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Abstract. Structure-preserving signatures (SPS) are an important
building block for privacy-preserving cryptographic primitives, such
as electronic cash, anonymous credentials, and delegatable anonymous
credentials. In this work, we introduce the first threshold structure-
preserving signature scheme (TSPS). This enables multiple parties to
jointly sign a message, resulting in a standard, single-party SPS signa-
ture, and can thus be used as a replacement for applications based on
SPS.
We begin by defining and constructing SPS for indexed messages, which
are messages defined relative to a unique index. We prove its security in
the random oracle model under a variant of the generalized Pointcheval-
Sanders assumption (PS). Moreover, we generalize this scheme to an in-
dexed multi-message SPS for signing vectors of indexed messages, which
we prove secure under the same assumption. We then formally define the
notion of a TSPS and propose a construction based on our indexed multi-
message SPS. Our TSPS construction is fully non-interactive, meaning
that signers simply output partial signatures without communicating
with the other signers. Additionally, signatures are short: they consist of
2 group elements and require 2 pairing product equations to verify. We
prove the security of our TSPS under the security of our indexed multi-
message SPS scheme. Finally, we show that our TSPS may be used as a
drop-in replacement for UC-secure Threshold-Issuance Anonymous Cre-
dential (TIAC) schemes, such as Coconut, without the overhead of the
Fischlin transform.

Keywords: Threshold Signatures, Structure-Preserving Signatures, Indexed
Message Structure-Preserving Signatures.

1 Introduction

Threshold cryptography [Des90, DF90, DDFY94] was designed to reduce the
trust in single entities and improve the availability of keying material. It allows
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a secret key to be shared among a set of parties [Sha79, Bla79] such that the task
involving the key can only be performed if some threshold of them collaborates.
Threshold signatures [Sho00, DK01], threshold encryption [SG98, CGJ+99], and
threshold verifiable unpredictable functions [GJM+21] enable distributed pro-
tocols, such as e-voting systems [CFSY96, CGS97] and multi-party computa-
tion [CDN01, DN03].

Threshold signatures in particular have attracted significant interest re-
cently, in part because of advances in distributed ledger technologies, cryp-
tocurrencies, and decentralized identity management [DKLs19, KG20, CGG+20,
KMOS21, CKM23]. They are also the subject of current standardization efforts
by NIST [BDV+20, BP23]. Signatures used by certification authorities to is-
sue credentials or to secure digital wallets make attractive targets for misuse or
forgery. To mitigate these risks, an (n, t)-threshold signature scheme distributes
the signing key among n parties such that any quorum of at least t signers can
jointly generate a signature, but the scheme remains secure as long as fewer than
t key shares are known to the adversary.

A threshold signature that is fully non-interactive consists of a single round of
communication. On input the message, each signer computes its partial signature
independently of other signers, and aggregation of at least t partial signatures re-
sults in a single signature representing the group. Interactive signing protocols in-
volving two or more rounds add complexity and are error prone [TS21, DEF+19].
Thus, fully non-interactive schemes are preferable, the canonical example being
threshold BLS [BLS04, Bol03].

Structure-preserving signatures. Structure-preserving signatures (SPS)
[AFG+10] are pairing-based signatures where the message, signature, and ver-
ification key consist of source group elements only (in one or both source
groups), and signature verification consists of group membership checks and
pairing product equations only. SPS have been studied extensively, with a
main focus on short signatures [AGHO11, AGOT14, Gha16, Gha17b], lower
bounds [AGHO11, AGO11, AAOT18], and (tight) security under well-known
assumptions [ACD+12, HJ12, KPW15, LPY15, JR17, GHKP18, AJO+19].

SPS are compatible with Groth-Sahai non-interactive zero-knowledge proofs
(NIZKs) [GS08] and, more generally, help to avoid the expensive extraction
of exponents in security proofs. This makes them attractive for the modu-
lar design of protocols relying on signatures and NIZKs. Indeed, SPS have
seen widespread adoption in privacy-preserving applications, such as group sig-
natures [AFG+10, LPY15], traceable signatures [ACHO11], blind signatures
[AFG+10, FHS15], attribute-based signatures [EGK14], malleable signatures
[ALP12], anonymous credentials [Fuc11, CDHK15, FHS19], delegatable anony-
mous credentials [BCC+09, CL19], anonymous e-cash [BCF+11], and access con-
trol encryptions [WC21, SP21].

For such signature-based applications, compromise of the signing key repre-
sents a single point of attack and failure. Replacing the use of SPS with TSPS
together with distributed key generation (DKG) would help to reduce the trust
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in a single authority and increase the availability of the respective signing ser-
vice. While many of the aforementioned applications of SPS would benefit from
thresholdization, until now there was no known threshold construction of SPS
that could serve as their basis. We provide the first candidate TSPS scheme as
the main contribution of this work.

Towards constructing a threshold SPS. Our goal is to construct threshold
SPS that are fully non-interactive, i.e., there is no coordination among signers.
This puts some requirements on the used SPS and in particular prevents the use
of nonlinear operations of the signing randomness and secret keys (cf. Section 2),
which existing SPS fail to satisfy. Thus, as a starting point for our TSPS, we
consider the pairing-based Pointcheval-Sanders signature scheme (PS) [PS16]
(cf. Section 3.2), as its randomness is simply a random base group element and
it avoids hashing during verification. We recall that the PS scheme is defined
over an asymmetric bilinear group (G1,G2,GT , p, e, g, ĝ) with signing key sk =
(x, y) ∈ (Z∗p)2 and corresponding verification key vk = (ĝx, ĝy) ∈ G2

2. The signing
algorithm takes as input a scalar message m ∈ Zp and outputs a signature

σ = (h, s) = (gr, hx+my) ∈ G2
1 .

Importantly, the nonce r (or equivalently the base h) is sampled fresh for each
signature. This scheme fails to be an SPS because the message is not a group
element (or elements). Ghadafi [Gha16] made the observation that a PS-like SPS
scheme can be constructed for a group element message (M1,M2) ∈ G1×G2 for
which there exists a scalar message m ∈ Zp such that M1 = gm and M2 = ĝm.
This is referred to as a Diffie-Hellman (DH) message. (cf. Section 1 for more on
this message space.) A Ghadafi SPS signature (cf. Section 3.2) has the form:

σ = (h, s, t) = (gr,Mr
1 , h

xsy) ∈ G3
1 .

Let us see how one might construct a threshold version of this scheme. Sup-
pose each signer possesses a share ski = (xi, yi) of the secret key sk = (x, y). A
first (non-interactive) attempt might have each signer output a partial signature
of the form:

σi = (hi, si, ti) = (gri ,Mri
1 , h

xi
i s

yi
i ) ,

with aggregation of the third term having the form:

t =
∏
i∈T

tλi
i =

∏
i∈T

grixiλiMriyiλi

1 ,

where λi is the Lagrange coefficient for party i in the signing set T of size at
least t (the threshold). As with other existing SPS, this however does not allow
reconstruction via Lagrange interpolation because each term in the exponent is
multiplied by a distinct random integer ri. To overcome this, due to the specific
form of the signatures, the signers would have to agree on a common random
element h = gr. Indeed, this will be our approach to solve this issue.
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A second (interactive) attempt might have each signer output randomness
shares hi = gri and corresponding si = Mri

1 in a first round of signing, followed
by a second round in which each signer computes aggregate values h = gr =∏
i∈T hi = g

∑
i∈T ri and s =

∏
i∈T si and outputs a partial signature of the

form:

σi = (h, s, ti = hxisyi) , (1)

with aggregation of the third term having the form:

t =
∏
i∈T

tλi
i =

∏
i∈T

grxiλiMryiλi

1 .

This allows reconstruction via Lagrange interpolation. In terms of security, the
unforgeability of this threshold scheme may be reduced to the unforgeability of
single-party Ghadafi SPS signatures. However, the reduction needs to obtain the
corrupt hj , sj values before revealing honest values hi, si. The addition of a third
signing round could achieve this, whereby all values hi, si are committed to in
the first round as H(hi),H

′(si), for H and H′ modeled as random oracles, and
then revealed in the second round. However, the reduction needs to obtain the
nonces rj of the corrupt parties, which may be extracted from zero-knowledge
proofs appending the outputs hi, si in round two. These additional rounds and
zero-knowledge proofs add significant overhead.

Our approach is clean and straightforward: we instead have signers obtain
shared randomness h = gr via a random oracle, yielding a fully non-interactive
scheme. But observe that if partial signatures have the form of Equation (1),
then s = Mr

1 cannot be computed without knowledge of the discrete logarithm
dlogh(M1). Thus, we borrow techniques from Sonnino et al. [SAB+19] and Ca-
menisch et al. [CDL+20], which implicitly sign indexed Diffie-Hellman messages
(id,M1,M2), a concept we define and formalize rigorously in this work. Indexing
can be understood as requiring the existence of an injective function f that maps
each scalar message m ∈ Zp to an index id = f(m). We then have h = H(id),
where H is modeled as a random oracle, and M1 = H(id)m. Then each partial
signature has the form:

σi = (h, si) = (H(id), hxiMyi
1 ) ,

and the aggregated signature has the form:

σ = (h, s) = (H(id), hxMy
1 ) . (2)

This is exactly our TSPS construction, with the underlying SPS signature defined
by Equation (2). We extend these techniques to vectors of indexed Diffie-Hellman

messages (id, ~M1, ~M2), which allows additional elements to be signed, e.g., at-
tributes when used within anonymous credential systems [PS16, SAB+19]. It is
important to note that the index is not needed for verification (and therefore
H(id) is not computed), so our schemes are indeed structure preserving.

4



We define an appropriate notion of unforgeability for indexed messages: ex-
istential unforgeability under chosen indexed message attack (EUF-CiMA) and
prove the security of our constructions under this notion. We discuss various
ways of defining the index function, depending on the application. For example,
if privacy is not required and the message and public key are known, the index
function may simply be the identity function: id = f(m) = m, capturing the
intuitive notion that each nonce r is associated with a single scalar message m.

Why Diffie-Hellman messages? Diffie-Hellman messages can be traced back
to the introduction of automorphic signatures [Fuc09] and SPS [AFG+10],
and have since appeared in various other SPS constructions [Gha16, Gha17b,
Gha17a, Gha19]. Their use is largely motivated by an impossibility result by
Abe et al. [AGHO11], which proves that any SPS in the Type-III setting must
have at least 3 group elements and 2 pairing product equations in the verifica-
tion. Furthermore, the result rules out unilateral signatures (those containing
elements from only one source group) meeting this lower bound. However, if
messages are in both source groups, it is possible to construct a unilateral SPS
meeting this lower bound. This is what Diffie-Hellman messages and the Ghadafi
construction [Gha16] achieve. We follow the same approach to construct efficient
TSPS.

Constructing a TSPS over standard, unilateral message spaces remains an in-
teresting open problem. However, such a scheme would necessarily contain more
group elements in the signature and more pairing product equations to verify,
due to this impossibility result. This is an important consideration when com-
bining with Groth-Sahai NIZK proofs in applications, as the number of pairings
required for verification scales linearly with the number of source pairings.

1.1 Our Contributions

Our contributions can be summarized as follows:

– We formalize the concept of indexed message spaces and formally define the
notion of structure-preserving signatures (SPS) over indexed message spaces
and corresponding notion of security: existential unforgeability under chosen
indexed message attack (EUF-CiMA).

– We propose a concrete SPS construction over indexed Diffie-Hellman mes-
sages, called IM-SPS, and prove its EUF-CiMA security under a new variant
of the generalized Pointcheval-Sanders assumption. We reduce this assump-
tion to the hardness of the (2, 1)-discrete logarithm problem in the algebraic
group model (AGM).

– We provide an indexed multi-message SPS construction, called IMM-SPS,
which allows vectors of indexed Diffie-Hellman messages to be signed, and
prove its EUF-CiMA security under the same assumption.

– We introduce the notion of a threshold structure-preserving signature
(TSPS) scheme and propose a fully non-interactive TSPS based on our

5



EUF-CiMA secure SPS scheme. Signatures contain only 2 group elements
and verification consists of 2 pairing product equations. We prove the secu-
rity of our TSPS under the EUF-CiMA security of IMM-SPS.

– We discuss applications of our TSPS construction and, in particular, blind
signing of messages. This represents a core functionality in Threshold-
Issuance Anonymous Credential (TIAC) systems. We outline how our TSPS
can be used in TIAC systems as a drop-in replacement that avoids rewinding
extractors for the required non-interactive zero-knowledge (NIZK) proofs.

2 Related Work

We provide an overview of pairing-based non-interactive threshold signature
schemes in Table 1 and structure-preserving signature schemes (SPS) in Table 2
and discuss how these schemes fail to meet our requirements.

Table 1: Table of pairing-based non-interactive threshold signature schemes. iDH
refers to indexed Diffie-Hellman messages (Definition 7). X: Satisfied. 7: Not
satisfied.

Scheme Message Space Signature Size Structure Preserving

BLS [Bol03, BL22] {0, 1}∗ 1G1 7

LJY ‡1 [LJY16] {0, 1}∗ 2G1 7

LJY ‡2 [LJY16] {0, 1}∗ 4G1 + 2G2 7

GJMMST [GJM+21] {0, 1}∗ 4G1 + 2G2 7

PS [SAB+19, TBA+22] Zp 2G1 7

Our TSPS iDH 2G1 X

Threshold Signatures. BLS [BLS04] and its threshold version [Bol03, BL22]
are not structure preserving, as they map bitstring messages {0, 1}∗ to the
group using a random oracle. Libert et al. [LJY16] propose a secure non-
interactive threshold signature scheme based on linearly-homomorphic SPS (LH-
SPS) [LPJY13]. While this construction meets many of our requirements, the
resulting threshold signature is not structure preserving. It either relies on ran-
dom oracles to hash bitstring messages to group elements (‡1 [LJY16]) or,
when avoiding random oracles, a bit-wise encoding of the message is required
(‡2 [LJY16]). Gurkan et al. [GJM+21] propose a pairing-based threshold Ver-
ifiable Unpredictable Function (VUF), which is essentially a unique threshold
signature [MRV99]. However, their construction is not structure preserving:
it hashes bitstring messages to the group using a random oracle. Sonnino et
al. [SAB+19] and Tomescu et al. [TBA+22] present non-interactive threshold
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versions of Pointcheval-Sanders (PS) signatures; however, verification takes place
over scalar vectors, and is thus not structure preserving. We note that signatures
for scalar vectors are intuitively closer to SPS than ones for bitstring messages,
as evidenced, for example, by Ghadafi’s scheme [Gha16]. We do not know of a
general conversion technique, however.

Structure-Preserving Signatures. Most structure-preserving signatures in
the literature fail to be good candidates for thresholdization due to nonlin-
ear operations of signer-specific randomness and secret key elements, which are
not amenable to Lagrange interpolation (e.g., [AFG+10, AGHO11, AGOT14,
BFF+15, Gha17b, Gro15]). However, there are two promising approaches:
linearly-homomorphic SPS (LHSPS) [LPJY13] and the SPS by Ghadafi [Gha16].
The former is a one-time signature, meaning that a key pair can only sign a sin-
gle message5. The SPS by Ghadafi [Gha16] lends itself to thresholdization, but
it requires multiple communication rounds and incurs significant overhead. (See
Section 1 for a discussion of this approach.)

Table 2: Table of structure-preserving signature schemes (SPS). DH refers to
Diffie-Hellman messages (Definition 2), and iDH refers to indexed Diffie-Hellman
messages (Definition 7). Avoids Nonlinearity refers to operations of the signing
randomness and secret keys. X: Satisfied. 7: Not satisfied.

Scheme Message Space Signature Size Avoids Nonlinearity

AFGHO[AFG+10] G1 5G1 + 2G2 7

AGHO [AGHO11] G1 ×G2 / G2 2G1 + 1G2 7

AGOT [AGOT14] G1 2G1 + 1G2 7

BFFSST [BFF+15] G2 1G1 + 2G2 7

Ghadafi [Gha17b] DH 2G1 7

Ghadafi [Gha16] DH 3G1 7

Groth [Gro15] G2 1G1 + 2G2 7

LPJY [LPJY13]∗ G1 2G1 X

Our SPS iDH 2G1 X

*One-time: a key pair can only sign a single message.

5 Note that the LHSPS in [LPJY13] is designed over symmetric bilinear groups with
signatures consisting of 3 group elements. The authors in [LJY16] extend this LHSPS
over asymmetric bilinear groups with signatures of size 2.
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3 Preliminaries and Definitions

3.1 General

Let κ ∈ N denote the security parameter and 1κ its unary representation. Let
p be a κ-bit prime. For all positive polynomials f(κ), a function ν : N → R+ is
called negligible if ∃ κ0 ∈ N such that ∀ κ > κ0 it holds that ν(κ) < 1/f(κ). We
denote by G∗ the set G \ 1G, where 1G is the identity element of the group G.
We denote the group of integers mod p by Zp = Z/pZ, its multiplicative group
of units by Z∗p, and the polynomial ring over Zp by Zp[X]. For a group G of
order p with generator g, we denote the discrete logarithm m ∈ Zp of M ∈ G
base g by dlogg(M) (i.e., M = gm). We denote the set of integers {1, . . . , n}
by [1, n] and the vector A by ~A. Let Y ←$F (X) denote running probabilistic
algorithm F on input X and assigning its output to Y . Let x←$Zp denote
sampling an element of Zp uniformly at random. All algorithms are randomized
unless expressly stated otherwise. PPT refers to probabilistic polynomial time.
We denote the output of a security game GGame between a challenger and a
PPT adversary A by GGame

A , where A wins the game if GGame
A = 1.

Definition 1 (Bilinear Group). A bilinear group generator BG(1κ) returns
a tuple (G1,G2,GT , p, e, g, ĝ) such that G1, G2 and GT are finite groups of the
same prime order p, g ∈ G1 and ĝ ∈ G2 are generators, and e : G1×G2 → GT is
an efficiently computable bilinear pairing, which satisfies the following properties:

1. e(g, ĝ) 6= 1GT
(non-degeneracy).

2. ∀ a, b ∈ Zp, e(ga, ĝb) = e(g, ĝ)ab = e(gb, ĝa) (bilinearity).

We rely on bilinear groups G1 and G2 with no efficiently computable iso-
morphism between them [GPS08], also called Type-III or asymmetric bilinear
groups. To date, they are the most efficient choice for relevant security levels.

Definition 2 (Diffie-Hellman Message Space [Fuc09, AFG+10]). Over
an asymmetric bilinear group (G1,G2,GT , p, e, g, ĝ), a pair (M1,M2) ∈ G1×G2

belongs to the Diffie-Hellman (DH) message space MDH if there exists m ∈ Zp
such that M1 = gm and M2 = ĝm.

One can efficiently verify whether (M1,M2) ∈ MDH by checking e(M1, ĝ) =
e(g,M2).

Definition 3 (Algebraic Group Model [FKL18]). An adversary is alge-
braic if for every group element h ∈ G = 〈g〉 that it outputs, it is required

to output a representation ~h = (η0, η1, η2, . . . ) such that h = gη0
∏
gi
ηi , where

g, g1, g2, · · · ∈ G are group elements that the adversary has seen thus far.

The original definition of the algebraic group model (AGM) [FKL18] only cap-
tured regular cyclic groups G = 〈g〉. Mizuide et al. [MTT19] extended this defi-
nition to include symmetric pairing groups (G1 = G2), such that the adversary is
also allowed to output target group elements (in GT ) and their representations.
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Recently, Couteau and Hartmann [CH20] defined the Algebraic Asymmetric Bi-
linear Group Model, which extends the AGM definition for asymmetric pairings
by allowing the adversary to output multiple elements from all three groups.
The definition can be found in Appendix A.6

3.2 Schemes

Pointcheval-Sanders Signatures [PS16]. The PS signature scheme is defined
over the message spaceM of scalar messagesm ∈ Zp and consists of the following
PPT algorithms:

– pp← Setup(1κ): Output pp = (G1,G2,GT , p, e, g, ĝ)← BG(1κ).
– (sk, vk)← KGen(pp): Sample x, y←$Z∗p and set sk = (sk1, sk2) = (x, y) and

vk = (vk1, vk2) = (ĝx, ĝy). Output (sk, vk).
– σ ← Sign(pp, sk,m): Sample r←$Z∗p and compute σ = (h, s) = (gr, hx+my).

Output σ.
– 0/1← Verify(pp, vk,m, σ): If h ∈ G1, h 6= 1G1 , and the pairing product equa-

tion e(h, vk1vk
m
2 ) = e(s, ĝ) holds, output 1 (accept); else, output 0 (reject).

Pointcheval-Sanders signatures are EUF-CMA secure under the PS assumption
(Definition 5) [PS16].

Ghadafi SPS [Gha16]. The Ghadafi structure-preserving signature scheme is
defined over the message spaceMDH of Diffie-Hellman pairs (M1,M2) ∈ G1×G2

such that e(M1, ĝ) = e(g,M2) and consists of the following PPT algorithms:

– pp← Setup(1κ): Output pp = (G1,G2,GT , p, e, g, ĝ)← BG(1κ).
– (sk, vk)← KGen(pp): Sample x, y←$Z∗p and set sk = (sk1, sk2) = (x, y) and

vk = (vk1, vk2) = (ĝx, ĝy). Output (sk, vk).
– σ ← Sign(pp, sk,M1,M2): Sample r←$Z∗p and compute σ = (h, s, t) =

(gr,Mr
1 , h

xsy). Output σ.
– 0/1 ← Verify(pp, vk, σ,M1,M2): If h, s, t ∈ G1, h 6= 1G1 , and both pairing

product equations e(h,M2) = e(s, ĝ) and e(t, ĝ) = e(h, vk1)e(s, vk2) hold,
output 1 (accept); else, output 0 (reject).

The Ghadafi SPS is weakly EUF-CMA secure in the generic group model
(GGM) [Gha16].

Shamir Secret Sharing [Sha79]. An (n, t)-Shamir secret sharing divides a
secret s among n shareholders such that each subset of at least t sharehold-
ers can reconstruct s, but fewer than t cannot (and s remains information-
theoretically hidden). A dealer who knows the secret s forms a polynomial f(x)
of degree t with randomly chosen coefficients from Zp such that f(0) = s. The
dealer then securely provides each shareholder with si = f(i), i ∈ [1, n]. Let
~s←$Share(s, p, n, t) denote the process of computing shares ~s = (s1, . . . , sn)
of a secret s. Each subset T ⊂ [1, n] of size at least t can pool their shares
to reconstruct the secret s using Lagrange interpolation, as s = f(0) =∑
i∈T siλi, where λi =

∏
j∈T ,j 6=i

j
j−i .
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3.3 Assumptions

Definition 4 ((2, 1)-Discrete Logarithm Assumption [BFL20]). Let pp =
(G1,G2,GT , p, e, g, ĝ) ← BG(1κ) be an asymmetric bilinear group. The (2, 1)-
discrete logarithm assumption holds with respect to BG if for all PPT adversaries
A, there exists a negligible function ν such that

Pr
[
z←$Z∗p; (Z,Z ′, Ẑ)← (gz, gz

2

, ĝz); z′←$A(pp, Z, Z ′, Ẑ) : z′ = z
]
< ν(κ) .

Definition 5 (PS Assumption [PS16]). Let the advantage of an adversary
A against the PS game GPS, as defined in Figure 1, be as follows:

AdvPS
A (κ) = Pr

[
GPS
A = 1

]
.

The PS assumption holds if for all PPT adversaries A, there exists a negligible
function ν such that AdvPS

A (κ) < ν(κ).

GPS(1κ)

1 : pp = (G1,G2,GT , p, e, g, ĝ)← BG(1κ)

2 : x, y←$Z∗p

3 : (m∗, h∗, s∗)← AO
PS

(pp, ĝx, ĝy)

4 : return
(
(1) h∗ 6= 1G1 ∧ m∗ 6= 0 ∧

5 : (2) s∗ = h∗
x+m∗y

∧
6 : (3) m∗ 6∈ Q

)

OPS(m) // m ∈ Zp

1 : h←$G1

2 : Q ← Q∪ {m}
3 : return (h, hx+my)

Fig. 1: Game defining the PS assumption.

The validity of the tuple (m∗, h∗, s∗) is decidable by checking e(s∗, ĝ) =
e(h∗, ĝx(ĝy)m

∗
). The PS assumption is an interactive assumption defined by

Pointcheval and Sanders [PS16] to construct an efficient randomizable signature
and has been shown to hold in the GGM.

Kim et al. [KLAP20] introduced a generalized version of the PS assumption
(GPS) that splits the PS oracle OPS(·) into two oracles OGPS

0 (),OGPS
1 (·): the

first samples h←$G1, and the second takes h and m as input and generates the
PS value hx+my. Recently, Kim et al. [KSAP22] extended the GPS assumption
(GPS2), replacing field element inputs, such as m, with group element inputs.
The GPS2 assumption holds under the (2, 1)-DL assumption (Definition 4) in
the AGM. Both the GPS and GPS2 assumptions can be found in Appendix A.5.

Owing to the fact that our SPS and TSPS constructions rely on a different
message space, we introduce an analogous generalized PS assumption (GPS3),
defined as follows.
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Definition 6 (GPS3 Assumption). Let the advantage of an adversary A
against the GPS3 game GGPS3 , as defined in Figure 2, be as follows:

AdvGPS3

A (κ) = Pr
[
GGPS3

A = 1
]
.

The GPS3 assumption holds if for all PPT adversaries A, there exists a negligible
function ν such that AdvGPS3

A (κ) < ν(κ).

We prove that this assumption holds in the AGM if the (2, 1)-DL problem is
hard (Theorem 1).

GGPS3(1κ)

1 : pp = (G1,G2,GT , p, e, g, ĝ)← BG(1κ)

2 : x, y←$Z∗p

3 : (M∗1 ,M
∗
2 , h

∗, s∗)← AO
GPS3
0 ,OGPS3

1 (pp, ĝx, ĝy, gy )

4 : return
(
(1) M∗1 6= 1G1 ∧ h∗ 6= 1G1 ∧

5 : (2) s∗ = h∗
x

M∗
y

1 ∧
6 : (3) dlogh∗(M

∗
1 ) = dlogĝ(M

∗
2 ) ∧

7 : (4) (?,M∗2 ) 6∈ Q1

)
OGPS3

0 ()

1 : h←$G1

2 : Q0 ← Q0 ∪ {h}
3 : return h

OGPS3
1 (h,M1,M2)

1 : if
(
h 6∈ Q0 ∨ dlogh(M1) 6= dlogĝ(M2)

)
:

2 : return ⊥
3 : if (h, ?) ∈ Q1 :

4 : return ⊥
5 : Q1 ← Q1 ∪ {(h,M2)}
6 : return hxMy

1

Fig. 2: Game defining our GPS3 assumption. The additional element in the

solid box is required for blind signing only (cf. Section 6.1).

4 Indexed Message Structure-Preserving Signatures

In this section, we introduce the notion of structure-preserving signatures (SPS)
on indexed messages as well as a corresponding notion of security: unforgeability
against chosen indexed message attack (EUF-CiMA). We provide an indexed mes-
sage SPS construction, called IM-SPS, and prove its EUF-CiMA security under
the GPS3 assumption (Definition 6) in the random oracle model (ROM) (The-
orem 2). We also propose an indexed multi -message SPS construction, called
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IMM-SPS, which allows vectors of indexed messages to be signed, and prove its
EUF-CiMA security under the same assumptions (Theorem 3). IMM-SPS are
useful for applications where additional elements, such as attributes, are signed.

Indexing can be understood as requiring the existence of an injective function
f that maps each message to an index. We model this by requiring that for all
index/message pairs in an indexed message space M, the following uniqueness
property holds: (id, M̃) ∈ M, (id′, M̃ ′) ∈ M, id = id′ ⇒ M̃ = M̃ ′. That
is, no two messages use the same index. We refer to index/message pairs as
M = (id, M̃).

Indexing is useful, as signatures can depend on the index; for example, in our
schemes, signing involves evaluating a hash-to-curve function H on the index to
obtain a base element h ← H(id). Verifying a message/signature pair does not
require availability of the index, making it structure preserving. Consequently,
the verification message space M̃ is obtained from M by omitting the index.

For our schemes, we need to consider that in verification one can provide a
base element hr obtained by randomizing the original base element h. This is
due to the partial randomizability of the signatures. Thus, different messages
M̃, M̃ ′ may be valid representations for the same scalar message m. Conse-
quently, similar to SPS on equivalence classes (SPS-EQ) [FHS19], the verifica-
tion message space M̃ is expanded to consider equivalent (randomized) messages:
M̃ = {M̃ | ∃ (·, M̃ ′) ∈ M , M̃ ∈ EQ(M̃ ′)}. The function EQ depends on the
concrete message space and determines the respective set of equivalent messages.

Next, we define the indexed Diffie-Hellman message space used by our IM-SPS
scheme (cf. Figure 3 for its encoding function).

Definition 7 (Indexed Diffie-Hellman Message Space). Given an asym-
metric bilinear group (G1,G2,GT , p, e, g, ĝ) ← BG(1κ), an index set I, and a
random oracle H : I → G1, MH

iDH is an indexed Diffie-Hellman (DH) message

space if MH
iDH ⊂ {(id, M̃) | id ∈ I,m ∈ Zp, M̃ = (H(id)m, ĝm) ∈ G1 × G2}

and the following index uniqueness property holds: for all (id, M̃) ∈ MH
iDH,

(id′, M̃ ′) ∈MH
iDH, id = id′ ⇒ M̃ = M̃ ′.

We define the equivalence class for each message M̃ = (M1,M2) ∈ M̃H
iDH as

EQiDH(M1,M2) = {(Mr
1 ,M2) | ∃ r ∈ Zp}.

iDHH(id,m)

1 : h← H(id)

2 : M̃ ← (hm, ĝm)

3 : return (id, M̃)

H(id)

1 : if QH[id] =⊥:

2 : QH[id]←$G1

3 : return QH[id]

Fig. 3: Encoding function of indexed Diffie-Hellman message space in the ROM.
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The subset membership is efficiently decidable by checking e(M1, ĝ) =
e(h,M2) for h ← H(id). Note that, in addition, one needs to guarantee that
no two messages use the same index. This is the responsibility of the signer.6 As
mentioned above, messages M̃ lie in a different verification message space M̃H

iDH

that is uniquely determined by MH
iDH and EQiDH. Note that most M̃ ∈ M̃H

iDH

are not indexed Diffie-Hellman messages. In particular, when expanding the def-
inition of EQiDH, the verification message space is M̃H

iDH = {(Mr
1 ,M2) | ∃ r ∈

Zp , ∃ (·,M1,M2) ∈MH
iDH}.

(M̂1,M2)
dlogĝ(M2)−−−−−−→ m ∈ Zp

f−→ id︸ ︷︷ ︸
Message Indexing

Indexed DH Message Space in ROM︷ ︸︸ ︷
iDHH(id,m)−−−−−−−→ (id,M1,M2) ∈MH

iDH −−−→ (M̂1,M2)︸ ︷︷ ︸
Randomization of M1

Fig. 4: From M̃ to M and back again: The first message component is random-
izable; the second fixes the index.

Does M̃ depend on id or does id depend on M̃? One might observe the
above apparent circularity with respect to the indexing technique. On the one
hand, we require existence of an injective function f that maps (M1,M2) to id.
On the other hand, M1 is computed as M1 = H(id)dlogĝ(M2). This circularity is
avoided by computing id from the partial message M2, or more commonly its
discrete logarithm m.

As illustrated in Figure 4, the indexing function f assigns an index id to
each scalar message m ∈ Zp. Then, a hash-to-curve function H : {0, 1}∗ → G1

(modeled as a random oracle) is used to generate a unique base element h. A
source group message (M1,M2) can then be obtained using h. In an indexed
message SPS, the signing algorithm takes as input the source group message
together with an index and generates the underlying signature with access to H.
Note that the index does not destroy the structure since the verifier does not
need to know id to verify a signature on message M̃ = (M1,M2).

Indexing function instantiations. Depending on the application, the index-
ing function f can be instantiated in different ways. For example, if messages and
signatures are allowed to be public, the indexing function can be instantiated by
using the scalar message m itself as the index: f(m) 7→ m = id.

If message and signatures must be hidden, as in the case of applications to
anonymous credentials, one can take the approach of committing to the scalar
message and providing a proof of well-formedness of the commitment, as done by

6 To highlight this responsibility, we enforce uniqueness both in the message space
and later on in Line 1 of the of OSign(·) oracle of Figure 5.
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Sonnino et al. [SAB+19]. As it is infeasible to open a well-formed commitment
to two different messages, this guarantees uniqueness of the index. Camenisch
et al. [CDL+20] take yet another approach for indexing messages: they assume
the existence of a pre-defined and publicly available indexing function. That is,
there is a unique index value for each message that is known to all signers. The
corresponding base element can be obtained by evaluating the hash-to-curve
function at the given index. As the authors note, if the size of the message space
is polynomial and known in advance, then this approach is secure, since it is
equivalent to including the base element in the public parameters. However, this
is impractical for large message spaces.

4.1 Definition of Unforgeability for Indexed Message SPS

We adapt the notion of EUF-CMA security for digital signatures (Definition 16)
to existential unforgeability against chosen indexed message attack (EUF-CiMA).
There are two adjustments: (1) the adversary makes queries to the signing oracle
by providing index/message pairs, and (2) we expand the set of signed messages
QS = {(idi, M̃i)}i to the set of trivially forgeable messages QEQ = {EQ(M̃i)}i,
i.e., all equivalent messages in the verification message space, and use it in the
winning condition of the adversary.

Definition 8 (Existential Unforgeability under Chosen Indexed Mes-
sage Attack (EUF-CiMA)). A digital signature scheme over indexed mes-
sage space M is EUF-CiMA secure if for all PPT adversaries A playing game
GEUF-CiMA (Figure 5), there exists a negligible function ν such that

AdvEUF-CiMA
A (κ) = Pr

[
GEUF-CiMA
A (1κ) = 1

]
≤ ν(κ) .

GEUF-CiMA
A (1κ)

1 : pp← Setup(1κ)

2 : (sk, vk)←$KGen(pp)

3 : (M̃∗, σ∗)←$AOSign(pp, vk)

4 : return
(
M̃∗ 6∈ QEQ ∧

5 : Verify(pp, vk, M̃∗, σ∗)
)

OSign(id, M̃)

1 : if (id, ?) ∈ QS :

2 : return ⊥

3 : else : σ ← Sign(pp, sk, (id, M̃))

4 : QS ← QS ∪ {(id, M̃)}

5 : QEQ ← QEQ ∪ {EQ(M̃)}
6 : return σ

Fig. 5: Game GEUF-CiMA
A (1κ).

4.2 Our Indexed Message SPS

In Figure 6, we present our indexed message SPS construction IM-SPS over the
indexed Diffie-Hellman message space MH

iDH.
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Setup(1κ)

1 : (G1,G2,GT , p, e, g, ĝ)← BG(1κ)

2 : H : {0, 1}∗ → G1

3 : // select hash function

4 : pp← ((G1,G2,GT , p, e, g, ĝ),H)

5 : return pp

Sign(pp, sk, (id,M1,M2))

1 : h← H(id)

2 : if e(h,M2) = e(M1, ĝ) :

3 : (h, s)← (h, hsk1M
sk2
1 )

4 : return σ ← (h, s)

5 : else : return ⊥

KGen(pp)

1 : x, y←$Z∗p
2 : sk← (sk1, sk2) = (x, y)

3 : vk← (vk1, vk2, vk?2 )

4 : = (ĝx, ĝy, gy )

5 : return (sk, vk)

Verify(pp, vk, (M1,M2), σ)

1 : // does not invoke H

2 : parse σ = (h, s)

3 : return
(
h 6= 1G1 ∧M1 6= 1G1 ∧

4 : e(h,M2) = e(M1, ĝ) ∧
5 : e(h, vk1)e(M1, vk2) = e(s, ĝ)

)

Fig. 6: Our Indexed Message SPS Construction IM-SPS. The additional elements

in solid boxes are required for blind signing only (cf. Section 6.1).

4.3 Security of IM-SPS

We prove that our proposed IM-SPS construction (Figure 6) is EUF-CiMA secure
under the GPS3 assumption (Definition 6) in the random oracle model.

The GPS3 assumption underpins both the security of IM-SPS as well as our
indexed multi -message SPS construction IMM-SPS (Section 4.4). Our security
reductions from IM-SPS and IMM-SPS to GPS3 are tight. Furthermore, we show
the tight security of our TSPS (Section 5) under the security of IMM-SPS. Fig-
ure 7 defines a roadmap for our IM-SPS, IMM-SPS, and TSPS constructions and
their underlying assumptions. Thus, as a starting point, we reduce the GPS3 as-
sumption to the hardness of the (2, 1)-DL problem (Definition 4) in the algebraic
group model.

(2, 1)-DL IM-SPS

TSPSIMM-SPS

GPS3

Thm. 1 (AGM) Thm. 2 (ROM)

Thm. 3 (ROM) Thm. 4 (ROM)

Fig. 7: The proposed constructions and underlying assumptions.
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Theorem 1. The GPS3 assumption (Definition 6) holds in the asymmetric al-
gebraic bilinear group model under the hardness of the (2, 1)-DL problem (Defi-
nition 4).

Proof Outline. To prove this theorem, we adopt the technique of Kim et
al. [KSAP22, Theorem 2] and define a challenger Balg who can simulate the
defined oracles in the GPS3 game in the AGM. The defined extractor can suc-
cessfully extract the scalar message mj on the jth query to theOGPS3

1 (.) oracle by
having access to the representations of inputs to the oracle. We show that if the
extractor fails, then we can build an algebraic algorithm to solve the (2, 1)-DL
problem. We then demonstrate that no algebraic adversary Aalg can produce a
valid output that satisfies all the conditions in the security game. Note that the
GPS3 assumption and the GPS2 assumption defined by Kim et al. [KSAP22,
Theorem 2] seem incomparable since messages consist of elements from both
source groups. The full proof is provided in Appendix B.1.

Theorem 2. The indexed message SPS scheme IM-SPS (Figure 6) is correct
and EUF-CiMA secure (Definition 8) under the GPS3 assumption (Definition 6)
in the random oracle model.

We first present an attack to motivate the need for uniqueness in the indexed
message space. Assume there were no uniqueness requirement, and suppose the
redundant check in Line 1 of the of OSign(·) oracle of Figure 5 were not present.
Then, a forger could obtain two signatures s = hxMy

1 , s′ = hxM ′1
y

and compute
a forgery s∗ = s2/s′ = hx(M2

1 /M
′
1)y.

Proof Outline. Let A be a PPT adversary against the EUF-CiMA security of
IM-SPS. We construct a PPT reduction B against the GPS3 assumption as fol-
lows. When A queries the random oracle H on a fresh id, B queries its oracle
OGPS3

0 () to obtain a random base element h, which it stores and returns to A.
When A queries its signing oracle OSign(·) on (id,M1,M2), B looks up h = H(id)

and queries its oracle OGPS3
1 (·) on (h,M1,M2) to receive hxMy

1 . Finally, B re-
turns the signature σ = (h, hxMy

1 ) to A. B correctly simulates the EUF-CiMA
game, and the success probability of A and B is the same.

The attack above would violate the condition (h, ?) /∈ Q1 in Line 3 of the
OGPS3

1 (·) oracle in Figure 2. The full proof is provided in Appendix B.2

4.4 Our Indexed Multi-Message SPS

We extend our IM-SPS construction to an indexed multi -message SPS construc-
tion IMM-SPS, which allows vectors of indexed messages to be signed, and prove
its EUF-CiMA security. Extending the message space to allow vectors of any
length is desirable for applications in which several attributes may be signed.
The number of pairings required for verification scales linearly with the length
of the message vectors, but signatures remain constant sized (2 group elements).

We first generalize the notion of an indexed message space to the multi-
message setting. In Figure 8, we present the encoding function MiDHH(id, ~m) of
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MiDHH(id, ~m)

1 : h← H(id)

2 : for j ∈ [1, `] :

3 : M1j ← hmj ; M2j ← ĝmj

4 : return
(
id, ( ~M1, ~M2)

)

H(id)

1 : if QH[id] =⊥:

2 : QH[id]←$G1

3 : return QH[id]

Fig. 8: Encoding function of iDH multi-message space in the ROM.

a multi-message variant of the indexed Diffie-Hellman message space that maps,
for any ` > 1, `-scalar message vectors ~m = (m1, . . . ,m`) ∈ Z`p to 2`-source

group message vectors ( ~M1, ~M2) = ((M11, . . . ,M1`), (M21, . . . ,M2`)) ∈ G`1 ×G`2
based on a given index id.

Setup(1κ)

1 : (G1,G2,GT , p, e, g, ĝ)← BG(1κ)

2 : H : {0, 1}∗ → G1

3 : // select hash function

4 : pp← ((G1,G2,GT , p, e, g, ĝ),H)

5 : return pp

KGen(pp, `)

1 : x, y1, . . . , y` ←$Z∗p
2 : ~sk← (sk0, . . . , sk`) = (x, y1, . . . , y`)

3 : ~vk← (vk0, vk1, vk?1 , . . . , vk`, vk?` )

4 : = (ĝx, ĝy1 , gy1 , . . . , ĝy` , gy` )

5 : return (~sk, ~vk)

Sign(pp, ~sk, (id, ~M1, ~M2))

1 : h← H(id)

2 : if ∃ j ∈ [1, `] | e(h,M2j) 6= e(M1j , ĝ) :

3 : return ⊥

4 : else : return σ ← (h, s) = (h, hsk0
∏̀
j=1

M
skj
1j )

Verify(pp, ~vk, ( ~M1, ~M2), σ)

1 : // does not invoke H

2 : parse σ = (h, s)

3 : return
(
h 6= 1G1 ∧ {M1j}j∈[1,`] 6= 1G1 ∧

{
e(h,M2j) = e(M1j , ĝ)

}
j∈[1,`] ∧

4 : e(h, vk0)
∏̀
j=1

e(M1j , vkj) = e(s, ĝ)
)

Fig. 9: Our Indexed Multi-Message SPS Construction IMM-SPS. The additional

elements in solid boxes are required for blind signing only (cf. Section 6.1).
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Definition 9 (Indexed Diffie-Hellman Multi-Message Space). Given an
asymmetric bilinear group (G1,G2,GT , p, e, g, ĝ)← BG(1κ), an index set I, and
a random oracle H : I → G1,MH

MiDH is an indexed Diffie-Hellman (DH) message

space if MH
MiDH ⊂ {(id, M̃) | id ∈ I, ~m ∈ Z`p, M̃ = MiDHH(id, ~m)} and the

following index uniqueness property holds: for all (id, M̃) ∈ MH
MiDH, (id′, M̃ ′) ∈

MH
MiDH, id = id′ ⇒ M̃ = M̃ ′.

We define the equivalence class for each multi-message M̃ = ( ~M1, ~M2) ∈
M̃H

MiDH as EQMiDH( ~M1, ~M2) = {( ~Mr
1 ,
~M2) | ∃ r ∈ Zp}.

This generalization of the indexed Diffie-Hellman message space leads us to
an indexed multi-message SPS, described in Figure 9.

Theorem 3. The indexed multi-message SPS scheme IMM-SPS (Figure 9) is
correct and EUF-CiMA secure (Definition 8) under the GPS3 assumption (Defi-
nition 6) in the random oracle model.

The proof is provided in Appendix B.3

5 Threshold Structure-Preserving Signatures

We now define the syntax and security notions for non-interactive (n, t)-
Threshold Structure-Preserving Signatures (TSPS) for indexed message spaces.
We then propose an efficient instantiation for an indexed Diffie-Hellman multi-
message space. In an (n, t)-TSPS, the signing key is distributed among n parties,
and the generation of any signature requires the cooperation of a subset of at
least t parties. We assume a centralized key generation algorithm for distribut-
ing the signing key, but a decentralized key generation protocol (DKG), such as
Pedersen’s DKG [Ped92], may be used instead.

Definition 10 (Threshold Structure-Preserving Signature). For a given
security parameter κ and bilinear group BG, an (n, t)-TSPS over indexed message
space M consists of a tuple (Setup,KGen,ParSign,ParVerify,Reconst,Verify) of
PPT algorithms defined as follows:

– pp ← Setup(1κ): The setup algorithm takes the security parameter 1κ as
input and returns the public parameters pp.

– (~sk, ~vk, vk)← KGen(pp, `, n, t): The key generation algorithm takes the public
parameters pp and length ` along with two integers t, n ∈ poly(1κ) such that
1 ≤ t ≤ n as inputs. It returns two vectors of size n of signing/verification

keys ~sk = (sk1, . . . , skn) and ~vk = (vk1, . . . , vkn) such that each party Pi for
i ∈ [n] receives a pair (ski, vki) along with the global verification key vk.

– σi ← ParSign(pp, ski,M): The partial signing algorithm takes the public pa-
rameters pp, a secret signing key ski, and a message M ∈M as inputs and
returns a partial signature σi.
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– 0/1 ← ParVerify(pp, vki, M̃ , σi): The partial verification algorithm is a de-
terministic algorithm that takes the public parameters pp, a verification key
vki, message M̃ ∈ M̃, and a purported partial signature σi as inputs. If σi
is a valid partial signature, it returns 1 (accept); else, it returns 0 (reject).

– (σ,⊥) ← Reconst(pp, {i, σi}i∈T ): The reconstruction algorithm is a deter-
ministic algorithm that takes public parameters pp and a set T of t partial
signatures {i, σi} with corresponding indices as inputs and returns an aggre-
gated signature σ or ⊥.

– 0/1 ← Verify(pp, vk, M̃ , σ): The verification algorithm is a deterministic al-
gorithm that takes the public parameters pp, the global verification key vk,
a message M̃ ∈ M̃, and a purported signature σ as inputs. If σ is a valid
signature, it returns 1 (accept); else, it returns 0 (reject).

Three main security properties for TSPS defined over indexed message spaces
are partial verification correctness, evaluation correctness, and threshold exis-
tential unforgeability against chosen indexed message attack (Threshold EUF-
CiMA). Intuitively, partial verification correctness means that any correctly gen-
erated partial signature via the ParSign algorithm passes the ParVerify verifica-
tion checks, and evaluation correctness means that the Reconst algorithm for a
set of well-formed partial signatures {i, σi}i∈T (meaning all with the same index,
on a message M) results in a valid aggregated signature σ.

Definition 11 (Partial Verification Correctness). An (n, t)-TSPS scheme
satisfies partial verification correctness if for all correctly indexed messages M ∈
M, pp← Setup(1κ), (~sk, ~vk, vk)← KGen(pp, `, n, t) and i ∈ [1, n] that

Pr
[
ParVerify(pp, vki, M̃ ,ParSign(pp, ski,M)) = 1

]
= 1 .

Definition 12 (Evaluation Correctness). An (n, t)-TSPS scheme satisfies
evaluation correctness if for all correctly indexed messages M ∈ M, pp ←
Setup(1κ), (~sk, ~vk, vk)← KGen(pp, `, n, t) and T ⊆ [1, n], |T | = t that

Pr
[
σ ← Reconst(pp, {i,ParSign(pp, ski,M)}i∈T ) : Verify(pp, vk, M̃ , σ) = 1

]
= 1.

Threshold Unforgeability. We next define the notion of threshold unforge-
ability for non-interactive (n, t)-TSPS schemes. The Threshold EUF-CiMA game
is defined formally in Figure 10. Given a set of party indices P = {1, . . . , n}, we
assume that the adversary can corrupt up to t − 1 parties and that there is at
least one honest party. We denote the set of corrupt parties by C and the set of
honest parties by H = P \ C.

In the unforgeability game, the challenger generates public parameters pp
and returns them to the adversary. The adversary chooses the set of corrupted
participants C. The challenger then runs KGen to derive the global verification
key vk, the individual verification keys {vki}ni=1, and the secret signing shares
{ski}ni=1. It returns vk, {vki}ni=1, and the set of corrupt signing shares {skj}j∈C to
the adversary. We assume the adversary maintains state before and after KGen.
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GT-EUF-CiMA
A (1κ)

1 : pp← Setup(1κ)

2 : C ←$A(pp) // set of corrupt signers

3 : if C /∈ [1, n] ∨ |C| > t− 1 :

4 : return ⊥
5 : else : H ← [1, n] \ C // set of honest signers

6 : (~sk, ~vk, vk)← KGen(pp, `, n, t)

7 : (M̃∗, σ∗)←$AOPSign

(
{ski}i∈C , ~vk, vk

)
8 : return (M̃∗ 6∈ QEQ ∧ Verify(pp, vk, M̃∗, σ∗))

OPSign(k, id, M̃) // M = (id, M̃)

1 : if (k /∈ H ∨ (k, id, ?) ∈ QS ∨ (?, id, M̃ ′) ∈ QS, M̃
′ 6= M̃) :

2 : return ⊥

3 : else : σk ← ParSign(pp, skk, (id, M̃))

4 : QS ← QS ∪ {(k, id, M̃)}

5 : QEQ ← QEQ ∪ {EQ(M̃)}
6 : return σk

Fig. 10: Game GT-EUF-CiMA
A (1κ).

After key generation, the adversary can request partial signatures on mes-
sages of its choosing from honest signers by querying oracle OPSign(·).

The adversary wins if it can produce a valid forgery (M̃∗, σ∗) with respect
to the global verification key vk representing the set of n signers, on a message
M̃∗ for which no equivalent M̃∗

′
has been previously queried to OPSign(·).

Definition 13 (Threshold EUF-CiMA). A non-interactive (n, t)-TSPS
scheme over indexed message space M is Threshold EUF-CiMA secure if for
all PPT adversaries A playing game GT-EUF-CiMA (Figure 10), there exists a
negligible function ν such that

AdvT-EUF-CiMA
A (κ) = Pr

[
GT-EUF-CiMA
A (1κ) = 1

]
≤ ν(κ) .

5.1 Our Indexed Multi-Message TSPS

In Figure 11, we present our (n, t)-TSPS scheme TSPS over an indexed Diffie-
Hellman multi-message space MH

MiDH, as defined in Figure 8.

5.2 Security of TSPS

Theorem 4. The indexed multi-message (n, t)-Threshold SPS scheme TSPS is
correct and Threshold EUF-CiMA secure (Definition 13) in the random oracle
model under the EUF-CiMA security of IMM-SPS (Theorem 3).
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Setup(1κ)

1 : (G1,G2,GT , p, e, g, ĝ)← BG(1κ); H : {0, 1}∗ → G1 // select hash function

2 : return pp← ((G1,G2,GT , p, e, g, ĝ),H)

KGen(pp, `, n, t)

1 : x, y1, . . . , y` ←$Z∗p
2 : ~x←$Share(x, p, n, t), {~yj ←$Share(yj , p, n, t)}j∈[1,`]
3 : for i ∈ [1, n] :

4 : ski ← (ski0, ski1, . . . , ski`) = (xi, yi1, . . . , yi`)

5 : vki ← (vki0, vki1, vk?i1 , . . . , vki`, vk?i` ) = (ĝxi , ĝyi1 , gyi1 , . . . , ĝyi` , gyi` )

6 : ~sk← (sk1, . . . , skn)

7 : ~vk← (vk1, . . . , vkn)

8 : vk← (vk00, vk01, vk?01 , . . . , vk0`, vk?0` ) = (ĝx, ĝy1 , gy1 , . . . , ĝy` , gy` )

9 : return (~sk, ~vk, vk)

ParSign
(
pp, ski, (id, ~M1, ~M2)

)
1 : h← H(id)

2 : if ∃ j ∈ [1, `] |
3 : e(h,M2j) 6= e(M1j , ĝ) :

4 : return ⊥

5 : else : si ← hski0
∏̀
j=1

M1j
skij

6 : return σi ← (h, si)

ParVerify
(
pp, vki, ( ~M1, ~M2), σi

)
1 : // does not invoke H

2 : parse σi = (hi, si)

3 : return
(
hi 6= 1G1 ∧

4 : {M1j}j∈[1,`] 6= 1G1 ∧
5 : {e(hi,M2j) = e(M1j , ĝ)}j∈[1,`] ∧

6 : e(hi, vki0)
∏̀
j=1

e(M1j , vkij) = e(si, ĝ)

Reconst
(
pp, ~vk, ( ~M1, ~M2), {i, σi}i∈T

)
1 : parse σi = (hi, si)

2 : if ∃ i, j ∈ T , i 6= j | hi 6= hj

3 : ∨ ∃ i ∈ T |

4 : ParVerify(pp, vki, ( ~M1, ~M2), σi) = 0

5 : return ⊥
6 : else : h← hi

7 : return σ ← (h, s) = (h,
∏
i∈T

sλi
i )

Verify
(
pp, vk, ( ~M1, ~M2), σ

)
1 : // does not invoke H

2 : parse σ = (h, s)

3 : return
(
h 6= 1G1∧

4 : {M1j}j∈[1,`] 6= 1G1 ∧
5 : {e(h,M2j) = e(M1j , ĝ)}j∈[1,`] ∧

6 : e(h, vk00)
∏̀
j=1

e(M1j , vk0j) = e(s, ĝ)

Fig. 11: Our Threshold SPS Construction TSPS. The additional elements in

solid boxes are required for blind signing only (cf. Section 6.1).

21



Proof. Correctness. We first show that the proposed TSPS satisfies partial
verification correctness (Definition 11), i.e., any correctly generated partial sig-
nature via the ParSign algorithm passes the ParVerify verification checks. Indeed,
for all i ∈ [1, n] and correctly indexed messages M = (id, ~M1, ~M2) ∈MH

MiDH, we
have:

e(h, vki0)
∏̀
j=1

e(M1j , vkij) = e(h, ĝxi)
∏̀
j=1

e(M1j , ĝ
yij )e(hxi

∏̀
j=1

M
yij
1j , ĝ) = e(si, ĝ) .

Next, we show that TSPS satisfies evaluation correctness (Definition 12);
that is, the Reconst algorithm for a set of partial signatures {i, σi}i∈T , T ⊆
[1, n], |T | = t, on a message M = (id, ~M1, ~M2) with the same h← H(id) results
in a valid aggregated signature σ = (h, s). Indeed,

s =
∏
i∈T

sλi
i =

∏
i∈T

(hski0
∏̀
j=1

M
skij
1j )λi = h

∑
i∈T ski0λi

∏̀
j=1

M
∑

i∈T skijλi

1j = hsk0
∏̀
j=1

M
skj
1j

where λi is the Lagrange coefficient for party Pi with respect to the signing
set T . Next, we show that verification holds for the above aggregated signature
σ on message M̃ = ( ~M1, ~M2). Indeed, ∀ j ∈ [1, `] we have that e(h,M2j) =
e(h, ĝmj ) = e(hmj , ĝ) = e(M1j , ĝ) and

e(h, vk0)
∏̀
j=1

e(M1j , vkj) = e(h, ĝx)
∏̀
j=1

e(M1j , ĝ
yj ) = e(hx

∏̀
j=1

M
yj
1j , ĝ) = e(s, ĝ) .

Note that successful partial signature verification using ParVerify and consis-
tency of h guarantee successful reconstruction.

Need for uniqueness. The hypothetical attack described after Theorem 2 also
works with a partial signing oracle OPSign(·). Assume an (n, t)-TSPS with n > 2t,
and suppose there were no uniqueness requirement for the message space and
that the redundant check in Line 2 of the OPSign(·) oracle of Figure 10 were not
present. Then, a forger could obtain 2t partial signatures to reconstruct signa-
tures s = hxMy

1 , s′ = hxM ′1
y

and compute a forgery s∗ = s2/s′ = hx(M2
1 /M

′
1)y

that is a valid signature on fresh message M2
1 /M

′
1 .

Threshold EUF-CiMA. Our proof of security for TSPS resembles that of thresh-
old BLS in [Bol03]. We wish to show that if there exists a PPT adversary A
that breaks the Threshold EUF-CiMA security (Figure 10) of TSPS with non-
negligible probability, then we can construct a PPT adversary B that breaks
the EUF-CiMA security (Figure 5) of the underlying IMM-SPS scheme (Figure 6)
with non-negligible probability.

Suppose there exists such a PPT adversary A. Then, running A as a subrou-
tine, we construct a reduction B breaking the EUF-CiMA security of IMM-SPS
as follows.
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The reduction B is responsible for simulating oracle responses for queries to
OPSign(·) and H. Let QH be the set of H queries id and their responses. B may

program the random oracle H. Let QS be the set of OPSign(·) queries (k, id, M̃)

and QEQ the set of equivalence classes of messages M̃ . B initializes QH,QS,QEQ

to the empty set.

Initialization. B takes as input public parameters pp ← (G1,G2,GT , p, e, g, ĝ)
and an IMM-SPS verification key vk′. In the EUF-CiMA game, B has access to
oracles O′Sign(·) and H′. B uses vk′ = (vk′00, vk

′
01, vk

′?
01, . . . , vk

′
0`, vk

′?
0`) as the TSPS

verification key vk = (vk00, vk01, vk
?
01, . . . , vk0`, vk

?
0`).

Simulating Key Generation. B simulates the key generation algorithm as follows.

– B defines the pair of secret/verification keys of the corrupted parties Pi, i ∈ C,
as follows. Assume without loss of generality that |C| = t − 1. For all
i ∈ C, B samples random values xi0, yi1, . . . , yi`←$ (Z∗p)`+1 and defines
party Pi’s secret key as ski ← (ski0, ski1, . . . , ski`) = (xi0, yi1, . . . , yi`) and
the corresponding verification key as vki ← (vki0, vki1, vk

?
i1, . . . , vki`, vk

?
i`) =

(ĝxi0 , ĝyi1 , gyi1 , . . . , ĝyi` , gyi`).
– To generate the verification key of the honest parties Pk, k ∈ H,H =

[1, n] \ C, B proceeds as follows:
1. For all i ∈ T̃ := C∪{0}, it computes the Lagrange polynomials evaluated

at point k:

λ̃ki = LT̃i (k) =
∏

j∈T̃ j 6=i

(j − k)

(j − i)
. (3)

2. It takes the verification keys of corrupted parties {vki}i∈C and the global
verification key vk and then computes

vkk = (vkk0, vkk1, vk
?
k1, . . . , vkk`, vk

?
k`)

=
(
vkλ̃k0

00

∏
i∈C

vkλ̃ki
i0 , vkλ̃k0

01

∏
i∈C

vkλ̃ki
i1 , vk?01

λ̃k0
∏
i∈C

vk?i1
λ̃ki , . . . ,

vkλ̃k0

0`

∏
i∈C

vkλ̃ki

i` , vk
?
0`
λ̃k0
∏
i∈C

vk?i`
λ̃ki

)
.

B returns the global verification key vk, ~vk = (vk1, . . . , vkn), and secret keys{
skj
}
j∈C to A.

Simulating Random Oracle H(id): When A queries H on index id, if QH[id] =⊥,
then B queries H′(id), receives a base element h, and sets QH[id]← h. B returns
QH[id] to A.

Simulating Signing Oracle OPSign(k, id, M̃): When A queries OPSign(·) on

(k, id, M̃) for honest party identifier k ∈ H and message M = (id, M̃) =

(id, ~M1, ~M2), if k /∈ H or (k, id, ?) ∈ QS or (?, id, M̃ ′) ∈ QS, M̃
′ 6= M̃ , B re-

turns ⊥. Otherwise, B does the following:
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1. B looks up h = QH[id], queries O′Sign(id, ~M1, ~M2), and receives the signature
σ0 = (h, s0).

2. For all i ∈ C, B computes the partial signatures σi = (h, si) =

(h, hski0
∏`
j=1M

skij
1j ), as it knows the secret keys of corrupted parties.

3. For all i ∈ T̃ = C ∪ {0}, B computes Lagrange coefficients λ̃ki as in Equa-
tion (3).

4. B updates QS ← QS ∪ {(k, id, M̃)} and QEQ ← QEQ ∪ {EQ(M̃)}.
5. B computes (h, sk) = (h, sλ̃k0

0

∏
i∈C s

λ̃ki
i ) and returns σk = (h, sk) to A.

Output. At the end of the game, A produces a valid forgery σ∗ = (h∗, s∗) on

message M̃∗ = ( ~M∗1 ,
~M∗2 ), and B returns (M̃∗, σ∗) as its forgery.

B correctly simulates key generation and A’s hash and signing queries. Since
A’s forgery satisfies M̃∗ /∈ QEQ and Verify(pp, vk, M̃∗, σ∗) = 1, B’s winning
conditions are also satisfied and AdvT-EUF-CiMA

TSPS,A (κ) ≤ AdvEUF-CiMA
IMM-SPS,B(κ). ut

6 Applications to Threshold-Issuance Anonymous
Credentials

Threshold-Issuance Anonymous Credential (TIAC) systems are a prime use-case
of threshold SPS. TIAC systems, defined by Sonnino et al. [SAB+19], are used
in various applications [KKS22, TBA+22]. A TIAC is an anonymous credential
scheme that enables a group of signers (or issuers) to jointly sign a blind message,
i.e., issue a credential, without learning the original message. The core ingredient
is a blind signing protocol for the used threshold signature scheme. Besides the
threshold signature, this protocol relies on two main cryptographic primitives:
NIZKs and commitment schemes, defined in Appendix A.3 and Appendix A.2,
respectively.

The TIAC protocol of [SAB+19], known as Coconut, lacks a rigorous secu-
rity proof. Recently, Rial and Piotrowska [RP22] conducted a security analy-
sis that required some modifications to the original Coconut scheme, resulting
in Coconut++. Coconut and Coconut++ are based on a threshold Pointcheval-
Sanders signature scheme that supports an efficient blind signing protocol.

6.1 Blind Signing for TSPS

In Figure 12, we show that our TSPS construction also supports threshold blind
signing. In addition to the TSPS parameters, the public parameters pp now
contain the common reference string (CRS) of a NIZK and the public parameters
of a commitment scheme.

For intuition, we note that in PrepareBlindSign, the index is computed as
a commitment to ~m, using the generalized Pedersen commitment scheme. The
single messages are also committed in a Pedersen commitment, where one com-
mitment parameter is computed on the fly via a random oracle as h = H(id).
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The hiding property of commitments and the zero-knowledge property of NIZK
ensure the blindness.

We note that the construction in Figure 12 follows the blind signing protocol
for Coconut++ closely, with only minor syntactical changes due to the indexed
DH message space (highlighted in the figure). Consequently, the validity of the
blinding operations readily follows from that of Coconut++. The key generation
phase is the same as in Figure 11.

6.2 Removing Rewinding Extractors in TIAC

The TIAC constructions Coconut and Coconut++ combine threshold signa-
tures (with blind signing) with generalized Schnorr proofs [Sch90] turned into
extractable (knowledge-sound) NIZK proofs via the Fiat-Shamir (FS) heuris-
tic [FS87] in the random oracle model. This, however, is problematic if used
within the universal composability (UC) framework [Can01], as extractability
for such NIZK proofs requires rewinding. For instance, Coconut++ is modeled
in the UC framework but requires rewinding to prove that it realizes FAC [RP22,
Theorem 3]. This, in turn, makes the formal security guarantees in the UC frame-
work questionable.

Fischlin’s framework [Fis06], also in the random oracle model, is a well-known
technique to avoid rewinding. However, this adds significant overhead that neg-
atively affects its practical applicability. Groth-Sahai (GS) NIZK proofs [GS08]
are an efficient alternative NIZK proof system. GS proofs are secure in the stan-
dard model and support straight-line extraction of the witnesses, i.e., avoid the
rewinding required by the Fischlin transform. This makes them particularly at-
tractive if one is interested in achieving composable security, e.g., UC security.
We note that there are known transformations like [Gro06, GOS06, CKLM12]
to make GS proofs UC secure despite their malleability. However, GS proofs can
only extract group elements.

Towards achieving efficient straight-line extraction without the need of
rewinding, we propose to replace the blind issuance threshold Pointcheval-
Sanders signature of Coconut++ with our blind issuance TSPS. We make the
reasonable assumption that the scalar messages (attributes in the TIAC) come
from some polynomially bounded message space, e.g., in practice, attributes can
be encoded in small scalar values. This modification enables us to provide a
GS proof of a valid signature for the showing of a credential with non-revealed
messages. Noticing that GS NIZKs are commit-and-proof NIZKs, we can use
an additional Schnorr NIZK obtained via Fiat-Shamir to prove a predicate over
the scalar messages in the GS commitments. The interesting point is that the
latter NIZK only needs to be sound, but does not need to be extractable, as GS
commitments can be perfectly binding. Thus, we can avoid rewinding and, due
to the polynomially bounded message space, we can extract the scalar messages
(attributes in TIAC) efficiently from the straight-line extracted messages from
the commitments of the GS proof.
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PrepareBlindSign(pp, ~m) // pp = (ppc,CRS,H)

1 : parse ~m = (m1, . . . ,m`)

2 : ω←$Z∗p, id← Com(ppc, ~m, ω) = Gω0
∏̀
i=1

Gmi
i

3 :
(
id, ( ~M1, ~M2)

)
← MiDHH(id, ~m)

4 : for j ∈ [1, `] :

5 : ω1j , ω2j ←$Z∗p

6 : (cm1j , cm2j)←
(
gω1jM1j , ĝ

ω2jM2j

)
7 : ~cm = {(cm1j , cm2j)}`j=1

8 : Ω ← (ω, ω11, ω21, . . . , ω1`, ω2`)

9 : πs ← NIZK.Prove

{
Ω, ~m | id = Gω0

∏̀
i=1

Gmi
i ∧

10 :
{
cm1j = gω1jH(id)mj}`j=1 ∧

{
cm2j = gω2j ĝmj

}`
j=1

}
11 : return (Ω, id, ~cm, πs)

BlindSign(pp, ski, id, ~cm, πs)

1 : parse ski = (sk1, . . . , skn)

2 : h← H(id)

3 : if NIZK.Verify(CRS, (id, ~cm, h), πs) = 0 :

4 : return ⊥

5 : else : s̄i ← hski0
∏̀
j=1

cm1j
skij

6 : return σ̄i ← (h, s̄i)

AggCred(pp, {i, σ̄i}i∈T )

1 : parse σ̄i = (hi, s̄i)

2 : if ∃ i, j ∈ T , i 6= j | hi 6= hj : return ⊥
3 : else : h← hi

4 : return σ̄ ← (h, s̄) = (h,
∏
i∈T

sλi
i )

UnBlind(pp, vk, σ̄, Ω)

1 : parse σ̄ = (h, s̄)

2 : return σ := (h, s)← (h, s̄
∏̀
j=1

(gyj )−ωj )

Fig. 12: A Threshold Blind Signature with straight-line extraction. Grey boxes

mark the changes from Coconut++. Algorithms and notation are defined in Ap-
pendices A.2 to A.4.
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7 Conclusion and Open Problems

In this work, we introduce the notion of a threshold structure-preserving signa-
ture (TSPS) and present an efficient fully non-interactive TSPS construction.
We prove that the proposed TSPS is secure under a new variant of the general-
ized Pointcheval-Sanders (PS) assumption in the random oracle model. We have
shown that our TSPS can be used as a drop-in replacement in TIAC systems to
remove the need for rewinding extractors.

While we use a message indexing method in order to construct a non-
interactive scheme, a non-interactive TSPS without indexing is an interesting
open problem. Moreover, it is interesting to construct schemes that rely on
weaker assumptions and avoid the use of the random oracle model. When it
comes to the security model, the following two challenging problems remain
open: obtaining security under adaptive corruptions more tightly than via a
guessing argument from static corruptions, and achieving the strongest notion
possible for fully non-interactive schemes (TS-UF-1) [BCK+22]. In general, we
believe this work can open a new line of research for structure-preserving multi-
party protocols, such as threshold structure-preserving encryption. Moreover, we
expect that TSPS will have further applications beyond TIAC systems.
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ALP12. Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. Computing on
authenticated data: New privacy definitions and constructions. In Xiaoyun
Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS,
pages 367–385. Springer, Heidelberg, December 2012.

BCC+09. Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna
Lysyanskaya, and Hovav Shacham. Randomizable proofs and delegatable
anonymous credentials. In Shai Halevi, editor, CRYPTO 2009, volume 5677
of LNCS, pages 108–125. Springer, Heidelberg, August 2009.

BCF+11. Olivier Blazy, Sébastien Canard, Georg Fuchsbauer, Aline Gouget, Hervé
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A Additional Definitions and Assumptions

A.1 Digital Signatures

Definition 14 (Digital Signature). A digital signature scheme over message
space M is a tuple of the following polynomial-time algorithms:

- pp ← Setup(1κ): Setup is a probabilistic algorithm which takes as input the
security parameter 1κ and outputs the set of public parameters pp.

- (sk, vk)← KGen(pp): Key generation is a probabilistic algorithm which takes
as input pp and outputs a pair of signing/verification keys (sk, vk).

- σ ← Sign(pp, sk,m): The signing algorithm takes as input pp, a secret signing
key sk, and a message m ∈M, and outputs a signature σ.

- 0/1 ← Verify(pp, vk,m, σ): Verification is a deterministic algorithm which
takes as input pp, a public verification key vk, a message m ∈ M, and a
purported signature σ, and outputs either 0 (reject) or 1 (accept).

The primary security requirements for a digital signature scheme are correct-
ness and existential unforgeability against chosen message attack (EUF-CMA).

Definition 15 (Correctness). A digital signature is correct if we have:

Pr

[
∀ pp← Setup(1κ), (sk, vk)← KGen(pp),m ∈M :

Verify (pp, vk,m,Sign(pp, sk,m)) = 1

]
≥ 1− ν(κ) .

Definition 16 (Existential Unforgeability under Chosen Message At-
tack (EUF-CMA) [GMR88]). A digital signature scheme over message space
M is EUF-CMA secure if for all PPT adversaries A playing game GEUF-CMA

(Figure 13), there exists a negligible function ν such that

AdvEUF-CMA
A (κ) = Pr

[
GEUF-CMA
A (1κ) = 1

]
≤ ν(κ) .

34

https://ia.cr/2021/1621


GEUF-CMA
A (1κ)

1 : pp← Setup(1κ)

2 : (sk, vk)← KGen(pp)

3 : (m∗, σ∗) ←$AOSign(pp, vk)

4 : return (m∗ 6∈ Q ∧ Verify(pp, vk,m∗, σ∗))

OSign(m)

1 : σ ← Sign (pp, sk,m)

2 : Q ← Q∪ {m}
3 : return σ

Fig. 13: The EUF-CMA security game.

A.2 Commitment Schemes

Definition 17 (Commitment Scheme). A commitment scheme over mes-
sage space M, opening space T , and commitment space C, consists of the fol-
lowing polynomial-time algorithms:

– ppc ← CSetup(1κ): Setup is a probabilistic algorithm which takes as input
the security parameter 1κ and outputs the set of public parameters ppc.

– cm ← Com(ppc,m, τ): The commitment algorithm takes as input ppc and a
message m ∈ M along with a trapdoor τ ∈ T , and outputs a commitment
cm ∈ C.

– 0/1 ← CVerify(ppc, cm,m
′, τ ′): Verification is a deterministic algorithm

which takes as input ppc, a commitment cm ∈ C, a message m′ ∈ M, and
an opening value τ ′ ∈ T , and outputs either 0 (reject) or 1 (accept).

Informally, the primary security requirements for a commitment scheme are
correctness, hiding, and binding. Correctness ensures that correctly generated
commitments pass the verification phase. The hiding property guarantees that
the commitment does not reveal any information about the hidden value, while
binding ensures that a committer cannot open a commitment to two distinct
messages.

Pedersen Commitment Scheme [Ped92]. Over a cyclic group G of prime
order p with generator g, the Pedersen commitment scheme allows to commit to
a scalar message m ∈ Zp and is perfectly hiding and computationally binding.
It consists of the following polynomial-time algorithms:

– ppc ← CSetup(1κ): Sample r←$Zp and set G1 = gr. Output ppc = (G0 =
g,G1,M), where M = Zp.

– cm← Com(ppc,m, τ): Compute cm = Gτ0G
m
1 . Output cm.

– 0/1 ← CVerify(ppc, cm,m
′, τ ′): Compute cm′ = Gτ

′

0 G
m′

1 . Return 1 if cm =
cm′ and 0 otherwise.

The Pedersen commitment scheme can be extended to allow commitment
to more than one message. More precisely, the message space can be M = Z`p,
where ` is an upper bound for the number of committed scalar messages, as
follows:
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– ppc ← CSetup(1κ): Sample α1, . . . , α`←$Zp and set Gj = gαj for all j ∈
[1, `]. Output (G0 = g,G1, . . . , G`,M), where M = Z`p.

– cm← Com(ppc, ~m, τ): For ~m = (m1, . . . ,m`), compute cm = Gτ0
∏`
j=1G

mi
i .

Output cm.

– 0/1 ← CVerify(ppc, cm, ~m
′, τ ′): Compute cm′ = Gτ

′

0

∏`
j=1G

m′i
i . Return 1 if

cm = cm′ and 0 otherwise.

A.3 Non-Interactive Zero-Knowledge Proofs

Non-interactive zero-knowledge proofs (NIZKs) [GMW87, For87, BGG+90] en-
able a prover to convince a skeptical verifier of the validity of a statement without
revealing any other information, in one round of communication.

Definition 18 (Non-Interactive Zero-Knowledge Proof [GMW87]).
Consider an NP-relation R defined over a language L = {x | ∃ w s.t. (x,w) ∈
R}, where x and w denote statement and witness, respectively. A NIZK over the
relation RL consists of the following PPT algorithms:

– CRS← Setup(1κ): The setup algorithm takes as input the security parameter
1κ and outputs a common reference string CRS.

– π ← Prove(CRS, x, w): The prove algorithm takes as input a CRS, a state-
ment x, and a witness w, and outputs a proof π.

– 0/1 ← Verify(CRS, x, π): The verification algorithm is a deterministic algo-
rithm that takes as input a CRS, a statement x, and a proof π, and outputs
either 0 (reject) or 1 (accept).

A NIZK proof system is said to be complete if all pairs of statements and wit-
nesses, (x,w) ∈ RL, pass verification. The zero-knowledge property guarantees
that the proof does not reveal any information about the witness w. The knowl-
edge soundness property guarantees that a malicious prover cannot convince the
verifier of a false statement unless he knows the witness.

A.4 Threshold Blind Signatures

Here we recall the definition of threshold blind signatures as stated in [SAB+19].
Let pp be a a given set of public parameters.

– (~vk, ~sk, vk)← TTPKeyGen(pp, `, n, t): The probabilistic key generation algo-
rithm takes the public parameters pp and length ` along with two integers
t, n ∈ poly(1κ) such that 1 ≤ t ≤ n as inputs. It returns two vectors of size n

of signing/verification keys ~sk = (sk1, . . . , skn) and ~vk = (vk1, . . . , vkn) such
that each party Pi for i ∈ [n] receives a pair (ski, vki) along with the global
verification key vk.

– (Ω, id, ~cm, πs)← PrepareBlindSign(pp, ~m): This algorithm is run by the user
to blind the messages ~m under some random blinding factors Ω.
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– (⊥, σ̄i)← BlindSign(pp, ski, id, ~cm, πs): The blind signing algorithm is run by
each signer with secret signing key ski to blindly sign the messages. It either
returns a blind partial signature σ̄i as output or responds with ⊥.

– (⊥, σ̄) ← AggCred(pp, {i, σ̄i}i∈T ): The reconstruction algorithm is run by
the user to aggregate the received partial signatures. If a sufficient number
of well-formed partial signatures are available, it returns an aggregated blind
signature; otherwise it returns ⊥.

– σ ← Unblind(pp, σ̄, Ω): The user who knows the blinding factors Ω runs this
algorithm to unblind the aggregated signature σ̄. It returns σ as output.

Informally, a threshold blind signature scheme satisfies two main security
properties: one-more unforgeability and blindness. One-more unforgeability re-
quires an adversary to produce k + 1 valid signatures (representing a group of
signers) having only queried its signing oracle k times, guaranteeing that at least
one signature is a forgery. The blindness property guarantees that an adversarial
signer cannot learn meaningful information about messages ~m.

A.5 Generalized PS Assumptions

Definition 19 (Generalized PS Assumption [KLAP20]). Let the advan-
tage of an adversary A against the GPS game GGPS, as defined in Figure 14,
be as follows:

AdvGPS
A (κ) = Pr

[
GGPS
A = 1

]
.

The GPS assumption holds if for all PPT adversaries A, there exists a negligible
function ν such that AdvGPS

A (κ) < ν(κ).

Definition 20 (GPS2 Assumption [KSAP22]). Let the advantage of an
adversary A against the GPS2 game GGPS2 , as defined in Figure 15, be as
follows:

AdvGPS2

A (κ) = Pr
[
GGPS2

A = 1
]
.

The GPS2 assumption holds if for all PPT adversaries A, there exists a negligible
function ν such that AdvGPS2

A (κ) < ν(κ).

A.6 GPS3 assumption in the AGM

Recall that an adversary is said to be algebraic if for every group element
h ∈ G = 〈g〉 that it outputs, it is required to output a representation
~h = (η0, η1, η2, . . . ) such that h = gη0

∏
gi
ηi , where g, g1, g2, · · · ∈ G are group

elements that the adversary has seen thus far. The original definition of the alge-
braic group model (AGM) [FKL18] only captures regular cyclic groups G = 〈g〉.
Mizuide et al. [MTT19] extend this definition to include symmetric pairing
groups (G1 = G2), such that the adversary is also allowed to output target
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GGPS(1κ)

1 : pp = (G1,G2,GT , p, e, g, ĝ)← BG(1κ)

2 : x, y←$Z∗p

3 : (m∗, h∗, s∗)← AO
GPS
0 ,OGPS

1 (pp, ĝx, ĝy)

4 : return (1) h∗ 6= 1G1 ∧ m∗ 6= 0 ∧

5 : (2) s∗ = h∗
x+m∗y

∧
6 : (3) (?,m∗) 6∈ Q1 .

OGPS
0 ()

1 : h←$G1

2 : Q0 ← Q0 ∪ {h}
3 : return h

OGPS
1 (h,m)// m ∈ Zp

1 : if (h 6∈ Q0 ∨ (h, ?) ∈ Q1) :

2 : return ⊥
3 : s← hxgmy

4 : Q1 ← Q1 ∪ {(h,m)}

5 : return (hx+my)

Fig. 14: Game defining the GPS assumption.

GGPS2(1κ)

1 : pp = (G1,G2,GT , p, e, g, ĝ)← BG(1κ)

2 : x, y←$Zp

3 : (M∗1 ,M
∗
2 , h

∗, s∗)← AO
GPS2
0 ,OGPS2

1 (pp, ĝx, ĝy)

4 : return (1) h∗ 6= 1G1 ∧ M∗ 6= 1G1 ∧

5 : (2) s∗ = h∗
x

(M∗1 )∗
y

∧
6 : (3) dlogh∗(M

∗
1 ) = dlogg(M

∗
2 ) ∧

7 : (4) (?,M∗) 6∈ Q1 .

OGPS2
0 ()

1 : h←$G1

2 : Q0 ← Q0 ∪ {h}
3 : return h

OGPS2
1 (h,M1,M2) //M1,M2 ∈ G1

1 : if (h 6∈ Q0 ∨ dlogh(M1) 6= dlogg(M2)) :

2 : return ⊥
3 : if (h, ?) ∈ Q1 :

4 : return ⊥
5 : Q1 ← Q1 ∪ {(h,M1)}
6 : return (hxMy

1 )

Fig. 15: Game defining the GPS2 assumption.

group elements (in GT ) and their representations. Recently, Couteau and Hart-
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mann [CH20] defined the Algebraic Asymmetric Bilinear Group Model, which
extends the AGM definition for asymmetric pairings by allowing the adversary
to output multiple elements from all three groups.

Definition 21 (Algebraic Asymmetric Bilinear Group Model [CH20]).
For a given asymmetric bilinear group (G1,G2,GT , p, e, g, ĝ), an adversary Aalg
who takes the vectors ~ζ1 = (g1, . . . , gn) ∈ Gn1 , ~ζ2 = (g′1, . . . , g

′
n′) ∈ Gn′2 and

~ζT = (gT1 , . . . , g
T
` ) ∈ G`T is called algebraic in an asymmetric bilinear group if it

always outputs:

H =
(
h1, . . . , hm, h

′
1, . . . , h

′
m′ , h

T
1 , . . . , h

T
`′
)
∈ Gn

′

1 ×Gm
′

2 ×G`
′

T ,

along with a representation vector of size n ·m+n′ ·m′+ `′(n ·n′+ `), as follows:

~H =

(αij)i∈[1,m]
j∈[1,n]

, (βij)i∈[1,m′]
j∈[1,n′]

, (γijk) i∈[1,`′]
j∈[1,n]
k∈[1,n′]

, (γ′ij)i∈[1,`′]
j∈[1,`]

 ∈ Zp ,

such that, hi =
∏n
j=1 g

αij

j for i ∈ [1,m], h′i =
∏n′

j=1(g′j)
βij for i ∈ [1,m′] and

hTi =
∏n
j=1

∑n′

k=1 e(hj , h
′
k)γijk ·

∏`
j=1(hTi )γ

′
ij for i ∈ [1, `′]. We denote the outputs

and their representations as (H; ~H)←$Aalg(~ζ1, ~ζ2, ~ζT ).

With regard to the representations that the algebraic adversary Aalg out-
puts, we provide some additional notation. Let Aalg take the vectors of

group elements (g1, . . . , gn) ∈ Gn1 , (g′1, . . . , g
′
m) ∈ Gn′2 and (gT1, . . . , gT`) ∈

G`T as inputs. By Definition 21, when Aalg outputs the group elements(
h1, . . . , hn′ , h

′
1, . . . , h

′
m′ , h

T
1 , . . . , h

T
`′

)
, with hi ∈ G1, h′i ∈ G2, hTi ∈ GT , for each

element hi ∈ G1 (and similarly for the other groups), Aalg must also output the

corresponding representation ~hi = (ηi1, . . . , ηin) ∈ Znp , such that hi =
∏n
j=1 g

ηij
j .

The representation element ηij ∈ Zp base gj ∈ G1 for j ∈ [1, n] is denoted by
~hi[gj ].

Assume that each dlogg(gj) for any gj ∈ G1 (and similarly for the other
groups) can be represented as the evaluation on ~x = (x1, . . . , xk) of a k-variant

polynomial Pj from the ring Zp[~X], ~X = (X1, . . . ,Xk), i.e., dlogg(gj) = Pj(~x).

Pj(~x) = 0 means that the polynomial evaluates to 0 at point ~x, while Pj(~X) ≡ 0

means that Pj(~X) is the zero polynomial.

Then we can define the polynomial P~hi
(~X) =

∑
j Pj(~X)·~hi[gj ] that evaluates

on ~x = (x1, . . . , xk) to dlogg(hi):

dlogg(hi) =

n∑
j=1

(
dlogg(gj) · ~hi[gj ]

)
=
∑
j

Pj(~x) · ~hi[gj ] = P~hi
(~x) .

Similar to [KSAP22], we define the GPS3 assumption in the AGM (Fig-
ure 16). Compared to the GPS3 game in Figure 2, there are three main differ-
ences:
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GGPS3
Aalg

(1κ)

1 : pp = (G1,G2,GT , p, e, g, ĝ)← BG(1κ)

2 : x←$Z∗p ∼ X, y←$Z∗p ∼ Y

3 :

(
(M∗1 ,M

∗
2 , h

∗, s∗), ( ~M∗1 ,
~M∗2 ,

~h∗, ~s∗)

)
← AO

GPS3
0 ,OGPS3

1
alg (pp, ĝx, ĝy, gy)

4 : // arrows denote representation vectors

5 : if (1) M∗1 , h
∗ 6= 1G1 ∧ M∗2 6= 1G2 ∧

6 : (2) P ~s∗(
~X)−

(
XP ~h∗(

~X) + YP ~M∗1
(~X)

)
≡ 0 ∧

7 : (3) P ~M∗2
(~X)P ~h∗(

~X)−P ~M∗1
(~X) ≡ 0 ∧

8 : (4) (?,M∗2 ) 6∈ Q1 :

9 : return 1

10 : else : return 0

OGPS3
0 () //jth query

1 : rj ←$Z∗p ∼ Rj

2 : hj ← grj

3 : Q0 ← Q0 ∪ {hj}
4 : return hj

OGPS3
1 ((hj ,M1j ,M2j), (~hj , ~M1j , ~M2j) ) // jth query

1 : if hj 6∈ Q0 ∨ (hj , ?) ∈ Q1 :

2 : return ⊥
3 : if e(M1j , ĝ) 6= e(hj ,M2j) :

4 : return ⊥

5 : else : mj ← Ext
(

(M1j ; ~M1j), (M2j ; ~M2j)
)

6 : sj ← hxjM
y
1j = h

x+mjy

j

7 : Q1 ← Q1 ∪ {(hj ,M2j)}
8 : return sj

Ext
(

(M1j ; ~M1j), (M2j ; ~M2j)
)

1 : if
(
P ~M1j

(~X)−RjP ~M2j
(~X)

)
6≡ 0 :

2 : return ⊥
3 : else :

4 : return ~M2j [ĝ]

Fig. 16: Game defining the GPS3 assumption in the AGM. The GPS3 assumption
(Figure 2) includes all but the dashed boxes, with different winning conditions
(2) and (3).
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1. The first difference is the use of an extractor Ext, defined as a deterministic
polynomial algorithm in the second oracle OGPS3

1 (·). For the jth query, Ext(.)
takes as input three source group elements hj ,M1j ,M2j ∈ G2

1 × G2 along

with their representations ~hj , ~M1j , ~M2j . It then returns a scalarmj ∈ Zp such
that M1j = h

mj

j and M2j = ĝmj , or it returns ⊥ whenever the extraction
fails. Ext succeeds in extracting the scalar mj because, under the conditions
shown in lines 1 and 2 of Ext(.) in Figure 16, if the extraction fails, then the
(2, 1)-DL problem is no longer hard (Claim 2). With Ext, the oracle OGPS3

1 (·)
can provide the appropriate responses to Aalg’s queries.

2. The second difference is that the second condition in the GPS3 game
in Figure 2, namely s∗ = h∗

x

M∗
y

1 , can be written as dlogg(s
∗) = x ·

dlogg(h
∗) + y · dlogg(M∗1 ) and validated by checking whether the polyno-

mial P ~s∗(
~X)−

(
XP ~h∗(

~X) + YP ~M∗1
(~X)

)
is the zero polynomial or not.

3. The third difference is that the third condition in the GPS3 game in Fig-

ure 2 can be written as dlogĝ(M
∗
2 ) = dlogh∗(M

∗
1 ) =

dlogg(M
∗
1 )

dlogg(h
∗) and validated

by checking P ~M∗2
(~X) = dlogĝ(M

∗
2 ) =

dlogg(M
∗
1 )

dlogg(h
∗) =

P ~M∗1
(~X)

P~h∗ (
~X)

, i.e., whether

P~h∗(
~X)P ~M∗2

(~X)−P ~M∗1
(~X) is the zero polynomial or not.

Definition 22 (GPS3 Assumption in the AGM). Let the advantage of
an adversary A against the GPS3 game GGPS3

Aalg
, as defined in Figure 16, be as

follows:

AdvGPS3

Aalg
(κ) = Pr

[
GGPS3

Aalg
= 1
]
.

The GPS3 assumption holds if for all algebraic adversaries A, there exists a
negligible function ν such that AdvGPS3

Aalg
(κ) < ν(κ).

B Omitted Proofs

B.1 Proof of Theorem 1

Proof. We wish to show that if there exists an algbraic adversary Aalg that
breaks the GPS3 assumption (Figure 16) with non-negligible probability, then we
can construct an algebraic adversary Balg that breaks the (2, 1)-DL assumption
(Definition 4) with non-negligible probability.

Suppose there exists such an adversary Aalg. Then, running Aalg as a sub-
routine, we construct a reduction Balg breaking the (2, 1)-DL assumption as
follows.

The reduction Balg is responsible for simulating oracle responses for queries

to OGPS3
0 () and OGPS3

1 (·). Let Q0,Q1 be the set of OGPS3
0 () and OGPS3

1 (·)
queries, and q0 and q1 the maximum number of queries to each of them, respec-
tively. Without loss of generality, we assume Aalg always queries OGPS3

0 () to

receive hj prior to querying OGPS3
1

(
(hj ;~hj), (M1j ; ~M1j), (M2j ; ~M2j)

)
for some

hj , ~M1j , ~M2j . Balg initializes Q0,Q1 to the empty set.
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Initialization. Balg takes as input the group description pp =
(G1,G2,GT , p, e, g, ĝ) ← BG(1κ) and a (2, 1)-DL challenge (Z1, Z

′
1, Z2) =

(gz, gz
2

, ĝz) ∈ G2
1 × G2. Balg simulates the GPS3 instance (X,Y, Y ?) ←

(ĝx, ĝy, gy) = (Za02 ĝb0 , Z
a′0
2 ĝb

′
0 , Z

a′0
1 gb

′
0) ∈ G2

2 × G1 by implicitly setting
x ← a0z + b0 and y ← a′0z + b′0, where a0, b0, a

′
0, b
′
0←$Zp. Balg runs

Aalg(pp, (X,Y, Y ?)).

Simulating Oracle Queries. Balg simulates the defined oracles as follows:

– Oracle OGPS3
0 (): To simulate the ith query s.t. i ∈ [1, q0], Balg samples

ai, bi←$Zp and assigns hi ← Zai1 g
bi , which implicitly sets ri ← aiz + bi.

– Oracle OGPS3
1

(
(hj ;~hj), (M1j ; ~M1j), (M2j ; ~M2j)

)
: To simulate the jth query

for j ≥ 2, we assume that Balg has successfully simulated the j − 1 previ-
ous queries to this oracle. Thus, the algebraic adversary Aalg has access to{
s` = gr`(x+m`y)

}j−1
`=1

, where r` = dlogg(h`) and m` is the scalar message
extracted by Ext(.) of Figure 16.

Aalg makes the jth query to the oracle OGPS3
1 (.) by providing the tuple(

(hj ;~hj), (M1j ; ~Mj1), (M2j ; ~M2j)
)

. Note that ~hj = rj , i.e., P~hj
(~X) = Rj .

~M1j and ~M2j determine the following two polynomials:

P ~M1j
(~X) = ~M1j [g] + Y ~M1j [Y

?] +

|Q0|∑
`=1

R`
~M1j [h`] +

j−1∑
`=1

R`(X +m`Y) ~M1j [s`] ,

P ~M2j
(~X) = ~M2j [ĝ] + X ~M2j [X] + Y ~M2j [Y ] ,

where |Q0| is the number of OGPS3
0 () queries made thus far, and ~X =

(X,Y,R1, . . . ,R|Q0|). Representation coefficients for these polynomials are
well defined, as Aalg has access to the answers received from the oracles,

{h` = gr`}|Q0|
`=1 and

{
s` = gr`(x+m`y)

}j−1
`=1

, of the first source group elements and
the GPS3 instances of the second source group elements. As shown in Figure 16,
the oracle OGPS3

1 (.) does not fail if e(hj ,M2j) = e(M1j , ĝ), which implies that

the polynomial Pj(~X) = P ~M1j
(~X)−RjP ~M2j

(~X) should vanish at least on point

~x = (x, y, r1, . . . , r|Q0|). We define the event E as Pj(~X) ≡ 0. There are two pos-

sible cases: 1) If the event E holds, i.e., Pj(~X) ≡ 0, then the defined extractor
can successfully extract the scalar messages mj for j ∈ [1, q1], or 2) if the event

does not hold, ¬E, i.e., Pj(~X) 6≡ 0, then we can define an algebraic adversary
Dalg that can solve the (2, 1)-DL problem with a non-negligible advantage. We
formally discuss these two cases in the following claims.

Claim 1 If Pj(~X) ≡ 0, then the extractor can successfully extract the scalar
messages mj.
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Proof. Similar to the proof of [KSAP22, Theorem 2, Claim 1], the condition

Pj(~X) ≡ 0 implies the equality P ~M1j
(~X) = RjP ~M2j

(~X) must hold. Thus, based

on the received representations from Aalg, we can write:

~M1j [g] + Y ~M1j [Y
?] +

q0\{j}∑
`=1

R`
~M1j [h`]

+

Rj
~M1j [hj ] +

j−1∑
`=1

R`
~M1j [s`](X +m`Y) =

Rj

(
~M2j [ĝ] + X ~M2j [X] + Y ~M2j [Y ]

)
.

This implies:

~M2j [ĝ] = ~M1j [hj ] (Due to Rj) ,

~M1j [g] = 0 (Due to Rj) ,

~M1j [Y
?] = 0 (Due to Rj) ,

~M2j [X] = 0 (Due to RjX) ,

~M2j [Y ] = 0 (Due to RjY) ,{
~M1j [h`] = 0

}
∀ `∈[1,|Q0|], 6̀=j

(Due to R`) ,{
~M1j [s`] = 0

}
∀ `∈[1,j−1]

(Due to R`X) .

Finally, based on the above equations, we can write M2j = ĝ
~M2j [ĝ] and M1j =

h
~M1j [hj ]
j , and therefore the extractor returns mj ← ~M2j [ĝ] = ~M1j [hj ] as the

scalar message.

In this case, Balg responds to the jth query to OGPS3
1 (.) by computing:

sj = (Z
′

1)aj(a0+a
′
0mj)Z

ajb0+bja0+mj(ajb
′
0+bja

′
0)

1 gaj(a0+a
′
0mj)

= g(aj+zbj)(a0+zb0)+mj(aj+zbj)(a
′
0+zb

′
j)

= g(aj+zbj)(a0+zb0)gmj(aj+zbj)(a
′
0+zb

′
j) = hxjM

y
1j .

Claim 2 If Pj(~X) 6≡ 0, i.e., the extractor fails, then the (2, 1)-DL problem is
not hard.

Proof. Based on the fact that x = a0z+ b0, y = a′0z+ b′0 and {r` = a`z + b`}q0`=1,
we can convert the variables X, Y and {R`}q0`=1 to A0Z + B0, A′0Z + B′0 and

{A`Z + B`}q0`=1 and define a univariate polynomial G∗j (
~Z) from the polynomial

P∗j (
~X). If G∗j (

~Z) 6≡ 0, then the equality G∗j (~z) = P∗j (~x) implies that G∗j (
~Z) has

at least one root like ~z. Similar to the analysis in the proof of [KSAP22, Theorem
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2, Claim 2], by the Schwartz-Zippel lemma, Pr[G∗j (
~Z) ≡ 0] ≤ Pr[a3 = 0] ≤ 3/p,

where a3 is the leading coefficient of G∗j (
~Z). In the case of G∗j (

~Z) 6≡ 0, there
exists a vector ~z as a root for this polynomial that can be the solution of the
(2, 1)-DL problem. Thus, we can write:

Pr[¬E] ≤ Pr
[
P∗j (

~X) 6≡ 0 ∧G∗j (
~Z) 6≡ 0

]
+

Pr
[
G∗j (

~Z) ≡ 0
]
≤ Adv(2,1)-DL

D (κ) + 3/p .

Thus, if the extractor fails, then we can define an algebraic algorithm Dalg
that can solve the (2, 1)-DL problem with a non-negligible advantage.

Balg fails to answer Aalg’s query to OGPS3
1 (·) in this case because it does not

know the scalar message mj and cannot return a valid sj , but the probability of
this occurring is negligible (3/p).

We can conclude that Balg successfully simulates the defined oracles for the
adversary Aalg as long as the (2, 1)-DL problem is hard.

Output. Aalg finally outputs
(

(h∗;~h∗), (M∗1 ; ~M∗1 ), (M∗2 ; ~M∗2 ), (s∗; ~s∗)
)

based on

the received responses from the oracles and public parameters. From the received
representations, we can write:

P ~M∗1
(~X) = ~M∗1 [g] + Y ~M2j [Y

?] +

q0∑
`=1

R`
~M∗1 [h`] +

q1∑
`=1

R`
~M∗1 [s`](X +m`Y) ,

P ~M∗2
(~X) = ~M∗2 [ĝ] + X ~M∗2 [X] + Y ~M∗2 [Y ] ,

P~h∗(
~X) = ~h∗[g] + Y~h∗[Y ?] +

q0∑
`=1

R`
~h∗[h`] +

q1∑
`=1

R`
~h∗[s`](X +m`Y) ,

P~s∗(~X) = ~s∗[g] + Y ~s∗[Y ?] +

q0∑
`=1

R` ~s∗[h`] +

q1∑
`=1

R` ~s∗[s`](X +m`Y) .

As discussed in Appendix A.6, the assumption in Definition 22 is identical
to the assumption in Definition 6, except the second and third conditions are
defined by polynomial evaluations. Next, we describe three events to cover all
possible scenarios.

1. Event E1: All the conditions described in Figure 2 are fulfilled and the ex-
tractor Ext(.) does not fail.

2. Event E2: The polynomial P∗2(~X) = P ~s∗(
~X) −

(
XP ~h∗(

~X) + YP ∗~M∗1
(~X)

)
is

the zero polynomial.
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3. Event E3: The polynomial P∗3(~X) = P ~M∗2
(~X)P ~h∗(

~X)−P ~M∗1
(~X) is the zero

polynomial.

Claim 3 Pr[E1 ∧ E2 ∧ E3] = 0.

Proof. Similar to the proof of [KSAP22, Theorem 2, Claim 3], we suppose all
three conditions occur and arrive at a contradiction. From the second condi-
tion, P∗2(~X) ≡ 0, we can deduce that the degree of both polynomials P ~h∗(

~X) =∑q1
`=1 µ`R` and P ~M∗1

(~X) =
∑q1
`=1 R`

~M∗1 [h`] should be equal to 1, and we can

write P ~s∗(
~X) =

∑q1
`=1 µ`(X +m`Y)R`, where µ` ← ~h∗[h`] = ~s∗[s`]. Addition-

ally, from the third condition, P∗3(~X) ≡ 0, we can deduce that the degree of poly-

nomial P ~M∗2
(~X) should be equal to zero, as we have P ~M∗2

(~X)P ~h∗(
~X) = P ~M∗1

(~X).

More precisely, polynomials P ~h∗(
~X) and P ~M∗1

(~X) have degree 1, and to ful-

fil the third condition, the polynomial P ~M∗2
(~X) should be constant. Thus, we

can write P ~M∗2
(~X) = ~M∗2 [ĝ] and denote by m∗, and according the first con-

dition in Figure 16, m∗ 6= 0. Thus, we can reform the polynomial P∗2(~X) as

P∗2(~X) = P ~s∗(
~X)−P ~h∗(

~X) (X +m∗Y).
Putting everything together, we have:

P∗2(~X) =

q1∑
`=1

µ` (X +m`Y) R` −
q1∑
`=1

µ` (X +m∗Y) R` =

q1∑
`=1

µ` (m` −m∗) YR` .

As we have shown, the polynomial P ~h∗(
~X) has degree 1, so there exists at

least one non-zero µ` for some ` ∈ [1, q1]. Thus, to have P∗2(~X) ≡ 0, we must
have m` = m∗ for some ` ∈ [1, q1]. As it was shown before that M2` = ĝm` and
M∗2 = ĝm

∗
, the last condition of (?,M∗2 ) 6∈ Q1 cannot be fulfilled, as (?,M2`) is

already recorded in Q1.
Thus, we can conclude that all three events cannot occur simultaneously, i.e.,

Pr[E1 ∧ E2 ∧ E3] = 0.

Claim 4 Pr[E1 ∧ ¬E2] + Pr[E1 ∧ E2 ∧ ¬E3] ≤ Adv(2,1)-DL
Dalg

(κ) + 7/p.

Proof. Similar to the proof of [KSAP22, Theorem 2, Claim.4], if the event E2

does not occur, i.e., P∗2(~X) 6≡ 0, then for random values a, b←$Zp, we can form

a polynomial G∗2(~Z) by changing the variables of P∗2(~X) to ~Z ← AZ + B. As
discussed in the proof of Claim 2, one of the roots of the univariate polynomial
G∗2(~Z) should be a valid solution for the (2, 1)-DL assumption. Moreover, by
the Schwartz-Zippel lemma, the probability of the event that the polynomial
G∗2(~Z) is the zero polynomial is bounded by 3/p. We can similarly show that if

the third condition does not hold, i.e., P∗3(~X) 6≡ 0, then we can define the non-

zero univariate polynomial G∗3(~Z) that enables a valid solution for the (2, 1)-DL

problem. Similarly, by the Schwartz-Zippel lemma, the probability of G∗3(~Z) ≡ 0
is at most 4/p. Thus, we can define an efficient algorithm against the hardness
of (2, 1)-DL assumption, Dalg, that fails with probability 7/p, which completes
the claim.
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Thus,

Pr[E1] = Pr[E1 ∧ E2 ∧ E3] + Pr[E1 ∧ ¬E2]

+ Pr[E1 ∧ E2 ∧ ¬E3] = Pr[E1 ∧ ¬E2]

+ Pr[E1 ∧ E2 ∧ ¬E3] ≤ Adv(2,1)-DLDalg
(κ) + 7/p ,

and

AdvGPS3

Aalg
(κ) = Pr[GGPS3

Aalg
= 1 ∧ ¬E] + Pr[GGPS3

Aalg
= 1 ∧ E]

≤ Adv(2,1)-DL
Dalg

(κ) + 3/p+Adv
(2,1)-DL
Dalg

(κ) + 7/p

≤ 2Adv
(2,1)-DL
Dalg

(κ) + 10/p .

B.2 Proof of Theorem 2

Proof. Correctness. If e(h,M2) = e(h, ĝm) = e(hm, ĝ) = e(M1, ĝ), then for
σ = (h, s) = (h, hx+my), we have e(h, vk1)e(M1, vk2) = e(h, ĝx)e(hm, ĝy) =
e(h, ĝ)x+my = e(hx+my, ĝ) = e(hxMy

1 , ĝ) = e(s, ĝ).

EUF-CiMA Security. We wish to show that if there exists a PPT adversary
A that breaks the EUF-CiMA security (Figure 5) of the indexed message SPS
scheme IM-SPS (Figure 6) with non-negligible probability, then we can construct
a PPT adversary A’ that breaks the GPS3 assumption (Figure 14) with non-
negligible probability.

Suppose there exists such a PPT adversary A. Then, we construct a PPT
adversary A’ as a reduction B running A as a subroutine. We construct the
reduction B for breaking the GPS3 assumption as follows.

The reduction B is responsible for simulating oracle responses for queries
to OSign(·) and H. Let QH be the set of H queries and their responses. B may

program the random oracle H. Let QS be the set of messages (id, M̃) that have
been queried in OSign(·) and QEQ the set of equivalence classes of messages M̃ .
B initializes QH,QS,QEQ to the empty set.

Initialization. B takes as input the group description pp =
(G1,G2,GT , p, e, g, ĝ) ← BG(1κ) and a GPS3 challenge (ĝx, ĝy, gy). As in
game GGPS3

B (1κ), B has access to oracles OGPS3
0 () and OGPS3

1 (·). B sets the
IM-SPS verification key vk← (vk1, vk2, vk

?
2) = (ĝx, ĝy, gy) and runs A(pp, vk).

Simulating Oracle Queries. B simulates A’s oracle queries as follows:

– Random Oracle H(idk): On the kth query to this oracle, A queries on an
index idk. If QH[idk] =⊥, B queries OGPS3

0 () and receives a base element hk.
It then sets QH[idk]← hk and returns QH[idk] to A.

– Signing Oracle OSign(idk,M1k,M2k): On the kth query to this oracle, A
queries on an indexed DH message (idk,Mk1,Mk2) ∈MH

iDH. If (idk, ?) ∈ QS,
B returns ⊥. Otherwise, B looks up hk = QH[idk], queries its oracle
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OGPS3
1 (hk,M1k,M2k), and receives hxkM

y
1k. B updates the set of queried

messages QS = QS ∪ {(idk,M1k,M2k)} and the set of equivalence classes
QEQ ← QEQ ∪ {EQ(Mk1,Mk2)} and returns the signature σk = (hk, h

x
kM

y
1k)

to A.

Output. At the end of the game, A produces a valid forgery (M̃∗, σ∗) =
((M∗1 ,M

∗
2 ), (h∗, s∗)) and B outputs (M∗1 ,M

∗
2 , h
∗, s∗).

B correctly simulates the EUF-CiMA game. Since A’s forgery satisfies M̃∗ /∈ QEQ
S

and Verify(pp, vk, M̃∗, σ∗) = 1, B’s winning conditions are also satisfied and

AdvEUF-CiMA
IM-SPS,A (κ) = AdvGPS3

B (κ) ≤ ν(κ) .

B.3 Proof of Theorem 3

Proof. Correctness. If e(h,M2j) = e(h, ĝmj ) = e(hmj , ĝ) = e(M1j , ĝ)

for all j ∈ [1, `], then for σ = (h, s) = (h, hx+
∑`

j=1mjyj ) we have

e(h, vk0)
∏`
j=1 e(M1j , vkj) = e(h, ĝx)

∏`
j=1 e(h

mj , ĝyj ) = e(h, ĝ)x+
∑`

j=1mjyj =

e(hx+
∑`

j=1mjyj , ĝ) = e(hx
∏`
j=1M

yj
1j , ĝ) = e(s, ĝ).

EUF-CiMA Security. To prove this theorem, we use a technique for compressing
multi-messages into (single) messages from [PS16, Theorem 7].

We wish to show that if there exists a PPT adversary A that breaks
the EUF-CiMA security (Figure 5) of the indexed multi-message SPS scheme
IMM-SPS (Figure 9) with non-negligible probability, then we can construct a
PPT adversary A’ that breaks the GPS3 assumption (Figure 14) with non-
negligible probability.

Suppose there exists such a PPT adversary A. Then, we construct a PPT
adversary A’ as a reduction B running A as a subroutine. We construct the
reduction B for breaking the GPS3 assumption as follows.

The reduction B is responsible for simulating oracle responses for queries
to OSign(·) and H. Let QH be the set of H queries and their responses. B may

program the random oracle H. Let QS be the set of OSign(·) queries (id, M̃) and

QEQ the set of equivalence classes of messages M̃ . B initializes QH,QS,QEQ to
the empty set.

Initialization. B takes as input the group description pp = (G1,G2,GT ,
p, e, g, ĝ) ← BG(1κ) and a GPS3 challenge (ĝx, ĝy, gy). As in game GGPS3

B (1κ),

B has access to oracles OGPS3
0 () and OGPS3

1 (·). For all j ∈ [1, `], B samples
αj , βj ←$Zp and sets vkj ← ĝyj = (ĝy)αj ĝβj and vk?j ← gyj = (gy)αjgβj .

B sets the IMM-SPS verification key ~vk ← (vk0, vk1, vk
?
1, . . . , vk`, vk

?
` ) =

(ĝx, ĝy1 , gy1 , . . . , ĝy` , gy`) and runs A(pp, vk).

Simulating Oracle Queries. B simulates A’s oracle queries as follows:
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– Random Oracle H(idk): On the kth query to this oracle, A queries on an
index idk. If QH[idk] =⊥, B queries OGPS3

0 () and receives a base element hk.
It then sets QH[idk]← hk and returns QH[idk] to A.

– Signing Oracle OSign(idk, ~Mk1, ~Mk2): On the kth query to this oracle, A
queries on an indexed DH message (idk, ~Mk1, ~Mk2) ∈MH

iDH. If (idk, ?) ∈ QS,
B returns ⊥. Otherwise, B looks up hk = QH[idk], computes M ′k1 =∏`
j=1M

αj

k1j and M ′k2 =
∏`
j=1M

αj

k2j , queries OGPS3
1 (hk,M

′
k1,M

′
k2), and re-

ceives s′k = hxk(M ′k1)y.

B computes σk = (hk, sk) =
(
hk, s

′

k

∏`
j=1M

βj

k1j

)
, which is a valid signature

on (idk, ~Mk1, ~Mk2). Indeed,

e(sk, ĝ) = e

s′k ∏̀
j=1

M
βj

k1j , ĝ

 = e
(
s
′

k, ĝ
)
· e

∏̀
j=1

M
βj

k1j , ĝ


= e

hxk
∏̀
j=1

M
αj

k1j

y

, ĝ

 · e
∏̀
j=1

M
βj

k1j , ĝ


= e (hxk, ĝ) · e

∏̀
j=1

M
αjy+βj

k1j , ĝ

 = e (hk, vk0) ·
∏̀
j=1

e
(
Mk1j , vkj

)
.

B updates the set of queried messages QS ← QS ∪
{

(idk, ~Mk1, ~Mk2)
}

and the

set of equivalence classes QEQ ← QEQ ∪
{
EQ( ~Mk1, ~Mk2)

}
and returns σk to A.

Output. At the end of the game, A returns a valid forged signature
σ∗ = (h∗, s∗) on ( ~M∗1 ,

~M∗2 ) satisfying ( ~M∗1 ,
~M∗2 ) 6∈ QEQ, h∗ 6= 1G1

,

e(h∗, vk0)
∏`
j=1 e(M

∗
1j , vkj) = e(s∗, ĝ), and for all j ∈ [1, `], M∗1j 6= 1G1

and e(h∗,M∗2j) = e(M∗1j , ĝ). If there exists a queried message ( ~Mi1, ~Mi2) ∈
QEQ such that

∏`
j=1(M∗2j)

αj =
∏`
j=1 (M∗i2j)

αj , then B aborts. Else, B re-

turns (M∗
′

1 ,M
∗′
2 , h

∗, s∗
′
), where s∗

′
= s∗

∏`
j=1

(
M∗1j

)−βj
and (M∗

′

1 ,M
∗′
2 ) =(∏`

j=1

(
M∗1j

)αj
,
∏`
j=1

(
M∗2j

)αj
)

.
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B correctly simulates the EUF-CiMA game. Because A’s forgery satisfies
e(s∗, ĝ) = e(h∗, vk0)

∏`
j=1 e(M

∗
1j , vkj), B’s output satisfies:

e(s∗
′
, ĝ) = e

s∗ ∏̀
j=1

(
M∗1j

)−βj
, ĝ

 = e (s∗, ĝ) · e

∏̀
j=1

(M∗1j)
−βj , ĝ


= e (h∗, ĝx)

∏̀
j=1

e(M∗1j , ĝ
αjy+βj ) · e

∏̀
j=1

(M∗1j)
−βj , ĝ


= e (h∗, ĝx) e

∏̀
j=1

(M∗1j)
αjy+βj , ĝ

 · e
∏̀
j=1

(M∗1j)
−βj , ĝ


= e (h∗, ĝx) e

∏̀
j=1

(M∗1j)
αjy, ĝ

 = e (h∗, ĝx) · e (M ′1, ĝ
y) .

B fails to provide a valid output if there exists a queried message ( ~Mi1, ~Mi2) ∈
QEQ such that

∏`
j=1 (M∗2j)

αj =
∏`
j=1 (Mi2j)

αj . Thus, we must demonstrate that
the probability of this event, denoted by E, is negligible, i.e., Pr[E] ≤ ν(κ).

For the given instance (ĝx, ĝy, gy), suppose the reduction B instead initializes
the verification keys for IMM-SPS by sampling µj ←$Zp for all j ∈ [1, `] and

setting ĝα
′
j ← ĝαj−µj , ĝβ

′
j ← ĝβj (ĝy)µj and gβ

′
j ← gβj (gy)µj . Then,

ĝα
′
jy ĝβ

′
j = ĝy(αj−µj)ĝβj+yµj = ĝyαj ĝ−yµj ĝβj ĝyµj = ĝαjy+βj = vkj .

and

gα
′
jygβ

′
j = gy(αj−µj)gβj+yµj = gyαjg−yµjgβjgyµj = gαjy+βj = vk?j .

Therefore, the issued verification keys are independent of the µj ’s and do
not disclose any information about the αj ’s. Moreover, due to the fact that
the queried signatures are also based on the random oracle and public keys,
the view of adversary is completely independent of the αj ’s and we can write
Pr[E] ≤ qS/p, where qS is the number of queries to the signing oracle made by
the adversary A. Thus,

AdvEUF-CiMA
IMM-SPS,A(κ) ≤ AdvGPS3

B (κ) + qS/p .
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