
TERSE: Tiny Encryptions and Really Speedy
Execution for Post-Quantum Private Stream

Aggregation

Jonathan Takeshita1, Zachariah Carmichael1, Ryan Karl2, and Taeho Jung1

1University of Notre Dame, Notre Dame, IN 46556, USA
2Carnegie Mellon University, Pittsbufgh, PA 15213, USA

{jtakeshi,zcarmich,tjung}nd.edu,ryankarl915gmail.com

Abstract. The massive scale and performance demands of privacy-preserving
data aggregation make integration of security and privacy difficult. Tra-
ditional tools in private computing are not well-suited to handle these
challenges, especially for more limited client devices. Efficient primitives
and protocols for secure and private data aggregation are a promising
approach for private data analytics with resource-constrained devices.
However, even such efficient primitives may be much slower than com-
putation with plain data (i.e., without security/privacy guarantees).
In this paper, we present TERSE, a new Private Stream Aggregation
(PSA) protocol for quantum-secure time-series additive data aggrega-
tion. Due to its simplicity, low latency, and low communication overhead,
TERSE is uniquely well-suited for real-world deployment. In our imple-
mentation, TERSE shows very low latency for both clients and servers,
achieving encryption latency on a smartphone of 0.0003 ms and aggre-
gation latency of 0.0067 ms for 1000 users. TERSE also shows signifi-
cant improvements in latency over other state-of-the-art quantum-secure
PSA, achieving improvements of 1796× to 12406× for encryption at the
client’s end and 848× to 5433× for aggregation and decryption at the
server’s end.

Keywords: Public key cryptosystems · Lattice-based Cryptography, ·
Private Stream Aggregation.

1 Introduction
Motivation In modern computing and data analytics, aggregating a sum on
data from many users is a frequently encountered problem. Ensuring security
and privacy of user data in such aggregations while maintaining enough perfor-
mance for practical deployment is a challenging issue, and is necessary to consider
in order to comply with regulations for user protection such as GDPR. Secure
and private data aggregation plays an important role in modern data analy-
sis [63,31,62,55], with applications in statistical computation, smart metering,
voting, and advertising analytics. At the massive scale of the modern Internet,
with billions of users and devices [1], there is a need for high-performance im-
plementations to perform high-scale aggregations. The huge scale and unique
characteristics of the modern era of computing world presents new challenges
that require novel solutions.

There exist general cryptographic tools for secure and private computation.
However, the generality and pitfalls of these tools make them unattractive or
infeasible for real-world deployment. Homomorphic encryption [20,33,26] allows
computation over encrypted data, but its computational intensity and ciphertext
size are too high for use on resource-limited devices. Secure multiparty compu-
tation [41] requires robust lines of communication for use in multiple rounds
of communication, which may not be available in all locales, such as those in
developing nations. Trusted Execution Environments such as Intel SGX [28] of-
fer confidential computing, but face challenges at scale [51]. These challenges
necessitate the development of efficient custom-built protocols for secure data
aggregation.
To facilitate efficient secure and private aggregation, the study of Private Stream
Aggregation (PSA) protocols has been undertaken and advanced in recent years
[58,22,61,42,43,15,29,65,32]. Research in this area has focused on efficiency, though
there is also work in fault tolerance and robustness. Many solutions for secure
and private data analytics and outsourced computing focus on throughput on a
large body of data [54,27,9,8,61]. In real-world deployments, the latency of a sin-
gle computation, as opposed to the throughput across many epochs of time-series
data, is of vital importance in real-time monitoring and reporting. Previous ad-
vances in secure aggregation have faced issues such as limited plaintext space,
a lack of quantum security for future protection against quantum-capable at-
tackers, high complexity and overhead due to the large ciphertext expansion, or
focusing on throughput at the expense of latency due to the inherent computa-
tional intensity coming from the large ciphertext expansion.
Our Work In this work, we present a more efficient PSA protocol with quan-
tum security, minimal latency and communication overhead. Our new protocol
TERSE: Tiny Encryptions and Really Speedy Execution for Post-Quantum
PSA is truly practical for latency-critical applications, satisfying the require-
ments of high performance without sacrificing guarantees of security and pri-
vacy. As online (input-dependent) computations are most critical for latency,
we consider this metric of latency of input-dependent operations as what users
are most interested in. For this reason, we focus on reducing the online costs
of computation and communication as much as possible. Our research goal is
thus to construct efficient RLWE-based PSA overcoming these issues. TERSE’
ciphertexts are quantum secure via RLWE, and its trusted setup can be im-
plemented with quantum-secure TEE-based symmetric encryption [18,50] and
quantum-secure signature schemes for TEE [17].
Our construction is enabled by three insights: 1) giving adversary RLWE sam-
ples one coefficient at a time does not improve their advantage, 2) no input-
dependent ring polynomial multiplication is required for additive lattice-based
PSA, and 3) lattice-based PSA inputs that are ring polynomials can have input
encoded coefficientwise. Combining these, we construct a novel PSA protocol
using single coefficients of ring polynomials, resulting in much smaller cipher-
texts and extremely efficient input-dependent encryption and aggregation. Our
protocol mitigates the practical disadvantages of RLWE-based cryptography by

2

performing PSA with ring polynomials one coefficient at a time, and by pre-
computing intensive computations in advance of having inputs ready. This novel
construction addresses the large ciphertext expansion that was inherent in previ-
ous lattice-based secure aggregation schemes, significantly reducing the latency
of each aggregation. We show the real-world practicality of our novel construc-
tion with implementation results of both users and aggregators.
Our Contributions
1. We present TERSE, the first RLWE-based PSA scheme that can provide

both low latency and high throughput, greatly reducing the size of a cipher-
text for a single input. These novel traits allow TERSE to achieve operation
latency measured in microseconds, making TERSE uniquely well-suited for
performance-critical deployments.

2. We discuss the extension of TERSE with both well-known and cutting-edge
extensions such as efficient ring polynomial arithmetic through RNS and
NTT, SGX-based fault tolerance, and differential privacy. These extensions
further support our goal of making private stream aggregation practically
feasible for real-world use.

3. We implement TERSE and show experimental results demonstrating its per-
formance and comparing it with plaintext aggregation. For n = 1000 users
and a plaintext space of |t| = 32 bits, TERSE encryption achieves a latency
of only 0.0003 ms, and aggregation and decryption run in 0.0067 ms. Our ex-
periments with increasing numbers of users shows that TERSE is practically
scalable for real-world deployments.

2 Related Work

2.1 Pre-Quantum PSA

The work of Shi et al. [58] established the field of PSA, creating the basic def-
initions and the first construction. The work of Shi et al. and Joye et al. rely
respectively on the Decisional Diffie-Hellman (DDH) and the Decisional Com-
posite Residuosity assumptions [58,37]. Other work based on the Discrete Log-
arithm problem has been proposed [38,40]. PSA has also been constructed for
use in smart metering [56,60]. Chen et al. [24] presented a PSA scheme with dy-
namic joins/leaves and input tampering detection, based upon the DDH assump-
tion. Wang et al. [66] created a scheme based on the Pallier cryptosystem [53]
with fault tolerance and dynamic joins/leaves. These protocols are not secure
against quantum-capable adversaries [59]; recent research has turned towards
post-quantum PSA.

2.2 Post-Quantum PSA

The LaPS protocol [15] presented a PSA protocol integrating quantum security,
improving upon previous bounds on the plaintext space, a generic and modular
protocol with an instantiation, and the first implementation of a lattice-based
PSA scheme. However, LaPS has several issues: it is extremely and needlessly
complicated, and requires the black-box use of an FHE scheme (BGV [20] was

3

used in their instantiation), reducing its practicality. Further, its security with
the “encrypt-once” model is subject to a simple attack [65], though this can be
mitigated by requiring fresh public matrices at each timestamp.
The SLAP protocol [61] presented many improvements over LaPS. Instead of us-
ing an FHE scheme as a black-box subprotocol, SLAP used custom-built RLWE-
based cryptographic constructions for PSA. Due to this, SLAP is much simpler
than LaPS and is much more lightweight, with computational improvements over
LaPS of 20× for aggregation and 65× for user-side encryption, and ciphertexts
that are up to 2730× smaller at larger parameters. SLAP showed large improve-
ments over LaPS in throughput for communication and computation, as well as
in complexity. However, SLAP, like LaPS, is still subject to the high degree of
ciphertext expansion common to RLWE encryption, resulting in higher latency
and communication overhead. Both LaPS and SLAP operate in the encrypt-
once model, where an adversary only sees a single ciphertext for a user at a
given time. While this model is sufficient for most practical purposes, stronger
ones have been proposed [65].
Other quantum-secure schemes with even lower latency have also been presented
that manage to have smaller ciphertexts by not using RLWE. The LaSS scheme
of Waldner et al. [65] uses secret sharing, and the scheme of Ernst et al. [32] uses
a “deterministic version of the LWE [Learning With Errors] problem” known
as Learning With Rounding (LWR) and key-homomorphic pseudorandom func-
tions. Both schemes achieve runtimes on the order of milliseconds and have
smaller input-dependent communication overhead. These schemes do have some
issues: LaSS’s per-user keys are linear in the number of users, i.e., the total
number of keys is quadratic in the total number of users, making practical de-
ployment for memory-limited IoT devices infeasible for larger numbers of users.
The security of LWR, upon which [32] is dependent, is still in contention due to
the deterministic rounding used [30]. Multi-key fully homomorphic encryption
can also be applied to PSA, but is too general and burdensome to be appealing
for IoT deployments [6,52]. Bao et al. used AES with noninteractively generated
keys for PSA with message integrity [13].

2.3 PSA for IoT and Limited Devices

Lu et al. [49] constructed a PSA scheme using modified Pallier encryption and
message authentication codes to form IoT-friendly PSA with protection against
input tampering. Zhuo et al. [67] created a cloud-assisted protocol to compute
on users’ aggregated data, relying on the Diffie-Hellman and discrete logarithm
assumptions and the BGV homomorphic encryption scheme. He et al. [36] create
a scheme with the discrete logarithm and Diffie-hellman assumptions aimed at
smart grids, which is able to withstand many different types of internal attacks.
Li et al. [46] construct private dual-function aggregation by relying on the BGV
homomorphic encryption scheme [19]; their scheme’s practical performance is
difficult to infer, as they only give an asymptotic performance analysis.

4

3 Background

3.1 Private Stream Aggregation

We consider the scenario where n users send inputs to a cloud server that is
tasked with summing all user inputs. We assume that channels of communication
are authenticated and nonmalleable; attackers impersonating users or modifying
their messages in transit are outside the scope of this work. We use an honest-
but-curious adversary model, where an adversary may view compromised parties’
data, but will otherwise faithfully execute the protocol. This attacker model
is commonly used for work in PSA [15,65,32,58]. PSA schemes are formally
described with the following three algorithms:
1. Setup(λ ∈ N, · · ·): Takes a security parameter λ ∈ N, along with other

parameters such as the number of users and the plaintext space. Distribute
secret keys si to each user and an aggregation key s′ to the aggregator, and
distribute publicly known parameters to all parties.

2. Enc(si, ts, xi,ts, ri,ts): Takes a user’s input xi,ts at a particular timestamp
ts, possibly along with differentially private noise ri,ts. User i will call this
function with their secret key si. Returns a ciphertext ci.

3. Agg(s′, ts, c0,ts, · · · , cn−1,ts): The aggregator will call this function at times-
tamp ts, using its aggregation key s′. It will aggregate the ciphertexts
c0,ts, · · · , cn−1,ts, and output yts =

∑n−1
i=0 xi,ts + ri,ts.

Intuitively, we want to require that any adversary against a PSA scheme learns
nothing more than they would when executing an idealized, black-box protocol
that allows the aggregator to learn the sum of users’ data. Inherent in this def-
inition is that an adversary compromising the aggregator and n − 1 users can
inevitably learn information about the last user’s data. In general, collusions of
users and the aggregator have the ability to learn about information from uncor-
rupted users. This is a common issue in privacy-preserving protocols; preserving
user privacy in the face of such attacks is a problem left to differential privacy.
The Setup functionality is assumed to be performed by a trusted party, or col-
laboratively in a trusted format (e.g., using secure multiparty computation).
In the encrypt-once model, we assume that users will only produce a single input
per timestamp. This model is used in prior work [61,15], and is a reasonable
model of how real-world PSA deployments would function.

3.2 Definition of Security

Definition 1. A PSA scheme is aggregator oblivious in the encrypt-once model
if any probabilistic polynomial-time (PPT) adversary has no more than negligible
advantage with respect to a security parameter λ in the following security game:
Setup The challenger runs the Setup algorithm, returning any public parameters
to the adversary.
Queries The adversary may make up to poly(λ) of following types of queries
adaptively:
- Encrypt: The adversary may specify (i, ts, xi,ts, ri,ts) and ask for the cipher-
text. The challenger returns the ciphertext ci,ts = Enc(si, ts, xi,ts, ri,ts) to the
adversary.

5

- Compromise: The adversary specifies a party i ∈ [0, n) ∪ {□}. If i = □, the
challenger returns the aggregator’s decryption key s′ to the adversary (i.e., the
aggregator is compromised.). Otherwise, the challenger returns user i’s secret
key si, to the adversary (i.e., user i is compromised).
- Challenge: This query is only made once. The adversary specifies a set of
participants U and a time ts, such that neither ts nor any i ∈ U was previously
argued to Compromise. For each user i ∈ U , the adversary chooses a pair of
inputs (user input, along with noise if applicable) (x0

i,ts, r
0
i,ts) and (x1

i,ts, r
1
i,ts).

The challenger then chooses a random bit b, and returns the ciphertexts {ci,ts =
Enc(si, ts, x

b
i,ts, r

b
i,ts)}i∈U to the adversary.

Guess The adversary attempts to guess b.
The adversary wins if they can guess the bit b, and if the aggregator was com-
promised, then

∑
x0
i,ts + r0i,ts =

∑
x1
i,ts + r1i,ts.

Aggregator obliviousness essentially states that nothing more leaks from the
protocol’s execution than what a collusion of parties can derive from their inputs
and output [58].

3.3 Ring Learning With Errors

Many modern cryptographic constructions draw their hardness assumptions
from the Ring Learning With Errors (RLWE) problem, due to its conjectured
difficulty for quantum adversaries and convenient mathematical structure. We
briefly summarize RLWE here; the reader is referred to other work for a more in-
depth discussion of RLWE [50,33]. Consider the negacyclic ringRq = Zq[x]/(x

N+
1) for a large number q and power-of-two N . We denote the modular reduction of
x modulo q as [x]q, which is applied coefficientwise to polynomials. For a desired
security level λ ∈ N, there exist standard choices for q and N to guarantee at
least λ bits of security in solving the RLWE problem for these parameters [5,4].
We say that a distribution is B-bounded if the values drawn from it have an
infinity norm bounded above by B with all but negligible probability.
The RLWE problem is as follows: let s be chosen randomly from Rq, and consider
random distributions χ, ζ on Rq. In practice, the distribution ζ is often chosen to
be 1-bounded [33], while χ is uniformly random on Rq. Summarized succinctly,
the RLWE problem states that terms of the form [Ai · s+ ei]q or [Ai · s+ t · ei]q
are computationally indistinguishable from random when gcd(q, t) = 1, Ai ← χ
is publicly known, and ei ← ζ [16,20,57].
In RLWE-based cryptosystems, elements of Rq are large objects, using kilobytes
or even megabytes of memory. RLWE-based cryptosystems thus superficially
seem impractical for secure aggregation with resource-limited devices. Our key
innovation is a novel strategy to allow using only small portions of these terms,
keeping the guarantee of quantum security, while achieving the functionality of
additive aggregation.

3.4 The Random-Oracle Model

In cryptography, it is often convenient to assume the existence of a “random-
oracle” hash function. A random-oracle hash function operates as a black-box

6

functionality available to users, guaranteeing them random output for given
inputs with the caveat that identical inputs will yield identical outputs. While
the assumption of the existence of random-oracle hash functions was previously
contentious [21], there is little practical evidence of any security risks from using
random-oracle hashes [44].

4 Basic Construction

In this section, we review the previous state-of-the-art quantum-secure aggrega-
tion scheme, and show how to modify it for more efficient aggregation. We then
show it satisfies the security definition of aggregator obliviousness. Guaranteeing
user input privacy through the addition of differentially private noise is not our
novel contribution, and is left to Section 5.1.

4.1 Prior State-of-the-Art RLWE-Based PSA

The LaPS protocol [15] brought several new developments in PSA, including
post-quantum security, more generous plaintext spaces, and better efficiency.
Their efficiency gains were demonstrated with their implementation and more
thorough experimental results, as compared to previous work. However, LaPS
left much room for improvement; it is overly complex, affecting both usability
and practical performance. This was partially due to their use of FHE.
The SLAP scheme [61] improved upon these issues by eschewing the black-
box approach to additive homomorphism used by LaPS. Instead, SLAP used
purpose-built homomorphic lattice arithmetic in their scheme. This resulted in
more efficient operations and much smaller ciphertexts. SLAP also found that
noise-scaled message encoding is more efficient than message-scaled encoding; we
follow their example by using noise-scaled encoding in TERSE. SLAP focused
on practical throughput from message packing, but their latency was slightly
greater than that of other state-of-the-art post-quantum PSA [32,65]. However,
these schemes not using RLWE have disadvantages such as large key storage
requirements or doubts on security [30], which leads us to focus on optimizing
RLWE-based PSA.
SLAP and LaPS have some similarities. First, being related to RLWE or its A-
LWE variant, public values A dependent on a timestamp were (or should have
been) used. As is common to many PSA schemes [58,37], additively correlated
secret keys are used. While SLAP represented a great leap forward in the state
of the art, it still faced limitations in communication overhead. The ciphertexts
of SLAP are ring polynomials in Rq, which may be as large as megabytes for
common parameter settings. This makes it less practical for highly constrained
users. SIMD batching still helps SLAP achieve high throughput, but the overall
ciphertext size cannot be reduced. This necessitates either filling the remaining
SIMD slots with junk data (greatly reducing throughput), or waiting for enough
data to fill a ring polynomial, which may be undesirable in time-sensitive aggre-
gations. These schemes consider security in the encrypt-once model, assuming
each user will only produce a single encryption at a given timestamp – a reason-
able security model for most applications.

7

Other work in quantum-secure PSA not using RLWE [65,32] is able to achieve
much smaller ciphertexts. However, these schemes have some disadvantages. The
security of the Learning With Rounding problem upon which [32] is based is
of concern [30]. Using secret-sharing for aggregation [65] is not practical for
large numbers of users, due to the quadratic growth in key storage needed. It is
thus desirable to construct RLWE-based secure stream aggregation with smaller
ciphertexts.

4.2 A More Performant Protocol: TERSE

We now show how to further break down lattice arithmetic for an even more
efficient protocol, with smaller ciphertexts. Our path forward hinges on a few key
ideas: first, with precomputation of user values, no expensive input-dependent
polynomial multiplication is required, and the computation of these terms can be
done ahead of time or prepared concurrently. (Phones and other limited devices
can do this while plugged in and idling, or in a separate process, or they may
outsource the precomputations to a synced computer.) This means that all input-
dependent polynomial arithmetic is only addition, scalar multiplication, and base
conversion, which can be done coefficient-wise. Second, transmitting elements of
Rq one coefficient at a time does not give adversaries any additional information
about users’ secret data. Third, SLAP can apply a simple coefficient-wise SIMD
batching to improve the throughput of their scheme. Packing the coefficients in
this manner means that coefficients can be packed into a polynomial or extracted
at any point in the addition-only computation, without affecting correctness.
Combining these insights gives us the core idea: we can perform aggregation and
decryption one polynomial coefficient at a time, which does not impact security
or correctness, and reduces the ciphertext size needed to send a single element of
Zt by a factor of N , which usually ranges from 210 to 216. We can now describe
TERSE, which applies the key ideas above. Essentially, we parse a timestamp
into two parts, with one part used to index coefficients of polynomials in Rq.
Then, we simply use coefficients at that index from the precomputed product of
the user’s secret key and the public hash.
Let λ ∈ N be the bits of guaranteed security, and let Aθ = h(θ) be a random-
oracle hash function mapping the high bits θ of timestamps ts = (θ, τ) to Rq.
We consider a small error distribution ζ and a uniformly random distribution
χ, drawing either polynomials or singleton values from Rq or Zq as appropriate.
Denote the i-th coefficient of a polynomial x as x[i]. Differential privacy is an
orthogonal extension, as discussed in Section 5.1, so we do not go into detail on
the mechanisms of differentially private noise added through the terms ri,ts. We
describe TERSE as follows:
1. TERSE.Setup(λ, t, n): For a plaintext space of Zt and n users, choose the

ciphertext modulus q such that log2(3)+ log2(n) + log2(t) < log2(q) and q, t
are coprime. Choose N to ensure at least λ bits of security for the RLWE
problem on Rq [4,5], and H(·) to be a random hash mapping timestamps to
Rq. Choose users’ secret keys s0 · · · sn−1 randomly from χ. Finally, choose

the additively correlated aggregator’s key s′ = −[
∑n−1

i=0 si]q. Users and the

8

aggregators parse timestamps into most significant and least significant bits
as ts = (θ, τ), with τ ∈ ZN , i.e., τ is represented using up to |N | bits.

2. TERSE.Enc(si ∈ Rq, ts = (θ, τ), xi,ts ∈ Zt, ri,ts ∈ Zt): Choose the user’s
RLWE error ei,ts ∈ Zt from ζ. Set pi,ts = (Aθ · si)[τ]. (Note that these steps
can and should be precomputed before the user’s time-series input xi,ts is
available.) The user’s ciphertext is ci,ts = [pi,ts + t · ei,ts + [xi,ts + ri,ts]t]q.

3. TERSE.Agg(s′ ∈ Rq, ts = (θ, τ), c0,ts · · · cn−1,ts): Precompute p′ts = (Aθ ·
s′i,ts)[τ]. The sum of users’ inputs xi,ts is yts = [[p′ts +

∑n−1
i=0 ci,ts]q]t.

Correctness is easy to see. Note that p′ts = −
∑

pi,ts. Then [p′ts +
∑n−1

i=0 ci,ts]q =

[
∑n−1

i=0 t · ei,ts+[xi,ts+ ri,ts]t]q. Reducing this modulo t removes the noise terms,
and we avoid noise overflow so long as the bounds in TERSE.Setup are observed.
Note that the input-dependent portion of encryption in TERSE is extremely sim-
ple, requiring only base conversion from base t to base q, followed by one modular
addition in base q. Similarly, the online portion of aggregation of TERSE only
needs the additive aggregation of all user ciphertexts and p′ts, followed by a base
conversion. This simplicity leads to highly efficient operations for both the user
and aggregator, as shown in Section 6.
Improving upon other work in RLWE-based PSA, TERSE achieves a relatively
small ciphertext expansion - for a single input in Zt, a ciphertext is an element
of Zq, so that the expansion factor is only q/t, and only |q| bits are needed for
ciphertexts – in practice, this is usually only 64 or 128 bits!

4.3 Proof of Security

Lemma 1. In attempting to solve the RLWE problem (in either of the Search
or Decision versions in Section 3.3), an adversary does not gain any advantage
from seeing elements of Rq one coefficient at a time.

Theorem 1. TERSE is an aggregator oblivious PSA scheme.

Proof. We follow previous work [15,3] and assume for simplicity that adversaries
can choose the differentially private noise terms ri,ts during the Challenge phase.
We will construct a reduction from RLWE to TERSE by showing that given an
adversary A that can win the game of aggregator obliviousness (see Definition 1)
in polynomial time, we can construct an adversary B able to distinguish RLWE
terms from random in polynomial time, thus solving the Decisional version of
RLWE. For simplicity, we consider a real-or-random version of the game of ag-
gregator obliviousness, again following previous work [58,15,61]. As noted in
Section 3.1, aggregator obliviouness does not protect against the case where all
but one party is compromised, so we suppose that A will not attempt to make
Compromise queries for n distinct parties.
First, consider a challenger C who tests the ability of B to attack RLWE. B will
compute and return TERSE parameters including Rq, t, n for a given security
level λ to A as a response to a Setup query from A. Rq is the ring for which B will
attempt to attack RLWE. B will then choose two distinct parties j, k ∈ [0, n) ∪
{□}, and draw secret keys si ← χ for i /∈ {j, k} (exactly as in TERSE.Setup).

9

As noted in previous work [15,61], B’s choices j, k must be in the set of at least
two users A will not attempt to compromise, which occurs with probability 1

n2 .
Next, B needs to prepare to match RLWE samples with the values it is able
to send to A. If A will make Encrypt queries for (up to) P = poly(λ) different
timestamps, B will simply ask for Q = ⌈P+1

N ⌉ RLWE samples from C. From this,
B will receive a set of pairs S = {(aσ,bσ)}σ∈ZQ . Note that θ and σ are both
in ZQ. Then, B will select H(·) such that for each of the P values ts = (θ, τ),
H(ts) = aθ[τ], and distribute this function as part of TERSE.Setup.
When A makes an Encrypt query (i, xi,ts, ri,ts, ts) to B, if party i is not com-
promised and the pair i, ts has not been used in a previous Encrypt query, B
will compute and return the TERSE encryption NoisyEnc(si, ts, xi,ts, ri,ts) if
i /∈ {j, k}. For the parties j, k, B will eventually set j’s secret key to be the secret
RLWE value, and will (implicitly) let user k’s secret key be the sum of all other
users’ keys. If i = j, with ts = (θ, τ), then B finds the tuple (aτ ,bτ), and returns
bθ[τ] + (xj,ts + rj,ts) to A. If i = k, B again finds the appropriate value bθ[τ],
and returns −bθ[τ]− (aθ ·

∑
ℓ/∈{j,k} sℓ)[τ] + (xk,ts + rk,ts) to A.

When A makes a Compromise query for a party i ∈ ([0, n) ∪ {□}) \ {j, k},
B simply returns si to A. We denote the set of never-compromised users as
K ⊆ [0, n)∪{□}. If i ∈ {j, k}, i.e., A tried to compromise a user that B assumed
would remain uncompromised, then B will simply abort.
When A makes a Challenge query, it will choose a set of uncompromised users
U ∈ K, and will send input-noise pairs
{(xu,ts′ , ru,ts′)}u∈U , where ts′ = (θ′, τ ′) was not previously used in any Encrypt
query. At this point, up to Q−1 timestamps have been used in Encrypt queries,
leaving at least one unused value remaining. Then, B will compute the values
ci,ts = NoisyEnc(si, ts

′, xi,ts, ri,ts) for i ∈ U\{j, k}, cj,ts = bθ′ [τ ′]+(xj,ts+rj,ts),
and ck,ts = −bθ′ [τ ′]− (aθ′ ·

∑
ℓ/∈{j,k} sℓ)[τ

′]+(xk,ts+rk,ts). Finally, B will return

ci,ts for i ∈ [0, n) ∪ {□} to A.
To make a decision on whether it was given real RLWE terms or random values,
B will use the decision of A. If A decides that it was given ciphertexts that
are simply messages padded with random values, then B will decide that it
was given random values. On the other hand, if A decides that it is in a real
version of TERSE and had received TERSE ciphertexts, then B will decide that
it received RLWE values from C. Thus if A can achieve a greater-than-negligible
advantage (i.e., a success rate non-negligibly better than a random guess) against
the aggregator obliviousness of TERSE, then B can use this to gain a greater-
than-negligible advantage against RLWE. This completes the reduction from
RLWE to TERSE.

5 Extensions and Improvements
5.1 Differential Privacy

Previously, we have introduced TERSE and discussed its security in the context
of aggregator obliviousness, where the aim is to provide security against external
attackers and leak no additional information to an honest-but-curious aggregator

10

or user, or a collusion thereof. To construct a PSA protocol that is truly private,
users should also have some notion of input privacy against the honest-but-
curious aggregator. In particular, a user will want to avoid having the aggregator
learn anything about its input. To this end, PSA schemes utilize differential
privacy to obscure user inputs.
Differential privacy for PSA is well-known in the literature [61,15,58,32,65]. The
exact mechanism of differential privacy (choosing values ri,ts, based upon n,
t, and the desired or acceptable accuracy and error) is an orthogonal issue to
our work. We thus follow previous work in noting that differential privacy from
adding noise to user inputs is preserved when executed in a PSA protocol [65,64].
Thus, TERSE is easily able to encapsulate both security and privacy, both of
which are important concerns for users.
In practical use, it should be noted that implementing differential privacy into
PSA (or any computation) can affect the accuracy of the computation. In RLWE-
based PSA schemes with finite and possibly limited plaintext spaces, needing
to account for noisy user input can significantly affect the practical parameter
selection [15,61].

5.2 Network Faults or Disconnects

While previous work in quantum-secure PSA [15,61,32,65] has centered primar-
ily upon efficient PSA construction, practical PSA should take fault tolerance
into consideration. In several precursor works in PSA, user keys are correlated,
such that the absence of a single user’s input will result in failure of decryption
[61,15,58,65]. As noted by Karl et al. [42], there are two prominent strategies
of enhancing aggregation schemes with fault tolerance: recovering from faults
by having a trusted party substitute missing inputs [12,13,47,2], or by having
users provide redundant inputs as a precaution against future faults [14,24,25].
The Cryptonite protocol [42] uses trusted hardware, specifically Intel SGX, as a
trusted third party for fault tolerance.
Intel SGX is a Trusted Execution Environment that provides confidentiality and
integrity to a trusted portion of a program, which runs in an encrypted memory
enclave that maintains integrity against even a malicious operating system [28].
While SGX provides strong guarantees of security to computations, it can be
limited for computations at a very large scale, due to the practically limited size
of its memory enclave and the overhead of encryption when paging memory in
or out of the enclave [34,28,7,10,45].
Cryptonite used an aggregator-colocated SGX to read all user inputs and to
generate encryptions of zero from missing users, using pre-received users’ secret
keys held securely in trusted memory. The more efficient variant of Cryptonite
has the SGX only output encryptions of zero corresponding to missing users,
so that the aggregation with ciphertexts from all users can be more efficiently
performed in untrusted space. We note that for our model of honest-but-curious
adversaries, it is reasonable for the SGX to trust that the aggregator will faith-
fully relay the set of faulted users. Then, the SGX does not need to take in O(n)
ciphertexts, but only a list of missing users, yielding a much smaller buffer that

11

is passed to the enclave. Further, we can have the SGX return only a single ag-
gregated ciphertext from all missing users, greatly reducing the amount of data
that needs to be passed out of the enclave.
We include Cryptonite with these optimizations in our implementation (see Sec-
tion 6.1). While other methods of fault tolerance exist, we chose to study the
novel integration of SGX-based fault tolerance and post-quantum PSA due to
their non-interactive fault recovery without additional client work or interaction.
This is the first work investigating the implementation and use of SGX-based
fault tolerance and PSA featuring aggregation on order of microseconds.
There exists other work in PSA dealing with dynamic join/leave of users [22,39].
Dynamic user groups are outside the scope of this work, which is concerned with
the basic primitive of efficient aggregation.

5.3 Optimizing Ring Arithmetic

In Rq = Zq[x]/(x
N + 1), both N and q may be large - N commonly ranges

from 210 to 216, and q may be hundreds of bits. These large operands are an
obstacle to efficient computation. Residue Number System (RNS) arithmetic
can decompose an element of Zq into a tuple of numbers modulo smaller co-
primes, allowing the use of multiple single-precision operations instead of expen-
sive multiprecision arithmetic [11,35]. The Number-Theoretic Transform (NTT)
reduces the asymptotic complexity of polynomial multiplication from O(N2) to
O(N · log(N)), greatly improving the runtime of algorithms whose dominant
operation is polynomial multiplication [48]. We use these optimizations in im-
plementing TERSE. Due to the design of TERSE in minimizing input-dependent
computation, both users and the aggregator will perform all of their polynomial
multiplication ahead of time, so the benefits of NTT are seen in the runtime of
precomputation.

6 Experimental Evaluation
6.1 Implementation and Environment

We implemented client and server programs to test the performance of TERSE.
Both implementations use RNS and NTT as described in Section 5.3. Runtime
tests generally report averages of at least 50 iterations; for longer-running tests
at least 5 iterations were used. Both implementations were in C++.
We tested the client version of TERSE on a Google Pixel 4a with 6GB memory
and a CPU running at up to 2.2 GHz. The client version assumes precompu-
tation of users’ values pi,ts, but does not do so for the noise terms t · ei,ts. As
described earlier, this is a reasonable assumption to make - these larger polyno-
mial products can be outsourced to users’ synced laptops for smartphone clients,
or computed “out-of-band” in a separate process, because one polynomial gener-
ates thousands of pi,ts terms, and the key retrieval and computation of pi,ts only
needs to occur once per N aggregations. Drawing error terms is a fast operation,
and can done as input becomes available.
Our server tests were run on a computer with an Intel Xeon CPU running at
3.7GHz, with 128GB of RAM. Our server code integrates a modified version

12

Table 1: TERSE Parameter Settings and Precomputation Times for 128-bit
RLWE security and 1000000 Aggregations

Users
Plaintext
Space
(bits)

Minimum
Ciphertext
Space (bits)

Cipher-
text

Moduli

RLWE Poly-
nomial Modulus

Degree

Secret Keys
Generation

(ms)

Derivation
of Aθ

(ms)

Multiplicative
Precomputation

(ms)

100 32 41 1 2048 6.75889 28.0973 451.451

1000 32 44 1 2048 66.5254 28.049 450.521

10000 32 48 1 2048 666.651 28.1902 451.375

100000 32 51 1 2048 6650.29 28.0568 450.602

1000000 32 54 1 2048 66587.6 28.0712 450.984

10000000 32 58 2 4096 1715910 100.646 1128.82

100000000 32 61 2 4096 17164700 99.7437 1132.2

1000 1 13 1 1024 33.7708 22.1876 221.474

1000 2 14 1 1024 33.842 22.2518 222.798

1000 4 16 1 1024 33.7107 22.1595 221.613

1000 8 20 1 1024 33.7945 22.1702 221.553

1000 16 28 1 2048 66.5783 28.1416 450.641

1000 32 44 1 2048 66.5213 28.0544 450.474

1000 48 60 2 4096 171.914 99.7837 1128.89

of the Cryptonite protocol for fault-tolerance, as described in Section 5.2. Our
client and server implementations are available at https://gitlab.com/jtakeshi/
slap-iot-cryptonite-client and https://gitlab.com/jtakeshi/slap-iot-cryptonomial-server,
respectively. Our profiling of precomputations (see Section 6.3) is included in the
client implementation repository.

6.2 Parameters and Communication

A plaintext space of up to 48 bits is practical for a wide variety of practical uses,
e.g., electronic voting for up to 247 participants, or averaging patient ages for 240

patients, or aggregating 65,536 users’ 32-bit inputs for use in machine learning or
data mining. Further, it allows us to keep TERSE ciphertexts small, and TERSE
plaintexts within a single computer word. In our implementations of TERSE,
we used standard RLWE parameters for 128-bit classical security [4,23]. For
|t| ≤ 64, only one or two RNS moduli represented in 64-bit words were required,
making TERSE’s communication overhead very lightweight. Parameter settings
for our experiments are shown in Table 1.

6.3 Results

Impact of Aggregation Scale We first tested the impact of high scale and
increasing users on our protocol’s runtime. The aggregator’s server-side perfor-
mance is shown in Figure 1. The server achieves aggregation latency of 0.0067 ms
for n = 1000 users, which is much more efficient than other state-of-the-art work
in post-quantum PSA (see Section 6.4). The results from our Android user-
side implementation are shown in Figure 2a. One of the strengths of TERSE as
compared to aggregation schemes based upon secret sharing [65] is that users’
computation (and memory to store keys) is not linearly dependent upon the
number of other participants, making TERSE much more practical for deploy-
ment to users with limited devices such as smartphones or IoT devices. This is
borne out by the minimal changes in users’ encryption runtimes as the number

13

https://gitlab.com/jtakeshi/slap-iot-cryptonite-client
https://gitlab.com/jtakeshi/slap-iot-cryptonite-client
https://gitlab.com/jtakeshi/slap-iot-cryptonomial-server

of users increases. Most notably, user-side encryption on an Android smartphone
can take place in less than 0.3 microseconds for 1 billion users!

(a) (b)

Fig. 1: Experimental Results for Server Performance With Increasing Users.
(a) Without Faults (b) With Faults

(a) (b)

Fig. 2: Experimental Results for Client Performance. (a) Increasing Users
(b) Increasing Plaintext Space

Impact of Input Size We investigated the impact of an increasing plaintext
space upon runtime. As described in Section 6.2, we expect very little asymptotic
effect from larger plaintext spaces up to the 64 bits used in our implementation,
as only one or two ciphertext moduli are required in all cases. The server-side
results from increasing the plaintext space are shown in Figure 3. In both cases,
the runtime for the actual aggregation is very small, on order of 0.001 millisec-
onds (or 1 microsecond!). The runtime for reading inputs from file and fault

14

(a) (b)

Fig. 3: Experimental Results for Server Performance With Increasing Plaintext
Space. (a) With Faults (b) Without Faults Space

Fig. 4: Server Performance for Varying User Faults

recovery is much larger, and more variable. Our Android implementation’s re-
sults are shown in Figure 2b, and again show that client encryption can run in
less than a microsecond.

Impact of Fault Recovery We evaluate Cryptonite-based fault tolerance [42]
as applied to TERSE with a few key differences. Instead of O(n) inputs being
passed into the SGX’s secure memory enclave, in our setting we only need to pass
in a list of the faulting users. This greatly reduces the paging overhead for calls
into the enclave. We also only return a single ciphertext, reducing the paging
overhead from returning to untrusted memory. Our experimental results for fault
tolerance with TERSE are shown in Figure 4. As the proportion of faulting users
increases, the time to aggregate and read user input from file decreases slightly.
This is logical: with fewer user inputs, there is less work for these portions of the
computation.

15

Table 2: Runtime in ms of TERSE vs. Reported Results from Other Work (1000
users and at least 16 bits plaintext space, unless noted)

Protocol
Encryption
Runtime

Aggregation
Runtime

Notes

TERSE 0.0003 0.006

LaSS [65] 0.539 0.509 256-bit AES keys used. Encrypt-once model times shown
here, many-time security much slower. Also does not con-
sider differential privacy. Experiments used a laptop.

Ernst et al. [32] 0.913 0.875 Results from λ = 114 bits of security. Reimplements LaSS
[65], reporting about a 2× speedup from the original. Ex-
periments used a laptop.

LaPS [15] 3.722 1.964 Results from λ = 80 bits of security. Runtimes at 128 bits
of security are an order of magnitude greater. Experiments
used a laptop.

SLAP [61] 1.17 3.26 Ordinary latency reported, practical throughput may be
improved. Differentially private noise included. Experi-
ments used a server.

Lu et al. [49] 0.328 0.062 8-bit plaintext space, runtime slightly higher with differ-
ential privacy. Experiments used a laptop.

Zhuo et al. [67] ≈0.0001 6 Only N = 100 users, plaintext space not specified. Exper-
iments used a desktop.

He et al. [36] 6.66 3433.4 Both figures only estimates, no implementation. Results
estimated from a Pentium IV system.

Precomputation While TERSE’s precomputations do not directly affect on-
line latency, it is informative to observe their performance. To concretely observe
the burden of precomputation, we tested the latency of the generation of secret
keys (done by trusted setup), public hash derivation (done by both client and
server), and finding multiplicative terms Aθ · si. Table 1 shows the runtimes
of these operations when precomputing values for 1000000 aggregations. As ex-
pected, runtime for secret key generation increases linearly with the number
of users. Deriving the public values Aθ takes only hundreds of milliseconds at
the most, and the per-aggregation burden is low when considering amortization
for a million aggregations. Similarly, computing the terms Aθ · si for a million
aggregations takes only seconds at most. We note that the precomputations of
TERSE need occur only once every N aggregations, while other post-quantum
PSA need to calculate their public terms for every aggregation (while LaPS does
not explicitly require this, it is needed for security [65]).

6.4 Comparison with Other Work

Differences in hardware platform, programming languages, and input types can
make direct performance comparisons between different PSA protocols challeng-
ing. Still, we can make rough comparisons of protocol runtimes and communica-
tion overhead from reported experimental results. In Table 1, we report runtimes
of TERSE and other schemes, using a plaintext space of at least 16 bits and at
least 1000 users (unless otherwise noted). We note that these minimal bounds for
scheme parameters are quite small, and TERSE is likely to perform even better
relatively at scale; we chose smaller floors to show the best-possible runtime of
other schemes. Against the 4 quantum-secure PSA schemes LaSS, Ernst et al.,
LaPS, and SLAP, TERSE shows improvements in latency of 1796× to 12406×
for encryption and 848× to 5433× for aggregation.

16

7 Conclusion
In this paper, we presented TERSE, a quantum-secure PSA protocol uniquely
well-suited for minimal latency. TERSE features highly efficient operations, min-
imally expansive ciphertexts, and a very simple and highly extensible design.
Our experimental results show that TERSE achieves encryption latency of 0.0003
ms and aggregation latency of 0.0067 ms for 1000 users and a 16-bit plaintext
space, with improvements of two to three orders of magnitude as compared to
prior post-quantum PSA. The performance improvements of TERSE for client-
side operations are especially important, as the client-side implementation of
TERSE was tested on a smartphone as opposed to prior implementations of
PSA on laptops or desktops. These microsecond-latency operations for users and
aggregators make RLWE-based PSA truly practical for real-world deployments.

17

References

1. Internet of Things (IoT) connected devices installed base worldwide from 2015 to
2025. https://rb.gy/cbrasa. Accessed: 2021-10-15. 1

2. ppm-hda: Privacy-preserving and multifunctional health data aggregation with
fault tolerance. 11

3. G. Ács and C. Castelluccia. I have a dream!(differentially private smart metering).
In International Workshop on Information Hiding, pages 118–132. Springer, 2011.
9

4. M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, S. Halevi,
J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio, D. Moody, T. Morrison,
A. Sahai, and V. Vaikuntanathan. Homomorphic encryption security standard.
Technical report, HomomorphicEncryption.org, Toronto, Canada, November 2018.
6, 8, 13

5. M. R. Albrecht et al. Estimate all the {LWE, NTRU} schemes! In SCN, pages
351–367. Springer, 2018. 6, 8

6. P. Ananth, A. Jain, Z. Jin, and G. Malavolta. Multi-key fully-homomorphic en-
cryption in the plain model. In Theory of Cryptography Conference, pages 28–57.
Springer, 2020. 4

7. S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’keeffe, M. L. Stillwell, et al. {SCONE}: Secure linux
containers with intel {SGX}. In 12th USENIX OSDI), pages 689–703, 2016. 11

8. Y. N. Babuji, K. Chard, A. Gerow, and E. Duede. Cloud kotta: Enabling secure
and scalable data analytics in the cloud. In 2016 IEEE International Conference
on Big Data (Big Data), pages 302–310. IEEE, 2016. 2

9. S. F. Bailey, M. K. Scheible, C. Williams, D. S. Silva, M. Hoggan, C. Eichman,
and S. A. Faith. Secure and robust cloud computing for high-throughput forensic
microsatellite sequence analysis and databasing. Forensic Science International:
Genetics, 31:40–47, 2017. 2

10. M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer, M. Honda, and K. Vaswani.
{SPEICHER}: Securing lsm-based key-value stores using shielded execution. In
17th USENIX FAST, pages 173–190, 2019. 11

11. J.-C. Bajard, J. Eynard, M. A. Hasan, and V. Zucca. A full RNS variant of FV
like somewhat homomorphic encryption schemes. In SAC, pages 423–442. Springer,
2016. 12

12. H. Bao and R. Lu. DDPFT: Secure data aggregation scheme with differential
privacy and fault tolerance. In 2015 IEEE ICC, pages 7240–7245. IEEE, 2015. 11

13. H. Bao and R. Lu. A new differentially private data aggregation with fault tolerance
for smart grid communications. IoT-J, 2(3):248–258, 2015. 4, 11

14. H. Bao and R. Lu. A lightweight data aggregation scheme achieving privacy preser-
vation and data integrity with differential privacy and fault tolerance. Peer-to-Peer
Networking and Applications, 10(1):106–121, 2017. 11

15. D. Becker, J. Guajardo, and K.-H. Zimmermann. Revisiting Private Stream Ag-
gregation: Lattice-Based PSA. In NDSS, 2018. 2, 3, 5, 7, 9, 10, 11, 16

16. I. Blanco-Chacón. On the RLWE/PLWE equivalence for cyclotomic number fields.
Applicable Algebra in Engineering, Communication and Computing, pages 1–19,
2020. 6

17. D. Boneh, S. Eskandarian, and B. Fisch. Post-quantum epid signatures from sym-
metric primitives. In Cryptographers’ Track at the RSA Conference, pages 251–271.
Springer, 2019. 2

18

https://rb.gy/cbrasa

18. X. Bonnetain, M. Naya-Plasencia, and A. Schrottenloher. Quantum security anal-
ysis of aes. IACR Transactions on Symmetric Cryptology, 2019(2):55–93, 2019.
2

19. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. ACM Transactions on Computation Theory
(TOCT), 6(3):1–36, 2014. 4

20. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In Annual cryptology conference,
pages 505–524. Springer, 2011. 2, 3, 6

21. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited.
Journal of the ACM (JACM), 51(4):557–594, 2004. 7

22. T.-H. H. Chan, E. Shi, and D. Song. Privacy-preserving stream aggregation with
fault tolerance. In FC, pages 200–214. Springer, 2012. 2, 12

23. H. Chen, K. Han, Z. Huang, A. Jalali, and K. Laine. Simple encrypted arithmetic
library v2. 3.0. Microsoft Research, December, 2017. 13

24. J. Chen, H. Ma, and D. Zhao. Private data aggregation with integrity assurance
and fault tolerance for mobile crowd-sensing. Wireless Networks, 23(1):131–144,
2017. 3, 11

25. L. Chen, R. Lu, and Z. Cao. PDAFT: A privacy-preserving data aggregation
scheme with fault tolerance for smart grid communications. Peer-to-Peer network-
ing and applications, 8(6):1122–1132, 2015. 11

26. J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for arith-
metic of approximate numbers. In Asiacrypt, pages 409–437. Springer, 2017. 2

27. F. Conti, R. Schilling, P. D. Schiavone, A. Pullini, D. Rossi, F. K. Gürkaynak,
M. Muehlberghuber, M. Gautschi, I. Loi, G. Haugou, et al. An iot endpoint system-
on-chip for secure and energy-efficient near-sensor analytics. IEEE Transactions
on Circuits and Systems I: Regular Papers, 64(9):2481–2494, 2017. 2

28. V. Costan and S. Devadas. Intel SGX explained. IACR Cryptol. ePrint Arch.,
2016(86):1–118, 2016. 2, 11

29. G. Danezis, C. Fournet, M. Kohlweiss, and S. Zanella-Béguelin. Smart meter
aggregation via secret-sharing. In ACM SEDAy, pages 75–80, 2013. 2

30. J. Ding, X. Gao, T. Takagi, and Y. Wang. One sample ring-lwe with rounding and
its application to key exchange. In ACNS, pages 323–343. Springer, 2019. 4, 7, 8

31. J. Du, C. Jiang, E. Gelenbe, L. Xu, J. Li, and Y. Ren. Distributed data privacy
preservation in iot applications. IEEE Wireless Communications, 25(6):68–76,
2018. 1

32. J. Ernst and A. Koch. Private stream aggregation with labels in the standard
model. PETS, 4:117–138, 2021. 2, 4, 5, 7, 8, 11, 16

33. J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption.
IACR Cryptol. ePrint Arch., 2012:144, 2012. 2, 6

34. A. T. Gjerdrum, R. Pettersen, H. D. Johansen, and D. Johansen. Performance of
Trusted Computing in Cloud Infrastructures with Intel SGX. In CLOSER, pages
668–675, 2017. 11

35. S. Halevi, Y. Polyakov, and V. Shoup. An improved RNS variant of the BFV
homomorphic encryption scheme. In CT-RSA, pages 83–105. Springer, 2019. 12

36. D. He, N. Kumar, and J.-H. Lee. Privacy-preserving data aggregation scheme
against internal attackers in smart grids. Wireless Networks, 22(2):491–502, 2016.
4, 16

37. M. Joye and B. Libert. A scalable scheme for privacy-preserving aggregation of
time-series data. In FC, pages 111–125. Springer, 2013. 3, 7

19

38. T. Jung et al. Privacy-preserving data aggregation without secure channel: Multi-
variate polynomial evaluation. In 2013 Proceedings IEEE INFOCOM, pages 2634–
2642. IEEE, 2013. 3

39. T. Jung, J. Han, and X.-Y. Li. PDA: semantically secure time-series data analytics
with dynamic user groups. TDSC, 15(2):260–274, 2016. 12

40. T. Jung, X.-Y. Li, and M. Wan. Collusion-tolerable privacy-preserving sum and
product calculation without secure channel. TDSC, 12(1):45–57, 2014. 3

41. R. Karl et al. Non-interactive MPC with trusted hardware secure against residual
function attacks. In SecureComm, pages 425–439. Springer, 2019. 2

42. R. Karl et al. Cryptonite: A framework for flexible time-series secure aggregation
with online fault tolerance. Cryptology ePrint Archive, Report 2020/1561, 2020.
https://rb.gy/tdcsfs. 2, 11, 15

43. R. Karl et al. Cryptonomial: a framework for private time-series polynomial cal-
culations. In SecureComm, pages 332–351. Springer, 2021. 2

44. N. Koblitz and A. J. Menezes. The random oracle model: a twenty-year retrospec-
tive. Designs, Codes and Cryptography, 77(2):587–610, 2015. 7

45. R. Kunkel, D. L. Quoc, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer.
Tensorscone: A secure tensorflow framework using Intel SGX. arXiv preprint
arXiv:1902.04413, 2019. 11

46. C. Li, R. Lu, H. Li, L. Chen, and J. Chen. PDA: a privacy-preserving dual-
functional aggregation scheme for smart grid communications. Security and Com-
munication Networks, 8(15):2494–2506, 2015. 4

47. Q. Li and G. Cao. Efficient privacy-preserving stream aggregation in mobile sensing
with low aggregation error. In PETS, pages 60–81. Springer, 2013. 11

48. P. Longa and M. Naehrig. Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In International Conference on Cryptology and
Network Security, pages 124–139. Springer, 2016. 12

49. R. Lu, K. Heung, A. H. Lashkari, and A. A. Ghorbani. A lightweight privacy-
preserving data aggregation scheme for fog computing-enhanced iot. IEEE Access,
5:3302–3312, 2017. 4, 16

50. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. Journal of the ACM (JACM), 60(6):1–35, 2013. 2, 6

51. S. Mofrad, F. Zhang, S. Lu, and W. Shi. A comparison study of intel sgx and amd
memory encryption technology. In HASP, pages 1–8, 2018. 2

52. P. Mukherjee and D. Wichs. Two round multiparty computation via multi-key fhe.
In Eurocrypt, pages 735–763. Springer, 2016. 4

53. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Eurocrypt, pages 223–238. Springer, 1999. 3

54. H. Park, S. Zhai, L. Lu, and F. X. Lin. {StreamBox-TZ}: Secure stream analytics
at the edge with {TrustZone}. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 537–554, 2019. 2

55. Y. Pu, J. Luo, C. Hu, J. Yu, R. Zhao, H. Huang, and T. Xiang. Two secure privacy-
preserving data aggregation schemes for iot. Wireless Communications and Mobile
Computing, 2019, 2019. 1

56. V. Rastogi and S. Nath. Differentially private aggregation of distributed time-series
with transformation and encryption. In SIGMOD/PODS, pages 735–746, 2010. 3

57. M. Rosca, D. Stehlé, and A. Wallet. On the ring-LWE and polynomial-LWE
problems. In Eurocrypt, pages 146–173. Springer, 2018. 6

58. E. Shi, T. H. Chan, E. Rieffel, R. Chow, and D. Song. Privacy-preserving aggre-
gation of time-series data. In NDSS, volume 2, pages 1–17, 2011. 2, 3, 5, 6, 7, 9,
11

20

https://rb.gy/tdcsfs

59. P. W. Shor. Algorithms for quantum computation: discrete logarithms and factor-
ing. In FOCS, pages 124–134. Ieee, 1994. 3

60. Z. Sui and H. de Meer. An efficient signcryption protocol for hop-by-hop data
aggregations in smart grids. IEEE Journal on Selected Areas in Communications,
38(1):132–140, 2019. 3

61. J. Takeshita et al. SLAP: Simple Lattice-Based Private Stream Aggregation Pro-
tocol. IACR Cryptol. ePrint Arch., 2020:1611, 2020. 2, 4, 5, 7, 9, 10, 11, 16

62. W. Tang, J. Ren, K. Deng, and Y. Zhang. Secure data aggregation of lightweight
e-healthcare iot devices with fair incentives. IoT-J, 6(5):8714–8726, 2019. 1

63. S. Tonyali, K. Akkaya, N. Saputro, A. S. Uluagac, and M. Nojoumian. Privacy-
preserving protocols for secure and reliable data aggregation in iot-enabled smart
metering systems. FGCS, 78:547–557, 2018. 1

64. F. Valovich and F. Aldà. Computational differential privacy from lattice-based
cryptography. In NuTMiC, pages 121–141. Springer, 2017. 11

65. H. Waldner, T. Marc, M. Stopar, and M. Abdalla. Private stream aggregation
from labeled secret sharing schemes. IACR Cryptol. ePrint Arch., 2021:81, 2021.
2, 4, 5, 7, 8, 11, 13, 16

66. X. Wang, Y. Liu, and K.-K. R. Choo. Fault-tolerant multisubset aggregation
scheme for smart grid. IEEE Transactions on Industrial Informatics, 17(6):4065–
4072, 2020. 3

67. G. Zhuo, Q. Jia, L. Guo, M. Li, and P. Li. Privacy-preserving verifiable data
aggregation and analysis for cloud-assisted mobile crowdsourcing. In INFOCOM,
pages 1–9. IEEE, 2016. 4, 16

21

	TERSE: Tiny Encryptions and Really Speedy Execution for Post-Quantum Private Stream Aggregation

