
to the following interesting question:

What is the optimal efficiency achievable by PIR schemes
that utilize both batch queries and private prepocessing?

In this work, we address this question by providing a tight characterization of
the trade-offs between the hint size and online server query time. We show that
the dream construction is not possible and known approaches already achieve
the optimal trade-off.

1.1 Our Contributions

In this paper, we will prove a tight characterization of the trade-offs between
the hint size and the online query time for PIR schemes that aim to combine
batching and offline private preprocessing techniques. To do this, we will present
a lower bound that encompasses a wide range of constructions and matches the
overhead of prior works. Additionally, we show it is possible to build an optimal
single-round query construction matching our lower bound.

Lower Bound. As our main result, we will prove a trade-off between the size
of the private hint, r, computed in the offline preprocessing stage and the server
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time during online query execution, t. For a scheme that enables batches of k
queries, we will show that tr = Ω(nk). To enable wider applicability of our result,
we prove our lower bound for constructions with potentially multiple rounds of
interaction during queries, non-zero error probabilities and/or inefficient prepro-
cessing algorithms. Additionally, we consider weak PPT adversaries that only
compromise one server. We refer readers to Section 2.2 for more details on the
lower bound model. We present our lower bound below:

Theorem 1 (Informal). For any ℓ = O(1) and any k-query, ℓ-server batch
PIR with private preprocessing scheme that errs with probability at most 1/15
and is secure against a PPT adversary that compromises one server, it must be
that tr = Ω(nk) when k ≤ r ≤ n/400. If r < k, it must be that t = Ω(n).

The condition that k ≤ r ≤ n/400 is necessary to rule out trivial edge cases.
In general, a construction may ignore the hint and execute a k-query batch PIR
using Õ(n) time. In the case that r < k, this is the optimal construction matching
our lower bound. There is another trivial setting where the entire database is
stored in the hint using r = n. This would require t = 0 server time to retrieve
any entries circumventing our lower bound. We avoid this edge case by enforcing
that r ≤ n/400. The choice of n/400 was for convenience and one may re-do our
proofs to prove the same result for r ≤ n/c for constant c ≤ 400.

As our lower bound is for multiple servers, it immediately applies to the single
server setting. Additionally, our result also applies to more powerful adversaries
that compromise multiple (or all) servers or use infinite computational power.
Discussion about Single Query Lower Bounds. We note that one can obtain a sin-
gle query lower bound from our results by setting k = 1 to obtain that tr = Ω(n).
To our knowledge, this is logarithmically higher than the previous known sin-
gle query lower bounds of tr = Ω̃(n) [24,22]. Prior works proved lower bounds
through a reduction to Yao’s Box problem [65] that seems to result in a slightly
lower bound when generalizing to non-zero error probabilities using presam-
pling [63,21]. By proving our lower bound directly through an incompressibility
argument, we are able to avoid the loss of a multiplicative logarithmic factor.
Discussion about Independent Work. In an concurrent work, Corrigan-Gibbs,
Henzinger and Kogan [22] proved a similar lower bound of tr = Ω̃(nk) through
a reduction to a multi-box generalization of Yao’s Box problem [65]. We note the
lower bound proved in our work is also higher by a multiplicative logarithmic
factor compared to the lower bound in [22].

Upper Bound. In terms of constructions, we note that our lower bound has
already shown that one of the straightforward approaches of performing k se-
quential queries is already optimal (up to logarithmic factors). However, this
construction requires k rounds of interaction between the client and the server.
We show that there exists constructions that also match our lower bound where
the query algorithm uses only a single-round of interaction.

Theorem 2 (Informal). Assuming the existence of a single-query PIR with
private preprocessing with tr = f(n), there exists a k-query batch PIR with
private preprocessing scheme with a single-round query such that tr = Õ(k·f(n)).
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Discussion about Pipelined Queries. Prior works presented single query schemes
that enjoy a property referred to as malicious security [24,62,46,22]. This prop-
erty ensures that each client query is independent of server responses. For any
construction that supports multiple queries with a single preprocessing stage, the
client may issue multiple queries simultaneously without waiting for responses
to prior queries. This is referred to as pipelined queries in [46]. At first, this
seems to enable the client to issue k queries in parallel to construct a single
round optimal batch construction. Unfortunately, this approach does not work
for arbitrary values of r and k. We refer readers to Appendix A for more details.

1.2 Technical Overview

We present an overview of the techniques that are used for our lower bound
proof in Section 3 and our single-round query construction in Section 4.

Lower Bound. The core idea of our lower bound starts from considering any
batch PIR with private preprocessing scheme that probes a sub-linear number
of entries in the database. For simplicity, we will focus on the single-server set-
ting with an information-theoretic adversary. Consider any scheme Π that only
probes at most half the database (that is, t ≤ n/2). For a database D ∈ {0, 1}n,
consider a batch query q ⊆ [n] to a random subset of k entries and the subset
of entries that are probed when executing q, denoted by P . Note that the ad-
versary sees the set of probed entries P . In the information-theoretic setting, it
must be that probed set P must be independent of the query q. As a result, we
should expect that only half of the k random entries in q will also be probed
(i.e., |P ∩ q| ≤ k/2). In our main proof, we show similar ideas still hold in the
multi-server setting against PPT adversaries.

The above statement ends up providing a powerful way to compress the
database. By probing and knowing the contents of at most t entries, the execution
of query q will enable learning the contents of approximately k/2 entries for free.
In other words, we are able to design a compression algorithm for database D
using Π whose compression performance directly relates to the query time of Π.
As the query time t decreases, the rate of compression of our above algorithm
increases. If we take D to be a uniformly random n-bit string, we can immediately
get lower bounds on t as our algorithm should not be able to compress D beyond
the information-theoretic minimum.

Finally, we note that there is a technical obstacle in designing the compression
algorithm as described. The above description showed that one can compress
using a single query to get the contents of k/2 entries for free. To get a strong
compression rate, we need that each query recovers Θ(k) new entries for free.
In other words, these discovered-for-free entries must not have been probed or
queried by previous queries used by the compression algorithm. To overcome this
obstacle, we show that picking uniformly random queries will enable discovery
of Θ(k) new entries that were not previously probed or queried. As a result, it
suffices for the compression algorithm to try a set of random queries to find the
necessary query sequence that enables strong compression.
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We note that our proof avoids a reduction to Yao’s Box problem [65]. Instead,
we go through an incompressibiliy argument of a random database directly. As
a result, we prove logarithmically higher lower bounds than prior works [24,22].

Upper Bound. For our single-round construction, we will leverage batch codes
(introduced by Ishai, Kushilevitz, Ostrovsky and Sahai [44]) and any single-
query PIR with private preprocessing scheme. At a high level, our construction
uses batch codes to split up the database D into m buckets and perform a single-
query PIR to each of the m buckets. We note this is a standard technique done
in the past (see [44,6,5] as some examples). Batch codes guarantee that for any
batch query q = {i1, . . . , ik} ⊆ [n], each of the ij-th entries may be found in one
of the m buckets. We will execute m parallel instances of single-query PIR with
private preprocessing scheme for each of the m buckets where each instance uses
(r/m)-bit hints. As the queries are done in parallel, we note our query algorithm
uses a single-round of interaction. By plugging in a state-of-the-art batch code
construction and single-query PIR with private preprocessing scheme, we obtain
a single-round construction such that tr = Õ(n) matching our lower bound.

1.3 Related Works

Private Information Retrieval. PIR is a heavily studied cryptographic prim-
itive first introduced by Chor, Kushilevitz, Goldreich and Sudan [20] in the
multi-server setting where it is assumed only a strict subset of servers are com-
promised and colluding. Many follow-up works have worked on improving the
communication efficiency of multi-server PIR in the information-theoretic set-
ting including [4,7,9,66,31]. The most communication-efficient scheme is by Dvir
and Gopi [30] using matching vector codes [29]. Similar work has been done
for computationally-secure multi-server PIR [19,35,12] where the most efficient
constructions utilize function secret sharing techniques [13]. Single-server PIR
was introduced by Kushilevitz and Ostrovsky [47] with many follow-up works in-
cluding [16,8,27,48,34,54] aiming to improve efficiency or utilize different assump-
tions. Recent work has focused on optimizing the concrete efficiency of single-
server schemes using lattice-based homomorphic encryption [2,5,33,55,3,53].

PIR with Preprocessing. PIR with public preprocessing was first introduced
by Beimel, Ishai and Malkin [10] where the hint is public and studied in sev-
eral follow-up works [15,60]. The PIR with private preprocessing model has
been studied in many works and under many different names including doubly-
efficient PIR [15,17,14], private stateful information retrieval [56], private anony-
mous data access [40] and offline-online PIR [24,62]. For private preprocessing,
Corrigan-Gibbs and Kogan [24] presented a construction with optimal trade-offs
tr = Õ(n) that was later extended to handle blocklist lookups efficiently [46].
Shi, Aqeel, Chandrasekaran and Maggs [62] presented logarithmic communica-
tion two-server schemes with optimal trade-offs. Finally, Corrigan-Gibbs, Hen-
zinger and Kogan [22] presented single-server constructions with optimal trade-
offs where a single preprocessing stage may be used for multiple queries.
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Batch PIR. Several prior works have studied batch PIR to obtain efficient
constructions using matrix multiplication [10,51], batch codes [44,58,41], the
ϕ-hiding assumption [38] and list-decoding algorithms [42]. Recent works have
considered practical constructions that utilize probabilistic batch codes [6,5] with
error rates that are experimentally analyzed. These works obtain asymptotically
optimal batch code parameters, but err on a subset of potential batch queries.
PIR Lower Bounds. Lower bounds for PIR have been studied for a variety of
different complexity measures. Beimel, Ishai and Malkin [10] showed that server
computation must be linear without any preprocessing even in the multi-server
setting. Prior works have proven communication lower bounds for PIR [36,64].

In the public preprocessing setting, Beimel, Ishai and Malkin [10] showed that
tr = Ω(n) that was improved to tr = Ω(n log n) by Persiano and Yeo [60]. This
is the highest lower bound possible for PIR with public preprocessing without
implying higher lower bounds for branching programs (see [10,15]). For the pri-
vate preprocessing model, Corrigan-Gibbs and Kogan [24] showed a tight lower
bound of tr = Ω̃(n) for a single query. The follow-up work of Corrigan-Gibbs,
Henzinger and Kogan [22] showed the same lower bound holds even when con-
sidering schemes that enable multiple single-entry PIR retrievals in sequence.
Compression Proofs. In our proof, we will use the incompressibility technique
that has been used widely in the past. These were also used in prior PIR lower
bounds [24,60,22]. To list some examples outside of PIR, incompressibility has
been used in the studies of generic cryptographic constructions [32], one-way
functions and PRGs [25], proofs of space [1], random oracles [63,28,21], the dis-
crete logarithm problem [23] and oblivious data structures [50,45,59,43,57].

2 Definitions

2.1 Batch PIR with Private Preprocessing

We start by defining batch PIR with private preprocessing (also known batch
offline-online PIR). We present our formal definition:

Definition 1 (Batch PIR with Private Preprocessing). A k-query batch
PIR with private preprocessing scheme Π is a triplet of efficient algorithms Π =
(Π.Preprocess, Π.Encode, Π.Query) such that

1. H ← Π.Preprocess(RH ;D) : The preprocessing algorithm is executed by the
client and the server(s). The client receives the coin tosses RH as input and
the server(s) receives the database D as input to compute a preprocessed r-bit
hint H. The hint H is privately stored by the client.

2. E ← Π.Encode(D): The encoding algorithm is executed by each server. Each
server receives the database D and computes an encoding of the database E.

3. res ← Π.Query(q,H,R;E): The query algorithm is jointly executed by the
client and the server(s). The client receives as input the batch query of k en-
tries q = {i1, . . . , ik} ⊆ [n], the hint H and coin tosses R while the server(s)
receives the encoded database E as input. Once the query algorithm is com-
plete, the client receives res, the algorithm’s attempted response to query q.

7



In the above definition, the query algorithm may be interactive and use multi-
ple client-server roundtrips. We will prove our lower bound for query algorithms
with unbounded round complexity to encompass more constructions. For our
upper bounds, we will focus on single-round schemes for better efficiency.

Definition 2 (Standard PIR Model). A k-query batch PIR with private pre-
processing scheme Π = (Π.Preprocess, Π.Encode, Π.Query) is in the standard
PIR model if it satisfies Definition 1 and Π.Encode is the identity function.

Constructions in the standard PIR model ensure that the server stores the
database without encoding. We will use the standard PIR model for our lower
bound and point readers to Section 2.2 for further discussion. We will use the
notion of encoding algorithms to present our constructions in a natural manner.

Next, we will define the correctness of constructions. We define a query as
correct if all the query algorithm returns the correct contents for all k queried
entries. If the contents of any of the k queried entries is incorrect, the answer is
deemed incorrect. The error probability is defined as follows:

Definition 3 (Correctness). A batch PIR with private preprocessing scheme
Π errs with probability at most ϵ if, for every database D ∈ {0, 1}n and query
q ⊆ [n], it holds that

Pr
RH ,R

[Π.Query(q,H,R;E) ̸= (Di)i∈q | H] ≤ ϵ

where E ← Π.Encode(D) and H← Π.Preprocess(RH ;D).

We move on to formally defining the security of batch PIR with private
preprocessing schemes. We consider adversaries A that compromise 1 ≤ ℓA ≤ ℓ
out of the ℓ total servers. When a server is compromised, the adversary A sees
the request sent to the server as well as operations performed by the server.
For the i-th server, we denote the adversary’s view by transcript Ti. We define
security using the following game:

IndGameηA(D):

1. The challenger C runs E ← Π.Encode(D).
2. The adversary (q0, q1, S) ← A(D,E) on input the database D and

encoded database E outputs two batch queries q0 and q1 as well as
subset S ⊆ [ℓ] of the ℓA servers to compromise as the challenge.

3. The challenger C executes H ← Π.Preprocess(RH ;D) to obtain hint
H using random coin tosses RH and records transcripts T p

1 , . . . , T p
ℓ .

4. The challenger C executes Π.Query(qη, H,R;E) using random coin
tosses R and records transcripts T1, . . . , Tℓ.

5. The challenger C sends transcripts for all compromised servers,
{T p

i , Ti}i∈S , to the adversary A.
6. The adversary A({T p

i , Ti}i∈S) outputs a bit b.
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We denote pηA(D) as the probability that the adversary A outputs 1 in the game
IndGameηA(D) that is taken over the randomness of coin tosses RH and R as well
as any internal randomness of the adversary A. Using this we define security as:

Definition 4 ((δ, ℓA, ℓ)-Security). A ℓ-server batch PIR with private prepro-
cessing scheme is computationally (δ, ℓA, ℓ)-secure if for all probabilistically poly-
nomial time (PPT) adversaries A that compromise at most ℓA servers and all
sufficiently large databases D, the following holds:

|p0A − p1A| ≤ δ(|D|).

The above may be modified to consider statistical security by considering all
computationally unbounded adversaries A. We note that the private prepro-
cessing is reflected by the fact that the adversary A does receive the hint H
as input and only the server’s view of the interaction during the preprocessing
phase. In contrast, the adversary would receive the hint H as input in the public
preprocessing setting (see the definitions in [10,60]).

Finally, we define the efficiency of batch PIR with private preprocessing
schemes. We will consider worst-case notions for all costs as follows:

Definition 5 ((r, t)-Efficiency). A batch PIR with private preprocessing scheme
is (r, t)-efficient if the following two properties hold:

1. For all databases D ∈ {0, 1}n and coin tosses RH , the hint H produced by
Π.Preprocess(RH ;D) is at most r bits.

2. For all databases D ∈ {0, 1}n, queries q ⊆ [n], random coin tosses RH

and R, the running time of Π.Query(q,H,R;E) is at most t where H ←
Π.Preprocess(RH ;D) and E ← Π.Encode(D).

2.2 Lower Bound Model

We will use the standard PIR model that has been used to prove PIR lower
bounds in prior works [10,24,60,22]. In the standard PIR model, the database is
stored by the server without encoding. Additionally, the client is able to store
an r-bit hint that is computed in an preprocessing stage before the query. When
measuring query time, the only cost is the number of entries that are probed or
accessed. All other operations during query time can be performed free of charge
including computation, accessing and generating randomness and accessing the
hint. Note we only measure costs using server operations. In other words, our
model enables clients to do all operations free of charge. We also note that our
model does not account for the computational time needed to compute the hint.
Therefore, our model applies to constructions even if their preprocessing algo-
rithm is very computationally expensive. In terms of adversaries, we will only
consider PPT adversaries that compromise one server. As we consider weak ad-
versaries, our lower bound immediately implies to more powerful adversaries that
may compromise multiple servers or use unbounded computational resources.

In our model, we assume constructions use finite, but arbitrarily long, ran-
domness for the constructions. Note, this does not rule out algorithms that may
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use infinite randomness that decrease the error probability with longer running
time and/or randomness usage. Instead, we can convert such an algorithm into
another one that terminates once the error probability is small enough after
using arbitrary long, but finite, randomness and provides an answer.

Finally, we comment on the encoding restriction of the lower bound model.
In practice, the lack of database encoding ends up making constructions easier
to implement and use. Additionally, we note that more expressive models are
currently unable to prove high lower bounds for PIR. For example, we could
consider the cell probe model that enables arbitrary encoding. Unfortunately,
the highest lower bounds in the cell probe model peak at Ω̃(log2 n) [49] that
are too low to prove meaningful lower bounds for PIR currently. We also note
that proving similar lower bounds as ours with arbitrary server encoding would
be one way to rule out the existence of some variants of program obfuscation.
The constructions of Boyle, Ishai, Pass and Wootters [15] utilize server encoding
and obfuscation to obtain sub-linear query time without any client storage and,
thus, would beat our lower bound.

3 Lower Bound

In this section, we prove our lower bound for batch PIR with private preprocess-
ing that characterizes the trade-offs between hint size and online query time for
the server(s). We will prove the following theorem:

Theorem 3. Let Π be a k-batch, ℓ-server PIR with private preprocessing scheme
in the standard PIR model that uses r-bit hints and probes at most t entries
during online query time for any ℓ = O(1). Furthermore, suppose Π is com-
putationally (δ, 1, ℓ)-secure for δ ≤ 1/(25ℓ) and Π errs with probability at most
ϵ ≤ 1/15. If k ≤ r ≤ n/400, then tr = Ω(nk). Otherwise when r < k, then
t = Ω(n).

In our proof, we will assume that k ≤ r ≤ n/400. For the case when r <
k, we will arbitrarily pad the hint until r = k. Even with this padding, note
that the lower bound of tr = Ω(nk) immediately implies a lower bound of
t = Ω(n). We note our lower bound applies for protocols with any number
of round-trips. Additionally, we note that the choice of δ ≤ 1/(25ℓ) and ϵ ≤
1/15 was for convenience. One can re-do our proofs for different constants. Our
assumption of δ ≤ (1/25ℓ) being a constant is to improve our lower bound
as it also applies to standard settings of negligible advantage for adversaries.
Also, our results directly imply lower bounds against stronger adversaries that
may compromise more than one server. Finally, we note that the assumption
r ≤ n/400 is necessary to rule out the trivial case where the entire database
is stored in the hint and online queries do not need to probe any entries (i.e.,
t = 0). One can also re-do our proofs to also encompass larger choices of r ≤ n/c
for smaller constant 1 < c < 400.

To prove our main result, we will actually prove a variant of the theorem.
Here, we will assume that the number of queries in each batch is larger than some
constant and no larger than n/10. We formalize this in the following theorem:

10



Theorem 4. Let Π be a k-batch, ℓ-server PIR with private preprocessing scheme
in the standard PIR model that uses r-bit hints and probes at most t entries dur-
ing online query time where ℓ = O(1) and kc ≤ k ≤ n/10 for some constant kc.
Furthermore, suppose Π is computationally (δ, 1, ℓ)-secure for δ ≤ 1/(25ℓ) and
Π errs with probability at most ϵ ≤ 1/15. If k ≤ r ≤ n/400, then tr = Ω(nk).
Otherwise when r < k, then t = Ω(n).

It turns out this immediately implies our main theorem for any k ≥ 1. In
particular, we show that Theorem 4 immediately implies Theorem 3.

Proof of Theorem 3. To prove this, we show a reduction that any protocol Π
for any k ≥ 1 can be converted into a protocol Π ′ where kc ≤ k′ ≤ n/10
without any asymptotic overhead. Suppose there exists Π that beats Theorem 3.
If kc ≤ k ≤ n/10, we are already done.

If k < kc, we can construct Π ′ for k′ = kc from Π by executing O(kc/k)
queries in parallel. This means storing O(kc/k) hints and running the query
algorithm O(kc/k) times for each hint. As a result, t′ = t · O(kc/k) and r′ =
r ·O(kc/k). As k ≥ 1 and kc = O(1), we know that O(kc/k) = O(1) and get that
t′r′ = O(tr) with no additional asymptotic overhead to contradict Theorem 4.

When n/10 < k ≤ n, we construct Π ′ for k′ = n/10 from Π by arbitrarily
padding queried entries that will be ignored. Then, execute a single query using
Π. Note, this results in t′r′ = O(tr) with no additional asymptotic overhead as
k = Θ(k′) to contradict Theorem 4.

Proof Overview. The rest of this section will be devoted to prove Theorem 4.
Our proof of Theorem 4 will proceed in three steps:

1. First, we will characterize the relationship between queried and probed en-
tries. Our goal is to show that not all queried entries can also be probed by
leveraging the privacy requirements of PIR (Section 3.1).

2. Secondly, we show that random coin tosses and random batch queries al-
low for great compression by enabling to determine the contents of entries
without ever requiring to probe the entry directly (Section 3.2).

3. Finally, we present an impossible compression scheme leveraging the above
two facts that contradicts Shannon’s source coding theorem to complete the
proof (Section 3.3).

Additional Notation. For convenience, we will introduce additional notation
that will be used throughout our proof. We will denote the set of entries probed
by the set Π.Probes(q,D,H,R) ⊆ [n] for a batch query q, database D, hint
H and coin tosses R. That is, i ∈ Π.Probes(q,D,H,R) if and only if the i-th
entry of D is probed by at least one of the ℓ servers. Secondly, we will use H
to represent a hint that is randomly generated by the preprocessing stage. That
is, H← Π.Preprocess(D,RH) where RH are uniformly random coin tosses. We
will frequently write probabilities of the form PrH,R[i ∈ Π.Probes(q,D,H,R)]
that denotes whether the i-th entry is probed on any of the ℓ servers over the
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probabilities of randomly generated hints and coin tosses. In particular, this will
be shorthand for the formal probability statement:

Pr
H,R

[i ∈ Π.Probes(q,D,H,R)] = Pr
RH ,R

[i ∈ Π.Probes(q,D,H,R) | H]

where H ← Π.Preprocess(RH ;D). Additionally, we will use similar shorthand
when analyzing error probabilities:

Pr
H,R

[Π.Query(q,H,R;D) ̸= (Di)i∈q] = Pr
RH ,R

[Π.Query(q,H,R;D) ̸= (Di)i∈q | H]

where H← Π.Preprocess(RH ;D). In general, we will use H to represent a hint
generated by providing random coin tosses RH to Π.Preprocess(RH ;D).

3.1 Characterizing Queried and Probed Entries

The main goal in this section is to characterize the set of probed entries and
their relationship with the batch of k queried entries. At a high level, consider
any Π that does not probe every entry in the database. For simplicity, suppose
that Π probes only half the entries. Is it possible that the set of probed entries
can be heavily correlated with the original set of k queries? For example, is it
possible that Π can probe the entries corresponding to all k queries without
being detected by an adversary? We resolve these questions here by providing a
formal characterization between queried and probed entries.

To do this we start by making an assumption towards a contradiction. Sup-
pose there exists a too-good-to-be-true Π such that tr = o(nk). We will assume
that t ≤ n/(100ℓ). This is without loss of generality as otherwise our proof will
already be complete as t > n/(100ℓ) immediately implies tr = Ω(nk) since we
assumed that r ≥ k and ℓ is constant.

Consider the t probed entries across all ℓ servers. For any of the n entries in
the database, we will consider the i-th entry to be probed if the entry is probed
by at least one of the ℓ servers. Therefore, we know that at most n/(100ℓ)
unique entries are probed for each online query. Intuitively, there should be a
large fraction of the n entries that are probed only with 1/(100ℓ) probability.
We formalize this for a fixed k-batch query as follows:

Lemma 1. Let D ∈ {0, 1}n be any database. Fix k-batch query {1, . . . , k} ⊆ [n].
Then, there exists a subset S ⊆ [n] such that |S| ≥ n/2 and for all i ∈ S, it must
be that

Pr
H,R

[i ∈ Π.Probes({1, . . . , k}, D,H,R)] ≤ 1

50ℓ
.

Proof. Towards a contradiction, suppose that this is false. That means, there
exists strictly more than n/2 entries that are probed with probability at least
1/(50ℓ). Then, we get that

t = EH,R[|Π.Probes({1, . . . , k}, D,H,R)|] > n

2
· 1

50ℓ
=

n

100ℓ
.

This is a contradiction as we had assumed t ≤ n/(100ℓ).
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Next, we construct a polynomial time adversary A to distinguish queries to
{1, . . . , k} and any other batch query. More formally, we construct a family of
adversaries Ai,q, for all i, q ∈ [n] below.

Adversary Ai,q:

– Challenge Phase Ai,q(D):
1. Return ({1, . . . , k}, q, {x}) for uniformly random x from [ℓ].

– Output Phase Ai,q(T p
x , Tx):

1. Retrieve Π.Probes from Tx specifying all entries probed on the
compromised server.

2. Return 1 if and only if i ∈ Π.Probes.

In other words, Ai,q is defined such that it compromises one of the ℓ servers
uniformly at random, picks challenge queries q and {1, . . . , k} and returns 1 if
and only if the i-th entry is probed. We prove the following lemma using Ai,q.

Lemma 2. Suppose that Π is computationally (δ, 1, ℓ)-secure. Fix any k-batch
query q ⊆ [n] and database D ∈ {0, 1}n. Let S ⊆ [n] be as stated in Lemma 1
and suppose index i ∈ S. If δ ≤ 1/(25ℓ), then

Pr
H,R

[i ∈ Π.Probes(q,D,H,R)] ≤ 1

25
.

Proof. Towards a contradiction, suppose that the statement is false. Consider
adversary Ai,q. For query {1, . . . , k}, we know that Ai,q outputs 1 with probabil-
ity at most 1/(50ℓ) by Lemma 1 as i ∈ S. On the other hand, consider the probed
entries on any query q. We know the probability that i is probed on at least one
of the ℓ servers is strictly larger than 1/25. As Ai,q compromises one server at
random, we know that Ai,q observes that the i-th entry is probed with proba-
bility strictly greater than 1/(25ℓ). Therefore, Ai,q outputs 1 with probability
strictly greater than 1/(25ℓ). This contradicts the fact that any computational
adversary has distinguishing advantage at most δ ≤ 1/(25ℓ) as the advantage is
strictly greater than 1/(25ℓ)−1/(50ℓ) = 1/(25ℓ) to derive our contradiction.

Finally, we use the above lemma to prove our main characterization of probed
entries in relation to the set of entries that are queried. In particular, we will
prove an upper bound on the number of queried entries that are also probed.

Lemma 3. Fix any database D ∈ {0, 1}n and any k-batch query q ⊆ [n]. Let
S ⊆ [n] be as defined in Lemma 1. Then,

Pr
H,R

[∣∣q ∩ S ∩Π.Probes(q,D,H,R)
∣∣ ≤ |q ∩ S|

5

]
≥ 4

5
.

Proof. Let q = {i1, . . . , ik} be the query to k indices i1, . . . , ik. By Lemma 2,

Pr
H,R

[ij ∈ Π.Probes(q,D,H,R)] ≤ 1

25
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whenever ij ∈ S. Let Xj = 1 if and only if ij ∈ S ∩Π.Probes(q,D,H,R) and 0
otherwise. Note that EH,R[Xj | ij ∈ S] ≤ 1/25. If we let X be the total number
of queried entries that are also probed, that is X = |q∩S∩Π.Probes(q,D,H,R)|,
then we know that EH,R[X] ≤ |q ∩ S|/25 by linearity of expectation as X =
X1 + . . .+Xj . By Markov’s inequality, we get that

Pr
H,R

[∣∣q ∩ S ∩Π.Probes(q,D,H,R)
∣∣ ≥ |q ∩ S|

5

]
= Pr

H,R

[
X ≥ |q ∩ S|

5

]
= Pr

H,R

[
X ≥ 5 · |q ∩ S|

25

]
≤ 1

5

since EH,R[X] ≤ |q ∩ S|/25 to complete the proof.

The above lemma formally shows that at most (1/5)-fraction of queried en-
tries that appear in S will also be probed with high probability.

3.2 Discovering Good Batch Queries

In this section, we will prove results about finding batch queries that will enable
good compression of the database. At a high level, these good batch queries
q = {i1, . . . , ik} ⊆ [n] are ones that enable computing the correct database
contents of each queried entry, Dij , without probing the ij-th entry directly.
That is, ij /∈ Π.Probes(q,D,H,R) for the used hint H and coin tosses R.

To formalize the above, we will aim to identify good sets for various entities.
We start by defining the notion of goodness for sets of queries and randomness.
We start by saying that a triplet of a k-batch query q ⊆ [n], hint H and coin
tosses R are good if and only if the following two properties hold:

1. (Correctness.) Π.Query(q,H,R;D) = (Di)i∈q.
2. (Discovery.) |q ∩Π.Probes(q,D,H,R)| ≤ 4k/5.

We denote a triplet being good by Eq(q,H,R) = 1 if the above two condi-
tion holds for the given triplet (q,H,R). Otherwise, we say Eq(q,H,R) = 0.
Note, that the first property ensures correctness of retrieving the contents of all
queried entries. The second property enables discovery. That is, at least k/5 of
the queried entries are not probed directly during query execution.

Next, we move onto pairs of hints H and coin tosses R. In particular, we
are interested in finding pairs (H,R) that enable the above properties for most
queries. For this, we will focus on the query set Q that consists of all k-batch
queries that aim to retrieve k distinct entries. We will denote q as the random
variable that draws a query uniformly at random from Q. We say that pair of
hint and coin toss H and R are good if and only if the following condition holds:

Pr
q
[Eq(q, H,R) = 1] ≥ 1

30
.

We denote a pair H and R to be good by ER(H,R) = 1 and ER(H,R) = 0 for
when it is not good. In other words, we say that a hint H and coin tosses R are
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good if and only if (1/30)-th of the queries q ∈ Q exists such that q returns the
correct answer and at most (1/5)-th of queried entries are probed when using the
fixed hint H and coin toss R. In the next lemma, we show that a large fraction
of pairs (H,R) are good and satify the above property.

Lemma 4. Fix any database D. Then, we get that

Pr
H,R

[ER(H,R) = 1] ≥ 1

50
.

Proof. Thoughout the proof, we will denote q as being drawn uniformly from
the query set Q. As Π errs with probability at most ϵ ≤ 1/15, we know that

Pr
q,H,R

[Π.Query(q,H,R;D) ̸= (Di)i∈q] = ϵ ≤ 1

15
.

By Lemma 3, we know that

Pr
q,H,R

[
|q ∩ S ∩Π.Probes(q, D,H,R)| ≤ |q ∩ S|

5

]
≥ 4

5
.

We can bound the intersection size of q and S as follows. Let X be the number
of indices in q \ S. As we know that q is chosen as a random k subset of [n]
and |S| ≥ n/2, we get that E[X] ≤ k/2. By Markov’s inequality, we know that
Pr[X ≥ 3k/4] = Pr[X ≥ 3/2 · k/2] ≤ 2/3. Therefore, we get that

Pr
q

[
|q ∩ S| ≥ k

4

]
= 1− Pr

q

[
X ≥ 3k

4

]
≥ 1

3
.

Then, we can see that if |q∩S| ≥ k/4 and |q∩S∩Π.Probes(q,D,H,R)| ≤ |q∩S|/5,
this immediately implies that |q ∩Π.Probes(q,D,H,R)| ≤ |q \ S|+ |q ∩ S|/5 ≤
3k/4 + k/20 = 4k/5. Therefore, we get that

Pr
q,H,R

[
|q ∩Π.Probes(q, D,H,R)| ≤ 4k

5

]
≥ Pr

q,H,R

[
|q ∩ S| ≥ k

3
∧ |q ∩Π.Probes(q, D,H,R)| ≤ |q ∩ S|

5

]
≥ Pr

q,H,R

[
|q ∩ S| ≥ k

3

]
− Pr

q,H,R

[
|q ∩Π.Probes(q, D,H,R)| > |q ∩ S|

5

]
=

1

3
− 1

5
=

2

15
.

Then, we get that

Pr
q,H,R

[Eq(q,R,H) = 1]

≥ Pr
q,H,R

[
|q ∩Π.Probes(q, D,H,R)| ≤ 4k

5

]
− Pr

q,H,R
[Π.Query(q,H,R;D) ̸= (Di)i∈q]

≥ 1

15
.
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Towards a contradiction, suppose that PrH,R[E(H,R) = 1] < 1/50. This con-
tradicts the prior inequality as we get that:

Pr
q,H,R

[Eq(q,R,H) = 1]

≤
∑

x∈{0,1}

Pr
H,R

[EH(H,R) = x] Pr
q,H,R

[Eq(q,H,R) = 1 | EH(H,R) = x]

<
1

50
+

(
49

50
· Pr
q,H,R

[Eq(q,H,R) = 1 | EH(H,R) = 0]

)
<

1

50
+

49

50
· 1
30

<
1

15
.

As a result, we know that PrH,R[E(H,R) = 1] ≥ 1/50.

Next, we will consider the intersection of a random query with an arbitrary
subset X of at most n/100 entries. In particular, we expect that if we pick a
random k-batch query from Q, then approximately (1/100)-th fraction of the
chosen queries would also appear in X. Later, we will use X to model previously
probed and queried entries. In other words, we are aiming to show that a random
query will not query too many entries that have been previously probed or
queried. We formalize this in the following lemma:

Lemma 5. For any subset X ⊂ [n] such that |X| ≤ n/100,

Pr
q

[
|q ∩X| > k

10

]
≤ 1

60

where q is drawn uniformly at random from Q.

Proof. Note that we can model the choice of q as picking a random subset of
size k from S. For any fixed X ⊂ [n], we can see that

Pr[|q ∩X| > k/10] ≤

(
n/100
k/10

)
·
(

n
9k/10

)(
n
k

)
≤
(

en
10k

)k/10 · ( 10n9k

)9k/10(
n
k

)k
≤

(
e

10
·
(
10

9

)9
)k/10

≤ 1

60

where we use Stirling’s approximation of binomial coefficients (a/b)b ≤
(
a
b

)
≤

(ea/b)b and assuming that k is a sufficiently large constant
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3.3 An Impossible Encoding

Next, we use the characterization of probe probabilities from the prior two sec-
tions to construct an impossible compression for databases drawn from our hard
distribution that we define below:

Hard Distribution. Our hard distribution for databases, that we denote
by D, will be a uniformly random n-bit string. In other words, each of
the n entries will be a uniformly random bit.

At a high level, our compression algorithm will leverage Π to efficiently re-
cover as many queried entries without needing to probe the corresponding phys-
ical entry. We are able to do this by leveraging the formal characterization of
Lemma 3 that shows that only a constant fraction of queried entries will also
be probed with reasonably high probability. Then, we will leverage Lemmata 4
and 5 to find these good queries amongst random queries. In more detail, the
compression algorithm will perform in rounds. In each round, the goal is to find
a good k-batch query amongst a set of random k-batch queries such that the
a large portion of the contents of queried entries are unknown and will not be
probed. Before going into more detail, we start by formalizing the model for
presenting our compression scheme.

One-Way Communication Protocols. To formally prove our lower bound,
we will consider a one-way communication protocol between parties Alice (the
encoder) and Bob (the decoder). Alice will receive the input database. The goal
of Alice is to send a single message to Bob that will enable Bob to always
successfully decode the input database. Additionally, Alice and Bob will also
receive the same shared randomness as input that will be used to help encode
and decode the input database. In particular, the shared randomness will consist
of the random coin tosses Rshared needed to execute Π and will be independent
on the input database D. We present a diagram of the one-way communication
protocol setting below.

Alice (Encoder) Bob (Decoder)

Input: D, Rshared. Input: Rshared.

Generate encoding, Enc.
Enc

−−−−−−−−−−−−−−−−−−−→
Decode D using Enc.
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Next, we prove a lemma that shows that the length of the Alice’s encoding
cannot be much smaller than the minimum number of random bits stored in a
database drawn from the hard distribution.

Lemma 6. For any one-way communication protocol where Alice’s encodings
are prefix-free and Bob is always able to decode the database D, it must be that

E[|Enc(D)|] ≥ n

where the randomness is over the hard distribution of databases D, the shared
random coin tosses Rshared and any other internal randomness of Alice’s en-
coding algorithm.

Proof. To prove this lemma, we will utilize Shannon’s source coding theorem
that states the expected length of any prefix-free encoding scheme must be at
least the entropy of the input conditioned on any shared inputs. In other words,

E[|Enc(D)|] ≥ H(D | Rshared) = H(D) = n.

The first equality is from the fact Rshared are random coin tosses independent
of D. The second equality uses that D is a uniformly random n-bit string.

Discussion about Errors. In Lemma 6, we require that the encoding enables
perfect decoding. However, this does not mean that we only prove lower bounds
for schemes with zero error probability. In fact, we will utilize constructions that
may err with probability as high ϵ ≤ 1/15 to build a perfect encoding scheme.
To do this, our encoding will only rely on the PIR scheme for correct queries.
Encoding and Decoding Algorithms. We now formally present the encoding
and decoding algorithms for our one-way communication protocol. Note that
there are no computational bounds on the encoding and decoding algorithms. In
particular, we will only care that Alice’s encoding length is short in expectation
and Bob is always able to decode the database.

First, we will formally described the shared randomness Rshared. In particu-
lar, Rshared will be broken into two parts. The first part will consist of random
coin tosses R to execute a query. The second part will consist of uniformly ran-
dom queries chosen from the query set Q. In particular, the second part will
look of the form (q1, . . . ,qs) where s = 20n/(t + k/10). In other words, there
will be s random batch queries from Q. Note that all of this shared randomness
is independent of the database D.

Next, we describe Alice’s encoding algorithm. The main goal of Alice is to
compress the database D using Π. Alice will go through the random queries
qi with the goal of finding a query in the set that enables extracting entries in
D without ever probing them. To do this, Alice aims to find queries that are
correct with the caveat that the queried entries should not have been previously
discovered and they will not be probed by the query itself when using random
coin tosses RH and R. When Alice finds such a good query that enables a high
discovery rate, Alice will encode the identity of these queries and all necessary
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Alice’s Encoding: Alice receives database D and randomness Rshared =
(R, q1, . . . , qs) where s = 20n/(t+ k/10).

1. Set H ← Π.Preprocess(RH ;D) using random coin tosses RH .
2. Set A← ∅ to keep track of probed and queried entries.
3. Set P to be an empty string recording probed entries.
4. Set S ← ∅ to keep track of indices of successful query sets.
5. For i = 1, . . . , s:

(a) If |S| ≥ s/2000:
i. Terminate loop.

(b) Check if qi satisfies the following properties:
i. (Correctness.) Π.Query(qi, H,R;D) = (Dx)x∈qi .
ii. (Overlap with Known Entries.) |qi ∩A| ≤ k/10.
iii. (Overlap with Probes.) |qi ∩Π.Probes(qi, D,H,R)| ≤ 4k/5.

(c) If qi does satisfies the above:
i. Set U ← Π.Probes(qi, D,H,R) \ A to be all probed entries that were not

previously probed or queried in the order they were first probed.
ii. If |U | < t, add entries in [n] \ U to U in increasing index order until U

contains t entries.
iii. Set S ← S ∪ {i}.
iv. Set P ← (P, (Du)u∈U ). That is, all entries in U in the order they were

first probed followed by added entries in increasing order.
v. Set A← A ∪ U .
vi. Add the smallest k/10 indexed entries in qi \A to A.

6. If |S| < s/2000, return the encoding (0, D) as a 0-bit followed by a trivial n-bit
encoding of D.

7. Set Enc← (1, H, S, P ) to be a 1-bit, the hint H using r bits and set S of successful
query indices and P from the above loop. Note S requires log

(
s

s/2000

)
bits and P

requires ts/2 bits to encode.
8. Set Enc ← (Enc, {Dx}x∈[n]\A). That is, the contents of all entries with indices in

[n] \A in increasing index order. Note, each of the s/2000 successful queries adds
exactly t+ k/10 entries into A. So, the size of A at the end is s/2000 · (t+ k/10) =
n/100 and this step requires 99n/100 bits.

9. Return Enc.

Fig. 1. Description of Alice’s encoding algorithm.
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Bob’s Decoding: Bob receives Alice’s encoding and randomness Rshared =
(R, q1, . . . , qs) where s = 20n/(t+ k/10).

1. If the encoding starts with a 0-bit, decode D trivially and return D.
2. Decode H using the next r bits.
3. Decode S ⊆ [s] using the next log

(
s

s/2000

)
bits.

4. Decode P using the next st/2 bits.
5. Set B to be the decoded database.
6. Set A← ∅ to keep track of all indices that have been either probed or queried.
7. For i ∈ S in increasing order:

(a) Execute Π.Query(qi, H,R;D). Even though Bob does not know the database
entirely, Bob can complete this execution using Alice’s encoding in the follow-
ing way:

(b) If Bob attempts to probe an entry x /∈ A:
i. Bob will use the next bit of P to decode Dx.
ii. Set B[x]← Dx.
iii. Set A← A ∪ {x}.

(c) If Bob attempts to probe an entry x ∈ A:
i. Use B[x] as the contents of the entry.

(d) Set B[x] to be the answer given by Π.Query(qi, H,R;D) for x ∈ qi.
(e) If Bob probes less than a < t entries outside of A, Bob uses the next t− a bits

in P to decode the smallest t−a indexed entries outside of A. Then, Bob adds
their contents into B and their indices in A.

(f) Add the smallest k/10 indexed entries in qi \A to A.
8. Decode {Dx}x∈[n]\A. Set B[x]← Dx for all x ∈ [n] \A.
9. Return B.

Fig. 2. Description of Bob’s decoding algorithm.

probed entries to let Bob simulate the queries as well. To do this, Alice will only
encode contents of entries that were not previously discovered. Once Alice is
able to find enough queries to encode at least n/100 of the entries in D, Alice
will complete the encoding by sending the remaining undiscovered entries in
D trivially. A formal description of Alice’s encoding algorithm is provided in
Figure 1.

Next, we describe Bob’s decoding algorithm. The goal of Bob is to simulate
queries identically to Alice. To do this, Bob keeps track of all entries whose
contents have been discovered. For each query encoded by Alice, Bob will aim
to execute the query without knowing the input database D. To do this, Bob
performs probes one at a time. For any entries whose contents are known to
Bob, Bob can simply use their contents and continue executing. For any probed
entry that is unknown to Bob, Bob will use Alice’s encoding to determine the
contents. As we ensure Alice and Bob use the same hint H coin tosses R, it can
be guaranteed that Alice and Bob execute queries identically. After executing all
queries, Bob will simply decode all remaining unknown entries using the trivial
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encoding sent by Alice. A formal description of Bob’s decoding algorithm is
provided in Figure 2.

Correctness. To see that the one-way communication protocol always enables
Bob to decode the database, we will show that Alice and Bob simulate queries in
the exact same way. In particular, Bob will only execute queries qi that satisfy
the conditions that are checked by Alice. For each of these queries, Bob will
execute them identically to Alice as they use the same hint H and coin tosses
R and any entries that are not known to Bob will be encoded by Alice. As a
result, Alice and Bob will execute all of these queries identically. Furthermore,
Alice and Bob will maintain identical sets A throughout the execution of their
entire algorithms and Bob will be able to get the contents of all entries in A.
Finally, as all entries outside of A are encoded trivially, we get that Bob is able
decode the database successfully.

Prefix-Free Encoding. Note any encoding starting with a 0-bit cannot be a
prefix of an encoding starting with a 1-bit and vice versa. Therefore, it suffices to
show the set of 0-bit encodings and 1-bit encodings are prefix-free independently.
All encodings starting with a 0-bit are the same length of 1 + n and, thus,
prefix-free. Similarly, all encodings prefixed with a 1-bit are the same length of
1 + r + log

(
s

s/2000

)
+ st/2000 + 99n/100 bits and, also, prefix-free.

Encoding Length. Next, we analyze the length of Alice’s encoding in bits.
Our goal is to prove an upper bound on the expected encoding length. We break
this down into two cases. The first case is when Alice’s encoding starts with
a 0-bit. In this case, Alice’s encoding uses 1 + n bits. Next, we upper bound
the probability that Alice’s encoding starts with a 0-bit. This only occurs when
|S| < s/2000. Consider any set of random queries q1, . . . ,qs. For each single
query qi, we note that the probability that qi satisfies the conditions of Step 5b
of Alice’s algorithm is at least

Pr
qi

[Eq(qi, H,R) = 1]− Pr
qi

[|qi ∩A| > k/10].

If we assume that the input RH and R satisfy property that ER(H,R) = 1
where H = Π.Preprocess(D,RH), then we get that qi satisfies the conditions of
Step 5b of Alice’s algorithm with probability at least

Pr
qi

[Eq(qi, H,R) = 1 | ER(H,R) = 1]− Pr
qi

[|qi ∩A| > k/10]

≥ 1

30
− 1

60
=

1

60

by using Lemma 5 and the definition of ER(H,R) = 1. Therefore, the probability
that qi satisfies the conditions of Step 5b is at least 1/60. Then, we know that
E[|S|] ≥ s/60. Denote the probability of less than s/2000 queries succeeding by
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f , then

f = Pr
[
|S| < s

2000
| ER(H,R) = 1

]
= Pr

[
|S| <

(
1− 97

100

)
· s

60
| ER(H,R) = 1

]
≤ e

− (97)2s

(100)2602 < 1

using Chernoff’s bound, s ≥ 1 and the fact that the failure of each query set is an
independent event. We get that s ≥ 1 by our assumptions that t ≤ n/(100ℓ) ≤
n/100 as ℓ ≥ 1 and k ≤ n/10 implying that t + k/10 ≤ n/50. We note that f
is a constant and f < 1. Therefore, we get that Alice’s encoding starts with a
0-bit with probability at most

Pr
H,R

[ER(H,R) = 0] + Pr
H,R

[ER(H,R) = 1] · Pr[F > S | ER(H,R) = 1]

≤ 49

50
+

1

50
· f < 1

where we use Lemma 4 to bound PrH,R[ER(H,R) = 0] ≤ 49/50 and the fact
that f < 1.

Next, we will analyze the case when Alice’s encoding starts with a 1-bit.
First, we show that it is always guaranteed that the condition |A| = n/100 will
be true once Alice reaches the end of the encoding algorithm. Note that each
successful query increases A by t + k/10 entries. Furthermore, Alice executes
exactly s/2000 = n/(100(t+ k/10)) queries. So, |A| = s(t+ k/10)/2 = n/100.

All successful queries encode t probed entries. Encoding the indices of suc-
cessful queries requires log

(
s

s/2000

)
. Then, we know that Alice’s encoding length

is at most

1 + r + log

(
s

s/2000

)
+

st

2000
+ (n− |A|)

= 1 + r +
s log(2000e)

2000
+

st

2000
+ (n− |A|)

= 1 + r +
n

100
· t+ log(2000e)

t+ k/10
+

99n

100

using the fact that
(
a
b

)
≤ (ea/b)b.

Let p be the probability that Alice’s encoding starts with a 0-bit where we
know that p is a constant and p < 1. Then, we get that Alice’s expected encoding
length is at most

1 + pn+ (1− p) ·
(
r +

n

100
· t+ log(2000e)

t+ k/10
+

99n

100

)
.

Completing the Proof. Finally, we complete the proof by combining the above
analysis of Alice’s expected encoding length combined with Lemma 6.
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Proof of Theorem 4. By Lemma 6, we know that Alice’s expected encoding
length must be at least n bits. Therefore, we get the inequality

1 + pn+ (1− p) ·
(
r +

n

100
· t+ log(2000e)

t+ k/10
+

99n

100

)
≥ n

⇐⇒ (1− p) ·
(
r +

n

100
· t+ log(2000e)

t+ k/10
+

99n

100

)
≥ (1− p)n− 1

⇐⇒ r +
n

100
· t+ log(2000e)

t+ k/10
+

99n

100
≥ n− 1

1− p

⇐⇒ r +
n

100
· t+ log(2000e)

t+ k/10
≥ n

100
− 1

1− p

⇐⇒ r+ ≥ n

100
·
(
k/10− log(2000e)

t+ k/10

)
− 1

1− p

⇐⇒ r(t+ k/10) ≥ nk

2000
− t+ k/10

1− p

⇐⇒ rt ≥ nk

2000
− t+ k/10

1− p
− rk

10

where we will assume that k ≥ 20 log(2000e) and use the fact that (1 − p) > 0
as p < 1. Finally, we use the facts that p is constant and r ≤ n/400 to see that
rk/10 ≤ nk/4000 and 1/(1− p) = Θ(1) and get that

(r +Θ(1))(t+Θ(1)) ≥ nk

4000

where we also use that r ≥ k. We can assume that n is sufficiently large to get
that tr = Ω(nk) to complete the proof.

4 Upper Bound

In this section, we present upper bounds for batch PIR with private prepro-
cessing. First, we show that there already exists a naive way to modify prior
PIR with private preprocessing constructions to obtain constructions matching
our lower bound up to logarithmic factors. However, these constructions require
O(k)-round query algorithms. Afterwards, we present constructions with single-
round queries that obtain similar efficiency using batch codes.

4.1 Multiple Round Constructions

We can adapt any constructions with the feature that a single hint may be used
for multiple queries to obtain tight constructions. That is, a single preprocessing
stage may be followed by multiple queries. In particular, we can leverage the
two-server schemes in [24,62] or the single-server scheme in [22] that have the
necessary feature. These constructions use t = Õ(n/r) time when using r-bit
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hints. However, the online query time includes any necessary refreshing of the
hint for future queries.

By performing k sequential queries, we get a construction with tr = Õ(nk)
that requires k rounds of client-server interaction. This is exactly one of the
straightforward approaches outlined in Section 1. As a result, we can obtain the
following construction:

Theorem 5. Assuming the existence of a single-query PIR with private pre-
processing scheme that is (δ, 1, ℓ)-secure such that tr = Õ(n), can handle mul-
tiple queries with a single preprocessing stage and is correct except with negli-
gible probability, then there exists a single-query PIR with private preprocessing
scheme that is (kδ, 1, ℓ)-secure, uses r-bit hints and online query time t such that
tr = Õ(nk) and returns the correct answer except with negligible probability. The
online query algorithm requires k rounds of interaction.

As the constructions in [24,62,22] satisfy the requirement, we obtain a con-
struction that matches our lower bound (up to logarithmic factors) as our lower
bound does not assume anything about the interactivity of the query algorithm.

4.2 Single-Round Constructions

In the rest of this section, we will present constructions with single-round query
algorithms. Our schemes will make blackbox usages of batch codes and single-
query PIR with private preprocessing schemes. We note our described construc-
tions make standard usage of batch codes for enabling batch PIR (see [44,6,5]
for example) from any single-query PIR protocol. Our main adaptation is re-
placing the single-query PIR protocol with any single-query PIR with private
preprocessing protocol.

Batch Codes. Batch codes are a primitive first introduced by Ishai, Kushilevitz,
Ostrovsky and Sahai [44] that studies the problem of distributing a database of
n bits into m buckets. The goal of the distribution is to enable any user to
retrieve any batch of k entries by only querying at most t bits from each of the
m buckets. Typically, the goal of batch codes is to minimize the total size of the
encoding denoted by N .

There are several variants of batch codes that have been studied in the past.
For our construction, we will focus on systematic batch codes that handle non-
multiset queries. Systematic batch codes require that each symbol of the code-
word to be an entry in the original database. Note, this ensures that our con-
struction uses the same conditions as our lower model. Some batch codes handle
the more difficult setting of multiset queries where the same entry may be re-
trieved multiple times. For our protocol, we only require handling queries that
retrieve k distinct entries. It is straightforward to handle batch PIR queries with
duplicate entries using only non-multiset queries.

Additionally, we will only use systematic batch codes with t = 1. This means
that only a single symbol in each bucket will be accessed. In other words, the
decoding algorithm A is trivial as it will simply read one of the k desired entries
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Preprocess(D):

1. Compute C(D) = (B1, . . . , Bm).
2. For all i = 1, . . . ,m:

(a) Execute Hi ← Π.Preprocess(Bi).
3. Return (H1, . . . , Hm).

Encode(D):

1. Compute C(D) = (B1, . . . , Bm).
2. Return (B1, . . . , Bm).

Query({i1, . . . , ik}, (H1, . . . , Hm); (B1, . . . , Bm)):

1. Compute CA({i1, . . . , ik}) = ((a1, b1), . . . , (ak, bk)).
2. For x = 1, . . . ,m:

(a) If x = aj for some j ∈ [k]:
i. Execute Dij ← Π.Query(Hx, bj ;Bx).

(b) Otherwise:
i. Execute Π.Query(Hx, 1;Bx) and ignore result.

3. Return (Di1 , . . . , Dik ).

Fig. 3. Description of our batch PIR with private preprocessing construction where
C is a (n,N, k,m, 1) systematic batch code and Π is a single-query PIR with private
preprocessing scheme.

from each of the m buckets. These codes have been referred to as replication-
based batch codes [44] or combinatorial batch codes [58] in the past. Further-
more, we will assume that the decoding algorithm can obtain correct buckets
and entries within the bucket without needing the database. This is a feature
that is used for most usages of batch codes for batch PIR (see [44,6,5] as an
example).

Definition 6 ([58]). A (n,N, k,m, 1) combinatorial batch code C is a set sys-
tem (X,B) where X is a set of n elements, B = (B1, . . . , Bm) is a collection of
m subsets of X and a decoding algorithm CA such that:

1. N =
∑

i∈[m] |Bi|. That is, the total length of all m subsets is at most N

(where the length of each bucket is independent of x).
2. For each subset {x1, . . . , xk} ⊆ X, CA({x1, . . . , xk}) = ((i1, j1), . . . , (ik, jk))

such that xa is the ja-the entry of Bia for all a ∈ [k] and all of (j1, . . . , jk)
are distinct.

Protocol. We will formally present our single-round protocol in this section.
At a high level, we will assume the existence of a (n,N, k,m, 1) combinatorial
batch code C that can handle non-multiset queries. Additionally, we will assume
the existence of a single-query PIR with private preprocessing scheme that uses
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r-bit hints and t online query time. We will use both C and Π in a blackbox
manner to construct our protocol.

Our protocol will first apply the batch code C to split up the database D ∈
{0, 1}n into m buckets to get C(D) = (B1, . . . , Bm) where each bucket contains
a subset of entries from D, Bj ⊆ D, since C is systematic. By the guarantees
of batch codes, we know that for every subset {i1, . . . , ik} ⊆ [n], there exists a
subset {j1, . . . , jk} ⊆ [m] such that Dix ∈ Bjx for all x ∈ [k]. Next, instantiate
m parallel instances of Π on each of the m buckets, B1, . . . , Bm, using hint
lengths of r/m bits for all m instances. During query time for batch query
{i1, . . . , ik} ⊆ [n], use the batch code to identify the subset {j1, . . . , jk} ⊆ [m]
such that Dix ∈ Bjx for all x ∈ [k]. For each of these k buckets, perform a query
to retrieve Dix . For the remaining m − k buckets, retrieve any arbitrary entry.
We describe our construction formally in Figure 3.

Theorem 6. Let C be a systematic (n,N, k,m, 1) batch code and Π be a single-
query PIR with private preprocessing scheme that is (δ, ℓA, ℓ)-secure with error
probability ϵ and uses r-bit hints and online query time t(n, r). Then, there exists
a k-query batch PIR with private preprocessing scheme that is (mδ, ℓA, ℓ)-secure
with error probability kϵ. If this construction uses r′-bit hints, then

t′(n, r′) = O(t(N1, r
′/m) + . . .+ t(Nm, r′/m))

where Ni is the number of bits in the i-th bucket of the encoding by C.

Proof. By properties of the batch code, we know that our construction will
always be able to identify k buckets that contain the k queried entries. By the
properties of Π, we know that that the probability that any of these k queries
result in the wrong answer is at most k times the probability that Π returns
the wrong answer resulting in error probability kϵ. Finally, as the transcript
seen by the adversarial server is identical to the transcript seen by executing
Π m parallel times, we know that our scheme is (mδ, ℓA, ℓ)-secure when Π is
(δ, ℓA, ℓ)-secure.

For efficiency, note that each of the m instances is allocated r′/m bits for its
own hint. As the database for the i-th bucket contains Ni entries, we know that
the i-th instance of Π requires t(Ni, r

′/m) online query time. So, we see that the
online query time for our scheme is t′(n, r′) = t(N1, r

′/m)+. . .+t(Nm, r′/m).

Relation to Lower Bound Model. Note that our lower bound model assumes
that there is no encoding of the database while our construction encodes the
database using a systematic batch code. We chose to present our construction
in Figure 3 as the most efficient and natural way to use batch codes as opposed
to one that fit into our lower bound model. However, it is straightforward to
modify the construction such that the server does not encode the database and,
thus, is compatible with our lower bound model. Each time the query algorithm
needs to probe one of the entries in the m buckets, the client will also encode the
original database entry that should appear in that bucket entry. This increases
the communication cost of our schemes. However, both the hint size r and online
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query server time t remain identical. As a result, our construction may be trivially
modified to be compatible with our lower bound model without affecting the hint
size to server query time trade-off.

Instantiations. Next, we pick different options for batch codes C and single-
query PIR with private preprocessing Π to instantiate our construction. In this
case, we do not require the feature that a single preprocessing stage handles mul-
tiple queries. As a result, we can use either any of the constructions in [24,62,22]
to get the following constructions from batch codes.

Theorem 7. Assuming the existence of a systematic (n,N, k,m, 1) batch code
and a single-query PIR with private preprocessing scheme that is (δ, 1, ℓ)-secure
where δ is negligible and ℓ ∈ {1, 2} such that tr = Õ(n) and is correct except with
negligible probability, then there exists a single-round, k-query batch PIR with
private preprocessing that is (δ, 1, ℓ)-secure where δ is negligible and ℓ ∈ {1, 2},
uses r-bit hints and online query time t such that tr = Õ(N ·m) and returns the
correct answer except with negligible probability.

Proof. We can apply Theorem 6 to get the security and correctness properties.
For efficiency, let N1, . . . , Nm be the number of entries encoded in each of the m
buckets. Then, we know that

t = Õ(N1 ·m/r) + Õ(Nm ·m/r) = Õ(N ·m/r)

to complete the proof.

For instantiating batch codes, many prior works (see [44,58,41,6,5] and ref-
erences therein) have studied batch codes that may be used with PIR. For our
purposes, we can use the (n,O(n log n), k, O(k), 1) batch code presented by Ishai,
Kushilevitz, Ostrovsky and Sahai [44] that is built from unbalanced expanders.
Using this batch code, we get the a construction with tr = Õ(nk) that matches
our lower bound (up to logarithmic factors).

Non-Explicit vs Explicit Batch Codes. As a caveat, the above used batch
code is non-explicit. One can plug-in other explicit batch codes or explicit con-
structions of unbalanced expanders into the Ishai, Kushilevitz, Ostrovsky and
Sahai [44] batch code to obtain an explicit batch PIR with private preprocessing.
However, these explicit constructions will result in worse parameters.

Practical Batch Codes with Experimental Analysis. In terms of practical
constructions for batch codes, several prior works [6,5] have presented schemes
that aim for concrete efficiency with only experimental analysis. In particular,
both papers present probabilisitic batch codes from hashing schemes that result in
O(n) total codeword size and O(k) buckets. In other words, these are the batch
codes with the best possible asymptotic parameters of (n,O(n), k, O(k), 1). Plug-
ging such a batch code into our scheme would result in a construction matching
our lower bound of tr = Õ(nk). However, these constructions have the property
that subset of queries will not be able to decode and always err. Note, this is
different from the natural notion of error probabilities considered in our work

27



where the probability is over the internal randomness of the algorithm. Addi-
tionally, to our knowledge, the only error analysis are done through experimental
evaluation. We are unaware of a theoretical analysis bounding the error of these
constructions necessary for our needs. Regardless, these constructions probably
remain the best approach for constructions that aim for concrete efficiency and
practical application.

5 Conclusions and Open Problems

In this paper, we present a tight characterization of the trade-offs between the
hint size and online query time for batch PIR with private preprocessing. In
particular, we present a tr = Ω(nk) lower bound when retrieving k entries.
On the other hand, we show the existence of a tr = Õ(nk) single-round query
construction. In other words, our results show that one can only reap the benefits
of the techniques from one of batch PIR or PIR with private preprocessing.
When ignoring private preprocessing (i.e. r < k), we can apply known batch PIR
techniques and get that t = Θ̃(n). For optimal PIR with private preprocessing
schemes with tr = Θ̃(n) and r ≥ k, one cannot beat the efficiency of the naive
approach of performing k queries sequentially to get tr = Θ̃(nk). Additionally,
we show the same efficiency may be achieved with a single-round query algorithm
using batch codes. In terms of open problems, we leave the following high-level
question:

What techniques may be combined with private preprocessing
to further improve the efficiency of PIR?

In this work, we ruled out using batch PIR techniques to further speed up PIR
with private preprocessing.
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A Discussion about Pipelined Queries Approach

We start by summarizing the constructions in [24,46,62] that enable multiple
queries for a single preprocessing stage in the two-server setting. In the offline
phase, the client will generate r pseudorandom subsets S1, . . . , Sr ⊂ [n] each
of size t. These will be sent to the first (offline) server that will return the r
parties of the form bi = ⊕s∈Si

Ds for database D. The hint becomes b1, . . . , br.
To query for any index i, the client first finds a set Sj such that i ∈ Sj . With
probability approximately 1 − 1/

√
n, the client uploads Sj \ {i} to the second

(online) server that computes and returns b = ⊕s∈Sj\{i}Ds. Otherwise, the client
removes a random index from Sj and will fail to retrieve the desired entry Di

correctly. Finally, the client retrieves Di = b ⊕ bj . With parallel repetition, the
error probability can be driven down to negligible. Prior works [24,46,62] have
shown that this is secure and can be extended to refresh the bit bj with O(t)
time such that more queries can be handled without re-running the preprocessing
stage. Here, the pipelined query property refers to the fact that the client can
issue multiple queries simultaneously without waiting for server responses.

Initially, the pipelined queries approach seems to enable building a single
round batch PIR with private preprocessing scheme from a single PIR with
private preprocessing scheme. The client may issue all k queries in parallel using
a single round. However, this approach requires that for each query i in the
batch, the client must find a unique subset Sj such that i ∈ Sj . While this is
highly likely for a single query, it is not always possible when considering batches
of k queries for certain values of r.

Consider a concrete setting where k = n1/2 and r = Õ(n1/2) and the goal is
to construct a scheme with tr = Õ(nk). As we need to issue k = n1/2 queries, we
require that the single query scheme must have online time Õ(n1/2) to guarantee
that tr = Õ(nk. In the offline phase, the client will retrieve r parities of pseudo-
random subsets S1, . . . , Sr of size Õ(n1/2). For the single query setting, the client
may perform a query as long as the query index i appears in S1 ∪ . . .∪Sr. For a
batch of k queries {i1, . . . , ik}, the client must find k different subsets Sj1 , . . . , Sjk

for each of the k queries such that ix ∈ Six to be able to send k batch queries
in parallel. We sketch that this occurs only with very low probability for our
chosen values of r and k resulting in very high error probability.

Pick a random batch query set of size k = n1/2. Suppose we are lucky
enough that the client successfully found n1/2 − n1/8 different subsets for the
first n1/2 − n1/8 indices in the batch query. We will consider the remaining n1/8

queries. Note, there remain only r−(n1/2−n1/8) = Õ(n1/8) subsets that may be
used covering a total of Õ(n5/8) elements from [n]. As a result, the probability
that any random index appears in the remaining valid subsets is approximately
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Õ(n5/8/n) = Õ(n−3/8). The probability that all remaining n1/8 random ele-
ments are covered is at most n−Θ(n1/8). In other words, the probability that the
pipelined queries approach would result in correctly retrieving all k queries in a
single round would be at most n−Θ(n1/8), which is exponentially small.

In the above example, we have shown that the pipelined approach cannot
construct batch schemes with reasonable error probabilities when r = Θ̃(k).
More generally, it seems like the above approach should work only when r is
significantly larger than k such as when r = Ω(k2). On the other hand, our
constructions in Section 4 enable low error probabilities for arbitrary values of
r and k including the above setting when r = Θ̃(k).

We also note the single-server construction in [22] utilizes one of the above
constructions [24,46,62] in a blackbox manner and, thus, suffers the same issues.
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