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Abstract. A systematic approach to the fixed-key analysis of differen-
tial probabilities is proposed. It is based on the propagation of ‘qua-
sidifferential trails’, which keep track of probabilistic linear relations on
the values satisfying a differential characteristic in a theoretically sound
way. It is shown that the fixed-key probability of a differential can be
expressed as the sum of the correlations of its quasidifferential trails.
The theoretical foundations of the method are based on an extension of
the difference-distribution table, which we call the quasidifferential tran-
sition matrix. The role of these matrices is analogous to that of correla-
tion matrices in linear cryptanalysis. This puts the theory of differential
and linear cryptanalysis on an equal footing.
The practical applicability of the proposed methodology is demonstrated
by analyzing several differentials for RECTANGLE, KNOT, Speck and
Simon. The analysis is automated and applicable to other SPN and ARX
designs. Several attacks are shown to be invalid, most others turn out to
work only for some keys but can be improved for weak-keys.

Keywords: Differential cryptanalysis · Hypothesis of stochastic equiv-
alence · Correlation matrices · RECTANGLE · KNOT · Speck · Simon

1 Introduction

At CRYPTO 1990, Biham and Shamir [5] published the first reduced-round
differential attacks on the block cipher DES. Differential cryptanalysis is now one
of the cornerstones of the security analysis of block ciphers and hash functions.
Its central problem is to count the number of inputs of a function for which a
given input difference results in a particular output difference or, what amounts
to the same, to compute the probability of a differential.

For functions that can be written as a composition of simple operations,
the standard procedure is to analyze sequences of intermediate differences or
characteristics. The probability of a characteristic is then heuristically estimated
by multiplying the probabilities of the intermediate differentials. In the context
of block ciphers, Lai, Massey and Murphy [17] showed that this procedure yields
the correct value of the key-averaged probability for Markov ciphers.

However, since the key is fixed throughout a differential attack, even the
average data-complexity cannot be computed from the average probability of
differentials alone. Hence, Lai et al. [17] introduced an additional assumption



known as the hypothesis of stochastic equivalence. It states that the probability
for each key is close to the average probability.

In practice, it turns out that the probability can vary significantly between
keys. Hence, standard assumptions may lead to incorrect conclusions. Further-
more, averages may hide weak-key attacks that can considerably degrade secu-
rity. Finally, the same formalism is used even when there is no key, such as for
cryptographic permutations, or when the cryptanalyst has full control over the
key, such as in many hash functions.

From a theoretical viewpoint, it can be argued that the standard approach to
differential cryptanalysis is incomplete, since it does not offer any tools to com-
pute probabilities beyond the average case. This is in contrast to linear crypt-
analysis [21], where key-dependence is much better understood. In particular,
the correlation matrix approach of Daemen et al. [10] shows that the correlation
of a linear approximation is precisely equal to the sum of the correlations of all
its linear trails.

Previous work. Knudsen [15] already observed significant deviations from the
hypothesis of stochastic equivalence for the characteristics used in the differential
analysis of DES. Experiments such as those of Ankele and Kölbl [2] and Heys [14]
further suggest that such deviations are the norm rather than the exception.

Daemen and Rijmen [11] showed that the fixed-key probability of two-round
characteristics of AES is either zero or 2h, with h an integer independent of
the key. Such characteristics are called plateau characteristics, and have been
used in several other contexts [9,20,22,27]. Although plateau characteristics are
the only systematic method to analyze fixed-key probabilities for S-box-based
ciphers, their scope remains limited. They assume that the input or output values
satisfying a differential over the S-box form an affine space. In addition, their
analysis becomes difficult for more than two rounds.

For constructions relying on modular additions, several techniques were de-
veloped in the context of collision attacks on hash functions. These methods
keep track of additional information about the values satisfying a characteristic.
For example, the breakthrough results of Wang et al. [28] rely on signed differ-
ences. De Cannière and Rechberger [12] extended these to generalized differences,
allowing arbitrary constraints to be imposed on individual bits. Leurent [19] pro-
posed a framework for ARX-constructions based on two-bit conditions. Xu et
al. [29] recently introduced signed sums, which are single-bit conditions. Despite
their merit, these techniques have significant limitations. Imposing conditions
directly on values becomes difficult for keyed functions, since key-additions re-
sult in conditions that potentially depend on many unknown bits. Hence, these
methods are limited to keyless functions except for local, key-independent ef-
fects in ciphers such as XTEA that use modular additions between dependent
values. Furthermore, the conditions that are imposed cannot fully explain the
probability of a characteristic, and the right choice of the type of conditions to
use depends on the function under analysis.
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Contribution. We develop a general methodology to analyze the fixed-key proba-
bilities of differentials. It allows propagating probabilistic linear relations on the
values satisfying differential characteristics in a theoretically sound way. The
theoretical foundations of the proposed approach are inspired by the correlation
matrix framework [10] and its recent generalization [4] that provide a natural
description of linear cryptanalysis.

Section 3 builds up an extension of the difference-distribution table that we
call the quasidifferential transition matrix. It is obtained by performing a change-
of-basis on the permutation matrices describing the propagation of probability
distributions of pairs through a function, analogous to the construction of corre-
lation matrices using the Fourier transformation. Our choice of basis ensures that
the difference distribution table is obtained as a submatrix, and simultaneously
diagonalizes the transition matrices corresponding to round-key additions.

By construction, quasidifferential transition matrices satisfy similar proper-
ties as correlation matrices. For example, composition of functions corresponds
to multiplication of quasidifferential transition matrices. This property leads to
quasidifferential trails, the central notion of our methodology. In Section 4, we
prove that the sum of the correlations of all quasidifferential trails in a differ-
ential characteristic is equal to its exact probability. Likewise, the probability
of a differential is the sum of the correlations of all quasidifferential trails in
the differential. A few quasidifferential trails often capture the essence of the
key-dependence. For example, the key-dependence in the DES characteristics
observed by Knudsen [15] is explained by taking into account one additional
one-round quasidifferential trail.

To demonstrate the practical applicability of our methodology, we apply it to
four primitives. To this end, an algorithm to compute the quasidifferential transi-
tion matrix of general functions in time proportional (up to logarithmic factors)
to the size of the matrix is given in Section 5. In addition, the quasidifferential
transition matrix of bitwise-and and modular addition are determined.

Section 6 presents an automated search tool for quasidifferential trails in
RECTANGLE [30]. The implementation is provided as supplementary material3,
and can also be used for the analysis of other, similar ciphers. Our analysis shows
that the best published key-recovery attack on round-reduced RECTANGLE does
not work, but we show how to modify it to obtain a valid weak-key attack.

In Section 7 we apply the same tool to KNOT [31], a second-round candidate
in the NIST lightweight cryptography competition. We show that previously
proposed reduced-round forgery and collision attacks do not work, because the
characteristics they rely on have probability zero. At the same time, we show
that their probabilities are two orders of magnitude larger for some choices of
the round constants.

Section 8 reevaluates the best published attacks on Speck. The analysis relies
on an automated search tool that is provided as supplementary material. It can
easily be modified for other ARX designs. We find that most of the attacks we

3 All of our source code can be found at https://github.com/TimBeyne/

quasidifferential-trails.
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analyzed only work for a subset of keys. However, we also show that for weak
keys, attacks with lower data-complexity can be obtained.

Finally, we provide a similar search tool for Simon.

2 Preliminaries and Related Work

Most of the notations used in this paper are standard, or will be introduced where
necessary. Throughout this paper, random variables are denoted in boldface. The
average of a random variable x will be denoted by Ex, and its variance by Varx.
All key-dependent probabilities given in this paper are with respect to a fixed
key, unless it is explicity mentioned that they are averages.

2.1 Differential Cryptanalysis

Differential cryptanalysis [5, 6] is a technique to analyze the propagation of dif-
ferences through a function F : Fn2 → Fm2 . Typically, the cryptanalyst attempts
to find a differential (a, b) ∈ Fn2 × Fm2 such that the difference equation

F(x) + F(x+ a) = b , (1)

has a large number of solutions in x. The ordered pairs (x, x+a) for which Equa-
tion (1) holds are called right pairs for the differential (a, b). The number of right
pairs divided by 2n is called the probability of the differential. The difference-
distribution table DDTF is a 2n × 2m table with rows and columns indexed by
input and output differences respectively. The corresponding entries are equal
to the number of right pairs for a particular differential:

DDTF
a,b = |{x ∈ Fn2 | F(x) + F(x+ a) = b}| = 2n Pr [F(x) + F(x + a) = b] ,

with x uniform random on Fn2 . A differential with probability p � 2−n results
in a distinguisher with data-complexity O(1/p) .

Characteristics. Computing or estimating the probability of a differential for a
general function with many inputs can be computationally difficult. However,
differential cryptanalysis is typically applied to functions F of the form F =
Fr ◦ · · · ◦ F1, where the functions Fi admit differentials with relatively high
probability and are usually easier to analyze. In this case, the probability of a
differential (a1, ar+1) can be estimated based on characteristics. A characteristic
is a sequence (a1, a2, . . . , ar+1) of compatible intermediate input and output
differences for each of the functions Fi. For simplicity of notation, assume that
m = n and the functions Fi are all n-bit functions. It holds that

Pr [F(x) + F(x + a1) = ar+1] =
∑

a2,...,ar

Pr [
∧r
i=1 Fi(xi) + Fi(xi + ai) = ai+1] ,
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with x1 uniform random on Fn2 and xi = Fi−1(xi−1) for i = 2, . . . , r. The
probability of a characteristic is often estimated using the assumption that in-
termediate differentials are independent:

Pr [
∧r
i=1 Fi(xi) + Fi(xi + ai) = ai+1] =

r∏
i=1

Pr [Fi(zi) + Fi(zi + ai) = ai+1] .

Under the same independence heuristic, combining the equations above yields

DDTF
a1,ar+1

/2n =
∑

a2,...,ar

r∏
i=1

DDTFi
ai,ai+1

/2n . (2)

We stress that Equation (2) is an approximation, and it is easy to come up with
examples such as F = F2 ◦ F1 with F2 = F−1

1 where it fails spectacularly.

Key-averaged probabilities. If the functions F1, . . . ,Fr depend on keys k1, . . . , kr,
then the heuristic Equation (2) can be motivated using the Markov cipher as-
sumption [17]. In particular, it can be shown that if all round keys are uniform
random and independent, then the key-averaged probability of a characteristic
is indeed equal to the product of the intermediate key-averaged probabilities.

Aside from the fact that most ciphers are not true Markov ciphers due to
round-key dependencies introduced by the key-schedule, one is ultimately in-
terested in fixed-key rather than key-averaged probabilities. Importantly, this is
true even when computing the key-averaged data-complexity of an attack. After
all, in general E [1/pk] 6= 1/E [pk] with pk the probability for a random key k.

Hence, to bridge this gap, an additional hypothesis was introduced by Lai,
Massey and Murphy [17, §2]. Informally, the hypothesis of stochastic equivalence
states that the key-averaged probability of a characteristic is close to its fixed-
key probability for any particular key. As discussed in the introduction, previous
work has shown that this assumption is often unrealistic.

2.2 Linear Cryptanalysis

Although the average probability of characteristics and differentials is relatively
well understood, few techniques are known to analyze fixed-key probabilities.
This contrasts with linear cryptanalysis, where linear trails give a complete de-
scription of the correlation of linear approximations even in the fixed-key setting.

A natural way to describe linear cryptanalysis is by means of correlation
matrices. These matrices were first introduced by Daemen et al. [10]. Although
the scope of the present paper is limited to differential cryptanalysis only, it is
useful to introduce these matrices as they provide an important motivation for
the quasidifferential transition matrices that will be introduced in Section 3.

From the viewpoint introduced in [3,4], correlation matrices represent linear
operators that act on functions Fn2 → R such as probability distributions. In the
following, let R[Fn2 ] denote the vector space of such functions. The functions δx
such that δx(y) = 1 if y = x and zero elsewhere form an orthonormal basis for
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R[Fn2 ] with respect to the inner product 〈f, g〉 =
∑
x∈Fn

2
f(x) g(x). Below, this

basis will be referred to as the standard basis.
Another convenient basis for R[Fn2 ] consists of the group characters of Fn2 .

These are homomorphisms from Fn2 to the multiplicative group C\{0}. Any such
homomorphism is of the form χu(x) = (−1)u

Tx with u ∈ Fn2 . The characters χu
form an orthogonal basis for R[Fn2 ]. Specifically, 〈χu, χv〉 = 2n δu(v). Hence, any
function f ∈ R[Fn2 ] can be expressed as a linear combination of the characters
χu. This leads to the Fourier transformation, which is defined in Definition 2.1.
The basis {χu | u ∈ Fn2} will be called the character basis.

Definition 2.1 (Fourier transformation). Let f : Fn2 → R be a function.
The Fourier transformation of f is the function Fnf : Fn2 → R defined by
(Fnf)(u) = 〈χu, f〉. That is, (Fnf)(u)/2n is the coordinate corresponding to
the basis function χu when f is expressed in the character basis.

The motivation for using the character basis is that it simplifies the effect
of translating functions by a constant. In particular, if g(x) = f(x + t), then
(Fng)(u) = χu(t) (Fnf)(u) because χu(x+ t) = χu(t)χu(x) by the definition of
characters as group homomorphisms.

Correlation matrices describe how a function F : Fn2 → Fm2 transforms func-
tions in R[Fn2 ] to functions in R[Fm2 ]. In the standard basis, the relation is ex-
pressed by a permutation matrix that is called the transition matrix in Defini-
tion 2.2. The same linear transformation can be expressed in the Fourier basis
and this yields Definition 2.3.

Definition 2.2 (Transition matrix [4, Definition 3.2]). Let F : Fn2 →
Fm2 be a function. Define T F : R[Fn2 ] → R[Fm2 ] as the unique linear operator
defined by δx 7→ δF(x) for all x ∈ Fn2 . The transition matrix of F is the coordinate
representation of T F with respect to the standard bases of R[Fn2 ] and R[Fm2 ].

Definition 2.3 (Correlation matrix [4, Definition 3.3]). Let F : Fn2 → Fm2
be a function. Define CF : R[Fn2 ] → R[Fm2 ] as the Fourier transformation of
T F. That is, CF = Fm T

F F−1
n . The correlation matrix of F is the coordinate

representation of CF with respect to the standard bases of R[Fn2 ] and R[Fm2 ].

The coordinates of the correlation matrix CF correspond to the correlations
of linear approximations over F. In particular, CF

v,u = 2 Pr [vTF(x) + uTx = 0]−1
with x uniform random. In fact, the original definition of correlation matrices
due to Daemen et al. [10] starts from this equivalence.

Correlation matrices satisfy several natural properties, most of which are
direct consequences of the properties of transition matrices and Definition 2.3.
In particular, for a function F = Fr ◦ · · · ◦ F1, it holds that

CF = CFrCFr−1 · · ·CF1 .

Expanding the above equation in coordinates yields the following identity:

CF
ur+1,u1

=
∑

u2,...,ur

r∏
i=1

CFi
ui+1,ui

. (3)
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That is, the correlation of a linear approximation is equal to the sum of the
correlations of all linear trails defined by the intermediate masks u2, . . . , ur. This
result should be compared with Equation (2) for differentials. However, there is
a fundamental difference: whereas Equation (2) is heuristic and at best true on
average with respect to independent uniform random round keys, Equation (3)
holds exactly without any assumptions.

As argued in the introduction, closing the gap between Equation (2) and
Equation (3) is essential to achieve a more complete understanding of differen-
tial cryptanalysis. To this end, Section 3 introduces quasidifferential transition
matrices as a differential analog of correlation matrices.

3 Quasidifferential Transition Matrices

The probability of differentials can be described exactly by tracking the distribu-
tion of pairs of state values. Such a distribution can be described by a function
p : Fn2 × Fn2 → [0, 1] ⊆ R. There exists a transition matrix which describes the
propagation of such probability distributions through a function F : Fn2 → Fm2 .

However, keeping track of pairs directly is inconvenient because it does not
provide a simple description of translations – which are essential to understand
key-dependence. In Section 3.1, we define a new basis that is nicer to work with.
In Section 3.2, it is then shown that expressing transition matrices in this new
basis leads to matrices with similar properties as correlation matrices. These
quasidifferential transition matrices will be used in Section 4 to give a natural
fixed-key description of differential cryptanalysis.

3.1 Quasidifferential Basis

As discussed in Section 2, the Fourier transformation simplifies the effect of
translations on functions. However, the character basis is not suitable to de-
scribe differences between the halves of pairs in a straightforward way. The basis
proposed in Definition 3.1 below is a hybrid solution. Up to scaling, it contains
the probability distributions of uniform random pairs with a fixed difference and,
as shown below, it simplifies the effect of translations.

Definition 3.1 (Quasidifferential basis). Let n be a positive integer. For
any u, a ∈ Fn2 , the function βu,a : Fn2 × Fn2 → R is defined by

βu,a(x, y) = χu(x) δa(x+ y) .

The set of all βu,a will be called the quasidifferential basis for R[Fn2 × Fn2 ].

The functions βu,a are not only linearly independent, but also orthogonal.
This is shown in Theorem 3.1, which also states the important translation-
invariance property.

Theorem 3.1. The quasidifferential basis defined in Definition 3.1 is translation-
invariant and orthogonal. Specifically:
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(1) For all (u, a), (v, b) ∈ Fn2 × Fn2 , it holds that 〈βv,b, βu,a〉 = 2n δv(u) δb(a).

(2) For all (u, a) ∈ Fn2 × Fn2 and t ∈ Fn2 , it holds that

βu,a(x+ t, y + t) = χu(t)βu,a(x, y) .

Proof. The first property follows from the expression

〈βv,b, βu,a〉 =
∑

(x,y)∈Fn
2×Fn

2

χv(x) δb(x+ y)χu(x) δa(x+ y) .

Indeed, if a 6= b, then x + y = a and x + y = b never hold simultaneously. If
a = b, then the result follows from the orthogonality of the characters χu. The
translation-invariance follows from the fact that χu(x+ t) = χu(t)χu(x).

Similar to the Fourier transformation, we define the change-of-basis operator
Qn : R[Fn2 × Fn2 ]→ R[Fn2 × Fn2 ] by (Qnf)(u, a) = 〈βu,a, f〉. By Theorem 3.1 (1),
(Qnf)(u, a)/2n is then indeed the coordinate corresponding to basis function
βu,a when f is expressed in the quasidifferential basis.

3.2 Quasidifferential Transition Matrix

Recall from Section 2.2 that the correlation matrix of a function F : Fn2 → Fm2
with transition matrix T F is defined as CF = Fm T

FF−1
n . Below, we define the

quasidifferential transition matrix similarly using the change-of-basis operator
Qn and the transition matrix for pairs of values. The latter matrix can be suc-
cinctly written as the Kronecker (or tensor) product T F ⊗ T F, which is defined
as a 22m × 22n matrix with coordinates

(T F ⊗ T F)(y1,y2),(x1,x2) = T F
y1,x1

T F
y2,x2

= δy1(F(x1))δy2(F(x2)) .

Note that we index the coordinates of T F ⊗ T F directly by pairs of bitvectors.
This avoids choosing an arbitrary convention for converting between integers
and bitvector pairs.

Definition 3.2 (Quasidifferential transition matrix). Let n and m be pos-
itive integers and F : Fn2 → Fm2 a function. The quasidifferential transition matrix
DF is defined as the matrix-representation of T F ⊗ T F with respect to the qua-
sidifferential basis defined in Definition 3.1. That is, DF = Qm(T F ⊗ T F)Q−1

n .

To make Definition 3.2 more concrete, we compute the coordinates of DF.
Like for T F ⊗ T F, the coordinates of DF will be indexed by pairs (u, a) ∈ Fn2 ×
Fn2 and (v, b) ∈ Fm2 × Fm2 . By the orthogonality of the quasidifferential basis
(Theorem 3.1 (1)), it holds that Q−1

n = QT
n/2

n and consequently

DF
(v,b), (u,a) = 〈δ(v,b) ,Qn(T F ⊗ T F)QT

n δ(u,a)〉/2n = 〈βv,b, (T F ⊗ T F)βu,a〉/2n .
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Working this out yields the following expression:

DF
(v,b), (u,a) =

1

2n

∑
(x,y)∈Fn

2×Fn
2

χu(x)χv(F(x)) δa(x+ y)δb(F(x) + F(y))

=
1

2n

∑
x∈Fn

2

F(x+a)=F(x)+b

(−1)u
Tx+vTF(x) . (4)

For u = v = 0, Equation (4) reduces to the probability of the differential with
input difference a and output difference b. That is, DF

(0,b),(0,a) = 2−n DDTF
a,b. For

a = b = 0, one obtains the coordinates of the correlation matrix of F. Specifically,
DF

(v,0),(u,0) = CF
v,u. More generally, the right hand side of Equation (4) can be

interpreted as a kind of correlation matrix for the function F when restricted to
the right pair set of the differential (a, b). That is, the coordinates of DF express
the correlations of probabilistic linear relations (‘linear approximations’) between
the input and output values of the right pairs.

The following result summarizes some of the basic properties of quasidiffer-
ential transition matrices. Properties (1) to (3) are identical to those of cor-
rrelation matrices [4, Theorem 3.1], and their proofs are nearly identical. For
Theorem 3.2 (2), the Kronecker product of two quasidifferential transition ma-
trices is defined by

(DF1 ⊗DF2)(v1‖v2,b1‖b2),(u1‖u2,a1‖a2) = DF1

(v1,b1),(u1,a1)D
F2

(v2,b2),(u2,a2) ,

with x‖y the concatenation of bitvectors x and y.

Theorem 3.2. Let n and m be positive integers and F : Fn2 → Fm2 a function.
The matrix DF has the following properties:

(1) If F is a bijection, then DF is an orthogonal matrix.

(2) If F = (F1, . . . ,Fm), then DF =
⊗m

i=1D
Fi . (boxed maps)

(3) If F = F2 ◦ F1, then DF = DF2DF1 . (composition)

(4) If F(x) = x+ t for some t ∈ Fm2 , then DF
(v,b),(u,a) = χv(t) δv(u) δb(a).

(5) If F is a linear function, then DF
(v,b),(u,a) = δu(FT(v)) δb(F(a)).

Proof. Property (1) follows from the fact that T F ⊗ T F is a permutation ma-
trix when F is a bijection and the fact that Qn/

√
2n is an orthogonal matrix

by Theorem 3.1 (1). Property (2) follows immediately from the analogous result
for T F ⊗ T F and the separability of the basis. Property (3) also follows from the
same property for T F ⊗ T F. The fourth property is due to the translation in-
variance and orthogonality of the quasidifferential basis (Theorem 3.1). Finally,
Property (5) can be deduced from Equation (4):

DF
(v,b), (u,a) =

1

2n

∑
x∈Fn

2

F(x+a)=F(x)+b

(−1)(u+FT(v))Tx = δu(FT(v)) δb(F(a)) ,

where the second equality follows from the orthogonality of characters and the
fact that F(x+ a) = F(x) + b if and only if b = F(a).
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Consider the S-box S : F4
2 → F4

2 of the lightweight block cipher RECTANGLE,
shown in Table 1. The 256×256 quasidifferential transition matrix of S is shown
in Figure 1, with colors representing the absolute value of the entries. The integer
indices correspond to pairs (u, a) by the map (u, a) 7→ int(u)+ 16× int(a), where

int(u) =
∑4
i=1 ui2

4−i.

Table 1: The S-box of RECTANGLE.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 6 5 c a 1 e 7 9 b 0 3 d 8 f 4 2

Figure 1 immediately reveals a number of properties of quasidifferential tran-
sition matrices. The top-left square in Figure 1 corresponds to the correlation
matrix of S. Each block shows the correlations of probabilistic linear relations
between the input and output values for the right pairs. Hence, Figure 1 looks
like a ‘magnified’ version of the difference-distribution table of S.

Fig. 1: The quasidifferential transition matrix DS of the RECTANGLE S-box S.
Blue cells correspond to values of absolute value 1/8, orange cells to 1/4, and
green cells to 1/2. Empty cells correspond to zeros.

4 Quasidifferential Trails

Motivated by the notion of linear trails and Equation (3) from Section 2.2, the
following definition defines quasidifferential trails. In Section 4.1, it will be shown
that exact expressions for the probabilities of differentials can be given in terms
of the correlations of quasidifferential trails.

10



Definition 4.1. A quasidifferential trail for a function F = Fr ◦ · · · ◦ F1 is a se-
quence $1, $2, . . . , $r+1 of mask-difference pairs $i = (ui, ai). The correlation
of this quasidifferential trail is defined as

∏r
i=1D

Fi
$i+1,$i

.

Quasidifferential trails with u1 = u2 = . . . = ur+1 = 0 correspond to charac-
teristics. Their correlation is equal to the product of the one-round probabilities
of the characteristic with differences a1, . . . , ar+1:

r∏
i=1

DF
(0,ai+1),(0,ai)

=

r∏
i=1

Pr [Fi(x + ai) = Fi(x) + ai+1] ,

with x uniform random on Fn2 . This follows from Equation (4) and Definition 4.1.

4.1 Exact Probabilities from Quasidifferential Trails

Theorem 3.2 (2) implies that the sum of the correlations of all quasidiffer-
ential trails with input and output mask-difference pairs $1 = (0, a1) and
$r+1 = (0, ar+1) respectively, is equal to the exact probability of the differential
with input difference a1 and output difference ar+1. Specifically, expanding the
coordinate of DF =

∏r
i=1D

Fi corresponding to this differential yields

DF
$r+1,$1

=
∑

$2,...,$r

r∏
i=1

DFi
$i+1,$i

. (5)

This expression also holds when the input or output mask is nonzero. Further-
more, as shown in Theorem 4.1, quasidifferential trails also allow computing the
probability of a characteristic. This result should be compared with Equation (3).

Theorem 4.1. Let F : Fn2 → Fm2 be a function such that F = Fr ◦ . . . ◦ F1.
The probability of a characteristic with differences a1, . . . , ar+1 is equal to the
sum of the correlations of all quasidifferential trails with the same intermediate
differences:

Pr [
∧r
i=1Fi(xi + ai) = Fi(xi) + ai+1] =

∑
u2,...,ur

r∏
i=1

DFi

(ui+1,ai+1),(ui,ai)
,

with u1 = ur+1 = 0, xi = Fi−1(xi−1) for i = 2, . . . , r and x1 uniform random
on Fn2 .

Proof. Substituting Equation (4) in the right-hand side above yields

r∏
i=1

DFi

(ui+1,ai+1),(ui,ai)
=

∑
x1,...,xr

F(xi+ai)=F(xi)+ai+1

r∏
i=1

1

2mi
(−1)u

T
ixi+u

T
i+1Fi(xi) ,
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with mi the number of input bits of Fi. Summing over u2, . . . , ur then results in
the equation∑
u2,...,ur

r∏
i=1

DFi

(ui+1,ai+1),(ui,ai)
=

∑
x1,...,xr

F(xi+ai)=F(xi)+ai+1

r∏
i=1

1

2mi

∑
ui

(−1)u
T
i (xi+1+Fi(xi))

=
1

2n

∑
x1,...,xr

F(xi+ai)=F(xi)+ai+1

r∏
i=1

δxi+1
(Fi(xi)) .

Writing the right-hand side in terms of probabilities gives desired the result.

Theorem 4.1 can also be obtained using the following intuitive argument,
illustrated in Figure 2. Let G = (F1,F2 ◦ F1, . . . ,Fr ◦ · · · ◦ F1). A differential for
G with input difference a1 and output difference (a2, . . . , ar+1) is equivalent to
a characteristic for F = Fr ◦ · · · ◦ F1 with intermediate differences a2, . . . , ar. For
the linear function L(x) = x‖x, Theorem 3.2 (5) yields DL

(v,b),(u,a) = δu(v1 +
v2) δb1(a) δb2(a) with v = v1‖v2 and b = b1‖b2. Hence, all trails through G are of
the form shown in Figure 2 and the result follows from Equation (5).

F1 F2
. . . Fr

a1

0

a2
u2

a2
u2

a3
u3

a3
u3

ar
ur

0

a2
0

a3

ar+1

0

Fig. 2: Quasidifferential trail through the function G. Differences are indicated
in orange (above), masks in blue (below).

4.2 Example: Differential Cryptanalysis of DES

As a first example of quasidifferential trails and Theorem 4.1, we consider the
effect of key-dependence on the differential cryptanalysis of DES by Biham and
Shamir [5, 6]. The example in this section is particularly simple, but more ad-
vanced applications will be discussed in Sections 6, 8 and 9.

Recall that the differential cryptanalysis of DES is based on an iterative char-
acteristic of the form shown in Figure 3. There exist two differences that achieve
the same maximal average probability of approximately 2−7.87. For simplicity
(the other case is similar), we will consider the difference a = 0x19600000. The
key-dependence of this characteristic was already noted by Knudsen [15, §5],
who explained it using an argument specific to DES. Below, it will be shown
that the general methodology of quasidifferential trails automatically provides a
simple explanation.
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The round function Fk of DES consists of a linear expansion function E :
F32

2 → F48
2 , which duplicates certain bits, followed by the key addition and a

nonlinear layer S consisting of eight 6-bit to 4-bit S-boxes. Finally, the S-box
layer is followed by a bit-permutation P. The key-averaged probability of the
characteristic in Figure 3 is easily computed from the difference-distribution
tables of the first three S-boxes: 14/64× 8/64× 10/64 = 1120/643.

F

k1a 0
00

0 a

F

k2
a0

a 0

P S E
0

0

0

0

E(a)

u

E(a)

u
a

0
k2

Fig. 3: Iterative characteristic for two rounds of DES.

However, the structure of the round function of DES leads to one-round
quasidifferential trails, as shown on the right side of Figure 3. In particular,
since E is not surjective, there exist masks u 6= 0 such that ET(u) = 0. For
the difference a mentioned above, there exists one such quasidifferential trail
with u = 0x001400000000. The correlation of this trail can be computed from
the quasidifferential transition matrix for the first three S-boxes and equals
χu(k2) 14/64×−8/64×6/64 = −χu(k2) 672/643. It follows that a full description
of the probability of the characteristic over 2r rounds is given by

pk =
r∏
i=1

(
1120

643
− (−1)k2i,12+k2i,14

672

643

)
.

Although for every two rounds only two trails are especially important, these
trails can be combined in many ways. In particular, the expression above is
equivalent to a sum over 2r quasidifferential trails. This is a typical way in
which a relatively small local effect can result in significant variations in the
overall probability of a characteristic.

Due to the above, the probability of the thirteen round differential used in
the differential attack of Biham and Shamir [6] is roughly 17 times larger for one
in 64 keys and more than 244 times smaller than the average probability for an
equal number of keys, as previously observed by Knudsen [15].

It is natural to wonder if there exist other quasidifferential trails with large
absolute correlation. For example, a more general three-round effect can occur
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when ET(u) 6= 0. However, most quasidifferential trails activating four or less
additional S-boxes have correlation zero because the correlation of a linear ap-
proximation with input mask 1 or 32 and output mask 1, 2, 4 or 8 is zero for all
S-boxes. This follows from the fact that the S-boxes are permutations when the
first and last input bits are fixed. It can be checked that the best three-round
quasidifferential trail of this type has absolute correlation at most 2−19.41.

4.3 Interpretation of Quasidifferential Trails

As discussed in Section 3.2, the coordinates of DF can be interpreted as the
correlations of linear approximations between the input and output values for
the right pairs of a differential. Quasidifferential trails provide a way to connect
such approximations through a sequence of functions.

Since |DF
(v,b),(u,a)| never exceeds the probability of the differential (a, b), the

quasidifferential trails with the highest correlation tend to have nonzero masks in
only a few rounds. We refer to these quasidifferential trails as ‘local’. In general,
the best quasidifferential trails typically activate as few S-boxes as possible. An
S-box is active if the output mask or the input difference is nonzero.

Quasidifferential trails with absolute correlation equal to the correlation of
the corresponding differential trail are of particular interest. They correspond to
deterministic linear relations on the intermediate values of right pairs. Perhaps
surprisingly, many ciphers admit such quasidifferential trails. One reason for this
is that the differentials of many popular S-boxes are planar [11]. That is, the
right values form an affine space. Propagating this affine space is the basis of
the plateau characteristics approach [11], but is difficult to do for more than two
rounds. Theorem 4.2 is related to these quasidifferential trails and will be useful
in Sections 6 to 9.

Theorem 4.2. For a function F = Fr ◦ · · · ◦F1 and a characteristic a1, . . . , ar+1

with correlation p (as quasidifferential trail), it holds that:

(1) If (u1, a1), . . . , (ur+1, ar+1) is a quasidifferential trail with correlation (−1)b p
where b ∈ {0, 1}, then for any quasidifferential trail (v1, a1), . . . , (vr+1, ar+1)
with correlation c, the correlation of the quasidifferential trail (u1+v1, a1), . . . ,
(vr+1 + ur+1, ar+1) is (−1)b c.

(2) If the correlations of any number of quasidifferential trails with differences
a1, . . . , ar+1 and correlation ±p sum to zero, then the probability of the char-
acteristic a1, . . . , ar+1 is zero.

Proof. By Theorem 4.1 the second property follows from the first one, since it
implies that the set of all quasidifferential trails can be partitioned into subsets
whose correlations sum to zero. For the first property, note that the correlation
of the quasidifferential trail (u1, a1), . . . , (ur+1, ar+1) equals ±p if and only if
DFi

(ui+1,ai+1),(ui,ai)
= ±DFi

(0,ai+1),(0,ai)
for i = 1, . . . , r − 1.

By Equation (4), this implies that uTi+1Fi(x) = uTi x + bi for all x such that
Fi(x + ai) = Fi(x) + ai+1. Hence, again by Equation (4), the correlation of the
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ith transition of the quasidifferential trail (u1 + v1, a1), . . . , (ur+1 + vr+1, ar+1)
is multiplied by a factor (−1)bi . The result then follows from b =

∑r
i=1 bi.

Finally, we briefly consider how strong quasidifferential trails can exist for a
large number of rounds of a cipher. For every active S-box in a quasidifferential
trail that is not active in the corresponding characteristic, the correlation of the
trail contains a factor equal to the correlation of an ordinary linear approxima-
tion over that S-box. These approximations never have correlation ±1, since the
S-box is a nonlinear function. Hence, to avoid activating too many differentially
inactive S-boxes, the masks of the quasidifferential trail should follow the differ-
ences as closely as possible. By Theorem 3.2 (5), one structural property that
makes this more likely is if the linear layer L of the cipher satisfies L−1 = LT.
Such ‘self-dual’ linear layers, including all bit-permutations, are in common use.
Insights such as these can be used by designers to avoid strong key-dependency
or, should they choose to do so, to amplify key-dependent effects on purpose.

4.4 Key-Alternating Ciphers

For key-alternating ciphers, quasidifferential trails with nonzero masks have an
intuitive interpretation. Let F = Fr ◦ · · · ◦ F1 with Fi(x) = Gi(x) + ki. By Equa-
tion (5) and Theorem 3.1 (2), it holds that

DF
$r+1,$1

=
∑

$2,...,$r

r∏
i=1

(−1)u
T
i+1kiDGi

$i+1,$i
, (6)

where $i = (ui, ai) for i = 1, . . . , r+1. It is easy to see that for u0 = ur = 0, the
average of the above with respect to independent uniform random round keys
k1, . . . , kr is equal to the sum of the average probabilities of all characteristics.
More generally, one has the following result.

Theorem 4.3. Let F = Fr ◦ · · · ◦F1 with Fi(x) = Gi(x) + ki. If k = (k1, . . . ,kr)
is a uniform random variable on a set K, then

Pr [F(x + a) = F(x) + b] =
∑

u2,...,ur
a2,...,ar

(u2,...,ur)⊥K

r∏
i=1

DGi

(ui+1,ai+1),(ui,ai)
,

where u1 = ur+1 = 0 and the probability is over a uniform random x and over
the keys k1, . . . ,kr. In particular, for K =

(
Fn2
)r

, only quasidifferential trails
with zero masks contribute to the key-averaged probability of the differential.

Proof. Taking the average of both sides of Equation (6) with respect to k1, . . . ,kr
yields the result, since

∑r
i=1 u

T
i+1ki is zero when (u2, . . . , ur) ∈ K⊥ and uniform

random otherwise.
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A result similar to Theorem 4.3 but for characteristics follows from Theo-
rem 4.1. Furthermore, Equation (6) allows computing the variance of the prob-
ability of a differential:

E
[
DF
$r+1,$1

]2
+ Var

[
DF
$r+1,$1

]
=

∑
$2,...,$r

r∏
i=1

(
DGi
$i+1,$i

)2
.

This result is analogous to a well-known result of Nyberg [24] in the context of
linear cryptanalysis, which states that the variance of the correlation of a linear
approximation is equal to the sum of the squared correlations of the linear trails
in the approximation.

5 Computing the Quasidifferential Transition Matrix

The differential cryptanalysis of specific primitives using quasidifferential trails
requires calculating the quasidifferential transition matrix for each round trans-
formation. For affine functions, Theorem 3.2 (4) and (5) show how to compute
the quasidifferential transition matrix.

In general, calculating the quasidifferential transition matrix is nontrivial
because the dimensions of the matrix DF scale exponentially with the number
of input and output bits of F. In the following two sections, we show that this
is not an issue for most primitives: we provide efficient methods to compute the
quasidifferential transition matrix for small (such as 4- or 8-bit) S-boxes, for
bitwise-and operations and for modular additions.

5.1 S-boxes

The matrix DF can be computed using a number of operations roughly propor-
tional to its number of elements. Specifically, for a function F : Fn2 → Fm2 , the
matrix DF can be computed in O((n+m)22n+2m) time using a method similar to
the fast Fourier transform. Specifically, the matrix Qn with columns βu,a satisfies
Qn = Q⊗n1 . It follows that there exists an efficient divide-and-conquer algorithm
for multiplication with Qn or its transpose, analogous to the fast Fourier trans-
form. Hence, since DF = Qm (T F ⊗ T F) QT

n/2
n by Definition 3.2, the matrix

DF can be computed by applying this divide-and-conquer multiplication algo-
rithm to both the rows and columns of T F⊗T F. A Sage implementation of this
algorithm is given in Appendix A.1. It is also possible to compute the quasidif-
ferential transition matrix from the correlation matrix of F using essentially the
same approach. This is discussed in Appendix A.2.

5.2 Bitwise-And and Modular Addition

Several ciphers use bitwise-and or modular addition as their nonlinear com-
ponents. Although these functions potentially have many input and output
bits, they are highly structured. This makes it possible to express the entries
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of their quasidifferential transition matrix in terms of relatively simple logical
constraints. These constraints can be used to model the propagation of quasidif-
ferential trails in such ciphers as an MILP, SAT or SMT problem, cf. Sections 8
and 9.

In the following, the bitwise-and of x, y ∈ Fn2 will be denoted by x ∧ y, the
bitwise or by x ∨ y. We also define and(x‖y) = x ∧ y. The bitwise complement
of x will be written as x̄. The addition of the integers represented by x and y
modulo 2n will be denoted by add(x‖y). Finally, we write x 4 y when xi ≤ yi
for i = 1, . . . , n.

Bitwise-And. The quasidifferential transition matrix of and is easy to compute
because it acts on each bit independently. Hence, Theorem 3.2 (2) can be used.
This results in the following theorem. The proof can be found in Appendix A.3.

Theorem 5.1. Let a, b, c ∈ Fn2 be differences and u, v, w ∈ Fn2 masks. It holds
that Dand

(w,c), (u‖v,a‖b) 6= 0 if and only if c 4 a∨b, u∨v 4 a∨b∨w and a∧u+b∧v =
c ∧ w. Furthermore, if these conditions hold, then

Dand
(w,c), (u‖v,a‖b) = 2−wt(a∨b)−wt(w∧ā∧b̄) (−1)(ā∧u+c∧v)T(b̄∧v+c∧u)+(u∧v)T(c+a∧b∧c̄) .

Modular Addition. The quasidifferential transition matrix of add can be com-
puted using its CCZ equivalence to a quadratic function [25] that is nearly
the same as bitwise-and. This results in Theorem 5.2. The proof is given Ap-
pendix A.4. In Theorem 5.2, the linear map M : Fn2 → Fn2 is defined by

M(x)1 = 0 and M(x)i =
∑i−1
j=1 xj for i > 1 and its ‘pseudoinverse’ is M†(x) =

[x+ (x� 1)]� 1, where � and � denote left and right shifts respectively.

Theorem 5.2. Denote the map of modular addition with modulus 2n by add :
F2n

2 → Fn2 . Furthermore, let a, b, c ∈ Fn2 be differences and u, v, w ∈ Fn2 masks. It
holds that Dadd

(w,c),(u‖v,a‖b) 6= 0 if and only if

c1 = a1 + b1

c′ 4 a′ ∨ b′

u′ ∨ v′ 4 a′ ∨ b′ ∨ w′

a′ ∧ u′ + b′ ∧ v′ = c′ ∧ w′

(a′n = b′n = 0) ∨ (v′n = ā′nu
′
n) ,

where (a′, b′, c′) = (b + c, a + c,M† (a + b + c)) and (u′, v′, w′) = (u + w, v +
w,MT (u+ v + w)). Furthermore, if the above conditions hold, then

Dadd
(w,c), (u‖v,a‖b) = 2z−wt(a′∨b′)−wt(w′∧ā′∧b̄′) (−1)s

where z = (a′n ∨ b′n) ∧ (v′n = ā′nu
′
n) and s = (ā′ ∧ u′+ c′ ∧ v′)T(b̄′ ∧ v′+ c′ ∧ u′) +

(u′ ∧ v′)T(c′ + a′ ∧ b′ ∧ c̄′).
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6 Application to RECTANGLE

RECTANGLE [30] is a 64-bit substitution-permutation network, with a nonlinear
layer consisting of 4-bit S-boxes and a bit-permutation as the linear layer. The
state is represented by a 4×16 array of bits. For the specification of RECTANGLE,
we refer the reader to Appendix B.2.

There are several reasons why RECTANGLE is an interesting target to il-
lustrate the use of quasidifferential trails. The linear layer is a bit-permutation
and simpler compared to similar ciphers such as PRESENT [8]. In particular,
it rotates the second, third and fourth rows of the state by 1, 12 and 13 bits
respectively. As discussed in Section 4.3, the self-duality of bit-permutations po-
tentially results in quasidifferential trails with high absolute correlation relative
to the probability of the corresponding differential trail. In addition, differential
cryptanalysis is the dominant attack for RECTANGLE. The optimal differen-
tials for RECTANGLE also have a limited differential effect, i.e. they contain few
characteristics. This simplifies the analysis.

To perform the analysis in this section, we developed an SMT-based program
to automate the search for quasidifferential trails in RECTANGLE. This tool is
provided as supplementary material and can easily be adapted to similar ciphers
such as PRESENT. Additional details can be found in Appendix B.2.

6.1 Differentials

Table 2 lists several differentials for RECTANGLE. Differential i is a 14-round
differential used in the best published key-recovery attack on RECTANGLE [30].
Although its probability is suboptimal, its input and output differences are bet-
ted suited for key-recovery. The corresponding 18-round key-recovery attack re-
quires 264 data and enough memory to hold 272 counters. The time-complexity
amounts to 278.67 (80-bit key) or 2126.66 (128-bit key) 18-round encryptions. A
success probability of 67% is claimed.

Differential ii has a dominant characteristic with average probability 2−61.
Based on the analysis of the designers (which included differential effects), this
differential is believed to have a maximal average probability. Up to rotational
equivalence, there are a total of 32 such differentials. However, as discussed
below, these differentials all have similar behavior.

The average probability of differential iii is suboptimal, but the analysis in
Section 6.2 shows that its probability is much larger for some keys.

Table 2: Differentials (a, b) for 14 rounds of RECTANGLE. The column pavg gives
an estimate of the average differential probability for independent round-keys.

a b pavg Comment №

0020000600000000 0004000000000020 2−63 + 2−66 18-round key-recovery i
0100007000000000 0861008400000010 2−61 + 2 · 2−64 ‘Optimal’ (1 of 32). ii
00000000c0000600 0004000000000020 2 · 2−65 + 13 · 2−68 ‘Suboptimal’. iii
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6.2 Analysis

In order to search for optimal quasidifferential trails, we model the propagation
of the masks for a fixed difference as a ‘Satisfiability Modulo Theories’ (SMT)
problem. Using Theorem 4.1, quasidifferential trails allow us to compute the
probability of a characteristic. Appendix B.2 contains additional information
about the SMT model and its implementation (supplementary material).

Differential i. For completeness, we list the two dominant characteristics for this
differential in Appendix B.3. The first two columns of Table 3 list the number
of quasidifferential trails of each correlation for these two characteristics.

Table 3: Number of quasidifferential trails for 14 rounds of RECTANGLE.

|c|/pavg
Differential i Differential ii Differential iii
2−63 2−66 2−61 2−64 2−64 2−65 2−65

1 2 4 2 2 4 32 32
2−1 2 4 2 2 4 32 32
2−2 26 52 24 24 48 352 352
2−3 26 60 24 24 56 480 480
2−4 182 396 176 176 384 2656 2656

Any characteristic has at least one quasidifferential trail with correlation
equal to its average probability pavg, namely the trail with all-zero masks. The
fact that the first characteristic has two quasidifferential trails with correlation
±pavg and the second four, is special. Table 4 shows two of these trails (one for
each characteristic) with the same masks. Only rounds 9 to 12 are shown, since
the masks are zero in all other rounds. Hence, these two trails describe a local,
three-round effect. This is already an interesting outcome of our approach by
itself, since previous techniques such as plateau characteristics are not able to
describe such three-round effects.

Table 4: Differences and masks for two three-round quasidifferential trails with
absolute correlation 2−13 and 2−19. The masks are the same for both trails.

Differences (ptrail = 2−63) Differences (ptrail = 2−66) Masks (both)

.........2....6. .........2....6. ................

.........c....2. .........c....2. .........c......

............86.. ............86.. ............84..

............12.. ............92.. ............12..

............3... ............3..8 ............3...

............8... ............8..1 ................

Note that the propagation of the masks closely follows that of the differences.
As discussed in Section 4.3, this is beneficial to obtain quasidifferential trails with
high correlation. The correlation for the quasidifferential trail corresponding to
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the first characteristic in rounds 9 to 12 is equal to

(−1)κ1 ×DS
(c,c),(2,0)D

S
(2,0),(6,0) ×D

S
(1,1),(8,8)D

S
(2,2),(6,4) ×D

S
(8,0),(3,3)

= (−1)κ1 × −1

8
× 1

4
× 1

8
× 1

4
× 1

8
= (−1)1+κ1 2−13 ,

where κ1 = k10,10+k10,15+k11,12+k11,13. Similarly, for the second characteristic,
the correlation of the quasidifferential trail is equal to

(−1)κ1 ×DS
(c,c),(2,0)D

S
(2,0),(6,0) ×D

S
(9,1),(8,8)D

S
(2,2),(6,4) ×D

S
(8,0),(3,3)D

S
(1,0),(8,0)

= (−1)κ1 × −1

8
× 1

4
× −1

8
× 1

4
× 1

8
× 1

8
= (−1)κ1 2−19 .

Note the sign difference compared to the first characteristic. As shown below, it
implies that the two characteristics are incompatible: for each key, one of them
must have probability zero. Taking into account the first four quasidifferential
trails, the probability of the first characteristic is

pi,1 ≈
(
1− (−1)κ1

)(
1 + (−1)λ/2

)
2−63 = 1κ1=1

(
1 + (−1)λ/2

)
2−62 ,

where λ is a linear combination of round-key bits. Although we did not include
all quasidifferential trails in the analysis, Theorem 4.2 (2) allows concluding
that the characteristic has probability zero when κ1 = 0. Furthermore, it can
be argued that lower-correlation trails are typically less significant. Although
it is possible that for example the 26 trails with correlation 2−65 contribute a
term of magnitude 2−63.3, this only happens for a small fraction of keys since
it requires the signs of all these trails to point in the same direction. For the
second characteristic, considering the first 8 trails results in

pi,2 ≈
(
1 + (−1)κ1 − (−1)κ2 − (−1)κ1+κ2

)(
1 + (−1)λ/2

)
2−66

= 1κ1=01κ2=1

(
1 + (−1)λ/2

)
2−64 .

Impact on the key-recovery attack. The time-complexity of the 18-round key-
recovery attack based on differential i is determined by the number of remaining
pairs for the right key after filtering the data. For the maximal number of input
structures, the number of remaining unordered pairs will be pi 263.

If κ1 = 0, then the number of pairs is 1κ2=1(2 + (−1)λ)/4 on average over
the remaining key bits. Since this is less than one for all values of κ2 and λ, the
key-recovery advantage will be too low to improve over brute-force.

For κ1 = 1, the average number of unordered pairs is 2 + (−1)λ. Using a
threshold of one pair as in the original attack, this gives a time-complexity of
277.65 (80-bit key) or 2125.65 (128-bit key) assuming that the cost of evaluating
the key-schedule is negligible compared to the cost of evaluating the cipher.
Assuming that the number of right pairs follows a Poisson distribution within
each key class, the success probability is then approximately (1− e−1)/2 + (1−
e−3)/2 ≈ 79%. Hence, for this case, the attack still marginally improves over
exhaustive search. However, achieving this improvement requires filtering for
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weak keys using the condition κ1 = 1 during the key-recovery phase. Otherwise,
no improvement over exhaustive search is obtained. The observations above can
be summarized as follows.

Result 1. The key-recovery attack on 18-round RECTANGLE from [30] using
differential i does not improve over exhaustive search. For keys with k10,10 +
k10,15 + k11,12 + k11,13 = 1, the attack can be modified to filter out keys not
satisfying this condition and then achieves a success probability of approximately
79% with a time-complexity of 277.65 (80-bit key) or 2125.65 (128-bit key) 18-
round encryptions. The attack requires 264 data and enough memory to store
272 counters.

By Result 1, there is a rectified 18-round key-recovery attack on RECTANGLE
with average success probability 39.5% and (marginally) better time-complexity
than exhaustive search.

Differential ii. The analysis of differential ii is very similar to that of i. The
three dominant characteristics are given in Appendix B.3. Based on the first four
trails for the first two characteristics and the first eight trails for the second, the
characteristic probabilities are

pii,1 ≈ 1κ1=1

(
1 + (−1)λ/2

)
2−60

pii,2 ≈ 1κ1=1

(
1 + (−1)λ/2

)
2−63

pii,3 ≈ 1κ1=01κ2=0

(
1 + (−1)λ/2

)
2−62 .

That is, for half of the keys, the dominant characteristic actually has no right
pairs. For the other keys, its probability is roughly twice as large. The second
characteristic shows similar behavior. Also note that the third characteristic is
not compatible with the first two.

A similar analysis was performed for all other (up to rotational equivalence)
14-round differentials with a dominant characteristic of average probability 2−61.
The results were essentially the same.

Differential iii. Both characteristics with probability 2−65 are given in Ap-
pendix B.3. Based on the 32 quasidifferential trails with correlation 2−65, we
find that the first characteristic has a nonzero probability if and only if 5 lin-
early independent equations in the round keys hold. The average probability over
these keys is 2−60. For the second characteristic, we find a similar effect with
slightly different conditions on the round keys. Like for the first characteristic,
the average probability over these keys is 2−60. Furthermore, the conditions for
the two characteristics to have nonzero probability (given in Appendix B.4) are
incompatible. Hence, the sum of the probabilities of the first two characteristics
is 2−60 for 1/16 keys and zero for all other keys.

In addition, there are 13 characteristics with an average probability of 2−68.
We find that each of these characteristics has nonzero probability zero for only
1/64 or 1/128 keys. The conditions for this to happen may partially overlap or
be inconsistent with the conditions for the first two characteristics.
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7 Application to KNOT

In order to illustrate the relevance of our techniques to the analysis of permuta-
tions, we analyze several differential attacks on the KNOT family of permutations
and their authenticated-encryption and hashing modes [31]. KNOT is a large-
state variant of RECTANGLE and was a second-round candidate in the NIST
lightweight cryptography project. In this paper, we only consider the primary
variant, which is a 256-bit permutation. The state is represented by a 4 × 64
rectangular array. The round function operations are similar to those of RECT-
ANGLE, but a different S-box is used and the third and fourth row of the state
are rotated by 8 and 25 positions respectively. Additional details may be found
in Appendix C.1.

7.1 Differentials

At the 2020 NIST lightweight cryptography workshop, Zhang et al. [32] pre-
sented several differential attacks on round-reduced KNOT authenticated en-
cryption and hashing modes. The differentials used in these attacks are listed in
Table 5, along with their estimated probabilities (without taking into account
quasidifferential trails). In this section, it will be shown that these attacks do
not work because the probability of the differentials in Table 5 is much smaller
than expected. Furthermore, it will be shown that there exist round constants
for which their probabilities are two orders of magnitude larger. All relevant
characteristics are listed in Appendix C.2.

Table 5: Differentials for r rounds of KNOT-256. The column pavg gives an esti-
mate of the ‘average’ differential probability (for independent uniform random
round constants). The differences are given in Appendix C.2.

r pavg Application №

10 5× 2−56 Hash collision and AEAD forgery. i
12 10× 2−66 Hash collision and AEAD forgery. ii

7.2 Analysis

The analysis of the differentials in Table 5 is similar to the analysis for RECT-
ANGLE. The SMT-model for RECTANGLE can easily be modified to efficiently
search for quasidifferential trails in KNOT.

Differential i. Based on the quasidifferential trails with correlation 2−56 for
each of the five characteristics with pavg = 2−56, we conclude that all of them
have probability zero for the standard round constants of KNOT-256. Hence,
the differential probability is much lower than what might be expected from the
‘average’. Even if there exist other characteristics with unexpectedly large prob-
ability (a scenario considered below), this is a significant issue for the collision
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attack on the KNOT hash function. Indeed, the collision search consists of find-
ing a right pair for one of the best few characteristics, since this is significantly
easier than finding a right pair for the differential by random search.

Despite the observations above, it is possible that there exists a low-probability
characteristic with an unexpectedly high probability for the default round con-
stants. The differential contains four characteristics with ‘average’ probability
2−60. However, by analyzing the corresponding quasidifferential trails, we find
that they too have probability zero. Next, there are 17 characteristics with ‘aver-
age’ probability 2−62. Again, we find that all of them have probability zero. We
also considered 24 characteristics with ‘average’ probabilities 2−63 and 2−65 and
found that they have probability zero. Although we did not analyze all char-
acteristics with probability 2−66 or lower, they can only have a high nonzero
probability for a very small fraction of round constants. Given the number of
such characteristics, it is unlikely that a high probability characteristic exists.

On the flip side, there exist round constants for which one or more of the
five characteristics have probability 2−50. This is due to the existence of 64
quasidifferential characteristics with absolute correlation 2−56. A careful inspec-
tion of the conditions on the round constants shows that there exist variants
of KNOT with modified constants for which the probability of differential i is
approximately 5 · 2−50 = 2−47.7. Further improvements are possible by taking
into account additional characteristics and quasidifferential trails.

Differential ii. The analysis of the 12-round differential is similar to the 10-
round differential, and leads to similar conclusions. This is not surprising given
that both characteristics follow a similar pattern up to rotational symmetry.
We find that each of the 10 dominant characteristics has probability zero for
the default round constants. In addition, we did not find any characteristics
with ‘average’ probability 2−70 or higher with a nonzero probability. Hence, it
is unlikely that the 12-round forgery and collision attacks presented by Zhang
et al. are valid. Finally, we can identify round constants for which one or more
of the 10 characteristics has a probability of 2−59.

8 Application to Speck

In this section we investigate the key-dependency of several differentials for Speck
from the literature. The bitvector constraints for modular addition from Theo-
rem 5.2 are the main ingredient of our SMT-model. The same approach can be
applied to any ARX block cipher or permutation. The implementation of our
model is provided as supplementary material.

In Section 8.1 we provide a simple explanation (using a single quasidifferential
trail) for an experimental observation of Ankele and Kölbl [2] on Speck-64. In
Sections 8.2 and 8.3 we analyze the differentials used in the best published
attacks on all variants of Speck. Appendix D.1 briefly reviews Speck.
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8.1 Explaining Observations of Ankele and Kölbl on Speck-64

Ankele and Kölbl [2] experimentally estimated the probability of a 7-round dif-
ferential for Speck-64 for 10000 random keys and found that the distribution of
the number of rights pairs is bimodal. Their results are reproduced in Figure 4,
but colored to indicate two key classes that follow from the analysis below.
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Fig. 4: Number of right pairs for the Speck-64 differential from [2], for a total
of 10000 keys. For each key, 230 pairs were sampled uniformly at random.

The fact that the histogram in Figure 4 is bimodal already suggests the
presence of an important quasidifferential trail with nonzero masks. Automatic
search reveals that the best such quasidifferential trail has correlation 2−23. The
dominant characteristic (with probability 2−21) and the masks of the quasidif-
ferential trail with correlation 2−23 are shown in Table 6.

Differences Masks

4...4.92 1.42..4. ........ ........

82.2.... ..12.2.. 18...... ........

..9..... ....1... ........ ........

....8... ........ ........ ........

......8. ......8. ........ ........

8.....8. 8....48. ........ ........

..8..48. ..8.2.84 ........ ........

8.8.a.8. 8481a4a. ........ ........

Table 6: Differential trail with proba-
bility 2−21 for 7 rounds of Speck-64,
and the masks of a quasidifferential
trail with correlation 2−23.

≪ 3

10420040

00000000

92400040

00000000

82020000

18000000

10420040

00000000

82100200

00000000
82020000

18000000

k1

≫ 8
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00000000
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00180000

00120200

00000000
00900000

00000000

Fig. 5: Quasidifferential trail through
two rounds of Speck-64, with differ-
ences in orange and masks in blue.
The correlation of this trail is 2−5 ×
2−6 = 2−11.
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The quasidifferential trail from Table 6 only involves the modular additions
of the first two rounds. Figure 5 shows the propagation of the mask-difference
pairs for these rounds in more detail. Following Section 4.3, the interpretation
of this trail is that there exists a linear combination of the output of the first
modular addition which is biased for the right pairs. This implies that a rotated
linear combination of the left input of the second modular addition is biased.
This bias results in a smaller or larger number of right pairs, depending on the
value of a linear combination of bits of k1. Specifically, the probability can be
estimated as

2−21 + (−1)k1,28+k1,29 2−23 .

For 230 random input pairs, the average number of right pairs is still 29 =
512. However, the above formula predicts that the average is 512 + 27 = 640 if
k1,28 = k1,29 and 512− 27 = 384 otherwise. This explains most of the variation
in the experimental results shown in Figure 4. Additional effects, such as the
more limited bimodal behavior for k1,28 6= k1,29, can be explained by taking into
account additional quasidifferential trails.

8.2 Analysis of Differential Attacks on Speck-32

The best published attacks on reduced-round Speck are differential attacks using
the enumeration key-recovery strategy proposed by Dinur [13]. Given an r-round
differential, an r+3 round attack is obtained by prepending one round (for free)
and appending two rounds. For variants with longer key lengths, one performs
the same attack for each guess of the last few round keys.

In this section, we analyze the best published attacks on Speck-32 reduced
to 11-14 rounds. These attacks rely on the 6-9 round differentials shown in
Table 7. Lee et al. [18] report on a 10-round differential with average probability
2−30.39, but it does not lead to a 15-round key-recovery attack because the time-
complexity would be 231.39 for a success probability of 1− 1/e ≈ 63%.

Table 7: Differentials (a, b) for r-round Speck-32.

r a b pavg Reference №

6 0211 0a04 850a 9520 2−13 Abed et al. [1] i
7 0a60 4205 850a 9520 2−18 Abed et al. [1] ii
8 1488 1008 850a 9520 2−24 + 2−27 Abed et al. [1] iii

9 8054 a900 0040 0542 2−30 + 2 · 2−33† Biryukov et al. [7], Song et al. [26] iv
† 3060307 · 2−47 ≈ 2−29.45 with characteristics of average probability ≤ 2−49

Differentials i and ii. The six round differential i is dominated by a characteristic
with average probability 2−13, given in Appendix D.2. The next-best characteris-
tic has average probability 2−23 and will be ignored in our analysis. We find two
quasidifferential trails with correlation ±2−15 and two with correlation ±2−17.
There also exist trails with absolute correlation 2−19 and lower, but their effect
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on the probability is limited except for a small fraction of keys. Grouping these
trails appropriately, the following estimate is obtained:

pi ≈ (1 + (−1)0003
Tk5/4)(1 + (−1)0180

Tk5/4)2−13 ,

where, for simplicity, only one trail of correlation ±2−17 is included.
The analysis of the seven round differential is similar. The dominant differ-

ential trail has average probability 2−18 and is the same as the six round trail
with one additional round at the beginning. Hence,

pii ≈ (1 + (−1)0006
Tk1/4)(1 + (−1)0003

Tk6/4)(1 + (−1)0180
Tk6/4)2−18 .

Differential iii. The differential is dominated by two characteristics. The first
has average probability 2−24. Since the last part of these characteristics is the
same as for the dominant characteristics of differentials i and ii, some of the same
quasidifferential trails are obtained. However, there also exist quasidifferential
trails with correlation equal to the probability of the trail. This implies that there
exists keys for which these characteristics have probability zero. Specifically, for
the first characteristic, we find that

piii,1 ≈ 10600Tk2=011800Tk3=1(1 + (−1)0003
Tk7/4)(1 + (−1)0180

Tk7/4) 2−22 .

That is, its probability is zero for 3/4 keys, but four times larger for the other
keys. For the second characteristic, we have

piii,2 ≈ 10600Tk2=011800Tk3=110a00Tk2=0(1+(−1)0003
Tk7/4)(1+(−1)0180

Tk7/4) 2−24 .

Hence, the second characteristic has nonzero probability only when the first
probability is nonzero and 0a00Tk2 = 0.

Differential iv. The probability is dominated by three characteristics (listed in
Appendix D.2). Additional characteristics only increase the overall probability,
but more detailed analysis reveals that many additional characteristics have
probability zero for most keys, and high probability for a relatively small fraction
of keys.

The first characteristic has average probability 2−30. Based on all quasidif-
ferential trails with absolute correlation ≥ 2−32, we obtain

piv,1 ≈ 1000cTk5=1(1− (−1)0180
Tk1/4) 2−29 .

For the second characteristic (with average probability 2−33), the quasidifferen-
tial trails with absolute correlation ≥ 2−34 yield

piv,2 ≈ 16000Tk2=0(1− (−1)000c
Tk5/2− (−1)0300

Tk4+000cTk5/2) 2−32 .

Note that one of the two quasidifferential trails with absolute correlation 2−34

involves three modular additions. By Theorem 4.2, the condition 6000Tk2 = 0 is
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necessary to obtain a nonzero probability. However, the conditions 0300Tk4 = 0
and 000cTk5 = 0 only imply a small but possibly nonzero correlation. For the
third characteristic, we consider all quasidifferential trails with absolute correla-
tion ≥ 2−35 and obtain

piv,3 ≈ 10c00Tk2=11000cTk5=1(1− (−1)0180
Tk1/2) 2−31 .

Note that the condition 000cTk5 = 1 is shared with the first characteristic. Since
the probability of the second characteristic is too low, this implies that previous
key-recovery attacks on 14 rounds of Speck-32 work for only half of the keys.

Impact on key-recovery attacks. The above analysis allows us to reevaluate the
best published attacks on reduced-round Speck-32. The attack on 13 rounds
only works for one in four keys. Likewise, the attack on 14 rounds works only
for half of the keys. Another way to formulate this is that the (key-averaged)
success probability of these attacks is much lower than expected. For eleven
and twelve rounds, the success probability is also slightly lower, but less so.
Unfortunately, restoring the previous success-probability is not possible except
by using alternative differentials.

However, if the results of our analysis are taken into account, weak-key at-
tacks with lower data requirements are obtained. These attacks can be optimized
either with respect to the number of weak keys, or with respect to the data-
complexity. To minimize the data-complexity, we make assumptions on the key
to maximize the probability of the differential. To maximize the number of keys
for which the attack works, only conditions to ensure nonzero probabilities are
imposed. Assuming that the adversary stops requesting data once the key has
been found4, these attacks require less data than what would be expected based
on the average-case analysis.

Table 8: Rectified attacks on r-round Speck-32.

r
Time Data Weak-keys

Comment
encryptions chosen plaintexts density

11
245.36 213.36 2−2 Optimized for data
245.88 213.88 1 Optimized for number of keys

12
250.03 218.03 2−3 Optimized for data
250.72 218.72 1 Optimized for number of keys

13
254.03 222.03 2−5 Optimized for data
256.20 224.20 2−2 Optimized for number of keys

14 261.84 229.84 2−1 Optimized for number of keys

The results are shown in Table 8. For example, the 6-round differential (11
round attack) has a probability at most (1 + 1/4)2 2−13 ≈ 2−12.36. With early

4 This is possible due to the way the key-recovery attack works.
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stopping, the average number of pairs required is 213(1/(1 − 1/4)2 + 2/(1 −
1/42) + 1/(1 + 1/4)2)/4 ≈ 212.88. For 14 rounds, we omit the attack optimizing
the data-complexity, since it requires more time than exhaustive search over a
key space of size 264−1 for a similar success probability.

8.3 Analysis of Differential Attacks on Larger Variants of Speck

The techniques to analyze Speck-32 in Section 8.2 carry over to the larger variants
of Speck. In this section, we reevaluate the best published attacks on these
variants. They rely on the key-recovery technique of Dinur [13] and are based
on the differentials shown in Table 9 below. For 16 rounds of Speck-96, Song et
al. [26] also propose a differential with average probability 2−94.94. However, we
do not include it as its probability is too low to improve over exhaustive search.

Table 9: Differentials for r-round Speck-n. Differences are given in Appendix D.3.
The average differential probability is pavg, the average probability of the ana-
lyzed characteristics is pchar. The values pmin and pmax are the minimum and
maximum value of the probability of the analyzed characteristics.

n r pavg pchar pmin pmax Reference №

48 11 2−44.31 2−46 + 2−47 0 2−43 Song et al. [26] i
64 15 2−60.56 2−62 0 2−59 Song et al. [26] ii
96 15 2−81.00 2−81 0 2−73.68 Song et al. [26] iii
128 20 2−124.35 4 · 2−128 0 2−120.36 Song et al. [26] iv

Most of the differentials in Table 9 rely on a significant differential effect.
Nevertheless, the analysis below will be limited to a few characteristics in each
case. This is done only to simplify the analysis, since each characteristic has its
own key-dependent behaviour that is not independent of other characteristics.
Note that including additional characteristics can only increase the probability of
the differential. In addition, it will be shown that key-dependence is much more
significant than the differential effect for all differentials in Table 9. For a detailed
case-by-case analysis of the differentials in Table 9, we refer to Appendix D.3.

Impact on key-recovery attacks. The analysis above directly impacts the key-
recovery attacks based on the differentials from Table 9. Like for Speck-32, all
of these attacks have lower success probability than previously expected. Never-
theless, the analysis also leads to weak-key attacks with lower data-complexity.
The results are summarized in Table 10.

Note that for Speck-128, our analysis shows that the key-recovery attacks
probably do not improve over exhaustive search over the reduced key-space.
Improvements may be possible if checking the weak-key conditions can be made
comparatively cheap, provided that checking candidate keys dominates the cost.
Since a detailed analysis of the time-complexity is outside of the scope of this
paper, Table 10 only lists a distinguisher for this case. Although our analysis did
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not include all characteristics, these would only increase the average differential
probability by 2−124.9. Further analysis shows that the probabilities of these
characteristics are strongly key-dependent. Hence, the key-recovery attacks on
Speck-128 from [26] most likely do not improve over exhaustive search.

Table 10: Rectified attacks on r-round Speck.

Variant r
Time Data Weak-keys

Comment
encryptions chosen plaintexts density

48/72 15
268 244 2−3 Optimized for data

268.58 244.58 2−2 Optimized for number of keys

48/96 16
292 244 2−3 Optimized for data

292.58 244.58 2−2 Optimized for number of keys

64/96 19 292 260 2−3 ——
64/128 20 2124 260 2−3 ——

96/96 18
274.68 274.68 2−9 Optimized for data
277.25 277.25 2−6 Optimized for number of keys

96/144 19
2122.68 274.68 2−9 Optimized for data
2125.25 277.25 2−6 Optimized for number of keys

128/m 20
2121.36 2121.36 2−7 Distinguisher (data-optimized)
2125.36 2125.36 2−3 Distinguisher (key-optimized)

9 Application to Simon

Theorem 5.1 gives the quasidifferential transition matrix of the bitwise-and func-
tion in a form that is suitable for SMT-modelling. Since bitwise-and is the only
nonlinear operation used in Simon, the propagation of quasidifferential trails can
easily be modelled as an SMT-problem. Our implementation is provided as sup-
plementary material. In Appendix E, a characteristic for Simon-32 is analyzed.
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A Computing the Quasidifferential Transition Matrix

This appendix accompanies Section 5.

A.1 Algorithm to Compute the Quasidifferential Transition Matrix

Recall that the algorithm is based on the observation that

Qn = Q⊗n1 =


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0


⊗n

.

For any such matrix, there exists an efficient algorithm to compute the matrix-
vector product. The code in Listing 1.1 implements this divide-and-conquer al-
gorithm. It was tested using Sage 9.5.

Listing 1.1: Algorithm to compute the quasidifferential transition matrix.

1 import itertools

2
3 def interleave_bits(x, y, n):

4 z = 0

5 for i in range(n):

6 z |= (x & (1 << i)) << i | (y & (1 << i)) << (i + 1);

7 return z

8
9 def to_quasidifferential_basis(x):

10 if len(x) == 1:

11 return x

12
13 assert len(x) % 4 == 0

14
15 l = int(len(x) / 4)

16
17 x_00 = to_quasidifferential_basis(x[ : l])

18 x_01 = to_quasidifferential_basis(x[ l:2*l])

19 x_10 = to_quasidifferential_basis(x[2*l:3*l])

20 x_11 = to_quasidifferential_basis(x[3*l: ])

21
22 return vector(x.base_ring(),

23 (x_00 + x_11).list() +\

24 (x_01 + x_10).list() +\

25 (x_00 - x_11).list() +\

26 (x_01 - x_10).list())

27
28 def interleaved_transition_matrix(F, n, m):
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29 T = matrix(QQ, 2 ** (2*m), 2 ** (2*n))

30 for x in range(2 ** n):

31 for y in range(2 ** n):

32 i = interleave_bits(x, y, n)

33 j = interleave_bits(F(x), F(y), m)

34 T[j, i] = 1

35 return T

36
37 def quasidifferential_transition_matrix(F, n, m):

38 D = interleaved_transition_matrix(F, n, m)

39
40 # Transform columns

41 for i in range(2 ** (2*n)):

42 D.set_column(i, to_quasidifferential_basis(D.column(i)))

43 # Transform rows

44 for i in range(2 ** (2*m)):

45 D.set_row(i, to_quasidifferential_basis(D.row(i)))

46
47 return D / 2**n

48
49 def deinterleave_quasidifferential_transition_matrix(D, n, m, primary = ’diff’):

50 R = matrix(QQ, 2 ** (2*m), 2 ** (2*n))

51 for u, v in itertools.product(range(2 ** n), range(2 ** m)):

52 for a, b in itertools.product(range(2 ** n), range(2 ** m)):

53 if primary == ’mask’:

54 R[2 ** m * v + b, 2 ** n * u + a] = D[

55 interleave_bits(b, v, m), interleave_bits(a, u, n)

56 ]

57 elif primary == ’diff’:

58 R[2 ** m * b + v, 2 ** n * a + u] = D[

59 interleave_bits(b, v, m), interleave_bits(a, u, n)

60 ]

61 return R

A.2 Computing the DF from CF

Theorem A.1 shows that the quasidifferential transition matrix can be computed
from the correlation matrix of F, using essentially the same algorithm as for
computing it from T F. To prove it, we first establish Lemma A.1.

Lemma A.1. The basis defined in Definition 3.1 has the following ‘twisted self-
duality’ property: for all (u, a) ∈ Fn2 × Fn2 , (Fn ⊗Fn)βu,a = 2nβa,u.
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Proof. Since βu,a(x, y) = χu(x) δa(x+ y), it holds that

[(Fn⊗Fn)βu,a](v, w) =
∑

(x,y)∈Fn
2×Fn

2

χv(x)χw(y)βu,a(x, y) = χw(a)
∑
x∈Fn

2

χu+v+w(x) .

The result then follows by the orthogonality of characters:

χw(a)
∑
x∈Fn

2

χu+v+w(x) = 2n χa(v) δu(v + w) = 2n βa,u(v, w) ,

where the second equality follows from the definition of βa,u.

Theorem A.1. Let n and m be positive integers and F : Fn2 → Fm2 a function.
The quasidifferential transition matrix DF and the correlation matrix CF are
related by

DF
(v,b), (u,a) = 2n−m 〈βb,v, (CF ⊗ CF)βa,u〉 .

Proof. By Definition 3.2, it holds that DF
(v,b), (u,a) = 〈βv,b, (T F ⊗ T F)βu,a〉/2n.

Since T F ⊗ T F = (Fm ⊗Fm)−1(CF ⊗ CF)(Fn ⊗Fn), it follows that

DF
(v,b), (u,a) = 〈(Fm ⊗Fm)βv,b, (CF ⊗ CF)(Fn ⊗Fn)βu,a〉/22m

= 2n−m 〈βb,v, (CF ⊗ CF)βa,u〉 .

The second equality above follows from Lemma A.1.

By taking u = v = 0, Theorem A.1 implies the well-known result that the
difference-distribution table is, up to scaling, the Fourier transformation of the
matrix with coordinates (CF

a,b)
2.

A.3 Proof of Theorem 5.1

Let andn : F2n
2 → Fn2 denote the n-bit bitwise-and function defined by

andn(x1‖y1‖x2‖y2‖ · · · ‖xn‖yn) = (x1y1, x2y2, . . . , xnyn) .

By Theorem 3.2 (2), it holds that Dandn = (Dand1)⊗n. Hence, it suffices to
compute Dand1 . By Equation (4), we have

Dand1
(wi,ci),(ui‖vi,ai‖bi) =

1

4

∑
x,y∈ F2

bix+aiy=aibi+ci

(−1)uix+viy+wixy .

To compute the sum above, a case-by-case analysis will be convenient. For ai =
bi = 0, the sum evaluates to

Dand1
(wi,ci),(ui‖vi,0‖0) = 1ci=0(1 + (−1)ui + (−1)vi + (−1)ui+vi+wi)/4

= (−1)uivi 2−wi 1ci=0 1ui∨vi4wi .
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For ai = 1 and bi = 0, one obtains

Dand1
(wi,ci),(ui‖vi,1‖0) = 1ci=0(1 + (−1)ui)/4 + (−1)vi 1ci=1(1 + (−1)ui+wi)/4

= (−1)vici 2−1 1ui=ci∧wi
.

The case ai = 0 and bi = 1 is analogous:

Dand1
(wi,ci),(ui‖vi,0‖1) = (−1)uici 2−1 1vi=ci∧wi .

Finally, for ai = bi = 1, one has

Dand1
(wi,ci),(ui‖vi,1‖1) = 1ci=1(1 + (−1)ui+vi+wi)/4 + (−1)ui 1ci=0(1 + (−1)ui+vi)/4

= (−1)uic̄i 2−1 1ui+vi=ci∧wi
.

Combining the cases above, one obtains that Dand1
(wi,ci),(ui‖vi,ai‖bi) 6= 0 if and only

if ci 4 ai ∨ bi, ui ∨ vi 4 ai ∨ bi ∨wi and ai ∧ ui + bi ∧ vi = ci ∧wi. Furthermore,
under these conditions,

Dand1
(wi,ci),(ui‖vi,ai‖bi) = (−1)āibiciui+aib̄icivi+aibic̄iui+āib̄iuivi2−(ai∨bi)−(wi∧ā∧b̄) .

The result then follows from Theorem 3.2 (2) by simplifying the sign.

A.4 Proof of Theorem 5.2

Theorem A.2 (Schulte-Geers [25, Theorem 1]). Let M : Fn2 → Fn2 be the

linear map defined M(x)1 = 0 and M(x)i =
∑i−1
j=1 xj for i > 1 The function

q : (x, y) 7→ M(x ∧ y) is CCZ-equivalent to modular addition with modulus 2n

under the linear map (x, y, z) 7→ (x+ z, y + z, x+ y + z).

Let q(x, y) = M(x ∧ y) as in Theorem 5.1. By Theorem 3.2 (3) and (5), the
quasidifferential transition matrix of q satisfies

Dq
(w,c),(u‖v,a‖b) =

∑
d∈M−1(c)

Dand
(MTw,d),(u‖v,a‖b) ,

where the sum is over all preimages of c. If some d ∈ Fn2 satisfies M(d) = c, then
c1 = 0 by the definition of M . Furthermore, one can check that di = ci + ci+1

for all i ≤ n− 1. The value of dn is arbitrary. Hence, if c1 = 0, we can write

Dq
(w,c),(u‖v,a‖b) = Dand

(MTw,M†c),(u‖v,a‖b) +Dand
(MTw,M†c+en),(u‖v,a‖b) ,

where en = (0, 0, . . . , 0, 1). Theorem 5.1 can now be applied to each of the terms
above. We now write the second term in terms of the first. Compared to the
first term, the only additional conditions for the second term to be non-zero is
an ∨ bn = 1. In addition, the sign of both terms (if nonzero) differs by a factor
(−1)ānun+vn . Hence,

Dq
(w,c),(u‖v,a‖b) = 1c1=0

(
1 + (−1)ānun+vn1an∨ bn

)
Dand

(MTw,M†c),(u‖v,a‖b) ,
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In order to compute Dadd, a variant of Theorem 3.2 (5) is needed. Specifically,

Dadd
(w,c),(u‖v,a‖b) = Dq

(w′,c′),(u′‖v′,a′‖b′) ,

where w′ = u + v + w, u′ = u + w, v′ = v + w, c′ = a + b + c, a′ = b + c and
b′ = a+ c. The result follows by using the expression for the coordinates of Dq

that was derived above.

B Application to RECTANGLE

This appendix accompanies Section 6.

B.1 Specification of RECTANGLE

RECTANGLE has a 64-bit state that is typically represented by a 4 × 16 array
of bits. The RECTANGLE round function consists of three simple operations, as
illustrated in Figure 6.

Round-key addition. The round-key bits are xored to the state bits. The
round keys are derived using a key-schedule based on a generalized Feistel
construction. The master key is either 80 or 128 bits long. The details of this
key-schedule will not be discussed here.

S-box layer. Each column of the state is transformed by a 4-bit permutation
S. The S-box S is given in Table 1 from Section 3.2. The absolute values of
the entries of the matrix DS are illustrated in Figure 1. The topmost bit of
each state column in Figure 6 corresponds to the least significant bit of the
S-box input- and output values.

Linear layer. The second row (from the top) is rotated by one position to the
left. The third row and the fourth row are rotated by 12 and 13 positions to
the left respectively.

RECTANGLE repeats these steps for a total of 25 rounds, followed by a final
round-key addition.
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⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Fig. 6: The round function of RECTANGLE. From top to bottom: the round-key
addition, the S-box layer and the linear layer consisting of a rotation of the
bottom three rows.

B.2 Additional Details about the SMT Model

The modelling is similar to existing SMT-based models for finding linear trails.
The model expresses the correlation of a trail by its negative base-2 logarithm
or weight. In fact, since the correlation of any quasidifferential is at most as
large as the probability of the corresponding differential trail, these weights
are expressed relative to the weight of the differential trail. The propagation
over the S-box layer is modelled by conditions in disjunctive normal form cor-
responding to the relative weights of the entries of the quasidifferential tran-
sition matrix. To solve the SMT problem, we use Boolector [23] through its
Python interface ‘pyboolector’. The implementation can be found at https:

//github.com/TimBeyne/quasidifferential-trails.

B.3 Characteristics for RECTANGLE
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Table 11: Dominant characteristics in differential i.

pavg = 2−63 pavg = 2−66

..2....6........ ..2....6........

..6....2........ ..6....2........

.2....6......... .2....6.........

.6....2......... .6....2.........

2....6.......... 2....6..........

6....2.......... 6....2..........

....6..........2 ....6..........2

....2..........6 ....2..........6

...6..........2. ...6..........2.

...2..........6. ...2..........6.

..6..........2.. ..6..........2..

..2..........6.. ..2..........6..

.6..........2... .6..........2...

.2..........6... .2..........6...

6..........2.... 6..........2....

2..........6.... 2..........6....

..........2....6 ..........2....6

..........6....2 ..........6....2

.........2....6. .........2....6.

.........c....2. .........c....2.

............86.. ............86..

............12.. ............92..

............3... ............3..8

............8... ............8..1

...............8 ...............9

...............1 ...............1

...............1 ...............1

...............6 ...............6

...4..........2. ...4..........2.

Table 12: Dominant characteristics in differential ii.

pavg = 2−61 pavg = 2−64 pavg = 2−64

.1....7......... .1....7......... .1....7.........

.6....2......... .e....2......... .6....2.........

2....6.......... 2...86.......... 2....6..........

6....2.......... 6...12.......... 6....2..........

....6..........2 ....7..........2 ....6..........2

....2..........6 ....2..........6 ....2..........6

...6..........2. ...6..........2. ...6..........2.

...2..........6. ...2..........6. ...2..........6.

..6..........2.. ..6..........2.. ..6..........2..

..2..........6.. ..2..........6.. ..2..........6..

.6..........2... .6..........2... .6..........2...

.2..........6... .2..........6... .2..........6...

6..........2.... 6..........2.... 6..........2....

2..........6.... 2..........6.... 2..........6....

..........2....6 ..........2....6 ..........2....6

..........6....2 ..........6....2 ..........6....2

.........2....6. .........2....6. .........2....6.

.........c....2. .........c....2. .........c....2.

............86.. ............86.. ............86..

............12.. ............12.. ............92..

............3... ............3... ............3..8

............8... ............8... ............8..1

...............8 ...............8 ...............9

...............1 ...............1 ...............1

...............1 ...............1 ...............1

...............6 ...............6 ...............6

...4..........2. ...4..........2. ...4..........2.

...f..........d. ...f..........d. ...f..........d.

.861..84......1. .861..84......1. .861..84......1.
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Table 13: Two characteristics in differential iii with largest probability.

pavg = 2−65 pavg = 2−65

........c....6.. ........c....6..

........4....2.. ........4....2..

............6... ............6...

............2... ............2...

...........2.... ...........2....

...........8.... ...........8....

..............8. ..............8.

..............1. ..............1.

..............1. ..............1.

..............7. ..............7.

..4..........21. ..4..........21.

..3..........7e. ..3..........6e.

.e5.........23.. .e5.........22..

.38.........6c.. .38.........6c..

e5...8.....2.... e5...8.....2....

24...1.....6.... 24...1.....6....

.....5....2....6 .....5....2....6

.....4....6....2 .....4....6....2

.........6....6. .........6....6.

.........4....2. .........4....2.

.............6.. .............6..

.............2.. .............2..

............2... ............2...

............8... ............8...

...............8 ...............8

...............1 ...............1

...............1 ...............1

...............6 ...............6

...4..........2. ...4..........2.
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B.4 Additional Details about Differential iii

The conditions for the first characteristic to have nonzero probability are

k4,54 + k4,4 + k5,57 + k5,9 + k6,63 + k6,61 = 1

k4,9 + k4,4 + k5,9 + k5,8 = 1

k5,59 + k5,9 + k6,63 + k6,61 = 0

k5,58 + k5,8 + k6,63 + k6,61 = 1

k6,42 = 0 .

For the second characteristic, the conditions are

k4,54 + k4,4 + k5,57 + k5,9 + k6,63 + k6,61 = 0

k4,9 + k4,4 + k5,9 + k6,63 + k6,61 = 0

k5,59 + k5,9 + k6,63 + k6,61 = 1

k5,8 = 1

k6,42 = 0 .

C Application to KNOT

This appendix accompanies Section 7.

C.1 Specification of KNOT

The S-box of KNOT is given in Table 14.

Table 14: The S-box of KNOT.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 4 0 a 7 b e 1 c 9 f 6 8 5 2 c 3

C.2 Characteristics for KNOT

Tables 16 and 17 list the characteristics for the differentials analyzed in Section 7.
The input and output differences are given in Table 15.

D Application to Speck

This appendix accompanies Section 8.
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Table 15: Input and output differences for the differentials from Table 5.

i
a 0000000000000000000000000000000010000000000000000100000000000000

b 0000000000000000000000000000000000000001000000000000000000000001

ii
a 0100000000000000001000000000000000000000000000000000000000000000

b 0000000100000000000000000000000100000000000000000000000000000000

D.1 Specification of Speck

Recall that Speck is a family of lightweight block ciphers designed by the United
States NSA. The round function is shown in Figure 7. The block size is either
32, 64, 96 or 128 bits. For Speck-32, the rotation offsets are given by α = 7
and β = 2. For larger block sizes, α = 8 and β = 3. The key-schedule follows
a similar structure as the round function, with round keys replaced by round
counters. Speck supports multiple key lengths m. These variants are denoted as
Speck-n/m.

≫ α

≪ βki

Fig. 7: One round of Speck with round key ki.
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Table 16: Positions of nonzero bits for the characteristics in differential i.

{(0, 14), (0, 31)} {(0, 14), (0, 31)} {(0, 14), (0, 31)}
{(2, 14), (3, 14), (2, 31)} {(2, 14), (3, 14), (2, 31)} {(2, 14), (3, 14), (2, 31)}
{(2, 22), (2, 39), (3, 39)} {(2, 22), (2, 39), (3, 39)} {(2, 22), (2, 39), (3, 39)}
{(2, 22), (3, 22), (2, 39)} {(2, 22), (3, 22), (2, 39)} {(1, 22), (3, 22), (2, 39)}
{(2, 30), (2, 47), (3, 47)} {(2, 30), (2, 47), (3, 47)} {(1, 23), (2, 47), (3, 47)}
{(2, 30), (3, 30), (2, 47)} {(1, 30), (3, 30), (2, 47)} {(0, 23), (1, 47)}
{(2, 38), (2, 55), (3, 55)} {(1, 31), (2, 55), (3, 55)} {(0, 23), (1, 48)}
{(2, 38), (3, 38), (2, 55)} {(0, 31), (1, 55)} {(2, 23), (0, 48)}
{(2, 46), (2, 63), (3, 63)} {(0, 31), (1, 56)} {(2, 31), (0, 48)}
{(2, 46), (3, 46), (2, 63)} {(2, 31), (0, 56)} {(2, 31), (3, 31), (2, 48)}
{(2, 7), (3, 7), (2, 54)} {(2, 39), (0, 56)} {(2, 39), (2, 56), (3, 56)}
{(2, 7), (1, 54), (3, 54)} {(2, 39), (3, 39), (2, 56)} {(2, 39), (3, 39), (2, 56)}
{(2, 15), (3, 15), (1, 55)} {(2, 0), (3, 0), (2, 47)} {(2, 0), (3, 0), (2, 47)}

{(1, 15), (0, 55)} {(2, 0), (2, 47), (3, 47)} {(2, 0), (2, 47), (3, 47)}
{(1, 16), (0, 55)} {(2, 8), (3, 8), (2, 55)} {(2, 8), (3, 8), (2, 55)}
{(0, 16), (2, 55)} {(2, 8), (2, 55), (3, 55)} {(2, 8), (2, 55), (3, 55)}
{(0, 16), (2, 63)} {(2, 16), (3, 16), (2, 63)} {(2, 16), (3, 16), (2, 63)}

{(2, 16), (1, 63), (3, 63)} {(2, 16), (1, 63), (3, 63)} {(2, 16), (1, 63), (3, 63)}
{(1, 0), (2, 24), (3, 24)} {(1, 0), (2, 24), (3, 24)} {(1, 0), (2, 24), (3, 24)}

{(0, 0), (0, 24)} {(0, 0), (0, 24)} {(0, 0), (0, 24)}

{(0, 14), (0, 31)} {(0, 14), (0, 31)}
{(2, 14), (3, 14), (2, 31)} {(2, 14), (3, 14), (2, 31)}
{(2, 22), (2, 39), (3, 39)} {(2, 22), (2, 39), (3, 39)}
{(2, 22), (3, 22), (2, 39)} {(2, 22), (3, 22), (2, 39)}
{(2, 30), (2, 47), (3, 47)} {(2, 30), (2, 47), (3, 47)}
{(2, 30), (3, 30), (2, 47)} {(2, 30), (3, 30), (2, 47)}
{(2, 38), (2, 55), (3, 55)} {(2, 38), (2, 55), (3, 55)}
{(2, 38), (3, 38), (2, 55)} {(1, 38), (3, 38), (2, 55)}
{(2, 46), (2, 63), (3, 63)} {(1, 39), (2, 63), (3, 63)}
{(1, 46), (3, 46), (2, 63)} {(0, 39), (1, 63)}
{(2, 7), (3, 7), (1, 47)} {(1, 0), (0, 39)}

{(1, 7), (0, 47)} {(0, 0), (2, 39)}
{(1, 8), (0, 47)} {(0, 0), (2, 47)}
{(0, 8), (2, 47)} {(2, 0), (2, 47), (3, 47)}
{(0, 8), (2, 55)} {(2, 8), (3, 8), (2, 55)}

{(2, 8), (2, 55), (3, 55)} {(2, 8), (2, 55), (3, 55)}
{(2, 16), (3, 16), (2, 63)} {(2, 16), (3, 16), (2, 63)}
{(2, 16), (1, 63), (3, 63)} {(2, 16), (1, 63), (3, 63)}
{(1, 0), (2, 24), (3, 24)} {(1, 0), (2, 24), (3, 24)}

{(0, 0), (0, 24)} {(0, 0), (0, 24)}
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Table 17: Positions of nonzero bits for the characteristics in differential ii.

{(0, 45), (0, 62)} {(0, 45), (0, 62)} {(0, 45), (0, 62)} {(0, 45), (0, 62)} {(0, 45), (0, 62)}
{(2, 45), (3, 45), (2, 62)} {(2, 45), (3, 45), (2, 62)} {(2, 45), (3, 45), (2, 62)} {(2, 45), (3, 45), (2, 62)} {(2, 45), (3, 45), (2, 62)}
{(2, 6), (3, 6), (2, 53)} {(2, 6), (3, 6), (2, 53)} {(2, 6), (3, 6), (2, 53)} {(2, 6), (3, 6), (2, 53)} {(2, 6), (3, 6), (2, 53)}
{(2, 6), (1, 53), (3, 53)} {(2, 6), (2, 53), (3, 53)} {(2, 6), (2, 53), (3, 53)} {(2, 6), (2, 53), (3, 53)} {(2, 6), (1, 53), (3, 53)}
{(2, 14), (3, 14), (1, 54)} {(2, 14), (3, 14), (2, 61)} {(2, 14), (3, 14), (2, 61)} {(2, 14), (3, 14), (2, 61)} {(2, 14), (3, 14), (1, 54)}

{(1, 14), (0, 54)} {(2, 14), (1, 61), (3, 61)} {(2, 14), (2, 61), (3, 61)} {(2, 14), (2, 61), (3, 61)} {(1, 14), (0, 54)}
{(1, 15), (0, 54)} {(2, 22), (3, 22), (1, 62)} {(2, 5), (2, 22), (3, 22)} {(2, 5), (2, 22), (3, 22)} {(1, 15), (0, 54)}
{(0, 15), (2, 54)} {(1, 22), (0, 62)} {(2, 5), (3, 5), (2, 22)} {(1, 5), (3, 5), (2, 22)} {(0, 15), (2, 54)}
{(0, 15), (2, 62)} {(1, 23), (0, 62)} {(2, 13), (2, 30), (3, 30)} {(1, 6), (2, 30), (3, 30)} {(0, 15), (2, 62)}

{(2, 15), (1, 62), (3, 62)} {(0, 23), (2, 62)} {(1, 13), (3, 13), (2, 30)} {(0, 6), (1, 30)} {(2, 15), (2, 62), (3, 62)}
{(2, 23), (3, 23), (1, 63)} {(2, 6), (0, 23)} {(1, 14), (2, 38), (3, 38)} {(0, 6), (1, 31)} {(2, 6), (2, 23), (3, 23)}

{(1, 23), (0, 63)} {(1, 6), (3, 6), (2, 23)} {(0, 14), (1, 38)} {(2, 6), (0, 31)} {(1, 6), (3, 6), (2, 23)}
{(1, 24), (0, 63)} {(1, 7), (2, 31), (3, 31)} {(0, 14), (1, 39)} {(2, 14), (0, 31)} {(1, 7), (2, 31), (3, 31)}
{(0, 24), (2, 63)} {(0, 7), (1, 31)} {(2, 14), (0, 39)} {(2, 14), (3, 14), (2, 31)} {(0, 7), (1, 31)}
{(2, 7), (0, 24)} {(0, 7), (1, 32)} {(2, 22), (0, 39)} {(2, 22), (2, 39), (3, 39)} {(0, 7), (1, 32)}

{(2, 7), (3, 7), (2, 24)} {(2, 7), (0, 32)} {(1, 22), (3, 22), (2, 39)} {(1, 22), (3, 22), (2, 39)} {(2, 7), (0, 32)}
{(2, 15), (2, 32), (3, 32)} {(2, 15), (0, 32)} {(1, 23), (2, 47), (3, 47)} {(1, 23), (2, 47), (3, 47)} {(2, 15), (0, 32)}
{(2, 15), (3, 15), (2, 32)} {(2, 15), (3, 15), (2, 32)} {(0, 23), (1, 47)} {(0, 23), (1, 47)} {(2, 15), (3, 15), (2, 32)}
{(2, 23), (2, 40), (3, 40)} {(2, 23), (2, 40), (3, 40)} {(0, 23), (1, 48)} {(0, 23), (1, 48)} {(2, 23), (2, 40), (3, 40)}
{(2, 23), (3, 23), (2, 40)} {(2, 23), (3, 23), (2, 40)} {(2, 23), (0, 48)} {(2, 23), (0, 48)} {(2, 23), (3, 23), (2, 40)}
{(2, 31), (2, 48), (3, 48)} {(2, 31), (2, 48), (3, 48)} {(2, 31), (0, 48)} {(2, 31), (0, 48)} {(2, 31), (2, 48), (3, 48)}
{(1, 31), (3, 31), (2, 48)} {(1, 31), (3, 31), (2, 48)} {(1, 31), (3, 31), (2, 48)} {(1, 31), (3, 31), (2, 48)} {(1, 31), (3, 31), (2, 48)}
{(1, 32), (2, 56), (3, 56)} {(1, 32), (2, 56), (3, 56)} {(1, 32), (2, 56), (3, 56)} {(1, 32), (2, 56), (3, 56)} {(1, 32), (2, 56), (3, 56)}

{(0, 32), (0, 56)} {(0, 32), (0, 56)} {(0, 32), (0, 56)} {(0, 32), (0, 56)} {(0, 32), (0, 56)}

{(0, 45), (0, 62)} {(0, 45), (0, 62)} {(0, 45), (0, 62)} {(0, 45), (0, 62)} {(0, 45), (0, 62)}
{(2, 45), (3, 45), (2, 62)} {(2, 45), (3, 45), (2, 62)} {(2, 45), (3, 45), (2, 62)} {(2, 45), (3, 45), (2, 62)} {(2, 45), (3, 45), (2, 62)}
{(2, 6), (3, 6), (2, 53)} {(2, 6), (3, 6), (2, 53)} {(2, 6), (3, 6), (2, 53)} {(2, 6), (3, 6), (2, 53)} {(2, 6), (3, 6), (2, 53)}
{(2, 6), (2, 53), (3, 53)} {(2, 6), (2, 53), (3, 53)} {(2, 6), (2, 53), (3, 53)} {(2, 6), (1, 53), (3, 53)} {(2, 6), (1, 53), (3, 53)}
{(2, 14), (3, 14), (2, 61)} {(2, 14), (3, 14), (2, 61)} {(2, 14), (3, 14), (2, 61)} {(2, 14), (3, 14), (1, 54)} {(2, 14), (3, 14), (1, 54)}
{(2, 14), (2, 61), (3, 61)} {(2, 14), (1, 61), (3, 61)} {(2, 14), (1, 61), (3, 61)} {(1, 14), (0, 54)} {(1, 14), (0, 54)}
{(2, 5), (2, 22), (3, 22)} {(2, 22), (3, 22), (1, 62)} {(2, 22), (3, 22), (1, 62)} {(1, 15), (0, 54)} {(1, 15), (0, 54)}
{(1, 5), (3, 5), (2, 22)} {(1, 22), (0, 62)} {(1, 22), (0, 62)} {(0, 15), (2, 54)} {(0, 15), (2, 54)}
{(1, 6), (2, 30), (3, 30)} {(1, 23), (0, 62)} {(1, 23), (0, 62)} {(0, 15), (2, 62)} {(0, 15), (2, 62)}

{(0, 6), (1, 30)} {(0, 23), (2, 62)} {(0, 23), (2, 62)} {(2, 15), (2, 62), (3, 62)} {(2, 15), (2, 62), (3, 62)}
{(0, 6), (1, 31)} {(2, 6), (0, 23)} {(2, 6), (0, 23)} {(2, 6), (2, 23), (3, 23)} {(2, 6), (2, 23), (3, 23)}
{(2, 6), (0, 31)} {(2, 6), (3, 6), (2, 23)} {(2, 6), (3, 6), (2, 23)} {(2, 6), (3, 6), (2, 23)} {(2, 6), (3, 6), (2, 23)}
{(2, 14), (0, 31)} {(2, 14), (2, 31), (3, 31)} {(2, 14), (2, 31), (3, 31)} {(2, 14), (2, 31), (3, 31)} {(2, 14), (2, 31), (3, 31)}

{(1, 14), (3, 14), (2, 31)} {(2, 14), (3, 14), (2, 31)} {(1, 14), (3, 14), (2, 31)} {(1, 14), (3, 14), (2, 31)} {(2, 14), (3, 14), (2, 31)}
{(1, 15), (2, 39), (3, 39)} {(2, 22), (2, 39), (3, 39)} {(1, 15), (2, 39), (3, 39)} {(1, 15), (2, 39), (3, 39)} {(2, 22), (2, 39), (3, 39)}

{(0, 15), (1, 39)} {(1, 22), (3, 22), (2, 39)} {(0, 15), (1, 39)} {(0, 15), (1, 39)} {(1, 22), (3, 22), (2, 39)}
{(0, 15), (1, 40)} {(1, 23), (2, 47), (3, 47)} {(0, 15), (1, 40)} {(0, 15), (1, 40)} {(1, 23), (2, 47), (3, 47)}
{(2, 15), (0, 40)} {(0, 23), (1, 47)} {(2, 15), (0, 40)} {(2, 15), (0, 40)} {(0, 23), (1, 47)}
{(2, 23), (0, 40)} {(0, 23), (1, 48)} {(2, 23), (0, 40)} {(2, 23), (0, 40)} {(0, 23), (1, 48)}

{(2, 23), (3, 23), (2, 40)} {(2, 23), (0, 48)} {(2, 23), (3, 23), (2, 40)} {(2, 23), (3, 23), (2, 40)} {(2, 23), (0, 48)}
{(2, 31), (2, 48), (3, 48)} {(2, 31), (0, 48)} {(2, 31), (2, 48), (3, 48)} {(2, 31), (2, 48), (3, 48)} {(2, 31), (0, 48)}
{(1, 31), (3, 31), (2, 48)} {(1, 31), (3, 31), (2, 48)} {(1, 31), (3, 31), (2, 48)} {(1, 31), (3, 31), (2, 48)} {(1, 31), (3, 31), (2, 48)}
{(1, 32), (2, 56), (3, 56)} {(1, 32), (2, 56), (3, 56)} {(1, 32), (2, 56), (3, 56)} {(1, 32), (2, 56), (3, 56)} {(1, 32), (2, 56), (3, 56)}

{(0, 32), (0, 56)} {(0, 32), (0, 56)} {(0, 32), (0, 56)} {(0, 32), (0, 56)} {(0, 32), (0, 56)}
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D.2 Characteristics for Speck-32

The following tables contain the characteristics that are analyzed in Section 8.2.

Table 18: Dominant characteristics for differentials i and ii.

pavg = 2−13 pavg = 2−18

.a6. 42.5

.211 .a.4 .211 .a.4

28.. ..1. 28.. ..1.

..4. .... ..4. ....

8... 8... 8... 8...

81.. 81.2 81.. 81.2

8... 84.a 8... 84.a

85.a 952. 85.a 952.

Table 19: Two dominant characteristic for differential iii.

pavg = 2−24 pavg = 2−27

1488 1..8 1488 1..8

..21 4..1 ..21 4..1

.6.1 .6.4 .e.1 .e.4

18.. ..1. 38.. ..1.

..4. .... ..4. ....

8... 8... 8... 8...

81.. 81.2 81.. 81.2

8... 84.a 8... 84.a

85.a 952. 85.a 952.

D.3 Analysis of Differentials for Larger Variants of Speck

This section contains the analysis of the Speck differentials from Table 9.

Differential i. For the 15-round Speck-48 differential, we consider two charac-
teristics: the first has average probability 2−46, the second 2−47. These charac-
teristics are shown in Table 22.

For the first characteristic, eight quasidifferential trails with correlation±2−46

are obtained. From these trails, it follows that the characteristic has nonzero
probability if and only if 600000Tk7 = 0, 000c00Tk7 = 1 and 000003Tk8 = 1.
There were no quasidifferential trails with correlation ±2−47 for the same char-
acteristic, and for simplicity we will neglect smaller trails.
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Table 20: Three dominant characteristics for differential iv.

pavg = 2−30 pavg = 2−33 pavg = 2−33

8.54 a9.. 8.54 a9.. 8.54 a9..

.... a4.2 .... a4.2 .... a4.2

a4.2 34.8 e4.2 74.8 ac.2 3c.8

5.c. 8.e. 5.4. 8.61 7.c. 8.e.

.181 .2.3 .381 .2.7 .181 .2.3

...c .8.. ..1c .8.. ...c .8..

2... .... 2... .... 2... ....

..4. ..4. ..4. ..4. ..4. ..4.

8.4. 814. 8.4. 814. 8.4. 814.

..4. .542 ..4. .542 ..4. .542

Table 22: Dominant characteristics for differentials i to iii.

pavg = 2−46 pavg = 2−47

5.42.. ..424. 5.42.. ..424.

..12.2 .2...2 ..12.2 .2...2

....1. 1..... ....1. 1.....

...... 8..... ...... 8.....

8..... 8....4 8..... 8....4

8.8..4 8.8.2. 8.8..4 8.8.2.

84..a. 8..1a4 84..a. 8..1a4

6.8da4 6.8.8. e.8da4 e.8.8.

.42..3 ..24.. .42..7 ..24..

.12.2. ....2. .12.2. ....2.

2..1.. 2..... 2..1.. 2.....

2.2..1 2.2... 2.2..1 2.2...

pavg = 2−62

.4.924.. 2..4.1.4

2....82. 2.2....1

.......9 .1......

.8...... ........

...8.... ...8....

...8.8.. ..48.8..

..48...8 .2.84..8

.6.8.8.8 164a.848

f24...4. 4.1.42..

..82.2.. ....12.2

....9... ......1.

......8. ........

8....... 8.......

8.8..... 8.8....4

8...8..4 84..8.2.

8.8.8.a. a.8481a4

pavg = 2−81

.82.2....... ...12.2.....

...9........ .....1......

.....8...... ............

.......8.... .......8....

.......8.8.. ......48.8..

......48...8 .....2.84..8

.8..fe.8.8.8 .8..ee4a.848

...7724...4. 4.....1.42..

......82.2.. ........12.2

........9... ..........1.

..........8. ............

8........... 8...........

8.8......... 8.8........4

8...8......4 84..8.....2.

8.8.8.8...2. a.848.8..124

8..4....8124 842..4..88.1
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Table 21: Input and output differences (a, b) for the differentials from Table 9.

a b

i 504200 004240 202001 202000

ii 04092400 20040104 808080a0 a08481a4

iii 082020000000 000120200000 800400008124 842004008801

iv 0124000400000000 0801042004000000 8004000080000124 8420040080000801

The second characteristic has eight quasidifferential trails with correlation
±2−47 and the same masks as for the first characteristic. However, the conditions
for nonzero probability are 600000Tk7 = 1, 000c00Tk7 = 1 and 000003Tk8 = 0.
Hence, the characteristics are incompatible.

It follows from the discussion above that for 1/8 keys, the probability is 2−43

up to the contributions of smaller quasidifferential trails. For 1/4 keys at least
one characteristic has nonzero probability and the average reciprocal probability,
which determines the data-complexity of the attack, is (243 + 244)/2 = 243.58.

Differential ii. We consider a characteristic with average probability 2−62, shown
in Table 22. For this characteristic, there are 8 quasidifferential trails with cor-
relation ±2−62. Hence, the probability is zero for 7/8 keys and 2−59 otherwise.

Differential iii. The 15-round differential on Speck-96 is dominated by a single
characteristic with probability 2−81 (see Table 22). However, our analysis reveals
that this characteristic has nonzero probability only for 1/64 keys. Specifically,
there exist 26 quasidifferential trails with absolute correlation 2−81. This also
implies that the probability of the characteristic is 2−75 for 1/64 weak keys.

In addition, we find 192 = 3 · 26 quasidifferential trails with absolute cor-
relation 2−82. The signs of the correlation of these trails are determined by
independent key bits, such that for 1/29 keys the probability of the character-
istic becomes (1 + 3/2) · 2−75 = 2−73.68. Based on these quasidifferential trails,
the average reciprocal probability is 64/27× 275 ≈ 276.25 for the weak key class
of density 2−6.

Differential iv. The differential includes four characteristics with average prob-
ability 2−128, amounting to a total average probability of 2−126. These charac-
teristics are listed in Table 23.

For one of these characteristics, we find 128 quasidifferential trails with ab-
solute correlation 2−128. Hence, the probability of the characteristic is actually
2−121 for one in 128 keys and zero otherwise.

Two characteristics each have 32 quasidifferential trails with absolute cor-
relation 2−128, implying that their probability is close to 2−123 for one in 64
keys and zero otherwise. The conditions to obtain a nonzero probability are a
subset of those for the first characteristic. Furthermore, the conditions for both
characteristics overlap in three linearly independent equations.
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The remaining characteristic has eight quasidifferential trails with absolute
corelation 2−128. The conditions for obtaining a nonzero probability are a subset
of the conditions required for each of the first three characteristics. Hence, if any
of the previously discussed characteristics has a nonzero probability, then the
same is true for this characteristic.

From the above discussion, the probability is 2−121 + 2 · 2−123 + 2−125 ≈
2−120.36 for one in 128 keys. In addition, for one in eight keys, the average
reciprocal probability is 2125 × 9/16 + 2122.68 × 6/16 + 2120.36 × 1/16 ≈ 2124.36.
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Table 23: Dominant characteristics for differential iv.

pavg = 2−128 pavg = 2−128

.124...4........ .8.1.42..4...... .124...4........ .8.1.42..4......

.8..2.2......... 48.8.12.2....... .8..2.2......... 48.8.12.2.......

48...1.......... .84..8.1.......2 48...1.......... .84..8.1.......2

.8.8.8.........6 4a.848.8......16 .8.8.8.........6 4a.848.8......16

4...4.........32 1.42..4.......8. 4...4.........32 1.42..4.......8.

.2.2..........8. 8.12.2.......48. .2.2..........8. 8.12.2.......48.

..1..........48. ..8.1.......2.84 ..1..........48. ..8.1.......2.84

8.8.........2.8. 848.8......124a. 8.8.........6.8. 848.8......164a.

.4.........1244. 2..4.......8.144 .4.........324.. 2..4.......8.1.4

2..........8.22. 2.2.......48.8.1 2..........8..2. 2.2.......48.8.1

..........48...1 .1.......2.84..8 ..........48...1 .1.......2.84..8

.........e.8.8.8 .8......1e4a.848 .........e.8.8.8 .8......1e4a.848

........f24...4. 4.........1.42.. ........f24...4. 4.........1.42..

..........82.2.. ............12.2 ..........82.2.. ............12.2

............9... ..............1. ............9... ..............1.

..............8. ................ ..............8. ................

8............... 8............... 8............... 8...............

8.8............. 8.8............4 8.8............. 8.8............4

8...8..........4 84..8.........2. 8...8..........4 84..8.........2.

8.8.8.8.......2. a.848.8......124 8.8.8.8.......2. a.848.8......124

8..4....8....124 842..4..8....8.1 8..4....8....124 842..4..8....8.1

pavg = 2−128 pavg = 2−128

.124...4........ .8.1.42..4...... .124...4........ .8.1.42..4......

.8..2.2......... 48.8.12.2....... .8..2.2......... 48.8.12.2.......

48...1.......... .84..8.1.......2 48...1.......... .84..8.1.......2

.8.8.8.........2 4a.848.8......12 .8.8.8.........2 4a.848.8......12

44..4.........12 1442..4.......8. 44..4.........12 1442..4.......8.

22.2..........8. 8.12.2.......48. 22.2..........8. 8.12.2.......48.

..1..........48. ..8.1.......2.84 ..1..........48. ..8.1.......2.84

8.8.........6.8. 848.8......164a. 8.8.........2.8. 848.8......124a.

.4.........324.. 2..4.......8.1.4 .4.........1244. 2..4.......8.144

2..........8..2. 2.2.......48.8.1 2..........8.22. 2.2.......48.8.1

..........48...1 .1.......2.84..8 ..........48...1 .1.......2.84..8

.........e.8.8.8 .8......1e4a.848 .........e.8.8.8 .8......1e4a.848

........f24...4. 4.........1.42.. ........f24...4. 4.........1.42..

..........82.2.. ............12.2 ..........82.2.. ............12.2

............9... ..............1. ............9... ..............1.

..............8. ................ ..............8. ................

8............... 8............... 8............... 8...............

8.8............. 8.8............4 8.8............. 8.8............4

8...8..........4 84..8.........2. 8...8..........4 84..8.........2.

8.8.8.8.......2. a.848.8......124 8.8.8.8.......2. a.848.8......124

8..4....8....124 842..4..8....8.1 8..4....8....124 842..4..8....8.1

49



E Analysis of a Characteristic for Simon-32

This section analyzes the key-dependence of the probability of a characteristic
for six rounds of Simon-32. One difficulty is that we model the round function of
Simon as a composition of linear functions and the bitwise-and function. Unlike
for the average-case analysis of characteristics, this does not lead to inaccuracies
because quasidifferential trails always provide an exact description. However, it
may result in many key-independent quasidifferential trails that complicate the
analysis. Although the differential analysis of the Simon round function by Kölbl
et al. [16] can be generalized to the quasidifferential case, it is unclear if it leads
to an efficient SMT-model and we leave this as future work.

The input differences for the bitwise-and operation in the characteristic are
shown in Table 24. The ‘average’ probability is 2−23 if dependencies between
the bitwise-and operands are ignored, and 2−21 if this effect is not ignored. To
analyze the key-dependence, all quasidifferential trails with absolute correlation
≥ 2−33 were identified. Since the round function was not modelled in its entirety
but based on the bitwise-and function, these trails should grouped by round key
masks. The key masks for the resulting groups of quasidifferential trails with
absolute correlation ≥ 2−25 are shown in Table 25.

Table 24: Input and output differences for the bitwise-and operation in a char-
acteristic of Simon-32.

ai bi ci

0001 0080 0001

0000 0000 0000

0001 0080 0080

0104 8200 0004

0419 0c82 0018

1150 a808 0100

Analysis of the quasidifferential trails. From Table 25, observe that each group
of trails consists of subgroups of four trails with the same absolute correlation c
and key masks differing only in round five. Hence, the total correlation for each
such subgroup is equal to

±c (1− (−1)k5,2 − (−1)k5,6 + (−1)k5,2+k5,6) = ±4c 1k5,2=11k5,6=1 .

Although the list of quasidifferential trails in Table 25 is not exhaustive, the con-
dition k5,2 = k5,6 = 1 is automatically necessary to obtain a nonzero probability.

Assume that k5,2 = k5,6 = 1 such that the probability can be nonzero.
Table 25 shows that there exist masks u1, . . . , u6 ∈ F192

2 and v1, . . . , v4 ∈ F192
2

such that the probability is approximately

2−19 − 2−22
(
(−1)u

T
1k + (−1)u

T
2k − (−1)u

T
3k + (−1)u

T
4k + (−1)u

T
5k + (−1)u

T
6k
)

+ 2−23
(
(−1)v

T
1k + (−1)v

T
2k + (−1)v

T
3k + (−1)v

T
4k
)
.

50



Correlation Round key masks Sign

2−21

0000 0000 0000 0000 0000 0000 +1
0000 0000 0000 0000 0400 0000 −1
0000 0000 0000 0000 4000 0000 −1
0000 0000 0000 0000 4400 0000 +1

2−24

0000 0040 0010 000c 0010 0000 −1
0000 0040 0010 000c 0410 0000 +1
0000 0040 0010 000c 4010 0000 +1
0000 0040 0010 000c 4410 0000 −1

0000 0040 0010 000c 0014 0000 −1
0000 0040 0010 000c 0414 0000 +1
0000 0040 0010 000c 4014 0000 +1
0000 0040 0010 000c 4414 0000 −1

0000 0040 0010 100c 0010 0000 +1
0000 0040 0010 100c 0410 0000 −1
0000 0040 0010 100c 4010 0000 −1
0000 0040 0010 100c 4410 0000 +1

0000 0100 0040 0110 1004 0000 −1
0000 0100 0040 0110 1404 0000 +1
0000 0100 0040 0110 5004 0000 +1
0000 0100 0040 0110 5404 0000 −1

0000 0100 0041 0110 1004 0000 −1
0000 0100 0041 0110 1404 0000 +1
0000 0100 0041 0110 5004 0000 +1
0000 0100 0041 0110 5404 0000 −1

0000 0040 0010 104c 0014 0000 −1
0000 0040 0010 104c 0414 0000 +1
0000 0040 0010 104c 4014 0000 +1
0000 0040 0010 104c 4414 0000 −1

2−25

0000 0100 0040 4110 1005 0000 +1
0000 0100 0040 4110 1405 0000 −1
0000 0100 0040 4110 5005 0000 −1
0000 0100 0040 4110 5405 0000 +1

0000 0100 0041 4110 1005 0000 +1
0000 0100 0041 4110 1405 0000 −1
0000 0100 0041 4110 5005 0000 −1
0000 0100 0041 4110 5405 0000 +1

0000 0100 0041 4010 1005 0000 +1
0000 0100 0041 4010 1405 0000 −1
0000 0100 0041 4010 5005 0000 −1
0000 0100 0041 4010 5405 0000 +1

0000 0100 0040 4010 1005 0000 +1
0000 0100 0040 4010 1405 0000 −1
0000 0100 0040 4010 5005 0000 −1
0000 0100 0040 4010 5405 0000 +1

Table 25: Round key masks and loss for all groups of quasidifferential trails in
Simon-32 with correlation ≥ 2−25.
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Since {v1, . . . , v4} is an affine space, the above can be simplified to

2−19 − 2−22
(
(−1)u

T
1k + (−1)u

T
2k − (−1)u

T
3k + (−1)u

T
4k + (−1)u

T
5k + (−1)u

T
6k
)

+ (−1)v
T
1k 2−21 1k3,16=k4,4=0 .

The above turns out to be equal to the exact value of the correlation for most
(≥ 80%, not including probability zero cases) of the keys. The fact that the error
is zero for most keys but relatively large for a small fraction of keys suggests that
the remaining trails have linearly dependent masks.

The experimental and theoretical (based only on the above trails) distribution
of the number of right pairs is shown in Figure 8. The figures illustrate that the
trails in Table 25 explain most of the key-dependence of the probability. If all
trails with absolute correlation 2−27 and 2−28 are additionally included, then
one obtains exactly the observed distribution.
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(a) Experimental histogram based on 1000 round keys.
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(b) Prediction based on quasidifferential trails with absolute correlation ≥ 2−25.

Fig. 8: Histograms of the number of right pairs for the Simon-32 differential trail
in Table 24 with k5,2 = k5,6 = 1.
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