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Abstract
In Private Information Retrieval (PIR), a client wishes to access an index i from a public n-bit

database without revealing any information about this index. Recently, a series of works starting
with the seminal paper of Corrigan-Gibbs et al. (Eurocrypt 2020) have introduced offline-online PIR
schemes with Õ(

√
n) (amortized) server time, Õ(

√
n) (amortized) bandwidth and no additional stor-

age at the server, in both the single-server and two-server models. As a followup to this work, Shi et al.
(CRYPTO 2021) further decreased the bandwidth to polylogarithmic, but only in the two-server model.
In this paper we fill this gap by constructing a single-server PIR with Õ(

√
n) (amortized) server time

and polylogarithmic bandwidth. Central to our approach is a new cryptographic primitive that we call
extended puncturable pseudorandomn set: With an extended puncturable pseudorandom set, one can
represent a random set succinctly (e.g., with a fixed-size key), and can, at the same time both add and
remove elements from the set, by manipulating the key. This extension improves previously-proposed
constructions that supported only removal, and could have further applications. We acknowledge our
work has limitations; more work is required to bring our ideas closer to practice, due to the use of
cryptographic primitives such as FHE (only in the offline phase) and LWE-based privately-puncturable
PRFs. However, our protocol yields the best asymptotic complexities in single-server PIR to date and
we believe it is an important step towards eventually building a practical PIR scheme.

1 Introduction
In private information retrieval (PIR), we consider the scenario where a server holds a public database DB
represented as a string of n bits and a client wishes to retrieve DB[i] without revealing i to the server. PIR
has found many applications in various systems with advanced privacy requirements such as oblivious
DNS [42], instant messaging [3], advertising [4], web browsing [34] and media consumption [31]. It is
well-known that PIR can be realized trivially by requesting all the bits of DB for each query, which is
prohibitive for very large n, both in terms of bandwidth as well as server time. To achieve protocols with
better efficiency, the community has also considered the problem under the two-server assumption [35],
where the database DB is replicated in two, non-colluding servers. For the rest of the paper we use
1PIR to refer to the single-server version of the problem and 2PIR to refer to the two-server version of
the problem. Clearly, 1PIR is a much more challenging problem than 2PIR, but also more useful; it is
non-trivial to ensure two servers do not collude and remain highly-available in practice [38, 9].
Sublinear bandwidth 1PIR and 2PIR. The initial work by Chor et al. [18] presented a 2PIR protocol
that maintained the information-theoretic security of the trivial download-all approach while reducing
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Table 1: Comparison between the state-of-the-art 1PIR scheme and ours. Server time, client time and
bandwidth are amortized (indicated with ∗). Note that all schemes have no additional server storage.

scheme server time client space client time bandwidth model assumption
[19] Õ(

√
n)∗ Õ(

√
n) Õ(

√
n)∗ Õ(

√
n)∗ 1PIR FHE

[41] Õ(
√
n)∗ Õ(

√
n) Õ(

√
n)∗ Õ(1)∗ 2PIR LWE

Theorem 6.1 Õ(
√
n)∗ Õ(

√
n) Õ(

√
n)∗ Õ(1)∗ 1PIR FHE and LWE

bandwidth to O(n1/3)—the server time was, however, still linear. Later, a 1PIR protocol was introduced
by Kushilevitz and Ostrovsky [35], relying on the assumption of a computationally-bounded adversary.
They were able to achieve O(nϵ) communication complexity for any ϵ > 0, but both the client and the
server were required to perform polynomial amount of work. A series of inspiring works made relevant
improvements in bandwidth in both 2PIR [7, 43, 25, 24] and 1PIR [36, 28, 23, 32, 37].
Sublinear time 2PIR. Most preliminary PIR works featured a server that performs linear work. To
address the problem of linear server time in 2PIR, Beimel et al. [8] proposed using preprocessing to
construct a data structure on the server side that could alleviate the server’s work. This approach, however,
required a prohibitive amount of storage. Followup works [22, 26, 21, 31, 2] run into similar issues.
Recently, this line of work was revived by Corrigan-Gibbs et al. [20] and Kogan and Corrigan-Gibbs [34]
who proposed new 2PIR protocols with sublinear server time and no additional storage (inspired by
the private keyword search protocol in [12]). The former work examines the idea of an offline-online
PIR. Offline-online PIR is a special case of the PIR with preprocessing [8], where the preprocessed bits
are stored client-side. The proposed scheme [20] allows for unlimited adaptive queries after a single
expensive offline phase. The main protocol is a 2PIR protocol and involves three parties, client, server1
and server2. At a high level, it has five main steps.
Offline

1. client sends
√
n random index sets S1, . . . , S√

n to server1 and server1 returns database parities
p1, . . . , p√n, where

pi = ⊕j∈Si
DB[j] .

2. client locally stores index sets and database parities.

Online (query to index i)

1. client finds set Sj that contains i and sends S′
j = Sj \ {i} to server2.

2. server2 returns parity p′j of S′
j , and client computes

DB[i] = pj ⊕ p′j .

3. client generates a fresh random set S∗
j that contains i, sends S∗

j to server1, gets back its parity p∗j ,
and replaces (Sj , pj) with (S∗

j , p
∗
j ).

Later we will go into more detail as to how exactly we deal with efficiency issues and failure cases.
Note here that while it seems that complexities of the above protocol are linear (such as client storage
and bandwidth), Corrigan-Gibbs et al. [20] achieved O(

√
n) complexities by introducing the notion of

pseudorandom sets: Instead of sending the sets in plaintext, the client sends a PRP key that allows the
server to regenerate the sets (and also to check membership efficiently). However, note that the first step
of the online phase of the Corrigan-Gibbs et al. [20] scheme requires removing an element i from the set
Sj , even when the set is represented by a PRP key. Unfortunately, this cannot be done efficiently with a
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PRP key, so they ended up communicating the Sj \ {i} in plaintext, incurring O(
√
n log n) bandwidth

online.
In a followup work, Shi et al. [41] addressed this issue. They showed how to use privately-puncturable

PRFs [12, 10] to build puncturable pseudorandom sets, with keys that allow one to remove an element
without expanding the key, thus keeping the short description of the set in the online phase. Armed
with this primitive, they were able to construct a 2PIR protocol with polylogarithmic bandwidth as well
as sublinear server time and O(

√
n · poly(log n)) (amortized) complexities for all the other complexity

measures.
Compiling 2PIR into 1PIR. As we discussed, the sublinear-time protocols by Corrigan-Gibbs et al. [20]
and Shi et al. [41] were in the two-server model. So a natural question was whether one can achieve
the same complexities in the single server model. Indeed, Corrigan-Gibbs, Henzinger and Kogan [19]
showed how to port the 2PIR scheme by Corrigan-Gibbs et al. [20] into a PIR scheme with the same
(amortized) complexities (O(

√
n) server time and O(

√
n) bandwidth). Their technique, inspired by [1]

first transforms their initial 2PIR scheme [19] into another 2PIR scheme that avoids communication with
server1 during the online phase. To achieve this they make two crucial modifications of the high-level
protocol presented before.

1. In the first step of the offline phase, instead of preprocessing
√
n sets, they preprocess

√
n+Q sets,

where Q is the number of adaptive queries they wish to support.

2. In the third step of the online phase, instead of picking a fresh random set S∗
j and then commu-

nicating with server1, they use an already preprocessed set from above, avoiding communication
with server1 during the online phase.

We highlight here, that after Q queries have been performed in the above, the initially-preprocessed
sets are exhausted, and the offline phase must be executed again, which does not increase the amortized
complexity of the protocol.

To turn the above 2PIR protocol into a 1PIR protocol, they develop a circuit, encrypted with Fully
Homomorphic Encryption [27] (FHE) that computes the

√
n+Q hints in the offline phase in near-linear

time without revealing information about the sets, allowing the online phase to be computed on the same
server. Crucially, since all FHE preprocessing takes place offline, the online queries are just as efficient
as in the two-server scenario. The costly FHE preprocessing during “downtime” is a tradeoff for fast PIR
performance during the online phase.

Unfortunately, turning the Shi et al. [41] construction into an 1PIR protocol using the same trick of
preprocessing an additional Q random sets and then applying homomorphic encryption runs into a funda-
mental issue: We need to ensure that, in Step 3 of the online phase, when we use one of the preprocessed
sets, S∗, to replace the set that was just consumed to answer query i, the PRP key corresponding to S∗

must be updated to contain i. However, this is not supported in the current construction of puncturable
pseudorandom sets by Shi et al. [41]—one can only remove elements, but not add. In fact, the scheme
by [41] converted to 1PIR would require linear server time per query. Our main result, described below,
capitalizes on this observation.
Our result. As we discussed, if we require the server time to be sublinear (with no additional storage),
the most bandwidth-efficient 2PIR protocol is the one by Shi et al. [41]. However, when we consider the
1PIR model, the Corrigan-Gibbs et al. [20] construction increases the bandwidth from polylogarithmic to
O(
√
n log n). In this paper, we focus on filling this gap in 1PIR literature. We construct a 1PIR protocol

with sublinear amortized server time and polylogarithmic amortized bandwidth for adaptive queries.
We note that our scheme is optimal up to polylogarithmic factors in every dimension except for client
time, given known lower bounds [8, 20, 19]. For a detailed comparison with prior sublinear-server-no-
additional-server-storage schemes, see Table 1.
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Technical highlight: Puncturable pseudorandom sets with “hard puncture”. As we mentioned
above, the missing property that seems to be crucial for compiling Shi et al.’s 2PIR protocol into 1PIR
with the same (amortized) complexities is a puncturable pseudorandom set that also supports adding an
element into the set. Our main contribution is a formal definition and a construction of this primitive: an
“extended” puncturable pseudorandom set that allows addition . We note that our new primitive might
potentially have other applications.

At an abstract level, one can use our new primitive as follows. A key generation algorithm generates
a succinct key sk that represents the random set. Along with algorithms for enumeration of sk and
membership checking in sk, we define algorithms for puncturing element x out of sk (removing) and
hard puncturing element x into sk (adding), which output a new key sk′ representing the updated sets (he
actual interface is a little different—see Section 4). In our construction, we allows sk to be punctured once
and hard punctured once. From the construction, it is also easy to see how to extend this to any constant
number of either operation. Armed with this cryptographic primitive, we first develop an improved 2PIR
scheme where only one server is needed online and that achieves polylogarithmic amortized bandwidth
and sublinear amortized server time. At a high level, our new 2PIR scheme works as follows (in the
following we write PRS key to refer to “pseudorandom set key”).

Offline

1. client sends
√
n+Q PRS keys sk1, . . . , sk√n+Q to server1 and server1 returns database parities

p1, . . . , p√n+Q where
pi = ⊕j∈skiDB[j] .

2. client locally stores PRS keys and database parities.

Online (query to index i)

1. client finds PRS key skj that contains i, punctures i out of skj and sends sk′j to server2.

2. server2 returns parity p′j of sk′j , and client computes

DB[i] = pj ⊕ p′j .

3. client hard punctures i into key skh (for the next available skh where h >
√
n) and replaces

(skj , pj) with (skh, ph ⊕ DB[i]).

Given the above 2PIR scheme, we can convert it to a 1PIR scheme, using a batch-parity retrieval
boolean circuit encrypted using FHE to run Step 1 of the offline phase. For that, we use a modified
FHE circuit from [19]. We stress here the most expensive part of our protocol, running FHE encryption,
is performed offline (e.g., during downtime), and therefore does not affect the online time of our 1PIR
scheme. We also note that keeping a client state allows us to circumvent the recent strong lower bound
result [39] that proves that we cannot have sublinear server time using logarithmic sized hints in single-
server PIR.

1.1 Limitations of our scheme
Our 1PIR scheme does require the use of FHE in the same way that the Corrigan-Gibbs et al. scheme [19]
did (we stress that FHE is not used during the online phase; all FHE preprocessing can be performed
during “downtime”). Also, our proposed pseudorandom set with “hard puncture” is using privately-
puncturable PRFs that can be constructed from the Learning with Errors [40] (LWE) assumption [12, 10].
There are currently no implementations of this primitive. It is also an open problem to construct privately-
puncturable PRFs from more efficient primitives.
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1.2 Paper outline
We give background on privately-puncturable PRFs and pseudorandom sets in Section 2. We give our
preliminary PIR protocol that embodies the main ideas of our approach in Section 3. We introduce pseu-
dorandom sets with the new “hard puncture” primitive in Section 4. We provide the 2-server version of
our final PIR protocol in Section 5. We show how to port our 2PIR scheme into 1PIR using FHE (includ-
ing how to design the FHE circuit) in Section 6. We conclude with some open problems in Section 7.

1.3 Notation
We use the Õ(·) notation as O(·) notation that hides factors related to the security parameter and poly-
logarithmic factors. We denote with negl(·) an arbitrary negligible function.

1.4 Concurrent work
We note independently the notion of 1PIR with polylogarithmic bandwidth and sublinear server time was
studied by Zhou, Lin, Tselekounis and Shi [44], whose work appeared subsequent to a submission of an
earlier manuscript of this work.

2 Background
In this section, we introduce necessary cryptographic primitives that are crucial for our work: privately
puncturable pseudorandom functions [10] and puncturable pseudorandom sets [20, 41].

2.1 Privately Puncturable PRFs
A Puncturable PRF is a PRF F whose key k can be punctured at some point x in the domain of the
PRF, such that the output punctured key kx reveals nothing about Fk(x). A simple construction for
a puncturable PRF has a logarithmic-sized key and follows from the tree-construction of PRFs in [30].
Since this work, many other works have expanded on this concept of constraining PRFs [6, 13, 14, 33, 11,
5]. Recently, attention has been turned to a new type of puncturable PRF called a privately puncturable
PRF, which is a puncturable PRF where the punctured key kx, in addition to its properties as a puncturable
PRF, also reveals no information about the punctured point x (by re-randomizing the output Fk(x)). This
problem is considerably more challenging. Until recently, the only known constructions were instantiated
from multilinear maps [12]. In 2017, it was proven that we can get these from standard LWE assumptions
[10, 15, 17]

The implementation of privately puncturable PRFs given in [10] allows for puncturing a single point.
For this section, we denote this PRF1. However, we need a privately puncturable PRF punctured at a
group of points, of size poly-logarithmic in n (where n is the size of the database), as we will see shortly.
To construct an m-privately-puncturable PRF, denoted PRFm, one can generate m PRF1 keys and have
the evaluation of PRFm be the XOR of individual PRF1 evaluations [10]. This allows us to puncture m
independent points by puncturing each PRF1 key at a different point. Therefore, a PRFm exists assuming
LWE. In a later section, we will see how exploring the specifics of this construction allows us to achieve
better efficiency in one of our Puncturable PRSet algorithms. We henceforth denote PRFm as simply
PRF.

Definition 2.1 (Privately puncturable PRF [41, 10]). A privately puncturable PRF scheme consists of the
following four algorithms:

5



• Gen(λ, L,m)→ sk: Samples a secret key sk, given a security parameter λ, a max message length
L and number of points to be punctured, m.

• Eval(sk, x) → b: Takes in a secret key sk and an input x of bit-length ≤ L and outputs a result
b ∈ {0, 1}.

• Puncture(sk, P ) → skP : Takes in a secret key sk and a set of m points P , each of length ≤ L,
outputs a punctured key skP .

• PEval(skP , x)→ b: Takes in a punctured key skP and an input x of bit-length ≤ L and outputs a
result b ∈ {0, 1}.

Note that the key size for the PRF based on the PRF1 introduced by [10] is linear in m. Since n is
poly-logarithmic in n it does not greatly affect the asymptotic efficiency of our scheme. For every PRF
scheme defined by the above algorithms, we require the following three properties (one for correctness
and two for security):

Definition 2.2 (Functionality preservation for a privately puncturable PRF scheme). A privately punc-
turable PRF scheme (Gen,Eval,Puncture,PEval) satisfies functionality preservation if for any polyno-
mial L and m, for any non-uniform PPT adversary A that outputs set of m points P of length ≤ L each,
there exists a negligible function negl() such that, for the following experiment

• P ← A(1λ).

• sk ← Gen(1λ, L,m), skP ← Puncture(sk, P ).

• x← AEval(sk,·)(skP ).

it holds that
Pr[(x /∈ P ) ∧ (Eval(sk, x) ̸= PEval(skP , x))] ≤ negl(λ) .

Intuitively, the above definition says that puncturing the secret key on a specific set of points maintains
the values of the function for all other points in the domain.

Definition 2.3 (Pseudorandomness for a privately puncturable PRF scheme). A PRF scheme satisfies
pseudorandomness if, no PPT admissible adversary A can distinguish between being in either of the
following experiments (we define admissible adversaries A as adversaries that never query the elements
in its set P below on the original sk, and always picks a set P of size m).

• Gen(λ, L,m)→ sk, A(λ)→ P , Puncture(sk, P )→ skP ,
AEval(sk,.) is given (skP , {Eval(sk, x)}x∈P ).

• Gen(λ, L,m) → sk, A(λ) → P , Puncture(sk, P ) → skP , sample uniform Ri ∈ {0, 1} for
i ∈ {1, . . . ,m}, AEval(sk,.) is given (skP , {Ri}i∈m).

This definition states that the values of the original function, Fk, at the punctured points, appear
pseudorandom to the adversary that has access to the punctured key, as long as the adversary does not
explicitly query the value of the original function at any point in set P , in which case it is trivial to
distinguish.

Definition 2.4 (Privacy w.r.t. puncturing for a privately puncturable PRF). A PRF scheme satisfies privacy
with respect to puncturing if, for any PPT admissible adversary A, experiments Expt0(λ, L,m) and
Expt1(λ, L,m) are computationally indistinguishable. Experiment Exptb(λ, L,m) is defined as follows:

Gen(λ, L,m)→ sk, A(λ)→ P0, P1, Puncture(sk, Pb)→ skPb
: AEval(sk,·)(skPb

)→ b′.

This definition states that the punctured key skP does not reveal anything about the set P that was
punctured.
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2.2 Puncturable Pseudorandom Sets
We now give a definition for puncturable pseudorandom sets (PRSets) by [41], first introduced in [20].

Definition 2.5 (Puncturable PRSet [[41, 20]). A Puncturable PRSet scheme consists of the four following
algorithms:

• Gen(1λ, n) → (msk, sk): Sample a random key to represent our puncturable random set and a
puncturing master key msk.

• EnumSet(sk)→ S: Enumerates the set from the set key.

• InSet(sk, x)→ b: Outputs a bit b denoting whether x ∈ EnumSet(sk).

• Punc(msk, x) → skx: Outputs a secret key that represents the set generated by sk punctured at
element x.

Note that we need both an msk and sk because our security and correctness is defined with respect to
the enumeration key, while the puncturing is done with the master key. Leaking the master key breaches
privacy of the PRSet. We now introduce some properties for the Puncturable PRSet scheme.

Definition 2.6 (Pseudorandomness with respect to some distribution Dn for Puncturable PRSets). A
Puncturable PRSet scheme (Gen,EnumSet, InSet,Punc) satisfies pseudorandomness w.r.t. some dis-
tribution Dn if for any λ, n, if we take Gen(λ, n)→ (sk,msk), for some distribution Dn, the distribution
of EnumSet(sk) is indistinguishable from a set sampled from Dn.

Definition 2.7 (Security in puncturing for Puncturable PRSets). A Puncturable PRSet scheme (Gen,EnumSet, InSet,Punc)
satisfies security in puncturing if the following two distributions are computationally indistinguishable for
any x ∈ {1, . . . , n− 1}:

• Run Gen(λ, n)→ (sk,msk), output sk.

• Gen(λ, n)→ (sk,msk) until x ∈ Set(sk), output skx = Puncture(msk, x).

2.3 Puncturable Pseudorandom Sets from Privately Puncturable PRFs
Here, we present a summary of the method that Shi et al. [41] use to generate, puncture, and evaluate
membership in a PRSet using privately puncturable PRFs. We refer the reader to the paper [41] for a
more in-depth analysis of their scheme. Note that their construction does not allow adding an element
into the set (as we will see, our proposed PRSet scheme draws inspiration from their scheme to provide
addition). In order to describe their scheme, we use a privately puncturable PRF, PRF = (Gen, Eval,
Puncture, PEval) as defined in Section 2.1.
Key generation. We defer discussion of key generation to the end, for now, assume we have an sk
sampled through PRF.Gen(1λ, L,m) as in Section 2.1. The values we need for m and L will become
clear as we dive into the construction.
Set membership. From our PRF, we want to construct a pseudorandom set S. The initial attempt is to
define an element x ∈ {0, 1}logn to be in the set iff for every suffix of x of size ≥ 1

2 log n evaluates to 1.
If we denote x[i :] as the bit representation of x from the i-th bit onwards, then we can rewrite this as:

x ∈ S ⇔ PRF.Eval(sk, x[i :]) = 1, for all i = 1, . . . ,
1

2
log n− 1 .

If the PRF satisfies pseudorandomness, then it follows that, with only this requirement,

Pr[x ∈ S] =
1

2
1
2 logn

=
1√
n
,
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which is a suitable set size for our purposes, as we will see in the next section. Unfortunately, this ap-
proach also introduces too much dependency between elements in the set. Elements with shared suffixes
are very likely to be together in the set. To deal with this, we change the construction to add an additional
constraint. Let B be some natural number. Then, let z = 0B ||x. We say that:

x ∈ S ⇔ PRF.Eval(sk, z[i :]) = 1, for all i = 1, . . . ,
1

2
log n+B .

Note that adding this requirement decreases dependency between elements proportional to 2B , since it
adds bits unique to each element. As a tradeoff, it decreases the size of the set proportional to 2B as well.
By picking B carefully as ⌈2 log log n⌉, it allows maintaining the set size to be

√
n/ log2 n while having

a small enough dependency between elements which can be addressed.
Also, by defining membership like this, it follows that we can check set membership in Õ(1) time, as

was the initial requirement.
Set enumeration. Naively, set enumeration would take n( 12 log n + B) time, checking membership
for each element in {0, . . . , n − 1}. However, what [41] point out is that, due to the light dependency
introduced, we can enumerate the set in expected time Õ(

√
n). The key idea is to start from the

2
1
2 logn+1 = 2 ·

√
n

strings in {0, 1} 1
2 logn+1, and keep strings s with PRF.Eval(sk, s) = 1. We then iterate over from

m = 1
2 log n + 2 to log n by appending 1 and 0 to each remaining set of strings from the last step and

keep only those that evaluate to 1. Since each step requires order of
√
n calls to the PRF in expectation,

this set enumeration runs in expected time Õ(
√
n). Since we use a similar enumeration algorithm, we

refer the reader to our construction in Section 4 for a complete description and Appendix A for a formal
proof.
Set puncturing. Up to now, all the operations we looked at could have been done with a regular PRF.
Unsurprisingly, the private puncturing operation of the PRF is required only for puncturing the set. To
puncture an element x from the set S, we puncture the PRF key at the m = 1

2 log n + B points that
determine x’s membership. By the pseudorandomness of our PRF, this will resample x’s membership in
S. Let z = 0B ||x. We run

skx ← PRF.Puncture(sk, {z[i :]}i∈{1,...,m}) .

Note that x will be in the set defined by skx with probability

1− 1

2
1
2 logn+B

= 1− 1

log2 n
√
n
.

This new key is of different format than our unpunctured key, and cannot be used in the same set mem-
bership and set enumeration functions. Also, for the security properties we described above, we want a
key for a set with x punctured at x to be indistinguishable from a key generated through Gen. This cannot
hold since the unpunctured key is of different format. We show how to address this issue below.
Key Generation and short set description. To deal with the problems described above, Gen outputs
two keys.

1. A key generated by PRF.Gen(1λ, L,m) as described above, denoted our master key msk, which
will be used only for puncturing.

2. We pick a set P of m strings of size L = log n+B that start with the 1 bit and output a second key

sk ← PRF.Puncture(msk, P ) .
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Note that no element in P affects set enumeration, so the set denoted by msk and sk is the same. How-
ever, outputting both allows us not only to define every PRSet function with respect to punctured keys
(use PRF.PEval for set membership and enumeration), but also helps us satisfy our security in puncturing
property defined above. As seen above, each set can be described fully by a secret key and punctured
secret key from the underlying privately puncturable PRF, each of which have size Õ(1) by definition.
This allows the description of the initial set and/or punctured set succinctly. In our scheme, we take from
this approach to create keys that support both puncturing and addition. We formalize this in Section 4.
Efficiency. To summarize, the PRSet scheme achieves the following efficiency requirements:

• Gen runs in time Õ(1) and outputs a key of size Õ(1).

• EnumSet runs in Õ(
√
n).

• InSet runs in Õ(1).

• Punc runs is Õ(1) and outputs a key of size Õ(1).

Additional considerations. Clearly, we do not remove elements from the set with overwhelming proba-
bility through puncturing. Aside from that, there is also still dependency among elements, and puncturing
x may also remove some other element in S. Shi et al. [41] bound these probabilities in a way that allows
their final PIR scheme to work. We manage the same feat for our scheme, using a similar approach.

3 Preliminary PIR Protocol
We first design a preliminary 2PIR protocol where the client interacts with server1 during the offline
phase only. During the online phase, the client only interacts with server2 (As we showed in the intro-
duction, we will be able to convert this scheme later into a 1PIR protocol.) The protocol we propose here
allows for

√
n queries and achieves amortized sublinear server time over these

√
n queries. After

√
n

queries, we re-run the offline phase. In a later section, we generalize this to Q queries, and explain the
nuances on the choice of Q. For now, we do not use any of the tools discussed in Section 2, because none
provide us exactly what we need, but we will look at how they fit in later.

3.1 Building Blocks
In our naive protocol, we pre-compute the parity of sets sampled from a distribution Dn as hints that
will later aid us in achieving fast, private online queries. We define below a sampling distribution Dn

for which our preliminary scheme satisfies privacy and correctness (to a certain extent, as will be argued
later) and functions that work with respect to this distribution Dn.

3.1.1 Sampling Distribution

We define the distribution Dn in a similar way as in [41]. Note that the distribution is defined very
carefully in order to achieve fast enumeration, fast membership testing, and short descriptions for sets
of size close to

√
n. These three properties are not achievable in unison when sampling from naive

distributions, as was seen in [19, 41]. In order to allow for these three properties, we introduce light
dependency between elements in the set. For the definition of the distribution, we construct a set S as
follows. sampled from Dn by sampling from an Random Oracle RO for each set. We note that our final
scheme does not use a random oracle and this is for expositional purposes only. Let m = 1

2 log n,B =
2 log log n. Set z = 0B ||x, then, for all x ∈ {0, . . . , n− 1}, we have:

x ∈ S ⇔ RO(z[i :]) = 1 for all i ∈ [1,m+B]
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Note that if we use the technique in 2.3, we can enumerate this set in Õ(
√
n) time. Now, we also define

Dx
n to be a distribution where you sample a set S from Dn until it outputs a set where x ∈ S.

3.1.2 Functions with respect to Dn

We define two functions we will need for the preliminary scheme. These are defined with respect to the
distribution Dn. For these functions, we first need to define what it means for two elements to be related.

Definition 3.1. We define the function Related(x, y)→ b to take in two elements x, y ∈ {0, . . . , n−1}
and return a bit b ∈ {0, 1} where b = 1 if and only if x and y share a suffix of length > 1

2 log n in their
binary representation.

For example Related(1000001, 1100001) = 1 while Related(1000001, 1101111) = 0. Equipped
with this, we define two functions with respect to Dn.

• Resample(S, x) → S: Define z = 0B ||x. We sample a uniform bit for each suffix of z, z[i] for
i ∈ 1, . . . ,m+B. For each y ∈ S such that Related(x, y) (including x), we check if any suffix
of y was mapped to 0, and if so, remove it from S and return this new set.

• Add(S, x) → S′: To evaluate this function, we require access to the RO(·) used to evaluate the
set. Then, this function re-samples the set from RO(·), except it replace any evaluation to a suffix
of x with the output 1. Note that this will add x to the set, but also potentially add some related
elements.

Informally, on a correct execution, Add(S, x) outputs S ∪ {x}. On some executions it will output
a set S′ ⊃ S ∪ {x}.

Note that, by construction, Resample and Add can only affect the input element x and elements related
to x. We define below a function and set we will need bound this.

Also note that by construction of our scheme, for S ∼ Dn:

• ∀x ∈ S, S′ = Resample(S, x) ⊆ S.

• For any x ∈ {0, . . . , n− 1}, S ⊆ S′ = Add(S, x).

We will look at how to bound the occurrence of adding or removing related elements in the correctness
proof.

3.2 Preliminary Protocol
As we mentioned, we have two non-colluding servers, denoted server1 and server2. We show our pro-
tocol in Figure 1. Our protocol supports

√
n queries and runs in amortized Õ(

√
n) server time. It uses

the distribution Dn and functions defined with respect to it above. We will argue correctness later in the
section, but as a precursor, we will say that this preliminary scheme is not correct with overwhelming
probability. In fact, for any n > 100, its correctness probability is more than 0.9 for the first query and
progressively smaller for the following queries. Discussion on how to address this is present at the end of
this section.
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Preliminary Protocol

Parameters: Set ℓ =
√
n log3 n.

Offline phase: Preprocessing

1. client samples ℓ +
√
n sets S1, . . . , Sℓ+

√
n ∼ (Dn)

ℓ+
√
n.

2. client sends sets S1, . . . , Sℓ+
√
n to server1 and gets back a set of bits p1, . . . , pℓ+

√
n, where

pi = ⊕j∈Si
DB[j].

3. client stores pairs of sets/hints

T = {Tj = (Sj , pj)}j∈[1,ℓ]

and
B = {Bk = (Sk, pk)}k∈[ℓ+1,ℓ+

√
n] .

Online Phase: called with some index x ∈ {0, . . . , n− 1}
• Query

1. client finds Tj = (Sj , pj) in T such that x ∈ Sj . If such Tj is not found, set j = |T| + 1 and
Tj = (Sj , pj) where:

• Sj ∼ Dx
n.

• pj is a uniform bit.

2. client sends S′ = Resample(Sj , x) to server2, and server2 returns r =
⊕

k∈S′ DB[k].

3. client computes DB[x] = r ⊕ pj .

• Refresh (locally on client—executes only when j ≤ |T|)

1. Let B1 = (Sk, pk) be the first item from set B.

2. Let S∗
k = Add(Sk, x), and p∗k = pk ⊕ (DB[x] ∧ (x /∈ Sk)).

3. Set Tj = (S∗
k , p

∗
k), where Tj was the entry consumed by the query earlier, and removes B1 from

B.

Figure 1: Our preliminary 2PIR protocol.
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3.3 Criticality of addition
What allows our protocol to run for

√
n queries as a single-server protocol after the initial offline phase

is the fact that we use information from previous queries along with our preprocessed information to
add the element that was queried to a fresh random set and update its parity. Without addition, it would
require storing order of n sets to find a suitable replacement each primary set used when considering

√
n

adaptive queries. Addition allows us to achieve the same functionality with only
√
n extra sets. Looking

ahead, one of our main contributions is developing a pseudorandom set scheme with short description that
allows for addition without increasing the size of the key. This is what helps us achieve polylogarithmic
communication online on 1PIR.

3.4 Analysis
We now proceed to look at the efficiency, privacy and correctness of this scheme, in this order. We defer
formal proofs for the real scheme, and instead argue intuition on each that will be helpful when diving
into the proofs. To analyze the scheme we need the follwing Lemma:

Lemma 3.1 (Set Size). The expected size of a set S ∼ Dn is E[|S|] ≤
√
n

log2 n
.

We defer the proof to Appendix A.

3.4.1 Efficiency

We now analyze the various complexities of our preliminary protocol.
Server time. For the server time, we consider the work done by the servers jointly. server1 does

expected work of Õ(n) offline and no work online. server2 does no work offline and expected O(
√
n)

work per query. These follow from enumeration time and Lemma 3.1. Over
√
n queries, this means that

server2 will perform O(n) work in expectation. So our total joint work for both servers is Õ(n). Over√
n queries, our amortized server time is Õ(

√
n).

Server storage. Concerning server storage, both servers have to store DB, of size n bits, but incur no
extra storage.

Client time. Offline, client performs Õ(n) work to generate ℓ+
√
n sets of size

√
n and send them to

the server plaintext. Online, the client has to find the set with the corresponding i, which takes expected
time O(

√
n) (the expected number of elements to check) for each of our ℓ primary sets, totalling Õ(n).

On Section 3.5 we examine techniques that will allow this efficiency to be worst-case and not amortized
and not require sorting offline. Our final scheme presents Õ(

√
n) client time.

Client Storage. As it is, our client has to store ℓ +
√
n sets. Each set has expected

√
n/ log2 n. This

is proved in the following lemma: elements (see Lemma 3.1) of size log n each, and their corresponding
parities, which means that the client storage for our preliminary scheme is Õ(n). We improve this by
using a PRF F and storing the relevant instead of the set, but this requires fine tuning to work in sync
correctly with Add and Resample. What we do in our final scheme is similar to this, and we improve this
to Õ(

√
n).

Bandwidth. From Lemma 3.1, we get the following. Offline, we incur an expected Õ(n) bandwidth
to send all sets to the server1, and then receive back the corresponding parities. Online, we incur an
additional expected O(

√
n) bandwidth to send the set S′

j to server2. Over
√
n queries, we achieve

Õ(
√
n) amortized bandwidth. In our final scheme, we reduce this to Õ(1) amortized bandwidth through

our new primitive.

3.4.2 Privacy

We now examine privacy with respect to each server. Proving privacy relies mainly on two properties.
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1. For any S ∼ Dx
n, Sx = Resample(S, x), S′ ∼ Dn, Sx and S′ are computationally indistinguish-

able.

2. For any S ∼ Dn, Sx = Add(S, x), S′ ∼ Dx
n, Sx and S′ are computationally indistinguishable.

These two follow in a straightforward manner from the construction of Dn. For our real scheme, we need
to prove a harder version of these two properties, presented in Section 4.1, since we communicate a set
key to the server.

Privacy with respect to server1. Note that server1 only ever sees ℓ +
√
n independent random sets.

The sets reveal nothing about future queries to it, and it is never accessed online, so its privacy is easy
to see. Any deviation from the protocol by server1 can only affect correctness of the scheme, and not
privacy.

Privacy with respect to server2. The privacy argument for server2 is more delicate. We split the
argument in two parts:

• For the initial query, we pick a set with the index we want to query, x, from our primary sets. Given
a table T of randomly sampled sets, by construction of T (since j is the smallest set with x, Sj can be
viewed as generating sets until we find one with x) and property 1 above, S′ = Resample(Sj,x)
is indistinguishable from a random set from Dn, and therefore, the query reveals nothing about the
query index x to server2.

• In order to argue that every query also reveals nothing, we claim that the ’refresh’ step maintains
the distribution of T. Note that after a given set Sj is used, re-using it for the same query or a
different query could create privacy problems. Then, after each query, we must replace Sj with an
identically distributed set. Conditioned on our choice of x, by property 2, Sj and Add(Sk, x) are
identically distributed. Then, the swap maintains the distribution of our primary sets where every
set is unknown to the server. By induction on our primary set distribution, each query is equivalent
to the first, and none of them reveal anything about the queried indexes to server2.

3.4.3 Correctness

We denote our PIR protocol to be correct when, for every query xi for i ∈ [1,
√
n], client outputs DB[xi],

the xi-th bit of the database, with probability (1− negl(λ)) for any n polynomially bounded in λ.
The correctness calculated is based on the assumption that the servers are running the protocol cor-

rectly. We do not guarantee correctness in the case of deviation by either server, since client has no
mechanism to verify responses.

Offline Phase Correctness. Assuming the server follows the protocol, the offline phase will be correct
by construction. The client generates the random sets, gets their parity and saves the sets and parities to
use online.

Online Phase Correctness. For each query in the online phase, we have four failure points. We defer
proofs of the lemmas presented here to Appendix A.

• Failure case 1: Note that for a query to x, if we cannot find a in index j in T such that x ∈ Sj for
Tj = (Sj , pj) (Step 1), and send to the server a random set instead, the algorithm fails. As is clear
to see, the parity computed on the following steps will be incorrect. We can bound this as follows:

Lemma 3.2 (Primary set coverage). Let S1, . . . , Sℓ ∼ (Dn)
ℓ. For any x ∈ {0, . . . , n − 1}, the

probability of not finding x over these sets, Pr[x /∈ ∪i∈[1,l]Si] ≤ 1
n .

• Failure case 2: The second failure case is on step two of the query phase, when our Resample
function does not remove x. From construction of our sets and resample, we can see that this
happens with probability 1/

√
n log2 n. Note that this failure case is crucial for privacy, since it

guarantees that server2 only sees sets that look random.
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• Failure case 3: The third failure case happens when we remove an element other than x within
Resample, thus yielding incorrect final parity. We bound this as follows:

Lemma 3.3 (Related elements in S). For any x ∈ {0, . . . , n − 1}, for S ∼ Dx
n, the expected

number of elements in S related to x, E[|Related(S, x)|] ≤ 1
2 logn .

• Failure case 4: Analogous to the previous failure case, we denote failure case 4 as the case when
we add an element other than x within Add. We bound this as follows:

Lemma 3.4 (Related elements almost in S). For a randomly sampled set S ∼ Dn, and any x ∈
{0, . . . , n− 1}, we define a related set Salmost,x, for y ∈ {0, . . . , n− 1}:

Salmost,x = {y | y ∈ (Add(S, x) \ S)}

Then, we can bound the expected size of the set Salmost,x as: E[|Salmost,x|] ≤ 1
2 logn .

We first look at the correctness for the first query only. Since Failure case 4 does not affect the first
query, we ignore it for now. Then, from a simple probability bound, we can say that our total probability
of failure for the first query is (the probability that either event happens) for n > 100:

1

n
+

1
√
n log2 n

+
1

2 log n
< 0.1

Therefore can say that the probability of our scheme being correct for the first query is greater than
1
10 for any relevant n, for the first query. Note that our error propagates to the next query and makes it
more likely to fail. Over

√
n queries, the correctness rapidly decreases. We will look at how to deal with

propagation of error and transform this into a scheme with overwhelming correctness probability across
all queries below.

3.5 Improvements
3.5.1 Correctness Improvements

As is done in [41] and in classical literature for randomized algorithms, in order to increase the correctness
of our scheme, we can treat our output as a random bit with p > 1

2 chance of correctness, and drive our
correctness up by running k parallel instances our protocol and overwriting the output bit DB[x] with the
majority of DB[x] over these k instances in step 2 of our query stage. Let us denote C to be the event,
where, over k instances of our preliminary PIR scheme, more than k

2 of them output the correct bit. Using
a standard lower-tail Chernoff bound, we have that, with p being the probability of DB[x] being correct,
that the probability of C is

Pr[C] ≥ 1− e−
1
2pk(p−

1
2 )

2

.

To get Pr[C] ≥ 1 − negl(n) for some negligible function in our security parameter λ, we need for
e

1
2pk(p−

1
2 )

2

≥ negl(λ). If we pick k = log(λ) log(log(λ)), then we get

Pr[C] ≥ 1− e−
1
2p (log λ log(log(λ)))(p− 1

2 )
2

≥ 1− (log(λ))(− log λ)( 1
2p (p−

1
2 )

2) .

For p > 1
2 , the latter term on the exponent is a constant strictly greater than 0. Therefore, since

(log(λ))− log λ is negligible in λ, we conclude that by introducing repetition poly-logarithmic in λ, and
our preliminary PIR scheme, we are able to construct a PIR scheme that is correct with overwhelming
probability. In fact, we picked a concrete k to showcase, but this would work for any k in ω(log λ). We
will use the same technique in our full-fledged PIR scheme.
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We stress that it is crucial to take the majority vote after each query step and run refresh with the
DB[x]′ that is correct with overwhelming probability. From our correctness analysis above, this will
work for the first query, but does not take care of a propagating error from our Failure case 4. We bound
correctness of our scheme for all queries by bounding the probability that an entry from Tj has incorrect
parity. We defer this argument for our real scheme, but by bounding failures to be less than 1

2 , we use k
parallel instances with the same argument as above to achieve overwhelming correctness probability in
through

√
n queries.

After
√
n queries, we re-run the scheme (since we run out of backup sets).

3.5.2 Efficiency Improvements

As we saw in Section 2.3, there exists a scheme [41] based on privately puncturable PRFs [12] that
allows for resampling an element in the set through private puncturing within the key, allowing us to
send this ’punctured key’ of size O(poly log n) to the server to enumerate the set, while guaranteeing
that no information about the punctured element is revealed by the punctured key. We note, however,
that their solution cannot be applied to our scenario, since there is no good way to add an element to
the set and then resample another element. Even if we do implement Add using Resample as we do
here, their PRSet implementation only allows for one operation. This begs the question on whether we can
achieve efficient pseudorandom sets that can support both addition and deletion, while maintaining a short
description. Throughout the rest of the work, we go through how to define efficient pseudorandom sets
that support both resampling and adding, our implementation, and the consequences of such construction
(Section 4). From it, we formally define an efficient offline-online PIR scheme that communicates with
only one scheme online (Section 5), and then show how to port this scheme to a single-server offline-
online scheme with fast online queries (Section 6). We defer most proofs to the Appendix.

4 Extended Puncturable Pseudorandom Sets
In this section, we introduce our main primitive that is required for achieving our result, an extended
puncturable pseudorandom set. We first give the definition that can accommodate both additions and
removals of elements and then we present our construction that satisfies this definition.

4.1 Definitions
Definition 4.1 (Extended Puncturable PRSet). An Extended Puncturable PRSet is defined by five algo-
rithms.

• Gen(λ, n)→ (sk,msk): Sample a master secret key msk and a secret key sk.

• EnumSet(sk)→ S: Outputs a set S given a secret key sk.

• InSet(sk, x)→ b: Outputs a bit b denoting whether x ∈ EnumSet(sk).

• Punc(msk, sk, x)→ skx: Outputs a secret key skx punctured at x.

• HardPunc(msk, sk, x)→ skx Outputs a secret key skx hard punctured at x.

Note that our interface differs from the original construction by [41] not only in the extra functionality,
but also in the overlapping puncture function. The new functionality requires our puncture and hard
puncture operation to be dependent both on our master key and enumeration key. We will see this in more
detail below. Our new Puncturable PRSet with addition must satisfy the following security properties.
Note here that Punc and HardPunc have equivalent functionalities to the Resample and Add presented
in Section 3, respectively. We now define properties required for the extended puncturable PRSet.
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Definition 4.2 (Pseudorandomness with respect to some distribution Dn for extended puncturable PRSets).
An Extended Puncturable PRSet scheme (Gen,EnumSet, InSet,Punc,HardPunc) satisfies pseudoran-
domness w.r.t. some distribution Dn if we take Gen(λ, n) → (sk,msk). Then, For some distribution
Dn, the distribution of EnumSet(sk) is computationally indistinguishable from a set sampled at random
from Dn for any λ, n.

Definition 4.3 (Security in Puncturing for Extended Puncturable PRSets). An Extended Puncturable
PRSet scheme (Gen,EnumSet, InSet,Punc,HardPunc) satisfies Security in Puncturing if the follow-
ing two distributions are computationally indistinguishable for any x ∈ {0, . . . , n− 1}:

• Expt0: Run Gen(λ, n)→ (sk,msk). Output sk.

• Expt1: Gen(λ, n) → (sk,msk) until x ∈ EnumSet(sk), skx = Puncture(msk, sk, x), output
skx.

This is a straightforward property that says that a set picked to have a specific element x, punctured
at x, is identically distributed and indistinguishable from a set sampled at random.

Definition 4.4. An Extended Puncturable PRSet scheme (Gen,EnumSet, InSet,Punc,HardPunc) sat-
isfies Security in Hard Puncturing if the following two distributions to be computationally indistinguish-
able for any x ∈ {0, . . . , n− 1}:

• Expt0: Run Gen(λ, n)→ (sk,msk) and return
skx ←HardPunc(msk, x).

• Expt1: Run Gen(λ, n)→ (sk,msk) until x ∈ EnumSet(sk). Return sk.

This experiment guarantees that generating fresh keys until we find one where x belongs to the set is
equivalent to generating one fresh key and hard puncturing x into it. We will see later that this will be a
key property in allowing us to only communicate with one server during the online phase.

4.2 PRSets with One Addition or Removal
From the construction in Section 2.3, we examine how to make modifications to allow for addition. One
straightforward way to approach this is to attempt to puncture an element into the set. All things equal,
since the puncture operation is randomized, we can run puncture the same key many times until it outputs
a punctured key where we have added the element to the set, like we did using the Add function in the
preliminary protocol. Indeed, this approach allows us to add an element to a set with expected Õ(

√
n)

operations. However, since our puncturing is only defined for m points, and we cannot ’re-puncture’
punctured keys (we only puncture from the master key), this precludes removal. We also would like to
run this faster, since Õ(

√
n) is considerably more costly than the puncturing operation, which can be

done in Õ(1).

4.3 Allowing Both Addition and Removal
From our insight on addition, we attempt to include both addition and removal by instantiating our PRSet
with a privately puncturable PRF punctured at 2m points. This, however, introduces several problems.
Given our interface with privately puncturable PRFs, we cannot partition our puncturing (puncture some
elements now, others later) without overcomplicating our PRSet scheme and introducing many security
liabilities. We would have to add and remove at the same time, which is not only inviable in many use-
cases, but also introduces its own set of complications to the PRSet scheme. For example, if the element
we want to add and the element we want to remove are related, then we would be puncturing less than
2m points, and it is also not clear how to prioritize overlapping points.
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Seemingly at a standstill, we borrow from the idea in [10], that defines an m-privately-puncturable
PRF from the xor of m 1-privately-puncturable PRFs. In our case, we decide to introduce an extra m-
privately-puncturable PRF key to our set. In this way, we can hard puncture from one key, and puncture
from the other, independently. We look at how this works in an simplified model below, and then delve
into our actual implementation. We note that from this idea, it would also not be a large leap to define a
PRSet that supports any fixed number of additions or removals, by adding extra PRF keys.

4.4 Sampling Distribution
To satisfy Pseudorandomness w.r.t. some distribution, we must show that our scheme models some distri-
bution. Let us model a distribution D′

n for sets generated by this new idea. We now use a PRF F instead
of the RO(·) to sample a set. For each set, we sample two uniform random keys, k0 and k1 Then, we
generate the sets as in Section 3, except we replace each evaluation of a string using RO(·) by an evalu-
ation using Fk0

(·) ⊕ Fk1
(·). Note that by the randomness preserving property of the xor operation, this

distribution is a permutation of the one Dn we defined in Section 3 (incurring some negligible probability
of failure in the security parameter), and so the set and element distribution we showed for Dn is identical
for D′

n. Also, set enumeration will run in the same asymptotic time, with an additional constant factor
of 2 to account for the requirement of two evaluations per point. We then re-define every operation as
follows:

Set Membership. Let our set membership for each element x ∈ {0, . . . , n − 1} be determined as
was discussed earlier with slight adjustment. Take z = 0B ||x. Then,

x ∈ S ⇔ for all i = 1, . . . ,
1

2
log n+B it is Fk0

(z[i :])⊕ Fk1
(z[i :]) = 1 .

Resampling. In this model, when running Resample(S,x), we resample the output of the relevant
suffixes only for k1. Again, by the randomness preserving property of xor, this is exactly equivalent to
the Resample presented in Section 3.

Adding. In this model, when running Add(S,x), we resample the output of the relevant suffixes
only for Fk0 until we find S′ s.t. x ∈ S′. Again, by the randomness preserving property of xor, this is
exactly equivalent to the Add presented in Section 3.

Distribution. From the arguments above, we note that D′
n and Dn model the same distribution, except

for the number of calls needed to enumerate the set, which are related by a factor of 2.

4.5 Functionality preservation
As in the scheme by [41], we require our scheme to satisfy some notion of correctness with respect
to puncturing. More specifically, in order to prove correctness of the PIR scheme, it is very helpful to
properly bound what can and cannot go wrong in puncturing. For our construction, we have the added
constraint of requiring an analog correctness notion for hard puncturing. We need to ensure that the
algorithms satisfy very specific properties. For the definitions below, we define time(f(·)) as a function
that maps a function to its runtime. We also use a modified version of the function defined in [41],
Related(x, y) : {0, 1}logn × {0, 1}logn → {0, 1}, which tells us whether two bit-strings x, y are
related or not for any x, y ∈ {0, 1}logn.

Definition 4.5 (Functionality Preservation in Puncturing). We say that an extended puncturable PRSet
(Gen,EnumSet,InSet,Punc,HardPunc) satisfies functionality preservation in puncturing if, given some
Related function, ∀λ, n, the following hold with overwhelming probability in λ, for any x ∈ {0, . . . , n−
1}:

For (sk,msk)← Gen(1λ, n) until InSet(sk, x), and skx ← Punc(msk, sk, x):
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• EnumSet(skx) ⊆ EnumSet(sk).

• time(EnumSet(sk)) ≥ time(EnumSet(skx)).

• y ∈ EnumSet(sk) \ EnumSet(skx)↔ Related(x, y) = 1.

Definition 4.6 (Functionality Preservation in Hard Puncturing). We say that an extended puncturable
PRSet (Gen,EnumSet,InSet,Punc,HardPunc) satisfies functionality preservation in hard puncturing
if, given some Related function, ∀λ, n, the following hold with overwhelming probability in λ for any
x ∈ {0, . . . , n− 1}:

For (sk,msk)← Gen(1λ, n), skx ← HardPunc(msk, sk, x):

• EnumSet(sk) ⊆ EnumSet(skx).

• y ∈ EnumSet(skx) \ EnumSet(sk)↔ Related(x, y) = 1.

Note that we do not bound the runtime of EnumSet(skx) to anything. This is because we already
need to prove the runtime for a set sampled with x, and as we saw from the security properties above, it
must be that such set is indistinguishable from a set with x hard punctured.

4.6 Extended Puncturable PRSets Implementation
As was observed in [41], it is a difficult task to balance, within a pseudorandom set: element indepen-
dence, efficient set enumeration and membership testing, short descriptions and puncturing.

Our implementation idea for PRSets with addition, inspired by [41] and [10], comes from the keen
observation that puncturing an element x into the set happens with the same probability as generating a
set with x, and that these two tasks seemed analogous. The main challenge was balancing a construction
that was simple enough to have clear security properties, but also refined enough that would allow our
PRSets to manage both an addition and a removal.

We define a function Eval as a private interface to be used within our algorithms only, to simplify
their description. Also note that we assume a random PRF.Puncture that generates randomness instead
of using randomness defined in PRF.Gen. This is shown in [10]. Then, from the scheme presented in
Figure 2, we derive the following theorem, reliant on the LWE assumption:

Theorem 4.1 (Extended PRSet). The scheme in Figure 2 satisfies correctness, the security definitions
defined in Section 4.1, the functionality preservation definitions in Section 4.5 and has the following
complexities:

• Õ(1) sk and msk size.

• Õ(1) membership-testing time.

• Õ(
√
n) enumeration time.

• Õ(1) puncturing time.

• Õ(
√
n) hard puncturing time.

We provide the proofs in Appendix A.
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Our PRSet Construction

Let B = 2 log log n, m = 1
2 log n+B.

• Gen(1λ, n)→ (sk,msk) :

1. Let msk1 ← PRF.Gen(1λ, log n+B,m), msk2 ← PRF.Gen(1λ, log n+B,m).

2. Let P1, P2 be two sets of random
(
1
2 log n+B

)
strings in {0, 1}logn+B that start with a 1-bit.

3. Let sk1 = PRF.Puncture(msk1, P1), sk2 = PRF.Puncture(msk2, P2).

4. output (sk,msk) = ((sk1, sk2), (msk1,msk2)).

• Eval(sk, x)∗ → b :

1. Return PRF.PEval(sk[1], x)⊕ PRF.PEval(sk[2], x).

• EnumSet(sk) :

1. Let B 1
2 logn be all bit-strings in l ∈ {0, 1} 1

2 logn such that Eval(sk, l) = 1.

2. Then, For i in { 12 log n+ 1, . . . , log n}:

(a) Bi = {1||l : l ∈ Bi−1 ∧ Eval(sk, 1||l) = 1} ∪ {0||l : l ∈ Bi−1 ∧ Eval(sk, 1||l) = 1}.

3. Output Blogn+B = {l : l ∈ Blogn ∧ Eval(sk, 0k||l) = 1} for k ∈ {1, . . . , B}.

• InSet(sk, x)→ b :

1. Let z = 0B ||x.

2. output 1 if Eval(sk, z[i :]) = 1 for i ∈ {1,m}, otherwise output 0.

• Punc(msk, sk, x)→ sk :

1. Let z = 0B ||x, Z = {z[i :]} for i ∈ {1,m}.

2. Let skx = PRF.Puncture(msk[2], Z).

3. Return (sk[1], skx).

• HardPunc(msk, sk, x)→ sk∗∗:

1. write x ∈ {0, 1}logn as a binary string, and define z = 0B ||x, Z = {z[i :]} for i ∈ {1,m}.

2. While true:

(a) Let skx = PRF.Puncture(msk[1], Z).

(b) If InSet((skx, sk[2]), x), output (skx, sk[2]).

Figure 2: Our Extended PRSet Implementation.
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4.6.1 Efficiency Improvements

Note that we can make HardPunc more efficient, from Õ(
√
n) time to Õ(1) by breaking up msk[1] and

sk[1] into the corresponding m PRF1 keys that define them, where PRF1 is a privately puncturable PRF
instantiated the same way as our interface but with m = 1. We then each point individually and check
if it is what we want, rather than attempting to get them all right at once. We replace the step 2 in the
protocol with the steps as follows:

1. write msk[1] as {msk[1]p}p∈[1,m].

2. write sk[1] as {sk[1]p}p∈[1,m].

3. For i in [1,m]:

(a) p = Eval(sk, z[i :]).

(b) pi,old = PRF1.PEval(sk[1]i, z[i :]) .

(c) sk′i = PRF1.Puncture(msk[1]i, z[i :]).

(d) pi,new = PRF1.PEval(sk′i, z[i :]).

(e) If p⊕ pi,old ⊕ pi,new ̸= 1 return to (c).

4. Let sk′ = {sk′i}i∈[1, 12 logn+B] .

Note that it follows in a straightforward manner from construction of the PRF punctured at multiple
points that our algorithm for hard puncture presented earlier and the one using this technique output
indistinguishable keys. This shifts HardPunc’s run-time from expected Õ(

√
n) to expected run-time

Õ(1). For the rest of the paper, we use the former algorithm for simplicity, and because it does not
change the asymptotic runtime of our client, but using a Markov Inequality we can bound the runtime of
this new algorithm to Õ(1) with high probability.

4.6.2 Concrete Bounds

We prove concrete bounds for our scheme to run correctly with high probability in the Appendix (specifi-
cally Appendix A and Appendix B.3). For our PIR Scheme, we can use those to get concrete performance
bounds while maintaining overwhelming correctness.

5 Our New PIR Protocol
First, we define the security definition of our new two-server PIR protocol that communicates with only
one server online.

5.1 Definitions
We define our PIR as a collection of three stateful algorithms denoted as server1 and server2, and client.
All three players receive the parameters 1λ and n before the start. We define the interactions below:

• Offline: server1 and server2 receive the same n-bit database DB and client receives nothing. client
sends one message to server1, server1 replies with one message.

• Online: For each query, client receives an index x ∈ {0, . . . , n− 1}. client sends one message to
server2, which responds with one message. In the end, client outputs a bit b.
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Correctness

We define correctness with respect to the output of the Q queries made by the PIR scheme. We say that
our PIR scheme is correct iff ∃ a negligible function negl() s.t for any database DB ∈ {0, 1}n, and any
sequence of queries x1, x2, . . . , xQ ∈ {0, 1, . . . , n− 1}, an honest execution of our PIR scheme with DB
and queries x1, x2, . . . , xQ returns DB[x1], DB[x2], . . . , DB[xQ] with probability 1 − negl(λ), for any
n,Q polynomially bounded in λ, where DB[i] is the i-th bit of DB.

Privacy

Below we define the privacy for each server in our PIR scheme.
server1 privacy: server1 only interacts with client offline, where it answers parities for sets indepen-

dent of the future queries. Then, it is trivial to see that no adversarial algorithm for server1 can learn
anything about the queries. We therefore do not consider its privacy in our model, only correctness.

server2 privacy: We say that we satisfy server2 privacy holds if ∃ a p.p.t., stateful algorithm Sim,
such that for any algorithm server1∗, no non-uniform p.p.t. adversary A can distinguish between the
following experiments with non-negligible probability:

• Expt0: client interacts with A who acts as the server2 and deviates arbitrarily from the protocol,
and server1∗ who acts as the server1. At every step t, A chooses the query index xt, and client is
invoked with input xt as its query, xt ∈ {0, . . . , n− 1}

• Expt1: Sim interacts with A who acts as the server2 and deviates arbitrarily from the protocol,
and server1∗ who acts as the server1. At every step t, A chooses the query index xt, and Sim is
invoked with no knowledge of xt.

Intuitively all this says that the queries we make to server2 will look random to server2 . It also
means that although privacy will hold regardless of deviation from the servers (assuming no collusion).
This is not the case for correctness.

5.2 Our Protocol
Now, we introduce our two-server PIR protocol with a single server online phase with near-optimal
communication that allows for Q queries offline and has amortized sublinear server time. In a later section
we will see how to transform this to a single-server PIR protocol with near-optimal communication and
amortized sublinear server time. As in [41], we require ω(log λ) parallel instances of the following
scheme and a majority vote for correctness. The online phase supports up to Q queries, after which we
have to re-run the offline phase. Note that our final client bit DB[x] is the most common DB[x] over
our parallel repetitions. For concrete efficiency, we pick our number of parallel repetitions to be equal to
log n log log n. As we saw earlier, this choice gives us overwhelming correctness probability of a correct
majority vote, by the Chernoff bound.

5.2.1 Requiring Only One Server Online

We re-iterate the idea that requiring only one server online is a big step forward in itself. In any practical
setting, this allows one server’s availability to be very scarce, meaning that in adversarial settings where
we have only one reliable server, and the other one is being compromised or has to go through main-
tainance, the functionality of our PIR scheme is unaffected. This scheme will also be indispensable for
the construction of our final single-server PIR scheme.
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PIR Scheme

Run k = log n log log n instances of the following scheme. Let ℓ =
√
n(log n)3

Offline phase

• client generates ℓ+Q PRSet keys (msk1, sk1), . . . , (mskℓ+Q, skℓ+Q) each with Gen(1λ, n) .

• client sends all the secret keys, sk1, . . . , skℓ+Q to server1 and gets back a set of bits p1, . . . , pℓ+Q

where pi = ⊕j∈Si
DB[j]. For each set key ski, if EnumSet(ski) = ⊥, server1 sets pi = 0.

• client stores hints T = {Tj = ((mskj , skj), pj)}j∈[1,ℓ], B = {Bk =
((mskk, skk), pk)}k∈[ℓ+1,ℓ+Q].

Online Phase: Invoked with some index x ∈ {0, .., n− 1}.
• Query

1. client finds smallest j s.t. Tj = ((mskj , skj), pj) ∈ T and InSet(skj , x). If no such j is found,
we let j = |T |+ 1, run Gen(1λ, n, x)→ (skj ,mskj), let pj be a uniform random bit.

2. client sends sk′ = Punc(mskj , skj , x) to server2, that returns r = ⊕k∈EnumSet(sk’)DB[k].

3. client computes DB[x] = r ⊕ pj .

4. client computes DB[x]′ to be the majority vote of the computed DB[x] over the k instances.

• Refresh (only run if j ≤ |T |)

1. client gets Bk = ((mskk, skk), pk) be the first item from set B.

2. client computes skxk = HardPunc(mskk, skk, x).

3. client sets Tj = ((mskk, sk
x
k), pk⊕(DB[x]′∧InSet(skk, x))), where Tj was the entry consumed

by the query earlier, and also sets B = B \Bk.

Figure 3: Our 2PIR protocol.

5.2.2 Construction

Our scheme is constructed in Figure 3.
For simplicity, we define Gen(1λ, n, x) to run normal Gen until it outputs an sk where InSet(sk, x) =

1. For optimized performance bounds, we can substitute this for generating one set and hard puncturing
x. With our faster hard puncture algorithm, this is much faster than generating sets until finding one with
x, and with the probability of failure introduced being the probability we fail to hard puncture.

With our scheme, we prove the following theorem, reliant on the LWE assumption:

Theorem 5.1 (PIR Protocol). The scheme in Figure 3 satisfies privacy and correctness as defined in
Section 5.1 and has the following complexities:

• Õ(
√
n+Q) client storage and no additional server storage.

• Õ(n/Q+
√
n) amortized server time.

• Õ(
√
n) client time.
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• Õ(
√
n/Q) amortized bandwidth.

We defer the proof to Appendix B, but it will follow similarly to what was sketched in Section 3,
except more involved.

5.2.3 Analysis

Note that our scheme here is very similar to the naive scheme presented in Section 3, with pinpoint
modifications to account for either issues that we had discussed initially, or possible caveats from our
PRSet definition and implementation. We see that for each copy of our scheme, our offline phase runs in
Õ(n) server time and Õ(

√
n), and each query runs in Õ(

√
n) client and server time, with Õ(1) bandwidth.

After Q queries, we have to re-run the offline phase, but as we will see shortly, an ideal choice of Q will
amortize our server time to be sublinear any number of queries.

Our sources of error stem from when we cannot find a set with x for a query, when EnumSet takes
too long to run, or when Punc or HardPunc do not work as expected. We will bound these formally in
the next section, but for now notice that the hardest error to deal with will be when HardPunc does not
run as expected. This is because it happens after the majority vote for DB[x] and therefore potentially
propagates this error to a future query with non-negligible probability. We can bound the error for each
query by then bounding the probability, for each q ∈ Q, that the parity for Tj we find was incorrect. We
deal with this formally when we prove correctness for our PIR Scheme in Appendix B.

5.2.4 Choice of Q

We define Q as the number of queries that our scheme can make after running the offline phase one. It can
also be seen as the number of queries allowed by our scheme before we have to re-run the offline phase.
Note that for any k > 0, a choice of Q in the order of n1/k allows us to achieve sublinear amortized
server time over Q queries. However, note that for any k ≤ 1, the client storage is of order Õ(n). In fact,
any k < 2 increases the asymptotic client storage required by the initial primary sets. Also note that for
any k > 2, we reduce the space required (although not asymptotically, since that is lower bounded by the
number of primary sets we need), but also reduce the number of queries we can amortize the offline phase
cost across. In fact, from this, it is clear to see that the optimal choice for balancing amortized server time
and client space is k = 2, with Q =

√
npoly log n, although specific implementations might benefit from

picking a different order of Q within the range discussed.

5.2.5 Choice of B

Our choice of B follows directly from the choice of B in [41], and allows us to achieve sets of reasonable
size and light dependency, while maintaining fast enumeration. We do not discuss it further here.

5.2.6 Deterministic and optimized bounds for our scheme

To get a protocol with deterministic performance requires bounding the number of tries for both Gen(1λ, n, x)
and HardPunc. When doing this, we must run step 1 and 2 of the Refresh phase along with step 1 of the
Query phase. If either of these fails to execute correctly, then we send to the server (sk,)← Gen(1λ, n)
and client sets DB[x] to be a uniform random bit. This introduces a small probability of correctness fail-
ure (more discussion in Appendix B.3), but clearly does not affect privacy since we send a random set to
server2. If we do not take this precaution of running the steps of the Refresh phase upfront, then our PIR
scheme for concrete performance bounds would potentially breach privacy in the case that HardPunc
fails.

The optimized bounds discussed in [41] translate in a straight-forward manner to our PRSet and PIR
scheme, so we do not discuss it further here.

23



6 Porting into a Single-Server Scheme
We now porting our two-server PIR scheme that communicates with only one server online to a single-
server PIR scheme.

6.1 Requirements
In order to port our two-server PIR scheme in Figure 3 to single server, we require two building blocks:

6.1.1 Batch Parity Circuit

We will use a batch parity boolean circuit C. Given any database of size n and l lists of size m, C
computes the parity of the l lists in Õ(l ∗ m + n) time. A construction for such C was idealized and
proved in [19].

6.1.2 Gate-by-gate FHE

We require the existence of a symmetric key FHE scheme (Gen,Enc,Dec,Eval) that is gate-by-gate (as
defined in [19]), where gate-by-gate means Eval runs in time Õ(|C|) for a circuit of size |C|. As noted
in [19], this is a property of standard FHE schemes [16, 29].

6.2 Near-optimal Single Server PIR from Fully Homomorphic Encryption
Assuming we have such a boolean batch parity circuit C and FHE scheme defined as above, for correct-
ness exactly as defined in Section 5.1 and single-server privacy as defined for server2 in Section 5.1, our
Theorem 5.1 implies the following theorem:

Theorem 6.1 (Single-Server PIR Protocol). There exists a single-server PIR protocol satisfies privacy
and correctness as defined in Section 6.2 and has the following complexities:

• Õ(
√
n+Q) client storage and no additional server storage.

• Õ(n/Q+
√
n) amortized server time.

• Õ(
√
n) client time.

• Õ(
√
n/Q) amortized bandwidth.

We defer the scheme and proofs to Appendix C, both which follow closely from the scheme and proof
for Figure 3 and the primitives discussed in this section.

7 Conclusion
We have presented the first single-server PIR scheme for adaptive queries with sublinear amortized server
time and polylogarithmic bandwidth. We re-iterate that given known lower bounds, Theorem 6.1 has
optimal complexities up to polylogarithmic factors in every dimension except for client time.

24



7.1 Open Problems
We provide some future directions we consider interesting, given our results:

• Finding an implementation of puncturable random sets compatible with Linearly Homomorphic
Encryption, or a compiler to port schemes to single server from weaker assumptions.

• Implementing a concretely efficient privately puncturable PRF from LWE.

• Constructing privately puncturable PRFs from core cryptographic assumptions such as one-way
functions.

• Constructing a scheme that maintains our complexities but uses Õ(1) client time, or proving that it
is not possible.
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A Proofs for New Puncturable PRSet with Addition

A.1 Scheme Analysis
Let Dn be defined as in Section 4.4. Proofs for the distribution of our PRSets and runtime of our algo-
rithms. We use the notation Dx

n to represent a distribution where we sample from Dn until we find a set
that contains element x. In the proofs, we consider Dn sampled from a random oracle, although it is easy
to see that sampling from a PRF would differ only in a negligible function in the security parameter of
such function.

A.1.1 Distribution of our PRSet

Proofs for Lemmas presented in Section 3.

Lemma 3.1 (Set Size). The expected size of a set S ∼ Dn is E[|S|] ≤
√
n

log2 n
.

Proof. We have that

Pr[x ∈ S] =

(
1

2

) 1
2 logn+B

=
1√
n

(
1

2

)B

=
1

2B
√
n

Then note that the expected size of S is the sum of the probability of each element being in the set,

E [|S|] = E

[
n−1∑
x=0

1

2B
√
n

]

=

n−1∑
x=0

E
[

1

2B
√
n

]
=

√
n

2B
≤

√
n

(log n)2

■

Let ℓ =
√
n(log n)3

Lemma 3.2 (Primary set coverage). Let S1, . . . , Sℓ ∼ (Dn)
ℓ. For any x ∈ {0, . . . , n−1}, the probability

of not finding x over these sets, Pr[x /∈ ∪i∈[1,l]Si] ≤ 1
n .

Proof. From Lemma 3.1, know x is included in each set Si with probability 1√
n(logn)2

. Then,

Pr[x /∈ ∪iSi] =

(
1− 1√

n(log n)2

)√
n(logn)3

=

(
1

e

)logn

+ ≤ 1

n

■
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A.1.2 Related Elements

Lemma 3.3 (Related elements in S). For any x ∈ {0, . . . , n − 1}, for S ∼ Dx
n, the expected number of

elements in S related to x, E[|Related(S, x)|] ≤ 1
2 logn .

Proof. Note that for any k < log n, there are exactly 2logn−k − 1 ≤ 2logn−k strings in {0, 1}logn that
share a suffix of length ≥ k with x that do not equal x. Note that since x is in the set, for any k, the
probability that a string y that has a common suffix of exactly k with x is included in the set is the chance
that its initial B bits and its remaining bits not shared with x evaluate to 1, namely, for any k < log n,
y = {0, 1}k||x[k :]

Pr[y ∈ S] =
1

2B2logn−k

Let Nk be the expected number of strings in the set that share a longest common suffix with k of length k.
Then, since we know that there are at most 2logn−k such strings, we can say that for any k, the expected
size of Nk

E [|Nk|] ≤ E

2log n−k∑
x=1

1

2B2logn−k


=

2log n−k∑
x=1

E
[

1

2B2logn−k
+

]
= 2logn−k 1

2B2logn−k
=

1

2B

Then, for our construction, where we only check prefixes for k > log n, we can find that the expected
number of related elements in the set can be the sum over such k that fit such criteria

E

 logn−1∑
k= 1

2 logn+1

|Nk|

 =

logn−1∑
k= 1

2 logn+1

E [|Nk|]

≤
(
1

2
log n− 1

)
1

2B

=
log n− 2

2(log n)2
≤ 1

2 log n

■

Lemma 3.4 (Related elements almost in S). For a randomly sampled set S ∼ Dn, and any x ∈
{0, . . . , n− 1}, we define a related set Salmost,x, for y ∈ {0, . . . , n− 1}:

Salmost,x = {y | y ∈ (Add(S, x) \ S)}

Then, we can bound the expected size of the set Salmost,x as: E[|Salmost,x|] ≤ 1
2 logn .

Proof. Note that for any k < log n, there are ≤ 2logn−k strings in {0, 1}logn that share a suffix of length
≥ k with x that do not equal x. The probability that a string y that has a common suffix of exactly k
with x is included in Salmost,x is the chance that its initial B bits and its remaining bits not shared with
x evaluate to 1, namely, for any k < log n, y = {0, 1}k||x[k :]. Then, since this is exactly equivalent to
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the number of related elements to x for x ∈ S,the rest of the proof follows exactly as in Lemma 3.3, and
we can say that the expected number of elements in Salmost,x,

E [|Salmost,x|] ≤
1

2 log n

■

A.1.3 Deterministic Time Bounds

We define a function time: f(·) → N to take in a function f(·) and output the number of calls made in
f(·) to any PRF function.

Lemma A.1 (EnumSet runtime). Fix some x ∈ {0, . . . , n − 1}, (msk, sk) → Gen(1λ, n), skx ←
HardPunc(msk, sk, x), then

Pr
[
time(EnumSet(skx)) > 6

√
n(log n)3

]
≤ 1

log n
+ negl(λ)

Proof. Our proof follows very much like described in the distribution analysis in Section 2.2, except
that we require two function calls per poin evaluation. Also note that in this case we are bounding the
enumeration time for sets sampled from a distribution with x.

From our argument earlier, if we start from strings of length l = 1
2 log n + 1, check which strings

evaluate to 1, and then iteratively build up to strings of size log n by appending 1 and 0 to remaining
strings, we will have

√
n remaining strings, in expectation, after every step (in expectation, only 1 from

the two new string attempted remains, by pseudorandomness of the PRF used for sampling). Conditioned
on having x, this shifts slightly. For every length l, we can upper bound the number of related elements
with x of length l in the set to be ≤ log n (see Lemma 3.3). This increases our expected set size for each
lengh l to at most

√
n log n.

Following our argument from before, this means that to enumerate a set with x, we will have to
evaluate 2

√
n log n strings per step and then at most 2 log n strings for each remaining string at the end so

putting it all together, we will make at most 2(2
√
n log n 1

2 log n + 2 log log n
√
n log n) ≤ 6

√
n(log n)2

PRF calls in expectation. Now, in order to bound this, we use a Markov Inequality, and from this
expectation, we have that

Pr
[
time(EnumSet(skx)) > 6

√
n(log n)3

]
≤ 1

log n
+ negl(λ)

■

Lemma A.2 (HardPunc runtime). Let (msk, sk) ← Gen(1λ, n) for some λ, n. Then, for any x ∈
{0, . . . , n− 1}, for our PRSet construction,

Pr[time(HardPunc(msk, sk, x)) > 2
√
n(log n)2] ≤ 1

log n
+ negl(λ)

Proof. Note that the expected runtime of HardPunc is

2
√
n log log n ≤ 2

√
n log n

Then, by a simple Markov Inequality, we have that

Pr[time(HardPunc(msk, sk, x)) > 2
√
n(log n)2] ≤ 1

log n
+ negl(λ)

■
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A.2 Proofs
A.2.1 Correctness Proofs

Lemma A.3. Our PRSet scheme satisfies correctness. Assuming pseudorandomness of the underlying
PRF, our scheme also satisfies pseudorandomness.

Proof. Correctness follows from our construction and functionality preservation of the underlying PRF.
Pseudorandomness follows from pseudorandomness of the underlying PRF. Both incur a negligible prob-
ability of failure in λ, inherited from the underlying PRF. ■

Functionality Preservation in Puncturing. Assuming pseudorandomness and functionality preserva-
tion of the underlying PRF, our PRSet scheme satisfies the properties of Functionality Preservation in
Puncturing. (Definition 4.5).

Proof. For (sk,msk)← Gen(1λ, n) until InSet(sk, x), and
skx ← Punc(msk, sk, x)

• From construction, EnumSet(skx) ⊆ EnumSet(sk), since puncturing strings that evaluate to 1
can only reduce the size of the set (we will only every puncture a prf evaluation of 1 to 0, not the
other way around).

• From the point above, and construction of our EnumSet, it follows that time(EnumSet(sk)) ≥
time(EnumSet(skx)).

• By construction of our puncturing operation and Related function, it must be that

y ∈ EnumSet(sk) \ EnumSet(skx)↔ Related(x, y) = 1

.

■

Functionality Preservation in Hard Puncturing. Assuming pseudorandomness of the underlying PRF,
our PRSet scheme satisfies the properties of Functionality Preservation in Hard Puncturing (Defini-
tion 4.6)

Proof. For any n, λ,x ∈ {0, . . . , n − 1}, for (sk,msk) ← Gen(1λ, n), skx ← HardPunc(msk, sk, x)
we note that:

• By construction, EnumSet(sk) ⊆ EnumSet(skx) since since we only ever make 0s into 1s.

• By the converse of same argument as Functionality Preservation in Puncturing above, it follows
that

y ∈ EnumSet(skx) \ EnumSet(sk)↔ Related(x, y) = 1

.

■
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A.2.2 Security Proofs

Security in Puncturing. Assuming pseudorandomness and privacy w.r.t. puncturing of the underlying
PRF the following two distributions are computationally indistinguishable for any x ∈ {0, . . . , n− 1}:

• Expt0: Run Gen(λ, n)→ (sk,msk). Return sk.

• Expt1: Gen(λ, n)→ (sk,msk) until x ∈ EnumSet(sk). Return skx = Punc(msk, sk, x).

Proof. To aid in the proof, we define an intermediate experiment, Expt∗1, defined as:

• Expt∗1: Run Gen(λ, n)→ (sk,msk), and return skx ← Punc(msk, sk, x).

For each sk output by Gen sk = (sk[1], sk[2]), two keys of m-puncturable PRFs. Now, first, we show
indistinguishability between Expt∗1 and Expt0:

Assume that there exists a distinguisher D0 than can distinguish Expt∗1 and Expt0. Let us say that D0

outputs 0 whenever it is on Expt0 1 when it is on Expt∗1. Then, we can construct a D∗
0 with access to D0

that breaks the privacy w.r.t. puncturing of the PRF as follows, for any x ∈ {0, . . . , n− 1}:

Distinguisher D∗
0

Let m = 1
2 log n+B, L = log n+B, z = 0B ||x.

1. Define P0 = {z[i :]}i∈[1,m] and let P1, P2 be a set of m random points of length L starting with a
1-bit.

2. Send P0, P1 to the privacy w.r.t. puncturing experiment and get back skPb
.

3. Run PRF.Gen(1λ, L,m)→ sk, PRF.Puncture(sk, P2)→ skP2 .

4. Set our secret key sk′ = (skP2
, skPb

).

5. Return D0(sk
′).

Note that in the case where b = 0, the experiment is exactly equivalent to D0’s view of Expt0,
since sk′ is two random m-privately puncturable PRF keys punctured and m points starting with a 1-bit.
Also, when b = 1, D0’s view is exactly equivalent to Expt∗1, since we pass in two random m-privately
puncturable PRF keys, one punctured at m points starting with a 1-bit, and the other at {z[i :]}i∈[1,m],
with no constraints on whether x was in the set before or after puncturing. Then, since D0’s view is
exactly the same as its experiment, it will distinguish between both with non-negligible probability, and
whatever it outputs, by construction, will be the correct guess for b with non-negligible probability.

Now we proceed to show that Expt∗1 and Expt1 are indistinguishable, assuming pseudorandomness
of the underlying PRF. Now, assume there exists a distinguisher D1 that can distinguish between Expt∗1
and Expt1 with non-negligible probability. Then, we can construct a distinguisher D∗

1 that uses D1 to
break the pseudorandomness of the underlying PRF as follows, for any x ∈ {0, . . . , n− 1}:

Distinguisher D∗
1

Let m = 1
2 log n+B, L = log n+B, z = 0B ||x.

1. Send P = {z[i :]}i∈[1,m] to the PRF pseudorandomness experiment, get back skP and a set of m
bits {Mi}i∈[1,m].

2. Let P1 be a set of m random bit strings of length L starting with a 1-bit. Run
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PRF.Gen(1λ, L,m)→ sk, PRF.Puncture(sk, P1)→ skP1 . Let sk′ = (skP1 , skP ).

3. If ∀i ∈ [1,m], PRF.PEval(skP1
, z[i :])⊕Mi = 1, output D1(sk

′), else output a random bit.

Note that in the case D1’s view in the case where the evaluations as described above all output 1
is exactly its view in distinguishing between our Expt1 and Expt∗1. With probability 1

2 , it is given a
punctured key where x was an element of the original set, and with probability 1

2 it is given a punc-
tured key where x was sampled at random. Then, in this case, it will be able to distinguish between
the two with non-negligible by assumption, and therefore distinguish between the real and random ex-
periment for pseudorandomness of the PRF. Since the probability of having all the evaluations output
1 is non-negligible, then we break the pseudorandomness of the PRF. By contrapositive then, assuming
pseudorandomness of the PRF, it must be that Expt1 and Expt∗1 are indistinguishable. This concludes
our proof. ■

We now prove the Security in Hard Puncturing for our implementation

Security in Hard Puncturing. Assuming privacy w.r.t. puncturing of the underlying prf (defined in Sec-
tion 4.1), the following two distributions to be computationally indistinguishable for any x ∈ {0, . . . , n−
1}:

• Expt0: Run Gen(1λ, n)→ (sk,msk) and return skx ← HardPunc(msk, sk, x).

• Expt1: Run Gen(1λ, n)→ (sk,msk) until x ∈ EnumSet(sk). Return sk.

Proof. Assume there exists a distinguisher D that can distinguish between these two with non-negligible
probability. Then, we can construct a distinguisher D∗ that breaks privacy w.r.t. puncturing of the PRF
as follows, for any x ∈ {0, . . . , n− 1}:

Distinguisher D∗

Let m = 1
2 log n+B, L = log n+B, z = 0B ||x.

1. Define P0 = {z[i :]}i∈[1,m] and let P1, P2 be two sets of random m points of length L starting
with a 1-bit.

2. Send P0, P1, to the privacy w.r.t. puncturing experiment and get back skPb
.

3. Run PRF.Gen(1λ, L,m)→ sk, PRF.Puncture(sk, P2)→ skP2
.

4. Set our secret key sk′ = (skPb
, skP2

).

5. If InSet(sk′, x), output D(sk′), else output a random bit.

Consider the case where x ∈ EnumSet(sk′). Now

• If P0 was punctured, D’s view is exactly equivalent to Expt0 in his experiment, since in HardPunc
we output a secret key sk = (sk[1], sk[2]) where the sk[1] is punctured at x, sk[2] is punctured at
m random points starting with a 1, and InSet(sk, x) = true.

• If P1 was punctured, D’s view is exactly equivalent to Expt1 in his experiment, by construction
of Gen, P1 and P2, the sk outputted is equivalent to a key outputted by Gen(1λ, n) where In-
Set(sk, x) = true.
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Then, we conclude that, conditioned on InSet(skPb
, x) = true, D’s view of the experiment is exactly

equivalent to Security in Hard Puncturing, and therefore it will be able to distinguish between whether
P0 and P1 was punctured with non-negligible probability. Since the probability Pr[InSet(sk′, x) =
true] = 1√

n
> negl(n) (we fix a random sk[2] and the probability follows), then the D∗ we constructed

will break the privacy w.r.t. puncturing of the PRF with non-negligible probability. By contrapositive,
assuming privacy w.r.t. puncturing, security in hard puncturing holds. ■

Security Corollary 1 (Randomness in puncturing). In some distribution Dn, the following the distribu-
tions are computationally indistinguishable for m = 1

2 log n+B and any x ∈ {0, . . . , n− 1}:

• Expt0: Run Gen(1λ, n) → (sk,msk) until InSet(sk, x), run skx ← Punc(msk, sk, x), Return
the tuple (EnumSet(sk), x ∈ EnumSet(skx)).

• Expt1: Run Gen(1λ, n)→ (sk,msk) until InSet(sk, x), sample some boolean b from Bernoulli(ϕ)
where ϕ = 2−m. Output the tuple (EnumSet(sk), Bernoulli(ϕ)).

Note that x ∈ EnumSet(sk) denotes a boolean.

Proof. Let us define an intermediary experiment to aid in the proof.

• Expt∗0: Run (sk,msk) ← Gen(1λ, n) once and let skx ← HardPunc(msk, sk, x). Return the
tuple (EnumSet(skx), x ∈ EnumSet(sk)).

Note that by our two security properties above, it follows that Expt0 and Expt∗0 are indistinguishable,
since generating a key until finding one with x is equivalent to hard puncturing, and puncturing a key
with x at x is indistinguishable from sampling a fresh key. Well, by pseudorandomness of the PRF,
it follows that x ∈ EnumSet(sk) for a fresh sk is indistinguishable from Bernoulli(ϕ) expect with
negligible probability, and by security of hard puncturing as we saw above generating a set key until we
find one with x is indistinguishable from generating a fresh key and hard puncturing x. Then, it follows
that Expt1 and Expt∗0 are also indistinguishable, and this concludes our proof.

■

Security Corollary 2 (Efficient HardPunc). The constructions of HardPunc defined in Section 4.6 and
Section 4.6.1 are equivalent.

Proof. Follows in a straightforward manner from the construction of privately puncturable PRFs that we
use. ■

B New PIR Protocol proofs
We prove the following theorem:

Theorem 5.1 (PIR Protocol). The scheme in Figure 3 satisfies privacy and correctness as defined in
Section 5.1 and has the following complexities:

• Õ(
√
n+Q) client storage and no additional server storage.

• Õ(n/Q+
√
n) amortized server time.

• Õ(
√
n) client time.

• Õ(
√
n/Q) amortized bandwidth.
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The efficiencies in the scheme follow directly from construction of the scheme and efficiencies of the
PRSet proved above.

For privacy and correctness, we will present proofs here for one instance of the PIR scheme. Specif-
ically, we will prove overwhelming probability of privacy holding, and probability greater than 1

2 of
correctness holding. Then, the overwhelming probability of privacy of the final scheme follows from
the privacy of each copy, and overwhelming probability of correctness follows from the Chernoff bound
(seen in Section 2) when we take the majority vote over k instances.

B.1 Privacy Proof for our PIR scheme
We present the privacy proof for server2 in our scheme, since as discussed in Section 6, server1 privacy
is trivial.

Privacy with respect to server2, as per our definition, must be argued by showing ∃ Sim, a stateful
algorithm that can run without knowledge of the query and be indistinguishable from an honest execution
of the protocol, from the view of any p.p.t. A acting as server2 for any protocol server1∗ acting as
server1.

First, we note that the execution of the protocol between client and server2 is independent of client’s
interaction with server1. client generates sets and queries server1 in the offline phase for their parity.
Although this affects correctness of each query, it does not affect the message sent to server2 at each
step of the online phase, since this is decided by the sets, generated by client. Then, we can rewrite our
security definition, equivalently, disregarding client’s interactions with server1.

We want to show that for any query qt for t ∈ [1, Q], qt leaks no information about the query index xt

to server2, or that interactions between client and server2 can be simulated with no knowledge of xt. To
do this, we show, equivalently, that the following two experiments are computationally indistinguishable:

• Expt0: Here, for each query index xt that client receives, client interacts with server2 as in our
PIR protocol.

• Expt1 In this experiment, for each query index xt that client receives, client ignores xt and runs
(sk,msk)← Gen(1λ, n), and sends sk to server2.

Proof. First we define an intermediate experiment Expt∗1.

• Expt∗1 : For each query index xt that client receives, client runs (sk,msk) ← Gen(1λ, n) until
InSet(sk, x). client sends skx ← Punc(msk, sk, x) to the server2.

Note that by Security in Puncturing, it follows straighforwardly that Expt1 and Expt∗1 are indistinguish-
able.

Next, we define another intermediate experiment Expt∗0 to help aid in the proof.

• Expt∗0: Here, for each query index xt that client receives, client interacts with server2 as in our PIR
protocol, except that on the refresh phase after each query, instead of picking a set key (mskb, skb)
from our secondary sets and running sk′b = HardPunc(mskb, skb, xt), we generate a new random
set using with (msk, sk) → Gen(1λ, n) until InSet(sk, xt) and replace our used set with sk
instead.

First, we note that by Security in Hard Puncturing it follows directly that Expt0 and Expt∗0 are compu-
tationally indistinguishable.

Then, we move to show that Expt∗0 and Expt∗1 are computationally indistinguishable. At the beginning
of the protocol, right after the offline phase, the client has a set of |T | random set keys. For the first query
index, x1, we either
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• Pick a set key (mskj , skj) ∈ T from these random sets where InSet(skj , x1).

• If the step above fails, we run (mskj , skj)→ Gen(1λ, n) until InSet(skj , x1).

Then, we send to server2 sk′j ← Punc(mskj , skj , x1). Note that the second case is trivially equivalent
to generating a random set with x1 and puncturing it at x1. But in the first case, note that T holds a
sequence of outputs from Gen(1λ, n). As a matter of fact, looking at it in this way, (mskj , skj) is the
first output in a sequence of Gen(1λ, n) that satisfies the constraint of x being in the set. Then, if we
consider just the executions from 1 to j, this means (mskj , skj) is equivalent to running Gen(1λ, n) until
InSet(skj , x), except we ran this in advance, which does not make a difference.

Because in both cases it holds, it follows that for the first query, q1, Expt∗0 is indistinguishable from
Expt∗1. To show that this holds for all qt for t ∈ [1, Q] we show, by induction, that after each query, we
refresh our set table T to have the same distribution as initially. Then, by the same arguments above, it
will follow that every query qt in Expt∗0 is indistinguishable from each query in Expt∗1.

Base Case. Initially, our table T is a set of |T | random PRSet keys generated independently from the
queries, offline.

Inductive Step. After each query, a random set key (msk, sk) ← Gen(1λ, n) that satisfies In-
Set(sk, x) with a new random set key (msk′, sk′) ← Gen(1λ, n) that satisfies InSet(sk′, x). Since
the sets are identically distributed, then it must be that the table of set keys T maintains the same distri-
bution after each query refresh.

Note that since, at every step t, we pick a set from a table T of fresh random sets, then by what we saw
above, every query qt from the client will be indistinguishable from a random set key. But that is exactly
what Expt1 does. Then, we can say that Expt∗1 is indistinguishable from Expt∗0. This concludes our proof
for experiment indistinguishability. Since we have defined a way to simulate our protocol without access
to each xt, such that the view is indistinguishable for any p.p.t non-uniform adversary A, it follows that
we satisfy server2 privacy. ■

B.2 Correctness Proof for our PIR Scheme
Note that for any query q with query index x, we have three sources of error, as denoted in the introduc-
tion. DB[x] will be incorrect when we either

• Cannot find a set key that contains x in T

• When we puncture incorrectly during query, and we define ’puncturing incorrectly’ to be any of
the two mutually exclusive events

1. The puncture operation does not remove x from the set.

2. The puncture operation removes more than just x from the set.

• We hard puncture incorrectly during refresh, which is limited to one case: when we add more than
just x to the set.

Note that the first two sources of error occur before refresh, and this means that, if these were the only
errors, as long as we could bound the sum of their probability to occur with probability less than half,
then our scheme would be correct due to the k iterations and Chernoff bound. However, the last source of
error occurs after the majority vote and therefore potentially propagates some incorrect set key and parity
pair ((mskk, skk), pk) to following queries. To deal with this, for each query, we consider the probability
that the entry of T picked by the query is incorrect due to this error. Then, we instead consider the sources
of error in the following way:

• Cannot find a set key that contains x in T .
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• When puncturing yields incorrect parity:

1. The puncture operation does not remove x from the set.

2. The puncture operation removes more than just x from the set.

3. Probability that the set we are using was hard punctured and yields incorrect parity.

Bounding probability of puncture yielding incorrect parity during query
We first consider a modified PIR experiment that is exactly equivalent to our scheme in Figure 3 in

terms of correctness. We define it below:

Modified PIR Scheme

Run k = log n log log n instances of the following scheme. Let ℓ =
√
n(log n)3

Offline phase

• client generates ℓ+Q PRSet keys (msk1, sk1), . . . , (mskℓ+Q, skℓ+Q) each with Gen(1λ, n) .

• client sends all the secret keys, sk1, . . . , skℓ+Q to server1 and gets back a set of bits p1, . . . , pℓ+Q

where pi = ⊕j∈Si
DB[j]. For each set key ski, if EnumSet(ski) = ⊥, server1 sets pi = 0.

• client stores hints T = {Tj} where each Tj = ((mskj , skj), pj , null, {})}j∈[1,ℓ], B = {Bk}
where each Bk = ((mskk, skk), pk)}k∈[ℓ+1,ℓ+Q].

Online Phase: Invoked with some index x ∈ {0, .., n− 1}.
• Query

1. client finds the smallest j such that Tj = ((mskj , skj), pj , zj ,setRelatedj) ∈ T and
(InSet(skj , x)∨ (x == zj)∨ (x ∈ setRelatedj)). If no such j is found, we let j = |T |+ 1,
run Gen(1λ, n, x)→ (skj ,mskj), let pj be a uniform random bit.

2. client runs skzjj ← HardPunc(mskj , skj , zj)

3. client sends sk′ = Punc(mskj , sk
zj
j , x) to server2, that returns r = ⊕k∈EnumSet(sk’)DB[k].

4. client computes DB[x] = r ⊕ pj .

5. client computes DB[x]′ to be the majority vote of the computed DB[x] over the k instances.

• Refresh (only run if j ≤ |T |)

1. client gets Bk = ((mskk, skk), pk) be the first item from set B.

2. client computes skxk = HardPunc(mskk, skk, x).

3. client computes

setRelated = EnumSet(skxk) \ EnumSet(skk) \ {x}

and sets

Tj = ((mskk, skk), pk ⊕ (DB[x]′ ∧ InSet(skk, x)), x,setRelated)

and also sets B = B \Bk.
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This modified PIR scheme is exactly equivalent to our PIR scheme in Figure 3, except we take extra
steps in order to defer defer the hard puncture step to the query and with that better expose the potential
query errors. We examine it in this light because it exposes potential errors in puncturing more clearly
for our scheme.

Let us denote HardPuncRel the event where HardPunc added more than one element to the set. It
is clear to see that in our modified scheme, HardPuncRel occurrs if and only if setRelatedj ̸= {}.
It is straightforward to see that if HardPuncRel occurs, then the parity pj is incorrect. From Lemma 3.4
and Functionality Preservation in Hard Puncturing, we can say that:

Pr[HardPuncRel ≤ 1

2 log n
+ negl(λ)

Also note that if we puncture more than just x, our final DB[x] will be incorrect. We puncture more
than just x when there exists some element in y ∈ EnumSet(skzjj ) s.t. Related(y, x) = 1 for zj ̸= x.
We denote this event PuncRel and separate it as:

Pr[PuncRel] =Pr[PuncRel|Related(x, zj) = 1 ∧ x ̸= zj ]

∪ Pr[PuncRel|Related(x, zj) = 0]

Note that:

Pr[PuncRel|Related(x, zj) = 1 ∧ x ̸= zj ]

≤ Pr[Related(x, zj) = 1 ∧ x ̸= zj ]

≤ Pr[setRelatedj ̸= {}]

≤ Pr[HardPuncRel] ≤ 1

2 log n
+ negl(λ)

Now, let us consider Pr[PuncRel|Related(x, zj) = 0]. Since zj and x are not related, the mem-
bership of x in the set is independent from zj , and therefore we can bound this probability as:

Pr[PuncRel|Related(x, zj) = 0]

≤ Pr[Related(x, zj) = 0]

≤ Pr[∀y ∈ EnumSet(skzjj ),Related(y, zj) = 0]

≤ 1

2 log n
+ negl(λ)

Given our Security in Hard Puncturing, last line follows from Lemma 3.3; since the expected number
of elements related to zj in a set generated with zj is 1

2 logn + negl(λ), it follows that the probability
of finding such element here is bounded by that. Given that x is independently sampled from zj by
construction, we can look at it in this light. Then, putting it together we have that:

Pr[PuncRel] ≤ 1

log n
+ negl(λ)

Lastly, we bound the probability of element x not being punctured on Punc, which would yield
an incorrect DB[x]. Let us denote this event NotRemoved. From a straighforward reduction from
Security Corollary 1, we see that the output of the puncturing operation is independent from the set being
punctured, and computationally equivalent to a bernoulli variable with p = 1√

n∗2B , and therefore, we
bound the probability of not NotRemoved as follows:

Pr[NotRemoved] ≤ 1√
n(log n)2

+ negl(λ)
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Then, putting together all the probabilities computed, we have the the probability that puncture yields
the incorrect DB[x], PuncErr,

Pr[PuncErr] ≤ Pr[HardPuncRel] ∪ Pr[PuncRel] ∪ Pr[NotRemoved]

≤ 1

2 log n
+

1

log n
+

1√
n(log n)2

+ negl(λ)

Bounding probability of not finding query index
Let us denote the event of not finding our query index x in our sets as NotFound. From Lemma 3.2

, we see that for the first query, the probability of not an index x ∈ {0, . . . , n − 1} in any entry of T ,
denoted Pr[x /∈ T ] ≤ 1

n . Then, from our privacy proof earlier in the section, the distribution of T is
unchanged throughout our Q queries. From this, we conclude that for each query xt for t ∈ {1, . . . , Q},
Pr[xt /∈ T ] ≤ 1

n + negl(λ), and so we say that, for each query:

Pr[NotFound] ≤ 1

n
+ negl(λ)

Bounding probability of error in scheme
We denote IncQuery as the event that our single copy scheme outputted an incorrect DB[x]. We

can say that:

Pr[IncQuery] ≤ Pr[NotFound] ∪ Pr[PuncErr]

≤ 1

n
+

1√
n(log n)2

+
3

2 log n
+ negl(λ)

Then, we can loosely bound our single-copy scheme to be correct with probability more that 1
2 for any

n > 100. By running k = ω(log λ) instances and taking a majority vote for DB[x], by the Chernoff
Bound, our scheme is correct for Q queries with overwhelming probability in our security parameter λ.

B.3 Deterministic Time Bounds
We discuss below how get deterministic time bounds for our randomized algorithms used, EnumSet and
HardPunc.

EnumSet. To get deterministic run-time for EnumSet, we can cap the server enumeration time to
be at most 6

√
n(log n)3 function calls, after which it can output a random bit as the set parity. From

Lemma A.1, we see that this incurs an additional 1
logn error per copy, which will be handled by the

Chernoff bound. It is clear to see that this does not affect privacy for the servers.
HardPunc. To get deterministic run-time for HardPunc, we can cap the hard puncturing introduced

at Section 4.6 at 2
√
n(log n) function calls, and it will fail with probability ≤ 1

logn (by Lemma A.2).
For the improved implementation presented in Section 4.6.1, we can bound a similar error probability
with only 2(log n)2 with a similar proof. We show that these implementations are equivalent in Security
Corollary 2. We note that in order for this change not to affect privacy of the scheme, we must take
precautions to change the order of steps in our PIR scheme as discussed in the notes in Section 5.2.2.
Correctness follows as in EnumSet.

C Single Server PIR

C.1 Batch Parity Retrieval Circuit and FHE
As was outlined in Section 6.1, one of the requirements to port our scheme to single server is a batch
parity retrieval circuit. In [19], Corrigan Gibbs et. al showed a construction for a batch parity retrieval
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circuit C that can compute the parity of l lists of size m in Õ(l ·m + n) time, where n is the size of the
database. This works in a straightforward manner for their pseudorandom sets from PRPs since the sets
are of fixed size. To use this for our new PIR algorithm from Figure 3 that uses Extended Pseudorandom
Sets introduced in Section 4, we require three adjustments:

1. We must modify the circuit to have an n−th index hardcoded to 0. The reasoning for this will be
clear from item 2. This clearly does not affect correctness, efficiency or privacy of the scheme.

2. We must modify our PRSet.EnumSet algorithm to output a list instead of a set, and pad any list
of size <

√
n

logn with the index n until the list is of size
√
n

logn , and output ⊥ if any set list is of size

>
√
n

logn . The algorithm then incurs an expected additional log n run-time.

The reasoning for this is to use —C— as a black-box, which requires a fixed sized list. With this modified
PRSet enumeration algorithm and circuit C, along with the FHE scheme introduced in Section 6.1 we
finally construct our single server PIR scheme in Figure 4.

On step 3 of the offline phase, if the client does not find ℓ + Q sets that were evaluated correctly
pi ̸=⊥, it just runs each online phase with a freshly sampled set key and outputs DB[x] = 0. We bound
the probability of this happening in the following Lemma:

Lemma C.1 (Set Size Bound). Let LargeSet(·, ·) be a function that takes in a list L and number w,
and outputs a bit b that is 1 if |L| > w, and 0 otherwise. Let s = ℓ + Q for some ℓ,Q ∈ N. Then, for
S1, . . . , Ss·(logn)2 ∼ (Dn)

s·(logn)2

Pr

s·(logn)2∑
i=1

LargeSet(Si,

√
n

log n
)

 > s · (log n)

 <
1

log n

We provide the proof in Appendix C.3. From this Lemma, we see that this restriction incurs an
additional correctness failure of 1

logn compared to our normal scheme.
The online phase runs in exactly the same way as our scheme in Figure 3.

C.2 Theorem Proof
Now, we set out to prove that our scheme satisfies Theorem 6.1. We re-state it here:

Theorem 6.1 (Single-Server PIR Protocol). There exists a single-server PIR protocol satisfies privacy
and correctness as defined in Section 6.2 and has the following complexities:

• Õ(
√
n+Q) client storage and no additional server storage.

• Õ(n/Q+
√
n) amortized server time.

• Õ(
√
n) client time.

• Õ(
√
n/Q) amortized bandwidth.

Proof. The efficiencies follow from the efficiencies in the scheme in Figure 3, except for extra polylog-
arithmic factors and λ factors incurred by using C and FHE in the offline phase, along with the extra
number of preprocessed sets. Neither of these affect the complexity of our scheme when examined under
Õ(·).

Privacy for the scheme follows from the security of the FHE scheme and the privacy proof in Ap-
pendix B.
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PIR Scheme

Run k = log n log log n instances of the following scheme. Let ℓ =
√
n(log n)3, s = (ℓ+Q)(log n)2

Offline phase

• client generates s PRSet keys (msk1, sk1), . . . , (msks, sks) each with Gen(1λ, n) .

• client encrypts all the secret keys, FHE.Enc(sk1), . . . , FHE.Enc(sks)→ (esk1, . . . , esks) and
sends these to server1.

• server1 runs FHE.Eval(EnumSet(eski)) on each eski, i ∈ [1, s] and gets back s sets S1, . . . , Ss,
where it will be clear which Si =⊥ from the size.

• server1 evaluates the parity of each set under FHE using C and computes ep1, . . . , eps. For each
set key ski, if EnumSet(ski) = ⊥, server1 sets epi =⊥, and sends these to client

• client decrypts each epi using FHE.Dec into the parity pi and stores the first ℓ hints where
pi ̸=⊥ in T = {Tj = ((mskj , skj), pj)}j∈[1,ℓ], and the next Q hints that pi ̸=⊥ in B = {Bk =
((mskk, skk), pk)}k∈[ℓ+1,ℓ+Q].

Online Phase: Invoked with some index x ∈ {0, .., n− 1}.
• Query

1. client finds smallest j s.t. Tj = ((mskj , skj), pj) ∈ T and InSet(skj , x). If no such j is found,
we let j = |T |+ 1, run Gen(1λ, n, x)→ (skj ,mskj), let pj be a uniform random bit.

2. client sends sk′ = Punc(mskj , skj , x) to server2, that returns r = ⊕k∈EnumSet(sk’)DB[k].

3. client computes DB[x] = r ⊕ pj .

4. client computes DB[x]′ to be the majority vote of the computed DB[x] over the k instances.

• Refresh (only run if j ≤ |T |)

1. client gets Bk = ((mskk, skk), pk) be the first item from set B.

2. client computes skxk = HardPunc(mskk, skk, x).

3. client sets Tj = ((mskk, sk
x
k), pk⊕(DB[x]′∧InSet(skk, x))), where Tj was the entry consumed

by the query earlier, and also sets B = B \Bk.

Figure 4: Our 1PIR protocol.
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Correctness follows from the correctness proof in Appendix B and Lemma C.1, along with correctness
of C and the FHE scheme. Note that for each single copy scheme, we incur exactly the same errors as
in the 2PIR scheme, with the addition of the additional error factor offline when we do not have the right
amount of sets. This only happens with probability ≤ 1

logn for any n > 4 (see Lemma C.1). Note that
for larger n, we can potentially tighten this bound and require less additional sets. It is clear to see that
this extra factor does not take the correctness probability of the single copy scheme to be < 1

2 for relevant
n, so by taking the majority vote for DB[x] over ω(log λ) instances in each query, by the Chernoff bound
argument and the arguments in Appendix B, this scheme is correct with overwhelming probability. ■

C.3 Lemma Proofs
Proofs for Lemmas used throughout the section.

Lemma C.1 (Set Size Bound). Let LargeSet(·, ·) be a function that takes in a list L and number w,
and outputs a bit b that is 1 if |L| > w, and 0 otherwise. Let s = ℓ + Q for some ℓ,Q ∈ N. Then, for
S1, . . . , Ss·(logn)2 ∼ (Dn)

s·(logn)2

Pr

s·(logn)2∑
i=1

LargeSet(Si,

√
n

log n
)

 > s · (log n)

 <
1

log n

Proof. From Lemma 3.1, we know that the expected size of S, |S| =
√
n

(logn)2 . Then, by a simple Markov
bound:

Pr
[
|S| >

√
n

log n

]
<

1

log n

Then, over s · log n sets sampled independently from Dn, S1, . . . , Ss(logn), by linearity of expectation:

E

[
s·logn∑
i=1

LargeSet(Si,

√
n

log n
)

]
< s

Now, if we just apply the Markov bound again:

Pr

s·(logn)2∑
i=1

LargeSet(Si,

√
n

log n
)

 > s · (log n)

 <
1

log n

■
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