
Structure-Preserving Threshold Signatures

Mahdi Sedaghat1, Daniel Slamanig2, Markulf Kohlweiss3, and Bart Preneel1

1 imec-COSIC, KU Leuven, Leuven, Belgium
ssedagha@esat.kuleuven.be, bart.preneel@esat.kuleuven.be

2 AIT Austrian Institute of Technology, Vienna, Austria
daniel.slamanig@ait.ac.at

3 University of Edinburgh and IOHK, Edinburgh, UK
mkohlwei@inf.ed.ac.uk

Abstract. The by now broadly accepted reliance of society on online services, led to a push
for decentralization to mitigate the societal and technical risks caused by single points of
failure (PoF). One such PoF are cryptographic keys. Thus there is renewed interest in thresh-
old cryptography to distribute the generation and use of such keys. Structure-preserving
signatures (SPS) are an important building block for privacy-preserving cryptographic pro-
tocols such as electronic cash and (delegatable) anonymous credentials. However, to date,
no structure-preserving threshold signatures (SPTS) are available. This is unfortunate, as
another PoF is centralized identity management, which could be mitigated by anonymous
credentials.

In this work we aim to close this gap by introducing a notion and constructions of (non-)
interactive SPTS. While it is relatively easy to devise interactive SPTS supporting static
corruptions, e.g., based on the SPS of Ghadafi (CT-RSA’16), constructing non-interactive
SPTS is a much more delicate task. Due to their structural properties, starting from existing
SPS does not yield secure schemes. Thus, we take a different path and first introduce the
notion of message-indexed SPS, a variant of SPS that is parameterized by a message index-
ing function. Inspired by Pointcheval-Sanders (PS) signatures (CT-RSA’16) and the SPS of
Ghadafi, we then present a message-indexed SPS, which is non-interactive threshold-friendly.
We prove its security in the random oracle model based on a variant of the generalized PS
assumption. Based on our message-indexed SPS we then propose the first non-interactive
message-indexed SPTS, which we prove to be secure under adaptive corruption. Finally, we
discuss applications of SPTS to privacy-preserving primitives.

Keywords: Threshold Signatures, Structure-Preserving Signatures, Message-Indexed
Structure-Preserving Signatures, Groth-Sahai Proof System, Threshold-Issuance Anony-
mous Credentials, Threshold Group Signatures.

1 Introduction

There is a push towards robust and privacy-friendly, decentralized systems. However, in the
decentralized setting, the management of cryptographic keys becomes a challenging issue.
Threshold cryptography [DDFY94,Des90,DF90] is the method of choice to improve avail-
ability of keying material and to reduce the trust in single entities. Threshold cryptography

1

allows a secret key to be shared among n > 1 parties [Sha79,Bla79] such that the task in-
volving the key can only be performed, if at least t ≤ n parties collaborate. Threshold primi-
tives such as threshold encryption [SG98,CGJ+99], threshold signatures [Sho00,DK01], and
threshold verifiable unpredictable functions [GJM+21] enable distributed protocols, e.g.,
e-voting systems [CGS97,CFSY96] or multi-party computation [CDN01,DN03], to avoid
single points of failure. Consequently, there is increased interest in threshold cryptography
standards, e.g., by NIST [BDV+20], and products, e.g., by Unbound and Sepior4

Due to the rise of cryptocurrencies, blockchain technology, and self-sovereign iden-
tity management, threshold signatures [Des90] attract significant research interest,
e.g., [MR01,Bol03,Lin17] and [DKLs19,CGG+20,KMOS21]. We recall that a (n, t)-
threshold signature scheme distributes the signing key among n signers and any subgroup
of size at least t can jointly generate a signature. Unforgeability holds as long as fewer than
t key shares are known to the adversary.

A threshold signature is said to be non-interactive if the signers can gen-
erate their own partial signatures independently without communicating with the
other signers. Compared to threshold variants of Schnorr [GJKR03,KG20] and
(EC)DSA [GJKR96,DKLs19,CGG+20], due to their deterministic behavior threshold vari-
ants of RSA [RSA78] or BLS signatures [BLS01] tend to be the most appropriate schemes
for non-interactive threshold signatures [Sho00,DK01,Bol03,BL22]. Besides the distributed
use of the secret keys, an aspect of threshold cryptography worth emphasizing is Distributed
Key Generation (DKG) [Ped92]. It avoids the presence of a trusted party to initially gen-
erate the key shares: in DKG the secret key can be generated in a distributed way without
anyone learning the entire key.

Structure-preserving (threshold) signatures. Structure-preserving signatures
(SPS) [AFG+10] are signatures constructed over bilinear groups, i.e., groups G1, G2 and
GT , all of prime order p, equipped with a non-degenerate and efficiently computable pair-
ing e : G1 × G2 → GT . One requires that messages and signatures only include source
group elements (elements from G1 and G2) and the signature verification only checks
group membership and pairing product equations. After their invention, SPS have been
extensively studied with a focus on short signatures [AGHO11,AGOT14,Gha16,Gha17],
lower bounds [AGHO11,AGO11,AAOT18], as well as (tight) security under well-known
assumptions [ACD+12,HJ12,KPW15,LPY15,JR17,GHKP18,AJO+19]. SPS are compati-
ble with the Groth and Sahai (GS) NIZK proofs [GS08] and, more generally, help avoid
the expensive extraction of exponents in security proofs. This makes them attractive for a
wide variety of privacy-preserving applications, such as group signatures [AFG+10,LPY15],
traceable signatures [ACHO11], blind signatures [AFG+10,FHS15], attribute-based signa-
tures [EGK14], malleable signatures [ALP12], anonymous credentials [Fuc11,CDHK15],
anonymous e-cash [BCF+11] or access control encryption [WC21,SP21].

4 https://www.unboundsecurity.com/, https://sepior.com.

2

https://www.unboundsecurity.com/
https://sepior.com

While many of the aforementioned applications of SPS are an attractive target for
thresholdization, as of now there is no known threshold construction of SPS that could
serve as their basis.

1.1 Our Contributions

Our contributions can be summarized as follows:

– Message-Indexed Structure-Preserving Signatures. In Sect. 3, we introduce the notion
of message-indexed SPS along with its existential unforgeability under indexed cho-
sen message attack (EUF-CiMA) security. This is an important step in making SPS
threshold-friendly. Then, we propose a concrete EUF-CiMA secure SPS scheme which
we prove secure in the random oracle model under a new variant of the general-
ized PS assumption [KSAP21]. We show the security of this assumption under the
Strong Discrete Logarithm (SDL) assumption [BCN+10] in the Algebraic Group Model
(AGM) [FKL18]. Our signatures are highly efficient and consist only of two group ele-
ments. This is achieved by relying on an indexed Diffie-Hellman message space, which
allows us to de-randomize signatures and to bypass known impossibility results for
unilateral SPS schemes [AGHO11,Gha16].

– Structure-Preserving Threshold Signatures. In Sect. 4, we introduce the notion of
structure-preserving threshold signatures (SPTS) and propose an efficient and prac-
tical non-interactive SPTS based on our EUF-CiMA secure SPS scheme. Our SPTS
is proven to be unforgeable under adaptive corruptions.

– Applications. In Sect. 5, we discuss applications of the proposed SPTS scheme to
anonymous credential systems with threshold-issuance like Coconut [SAB+19] and
Coconut++ [RP22], and threshold dynamic group signatures [CDL+20].

1.2 Outline and Overview

Desirable properties for SPTS. In addition to desirable properties such as non-
interactive signing, uniqueness of signatures, and not just one-time signature security,
we require that structure-preserving threshold signatures satisfies the following criteria:
i) verification keys consist of source group elements (G1 and G2) of a bilinear group,
ii) the signature only consists of source group elements, iii) to verify a signature, only
source group messages are needed iv) the signature components are threshold-friendly,
and v) only source group membership testing and pairing product equations of the form∏
i

∏
j e(Gi, Hj)

ci,j = 1GT need to be executed in the verification algorithm, where Gi ∈ G1

and Hj ∈ G2 and ci,j ∈ Zp.

Existing Schemes Close to Our Requirements. Table. 1.2 lists threshold signature
schemes and existing SPS that are close to what we want to achieve. Unfortunately, they
all fail to satisfy some of the aforementioned requirements.

3

Table 1. The List of Related Existing Threshold Signatures and Structure-Preserving Signatures. SP, SG,
VK, TF and PPE stand for Structure-Preserving, Source Group, Verification Key, Threshold-Friendly and
Pairing Product Equation respectively. X: Applicable, 7: Not satisfied.

Type. Scheme Non
-In

te
ra

ct
iv

e

Uniq
uen

es
s

Not
O

ne-
tim

e
sig

nat
ure

VK
of

SG
ele

m
en

ts

Sig
nat

ure
of

SG
ele

m
en

ts

M
es

sa
ge

of
SG

ele
m

en
ts

TF
Sig

nat
ure

co
m

pon
en

ts

PPE
in

Ver
ifi

ca
tio

n

Threshold

Signatures

[Bol03,BL22] X X X X X 7a X 7

[LJY14, ‡ 1] X X X X X 7a X 7

[LJY14, ‡ 2] X X X X X 7a X 7

[GJM+21] X X X X X 7a X 7

SP

Signatures

[LPJY13] X X 7 X X X X X

[Gha16] 7 7 X X X X X X

a The message space is not specially for a SG message element and can take any arbitrary bit-length
messages.

More precisely, the (adaptively-secure) threshold variant of BLS [Bol03,BL22] maps any
arbitrary messages to the group using a structure-destroying hash-to-curve function mod-
eled as a random oracle. Libert et al. [LJY14] propose adaptively secure non-interactive
threshold signatures that are based on linearly-homomorphic SPS (LHSPS) [LPJY13].
Despite the fact that this construction is the closest to our requirements, the resulting
threshold signature is not structure-preserving. They either need to rely on random oracles
to hash scalar messages to group elements [LJY14, ‡ 1] or, when avoiding random oracles,
a bit-wise encoding of the scalar message is required [LJY14, ‡ 2]. Gurkan et al. [GJM+21]
proposed a so-called (threshold) structure-preserving Verifiable Unpredictable Function
(VUF), which is essentially a unique (threshold) signature [MRV99]. However, their con-
struction is not structure-preserving in the sense of SPS, as like BLS it hashes arbitrary
messages to the group using a random oracle.

Taking a closer look at the existing SPS constructions, there are two promising construc-
tions: LHSPS [LPJY13], but as discussed in [LJY14, Sect. 2], the resulting threshold variant
of this scheme is only a one-time signature. A one-time signature is a digital signature that
can sign only one message per key pair. Ghadafi’s SPS [Gha16] is a threshold-friendly SPS
construction, but as we discuss in this paper it only results in an interactive SPTS (and is
not unique).

4

Challenges and Techniques. In a (n, t)-SPTS, a secret signing key, s ∈ Zp, is shared
among n parties, {si}i∈[1,n], where up to t−1 parties are allowed to be corrupted. To enable
the reconstruction of a signature from partial signatures of at least t parties, the components
should be threshold-friendly. Loosely speaking, a partial signature element such as Asi is
threshold-friendly, when one can implicitly compute s as a linear combination of si and
Lagrange coefficients Li by computing a product function

∏
(Asi)Li . For instance, partial

signature elements like A1/si are not threshold-friendly as it is not possible to compute the
linear combination of si in the exponent. Due to the constraints imposed by being structure
preserving, a partial signature must only contain source group elements and must not hash
messages during verification.

Our starting point for overcoming these challenges are Pointcheval-Sanders (PS) sig-
natures [PS16,PS18] which neither make use of key inversion during signing nor hashing
during verification. An interesting aspect of PS signatures is that the signing randomness
represents a random basis element. However, the messages of both PS variants are scalars
and thus do not satisfy our requirements. Fortunately, Ghadafi [Gha16] proposed an SPS
that is very similar to PS signatures [PS16]. Meanwhile as we discuss later in the thresh-
old variant of Ghadafi’s SPS to have a uniquely reconstructed signature, we would need
to use a pre-determined random exponents among the signers. This, however, contradicts
non-interactivity and would result in an interactive (at least two-round) SPTS. Interactive
signing, however, requires coordination and communication among all the parties, i.e., all
need to be online: this is often not desirable or even not permitted [CGG+20] and can lead
to undetected problems due to (complicated) sub-protocols [TS21]. Consequently, proto-
cols that offer non-interactive signing are preferable. Here one promising starting point
is to exploit a technique used in Coconut [SAB+19] and by Camenisch et al. [CDL+20]
to non-interactively agree on a common random source group element via hashing in the
signing phase. In [SAB+19] the input to the hash function is a commitment of the given
message, while in [CDL+20] pre-determined indices are assumed.

We first propose a structure-preserving variant of PS which can be viewed as a modifica-
tion of Ghadafi’s SPS and show it’s security under a new notion of existential unforgeability
that we call chosen indexed-message attacks (EUF-CiMA). This indexing can be seen as
a parameterized way of instantiating the generation of a common random source group
element. This makes the underlying SPS scheme threshold-friendly and suitable to finally
construct a SPTS. Signature of this scheme only consist of two source group elements
and are thus one element shorter than Ghadafi’s SPS [Gha16] and identical in size to PS
signatures [PS16] in a weaker notion of security that we call EUF-CiMA.

Bypassing impossibility of unilateral SPS. Unilateral SPS are ones where signatures
exclusively contain elements of one source group. It is known that it is impossible to even
build unilateral SPS that are secure against random message attacks [AGHO11]. However,

5

in an asymmetric bilinear setting and over a Diffie-Hellman message space [AFG+10], where
the message space is dual in both source groups, Ghadafi [Gha16] has shown that building
a unilateral SPS is indeed possible. While this scheme is not suitable for a non-interactive
SPTS, our approach also circumvents the impossibility in a similar way, but we work on a
so called indexed Diffie-Hellman message space.

Adaptive vs. Static Corruption. Threshold-issuance anonymous credential systems
are a primary application of the proposed SPTS construction. Despite the fact that Co-
conut [SAB+19] does not provide a rigorous security analysis on their construction, recently
Rial and Piotrowska [RP22] provide a full security analysis of a modified Coconut scheme,
called Coconut++. However, this scheme is only secure under static-corruptions, i.e., where
the adversary must choose all corrupted parties at the beginning of the protocol (after
observing their public keys). However, in reality corruptions can happen over time and
a protection against stronger adversaries, i.e., against adaptive corruptions, is required.
Recently Bacho and Loss [BL22] proposed a new technique to prove the unforgeability of
threshold BLS signatures under adaptive corruptions based on One-More Discrete Loga-
rithm (OMDL) assumption. We adopt their proof technique in this work and show that the
proposed SPTS is existentially unforgeable against chosen indexed-message attacks with
adaptive corruption.

2 Preliminaries and Definitions

Throughout, let p ∈ P denote a prime number with bit length polynomial in the security
parameter of λ ∈ N with unary representation of 1λ. For all positive polynomials f(λ), a
function negl : N → R+ is called negligible if ∃ λ0 ∈ N s.t. ∀ λ > λ0 we have: negl(λ) <
1/f(λ). We assume a field of prime order Z and denote Z≤dp [X] as a set of univariate
polynomials with degree ≤ d. We use Y ←$F (X) to denote a probabilistic function F that
on input X samples the output Y . We use x←$Zp to denote a uniformly random integer x
is sampled from Zp. We denote the set of integers {1, . . . , n} for an integer n > 1 by [1, n].
The algorithms are randomized unless expressly stated. “PPT” refers to “Probabilistic
Polynomial Time”. The vector of A is denoted by ~A. We denote the output of a security
game Gζ between a challenger and a PPT adversary A by GAζ and it is said A wins the

game if GAζ = 1 with an advantage of AdvGζ,A(λ) = Pr[GAζ = 1].

Remark 2.1. For a given cyclic group G with generator g ∈ G, messages of source group
elements are denoted by M and the discrete logarithm of the message under the basis of the
generator of group are denoted by m, where m := dlogg(M). To compress group element
representation for b ∈ {1, 2} and k ∈ {n,m} we use gbk ∈ Gn

1 × Gm
2 to denote the set of

group elements (g11, . . . , g1n, g21, . . . , g2m).

Definition 2.1 (Bilinear Groups [BF01]). A bilinear group generator BG(1λ) returns
a tuple (G1,G2,GT , p, e, g1, g2), such that G1, G2 and GT are finite groups of the same

6

prime order p, g1 ∈ G1 and g2 ∈ G2 are the generators and e : G1 × G2 → GT is a
bilinear pairing. We set gT = e(g1, g2) that is the generator of the target group GT . In the
multiplicative notion, the tuple (G1,G2,GT , p, e, g1, g2) is called a bilinear group setting if
these conditions hold:

1. e(g1, g2) 6= 1GT (non-degenerate).
2. e is an efficiently computable bilinear map.
3. ∀ a, b ∈ Zp: e(ga1 , gb2) = e(g1, g2)

ab = e(gb1, g
a
2) (bilinearity).

In this paper we rely on bilinear groups with no efficiently computable isomorphism
between G1 and G2 [GPS08], aka Type-III pairings. They are to date the most efficient
choice for relevant security levels [CM11].

Diffie-Hellman Message Space. Over an asymmetric bilinear group, a pair (M1,M2) ∈
G1 × G2 is called a Diffie-Hellman (DH) message [Fuc09,AFG+10] if there exists m ∈ Zp
s.t. M1 = gm1 and M2 = gm2 . One can efficiently verify whether (M1,M2) ∈ MDH by
checking e(M1, g2) = e(g1,M2).

In this paper, we adapt the DH message space to a tuple (id,M1,M2) ∈ I × G1 × G2

which uses a random basis h computed using a random oracle instead of g1, that is:

Definition 2.2 (Indexed Diffie-Hellman Message Space). Let H be a random oracle.
MH

iDH is an indexed DH message space, if the following two properties hold:

1. For every (id,M1,M2) ∈ MH
iDH there exists m ∈ Zp s.t. for h = H(id), M1 = hm,

M2 = gm2 .
2. For all (id,M1,M2) ∈ MH

iDH, (id′,M ′1,M
′
2) ∈ MH

iDH, id = id′ ⇒ (M1,M2) =
(M ′1,M

′
2) ∈MiDH. That is, no two messages use the same index.

The first condition is efficiently decidable by checking e(M1, g2) = e(h,M2). Note that
in addition one needs to guarantee that no two messages use the same index. This is the
responsibility of the signer. We denote the tuple (id,M1,M2) ∈MH

iDH by M while the pair
(M1,M2) ∈MiDH without index id is denoted by M̃ .

2.1 Shamir Secret Sharing (SSS)

A (n, t)-Shamir Secret Sharing (SSS) [Sha79] scheme divides a secret s among n share-
holders such that each subset of t shareholders can reconstruct s but any smaller subset of
them learn nothing about the secret. For this purpose, the dealer who knows the secret s
forms a polynomial f(x) of degree t with randomly chosen coefficients such that f(0) = s.
Then the dealer securely provides each shareholder with si = f(i), i ∈ {1, , n}. Each
subset of T ⊂ {1, . . . , n} with size at least t can pool their shares to reconstruct the secret
s using Lagrange polynomial interpolation as, s = f(0) =

∑
i∈T siL

T
i (0), where LTi (x) =∏

j∈T ,j 6=i
x−j
i−j .

7

2.2 Algebraic Group Model

Algebraic Group Model (AGM) was introduced by Fuchsbauer, Kiltz and Loss [FKL18]
and it lies between the Generic Group Model (GGM) [Sho97] and Standard Model (SM).
AGM is similar to SM, but differs from GGM in that cyclic groups are actually represented
through an algebraic algorithm AGM, on the other hand, is similar to GGM but differs
from SM as an algebraic algorithm can only produce group elements by employing group
operations on the given group elements. Although an algebraic algorithm does not need
to interact with an oracle to perform a computation, it must output a record of a group
operation, known as a representation.

The AGM definition in [FKL18] only captures regular cyclic groups, whereas Mizuide et
al. [MTT19] extends this definition to include symmetric pairing groups, where G1 = G2,
such that the algebraic adversary is also allowed to output the target group elements
and their representations. Recently, Couteau and Hartmann [CH20] defined the Algebraic
Asymmetric Bilinear Group Model which extends the AGM definition for asymmetric pair-
ings by allowing the adversary to output multiple elements from all three groups. We recall
it in the following definition.

Definition 2.3 (Algebraic Adversaries in an Asymmetric Bilinear
Group [CH20]). For a given asymmetric bilinear group (G1,G2,GT , p, e, g1, g2), an
adversary Aalg who takes the vectors ~ζ1 = (gx11 , . . . , g

xn
1) ∈ Gn

1 , ~ζ2 = (gy12 , . . . , g
ym
2) ∈ Gm

2

and ~ζT = (gz1T , . . . , g
z`
T) ∈ G`

T is called algebraic in an asymmetric bilinear group if it
outputs:

S =

(
g
S1
1

1 , . . . , g
S1
n′

1 , g
S2
1

2 , . . . , g
S2
m′

2 , g
ST1
T , . . . , g

ST
`′

T

)
∈ Gn′

1 ×Gm′
2 ×G`′

T , (1)

along with a representation vector of size n · n′ +m ·m′ + `′(`+ n ·m), as follows:

~S =

(αij)i∈[1,n′]
j∈[1,n]

, (βij)i∈[1,m′]
j∈[1,m]

, (γijk) i∈[1,`′]
j∈[1,n]
k∈[1,m]

, (γ′ij)i∈[1,`′]
j∈[1,`]

 ∈ Zp , (2)

such that, S1
i =

∑n
j=1 αijxj for i ∈ [1, n′], S2

i =
∑m

j=1 βijyj for i ∈ [1,m′] and

STi =
∑n

j=1

∑m
k=1 γijkxjyk +

∑`
j=1 γ

′
ijzi for i ∈ [1, `′]. We denote the outputs and their

representations as (S; ~S)←$Aalg(~ζ1, ~ζ2, ~ζT).

With regards to the representations that the algebraic adversary Aalg can output,
we need to provide some additional notations borrowing from Kim et al. [KSAP21].
Let Aalg take the vectors of group elements ~ζ1 = (g11, . . . , g1n) = (gx11 , . . . , g

xn
1) ∈

Gn
1 , ~ζ2 = (g21, . . . , g2m) = (gy12 , . . . , g

ym
2) ∈ Gm

2 and ~ζT = (gT1, . . . , gT`) =
(gz1T , . . . , g

z`
T) ∈ G`

T as inputs. By Def. 2.3, when Aalg outputs the group elements S =

8

(
h11, . . . , h

1
n′ , h

2
1, . . . , h

2
m′ , h

T
1 , . . . , h

T
`′
)
, for each element hbi ∈ Gb, i ∈ [1, v′], Aalg must also

output the corresponding representation ~hbi = (hbi1, . . . , h
b
iv) ∈ Z(v′·v)

p , s.t., hbi =
∏v
j=1 g

hbij
bj ,

where b = {1, 2, T}, v = {n,m, `}, v′ = {n′,m′, `′}. The element hbij ∈ Zp regarding the

group element gbj ∈ Gb for j ∈ [1, v] can be denoted by [hbi |gbj]. If each of dloggb(gbj)
is represented by a k-variant polynomial in ring Zp[Xb1, . . . , Xbk] for some k ∈ N, then

we can define a polynomial Phbi
[~Xb] to denote dloggb(h

b
i) =

∑v
j=1

(
[hbi |gbj] · dloggb(gbj)

)
,

where ~Xb = (Xb1, . . . , Xbk). Note that the coefficients of polynomial Phbi
[~Xb] are com-

posed of the linear combination of the representation set elements ~hbi . The equality of
dloggb(h

b
i) = z, where z ∈ Zp, can be shown with a polynomial evaluation of Phbi

[~xb] = z

at point ~xb = (xb1, . . . , xbk), where xbj ∈ Xbj . The equality of Phbi
[~xb] = 0 means that

the polynomial evaluates to 0 at point ~xb, while Phbi
[~Xb] = 0 means that Phbi

[~Xb] is a
zero-polynomial and its all coefficients are zero.

2.3 Assumptions

Definition 2.4 (`-One-More Discrete Logarithm Problem [BNPS03]). Let
(G, p, g) be a cyclic group of prime order p with a generator g. Given a tuple
(g, gr1 , gr2 , . . . , gr`) ∈ G`, where ri←$Zp for i ∈ [1, `], and a discrete logarithm oracle
Dlogg(g

x) → x, for all PPT adversaries A it is computationally hard to return a tuple

(r′1, . . . , r
′
`) ∈ Z`p such that (1) {ri = r′i}i∈[1,`] and (2) the oracle Dlogg(.) is queried at

most ` − 1 times. We say `-OMDL problem is ε-hard if the success probability of all PPT
adversaries A is bounded by a negligible function ε.

Intuitively, in the `-OMDL assumption the adversary receives ` group elements and is
given access to an oracle that computes the discrete logarithm (DL) of any given element
with respect to a fixed basis. Eventually, the goal of the adversary is to compute the DL
of all ` received challenges while making at most `− 1 calls to the oracle.

Definition 2.5 (Strong Discrete Logarithm (SDL) Assumption [BCN+10]). Let
BG(1λ) = (G1,G2,GT , p, e, g1, g2) is an asymmetric pairing group. Given a pair (Z1, Z2) =
(gz1 , g

z
2), where z←$Z∗p, for all PPT adversaries, A, it is computationally hard to find z.

The PS assumption is an interactive assumption, defined by Pointcheval and
Sanders [PS16] to construct an efficient randomizable signature. The assumption has been
shown to hold in the GGM.

Definition 2.6 (PS Assumption [PS16]). The PS assumption holds if no PPT adver-
sary, A, who takes asymmetric pairing setup, a tuple (gx2 , g

y
2) ∈ G2

2 and PS oracle OPS
shown in Fig. 1, can find a tuple (h∗, s∗,m∗) ∈ G2

1 × Zp such that (1) h∗ 6= 1G1 , m
∗ 6= 0,

(2) s∗ = hx+ym
∗
, (3) m∗ 6∈ Q, where Q is the list of queried messages to the OPS oracle.

9

Note that in the PS assumption the validity of tuple (h∗, s∗,m∗) is decidable by check-
ing: e(s∗, g2) = e(h∗, gx2 (gy2)m

∗
). Kim et al. [KLAP20] introduced a generalized version of

the PS assumption, GPS in short, that splits the PS oracle into two: the first oracle pro-
vides basis h sampled uniformly at random and the second oracle takes the message and
basis h as inputs and generates the PS tuple.

Definition 2.7 (Generalized PS Assumption [KLAP20]). Given a tuple (gx2 , g
y
2) ∈

G2
2 and two oracles OGPS

0 and OGPS
1 defined in Fig. 1. The GPS assumption holds if no

PPT adversary, A, can find a tuple (h∗, s∗,m∗) ∈ G2
1×Zp such that, (1) h∗ 6= 1G1 , m

∗ 6= 0,

(2) s∗ = h∗
x+ym∗

, (3) m∗ 6∈ Q1, where Q1 is the list of queried messages to OGPS
1 oracle by

the adversary.

Recently, Kim et al. [KSAP21] expanded the GPS assumption in the direction that all
exponential values are substituted by group elements, called GPS2. The security of GPS2

assumption is proven in the AGM and reduced to the SDL problem.

Definition 2.8 (GPS2 Assumption [KSAP21]). Given a tuple (gx2 , g
y
2) ∈ G2

2 and two
oracles OGPS2

0 and OGPS2
1 defined in Fig. 1, the GPS2 assumption holds if no algebraic

adversary, Aalg can find a tuple (M∗, h∗, s∗, f∗) ∈ G4
1 such that, (1) h∗,M∗ 6= 1G1, (2)

s∗ = h∗
x
M∗

y
, (3) dlogg1(M∗) = dlogh∗(f

∗), (4) (?,M∗) 6∈ Q1.

Connecting to the fact that the challenge in the GPS2 assumption only contains the
source group elements and the verification uses membership testing and pairing product
equations, it fails to lead us to an SPS construction because of the unilateral impossibility
result shown by [AGHO11]. We take one step ahead and define the GPS3 assumption that
avoids this drawback by relying on indexed Diffie-Hellman message spaces. Additionally,
we modify the oracle OGPS2

0 such that OGPS3
0 oracle generates a basis h by taking an index

id as input.

Definition 2.9 (GPS3 Assumption). Given a tuple (gx2 , g
y
2) ∈ G2

2 and two oracles,
OGPS3

0 and OGPS3
1 defined in Fig. 1. The GPS3 assumption holds if no algebraic adversary,

Aalg, can find a tuple (h∗,M∗1 ,M
∗
2 , s
∗) ∈ G1 ×G1 ×G2 ×G1 such that, (1) h∗ 6= 1G1 and

M∗2 6= 1G2, (2) s∗ = h∗
x
M∗

y

1 , (3) dlogh∗(M
∗
1) = dlogg2(M∗2), (4) (?,M∗2) 6∈ Q1. The GPS3

assumption is called ε-hard if the success probability of all PPT adversaries is bounded by
a negligible function ε, i.e. AdvGPS3

A (λ) ≤ ε.

The GPS3 assumption is decidable by checking the equality of two pairing product
equations: e(h∗,M∗2) = e(M∗1 , g2) and e(h∗, gx2)e(M∗1 , g

y
2) = e(s∗, g2).

10

GPS(1λ)

1 : (G1,G2,GT , p, e, g1, g2)← BG(1λ)

2 : x←$Zp
3 : y←$Zp

4 : (h∗, s∗,m∗)← AO
PS

(gx2 , g
y
2)

5 : return (1) h∗ 6= 1G1 ∧ m∗ 6= 0 ∧

6 : (2) s∗ = h∗
x+ym∗

∧
7 : (3) m∗ 6∈ Q .

GGPS(1λ)

1 : (G1,G2,GT , p, e, g1, g2)← BG(1λ)

2 : x←$Zp
3 : y←$Zp

4 : (h∗, s∗,m∗)← AO
GPS
0 ,OGPS

1 (gx2 , g
y
2)

5 : return (1) h∗ 6= 1G1 ∧ m∗ 6= 0 ∧

6 : (2) s∗ = h∗
x+m∗y

∧
7 : (3) (?,m∗) 6∈ Q1 .

GGPS2(1λ)

1 : (G1,G2,GT , p, e, g1, g2)← BG(1λ)

2 : x←$Zp
3 : y←$Zp

4 : (M∗, h∗, s∗, f∗)← AO
GPS2
0 ,OGPS2

1
alg (gx2 , g

y
2)

5 : return (1) h∗ 6= 1G1 ∧ M∗ 6= 1G1 ∧

6 : (2) s∗ = h∗
x

f∗
y

∧
7 : (3) dlogh∗(f∗) = dlogg1(M∗) ∧
8 : (4) (?,M∗) 6∈ Q1 .

GGPS3(1λ)

1 : (G1,G2,GT , p, e, g1, g2)← BG(1λ)

2 : x←$Zp
3 : y←$Zp

4 : (h∗,M∗1 ,M
∗
2 , s
∗)← AO

GPS3
0 ,OGPS3

1
alg (gx2 , g

y
2)

5 : return (1) M∗1 6= 1G1 ∧ h∗ 6= 1G1 ∧

6 : (2) s∗ = h∗
x

M∗
y

1 ∧
7 : (3) dlogh∗(M∗1) = dlogg2(M∗2) ∧
8 : (4) (?,M∗2) 6∈ Q1 .

OPS(m)// m ∈ Zp

1 : h←$G1

2 : Q = Q∪ {m}
3 : return (h, hx+my)

OGPS
0 (.)

1 : h←$G1

2 : Q0 = Q0 ∪ {h}
3 : return h

OGPS2
0 (.)

1 : r←$Zp
2 : Q0 = Q0 ∪ {gr1}
3 : return gr1

OGPS3
0 (id)

1 : if Q0[id] =⊥:

2 : r←$Zp
3 : Q0[id]← gr1

4 : return Q0[id]

OGPS
1 (h,m)// m ∈ Zp

1 : if (h 6∈ Q0 ∨
2 : (h, ?) 6∈ Q1) :

3 : return ⊥
4 : s← hxMy

1

5 : Q1 = Q1 ∪ {(h,m)}

6 : return hx+my

OGPS2
1 (h,M1,M2) //M1,M2 ∈ G1

1 : if (h 6∈ Q0 ∨
2 : dlogh(M1) 6= dlogg1(M2)) :

3 : return ⊥
4 : if (h, ?) ∈ Q1 :

5 : return ⊥
6 : Q1 = Q1 ∪ {(h,M1)}
7 : return hxMy

1

OGPS3
1 (h,M1,M2)//M1 ∈ G1,M2 ∈ G2

1 : if (h 6∈ Q0 ∨
2 : dlogh(M1) 6= dlogg2(M2)) :

3 : return ⊥
4 : if (h, ?) ∈ Q1 :

5 : return ⊥
6 : Q1 = Q1 ∪ {(h,M2)}
7 : return hxMy

1

Fig. 1. Security Games and Oracles.

11

GPS3 Assumption in the Algebraic Group Model. Similar to [KSAP21], we define
the GPS3 in the AGM in Fig. 2. Compared to GPS3 assumption in Def. 2.9, it has two
main differences: 1 An extractor Ext(.) as a deterministic polynomial algorithm is defined

in the second oracle, OGPS3
1 . In the jth-query, this extractor takes three source group

elements hj ,Mj1,Mj2 ∈ G2
1 × G2 along with their representations ~hj , ~Mj1, ~Mj2 as inputs.

It then returns a scalar mj s.t. Mj1 = h
mj
j , Mj2 = g

mj
2 , or it returns ⊥ whenever the

extraction is failed. This extractor succeeds to extract the scalar mj because under some
conditions, shown in Fig. 2, if the extraction fails then the SDL problem is no longer hard
(we will discuss it in App. B). Thus the oracle OGPS3

1 in GPS3 in the AGM can successfully

respond to the algebraic adversary Aalg queries. 2 Additionally, the third condition in

GPS3 assumption of Def. 2.9, can be written as dlogg2(M∗2) = dlogh∗(M
∗
1) =

dlogg1 (M
∗
1)

dlogg1 (h
∗) and

these conditions can be checked by evaluating the polynomials P ∗M2
(~x2) = dlogg2(M∗2) =

dlogg1 (M
∗
1)

dlogg1 (h
∗) =

P ∗M1
(~x1)

P ∗h (~x1)
, where ~x1 and ~x2 are the vectors of the all points selected by the

challenger to Aalg relative to all inputs Aalg received up to that point.

Theorem 2.1. The GPS3 assumption in the AGM, stated in Fig. 2, holds in the asym-
metric algebraic bilinear group model, stated in Def. 2.3, under the hardness of the SDL
assumption, stated in Def. 2.5.

Proof (High-level). To prove this theorem we borrow the Kim et al. proof tech-
nique [KSAP21, Theorem 3.6] and define a challenger Balg who can simulate the defined
oracles in the GPS3 assumption in the AGM. The defined extractor can successfully ex-
tract the scalar message mj on the jth query to OGPS3

1 oracle by having access to the
representations of inputs to the oracle. As a contradiction, if the extractor fails then we
can build an algebraic algorithm to solve the SDL problem and we conclude that Balg
can successfully simulate the security game. Then we demonstrate that no PPT algebraic
adversary Aalg can output a valid challenge that satisfies all the conditions in the security

game GGPS3
Aalg (1λ) in Fig. 2. Note that GPS3 assumption is stronger than GPS2 assumption

since the adversary should represent the message in both source groups. A formal proof of
this theorem can be found in App. B.1. ut

2.4 Distributed Key Generation

Distributed Key Generation (DKG) protocols [Ped92] enables to securely generate key-
pairs among parties without the need of a trusted dealer. To perform a secret key related
operation, a cooperation of sufficiently large number of parties is required while any smaller
subset is unable to learn any information about the secret key. The generated keys can be
used for any threshold cryptosystem e.g. threshold signatures or threshold encryption. We
formally define the DKG construction and list security requirements.

12

GGPS3
Aalg

(1λ)

1 : Run (G1,G2,GT , p, e, g1, g2)← BG(1λ)

2 : x←$Zp := X, y←$Zp := Y

3 :
(

(h∗;~h∗), (M∗1 ; ~M∗1), (M∗2 ; ~M∗2), (s∗; ~s∗)
)
← AO0,O1

alg (gx2 , g
y
2)

4 : If (1) M∗1 , h
∗ 6= 1G1 ∧ M∗2 6= 1G2 ∧

5 : (2) s∗ = h∗
x

M∗
y

1 ∧
6 : (3) dlogh∗(M∗1) = dlogg2(M∗2)

7 : ↔ P ∗M2
(~x2)P ∗h (~x1)− P ∗M1

(~x1) = 0

8 : (4) ∧ (?,M∗2) 6∈ Q1 :

9 : return 1

10 : Else : return 0

Ext
(

(Mj1; ~Mj1), (Mj2; ~Mj2)
)

// ~X1 = (X,Y,R1, . . . ,R|Q0|)

// ~X2 = (X,Y)

If (PMj1 [~X1]−RjPMj2 [~X2]) 6= 0 :

return ⊥
Else :

return [Mj2|g2]

OGPS3
0 (idmj) //j-th query

1 : If Q0[idmj] =⊥:

2 : rj ←$Zp := Rj

3 : Q0[idmj]← g
rj
1 := hj

4 : return Q0[idmj]

OGPS3
1

(
(hj ;~hj), (Mj1; ~Mj1), (Mj2; ~Mj2)

)
//j-th query

1 : If hj 6∈ Q0 ∨ (hj , ?) ∈ Q1 :

2 : return ⊥
3 : For rj = dlogg1(hj :

4 : If e(Mj1, g2) 6= e(g
rj
1 ,Mj2) :

5 : return ⊥

6 : Else : mj ← Ext
(

(Mj1; ~Mj1), (Mj2; ~Mj2)
)

7 : sj = hxjM
y
j1 = h

x+mjy

j

8 : Q1 = Q1 ∪ {(hj ,Mj2)}
9 : return sj

Fig. 2. GPS3 Assumption in the AGM.

Definition 2.10 (Distributed Key Generation (DKG) [Ped92]). A (n, t)-DKG is
an interactive protocol among a set of parties (P1, . . . , Pn) to generate a tuple of public
keys (pk, pk1, . . . , pkn) along with a tuple of secret key shares (sk1, . . . , skn) s.t. only party
Pi knows share ski. A DKG is called (t− 1)-Consistent if at the end of the protocol honest
parties agree on a consistent public key pk and the vector of public keys (pk1, . . . , pkn) even
if at most t− 1 of the parties are corrupted. Moreover as long as the number of corrupted
parties is less than t, there exists a polynomial of f(x) ∈ Z≤tp [X] with degree d ≤ t such that

we have: ∀i ∈ [1, n] : ski = f(i) and the global public key can be computed as pk = gf(0),
where g is the generator of a cyclic group G.

Next we recall the definition of oracle-aided algebraic simulatability from [BL22]. In-
formally, a DKG is called oracle-aided algebraic simulatable if there exists an efficient

13

simulator Sim given some number of queries to a discrete logarithm oracle can simulate an
execution of the DKG protocol with adaptive corruption. (the adversary can corrupt up to
t− 1 parties at any point of the experiment.)

Definition 2.11 ((t−1, k)-Oracle-Aided Algebraic Simulatability [BL22]). A (n, t)-
DKG protocol is called (t − 1, k)-Oracle-Aided Algebraic Simulatability (OAAS) secure, if
for all algebraic adversaries, Aalg, that can corrupt at most t − 1 parties, there exists an
algebraic PPT simulator Sim that can make less than k− 1 queries to a discrete logarithm
oracle Dlogg(.) and satisfy the following properties:

– In an adaptive corruption notion, for a given k-OMDL instance ζ = (ζ1, . . . , ζk) =
(gr1 , . . . , grk), the algebraic simulator Sim can play the role of honest parties and it can
successfully generates the global public key gx with an algebraic representation ~gx =
(ã0, a0,1, . . . , a0,k), i.e. gx = gã0

∏k
j=1 ζ

a0,j
j .

– For a given k-OMDL instance ζ = (ζ1, . . . , ζk) = (gr1 , . . . , grk), let for i ∈ [1, k −
1], gi ∈ G denotes the ith query to the discrete logarithm oracle Dlogg(.) and
~gi = (ãi, ai,1, . . . , ai,k) is the corresponding algebraic representation of gi, i.e. gi =

gãi
∏k
j=1 ζ

ai,j
j . If Sim completes the simulation of an execution of the DKG, then the

following Simulatability matrix is invertible over Zp.

L :=

a0,1 a0,2 · · · a0,k
a1,1 a1,2 · · · a1,k

...
...

. . .
...

ak−1,1 ak−1,2 · · · ak−1,k

 ∈ Zk×kp (3)

– For all global public parameter gx ∈ G, the view of adversary Aalg when interacting
with the algebraic simulator Sim on input ζ and the case that it is interacting with all
honest parties are identically distributed.

The minimum k ∈ N s.t. a (n, t)-DKG is (t − 1, k)-OAAS secure is called the DKG’s
simulatability factor.

3 Message-Indexed Structure-Preserving Signatures

We give a high-level overview of our threshold-friendly SPS taking Ghadafi’s construction
(see App. A) as a starting point and show how it fails for building a non-interactive SPTS.
Assume that the distributed key generation phase for secret keys x and y has already been
completed: each signer i ∈ [1, n] has access to a shared secret signing key ski = (ski1, ski2),
and the cooperation of at least t signers is required to obtain a valid aggregated signature. In
a threshold variant of Ghadafi’s SPS, in order to sign a Diffie-Hellman message (M1,M2) ∈
MDH, each signer generates the partial signature σi, which consists of three elements
(Ri := gri1 , Si := M ri

1 , Ti := R
ski1
i S

ski2
i) with fresh randomness ri←$Zp. To reconstruct the

14

set of partial signatures from a list of signers T , one can compute the Lagrange coefficient
LTi (0) and obtain the first and second elements of the aggregated signature by computing

the products, R =
∏
i∈T R

LTi (0)
i = gr1 and S =

∏
i∈T S

LTi (0)
i = M r

1 , where we denote
r =

∑
i∈T riL

T
i (0). One would expect to have T = RxSy. However, T cannot be computed

as
∏
i∈T T

LTi (0)
i and there is no efficient linear computation to reconstruct the secrets x

and y given that the shares are multiplied by a distinct random integer. Therefore to
overcome this challenge we follow the message indexing technique introduced by Sonnino
et al. [SAB+19] and Camenisch et al. [CDL+20].

Indexing can be understood as requiring the existence of an injective function F that
maps each message to an index. Then the partial signers of the message evaluate a hash-
to-curve function H on the index to agree on a single basis R = H(id).

In our construction we will rename R to h to make explicit that it is a random basis of
G1. That is, its discrete logarithm dlogg1(h) is unknown due to modeling H as a random
oracle. As a consequence, we can no longer compute M r

1 without knowledge of the discrete
logarithm dlogh(M1).

We overcome this problem by switching from a DH message space to an indexed DH
message space MH

iDH, as defined in Def. 2.2.

This results in an apparent circularity with respect to the indexing technique. On the
one hand, we require existence of an injective function F that maps (M1,M2) to id, on

the other hand M1 is computed as M1 = H(id)logg2 (M2). This circularity is avoided by
computing id from a partial message, or it’s discrete logarithm.

m ∈ Zp
f−→ id︸ ︷︷ ︸

Message Indexing

Indexed DH message space in ROM︷ ︸︸ ︷
iDHH(m,id)−−−−−−−→ (id,M1,M2) ∈MH

iDH

Fig. 3. Towards a Message-Indexed SPS.

As illustrated in Fig. 3, to satisfy all conditions of the indexed DH message space we
start from a scalar message and use an indexing function f to assign an index to each
scalar message m ∈ Zp. In the next step, we use a hash-to-curve function H : {0, 1}∗ → G1

(modeled as a random oracle) to generate a unique basis h. Then the source group messages
can be obtained using h. In an indexed-message SPS, the signing algorithm takes the source
group messages of this form along with an index as inputs and then generates the underlying
signature with access to hash-to-curve function H(.). Note that the index does not destroy
the structure since the verifier does not need to know the index to verify a signature σ on
message M̃ := (M1,M2).

15

iDHH(id,m)

1 : h← H(id)

2 : M1 = hm

3 : M2 = gm2

4 : return (id,M1,M2) ∈MH
iDH

H(id)

1 : If QH[id] =⊥:

2 : r←$Zp
3 : QH[id]← gr1 := h

4 : return QH[id]

Fig. 4. Indexed Diffie-Hellman Message Space in the Random Oracle Model.

We adapt the notion of EUF-CMA security (See App. A) to existential unforgeability
against chosen indexed-message attacks, denoted by EUF-CiMA. In this security notion,
the adversary can make queries to the signing oracle by providing index/message pairs.

Definition 3.1 (Existential Unforgeability under Chosen indexed Message At-
tack (EUF-CiMA)). For a given asymmetric bilinear group (G1,G2,GT , p, e, g1, g2) a dig-
ital signature over the indexed Diffie-Hellman message space, MH

iDH, is EUF-CiMA-secure,
if for all PPT adversaries A the advantage on wining the defined security game defined in
Fig. 5 is negligible, i.e.,

AdvEUF-CiMA
DS,A (λ) := Pr

[
GEUF−CiMA
A (1λ) = 1

]
≤ negl(λ) .

GEUF-CiMA
A (1λ)

1 : pp← Setup(1λ)

2 : (sk, vk)← KGen(pp)

3 : (M∗1 ,M
∗
2 , σ

∗) ←$AH,OSign(pp, vk)

4 : return (?,M∗2) 6∈ Q ∧
5 : Verify(pp, vk,M∗1 ,M

∗
2 , σ

∗) = 1

OSign(id,M1,M2)

1 : if (id, ?) ∈ Q :

2 : return ⊥

3 : Else : σ ← SignH (pp, sk, id,M1,M2)

4 : Q ← Q∪ {(id,M2)}
5 : return σ

Fig. 5. Game GEUF-CiMA
A (1λ).

A message-indexed SPS construction. In Fig. 6, we present our message-indexed SPS
construction over the indexed Diffie-Hellman message spaceMH

iDH. We then show that this
construction is EUF-CiMA-secure under the hardness of the GPS3 assumption, stated in
Def. 2.9. Note that the signer has access to the indexed Diffie-Hellman message space in
the ROM, described in Fig. 4.

16

(pp)← Setup(1λ)

1 : Parse (1λ)

2 : (G1,G2,GT , p, e, g1, g2)← BG(1λ)

3 : pp := (G1,G2,GT , p, e, g1, g2)

4 : return (pp)

(sk, vk)← KGen(pp)

1 : Parse (pp)

2 : x, y←$Z∗p
3 : sk := (sk1, sk2) := (x, y)

4 : vk := (vk1, vk2) := (gx2 , g
y
2)

5 : return (sk, vk)

(σ,⊥)← SignH(pp, sk, id,M1,M2)

1 : Parse (pp, sk)

2 : h←$H(id)

3 : if e(h,M2) = e(M1, g2) :

4 : return σ := (h, s) = (h, hxMy
1)

5 : Else : return ⊥

(0, 1)← Verify(pp, vk,M1,M2, σ)

1 : Parse (pp, vk, σ)

2 : return
(
h 6= 1G1 ∧M1 6= 1G1 ∧

3 : e(h,M2) = e(M1, g2) ∧
4 : e(h, vk1)e(M1, vk2) = e(s, g2)

)

Fig. 6. A Message-Indexed SPS Construction.

Theorem 3.1. The message-indexed structure-preserving signature in Fig. 6 is correct and
EUF-CiMA-secure, stated in Def. 3.1, under the hardness of GPS3 assumption, stated in
Def. 2.9.

Proof (High-level). To informally demonstrate the proof of this theorem we have:

Correctness. If e(h,M2) = e(M1, g2) = e(gr1, g
m
2) = e(grm1 , g2) = e(M1, g2), then the

signature can be written as, σ := (h, s) = (h, hx+my) and we have, e(h, vk1)e(M1, vk2) =
e(h, gx2)e(hm, gy2) = e(h, g2)

x+my = e(hx+my, g2) = e(hxMy
1 , g2) = e(s, g2).

EUF-CiMA Security. Over an indexed Diffie-Hellman message space, the random oracle,
H(.), and the signing oracles in the EUF-CiMA security definition are exactly the same
as the OGPS3

0 and OGPS3
1 oracles in the GPS3 assumption, respectively, except the fact

that the signing oracle takes the index id instead of the basis h as input. The challenger
given the index id, queries OGPS3

0 oracle to obtain the corresponding basis h and then
runs the oracle OGPS3

1 under the received queries. Thus we can conclude the security of
the proposed MI-SPS construction is equivalent to the GPS3 assumption. More precisely,
under the existence of a PPT adversary, A, against the EUF-CiMA security of the proposed
MI-SPS, we can build a PPT algorithm B that can use A as a subroutine to break the
hardness of GPS3 problem. Thus as a contradiction, we conclude the proposed MI-SPS
scheme is EUF-CiMA-secure. Note that the public parameters and oracles are identical and
it is easy to show that the success probability of A and B is the same. ut

Indexing function instantiations. In the indexed Diffie-Hellman message space, the

17

indexing function can be instantiated depending on the requirements of applications: 1

message and the signature are public, 2 message and signature are hidden as for instance
in anonymous credential systems. In the first case, the indexing function can be simply
instantiated by defining the scalar message as the index, i.e. for each scalar message m ∈ Zp,
we have id := m ← f(m). Although it does not meet the SPS conditions of signing
algorithm taking scalar message as input, it does not break the main requirements as we
are not signing the scalar messages and verification does not need the index.

In the second use-cases, Sonnino et al. in Coconut [SAB+19] took a different approach
and commits to the scalar message along with a proof of well-formedness of the com-
mitment. Meanwhile Coconut’s authors do not provide a security model to analyze the
security of their construction. Recently, Rial and Piotrowska [RP22] did a security analysis
on Coconut and have shown that this scheme with some modification, called Coconut++

in [BSKD22], which they call PS signature in the ROM, can be provably secure. Camenisch
et al. [CDL+20] took a different observation for indexing the messages and instead of gen-
erating the basis by a function, they assume the existence of a pre-defined and publicly
available indexing function. More precisely, there is a unique index value for each message
that are known to each signer. The corresponding basis can be obtained by evaluating the
hash-to-curve function at the given index. The authors note that if the size of the mes-
sage space is in polynomial and known in advance, then this approach is secure since this
is equivalent to including this unique basis in the public parameters. However, for most
message spaces encountered in practice this is impractical.

4 Structure-Preserving Threshold Signature

In this section, we define the syntax and security notions of non-interactive (n, t)-SPTS
schemes and then propose an efficient instantiation. Generally, in a (n, t)-SPTS, the sign-
ing key is distributed among n parties and the generation of any signature requires the
cooperation of a subset of players of size at least t. Moreover, any adversary who learns
t− 1 or fewer partial signatures cannot forge signatures.

4.1 Definition and Security Requirements

Definition 4.1 (Structure-Preserving Threshold Signature). For a given security
parameter λ and asymmetric bilinear group BG(1λ), a (n, t)-SPTS over message space
M consists of a tuple of (Setup,KGen,Par-Sign,Par-Verify,Reconst,Verify) PPT algorithms
defined as follows:

– (pp) ← Setup(1λ): The setup algorithm takes the security parameter 1λ as input and
returns the public parameters pp as output.

– (~sk, ~vk, vk) ← KGen(pp, n, t): The key generation as a probabilistic algorithm takes the
public parameters pp and two integers t, n ∈ poly(1λ) such that 1 ≤ t ≤ n as inputs.

18

It returns two vectors of size n of signing/verification keys ~sk = (sk1, . . . , skn) and
~vk = (vk1, . . . , vkn) such that each party Pi for i ∈ [n] receives a pair of (ski, vki) along
with a global verification key vk while the master secret key, sk, keeps hidden.

– (σi) ← Par-Sign(pp, ski,M): The partial signing algorithm takes the public parameters
pp, the ith secret signing key ski and a message M ∈ M as inputs and returns the
partial signature σi as output.

– (0, 1) ← Par-Verify(pp, vki,M, σi): The partial verification algorithm is a deterministic
algorithm that takes the ith verification key vki, message M ∈M and partial signature
σi as inputs. If σi is a valid partial signature, it returns 1, otherwise it responds by 0.
We refer to well-formed partial signatures as those that pass this verification.

– (σ,⊥)← Reconst(pp, {i, σi}i∈T): The reconstruction algorithm takes public parameters
and a set of well-formed partial signatures {i, σi} over subset T ⊆ {1, . . . , n} as inputs.
It outputs an aggregated signature σ if |T | ≥ t, else it returns ⊥.

– (0, 1)← Verify(pp, vk,M, σ): This deterministic algorithm takes the verification key vk,
message M ∈ M and an aggregated signature σ as inputs. It outputs either 1 (accept)
or 0 (reject).

Two main security properties for a SPTS are: Correctness and threshold existentially
unforgeable against chosen indexed message attack (Threshold EUF-CiMA) defined as fol-
lows.

Definition 4.2 (Correctness). A (n, t)-SPTS scheme, ΨSPTS, is called correct, if we
have:

Pr

[
∀ pp← Setup(1λ), (~sk, ~vk, vk)← KGen(pp, n, t),M ∈M, |T | ≥ t :

Verify
(
pp, vk,M,Reconst

(
pp, {Par-Sign(pp, ski,M)}i∈T

))
= 1

]
≥ 1− negl(λ) .

We define the threshold unforgeability of non-interactive SPTS constructions over the
indexed Diffie-Hellman message spaces in the adaptive corruption setting in the following
definition. Throughput, for a given set of players with indices P = {1, . . . , n}, the evolving
sets of corrupted and honest parties are denoted by C ⊂ P and H = P \ C, respectively,
such that C is initialized with an empty list. We assume there exists a challenger B that
plays the role of honest parties.

Definition 4.3 ((ε, qh, qs)-Threshold EUF-CiMA). For a given bilinear group
(G1,G2,GT , p, e), a non-interactive (n, t)-SPTS scheme, ΨSPTS, over the indexed Diffie-
Hellman message space MH

iDH, is called (ε, qh, qs)-Threshold EUF-CiMA-secure, if for all
adaptive PPT adversaries A we have a negligible advantage in the following security game.

1. Initialization: The game starts with the key generation phase and at the end of this
phase, A has access to the set of public parameters including the verification keys of
whole players Pi for i ∈ [1, n], i.e. ~vk = {vk1, . . . , vkn}, and the global verification key
vk. Additionally, it initializes an empty sets of QH = ∅, QS = ∅ and S(id,M2) = ∅ for all
messages (M1,M2) ∈MiDH.

19

2. Query: On polynomially bounded number of queries, the adversary A has access to the
random oracle, corruption and the partial signing oracles as follows:

– Random oracle, H(id): It takes the index id as input and if QH[id] =⊥, it samples
r←$Z∗p and sets QH[id]← gr1. It returns QH[id] as output.

– Corruption oracle, OC(j): As an adaptive notion of security, A at any point of
experiment can corrupt up to t−1 parties. By querying to this oracle and submitting
a party identifier j ∈ P, A receives the internal state of Pj. It updates C = C ∪ {j}
and H = H \ {j} s.t. |C| < t.

– Partial Signing oracle, OPSign(k,M): A queries M := (id,M1,M2) ∈ MH
iDH along

with an honest party identifier k ∈ H to this oracle. If (id, ?) ∈ QS it returns ⊥, else
it executes (σk) ← Par-Sign(pp, skk,M) and returns σk back to A. It also updates
S(id,M2) = S(id,M2) ∪ {k} and QS = QS ∪ {(id,M2)}.

3. Forgery: In this phase, the adversary A returns a forged signature σ∗ on challenge
message M̃∗ := (M∗1 ,M

∗
2) to the challenger.

4. Probability: The adversary has the following advantage to win this security game:

AdvTSPSA (λ) = Pr

(pp)← Setup(1λ), (~sk, ~vk, vk)← KGen(pp, n, t),

(M∗1 ,M
∗
2 , σ

∗)← AH,OC,OPSign(pp, ~vk, vk) :

Verify(pp, vk,M∗1 ,M
∗
2 , σ

∗) = 1 ∧ |S(?,M∗2) ∪ C| < t

 .

We say a (n, t)-SPTS scheme is (ε, qH, qS)-threshold EUF-CiMA-secure if for all PPT ad-
versaries A, querying at most qH and qS numbers of queries to the random oracle and
partial signing oracle, respectively, we have AdvTSPSA (λ) ≤ ε.

Intuitively, this security notion guarantees no adaptive PPT adversary, A, that has cor-
rupted at most t−1 signers and has access to a partial signing oracle to ask a polynomially
bounded number of queries to the partial signature from at least n− t+ 1 honest signers
on messages and indices of its choice cannot produce signature on a fresh message that
is not queried to the partial signing oracle before. There is a weaker notion, called static
corruption, which implies that the adversary should provide the list of corrupted parties,
C, at the initialization phase and cannot alter it later.

4.2 The Proposed Message-Indexed SPTS Construction

For a given security parameter λ, the proposed (n, t)-SPTS construction over indexed Diffie-
Hellman message space,MH

iDH, defined in Def. 2.2, includes the following PPT algorithms:

– (pp)← Setup(1λ): It takes the security parameter 1λ as input and runs the asymmetric
bilinear group generator BG(1λ) = (G1,G2,GT , p, e, g1, g2), where g1 ∈ G1 and g2 ∈ G2

are the generators. It returns the public parameters pp = (G1,G2,GT , p, e, g1, g2) as
output.

20

– (~vk, ~sk, vk)← KGen(pp, n, t): It takes pp and integers t, n ∈ poly(λ) such that 1 ≤ t ≤ n
as inputs. It runs the Pedersen’s DKG protocol [GJKR99,GJKR03] and acts as follows:
1. Each player Pi for i ∈ [1, n], samples two initial random integers xi0, yi0←$Z∗p and

does the following steps:
a) It samples 2t random integers {xij , yij}tj=1 and forms the polynomials Fi[X] =

xi0 + xi1X + . . .+ xitX
t ∈ Ztp[X] and Gi[X] = yi0 + yi1X + . . .+ yitX

t ∈ Ztp[X]

with degree t and commits the coefficients by publishing, Vxij = g
xij
2 , Vyij =

g
yij
2 ∀j ∈ [0, t].

b) It sends Fi(`) and Gi(`) to `th player, P`, s.t. ` ∈ [1, n] \ {i} and keeps Fi(i) and
Gi(i) by own.

2. Player Pi checks the consistency of the received shares, F`(i), G`(i), from player

P` by computing the equations g
F`(i)
2 =

∏t
j=0 V

ij

x`j and g
G`(i)
2 =

∏t
j=0 V

ij

y`j . If these
equations hold, player Pi accepts the shares, otherwise it rejects and then complaints
against the faulty player P`.

3. Any faulty party that received at least t complaints is called disqualified while at the
end of this phase at least t parties from the set of qualified players, Q ⊂ {1, . . . , n}
do the next steps.

4. The global verification key is determined as vk := (vk1, vk2) :=

(
∏
i∈Q Vxi0,

∏
i∈Q Vyi0) = (g

∑
i∈Q xi0

2 , g
∑
i∈Q yi0

2) = (gx2 , g
y
2). Additionally, we

denote the corresponding secret key by sk := (sk1, sk2) := (x, y) := (
∑

i∈Q xi0,∑
i∈Q yi0).

5. Each qualified player Pi defines its private key share ski := (ski1, ski2) :=
(
∑

`∈Q F`(i),
∑

`∈QG`(i)).
6. The corresponding verification key vki is obtained by computing, vki :=

(vki1, vki2) := (
∏
`∈Q

∏t
j=0 (Vx`j)

ij ,
∏
`∈Q

∏t
j=0 (Vy`j)

ij) := (g
F (i)
2 , g

G(i)
2), where

F [X] =
∑

`∈Q F`[X] and G[X] =
∑

`∈QG`[X].
7. For any disqualified parties Pj s.t. j ∈ {1, . . . , n} \ Q we define skj = (0, 0) and

corresponding verification key vkj = (1G2 , 1G2).
The key generation phase completes by returning two vectors of size n of signing keys
~sk = (sk1, . . . , skn) and verification keys ~vk = (vk1, . . . , vkn) along with a global verifi-
cation key vk.

– (σi,⊥) ← Par-Sign(pp, ski,M): The partial signature algorithm is run by a qualified
party Pi ∈ Q and takes pp, ski and message M := (id,M1,M2) ∈ MH

iDH as inputs. It
executes h ← H(id) and if e(h,M2) = e(M1, g2), then generates the partial signature

as σi = (h, si) = (h, hski1M
ski2
1) and returns σi as output, otherwise it responds by ⊥.

- (0, 1) ← Par-Verify(pp, vki, M̃ , σi): Given message pair M̃ = (M1,M2) ∈ MiDH, a par-
tial signature σi and partial verification key vki as inputs, it checks the membership of
M1, si ∈ G1, h 6= 1G1 and M2 6= 1G2 . Then it computes and checks the pairing product
equations, e(h,M2) = e(M1, g2) and e(h, vki1)e(M1, vki2) = e(si, g2). If all these condi-
tions hold, then the partial verification algorithm outputs 1 (accept), else it returns 0
(reject).

21

– (σ,⊥) ← Reconst(pp, {i, σi}i∈T): To obtain an aggregated signature, this algorithm
takes a set of partial signatures {σi}i∈T and if |T | < t, it returns ⊥. Otherwise, it

computes σ := (h, s) :=
(
h,
∏
i∈T s

LTi (0)
i

)
, where LTi (0) is the Lagrange coefficient for

the ith index corresponding to set T and returns σ as output.

– (0, 1) ← Verify(pp, vk, M̃ , σ): The verification algorithm takes a message pair M̃ :=
(M1,M2) ∈ MiDH, an aggregated signature σ and global verification key vk as inputs,
it checks the membership of h,M1, s ∈ G1, h 6= 1G1 and M2 6= 1G2 , and then checks
the pairing product equations, e(h,M2) = e(M1, g2) and e(h, vk1)e(M1, vk2) = e(s, g2).
If all these conditions hold, then the verification algorithm outputs 1 (accept), else it
returns 0 (reject).

Correctness: First we show that the reconstruction algorithm for a set of valid partial
signatures {i, σi}i∈T , s.t. |T | ≥ t on message M := (id,M1,M2) ∈ MH

iDH results a valid
aggregated signature σ = (h, s).

s =
∏
i∈T

s
LTi (0)
i =

∏
i∈T

(
hski1M

ski2
1

)LTi (0)
= h

∑
i∈T ski1L

T
i (0)M

∑
i∈T ski2L

T
i (0)

1 = hsk1M
sk2
1 .

Next, we show that the verification phase for the above aggregated signature σ on message
M̃ = (M1,M2) ∈MiDH succeeds.

e(h,M2) = e(h, gm2) = e(hm, g2) = e(M1, g2) ,

e(h, vk1)e(M1, vk2) = e(h, gx2)e(M1, g
y
2) = e(hxMy

1 , g2) = e(s, g2) .

Theorem 4.1. The Pedersen DKG, used in the proposed message-indexed SPTS construc-
tion is (t− 1, k)-Oracle-aided Algebraic secure, stated in Def. 2.10, with k ≤ nt.

Proof. The proof can be found in [BL22, Theorem 4.5]. ut

Theorem 4.2. The proposed Non-Interactive (n, t)-SPTS construction over the index
Diffie-Hellman message space is (ε, qh, qs)-Threshold EUF-CiMA secure, stated in Def. 4.3,
in the algebraic group model and random oracle model under the (ε1)-hardness of t-OMDL
assumption, i.e. (t− 1, t)-Oracle-aided algebraic security of the DKG, and the ε2-hardness
of GPS3 assumption, stated in Def. 2.9, such that,

ε ≤ ε2 + 4

(
1−

(
(t− 1)! (n− t+ 1)!

n!

))
ε1 − q2h/p .

Proof (High-level). We provide a detailed proof in App. B.2, but give a high-level overview
of it here. We prove this theorem by defining a sequence of indistinguishable security games
and assume the existence of an algebraic adversary Aalg who can break the threshold EUF-
CiMA security of the proposed SPTS construction and then we build an algorithm Balg that

22

plays the role of an attacker against the t-OMDL problem and GPS3 problem. We start
with the actual security definition and then slightly modify it to multiple games s.t. in the
last game the challenger can simulate the parameters and the oracles with the adaptive-
corruption setting. Thus once Aalg returns a valid forgery σ∗ associated to the random
oracle query H(.) along with their algebraic representations, then the algorithm Balg can
use Aalg as a subroutine to break the hardness of the underlying problems. We summarize
the defined security games and their main security justifications in Table. 2.

Table 2. The overview of the games to prove the threshold EUF-CiMA security of the proposed SPTS
construction.

Games
Public

Parameters

Random

Oracle

Corruption

Oracle

Signing

Oracle
Justification

G0 KGen(pp, n, t) H(.) Static Par-Sign(pp, ski,M, id) -

G1 GPS3 instance OGPS3
0 (.) Static OGPS3

1 (.) Hardness of GPS3 problem

G2

GPS3 instance

OMDL instance
OGPS3

0 (.)
Adaptive

Dlog(.)

OGPS3
1 (.)

Dlog(.)

Hardness of GPS3 problem

Hardness of OMDL problem

We follow a strong notion of unforgeability known as adaptive-corruption that the
adversary Aalg can corrupt up to t − 1 parties at any point of the experiment. As it is
shown in [BL22], the Pedersen DKG is (t − 1, t)-OAAS secure and in the last game to
simulate the corruption oracle, the simulator Sim can query the discrete logarithm oracle
provided by t-OMDL assumption. We simplify the existing proof techniques of Rial et
al. [RP22] and define the global verification key of the threshold signature the same as the
actual non-threshold signature construction meanwhile we improve their security notion
to the adaptive-corruption setting. To generate the verification key of the honest parties
without the knowledge of their secret keys, we utilize the Lagrange polynomial basis to
obtain the honest parties share in the exponent. To simulate the partial signing oracle we
can use the same technique to compute a partial signature of an honest party by querying
to OGPS3

1 oracle. Moreover, we define an additional security game G3 that is identical to
G2 while the adversary loses the games if it queries a randomly pre-selected identifier to
the corruption oracle. Additionally, game G4 which is the same as previous game, except
we consider the case that the adversary loses the game if there is a collision in the random
oracle. ut

5 Applications

As already mentioned in Sect. 1, the compatibility of SPS with Groth-Sahai (GS) NIZK
proofs [GS08] makes them an attractive building block for more complex cryptographic pro-
tocols. Since GS proofs are straight-line extractable, they are particularly interesting for

23

constructions targeting security in composable security frameworks such as the universal
composability (UC) framework. Moreover, the combination with efficient NIZK makes SPS
attractive for privacy-preserving applications such as group signatures [AFG+10,LPY15],
traceable signatures [ACHO11], blind signatures [AFG+10,FHS15] or anonymous creden-
tials [Fuc11,CDHK15].

In all the aforementioned applications, users basically obtain signatures from some
entity. These entities are prone to compromise of the signing key representing a single
point of attack and failure. Replacing the use of SPS with SPTS in all these application
scenarios helps to reduce on the one hand the trust in a single authority and and increases
the availability of the respective signing service. Consequently, SPTS can be considered a
general replacement for the SPS used in all of the aforementioned applications.

We will now discuss two specific instantiations of such primitives and how our concrete
SPTS can be valuable.

Threshold Issuance Anonymous Credentials. Anonymous credentials (ACs) are an
important privacy-preserving authentication technique which allows users to prove the
possession of attributes while preserving their anonymity from verifiers. Sonnino et al. pro-
posed Coconut [SAB+19], a so-called Threshold Issuance AC (TIAC) system, that enables
a subset of credential issuers to jointly issue credentials. They rely on a threshold variant
of PS signatures [PS16]. While Coconut is practical from a performance point of view and
already found practical applications [BSKD22], it unfortunately lacks a rigorous security
analysis. Recently, Rial and Piotrowska [RP22] conducted a security analysis of Coconut
modeled via an attribute-based access control with threshold issuance functionality in the
UC model, which requires some changes to the original scheme. However, they rely the
assumption that a variant of the PS signatures remains secure in the ROM, which is not
formally substantiated. Moreover, they only consider security in a static corruption model,
i.e., the adversary needs to specify in the beginning which of the n signing entities it wants
to corrupt. Our SPTS can firstly be chosen as a provably secure drop in replacement for the
scheme used in [BSKD22] and secondly allows to lift this construction to stronger security
guarantees by allowing adaptive corruptions.

Threshold Dynamic Group Signatures. Group signatures allow users to anonymously
sign messages on behalf of a managed group without revealing their identity. But there
is a dedicated entity (called the opener) who is able to reveal the identity of the exact
signer when given a group signature. Camensich et al. [CDL+20] have recently introduced
threshold dynamic group signatures where issuing and opening is distributed among sev-
eral entities. As already mentioned earlier, their construction also relies on a variant of
PS signatures. Like in the TIAC systems discussed above, their security model only con-
siders static corruptions. Consequently, we can use our TSPS as a drop in replacement
which allows to lift the construction to stronger security guarantees by allowing adaptive
corruptions.

24

6 Conclusion and Future Work

In this work, we introduced a notion of a structure-preserving threshold signature (SPTS)
and present an efficient SPTS construction. We formally proved that the proposed SPTS
is secure under adaptive corruptions based on a new variant of generalized PS assumption
in the algebraic group and random oracle model. We believe this work can open a new line
of research for structure-preserving multi-party protocols like structure-preserving thresh-
old encryption. Despite the fact that the indexing method makes the underlying scheme
threshold-friendly, a SPTS without using this method is an interesting open question. The
security of the proposed construction is based on an interactive assumption and as a future
work we consider it interesting to investigate security based on non-interactive assumptions
such as a lifted variant of q-MSDH assumption s.t. the experiments challenge only contains
source group elements.

Acknowledgments. We would like to thank Behzad Abdolmaleki and Daniele Cozzo for
their helpful discussions and valuable comments on an earlier version of this work. Mahdi
Sedaghat and Bart Preneel were supported in part by the Research Council KU Leuven C1
on Security and Privacy for Cyber-Physical Systems and the Internet of Things with con-
tract number C16/15/058 and by CyberSecurity Research Flanders with reference number
VR20192203. Daniel Slamanig was supported by the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No. 871473 (Kraken) and No.
861696 (Labyrinth) and by the Austrian Science Fund (FWF) and netidee SCIENCE
under grant agreement P31621-N38 (Profet). The work of Markulf Kohlweiss was done
while visiting COSIC.

References

AAOT18. Masayuki Abe, Miguel Ambrona, Miyako Ohkubo, and Mehdi Tibouchi. Lower bounds on
structure-preserving signatures for bilateral messages. In Dario Catalano and Roberto De Prisco,
editors, SCN 18, volume 11035 of LNCS, pages 3–22. Springer, Heidelberg, September 2018.

ACD+12. Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and Miyako
Ohkubo. Constant-size structure-preserving signatures: Generic constructions and simple as-
sumptions. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of
LNCS, pages 4–24. Springer, Heidelberg, December 2012.

ACHO11. Masayuki Abe, Sherman S. M. Chow, Kristiyan Haralambiev, and Miyako Ohkubo. Double-
trapdoor anonymous tags for traceable signatures. In Javier Lopez and Gene Tsudik, editors,
ACNS 11, volume 6715 of LNCS, pages 183–200. Springer, Heidelberg, June 2011.

AFG+10. Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo.
Structure-preserving signatures and commitments to group elements. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 209–236. Springer, Heidelberg, August 2010.

AGHO11. Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. Optimal structure-
preserving signatures in asymmetric bilinear groups. In Phillip Rogaway, editor, CRYPTO 2011,
volume 6841 of LNCS, pages 649–666. Springer, Heidelberg, August 2011.

AGO11. Masayuki Abe, Jens Groth, and Miyako Ohkubo. Separating short structure-preserving signa-
tures from non-interactive assumptions. In Dong Hoon Lee and Xiaoyun Wang, editors, ASI-
ACRYPT 2011, volume 7073 of LNCS, pages 628–646. Springer, Heidelberg, December 2011.

25

AGOT14. Masayuki Abe, Jens Groth, Miyako Ohkubo, and Mehdi Tibouchi. Unified, minimal and se-
lectively randomizable structure-preserving signatures. In Yehuda Lindell, editor, TCC 2014,
volume 8349 of LNCS, pages 688–712. Springer, Heidelberg, February 2014.

AJO+19. Masayuki Abe, Charanjit S. Jutla, Miyako Ohkubo, Jiaxin Pan, Arnab Roy, and Yuyu Wang.
Shorter QA-NIZK and SPS with tighter security. In Steven D. Galbraith and Shiho Moriai, edi-
tors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 669–699. Springer, Heidelberg,
December 2019.

ALP12. Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. Computing on authenticated data:
New privacy definitions and constructions. In Xiaoyun Wang and Kazue Sako, editors, ASI-
ACRYPT 2012, volume 7658 of LNCS, pages 367–385. Springer, Heidelberg, December 2012.

BB08. Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH assumption
in bilinear groups. Journal of Cryptology, 21(2):149–177, April 2008.

BCF+11. Olivier Blazy, Sébastien Canard, Georg Fuchsbauer, Aline Gouget, Hervé Sibert, and Jacques
Traoré. Achieving optimal anonymity in transferable e-cash with a judge. In Abderrahmane
Nitaj and David Pointcheval, editors, AFRICACRYPT 11, volume 6737 of LNCS, pages 206–223.
Springer, Heidelberg, July 2011.

BCN+10. Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P. Smart, and Bogdan Warinschi. Get
shorty via group signatures without encryption. In Juan A. Garay and Roberto De Prisco,
editors, SCN 10, volume 6280 of LNCS, pages 381–398. Springer, Heidelberg, September 2010.

BDV+20. Lúıs TAN Brandão, Michael Davidson, Apostol Vassilev, et al. Nist roadmap toward crite-
ria for threshold schemes for cryptographic primitives. In National Institute of Standards and
Technology Internal or Interagency Report 8214A, 2020.

BF01. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, Heidelberg,
August 2001.

BL22. Renas Bacho and Julian Loss. On the adaptive security of the threshold BLS signature scheme.
Cryptology ePrint Archive, Report 2022/534, 2022. https://eprint.iacr.org/2022/534.

Bla79. G. R. Blakley. Safeguarding cryptographic keys. Proceedings of AFIPS 1979 National Computer
Conference, 48:313–317, 1979.

BLS01. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin
Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer, Heidelberg,
December 2001.

BNPS03. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The one-
more-RSA-inversion problems and the security of Chaum’s blind signature scheme. Journal of
Cryptology, 16(3):185–215, June 2003.

Bol03. Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the
gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003, volume 2567
of LNCS, pages 31–46. Springer, Heidelberg, January 2003.

BSKD22. Mathieu Baudet, Alberto Sonnino, Mahimna Kelkar, and George Danezis. Zef: Low-latency,
scalable, private payments. Cryptology ePrint Archive, Report 2022/083, 2022. https:

//eprint.iacr.org/2022/083.
CDHK15. Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf Kohlweiss. Com-

posable and modular anonymous credentials: Definitions and practical constructions. In Tetsu
Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages
262–288. Springer, Heidelberg, November / December 2015.

CDL+20. Jan Camenisch, Manu Drijvers, Anja Lehmann, Gregory Neven, and Patrick Towa. Short thresh-
old dynamic group signatures. In Clemente Galdi and Vladimir Kolesnikov, editors, SCN 20,
volume 12238 of LNCS, pages 401–423. Springer, Heidelberg, September 2020.

CDN01. Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computation from thresh-
old homomorphic encryption. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of
LNCS, pages 280–299. Springer, Heidelberg, May 2001.

26

https://eprint.iacr.org/2022/534
https://eprint.iacr.org/2022/083
https://eprint.iacr.org/2022/083

CFSY96. Ronald Cramer, Matthew K. Franklin, Berry Schoenmakers, and Moti Yung. Multi-autority
secret-ballot elections with linear work. In Ueli M. Maurer, editor, EUROCRYPT’96, volume
1070 of LNCS, pages 72–83. Springer, Heidelberg, May 1996.

CGG+20. Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled. UC
non-interactive, proactive, threshold ECDSA with identifiable aborts. In Jay Ligatti, Xinming
Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1769–1787. ACM Press,
November 2020.

CGJ+99. Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Adaptive
security for threshold cryptosystems. In Michael J. Wiener, editor, CRYPTO’99, volume 1666
of LNCS, pages 98–115. Springer, Heidelberg, August 1999.

CGS97. Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally efficient
multi-authority election scheme. In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of
LNCS, pages 103–118. Springer, Heidelberg, May 1997.

CH20. Geoffroy Couteau and Dominik Hartmann. Shorter non-interactive zero-knowledge arguments
and ZAPs for algebraic languages. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 768–798. Springer, Heidelberg, August
2020.

CM11. Sanjit Chatterjee and Alfred Menezes. On cryptographic protocols employing asymmetric pair-
ings - the role of Ψ revisited. Discret. Appl. Math., 159(13):1311–1322, 2011.

DDFY94. Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to share a function securely.
In 26th ACM STOC, pages 522–533. ACM Press, May 1994.

Des90. Yvo Desmedt. Making conditionally secure cryptosystems unconditionally abuse-free in a general
context. In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 6–16. Springer,
Heidelberg, August 1990.

DF90. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer, Heidelberg, August 1990.

DK01. Ivan Damg̊ard and Maciej Koprowski. Practical threshold RSA signatures without a trusted
dealer. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 152–165.
Springer, Heidelberg, May 2001.

DKLs19. Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Threshold ECDSA from ECDSA
assumptions: The multiparty case. In 2019 IEEE Symposium on Security and Privacy, pages
1051–1066. IEEE Computer Society Press, May 2019.

DN03. Ivan Damg̊ard and Jesper Buus Nielsen. Universally composable efficient multiparty computation
from threshold homomorphic encryption. In Dan Boneh, editor, CRYPTO 2003, volume 2729
of LNCS, pages 247–264. Springer, Heidelberg, August 2003.

EGK14. Ali El Kaafarani, Essam Ghadafi, and Dalia Khader. Decentralized traceable attribute-based
signatures. In Josh Benaloh, editor, CT-RSA 2014, volume 8366 of LNCS, pages 327–348.
Springer, Heidelberg, February 2014.

FHS15. Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical round-optimal blind sig-
natures in the standard model. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 233–253. Springer, Heidelberg, August
2015.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of
LNCS, pages 33–62. Springer, Heidelberg, August 2018.

Fuc09. Georg Fuchsbauer. Automorphic signatures in bilinear groups and an application to round-
optimal blind signatures. Cryptology ePrint Archive, Report 2009/320, 2009. https://eprint.
iacr.org/2009/320.

Fuc11. Georg Fuchsbauer. Commuting signatures and verifiable encryption. In Kenneth G. Paterson,
editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 224–245. Springer, Heidelberg, May
2011.

27

https://eprint.iacr.org/2009/320
https://eprint.iacr.org/2009/320

Gha16. Essam Ghadafi. Short structure-preserving signatures. In Kazue Sako, editor, CT-RSA 2016,
volume 9610 of LNCS, pages 305–321. Springer, Heidelberg, February / March 2016.

Gha17. Essam Ghadafi. More efficient structure-preserving signatures - or: Bypassing the type-III lower
bounds. In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes, editors, ESORICS 2017,
Part II, volume 10493 of LNCS, pages 43–61. Springer, Heidelberg, September 2017.

GHKP18. Romain Gay, Dennis Hofheinz, Lisa Kohl, and Jiaxin Pan. More efficient (almost) tightly secure
structure-preserving signatures. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part II, volume 10821 of LNCS, pages 230–258. Springer, Heidelberg, April / May
2018.

GJKR96. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust threshold DSS
signatures. In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 354–371.
Springer, Heidelberg, May 1996.

GJKR99. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key
generation for discrete-log based cryptosystems. In Jacques Stern, editor, EUROCRYPT’99,
volume 1592 of LNCS, pages 295–310. Springer, Heidelberg, May 1999.

GJKR03. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure applications of
Pedersen’s distributed key generation protocol. In Marc Joye, editor, CT-RSA 2003, volume
2612 of LNCS, pages 373–390. Springer, Heidelberg, April 2003.

GJM+21. Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin Tomescu.
Aggregatable distributed key generation. In Anne Canteaut and François-Xavier Standaert, ed-
itors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 147–176. Springer, Heidelberg,
October 2021.

GMR88. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April 1988.

GPS08. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers.
Discrete Applied Mathematics, 156(16):3113–3121, 2008. Applications of Algebra to Cryptogra-
phy.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In
Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer,
Heidelberg, April 2008.

HJ12. Dennis Hofheinz and Tibor Jager. Tightly secure signatures and public-key encryption. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages
590–607. Springer, Heidelberg, August 2012.

JR17. Charanjit S. Jutla and Arnab Roy. Improved structure preserving signatures under standard
bilinear assumptions. In Serge Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages
183–209. Springer, Heidelberg, March 2017.

KG20. Chelsea Komlo and Ian Goldberg. FROST: flexible round-optimized schnorr threshold signa-
tures. In Orr Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn, editors, Selected Areas in
Cryptography - SAC 2020 - 27th International Conference, Halifax, NS, Canada (Virtual Event),
October 21-23, 2020, Revised Selected Papers, volume 12804 of Lecture Notes in Computer Sci-
ence, pages 34–65. Springer, 2020.

KLAP20. Hyoseung Kim, Youngkyung Lee, Michel Abdalla, and Jong Hwan Park. Practical dynamic group
signature with efficient concurrent joins and batch verifications. Cryptology ePrint Archive,
Report 2020/921, 2020. https://eprint.iacr.org/2020/921.

KMOS21. Yashvanth Kondi, Bernardo Magri, Claudio Orlandi, and Omer Shlomovits. Refresh When You
Wake Up: Proactive Threshold Wallets with Offline Devices. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 608–625, 2021.

KPW15. Eike Kiltz, Jiaxin Pan, and Hoeteck Wee. Structure-preserving signatures from standard as-
sumptions, revisited. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part II, volume 9216 of LNCS, pages 275–295. Springer, Heidelberg, August 2015.

28

https://eprint.iacr.org/2020/921

KSAP21. Hyoseung Kim, Olivier Sanders, Michel Abdalla, and Jong Hwan Park. Practical dynamic group
signatures without knowledge extractors. Cryptology ePrint Archive, Report 2021/351, 2021.
https://eprint.iacr.org/2021/351.

Lin17. Yehuda Lindell. Fast secure two-party ECDSA signing. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 613–644. Springer, Heidelberg,
August 2017.

LJY14. Benôıt Libert, Marc Joye, and Moti Yung. Born and raised distributively: fully distributed non-
interactive adaptively-secure threshold signatures with short shares. In Magnús M. Halldórsson
and Shlomi Dolev, editors, 33rd ACM PODC, pages 303–312. ACM, July 2014.

LPJY13. Benôıt Libert, Thomas Peters, Marc Joye, and Moti Yung. Linearly homomorphic structure-
preserving signatures and their applications. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 289–307. Springer, Heidelberg, August
2013.

LPY15. Benôıt Libert, Thomas Peters, and Moti Yung. Short group signatures via structure-preserving
signatures: Standard model security from simple assumptions. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 296–316. Springer,
Heidelberg, August 2015.

MR01. Philip D. MacKenzie and Michael K. Reiter. Two-party generation of DSA signatures. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 137–154. Springer, Heidelberg,
August 2001.

MRV99. Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In 40th
FOCS, pages 120–130. IEEE Computer Society Press, October 1999.

MTT19. Taiga Mizuide, Atsushi Takayasu, and Tsuyoshi Takagi. Tight reductions for Diffie-Hellman
variants in the algebraic group model. In Mitsuru Matsui, editor, CT-RSA 2019, volume 11405
of LNCS, pages 169–188. Springer, Heidelberg, March 2019.

Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret shar-
ing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer,
Heidelberg, August 1992.

PS16. David Pointcheval and Olivier Sanders. Short randomizable signatures. In Kazue Sako, editor,
CT-RSA 2016, volume 9610 of LNCS, pages 111–126. Springer, Heidelberg, February / March
2016.

PS18. David Pointcheval and Olivier Sanders. Reassessing security of randomizable signatures. In
Nigel P. Smart, editor, CT-RSA 2018, volume 10808 of LNCS, pages 319–338. Springer, Heidel-
berg, April 2018.

RP22. Alfredo Rial and Ania M. Piotrowska. Security analysis of coconut, an attribute-based credential
scheme with threshold issuance. Cryptology ePrint Archive, Report 2022/011, 2022. https:

//eprint.iacr.org/2022/011.

RSA78. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the Association for Computing
Machinery, 21(2):120–126, 1978.

SAB+19. Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn, and George Danezis.
Coconut: Threshold issuance selective disclosure credentials with applications to distributed
ledgers. In NDSS 2019. The Internet Society, February 2019.

SG98. Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen ciphertext
attack. In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 1–16. Springer,
Heidelberg, May / June 1998.

Sha79. Adi Shamir. How to share a secret. Communications of the Association for Computing Machin-
ery, 22(11):612–613, November 1979.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May 1997.

29

https://eprint.iacr.org/2021/351
https://eprint.iacr.org/2022/011
https://eprint.iacr.org/2022/011

Sho00. Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, EUROCRYPT 2000,
volume 1807 of LNCS, pages 207–220. Springer, Heidelberg, May 2000.

SP21. Mahdi Sedaghat and Bart Preneel. Cross-domain attribute-based access control encryption.
In Mauro Conti, Marc Stevens, and Stephan Krenn, editors, Cryptology and Network Security,
pages 3–23. Springer International Publishing, 2021.

TS21. Dmytro Tymokhanov and Omer Shlomovits. Alpha-rays: Key extraction attacks on threshold
ecdsa implementations. Cryptology ePrint Archive, Report 2021/1621, 2021. https://ia.cr/

2021/1621.
WC21. X. Wang and S. M. Chow. Cross-Domain Access Control Encryption: Arbitrary-Policy, Constant-

Size, Efficient. In 2021 2021 IEEE Symposium on Security and Privacy (SP), pages 388–401,
Los Alamitos, CA, USA, may 2021. IEEE Computer Society.

A Omitted Definitions

A.1 Digital Signatures

Digital signatures as an electronic analogue of a written signature ensure communication
privacy, the integrity of data, the authenticity of digital messages/senders, and the non-
repudiation of the sender. In what follows we formally define DS schemes and their security
requirements.

Definition A.1 (Digital Signatures). A digital signature, ΨDS, over message space M
consists of following PPT algorithms:

- (pp)← Setup(1λ): Setup is a probabilistic algorithm which takes the security parameter
1λ as input and returns the set of public parameters pp as output.

- (sk, vk)← KGen(pp): Key generation is a probabilistic algorithm which takes pp as input
and outputs the pair of signing/verification keys (sk, vk).

- (σ)← Sign(pp, sk,m): Signing algorithm takes pp, secret key sk and a message m ∈M
as inputs and returns signature σ as output.

- (0, 1)← Verify(pp, vk, σ,m): Verification is a deterministic algorithm which takes pp, a
signature σ, the message m ∈M and verification key vk as inputs, responds with either
0 (reject) or 1 (accept).

The primary security requirements for digital signature are Correctness and unforge-
ability against chosen message attack, which define as follows:

Definition A.2 (Correctness). A digital signature, ΨDS, is called correct, if for a given
public parameters pp, we have:

Pr
[
∀ (sk, vk)← KGen(pp),m ∈M : Verify (vk,m,Sign(pp, sk,m)) = 1

]
≥ 1− negl(λ) .

Definition A.3 (Existential Unforgeability under Chosen Message Attack (EUF-
CMA) [GMR88]). A digital signature, ΨDS, is ε-EUF-CMA-secure if for all PPT
adversaries A on winning the security game in Fig. 7 we have, AdvEUF-CMA

DS,A (λ) =

Pr[GEUF-CMA
A (1λ) = 1] ≤ ε.

30

https://ia.cr/2021/1621
https://ia.cr/2021/1621

GEUF-CMA
A (1λ)

1 : pp← Setup(1λ)

2 : (sk, vk)← KGen(pp)

3 : (m∗, σ∗) ←$AOSign(pp, vk)

4 : return (m∗ 6∈ Q ∧ Verify(pp, vk,m∗, σ∗) = 1)

OSign(m)

1 : Initialize Q = ∅
2 : σ ← Sign (pp, sk,m)

3 : Q ← Q∪ {m}
4 : return σ

Fig. 7. Game GEUF-CMA
A (1λ).

There is a weaker security notion known as EUF-wCMA [BB08] which requires the
adversary to provide the challenger with the list of messages {m1, . . . ,mq} at the beginning
of the game (before receiving the public parameters and verification key).

Pointcheval-Sanders Signatures [PS16]. The PS signature (CT-RSA’16) works on an
asymmetric bilinear setting and for a single scalar message, i.e. k = 1, consists of the
following PPT algorithms:

– (pp) ← Setup(1λ): The setup algorithm takes the security parameter 1λ as input and
returns the global public parameters pp = (G1,G2,GT , p, e, g1, g2), where g1←$G1 and
g2←$G2 are randomly selected generators as output.

– (sk, vk)← KGen(pp): Takes the global public parameters pp as input, samples two ran-
dom integers x, y←$Z∗p, returns the verification key as vk = (vk1, vk2) := (gx2 , g

y
2) and

keeps the signing key sk = (sk1, sk2) = (x, y) secret.

– (σ) ← Sign(pp, sk,m): Takes the secret signing key sk and a integer message m ∈ Zp
as inputs. It samples r←$Z∗p uniformly at random and then computes σ = (h, s) =
(gr1, h

x+my) and returns the signature σ as output.

– (0, 1) ← Verify(pp, vk, σ,m): To verify a signature σ, this algorithm takes pp, the veri-
fication key vk and message m as inputs. If h 6= 1G1 and the pairing product equation
e(h, vk1vk

m
2) = e(s, g2) holds, then it returns 1 (accept), otherwise it returns 0 (reject).

The correctness of this construction is straightforward and it is EUF-CMA-secure under
the PS assumption, stated in Def. 2.6.

Ghadafi’s SPS. Next, for a given security parameter λ, we outline the Ghadafi’s SPS
construction [Gha16] over a Diffie-Hellman message space MDH, as follows:

– (pp) ← Setup(1λ): The setup algorithm takes the security parameter 1λ as input and
returns the global public parameters pp = (G1,G2,GT , p, e, g1, g2), where g1←$G1 and
g2←$G2 are randomly selected generators as output.

31

– (sk, vk)← KGen(pp): The key generation algorithm takes the global public parameters
pp as input, samples two random integers x, y←$Z∗p, returns the verification key as
vk = (vk1, vk2) := (gx2 , g

y
2) and keeps the secret signing key sk = (sk1, sk2) = (x, y)

secure.

– (σ)← Sign(pp, sk,M1,M2): The signing algorithm takes the secret signing key sk and a
DH message (M1,M2) ∈ MDH such that e(M1, g2) = e(g1,M2) as inputs and samples
r←$Z∗p uniformly at random. Then it computes R = gr1, S = M r

1 and T = RxSy, and
returns the signature σ = (R,S, T) as output.

– (0, 1) ← Verify(pp, vk, σ,M1,M2): To verify a signature σ, this algorithm takes pp, the
verification key vk and a message (M1,M2) ∈ MDH as inputs. If R 6= 1G1 , S, T ∈ G1

and both pairing equations e(R,M2) = e(S, g2) and e(T, g2) = e(R, vk1)e(S, vk2) hold,
then it returns 1 (accept), otherwise it returns 0 (reject).

B Omitted Proofs

B.1 Proof of Theorem 2.1

Proof. Over an asymmetric bilinear setting (G1,G2,GT , p, e, g1, g2), let BAlg is the chal-
lenger of GPS3 assumption in the AGM and receives the SDL instance (Z1, Z2) = (gz1 , g

z
2)

as input. It simulates the GPS3 instance (X,Y) := (gx2 , g
y
2) = (Za02 gb02 , Z

a′0
2 g

b′0
2) by setting

x := a0z + b0 and y := a′0z + b′0, where a0, b0, a
′
0, b
′
0 are sampled uniformly at random from

Zp. Let the maximum number of queries to oracle OGPS3
0 and OGPS3

1 are denoted by q0 and
q1, respectively. Then Balg simulates the defined oracles as follows:

– Oracle OGPS3
0 (idi): To simulate the ith query s.t. i ∈ [1, q0], if Q0[idi] =⊥, Balg samples

ai, bi←$Zp and assigns Q0[idi]← Zai1 g
bi
1 that implicitly sets ri = aiz + bi.

– Oracle OGPS3
1

(
(hj ;~hj), (Mj1; ~Mj1), (Mj2; ~Mj2)

)
: To simulate the jth query for j ≥ 2

to this oracle we assume that the challenger has successfully simulated the k − 1
previously queries to this oracle. Thus the algebraic adversary Aalg has access to{
s` = g

r`(x+m`y)
1

}j−1
`=1

, where r` = dlogg1(h`) and m` is the extracted scalar message by

the defined extractor Ext(.). In this case, Aalg makes the jth-query to the oracle OGPS3
1

by providing the tuple
(

(hj ;~hj), (Mj1; ~Mj1), (Mj2; ~Mj2)
)

that can be determined by

the following polynomials:

PMj1 [~X1] = [Mj1|g1] +

q0∑
`=1

R`[Mj1|h`] +

j−1∑
`=1

R`[Mj1|s`](X +m`Y) , (4a)

PMj2 [~X2] = [Mj2|g2] + X[Mj2|X] + Y[Mj2|Y] , (4b)

32

where ~X1 = (X,Y,R1, . . . ,R|Q0|) and ~X2 = (X,Y). These two polynomials are de-
fined based on the fact that, Aalg has access to the answers received from the ora-

cles, {h` = gr`1 }
q0
`=1 and

{
s` = g

r`(x+m`y)
1

}j−1
`=1

of the first source group elements and the

GPS3 instances of the second source group elements. As it is shown in Fig. 2, the or-
acle OGPS3

1 does not fail if e(hj ,Mj2) = e(Mj1, g2), which it implies the polynomial

Pj [~XT] = PMj1 [~X1]−RjPMj2 [~X2], where ~XT = ~X1 · ~X2, should be vanished on at least one
point like ~x1 = (x, y, r1, . . . , rq0) and ~x2 = (x, y). We define the event E as the case that

Pj [~XT] = 0 and there are two possible cases: 1 The event E fulfils, i.e. Pj [~XT] = 0, then

the defined extractor can successfully extract the scalar messages mj for 1 ≤ j ≤ q1. 2

The event does not fulfil, ¬E, i.e. Pj [~XT] 6= 0, then we can define an algebraic adversary
D that can solve the SDL problem with a non-negligible advantage. We formally discuss
these two cases in the following claims.

Claim 0.1: If Pj [~XT] = 0, then the extractor can successfully extracts the scalar mes-
sages mj .

Proof. Similar to the proof of [KSAP21, Theorem 3.6, Claim.1], the condition Pj [~XT] =

0 implies the equality PMj1 [~X1] = RjPMj2 [~X2] must hold. Thus based on the received
representations from Aalg, we can write:

[Mj1|g1] +

q0\{j}∑
`=1

R`[Mj1|h`] + Rj [Mj1|hj] +

j−1∑
`=1

R`[Mj1|s`](X +m`Y) =

Rj ([Mj2|g2] + X[Mj2|X] + Y[Mj2|Y]) .

(5)

Which this implies:

[Mj2|g2] = [Mj1|hj] (Due to Rj) , (6a)

[Mj1|g1] = 0 (Due to Rj) , (6b)

[Mj2|X] = 0 (Due to RjX) , (6c)

[Mj2|Y] = 0 (Due to RjY) , (6d)

{[Mj1|h`] = 0}∀ `∈[1,q0],` 6=j (Due to R`) , (6e)

{[Mj1|s`] = 0}∀ `∈[1,j−1] (Due to R`X) . (6f)

Finally, based on the above equations we can write, Mj2 = g
[Mj2|g2]
2 and Mj1 = h

[Mj1|hj]
j

and therefore the extractor returns mj := [Mj2|g2] = [Mj1|hj] as the scalar message. ut

Claim 0.2: If Pj [~XT] 6= 0, i.e. the extractor fails, the SDL problem is not hard.

Proof. Based on the fact that x := a0z + b0, y := a′0z + b′0 and {r` := a`z + b`}q0`=1, we can
convert the variables X, Y and {R`}q0`=1 to A0Z + B0, A′0Z + B′0 and {A`Z + B`}q0`=1 and

33

define a univariate polynomial G∗j [
~ZT] from the polynomial P ∗j [~XT]. If G∗j [

~ZT] 6= 0, then the
equality G∗j [~zT] = P ∗j (~xT) implies that G∗j [~zT] has at least one root like ~zT . Like the analysis

in the proof of [KSAP21, Theorem 3.6, Claim.2], we have Pr[G∗j [
~ZT] = 0] ≤ Pr[a3 = 0] ≤

3/p (Schwartz-Zippel lemma), where a3 is the leading coefficient of G∗j [
~ZT]. Additionally,

in the case of G∗j [
~ZT] 6= 0, there exists a vector ~z as the root for this polynomial that can

be the solution of SDL problem. Thus we can write:

Pr[¬E] ≤ Pr[P ∗j [~XT] 6= 0 ∧G∗j [~ZT] 6= 0] + Pr[G∗j [
~ZT] = 0] ≤ AdvSDLD (λ) + 3/p . (7)

Thus as a contradiction, if the extractor fails then we can define an algebraic algorithm
D that can solve the SDL problem with a non-negligible advantage. We can conclude
the challenger of the GPS3 problem can successfully simulate the defined oracles for the
adversary Aalg. ut

W.l.o.g we assume that the adversary Aalg has queried the maximum number of
queries q0 and q1 to the provided oracles as above s.t. q1 ≤ q0. It finally outputs(

(h∗;~h∗), (M∗1 ; ~M∗1), (M∗2 ; ~M∗2), (s∗; ~s∗)
)

based on the received responses from the oracles

and also public parameters. From the received representations we can write:

P ∗h [~X1] = [h∗|g1] +

q0∑
`=1

R`[h
∗|h`] +

q1∑
`=1

R`[h
∗|s`](X +m`Y) , (8a)

P ∗M1
[~X1] = [M∗1 |g1] +

q0∑
`=1

R`[M
∗
1 |h`] +

q1∑
`=1

R`[M
∗
1 |s`](X +m`Y) , (8b)

P ∗M2
[~X2] = [M∗2 |g2] + X[M∗2 |X] + Y[M∗2 |Y] , (8c)

P ∗s [~X1] = [s∗|g1] +

q0∑
`=1

R`[s
∗|h`] +

q1∑
`=1

R`[s
∗|s`](X +m`Y) . (8d)

Similar to the proof of [KSAP21, Theorem 3.6] if all conditions in the security game
GGPS3
Aalg in Fig. 2 are satisfied then we can define the following events:

1. Event E1: GGPS3
Aalg = 1 and also the extractor Ext(.) does not fail.

2. Event E2: The polynomial P ∗2 [~X1] = P ∗s [~X1] −
(
XP ∗h [~X1] + YP ∗M1

[~X1]
)

is the zero-

polynomial.

3. Event E3: The polynomial P ∗3 [~XT] = P ∗M2
[~X2]P

∗
h [~X1]−P ∗M1

[~X1] is the zero-polynomial.

Claim 0.3: Pr[E1 ∧ E2 ∧ E3] = 0.

34

Proof. The proof of this claim is similar to the proof of [KSAP21, Theorem 3.6, Claim.3].
ut

Claim 0.4: Pr[E1 ∧ ¬E2] + Pr[E1 ∧ E2 ∧ ¬E3] ≤ AdvSDLD (λ) + 7/p.

Proof. The proof of this claim is similar to the proof of [KSAP21, Theorem 3.6, Claim.4].
ut

Thus we can write:

Pr[E1] = Pr[E1 ∧ E2 ∧ E3] + Pr[E1 ∧ ¬E2] + Pr[E1 ∧ E2 ∧ ¬E3] =

Pr[E1 ∧ ¬E2] + Pr[E1 ∧ E2 ∧ ¬E3] ≤ AdvSDLD (λ) + 7/p .
(9)

We can conclude:

AdvGPS3
Balg (λ) = Pr[GGPS3

Aalg = 1 ∧ ¬E] + Pr[GGPS3
Aalg = 1 ∧ E] ≤

AdvSDLD (λ) + 3/p+AdvSDLD (λ) + 7/p ≤ 2AdvSDLD (λ) + 10/p .
(10)

ut

B.2 Proof of Theorem 4.2

Proof. The proof technique is inspired by the simulatability property of threshold sig-
natures introduced by Gennaro et al. [GJKR96] and to achieve adaptive security we
borrow the proof technique used in the recent work of Bacho and Loss [BL22]. We use
a sequence of games and show that each is computationally indistinguishable from the
previous. The first game, G0, is the real security game defined in Def. 4.3. We show
that the proposed (n, t)-SPTS construction is (ε, qh, qs)-Threshold EUF-CiMA secure, if
the underlying DKG construction is (t − 1, t)-OAAS secure, i.e. the t-OMDL assumption
is (ε1)-hard along with the GPS3 problem is ε2-hard (the underlying MI-SPS is EUF-
CiMA secure). Let an algebraic adversary, Aalg, which forges ΨSPTS successfully with a
non-negligible advantage, we build an algebraic algorithm Balg against the hardness of
t-OMDL assumption and the hardness of GPS3 assumption (the unforgeability of the
proposed MI-SPS) that uses Aalg as a subroutine and has the success probability of

≤ Pr[GPSB3 = 1] + 4
(

1−
(
(t−1)! (n−t+1)!

n!

))
Pr[t-OMDLB = 1] − q2h/p, in the AGM+ROM.

This can be demonstrated in the following steps:

• Game G0: This is the actual unforgeability game with static corruption and we assume
the existence of a challenger Balg who is taking the role of all uncorrupted players in the
distributed key generation phase and honestly answers the required oracles.

Initialization. For a given asymmetric bilinear group setting (G1,G2,GT , p, e, g1, g2),
Balg initializes S(id,M2) = ∅ for all (id, M̃) ∈ MH

iDH, C = ∅ and H = P \ C, QH = ∅ and
QS = ∅. Additionally as a trusted dealer Balg samples a global secret key sk = (sk1, sk2) =

35

(x, y)←$Z2
p and defines two polynomials F (x) ∈ Ztp[X] and G(x) ∈ Ztp[X] of degree t

s.t. F (0) = x and G(0) = y and then generates the global verification key vk = (gx2 , g
y
2)

along with vkj = (g
F (j)
2 , g

G(j)
2) for and parties Pj s.t. j ∈ [1, n]. It also receives the list of

corrupted parties C from Aalg (static corruption).
Oracles: According to the definition of threshold EUF-CiMA security, Balg should pro-

vide the corruption and partial signing oracles along with a random oracle for the adversary
A as follows:

– Random oracle, H(id): It takes an index id ∈ I as input and if QH[id] =⊥, it sam-
ples r←$Zp and assigns QH[id] ← gr1. It returns QH[id] as output. W.l.o.g let the
algebraic adversary Aalg before any partial signing query on an indexed DH message
(id,M1,M2) ∈ MH

iDH, she queries the random oracle H(.) with id and it answers with
h s.t. dlogh(M1) = dlogg2(M2) = m.

– OracleOC(j): If a player Pj is corrupted by adversaryAalg, the challenger updatesH =
H\{j} and C = C∪{j} and then reveals the internal state of Pj which contains its secret
signing key shares skj = (F (j), G(j)). Note that Balg has access to all coefficients of
these two polynomials and can compute the secret key of all parties including corrupted
and honest parties.

– Oracle OPSign(k,M): Adversary Aalg has access to the partial signing oracle which is
provided by the challenger Balg. For queries M := (id,M1,M2) ∈MH

iDH and an honest
party identifier k ∈ H, if (id, ?) 6∈ QS, then it honestly runs the partial signing algorithm
σk ← Par-Sign(pp, skk,M), updates S(id,M2) = S(id,M2)∪{k} and QS = QS∪{(id,M2)},
and returns σk to Aalg.

Forgery: At the end of this game, A returns forge signature σ∗ on message M̃∗ =
(M∗1 ,M

∗
2) ∈ MiDH. We denote the event of σ∗ being a valid signature on message M̃∗ by

GA0 = 1.

•Game G1: This game is identical to the previous game except the fact that the challenger
issues the public parameters and provides the oracles with the help of the challenger of
GPS3 problem. Similar to the previous game, in this game we assume the static corruption
and later we lift it to the adaptive corruption under the hardness of t-OMDL problem.

Initialization. Balg receives the GPS3 instance, (gr02 , g
v0
2) from the challenger, and the

list of corrupted parties, C, from Aalg s.t. |C| ≤ t− 1 and sets H = P \ C. Balg assigns the
global verification key as vk0 ← (gr02 , g

v0
2) and acts as follows:

– To define the pair of secret/verification keys of the corrupted parties Pi s.t. i ∈ C,
the challenger Balg samples the random integers xi, yi←$Zp and computes their secret
keys as ski = (ski1, ski2) := (xi, yi) along with their corresponding verification keys
vki = (vki1, vki2) := (gxi2 , g

yi
2).

– To generate the verification key of the honest parties Pk s.t. k ∈ H, H = P \ C, Balg
proceeds as follows:

36

1. For all i ∈ T := C ∪ {0} it computes the Lagrange polynomials evaluated at point
k as below:

LTi (k) =

∏
j∈T ,j 6=i (j − k)∏
j∈T ,j 6=i (j − i)

mod p . (11)

2. To generate the verification key of an honest party Pk, it takes the verification
keys of corrupted parties and the global verification key vk0 and then it computes

vkk := (vkk1, vkk2) = (
∏
i∈T vk

LTi (k)
i1 ,

∏
i∈T vk

LTi (k)
i2).

This completes the initialization phase by publishing the verification key of signers including
honest and corrupted parties, ~vk, along with the global verification key vk0.

Oracles: Like the previous game, Balg provides the following oracles:

– Random oracle, H(id): It takes an index id ∈ I as input and call the OGPS
0 oracle

with id. The oracle returns Q0[id] as output and Balg delivers QH[id] ← Q0[id] to the
adversary.

– Oracle OC(j): For the list of corrupted parties Pj , j ∈ C s.t. |C| < t, Balg returns the
secret key of each party Pj as the internal state to Aalg computed in the previous phase
(static corruption).

– Oracle OPSign(k,M): For a given M := (id,M1,M2) ∈ MH
iDH along with an honest

party identifier k ∈ H, Balg, if (id, ?) 6∈ QS then it acts as follows:

1. B queries id to the random oracle H(.) to obtain the basis of h. It then queries OGPS3
1

oracle under (h,M1,M2) and receives the signature σ0 = (h, s0) as the response.
2. For all corrupted parties i ∈ C, B computes the partial signatures σi = (h, si) =

(h, hski1M
ski2
1).

3. For all i ∈ T := C ∪ {0}, Balg computes the Lagrange polynomials evaluated at
point k the same as equation 11.

4. It computes σk = (h, sk) = (h,
∏
i∈T s

LTi (k)
i) and returns σk back.

5. It then updates S(id,M2) = S(id,M2) ∪ {k} and QS = QS ∪ {(id,M2)}.

Forgery phase: In this step, A returns a tuple of forged signature (h∗,M∗1 ,M
∗
2 , s
∗)

such that it passes the verification phase and |S(?,M∗2) ∪ C| < t. As we already define the
verification key of the SPTS scheme the same as the GPS3 problem instance then the
challenger Balg transfers the received forge from Aalg as a valid forgery to the underlying
challenger of GPS3 problem, then we have

∣∣Pr[GA0 = 1]− Pr[GA1 = 1]
∣∣ ≤ Pr[GPSB3 = 1].

• Game G2: This game is identical to the previous game, except the fact that the chal-
lenger Balg in this game generates the public parameters based on the t-OMDL and GPS3

assumptions instances and answers the oracles according to these assumptions as well.
Initialization: Let (gr02 , g

v0
2) ∈ G2

2 is the GPS3 problem’s instance, and ζ1 =
(gr12 , . . . , g

rt
2) ∈ Gt

2 and ζ2 = (gv12 , . . . , g
vt
2) ∈ Gt

2 be the t-OMDL1 and t-OMDL2 instances,
respectively. According to Theorem 4.1, the Pedersen DKG is (t− 1, t)-OAAS secure, then

37

Balg can build two algebraic simulators Sim1 and Sim2 in parallel that on a given t-OMDL1

and t-OMDL2 instances along with t− 1 access to the discrete logarithm oracles, Dlog1g2(.)

and Dlog2g2(.), acts as follows:

– Taken (gr02 , g
v0
2), ζ1 and ζ2, Balg can interpolate two polynomials F (x), G(x) ∈ Ztp[X]

of degree t with coefficients ri and vi for all i ∈ [1, t] and constant terms of r0 and v0,
respectively, i.e. F (x) = r0 +

∑t
i=1 rix

i and G(x) = v0 +
∑t

i=1 vix
i.

– It then computes the shares as
(
gr02
∏t
i=1 (gri2)j

i
, gv02

∏t
i=1 (gvi2)j

i
)

=(
g
∑t−1
i=0 ri·j

i

1 , g
∑t
i=0 vi·ji

2

)
=

(
g
F (j)
2 , g

G(j)
2

)
, and issues the verification keys

vkj = (vkj1, vkj2) =
(
g
F (j)
2 , g

G(j)
2

)
, for all parties j ∈ [1, n].

– It then computes the global verification key vk0 = (vk01, vk02) = (g
f(0)
2 , g

g(0)
2) =

(gr02 , g
v0
2) along with the set of verification keys ~vk = (vk1, . . . , vkn) =((

g
f(1)
2 , g

g(1)
2

)
, . . . ,

(
g
f(n)
2 , g

g(n)
2

))
.

This completes the initialization phase by publishing the global verification key vk0
and ~vk. We remark that since the Pedersen’s DKG is OAAS secure then the distribution of
public parameters in this game is identical to the previous one.

Oracles: By having access to the aforementioned instances, Balg simulates the oracles
by taking the advantage of existing oracles in the underlying assumptions as follows:

– Random oracle, H(id): It takes an index id as input and call the OGPS
0 oracle with id.

The oracle returns Q0[id] as output and Balg delivers QH[id]← Q0[id] to the adversary.
W.l.o.g let the algebraic adversary Aalg before any partial signing query on an indexed
DH message, (id,M1,M2) ∈MH

iDH, it queries the random oracle H(.) with index id and
it answers with h s.t. dlogg2(M2) = dlogh(M1) = m.

– Oracle OC(j): The algebraic adversaryAalg has access to this oracle to corrupt up to t−
1 parties by querying the index j ∈ [1, n]. To answer, Balg queries the discrete logarithm

oracles Dlog1g2(g
f(j)
2) and Dlog2g2(g

g(j)
2) and returns skj = (skj1, skj2) = (f(j), g(j)) =

(xj , yj) as the internal state of the corrupted party Pj and updates C = C∪{j}. Aalg can
corrupt at most t−1 parties at any point of the game (adaptive corruption setting). For
the simplicity, Balg records the received responses from the discrete logarithm oracles
in QC [j]← (f(j), g(j)) that for all entries it is initialized by ⊥.

– Oracle OPSign(k,M): For each given message M := (id,M1,M2) ∈ MH
iDH along with

an honest party identifier k ∈ H, if (id, ?) 6∈ QS then Balg acts as follows:

1. B queries id to the random oracle H(id) if QH(id) =⊥ then B aborts the query.
Otherwise it queries OGPS

1 (.) oracle under (h,M1,M2) and receives the signature
σ0 = (h, s0) as output. It then acts as follows:

• B picks a random index i′ ∈ [1, t] s.t. QC [i′] =⊥ at the current point of the
experiment, and then it continues querying to the discrete logarithm oracles

38

Dlog1g2(.) and Dlog2g2(.) for all parties in {P1, . . . , Pt} \ {Pi′} and updates QC .
Note that after this phase, all indices in range [1, t] are queried to the discrete
logarithm oracles except the index i′.
• For all parties’ identifier i ∈ C \ {0, i′}, B computes the partial signatures{

σi = (h, si) = (h, hf(i)M
g(i)
1)

}
i∈C\{0,i′}

.

2. For all i ∈ T := C ∪ {0}, it computes the Lagrange basis polynomials evaluated at
point k the same as equation 11.

3. It then computes σk = (h, sk) = (h,
∏
i∈C∪{0} s

LTi (k)
i) and returns σk back as the

partial signature generated by the party Pk.
4. It then updates S(id,M2) = S(id,M2) ∪ {k} and QS = QS ∪ {(id,M2)}.
Since the distribution of the provided public parameters and the oracles are the same

as the previous game then we have Pr[GA1 = 1] = Pr[GA2 = 1], and we can write,∣∣Pr[GA0 = 1]− Pr[GA2 = 1]
∣∣ ≤ Pr[GPSB3 = 1].

Forgery phase: In this step, Aalg returns a forged signature σ∗ = (h∗, s∗) on mes-
sage M̃∗ := (M∗1 ,M

∗
2) ∈ MiDH s.t. it passes the verification phase and |S(?,M∗2) ∪

C| < t. We denote the event of σ∗ being a valid signature on message (M∗1 ,M
∗
2) by

GA2 = 1. Aalg is an algebraic adversary and then she outputs the representation vectors,(
(h∗; ~h∗), (M∗1 ; ~M∗1), (M∗2 ; ~M∗2), (s∗; ~s∗)

)
, and we have:

Ph∗ [~X1] = [h∗|g1] +

qh∑
`=1

R`[h
∗|h`] +

∑
m`∈QS,j∈SM`

R`[h
∗|s`](Xj +m`Yj) , (12a)

PM∗1 [~X1] = [f∗|g1] +

qh∑
`=1

R`[f
∗|h`] +

∑
m`∈QS,j∈SM`

R`[f
∗|s`](Xj +m`Yj) , (12b)

PM∗2 [~X2] = [M∗2 |g2] +
n∑
`=0

(X`[M
∗
2 |X`] + Y`[M

∗
2 |Y`]) , (12c)

Ps∗ [~X1] = [s∗|g1] +

qh∑
`=1

R`[s
∗|h`] +

∑
m`∈QS,j∈SM`

R`[s
∗|s`](Xj +m`Yj) , (12d)

where ~X1 = (X1, . . . ,Xqs+t−1,Y1, . . . ,Yqs+t−1,R1, . . . ,Rqh) and ~X2 =
(X0,X1, . . . ,Xn,Y0,Y1, . . . ,Yn). Note that all these polynomials are defined based
on the fact that the algebraic adversary has access to the public generators g1, g2 along
with the global verification key vk0 = (gx02 , g

y0
2) and all n parties verification keys

{vki = (gx02 , g
yi
2)}ni=1 and also the received answers from random oracle {h` = gr`1 }

qh
`=1

and can compute {M1` = gm`r`1 }qh`=1. It also has access to the answers received from
the partial signing oracle under the index of honest and corrupted parties j ∈ P, i.e.{
s`,j = g

rk(xj+m`yj)
1

}qs,|SM` |
`=1,j=1

.

39

Assume idmi is the ith query to the random oracle, H(.), and the index of the received
challenge message is i∗ ∈ [1, qh] (as we discussed the adversary has queried the random
oracle before the forgery phase). Let the sampled randomnesses on indices i and index
i∗ are denoted by ri and r∗, i.e. QH[idm∗] ← gr

∗
1 and QH[idmi] ← gri1 , respectively. We

split the answers from random oracle and partial signing oracle to the queries of challenge
index idm∗ and challenge message M̃∗ and since we are assuming that the adversary can

successfully forge then from s∗ = h∗
(x+m∗y)

, we can write:

R∗(X +m∗Y) =

(©)︷ ︸︸ ︷
[s∗|g1] +

qh\{i∗}∑
`=1

R`[s
∗|h`] +R∗[s∗|h∗]+∑

m`∈QS,j∈SM`

R`[s
∗|s`](Xj +m`Yj)

︸ ︷︷ ︸
(¨)

+
∑
j∈SM`

R∗[s∗j |s∗](Xj +m∗Yj) .

(13)

As we already assumed that the adversary wins the forgery game with a non-negligible
advantage and also the defined random oracle is collision resistance (we will discuss the
probability of this event in game G4), then neither (¨) nor (©) parts of the equation
include the term R∗ and we can write (X + m∗Y) = [s∗|h∗] +

∑n
j=1 [s∗j |s∗](Xj +m∗Yj).

Let (X +m∗Y) and (Xj +m∗Yj) are denoted by x and xj , respectively. We can define an
event E as the event that x 6= [s∗|h∗] +

∑n
j=1 ([s∗j |s∗]xj).

Lemma B.1. Let GA2 = 1 denotes the event that the forged signature σ∗ in game G2 on
message (M∗1 ,M

∗
2) ∈ MiDH be valid and event E is defined as above. Then there are two

PPT algebraic adversaries A1
alg and A2

alg playing either t-OMDL1 or t-OMDL2 (we denote

both with t-OMDL) s.t. Pr[t−OMDLA1 = 1] = Pr[GA4 = 1∧¬E] and Pr[t−OMDLA2 = 1] ≥
(1− 1/p) · Pr[GA4 = 1 ∧ E].

Proof. The proof of this Lemma is the same as [BL22, Lemma 4.2]. ut

Thus Balg as an attacker against the t-OMDL picks j∗←$ {1, 2} and then internally

emulates Aj
∗

alg and for a p ≥ 2 we can write:

Pr[t-OMDLB = 1] =

Pr[t-OMDLA1 = 1 | j∗ = 1] · Pr[j∗ = 1] + Pr[t-OMDLA2 = 1 | j∗ = 2] · Pr[j∗ = 2] =

1/2
(
Pr[t-OMDLA1 = 1] + Pr[t-OMDLA2 = 1]

)
≥

1/2

(
1− 1

p

)(
Pr[GA2 = 1 ∧ E] + Pr[GA2 = 1 ∧ ¬E]

)
≥ 1/4 Pr[GA2 = 1] .

(14)

40

• Game G3: Let the set of corrupted parties before the first query to the partial signing
oracle is denoted by C← and C→ denotes the list corrupted parties after this point of
experiment s.t. C = C← ∪ C→. This game is identical to the previous game, except the
challenger in the first partial signing oracle query samples an index i′ ∈ [1, n]\C← uniformly
at random. Once the adversary Aalg queries the corruption oracle on the index i′ then Balg
aborts and Aalg loses the game. In a worse case, we assume the adversary does not query the
corruption oracle before querying the partial signing oracle for the first time, i.e. C← = ∅.
The probability of this event is given by the inverse of the number of (t − 1)-element
combinations of n object taken without repetition. Thus we can write:

Pr[GA3 = 1] ≤
(

1−
(

(t− 1)! (n− t+ 1)!

n!

))
Pr[GA2 = 1] . (15)

As a simple example, for a full threshold setting, t = n, we have, Pr[GA3 = 1] ≤
(1− (1/n)) Pr[GA2 = 1].

•Game G4: This game is the same as the previous game except once there are two distinct
indices idm1 and idm2 s.t. H(idm1) = H(idm2) then Balg aborts and Aalg loses the game.
The probability of this event is Pr[GA4 = 1] ≤ Pr[GA3 = 1]− q2h/p. Then we can write:

Pr[GA4 = 1] ≤
(

1−
(

(t− 1)! (n− t+ 1)!

n!

))
Pr[GA2 = 1]− q2h/p . (16)

From equation 14 we have:

Pr[GA4 = 1] ≤ 4

(
1−

(
(t− 1)! (n− t+ 1)!

n!

))
Pr[t-OMDLB = 1]− q2h/p . (17)

In addition, as the distribution of output in games GA2 , GA3 and GA4 are identical
and the verification key of the SPTS scheme is the same as the GPS3 instance (MI-SPS
construction) then Balg transfers the received forgery as a valid forgery to the Challenger
of GPS3 problem (challenger of MI-SPS scheme). Thus we can write:

Pr[GA0 = 1] ≤ Pr[GPSB3 = 1] + Pr[GA2 = 1]⇒

AdvTSPSA (λ) ≤ ε2 + 4

(
1−

(
(t− 1)! (n− t+ 1)!

n!

))
ε1 − q2h/p .

(18)

ut

41

	Structure-Preserving Threshold Signatures

