
Anemoi: Exploiting the Link between
Arithmetization-Orientation and

CCZ-Equivalence
Clémence Bouvier1,2, Pierre Briaud1,2, Pyrros Chaidos3,

Léo Perrin2, Vesselin Velichkov4,5

1Sorbonne University, France
2Inria, France

3National & Kapodistrian University of Athens, Greece,
4University of Edinburgh, Scotland

5Clearmatics, England

Abstract. Advanced cryptographic protocols such as Zero-knowledge (ZK) proofs of
knowledge, widely used in cryptocurrency applications such as Bitcoin, Ethereum and
Zcash, demand new cryptographic hash functions that are efficient not only over the
binary field F2, but also over large fields of prime characteristic F𝑝. This need has been
acknowledged by the wider community and new so-called Arithmetization-Oriented
(AO) hash functions have been proposed in response, e.g. MiMC-Hash, Rescue-Prime
and Poseidon to name a few. In this paper we propose Anemoi: a new family of
ZK-friendly AO hash functions.
The main features that set Anemoi apart from other such families are that 1) it is
designed to be efficient within multiple proof systems (e.g. Groth16, Plonk, etc.), 2) it
contains dedicated functions optimised for specific applications (namely Merkle tree
hashing and general purpose hashing), 3) has competitive performance e.g. about a
factor of 2 improvement over Poseidon and Rescue-Prime in terms of R1CS constraints,
and a 10%-28% improvement over a highly optimized Poseidon implementation
in Plonk constraints. On the theoretical side, Anemoi pushes further the frontier
in understating the design principles that are truly entailed by arithmetization-
orientation. In particular, we identify and exploit a previously unknown relationship
between CCZ-equivalence and arithmetization-orientation. In addition, we propose
two new standalone components that can be easily reused in new designs. One is
a new S-box called Flystel, based on the well-studied butterfly structure, and the
second is Jive – a new mode of operation, inspired by the “Latin dance” symmetric
algorithms (Salsa, ChaCha and derivatives).
Keywords: Anemoi · Flystel · Jive · Arithmetization-oriented · Hash functions ·
CCZ-equivalence · Plonk · R1CS · Merkle tree · Zero-knowledge · Arithmetic
circuits

1 Introduction
In recent years we have seen a rapid surge of interest in the practical application of an old
cryptographic construction known as a zero-knowledge (ZK) proof of knowledge. It is a
protocol which, when followed, allows a prover 𝑃 to convince a verifier 𝑉 that a certain
statement 𝑥 is true without revealing any additional information beyond the fact that it is
verifiably correct. Such a piece of information may, for example, be that the result of a
specified complex computation is 1. With a ZK protocol, 𝑉 can verify that the result of
this computation is correct without having to perform the computation herself. In fact, to

verify correctness 𝑉 does not even need to know some of the details of the computation
e.g. its intermediate values or any potentially secret inputs.

ZK proof systems have been introduced with the seminal work of Micali, Goldwasser
and Rackoff back in 1989 [GMR89]. Traditionally, ZK protocols were deployed to allow
the prover to keep some elements of the computation secret (e.g. a private key), but
increasingly they can also be used to relieve the verifier from the necessity to perform an
expensive computation for which it may not have sufficient resources (in terms of space as
well as computational power). The increased interest in such protocols today is largely
driven by the latest advancements in digital currencies such as Bitcoin, Ethereum, etc.
In particular, ZK proofs make it possible to add privacy on the public blockchain (e.g.
Zcash [BSCG+14]) and to perform off-chain computation verifiable by network nodes with
significantly limited resources.

The computation performed by 𝑃 and verified by 𝑉 in a ZK proof, is expressed as an
arithmetic circuit composed of gates (algebraic operations e.g. multiplication or addition)
connected by wires. The quantities that pass over the wires and are operated on by the
gates are elements of an algebraic field F𝑞 for some value 𝑞 ≥ 2.

Cryptographic hash functions are fundamental to the practical application of many ZK
protocols: They are often used for testing membership of some element(s) by the means of
a Merkle tree. They can also be used as part of the ZK protocol itself e.g. by compressing
multiple public inputs to a single hash image. The protocol then has a reduced input
footprint, and the collision resistance of the hash function implies that security is not
impacted. This is relevant in proof systems where the verifier’s costs are proportional to
the number of public inputs such as Groth16 [Gro16].

Modern cryptographic hash functions such as SHA2, SHA3 and BLAKE are designed
over vector spaces of the binary binary field F2 (i.e. they work over bits), while ZK
protocols often operate over F𝑞 for a large 𝑞 – that is often a prime number. Therefore
the efficient execution of ZK protocols in applications such as Bitcoin and Ethereum,
that aim to process millions of transactions per day, imposes the need for new hash
functions designed to be natively efficient in F𝑞 – the so-called Arithmetization-Oriented
(AO) designs. Furthermore, the operation for which their efficiency is the most crucial is
not their evaluation, but rather their verification. Concretely, while the cost of evaluating
𝑦 = 𝐹 (𝑥) given 𝑥 remains important, the step with the harshest constraints is a verification:
given both 𝑥 and 𝑦, checking if 𝑦 is indeed equal to 𝐹 (𝑥) should be “efficient”, where the
exact meaning of “efficient” depends on the proof system considered.

The need for new arithmetization-oriented hash functions has been acknowledged
by both researchers and engineers. As a result, the past couple of years have seen a
surge of new proposals of hash functions that operate natively in F𝑞 for 𝑞 prime, and
that allow an efficient verification: MiMC-Hash [AGR+16], Poseidon [GKR+21b], Rescue-
Prime [AAB+20, SAD20], and ReinforcedConcrete [BGK+21] to name a few.

Constraints and Performance Metrics. There are various proof systems, each with
slightly different efficiency metrics. Most systems can be used to efficiently describe
the operation of an arithmetic circuit, but there exist considerable practical differences.
Specifically, the exact format of the constraints accepted by the system, as well as the cost
of each. In this work, we evaluate performance in two of the most-used constraint systems.

Various zero-knowledge proof systems operating on arithmetic circuits, such as the
Groth16 [Gro16] ZK-SNARK [BCG+13] or Bulletproofs [BBB+18], use the R1CS (Rank-1
Constraint Satisfaction) systems. For this metric, the circuit is then described as a set of
affine polynomials such that the complexity is mainly given by the number of multiplications
in the resulting equation system.

We also consider Plonk [GWC19], which is both a ZK-SNARK proof system and an
artithmetization contraint system. As a proof system Plonk has a universal and updateable

2

setup. Compared to R1CS, the Plonk arithmetization system does not directly enable
zero-cost additions to produce the operands of a multiplication. However, it has been
augmented with a number of performance-enhancing features, including custom gates
[GW19] (as opposed to addition and multiplication only), additional wires, and lookup
tables [GW20].

Our Contributions. In this work, we join the arithmetization-oriented hash function race
and propose Anemoi – a new family of efficient and secure hash functions operating over
prime and binary fields. The main features that set Anemoi apart from other similar
designs are as follows.

1. It is designed to be efficient within multiple proof systems (e.g. Plonk [GWC19],
Groth16 [Gro16], etc.) as opposed to being optimized for a particular proof system
as e.g. ReinforcedConcrete, which is optimized specifically for Plonk [GWC19].

2. It contains dedicated functions optimized for specific applications, namely
general purpose hashing via a sponge construction, and Merkle tree hashing which is
handled via our new mode, Jive.

3. It has competitive performance compared to other designs e.g. about a factor
of 2 improvement over Poseidon and Rescue-Prime in terms of R1CS constraints,
and an even higher improvement in standard 3-wire plonk. In a more optimized
Plonk setting we obtain 30%-40% improvement over the state of the art Poseidon
optimizations of Ambrona et al. [ASTW22] using our Jive2 mode of operation, and
about 10%-28% improvement if we also extend the use of Jive2 to Poseidon.

4. It has limited reliance on randomness: while dense round constants need to be
generated to ensure resilience against algebraic attacks, we aim to limit our reliance
on pseudo-randomly generated components in order to ease both implementation
and cryptanalysis. It also limits the moldability [DP19] of the designs, which will
hopefully increase the confidence in our algorithms.

5. It has a consistent design: all algorithms are built using very similar principles
and round functions regardless of the field size or type.

6. Contains standalone components that can be easily reused in new AO designs.
One is a new S-box called Flystel, based on the well-studied butterfly structure,
and the second is Jive – a new mode of operation, inspired by the “Latin dance”
symmetric algorithms Salsa, ChaCha and derivatives.

7. Last, but not least, Anemoi is based on an improved understanding of the core
foundation of arithmetization-orientation. More precisely, we identify and
exploit a previously unknown relationship between the so-called CCZ-equivalence
(defined below) and arithmetization-orientation.

The latter insight is at the heart of the new family of functions of F2
𝑞 that we called Flystel.

They are defined over all fields, and each of them has two variants: an open Flystel, which
is a high degree permutation; and a closed Flystel, which is a low-degree function. They
are closely related to the butterfly structure, investigated in [PUB16, LTYW18, CDP17],
hence our terminology of open and closed structures. The high degree permutation has the
properties we would expect from a good cryptographic S-box, and the low-degree function
can be efficiently verified across proof systems. Because of their CCZ-equivalence, we can
reap the benefits of the peculiarities of both objects: this property allows us to use the
permutation in the round function of Anemoi, and the function during the verification.

3

Outline. The structure of the paper is as follows. We begin with providing some necessary
theoretical background in Section 2. Section 3 describes the two modes of operation used
in Anemoi, namely the Sponge structure for the random oracle functionality, and the
Jive mode for the Merkle compression function functionality. The Flystel structure is
proposed and studied in Section 4, followed by the full description of the Anemoi family in
Section 5. The security analysis of our algorithms is given in Section 6 and performance
benchmarks in Section 7. The exposition concludes with Section 8. More technical details
on the security analysis and performance estimates are provided in appendix, along with
some reference implementations.

2 Theoretical Background
In what follows, 𝑞 is an integer corresponding to the size of the field F𝑞, so that 𝑞 = 𝑝 for
some prime number 𝑝 or 𝑞 = 2𝑛. As usual, the symbols “+” and “×” denote respectively
the addition and the multiplication over F𝑞. We also let 𝑚 ≥ 1 be an integer corresponding
to the number of field elements we are operating on. We denote ⟨𝑎, 𝑏⟩ the usual scalar
product of 𝑎 ∈ F𝑚

𝑞 and 𝑏 ∈ F𝑚
𝑞 which is such that ⟨𝑎, 𝑏⟩ =

∑︀𝑚−1
𝑖=0 𝑎𝑖𝑏𝑖.

Below, we consider a function 𝐹 : F𝑚
𝑞 → F𝑚

𝑞 , and recall some of the concepts behind the
use and analysis of functions to design symmetric cryptographic primitives. We recall first
the definition of their differential and linear properties, and then that of CCZ-equivalence.
While the latter was seldom used in practice so far, it plays a crucial role in our work.

Differential Properties. The Difference Distribution Table (DDT) of function 𝐹 is the
two dimensional array 𝛿𝐹 defined by 𝛿𝐹 [𝑎, 𝑏] = #{𝑥 ∈ F𝑚

𝑞 |𝐹 (𝑥 + 𝑎) − 𝐹 (𝑥) = 𝑏}. The
maximum value of 𝛿𝐹 [𝑎, 𝑏] for 𝑎 ̸= 0 is the differential uniformity [Nyb94] of 𝐹 . If 𝑝 > 2,
then the optimal value is a differential uniformity of 1, in which case the function is called
Perfect Nonlinear (PN). Functions with a differential uniformity of 2 are called Almost
Perfect Nonlinear (APN), and this is the optimal case when 𝑝 = 2.

Linear Properties. While a general formula that works both when 𝑞 is a power of two
and a prime can be given, it is simpler to treat the two cases separately, especially
given that the reader is probably familiar with the case of characteristic 2. If 𝑞 = 2𝑛,
then the Walsh transform of the component ⟨𝑏, 𝐹 ⟩ : F𝑞 → F2 for any 𝑏 ∈ F𝑞∖{0} is
𝒲⟨𝑏,𝐹 ⟩(𝑎) =

∑︀
𝑥∈F𝑚

2
(−1)⟨𝑎,𝑥⟩+⟨𝑏,𝐹 (𝑥)⟩.

Otherwise, when 𝑞 = 𝑝 the Fourier transform of a function 𝑓 : F𝑚
𝑝 → F𝑝 is the function

𝒲𝑓 : F𝑚
𝑝 → C such that

𝒲𝑓 (𝑎) =
∑︁

𝑥∈F𝑚
𝑝

exp
(︂

2𝜋𝑖 (⟨𝑎, 𝑥⟩ − 𝑓(𝑥))
𝑝

)︂
.

For a vectorial function 𝐹 : F𝑚
𝑞 → F𝑚

𝑞 , we consider the Fourier transform of each of its
components, i.e. of all the linear combinations ⟨𝑏, 𝐹 ⟩. We then investigate the value of
𝒲⟨𝑏,𝐹 ⟩(𝑎). As established in [BSV07], a linear attack against 𝐹 becomes possible when
the squared modulus of 𝒲⟨𝑏,𝐹 ⟩(𝑎) for some 𝑎, 𝑏 ∈ F𝑚

𝑞 is high enough. Roughly speaking,
the data complexity of a linear attack is around 1/|𝒲⟨𝑏,𝐹 ⟩(𝑎)|2. Functions for which the
maximum modulus is the lowest are called bent. It is well known (see for instance [CM97])
that a function mapping F𝑞 to itself is PN if and only if it is bent.

CCZ-Equivalence [CCZ98]. Let 𝐹 : F𝑚
𝑞 → F𝑚

𝑞 and 𝐺 : F𝑚
𝑞 → F𝑚

𝑞 be two functions. They
are affine-equivalent if there exists two affine permutation 𝜇 : F𝑚

𝑞 → F𝑚
𝑞 and 𝜂 : F𝑚

𝑞 → F𝑚
𝑞

4

such that 𝐹 = 𝜂 ∘ 𝐺 ∘ 𝜇. This can alternatively be written using the graphs of these
functions:

Γ𝐹 =
{︀

(𝑥, 𝐹 (𝑥)) | 𝑥 ∈ F𝑚
𝑞

}︀⏟ ⏞
graph of 𝐹

= ℒ(Γ𝐺) =
{︀
ℒ (𝑥, 𝐹 (𝑥)) | 𝑥 ∈ F𝑚

𝑞

}︀
,

where ℒ is the affine permutation defined by ℒ(𝑥, 𝑦) =
(︀
𝜂(𝑥), 𝜇−1(𝑦)

)︀
. If we allow ℒ to be

any affine permutation,1 we obtain CCZ-equivalence.

Definition 1 (CCZ-Equivalence). Let 𝐹 and 𝐺 be functions of F𝑚
𝑞 . We say that they

are CCZ-equivalent if there exists an affine permutation ℒ : (F𝑚
𝑞)2 → (F𝑚

𝑞)2 such that
Γ𝐹 = ℒ(Γ𝐺).

An important property of CCZ-equivalence that is instrumental in our work is that it
preserves the differential spectrum and the squared Walsh coefficients. In other words, all
functions within the same CCZ-equivalence class share the same differential and linear
properties and hence offer the same resilience against differential and linear attacks. It
also means that it is sufficient to investigate these properties for a single member of a
CCZ-equivalence class.

Another relevant property of CCZ-equivalence is that it does not preserve the degree of
the function. In fact, there are known cases where a low-degree function is CCZ-equivalent
to a higher-degree one. It is most notably the case of the so-called butterfly structure,
originally introduced in [PUB16], and then further generalized in two different ways
in [CDP17] and [LTYW18].

3 Modes of Operation
In advanced protocols, hash functions are used for two purposes. The first is to emulate a
random oracle, in particular to return the “fingerprint” or digest of a message of arbitrary
length. The idea is that this fixed length digest is simpler to sign than the full message.
The second use is as a compression function within a Merkle-tree: in this case, the hash
function 𝐻 is used to map to input of size 𝑛 to an output of size 𝑛, and the security of the
higher level scheme relies on its collision resistance. While a general purpose hash function
like SHA-3 [BDPA13, Dwo15] or an arithmetization-friendly one can safely be used for
both uses, for improved efficiency we chose to use a full hash function only for the random
oracle case (Section 3.1). Indeed, the specific constraints of the Merkle-tree case can be
satisfied more efficiently using a dedicated structure that remains permutation-based, and
which we introduce in Section 3.2. SAGE implementations of both modes are provided in
Appendix B.

3.1 Random Oracle: the Sponge Structure
A random oracle is essentially a theoretical function that picks each output uniformly at
random while keeping track of its previous outputs in order to remain a deterministic
function. The sponge construction is a convenient approach to try to emulate this behaviour.
First introduced by Bertoni et al. in [BDPVA07], this method was most notably used
to design SHA-3. It is also how most arithmetization-oriented hash functions have been
designed, e.g. Rescue-Prime, gMiMC-Hash, Poseidon [GKR+21a], and ReinforcedConcrete.
Such hash functions can easily be tweaked to be turned into eXtendable Output Function
(XOF) [Dwo15] should the need arise.

1Starting from a given function 𝐹 , applying any affine permutation of F2
𝑞 to its graph is unlikely to

yield the graph of another function 𝐺. Indeed, this would require that the left hand side of ℒ(𝑥, 𝐹 (𝑥))
takes all the values in F𝑞 as 𝑥 goes through F𝑞 , which is a priori not the case. A mapping ℒ that does yield
the graph of another function is called “admissible”, a concept that was extensively studied in [CP19].

5

The overall principle of the sponge construction is best explained by the diagram in
Figure 1. In this paper, we slightly modify the original approach to operate on elements of
F𝑞 instead of F2. The main component of the structure is a permutation 𝑃 operating on
F𝑟+𝑐

𝑞 , where both 𝑟 and 𝑐 are non-zero integers. The rate 𝑟 is the size of the outer part
of the state, while 𝑐 is the capacity and corresponds to the size of the inner part of the
state. The digest consists of ℎ elements of F𝑞. Then, to process a message 𝑚 consisting of
elements of F𝑞, we apply the following operations.

Padding. A basic padding works as follows: append 1 ∈ F𝑞 to the message followed by
enough zeroes so that the total length is a multiple of 𝑟, and then divide the result
into blocks 𝑚0,...,𝑚ℓ−1 of 𝑟 elements.
However, with this approach, we may end up using one more call to 𝑃 in the case
where the length of the message was already a multiple of 𝑟. A more efficient approach
is presented in [Hir16]: if the length of the message is already a multiple of 𝑟, then we
do not append yet another block(s) to it. Instead, we add a constant in the capacity
before squeezing. This is summarized as the addition of 𝜎 which is equal to 0 if the
message length is not a multiple of 𝑟, and to 1 otherwise (see Figure 1). This variant
also has the advantage of gracefully handling the case where 𝑟 = 1.

Absorption. For each message block 𝑚𝑖, we add it into the outer part of the state, and
then apply 𝐹 on the full state.

Squeezing. We extract the 𝑟 elements in the outer part of the state to generate the first 𝑟
elements of the digest. If the ℎ > 𝑟, then we apply 𝐹 and then extract another 𝑟
elements until the desired length is reached.

�

𝑚0

F𝑐
𝑞

F𝑟
𝑞

𝑃

�

𝑚1

𝑃

�

𝑚2

𝑃

. . .

. . .

�
𝜎

𝑧0

𝑃

. . .

. . .

𝑧1

𝑃

𝑧ℎ−1

Figure 1: Sponge construction with the modification of [Hir16].

The security of a sponge hinges on the properties of its permutation. Informally, the only
special property of the permutation should be the existence of an efficient implementation.
Its differential, linear, algebraic, etc. properties should be similar to those expected from a
permutation picked uniformly at random from the set of all permutations.

Following a flat sponge claim [BDPVA07], the designers of such an algorithm can
essentially claim that any attack against it will have a complexity equivalent to at least
𝑞𝑐/2 calls to the permutation (provided that ℎ ≥ 𝑐). Thus, a flat sponge claim states that
a sponge-based hash function provides 𝑛𝑐/2 bits of security.

3.2 Merkle Compression Function: the Jive Mode
One of the main use cases for an arithmetization-oriented hash function is as a compression
function in a Merkle tree. This case could be easily handled using a regular hashing mode,
such as the sponge structure discussed above. However, due to the specifics of this use
case, it is possible to use a more efficient mode.

In a Merkle tree, the elements considered are in F𝑚
𝑞 , where 𝑚 is chosen so that

𝑚⌊log2 𝑞⌋ ≥ 𝑛, where 𝑛 is the intended security level. We then need to hash two such

6

elements to obtain a new one. As a consequence, unlike in the usual case, the input size is
fixed, and is equal to exactly twice the digest size. Given a permutation of (F𝑚

𝑞)2, we can
thus construct a suitable hash function by plugging it into the following mode.

Definition 2 (Jive). Consider a permutation 𝑃 defined as follows:

𝑃 :
{︃

(F𝑚
𝑞)𝑏 → (F𝑚

𝑞)𝑏

(𝑥0, ..., 𝑥𝑏−1) ↦→ (𝑃0(𝑥0, ..., 𝑥𝑏−1), ..., 𝑃𝑏−1(𝑥0, ..., 𝑥𝑏−1)) ,

so that it operates on 𝑏𝑚 of elements of F𝑞, where 𝑃𝑖(𝑥0, . . . , 𝑥𝑏−1) : 0 ≤ 𝑖 < 𝑏 refers to
the 𝑖-th element in F𝑚

𝑞 of the output 𝑃 (𝑥0, . . . , 𝑥𝑏−1) from 𝑃 . The mode Jive is built from
𝑃 by defining the following one way function Jive𝑏(𝑃):

Jive𝑏(𝑃) :
{︃

(F𝑚
𝑞)𝑏 → F𝑚

𝑞

(𝑥0, ..., 𝑥𝑏−1) ↦→
∑︀𝑏−1

𝑖=0 (𝑥𝑖 + 𝑃𝑖(𝑥0, ..., 𝑥𝑏−1)) .

This approach can be seen as a permutation-based variant of the Davies-Meyer mode
which, like the latter, crucially relies on a feed-forward to ensure one-wayness. Alternatively,
it can be interpreted as a truncated instance of the mode used in the “Latin dance” ciphers
ChaCha and Salsa [Ber08], which is also based on a public permutation combined with a
feedforward. Incidentally, we called it Jive after another Latin dance.

If used inside a Merkle tree, this mode can save some computations. For example, in
the case where the fan-in 𝑏 is equal to 2, it would be necessary using a sponge to use a
permutation operating on (F𝑚

𝑞)3 in order to leave one vector of F𝑚
𝑞 free for the capacity.

Using Jive2 instead, we only need a permutation of (F𝑚
𝑞)2. The trade-off of course is that,

unlike a sponge-based approach, the relevance of Jive is restricted to some specific cases.

𝑥 𝑦

Jive2(𝑥, 𝑦)

𝑃

𝑃0(𝑥, 𝑦) 𝑃1(𝑥, 𝑦)

�

�

(a) Jive2, which maps (F𝑚
𝑞)2 to F𝑚

𝑞 .

𝑥0 𝑥1 . . . 𝑥𝑏−1

Jive𝑏(𝑥0, ..., 𝑥𝑏−1)

𝑃

�

�

�

(b) Jive𝑏, which maps (F𝑚
𝑞)𝑏 to F𝑚

𝑞 .

Figure 2: The Jive mode turning a permutation into a compression function.

4 The Flystel Structure
The performance metrics for arithmetization-oriented algorithms differ substantially from
the usual ones in symmetric cryptography. Neither the number of CPU cycles, nor the
RAM consumption or the code size are the dominant factors. At the same time, pin-
pointing exactly what is needed for the various protocols relying on arithmetization is a
difficult task as each protocol has its own subtelties. For example, Plonk offers custom
gates, which are difficult to develop but can decrease the overall cost of an operation, but
other proof systems might not. On the other hand, additions are essentially free for R1CS,
but not for Plonk. In addition, permutations of a sequence of field elements are likely to
incur cost in Plonk (in the form of copy-constraints), but are free in R1CS.

7

In this section, we present a family of non-linear components that provide both the
cryptographic properties that we need to ensure the security of our primitives, and efficient
implementations accross proof systems, which we called open Flystel. It uses—and
highlights—the connection between arithmetization-orientation and CCZ-equivalence.

4.1 On CCZ-Equivalence and Arithmetization-Orientation
In order for a function 𝐹 to be arithmetization-oriented, it is necessary that verifying
whether 𝑦 = 𝐹 (𝑥) can be done using few multiplications in a specific field (whose size is
dictated by other parts of the protocol). A very straight-forward approach, and indeed the
first considered, consists in using a function 𝐹 which, itself, can be evaluated using small
number of multiplications: both MiMC-Hash [AGR+16] and Poseidon [GKR+21b] work in
this way. The downside of this approach is that the use of a low degree round function
may imply a vulnerability to some attacks based on polynomial solving, often nicknamed
algebraic attacks. As a consequence, these algorithms have to use a high number of rounds.

A first breakthrough on this topic was made by the designers of Rescue-Prime [AAB+20].
They noticed that if 𝐹 is a permutation, then checking if 𝑦 = 𝐹 (𝑥) is equivalent to checking
if 𝑥 = 𝐹 −1(𝑦). It allows them to use both 𝑥𝛼 and 𝑥1/𝛼 (where 𝑥 ↦→ 𝑥𝛼 is a permutation of
the field used) in their round function, where 𝛼 is chosen so as to minimize the number of
multiplication. It means that both can be verified using a (cheap) evaluation of 𝑥𝛼, and at
the same time that the degree of the round function is very high as 1/𝛼 is a dense integer
of Z/(𝑞 − 1)Z. As a consequence, much fewer rounds are needed to prevent algebraic
attacks.

We go further and propose a generalization of this insight. So far, we have seen that
arithmetization-orientation implies that a function or its inverse must have a particular
implementation property (low number of multiplications). In fact, we claim the following:

A subfunction is arithmetization-oriented if it is CCZ-equivalent to a function
that can be verified efficiently.

The above should come as no surprise since a permutation and its inverse are known to be
CCZ-equivalent. In that sense, this insight is a natural generalization of the one of the
Rescue-Prime designers.

Exploiting this idea is simple: suppose that 𝐹 and 𝐺 are such that Γ𝐹 = ℒ(Γ𝐺), where
ℒ : (𝑥, 𝑦) ↦→ (ℒ𝐿(𝑥, 𝑦),ℒ𝑅(𝑥, 𝑦)) is an affine permutation, and where 𝐺 can be efficiently
verified. Then we can use 𝐹 to construct an arithmetization-oriented algorithm: checking
if 𝑦 = 𝐹 (𝑥) is equivalent to checking if ℒ𝐿(𝑥, 𝑦) = 𝐺 (ℒ𝑅(𝑥, 𝑦)), which only involves 𝐺
and linear functions: it is efficient.

Below, we present a first component based on this idea: the Flystel. Nevertheless, we
hope that further research in discrete mathematics will lead to new non-linear components
that are even better suited to this use case: we need more permutations with good
cryptographic properties (including a high degree) that are CCZ-equivalent to functions
with a low number of multiplications.

4.2 High Level View of the Flystel Structure
Let 𝑄𝑖 : F𝑞 → F𝑞 and 𝑄𝑓 : F𝑞 → F𝑞 be two quadratic functions, and let 𝐸 : F𝑞 → F𝑞 be
a permutation. Then, the Flystel is a pair of functions relying on 𝑄𝑖, 𝑄𝑓 and 𝐸. The
open Flystel is the permutation of (F𝑞)2 obtained using a 3-round Feistel network with
𝑄𝑖, 𝐸−1, and 𝑄𝑓 as round functions, as depicted in Figure 3a. It is denoted ℋ, so that
ℋ(𝑥, 𝑦) = (𝑢, 𝑣) is evaluated as follows:

8

1. 𝑥← 𝑥−𝑄𝑖(𝑦),

2. 𝑦 ← 𝑦 − 𝐸−1(𝑥),

3. 𝑥← 𝑥 + 𝑄𝑓 (𝑦),

4. 𝑢← 𝑥, 𝑣 ← 𝑦 .

The closed Flystel is a function of F2
𝑞 defined by 𝒱 : (𝑦, 𝑣) ↦→ (𝑅𝑖(𝑦, 𝑣), 𝑅𝑓 (𝑣, 𝑦)),

where 𝑅𝑗 : (𝑦, 𝑣) ↦→ 𝐸(𝑦 − 𝑣) + 𝑄𝑗(𝑦) for 𝑗 ∈ {𝑖, 𝑓}.

𝑥 𝑦

�

�

�

𝑢 𝑣

𝑄𝑖

𝐸−1

𝑄𝑓

(a) Open Flystel, ℋ.

𝑦 𝑣

�

� �

𝑦 − 𝑣

𝑥 𝑢

𝑄𝑖 𝐸 𝑄𝑓

(b) Closed Flystel, 𝒱.

Figure 3: The Flystel structure (both variants are CCZ-equivalent).

Our terminology of “open” for the permutation and “closed” for the function is based
on the relationship between the Flystel and the butterfly structure, as detailed later. In
particular, the two structures are connected by the following proposition.

Proposition 1. For a given tuple (𝑄𝑖, 𝐸, 𝑄𝑓), the corresponding closed and open Flystel
are CCZ-equivalent.

Proof. Let (𝑢, 𝑣) = ℋ(𝑥, 𝑦). Then it holds that 𝑣 = 𝑦 − 𝐸−1 (𝑥−𝑄𝑖(𝑦)), so that we can
write 𝑥 = 𝐸(𝑦 − 𝑣) + 𝑄𝑖(𝑦). Similarly, we have that 𝑢 = 𝑄𝑓 (𝑣) + 𝐸(𝑦 − 𝑣). Consider now
the set Γℋ =

{︀
((𝑥, 𝑦),ℋ(𝑥, 𝑦)) , (𝑥, 𝑦) ∈ F2

𝑞

}︀
. By definition, we have

Γℋ =
{︀

((𝑥, 𝑦), (𝑢, 𝑣)) , (𝑥, 𝑦) ∈ F2
𝑞

}︀
= ℒ

(︀ {︀
((𝑦, 𝑣), (𝑥, 𝑢)) , (𝑥, 𝑦) ∈ F2

𝑞

}︀)︀
where ℒ is the permutation of (F2

𝑞)2 such that ℒ ((𝑥, 𝑦), (𝑢, 𝑣)) = ((𝑦, 𝑣), (𝑥, 𝑢)), which is
linear. Using the equalities we established at the beginning of this proof, we can write:

ℒ−1(Γℋ) =
{︀

((𝑦, 𝑣), (𝑥, 𝑢)) , (𝑥, 𝑦) ∈ F2
𝑞

}︀
=

{︀(︀
(𝑦, 𝑣), (𝑄𝑖(𝑦) + 𝐸(𝑦 − 𝑣), 𝑄𝑓 (𝑣) + 𝐸(𝑦 − 𝑣))

)︀
, (𝑦, 𝑣) ∈ F2

𝑞

}︀⏟ ⏞
Γ𝒱

.

We deduce that Γℋ = ℒ(Γ𝒱), so the two functions are CCZ-equivalent.

This simple proposition has several crucial corollaries on which we will rely in the
remainder of the paper. The first implies that it is sufficient to investigate the differential
and linear properties of the closed butterfly to obtain results about the open one.

Corollary 1. The open and closed Flystel structures have identical differential and
linear properties. More precisely, the set of the values in the DDT of both functions is the
same, and the set of the square of the Fourier coefficients of the components is also the
same.

The second corollary is the key reason behind the relevance of the Flystel structure
in the airthmetization-oriented setting and is stated below.

Corollary 2. Verifying that (𝑢, 𝑣) = ℋ(𝑥, 𝑦) is equivalent to verifying that (𝑥, 𝑢) = 𝒱(𝑦, 𝑣).

9

Indeed, Corollary 2 means that it is possible to encode the verification of the evaluation
of the high degree open Flystel using the polynomial representation of the low degree
closed Flystel.

In characteristic 2, quadratic mappings correspond to different exponents than in
the general case. As a consequence, when giving concrete instanciations of the Flystel
structure, we need to treat this case separately. To highlight the difference, we call
Flystel2 the instances used in characteristic 2, and Flystelp the instances used in odd
prime characteristic.

4.3 Characteristic 2
Let 𝑞 = 2𝑛, with 𝑛 odd. Furthermore, let 𝛼 = 2𝑖 + 1 be such that gcd(𝑖, 𝑛) = 1,
so that 𝑥 ↦→ 𝑥𝛼 is a permutation of F𝑞. In this case, the Flystel2 structure with
𝑄𝑖(𝑥) = 𝑄𝑓 (𝑥) = 𝛽𝑥𝛼, with 𝛽 ̸= 0, and with 𝐸(𝑥) = 𝑥𝛼 is a degenerate generalized
butterfly structure. It was studied in [LTYW18] as a generalization of the structure
introduced in [PUB16], which was also refined in [CDP17]. We recall the following
particular case2 in Theorems 3, 4 and 5 of [LTYW18].

Proposition 2 ([LTYW18]). Let 𝑞 = 2𝑛 with 𝑛 odd, 𝐸 = 𝑥 ↦→ 𝑥𝛼, where 𝛼 = 2𝑖 + 1
is such that gcd(𝑖, 𝑛) = 1, and 𝑄𝑖 = 𝑄𝑓 = 𝑥 ↦→ 𝛽𝑥𝛼, where 𝛽 ≠ 0. Then the Flystel2

structures defined by the functions 𝑄𝑖, 𝐸, and 𝑄𝑓 have a differential uniformity equal to 4,
a linearity equal to 22𝑛−1 − 2𝑛, and an algebraic degree equal to 𝑛.

In practice, to prevent some attacks (see Section 6.3), we instead use 𝑄𝑖(𝑥) = 𝛽𝑥3 + 𝛾
and 𝑄𝑓 (𝑥) = 𝛽𝑥3 + 𝛿, where 𝛾 and 𝛿 are constants of F𝑞 such that 𝛾 ̸= 𝛿. The resulting
construction is depicted in Figure 4a.

𝑥 𝑦

𝑡

𝑢 𝑣

𝛽𝑥3 + 𝛾⊕

𝑥1/3 ⊕

𝛽𝑥3 + 𝛿⊕

(a) Flystel2 in characteristic 2.

𝑥 𝑦

𝑡

𝑢 𝑣

𝛽𝑥2 + 𝛾�

𝑥1/𝛼 �

𝛽𝑥2 + 𝛿�

(b) Flystelp in odd prime characteristic.

Figure 4: The two variants of the open Flystel, mapping (𝑥, 𝑦) to (𝑢, 𝑣).

4.4 Odd Characteristic
Let 𝑞 = 𝑝. In this case, the Flystelp structure uses three rounds functions: 𝑄𝑖 : 𝑥 ↦→
𝛽𝑥2 + 𝛾, 𝐸 : 𝑥 ↦→ 𝑥1/𝛼, and 𝑄𝑓 : 𝑥 ↦→ 𝛽𝑥2 + 𝛿, where 𝛽 ∈ F𝑞 is non-zero, and where 𝛾 and
𝛿 are constants of F𝑞.

2The result of Li et al. covers all generalized butterflies, not just those corresponding to Flystel
structures. In a Flystel, the first parameter (which we will denote 𝑎) is set to 1. Their results for the
differential uniformity and the linearity holds only when 𝛽 ̸= (1 + 𝑎)𝛼, meaning that we simply need to
make sure that 𝛽 ̸= 0. For the algebraic degree, the condition they give in their Theorem 5 to have a
degree equal to 𝑛 + 1 degenerates into 𝛽2𝑖+1 = 𝛽2𝑖+1, which is never the case as 𝑖 > 0.

10

Differential Properties. Such structures have a low differential uniformity.

Proposition 3. Let 𝑞 = 𝑝 be a prime number, 𝐸 = 𝑥 ↦→ 𝑥𝛼, where 𝛼 is such that
gcd(𝛼, 𝑝 − 1) = 1, and 𝑄𝑖 = 𝑥 ↦→ 𝛾 + 𝛽𝑥2, 𝑄𝑓 = 𝑥 ↦→ 𝛿 + 𝛽𝑥2 where 𝛽 ̸= 0. Then the
Flystelp structures defined by the functions 𝑄𝑖, 𝐸, and 𝑄𝑓 has a differential uniformity
equal to 𝛼− 1.

Proof. Let 𝑎, 𝑏, 𝑐, 𝑑 be elements of F𝑝 such that (𝑎, 𝑏) ̸= (0, 0). To investigate the differential
uniformity of 𝒱 : (𝑦, 𝑣) ↦→ (𝑅𝑖(𝑦, 𝑣), 𝑅𝑓 (𝑣, 𝑦)), we look at the number of solutions (𝑦, 𝑣) of
(1). {︃

𝑅𝑖(𝑦 + 𝑎, 𝑣 + 𝑏)−𝑅𝑖(𝑦, 𝑣) = 𝑐

𝑅𝑓 (𝑣 + 𝑏, 𝑦 + 𝑎)−𝑅𝑓 (𝑣, 𝑦) = 𝑑 .
(1)

We have:{︂
𝑅𝑖(𝑦 + 𝑎, 𝑣 + 𝑏) − 𝑅𝑖(𝑦, 𝑣) = (𝑦 + 𝑎 − (𝑣 + 𝑏))𝛼 + 𝛾 + 𝛽(𝑣 + 𝑏)2 − (𝑦 − 𝑣)𝛼 − 𝛾 − 𝛽𝑣2

𝑅𝑓 (𝑣 + 𝑏, 𝑦 + 𝑎) − 𝑅𝑓 (𝑣, 𝑦) = (𝑣 + 𝑏 − (𝑦 + 𝑎))𝛼 + 𝛿 + 𝛽(𝑦 + 𝑎)2 − (𝑣 − 𝑦)𝛼 − 𝛿 − 𝛽𝑦2 .

As 𝑒 is odd, we deduce:{︂
𝑅𝑖(𝑦 + 𝑎, 𝑣 + 𝑏) − 𝑅𝑖(𝑦, 𝑣) = (𝑦 + 𝑎 − (𝑣 + 𝑏))𝛼 + 𝛽(𝑣 + 𝑏)2 − (𝑦 − 𝑣)𝛼 − 𝛽𝑣2

𝑅𝑓 (𝑣 + 𝑏, 𝑦 + 𝑎) − 𝑅𝑓 (𝑣, 𝑦) = −(𝑦 + 𝑎 − (𝑣 + 𝑏))𝛼 + 𝛽(𝑦 + 𝑎)2 + (𝑦 − 𝑣)𝛼 − 𝛽𝑦2 .

Noting respectively ℓ1 and ℓ2 the rows of the system, we get:

ℓ1 + ℓ2 = 𝛽(𝑣 + 𝑏)2 − 𝛽𝑣2 + 𝛽(𝑦 + 𝑎)2 − 𝛽𝑦2 = 𝑐 + 𝑑 ,

which is equivalent to:

𝑣 = (2𝑏)−1 (︀
𝛽−1(𝑐 + 𝑑)− (2𝑎𝑦 + 𝑎2 + 𝑏2)

)︀
.

As a consequence, we know that 𝑣 can be expressed as an affine polynomial in 𝑦. So, we
have

ℓ2 = −(𝑦 + 𝑎− (𝑣 + 𝑏))𝛼 + 𝛽(𝑦 + 𝑎)2 + (𝑦 − 𝑣)𝛼 − 𝛽𝑦2

Recalling that 𝑣 is of degree 1 in 𝑦, we have that ℓ2 is an equation in 𝑦 of degree 𝛼 − 1
(since the terms 𝑦𝛼 cancel out), and thus at most 𝛼− 1 solutions for 𝑦. In the end, we have
at most 𝛼− 1 solutions (𝑦, 𝑣) for the system (since for each value of 𝑦, there is one 𝑣).

Linear Properties. We do not have a theoretical bound on the correlation for the Flystelp
structure. Nevertheless, we will argue that we do not expect any attack to come from this
direction.

Let us first notice that the Flystelp is defined by the functions 𝑄𝑖, 𝐸−1 and 𝑄𝑓 , where
𝑄𝑖 and 𝑄𝑓 are quadratic. Given that the function 𝑥2 is bent (i.e. that its correlations
are the lowest possible), we can argue somewhat informally that a linear trail that would
activate just one of these functions should be expected to have a very low correlation.

Second, our experiments indicate that the correlation increases slowly with the field
size 𝑝. In fact, we have obtained the following conjecture for the maximum value of the
module of its Walsh transform.

Conjecture 1. If 𝑞 = 𝑝 is a prime number, then the maximum module of the Walsh
transform of ℋ satisfies

max
𝑎∈F𝑚

𝑝 ,𝑏∈(F𝑚
𝑝)*
|𝒲⟨𝑏,ℋ⟩(𝑎)| ≤ 𝑝 log 𝑝 .

While the most general case remains a conjecture at the time of writing, this results
holds for small values of 𝑝 (𝑝 ≤ 53), as can be seen in Figure 5.

11

Figure 5: The maximum value of the module of the Walsh transform of ℋ.

Invariant Subset. Regardless of the characteristic, it holds thatℋ (𝑄𝑖(𝑥), 𝑥) = (𝑄𝑓 (𝑥), 𝑥).
Thus, setting 𝑄𝑖 = 𝑄𝑓 would mean that the Flystel is the identity over a subset of size 𝑞,
which is why we added constant additions to ensure that 𝑄𝑖 ̸= 𝑄𝑓 . Nevertheless, this only
ensures that the open Flystel is a translation over the set {(𝑄𝑖(𝑥), 𝑥) , 𝑥 ∈ F𝑞}, which
remains cryptographically weak.

While a priori undesirable, th impact of this property can be mitigated. First, the
subset over which it has a simple expression is not an affine space. Second, as we show
later in Section 6.3, the propagation of such patterns can be broken using the linear layer.

Degree. Given the structure of the open Flystelp, its degree is lower bounded by the
inverse of 𝛼 modulo 𝑞 − 1, a quantity which in practice corresponds to a dense integer of
Z/(𝑞 − 1)Z. We deduce that one call to this permutation is sufficient to thwart all attacks
that would exploit the low degree of a component, such as higher order differentials.

4.5 Implementation Aspects
For direct computation, (or witness calculation) one can simply implement the open
Flystel. For the verification however, we also have the option to use the closed Flystel
structure, since there is no requirement for the various verification steps to be performed
in a particular order as long as consistency is enforced. In this case, the cost is of one
multiplication for 𝑄𝑖 and 𝑄𝑓 , and as many as are needed to compute 𝑥 ↦→ 𝑥𝛼. This
computation can be implemented using a technique that is slightly more subtle than the
basic fast exponentiation algorithm, and instead relies on addition chains as discussed
for example in [BC90]. We used addChain [McL21] to find the best such chains for small
values of 𝛼. We listed the corresponding results in Table 1, and denote 𝒞𝛼 the cost of such
exponentiation.

We remark that the cost of the exponentiation increases slowly, and that for example
𝛼 = 17 is less than twice as expensive as 𝛼 = 5. This fact will play an important in
Section 5.3, when choosing the parameters to use in various cases.

5 Description of Anemoi

Anemoi is a family of permutations operating on F2ℓ
𝑞 , for any field size 𝑞 that is either

a prime number or a power of two, and for positive integer ℓ. It relies on the Flystel
component introduced in the previous section. We let 𝑛 = ⌊log2 𝑞⌋ be the rounded down
bitlength of a word of F𝑞, so that our permutations can be thought of as operating
on 2ℓ𝑛 bits when evaluating the security they could be used to provide. Section 5.1

12

Table 1: The values 𝛼 for which computing 𝑥 ↦→ 𝑥𝛼 requires a given number of
multiplications.

multiplications 𝛼

2 {3}
3 {5}
4 {7, 9}
5 {11, 13, 15, 17}
6 {19, 21, 23, 25, 27, 33}
7 {29, 31, 35, 37, 39, 41, 43, 45, 49, 51, 65}
8 {47, 53, 55, 57, 59, 61, 63, 67, 69, 73, 75, 77, 81, 83, 85, 97, 99}
9 {71, 79, 87, 89, 91, 93, 95, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125}

10 {127}

presents the round function of Anemoi and how its parameters are chosen. In order to
ease third party analysis, and to convincingly argue that we could not hide a trapdoor
in our algorithm, we limit as much as possible the use of (pseudo-)randomly generated
components. Thus, we present the deterministic and simple procedures that must be used
to generate each component. Following the general idea outlined in [DP19], we claim that
all the permutations obtained via this method are safe.

Claim. An Anemoi permutation of F2ℓ
𝑞 whose parameters are chosen using the method

described in this section can safely be used in a mode calling for a permutation operating
on 2ℓ𝑛 bits.

The Anemoi permutations are then used in Section 5.2 to construct a compression
function mapping 2ℓ words to ℓ, AnemoiJive, which is intended to be used in Merkle trees;
and AnemoiSponge, a general purpose hash function intended to emulate the behaviour of
a random oracle. The former is based on our mode of operation, Jive, while AnemoiSponge
is a classical sponge structure.

5.1 Round Function
The state of Anemoi is organized into a rectangle of elements of F𝑞 of dimension 2 × ℓ.
The elements in the first row are denoted (𝑥0, ..., 𝑥ℓ−1), and those in the second row are
(𝑦0, ..., 𝑦ℓ) (see Figure 6a). We refer to vectors of Fℓ

𝑞 using the same upper-case letters, e.g.
(𝑥0, ..., 𝑥ℓ−1) is denoted 𝑋. Subscripts correspond to indices within a vector of Fℓ

𝑞, and
superscripts to round indices, so 𝑋𝑖 is the top part of the state at the start of round 𝑖.

We let 𝑔 be generator of the multiplicative subgroup of the field F𝑞. If 𝑞 is prime, then
𝑔 is the smallest such generator using the usual integer ordering. Otherwise, we have that
F𝑞 = F2𝑛 = F2[𝑥]/𝑝(𝑥), where 𝑝 is an irreducible polynomial of degree 𝑛, in which case we
let 𝑔 be one of its roots.

The round function of the members of the Anemoi family relies on the following
operations, whose actions on the internal state are also summarized in Figure 6. The
function applied during round 𝑟 is denoted R𝑟.

Diffusion Layer ℳ. If ℓ > 1, then the diffusion layerℳ operates on 𝑋 and 𝑌 separately,
so that

ℳ(𝑋, 𝑌) =
(︀
ℳ𝑥(𝑋),ℳ𝑦(𝑌)

)︀
,

as summarized in Figure 6b. The linear permutations ℳ𝑥 and ℳ𝑦 are closely related,
but differ in order to break the column structure imposed by the non-linear layer (see
below). More precisely, we impose that ℳ𝑥 is a matrix of size ℓ× ℓ of F𝑞 with maximum
diffusion, i.e. such that its branching number3 is equal to ℓ + 1. We then construct ℳ𝑦 as
ℳ𝑦 =ℳ𝑥 ∘ 𝜌, where 𝜌 is a simple word permutation: 𝜌(𝑥0, ..., 𝑥ℓ−1) = (𝑥1, ..., 𝑥ℓ−1, 𝑥0).

3Recall that the branching number of a linear permutation 𝐿 is the minimum over 𝑥 ̸= 0 of hw(𝑥) +
hw (𝐿(𝑥)), where hw counts the number of non-zero elements.

13

If ℓ = 1, then there is a unique column in the internal state. In this case, to destroy
some undesirable patterns at the S-box level, we still use a linear layer, except that it is
applied on the vector (𝑥0, 𝑦0). In this case, we use the function obtained by first applying
(𝑥, 𝑦) ↦→ (𝑥 + 𝑔𝑦, 𝑦), and then (𝑥, 𝑦) ↦→ (𝑥, 𝑦 + 𝑔𝑥), i.e. (𝑥, 𝑦) ↦→

(︀
𝑥 + 𝑔𝑦, 𝑔𝑥 + (𝑔2 + 1)𝑦

)︀
.

While linear operations are essentially free in R1CS, additions are not as e.g. in Plonk.
As a consequence, in order to decrease the cost of the matrix multiplication, it makes
sense to borrow ideas from lightweight cryptography where there is substantial literature
on minimizing the number of additions needed to implement MDS functions, namely
from [DL18].

ℓ = 2. We impose that ℳ𝑥 is the same linear permutation as for the case ℓ = 1, i.e.
ℳ𝑥(𝑥, 𝑦) =

(︀
𝑥 + 𝑔𝑦, 𝑔𝑥 + (𝑔2 + 1)𝑦

)︀
.

ℓ = 3. We use the permutation described in Figure 6 of [DL18], namely

ℳ𝑥 =

⎡⎣ 𝑔 + 1 1 𝑔 + 1
1 1 𝑔
𝑔 1 1

⎤⎦ ,

which can be implemented using 5 additions and 2 multiplications by 𝑔. We chose
this matrix rather than the 3 other candidates because it uses only 5 additions (unlike
Figure 7), and has fewer symmetries than the other 2.

ℓ = 4. We use the permutation described in Figure 8 of [DL18], namely

ℳ𝑥 =

⎡⎢⎢⎣
𝑔 + 1 1 𝑔2 𝑔2

1 𝑔 + 1 𝑔2 + 𝑔 𝑔2

𝑔 𝑔 𝑔 + 1 1
𝑔 + 1 𝑔 1 𝑔 + 1

⎤⎥⎥⎦ ,

which can be implemented using 8 additions and 3 multiplications by 𝑔. We chose
this specific matrix because it uses only 8 additions (unlike Figures 9, 11 and 12),
and only one type of multiplication (unlike Figures 10 and 12).

We provide efficient implementations of all these components in Appendix B. For higher
values of ℓ, we leave it to the users to choose a suitable matrix ℳ𝑥. Still, we impose that
it must be MDS.

S-box Layer 𝒮. Let ℋ be an open Flystel operating over F2
𝑞. Then we have that

𝒮(𝑋, 𝑌) =
(︀
ℋ(𝑋0, 𝑌0), ...,ℋ(𝑋ℓ−1, 𝑌ℓ−1)

)︀
,

as summarized in Figure 6c. A Flystel instance is defined by 4 parameters, regardless
of whether it is a Flystelp or Flystel2: the exponent 𝛼, the multiplier 𝛽, and the two
added constants 𝛾 and 𝛿. First, we let 𝛽 = 𝑔: setting 𝛽 = 1 would lead to the invariant
space (Section 6.3) having equation (𝑥2, 𝑥), which we deem too simple; 𝑔 is then the most
natural non-trivial constant. Furthermore, in order to break the symmetry of the Flystel,
we impose that 𝛾 ≠ 𝛿. We thus let 𝛾 = 0 and 𝛿 = 𝑔−1 as this value is both different from 1
and 𝑔 while retaining a simple definition.

All that remains is to choose the exponent 𝛼. If 𝑞 = 2𝑛, then we let 𝛼 = 3: we have
to use a Gold exponent (i.e. of the shape 2𝑘 + 1), and 3 always works since 𝑛 is odd.
Otherwise, when 𝑞 is prime, the process is a bit more involved as a higher value allows
using fewer rounds to thwart Gröbner-basis-based attacks, but is also more expensive.
Users should use the value of 𝛼 that yields the most efficient algorithm according to their
metrics.

14

Constant Additions 𝒜. We let 𝑥𝑗 ← 𝑥𝑗 +𝑐𝑖
𝑗 and 𝑦𝑗 ← 𝑦𝑗 +𝑑𝑖

𝑗 , where 𝑐𝑖
𝑗 ∈ F𝑞 and 𝑑𝑖

𝑗 ∈ F𝑝

are round constants that depend on both the position (index 𝑗) and the round (index 𝑖).
The aim is to increase the complexity of the algebraic expression of multiple rounds of the
primitive and to prevent the appearance of patterns that an attacker could leverage in
their attack.

They are derived using the digits of 𝜋 using the following procedure. We let

(𝜋0, 𝜋1) =

(1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679,

8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196)

be the first and second blocks of 100 digits of 𝜋. We derive the round constants 𝑐𝑖
𝑗 and 𝑑𝑖

𝑗

by applying an open Flystel with the same parameters as in the round function on the
pair (𝜋𝑖

0, 𝜋𝑗
1), so that ⎧⎨⎩𝑐𝑖

𝑗 = 𝑔(𝜋𝑖
0)2 +

(︁
𝜋𝑖

0 + 𝜋𝑗
1

)︁𝛼

𝑑𝑖
𝑗 = 𝑔(𝜋𝑗

1)2 +
(︁

𝜋𝑖
0 + 𝜋𝑗

1

)︁𝛼

+ 𝑔−1 ,

where the computations are done in F𝑞. When 𝑞 = 2𝑛, 𝜋0 and 𝜋1 are cast to field elements
using the usual mapping sending

∑︀𝑛−1
𝑘=0 𝑥𝑖2𝑖 to

∑︀𝑛−1
𝑘=0 𝑥𝑖𝑔

𝑖, where (𝑥0, ..., 𝑥𝑛−1) is the
binary representation of 𝑥 modulo 2𝑛.

𝑥0 𝑥1 ... 𝑥ℓ−1

𝑦0 𝑦1 ... 𝑦ℓ−1

𝑋

𝑌

(a) Internal state

ℳ𝑥

ℳ𝑦

(b) The diffusion layer ℳ.

ℋ ℋ ... ℋ

(c) The S-box layer 𝒮.

𝑋𝑖

𝑌 𝑖

𝐶𝑖

𝐷𝑖+=
(d) The constant addition 𝒜.

Figure 6: The internal state of Anemoi and its basic operations.

These operations correspond to a classical SPN structure. A complete description of
one round of Anemoi is given in Figure 7 (both as a diagram and as an algorithm), where 𝑄
is the quadratic operation of the field considered, i.e. 𝑥 ↦→ 𝑥3 if 𝑞 = 2𝑛, 𝑥 ↦→ 𝑥2 otherwise.

5.2 Higher Level Algorithms
Anemoi. The Anemoi permutation iterates 𝑛𝑟 rounds of the round function described in
Figure 7, followed by a call to the linear layer ℳ:

Anemoi𝑞,𝛼,ℓ = ℳ∘ R𝑛𝑟−1 ∘ ... ∘ R0

In symmetric cryptography, we usually remove outer linear layers, e.g. in the AES.
That is because, in the case of a block cipher, those could simply be peeled off for free by
an adversary. In the case of a sponge construction however, the adversary only controls
a part of the state, namely the outer part (the rate). Thus, starting/finishing with a
diffusion layer ensures that this control is spread across the full state in a way which is not
aligned with the non-linear layer. A similar goal could be achieved using indirect injection,
as is done in Esch [BBC+20].

The number of rounds 𝑛𝑟 is computed using the following rule that is derived from
our security analysis in Section 6. Let 𝑠 be the required security level, and (𝑞, ℓ, 𝛼) be the

15

𝑥𝑟
0 𝑥𝑟

1 𝑥𝑟
2 ... 𝑥𝑟

ℓ−1

𝑐𝑟
0

𝑐𝑟
1

𝑐𝑟
2
.
.
.

𝑐𝑟
ℓ−1

�

�

�

�

𝑥
𝑟+1
0 𝑥

𝑟+1
1 𝑥

𝑟+1
2

... 𝑥
𝑟+1
ℓ−1

ℳ𝑥

𝑦𝑟
0 𝑦𝑟

1 𝑦𝑟
2 ... 𝑦𝑟

ℓ−1

𝑑𝑟
0

𝑑𝑟
1

𝑑𝑟
2
.
.
.

𝑑𝑟
ℓ−1

�

�

�

�

𝑦
𝑖+1
0 𝑦

𝑖+1
1 𝑦

𝑖+1
2

... 𝑦
𝑖+1
ℓ−1

ℳ𝑦

ℋ ℋ ℋ ℋ. . .

(a) (Assuming ℓ >1)

◁ Constant addition
for 𝑖 ∈ {0, ..., ℓ− 1} do

𝑥𝑖 ← 𝑥𝑖 + 𝑐𝑟
𝑖

𝑦𝑖 ← 𝑦𝑖 + 𝑑𝑟
𝑖

end for
◁ Linear layer ℳ
if ℓ > 1 then

𝑋 ←ℳ𝑥(𝑋)
𝑌 ←ℳ𝑥 ∘ 𝜌(𝑌)

else
(𝑥0, 𝑦0)←ℳ𝑥(𝑥0, 𝑦0)

end if
◁ S-box layer ℋ
for 𝑖 ∈ {0, ..., ℓ− 1} do

𝑥𝑖 ← 𝑥𝑖 − 𝑔𝑄(𝑦𝑖)
𝑦𝑖 ← 𝑦𝑖 − 𝑥

1/𝛼
𝑖

𝑥𝑖 ← 𝑥𝑖 + 𝑔𝑄(𝑦) + 𝑔−1

end for
return (𝑋, 𝑌)

(b)

Figure 7: R𝑟, the 𝑟-th round of Anemoi, applied on the state (𝑋, 𝑌) ∈ Fℓ
𝑞 × Fℓ

𝑞, where
𝑋 = (𝑥0, ..., 𝑥ℓ−1) and 𝑌 = (𝑦0, ..., 𝑦ℓ−1).

Table 2: Number of Rounds of Anemoi.
𝛼 3 5 7 11 13 17

ℓ = 1 19 19 18 18 17 16

ℓ = 2 12 12 11 11 11 10

ℓ = 3 10 10 10 10 10 10

ℓ = 4 10 10 10 10 10 10

(a) When 𝑠 = 128.

𝛼 3 5 7 11 13 17

ℓ = 1 35 35 34 34 33 32

ℓ = 2 20 20 19 19 19 18

ℓ = 3 15 15 15 15 15 14

ℓ = 4 14 14 13 13 13 13

(b) When 𝑠 = 256.

parameters imposed by the use case. Then the number of rounds 𝑛𝑟 is the smallest value
satisfying both of the following conditions:

𝑛𝑟 ≥ 10, and

𝑛𝑟 ≥ 1 + ℓ⏟ ⏞
security margin

+ min
{︃

𝑟 ∈ N

⃒⃒⃒⃒
⃒

(︂
2ℓ𝑟 + 𝛼 + 1 + 2 · (ℓ𝑟 − 2)

2ℓ𝑟

)︂2
≥ 2𝑠

}︃
⏟ ⏞

to prevent algebraic attacks, see Section 6.4

(2)

We derived the number of rounds needed for various values of ℓ and 𝛼, both for a security
level of 128 bits (Table 2a), and of 256 bits (Table 2b). Note that the values of the digest
size ℎ and of the state size 2ℓ𝑛 = 2ℓ log2(𝑞) must be coherent with the desired security
level.

AnemoiSponge. This function is a “regular” hash function, in the sense that it should be
able to process messages of arbitrary length. We therefore rely on a sponge construction
with Hirose’s domain separation (as detailed in Section 3), where 𝑟 words are used as
the rate, 𝑐 are used as the capacity, and where the permutation is the Anemoi instance

16

Table 3: Parameters for some instances of Anemoi.
Curve log2 𝑞 𝑠 𝛼 𝑔 Function ℓ 𝑛𝑟

BLS12-381 381 190 5 2 AnemoiJive 1 19
AnemoiSponge 2 20

BN-254 254 127 5 3 AnemoiJive 1 19
AnemoiSponge 2 20

operating on F𝑟+𝑐
𝑞 . Using a hermetic sponge claim, the security level against all attacks is

then expected to be 𝑛𝑐/2 bits. Note that the inner workings of Anemoi imply that 𝑟 + 𝑐
must be even.

AnemoiJive. We can construct a compression function mapping 𝑏-to-1 vectors of F𝑣
𝑞

elements, using Jive𝑏 and an Anemoi instance operating on 𝑏𝑣 elements of F𝑞. The only
constraint is that 𝑏𝑣 must be even.

5.3 Specific Instances
In this section, we present some examples of functions in the Anemoi family that are defined
over different fields and aim for different APIs (both AnemoiSponge and AnemoiJive). We
focus on the fields used by the elliptic curves BLS12-381 and BN-254. The parameters
needed are summarized in Table 3.

AnemoiJive. Let 𝑞 be the prime used either by the curve BLS12-381 or BN-254. AnemoiJive-
BLS12-381 and AnemoiJive-BN-254 are Merkle Compression functions mapping two
elements of F𝑞 to a unique one. They work using the following components.

S-box. In this case, ℋ uses the parameters 𝑔 and 𝛼 given in Table 3.

Linear layer. As ℓ = 1, we use small linear permutations of F2
𝑞 as defined in Section 5.1.

For BLS12-381 and BN-254, these are respectively

ℳBLS12-381
𝑥 =

[︂
1 2
2 5

]︂
and ℳBN-254

𝑥 =
[︂

1 3
3 10

]︂
. (3)

Round Constants. These are generated as described in Section 5.1.

Round 𝑟 is then defined as R𝑟 : (𝑥, 𝑦) ↦→ ℋ ∘ ℳ(𝑥 + 𝑐𝑟, 𝑦 + 𝑑𝑟), and we define the
compression functions as follows. Let (𝑥, 𝑦) be the input, and 𝑃 be the Anemoi instance
defined by 𝑃 :=ℳ∘ R18 ∘ ... ∘ R0. Then AnemoiJive(𝑥, 𝑦) is evaluated as follows:

1. (𝑢, 𝑣) = 𝑃 (𝑥, 𝑦), 2. return 𝑥 + 𝑦 + 𝑢 + 𝑣.

Security Claims. The best way to find collisions in AnemoiJive-BLS12-381 (respectively
AnemoiJive-BN-254) is to rely on a generic collision search. Since the output is an element
of F𝑞, this is expected to require about respectively 2190 or 2127 calls to the function.

AnemoiSponge. Let 𝑞 be the prime used either by the curve BLS12-381 or BN-254.
AnemoiSponge-BLS12-381 and AnemoiSponge-BN-254 are hash functions mapping a se-
quence {𝑥𝑖}0≤𝑖<𝑚 of elements of F𝑞 to an element of F𝑞, where ℓ is a positive integer. It
is constructed using a sponge which relies on Anemoi as the permutation. We aim to
provide about 256 bits of security. As log2(𝑞) ≈ 381 in one case and 254 in the other,
we need to have a capacity of 2 elements of F𝑞. We then pick an identical rate, so that
𝑟 = 𝑐 = 2, and thus ℓ = 2. The subcomponents are the same as above, except that the

17

linear layer is applied in parallel on (𝑥0, 𝑥1) and (𝑦0, 𝑦1), and that ℳ𝑦 is equal to ℳ𝑥 ∘ 𝜌
with 𝜌(𝑦0, 𝑦1) = (𝑦1, 𝑦0). Unlike for AnemoiJive, we aim here to provide about 256 bits of
security. As a consequence, we need to pick the value of 𝑛𝑟 from Table 2b: it is 20 in both
cases.

Security Claims. We claim that AnemoiSponge-BLS12-381 provide 256 bits of security
against all attacks, and that AnemoiSponge-BN254 provides 254.

6 Security Analysis
The security of our high level algorithms is reduced to the security of their inner permutation,
namely the Anemoi family. In this section, we argue that the latter has sufficient security
level.

6.1 Differential and Linear Attacks
In this part, we argue that differential and linear attacks can be prevented by the Flystel
construction, thanks to the differential and linear properties of the scheme as presented in
Section 5.

Differential attacks exploit the probability distribution of a given non-zero input
difference leading to a given output difference after a certain number of rounds. As
established in Proposition 2 for the Flystel2 and in Proposition 3 for the Flystelp, the
differential uniformity of a Flystel is low (namely 4 in the former case and (𝛼 − 1) in
the latter). As a consequence, the probability of any transition of the form ℋ(𝑥 + 𝑎, 𝑦 +
𝑏)−ℋ(𝑥, 𝑦) = (𝑐, 𝑑) is small: it is upper bounded by (𝛼− 1)/𝑞2. Given that 𝑞 is typically
bigger than 263, we only need to activate 3 S-boxes to obtain more than 128 bits of security,
and 5 for 256 bits.

A similar arguments holds for linear attacks. As for the differential uniformity, the
correlation increases slowly with 𝑞 according to Conjecture 1. As a consequence, it is again
sufficient to activate a few S-boxes to prevent the existence of high correlation linear trails.

For both attacks, the activation of many S-boxes is further helped by our use of MDS
diffusion matrices. The structure ℳ, based on two parallel MDS matrices ℳ𝑥 and ℳ𝑦,
ensures that at least ℓ + 1 S-boxes are active in every pair of rounds.

6.2 Integral Attacks
A classical integral attack tracks the evolution of simple patterns through the rounds.
Consider a function of Fℓ

𝑞. As explained in [BS01, BS10], a multiset of elements of Fℓ
𝑞 can

have a word be saturated (i.e. this word takes all possible values exactly once), be constant,
have a sum equal to zero, or not yield any specific pattern. These patterns are denoted “*”,
“𝐶”, “0”, and “?” respectively. For example, through an S-box layer, (*, 𝐶, ..., 𝐶) is mapped
to (*, 𝐶..., 𝐶), while the application of an MDS matrix maps (*, 𝐶, ..., 𝐶) to (*, *, ..., *).

In our case, such attacks do not pose a significant threat. First, the open Flystel is
a 3-round Feistel network where the center round function is a permutation, so that the
only integral pattern is of the form (*, 𝐶) (?, *). As a consequence, patterns at the
word level cannot be propagated over two full rounds since we would need to consider
open Flystel instances where one of the inputs has the ? pattern. Patterns at the open
Flystel level are a bit more promising, i.e. saturating a full column using 𝑞2 queries
would lead to having fully saturated columns after one round, a patterned destroyed by
the following linear layer (see [BS01, BS10] for a more thorough treatment of such generic
integral attacks against SPNs).

18

As shown in [BCD+20], a new direction can be used in F𝑝: instead of saturating a
word of F𝑞, it is possible instead to saturate a multiplicative subgroup. Against some
algorithms like gMiMC-Hash, this approach is promising as the diffusion is slow and the
only non-linear operations are monomials—under which subgroups are stable. In our case,
subgroups will not be stable through an open Flystelp call because of its three internal
addition/subtractions and constant additions.

In binary fields, primitives with low algebraic degree are potentially vulnerable to
higher order differential cryptanalysis [Knu95], which are themselves closely related to
integral attacks. The open Flystel2 is an efficient counter-measure against such attacks
since open butterflies operating on (F2𝑛)2 are known to have an algebraic degree equal to
𝑛 (see Proposition 2). As shown in [BCD+20], a low degree can also be leveraged in the
case where 𝑞 is prime. Still, a similar argument will hold: the degree of 𝑥 ↦→ 𝑥1/𝛼 is too
high to allow any meaningfull pattern to emerge.

6.3 Invariant Subspaces
Remember that, regardless of the characteristic, it always holds that ℋ (𝑄𝑖(𝑦), 𝑦) =
(𝑄𝑓 (𝑦), 𝑦). For each Flystel instance in the round function (i.e., for each column in
the state), the probability that an input is in this set is equal to 1/𝑞. As this pattern is
non-linear, we deem it unlikely that it is preserved by the combination of the constant
addition and the linear layer with a probability higher than chance, meaning that this
pattern will be activated in inner rounds with a negligible probability.

That being said, it is a pattern that can be used to simplify the equations modeling
a call to Anemoi during an algebraic attack: if an attacker has some degrees of freedom,
then forcing the emergence of such a pattern within some Flystel instances is the best
strategy to simplify these equations.

6.4 Algebraic Attacks
In this section, we evaluate the security of Anemoi with respect to Gröbner basis attacks.
Since we are mainly interested in a minimal condition of the number of rounds to reach
a security of 2𝑠 bits, we allow ourselves to underestimate the real complexity in several
places, out of caution. In our experiments, for practical reasons, we restrict ourselves to
ℓ = 1 for both even and odd characteristics. We focus on the following version of the CICO
(Constrained Input Constrained Output) problem:

Definition 3. Let 𝑃 : F2
𝑞 → F2

𝑞 be a permutation. The CICO problem consists in finding
(𝑦in, 𝑦out) ∈ F2

𝑞 such that 𝑃 (0, 𝑦in) = (0, 𝑦out).

Solving method.

Clearly, there are plenty of ways to model CICO as an algebraic system. In this paper, we
restrict ourselves to the possibly most promising one for Anemoi which is by introducing
equations and variables at each round. Such an approach has already been taken to study
similar arithmetization-oriented primitives [DGGK21, BSGL20, GØSW22]. More precisely,
for 0 ≤ 𝑗 ≤ 𝑛𝑟 − 1, we define 𝑓𝑗 and 𝑔𝑗 by

(𝑥𝑗+1, 𝑦𝑗+1) = R𝑗(𝑥𝑗 , 𝑦𝑗)⇔
{︂

𝑓𝑗 := 𝑓𝑗(𝑥𝑗 , 𝑦𝑗 , 𝑥𝑗+1, 𝑦𝑗+1) = 0
𝑔𝑗 := 𝑔(𝑥𝑗 , 𝑦𝑗 , 𝑥𝑗+1, 𝑦𝑗+1) = 0,

where R𝑗 is the round function and where 𝑓 and 𝑔 are closely related to the verification
equations. Also, let ℱ := {𝑓0, 𝑔0, 𝑓1, 𝑔1, . . . , 𝑓𝑛𝑟−1, 𝑔𝑛𝑟−1} and let ℱCICO := ℱ ∪ {𝑥0, 𝑥𝑛𝑟

}.
This system can be seen as a system of 2𝑛𝑟 equations in 2𝑛𝑟 variables. To solve it, we
apply the standard zero-dimensional strategy:

19

1. compute a Gröbner basis 𝒢drl for a DRL ordering [Lou94, Definition 1.4.3],

2. then compute a new Gröbner basis 𝒢lex for the LEX ordering by using the FGLM
algorithm [FGLM93] on 𝒢drl.

We will analyze both steps. For Step 1, the running time of Gröbner basis algorithms such
as F4 [Fau99] or F5 [Fau02] is usually estimated by evaluating the solving degree of the
system denoted by 𝑑solv. This degree can be informally defined as the maximal degree of a
polynomial which occurs during the Gröbner basis computation. Once 𝑑solv is known, a
generic estimate for the cost of F4/F5 is

𝒪
(︂(︂

𝑑solv + 𝑛𝑣

𝑛𝑣

)︂𝜔)︂
(4)

field operations, where 𝑛𝑣 is our number of variables and where 2 ≤ 𝜔 ≤ 3 is a linear
algebra constant. We stress that this estimation is heuristic and it is an upper bound that
does not take into account the structure or the sparsity of the given Macaulay matrices.
In particular, to use it as a guidance, we will adopt the conservative 𝜔 = 2 for the linear
algebra constant. Regarding Step 2, the complexity of FGLM is in 𝒪 (𝑛𝑟 · deg (𝐼CICO)𝜔),
where 𝐼CICO := ⟨ℱCICO⟩ is the ideal generated by the system and where deg (𝐼CICO) is the
degree of this ideal.

Definition 4. Let 𝐼 ⊂ F𝑞[𝑥0, . . . , 𝑥𝑛𝑟
, 𝑦0, . . . , 𝑦𝑛𝑟

] be a zero-dimensional ideal. The degree
deg (𝐼) is defined as the dimension of F𝑞[𝑥0, . . . , 𝑥𝑛𝑟

, 𝑦0, . . . , 𝑦𝑛𝑟
]/𝐼.

There exists a sparse variant of FGLM [FM11], but the key quantity to grasp its
complexity is still deg (𝐼CICO). Also, for some AO primitives, the cost of this step was even
estimated by 𝒪 (𝑛𝑟 · deg (𝐼CICO)), see for instance [BSGL20, Appendix, p.12]. We are not
aware of the techniques employed to derive this result; in particular, this bound might
underestimate the real cost in the case of Anemoi. Still, we will use it as a conservative
lower bound to derive our parameters. Let us now estimate 𝑑solv (𝐼CICO) and deg (𝐼CICO) in
the case of Anemoi when ℓ = 1.

6.4.1 Characteristic 2.

When 𝑞 = 2𝑛 for some odd 𝑛, recall that 𝛼 = 3, 𝑄𝑖(𝑥) = 𝛽𝑥3 + 𝛾 and 𝑄𝑓 (𝑥) = 𝛽𝑥3 + 𝛿.
The system ℱCICO then contains 2𝑛𝑟 cubic polynomials in 2(𝑛𝑟 + 1)− 2 = 2𝑛𝑟 variables.
For such a system, one usually relies on the Macaulay bound for an upper bound on 𝑑solv,
namely 2𝑛𝑟(3− 1) + 1 = 4𝑛𝑟 + 1. This bound would be tight if the system of homogeneous
parts of highest degree was regular. However, our experiments indicate that ℱCICO does not
behave as such, see Appendix A.1. Therefore, we chose to extrapolate these data to find a
lower bound on 𝑑solv. As this method might lead to inaccuracies for a higher number of
rounds, our bound is voluntarily very coarse.

Conjecture 1. For 𝑛𝑟 ≥ 2, the maximal degree 𝑑solv (𝐼CICO) which occurs while computing
a DRL-Gröbner basis for 𝐼CICO is such that 𝑑solv (𝐼CICO) ≥ 3𝑛𝑟.

Then, using this generic estimate, we evaluate the complexity of Step 1. using Equa-
tion (4), with 𝑛𝑣 = 2𝑛𝑟. For Step 2 we have to evaluate deg (𝐼CICO). Using the generic
Bezout bound for a system of 2𝑛𝑟 cubic equations, we obtain

deg (𝐼CICO) ≤ 32𝑛𝑟 . (5)

Also, from experiments it seems that this bound is tight as we always have deg (𝐼CICO) =
32𝑛𝑟 . Therefore, we estimate the complexity of Step 2 to be 𝒪(𝑛𝑟 · 32𝑛𝑟) with 𝜔 = 1.

20

6.4.2 Odd characteristic.

When 𝑞 > 2 is an odd prime, the equations 𝑓𝑗 and 𝑔𝑗 are affine of degree 𝛼, but it has
already been noted in the proof of Proposition 3 that there is a quadratic relation ℎ𝑗

at each round, namely ℎ𝑗 := 𝑓𝑗 − 𝑔𝑗 for 0 ≤ 𝑗 ≤ 𝑛𝑟 − 1. It is also clear that taking
{𝑓𝑗 , ℎ𝑗} instead of {𝑓𝑗 , 𝑔𝑗} as a generating set for each round does not change the final
ideal 𝐼CICO but it better captures the specificity of the system. In contrast to the even
characteristic case, an important remark is that the equations have a part of degree 2
due to the expressions of 𝑄𝑖 and 𝑄𝑗 and a degree 𝛼 part due to the 𝑥 ↦→ 𝑥𝛼 permutation.
This feature seems to make the analysis of 𝑑solv slightly more complicated, for instance
it is not encompassed in a standard Hilbert series which is a common tool to estimate
𝑑solv. Experimentally, the behaviour of ℱCICO was clearly not the one of a generic system
especially when 𝛼 grows. Our experiments as well as further explanations are provided in
Appendix A.2, and from them we also propose

Conjecture 2. For 𝑛𝑟 ≥ 2, the maximal degree 𝑑solv (𝐼CICO) which occurs while computing
a DRL-Gröbner basis for 𝐼CICO is such that 𝑑solv (𝐼CICO) ≥ 𝛼 + 1 + 2(𝑛𝑟 − 2).

Plugging this degree into Equation (4), we get the complexity estimate that we rely on
to derive the number of rounds needed in Anemoi, i.e. Equation (2). From Conjecture 2
we can then derive a lower bound for the cost of Step 1 in the same way as in even
characteristic. For Step 2, we have deg (𝐼CICO) ≤ 2𝑛𝑟 𝛼𝑛𝑟 using the Bezout bound. However,
it turns out that the observed degree is much smaller:

Conjecture 3 (Degree, odd characteristic). We have deg (𝐼CICO) ≤ (𝛼 + 2)𝑛𝑟 .

We are able to prove Conjecture 3 by hand for 𝑛𝑟 = 1, and an investigation of the
general case is left for future work. Actually, even by adopting the Bezout bound instead
of Conjecture 3 as well as 𝜔 = 2, a very rough upper-bound for Step 2 is 𝒪(𝑛2

𝑟 · 22𝑛𝑟 ·𝛼2𝑛𝑟),
and this is already quite below the cost of Step 1.

Several columns.

When ℓ > 1 the number of equations and variables is naturally multiplied by ℓ and thus
experiments were extremely difficult to conduct. We generalize our formulae to ℓ > 1 by
replacing 𝑛𝑟 by ℓ · 𝑛𝑟 everywhere, whichis natural when looking at the expressions of the
Macaulay bound and the Bezout bound. In fact, the bounds given for Rescue in [BSGL20]
exhibit this extra ℓ factor.

7 Benchmarks
In this section, we compare various instances of Rescue-Prime, Poseidon and Anemoi with
respect to R1CS (Section 7.1) and Plonk (Section 7.2). For the last one, we will also propose
a comparison with ReinforcedConcrete.

To do so, we need to set the parameters. Then, let F𝑞, where 𝑞 = 𝑝, be a prime field,
and let 𝑚 be the number of field elements we operate on (𝑚 = 2ℓ for Anemoi). Besides,
let 𝑠 denote the security level in bits, 𝑛𝑟 the number of rounds, and 𝒞𝛼 the cost of an
exponentiation 𝑥 ↦→ 𝑥𝛼, as defined in Table 1.

Rescue-Prime requires 1.5·max{5, ⌈(𝑠+2)/4𝑚⌉} rounds when 𝛼 = 3 and 1.5·max{5, ⌈(𝑠+
3)/5.5𝑚⌉} rounds when 𝛼 = 5 (see [AAB+19, SAD20]). Poseidon has 𝑛𝑟 = RF + RP
rounds. While the bound is a complex expression, in our setting and for the safety margin
recommended by the authors, it holds that RF = 8, and that RP must be higher than (or
equal to) 1.075 · (⌈log𝛼(2) ·min{𝑠, log2(𝑝)}⌉+ ⌈log𝑎 𝑚⌉ − RF).

While we also consider 𝛼 = 17 as a good exponent (the cost of an exponentiation for
𝛼 = 17 is not so far from an exponentiation for 𝛼 = 5), we will compare here only instances

21

Table 4: Number of rounds for each hash function considered.
𝑠 log2 𝑞 𝑚 Rescue’ Poseidon Anemoi

128
192 8 8 (8 + 84) 10
256 6 9 (8 + 84) 10
384 4 14 (8 + 84) 12

256
192 8 14 (8 + 128) 14
256 6 17 (8 + 171) 15
384 4 26 (8 + 171) 20

(a) when 𝛼 = 3.

𝑠 log2 𝑞 𝑚 Rescue’ Poseidon Anemoi

128
192 8 8 (8 + 57) 10
256 6 8 (8 + 57) 10
384 4 9 (8 + 56) 12

256
192 8 9 (8 + 86) 14
256 6 12 (8 + 117) 15
384 4 18 (8 + 116) 20

(b) when 𝛼 = 5.

Table 5: Constraints comparison of several hash functions for R1CS.
𝑠 log2 𝑞 𝑚 Rescue’ Poseidon Anemoi

128
192 8 256 296 160
256 6 216 264 120
384 4 224 232 96

256
192 8 448 384 224
256 6 408 438 180
384 4 416 406 160

(a) when 𝛼 = 3.

𝑠 log2 𝑞 𝑚 Rescue’ Poseidon Anemoi

128
192 8 384 363 200
256 6 288 315 150
384 4 216 264 120

256
192 8 432 450 280
256 6 432 495 225
384 4 432 444 200

(b) when 𝛼 = 5.

with 𝛼 = 3 and 𝛼 = 5, as previously proposed in the other designs. In the following, we
will then consider the instances of Table 4.

7.1 R1CS Systems
We first estimate the number of constraints for R1CS. Using the closed Flystel of Figure 3b,
we obtain the following verification equations for the S-Box:{︃

(𝑣 − 𝑦)𝛼 + 𝛽𝑦2 + 𝛾 − 𝑥 = 0
(𝑣 − 𝑦)𝛼 + 𝛽𝑣2 + 𝛿 − 𝑢 = 0

(6)

Then, evaluating one S-Box costs 𝒞𝛼 constraints to obtain (𝑣 − 𝑦)𝛼, and 1 constraint for
each of the two quadratics. For Rescue-Prime and Poseidon, each S-Box costs 𝒞𝛼 constraints.
As a consequence, when using Rescue-Prime, Poseidon and Anemoi as hash functions in
sponge mode, the number of constraints is respectively 𝒞𝛼 · 2𝑚 · 𝑛𝑟, 𝒞𝛼 · (𝑚RF + RP), and
(𝒞𝛼 + 2) · (𝑚

2 · 𝑛𝑟).
Then we compare the number of constraints for those three schemes in Table 5. As we

can see, the Anemoi permutations are consistently much more efficient than both Poseidon
and Rescue-Prime by about a factor 2.

7.2 Plonk
Plonk [GWC19] uses a different, more complex arithmetization than R1CS. In standard
Plonk, a constraint is of the form:

𝑞𝐿,𝑖 · 𝑎𝑖 + 𝑞𝑅,𝑖 · 𝑏𝑖 + 𝑞𝑂,𝑖 · 𝑐𝑖 + 𝑞𝑀,𝑖 · 𝑎𝑖 · 𝑏𝑖 + 𝑞𝐶,𝑖 = 0

We refer to the 𝑞𝑗,𝑖 values as gate selectors, as they can be used to “select” the functionality
implemented by each constraint. The 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 values are called wire values and can be
thought of as intermediate values in a calculation. Plonk uses an internal permutation
argument to enforce consistency amongst wires, allowing us to assign a variable to multiple
wires: the permutation argument forces the assigned values to match. For ease of exposition,

22

Table 6: Constraints comparison of several hash functions for Plonk.
𝑠 log2 𝑞 𝑚 Rescue’ Poseidon Anemoi

128
192 8 1152 5448 520
256 6 756 3024 330
384 4 560 1336 216

256
192 8 2016 8000 728
256 6 1428 5808 495
384 4 1040 2554 360

(a) when 𝛼 = 3.

𝑠 log2 𝑞 𝑚 Rescue’ Poseidon Anemoi

128
192 8 1280 4003 560
256 6 768 2265 360
384 4 432 1032 240

256
192 8 1440 5714 784
256 6 1152 4245 540
384 4 864 1932 784

(b) when 𝛼 = 5.

we will consider rounds to be shifted so that constant additions and linear operations come
after the S-box.

As for R1CS, we again investigate Equation (6). In standard Plonk, evaluating one
S-Box costs 1 constaint to derive 𝑤 = 𝑦 − 𝑣 and 𝒞𝛼 constraints to obtain 𝑤𝛼 = (𝑦 − 𝑣)𝛼.
We also need 1 constraint for each of the two quadratics, and 1 each for the sums on 𝑥, 𝑢.
Concretely, for 𝛼 = 5:

1. 𝑤 = 𝑦 − 𝑣

2. 𝑤2 = 𝑤.𝑤

3. 𝑤4 = 𝑤2.𝑤2

4. 𝑤5 = 𝑤4.𝑤

5. 𝑦2 = 𝛽.𝑦.𝑦

6. 𝑥 = 𝑤5 + 𝑦2 + 𝛾

7. 𝑣2 = 𝛽.𝑣.𝑣

8. 𝑢 = 𝑤5 + 𝑣2 + 𝛿

While one would like to combine the last two pairs of constraints, standard Plonk
does not provide enough wires: we need one wire to hold 𝑤5, two wires to produce the
quadratic term via the two inputs of the multiplication gate, and a fourth wire to hold 𝑢
or 𝑥 respectively. However, given a fourth wire or a dedicated single wire squaring gate,
we can save 2 constraints on the above. Nevertheless, the total cost for the S-box layer
with 3 wires is (𝒞𝛼 + 5) 𝑚

2 .
The constant additions can be folded into the linear layer and can thus be disregarded.

For 𝑚 > 2, the linear layer itself consists of 2 separate matrix-vector multiplications, each
producing 𝑚

2 sums of 𝑚
2 terms, requiring 𝑚 · (𝑚

2 − 1) constraints. For 𝑚 = 2, the linear
layer is different, and we only require 2 constraints, which is especially relevant for the
Jive2 mode of operation.

Poseidon uses simpler S-Boxes, each costing 𝒞𝛼 constraints. Full rounds use 𝑚 S-boxes
whereas partial ones use only one. The linear layer costs 𝑚 · (𝑚− 1) constraints for all
rounds.

Rescue-Prime uses 𝑚 standard and 𝑚 inverted S-Boxes, each costing 𝒞𝛼. Each round
also utilizes 2 independent linear layers each costing 𝑚 · (𝑚− 1) constraints for all rounds.
We then compare the number of constraints for those three schemes in Table 6. As we can
see, again, Anemoi is consistently ahead of the competition with a significant margin.

7.2.1 Plonk Optimizations.

One of the more fruitful, but also challenging aspects of Plonk is its ability to extend the
expressive power of the constraints at a reasonable cost. In the above analysis, the cost of
the linear layer dominates that of the S-Boxes. This is particularly impactful for Poseidon,
as the efficiency benefit of its partial rounds is negated. The recent work of Ambrona et
al. [ASTW22] presents a set of generic and tailor-made optimizations for Plonk which are
applicable to Poseidon.

23

Two of the more powerful (but also costly) optimizations involve adding new wires in
the constraint system and also including terms of higher degree. For example, by adding
a fourth wire, we can handle additions of many terms more efficiently: we still need one
wire for the new total and one for the old one, but we can now consume two terms per
constraint. Such an addition alone can almost halve the constraint cost of the linear layers.
Adding a higher degree term, could allow one to directly produce 𝑥𝛼 in a single constraint,
instead of 𝒞𝛼. While very powerful, these additions incur a considerable cost to the prover’s
computation.

A computationally cheaper addition, is to add selectors so that one constraint can
address the wire values of the next constraint. While this limits the next constraint (and
may even necessitate leaving it blank) it can be quite powerful in practice: one addition
using six wires can consume 5 terms (𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒− 𝑇 = 0), while two additions on 3
wires can only consume 3: (𝑎 + 𝑏 − 𝑐 = 0), (𝑐 + 𝑑 − 𝑇 = 0). Finally, we may add terms
that do not increase the maximum degree of the constraint system for a lower cost, than
those than do. In our case, we are interested in a quadratic gate so that we can calculate
𝑣2 and 𝑡2 without requiring the use of a second wire.

It is clear from the above that an exhaustive comparison of optimization options
is beyond the scope of this work. At the same time, real-world usage implies that a
reasonable set of optimizations have been applied before deployment. For this reason, we
perform a minimal comparison between: Poseidon as optimized by Ambrona et al., the
ReinforcedConcrete [BGK+21] Hash function which was built with Plonk optimizations
in mind, and Anemoi. As Poseidon and ReinforcedConcrete are sponge based we use
𝑠 = 128, 𝛼 = 5 and 𝑚 = 3 to represent popular deployment choices, while we set 𝑚 = 2 for
Anemoi, using the Jive2 mode. To facilitate comparison we also extrapolate a Jive2 version
of Poseidon with the optimizations of Ambrona et al., as well as ReinforcedConcrete.

We use one of the constraint systems used by Ambrona et al. [ASTW22]: a 3-wire
constraint system with a 𝑥5, as well as selectors for the next constraint wires:

𝑞𝐿.𝑎 + 𝑞𝑅.𝑏 + 𝑞𝑂.𝑐 + 𝑞𝑀 .𝑎.𝑏 + 𝑞5.𝑐5 + 𝑞𝐿′ .𝑎′ + 𝑞𝑅′ .𝑏′ + 𝑞𝑂′ .𝑐′

At a base level, the relations we need to express one AnemoiJive2 round are:

1. 𝑦 − 𝑣 − 𝑤 = 0

2. 𝑤5 + 𝛽𝑦𝑦 + 𝛾 − 𝑥 = 0

3. 𝑤5 + 𝛽𝑣𝑣 + 𝛿 − 𝑢 = 0

4. �̃�− 𝑢− 𝑣 − 𝜌 = 0

5. 𝑣 − �̃�− 𝑣 − 𝜅 = 0

Where �̃�, 𝑣 are the values of 𝑢, 𝑣 after the linear layer and 𝜌, 𝜅 are round constants.
We can save one constraint by calculating �̃� directly and eliminating 𝑢. We also need
to make sure that the relations fit into the available wires, and make sure that the last
constraint leaves the “next constraint” wires free, so that each set of round constraints
can be followed by any constraint without restriction. To accomplish this, we also need to
perform some reordering. Setting 𝜌′ = 𝜌 + 𝛿, the end result is:

1. 𝑤5 + 𝛽𝑦𝑦 + 𝛾 − 𝑥 = 0, where: (𝑎, 𝑏, 𝑐) = (𝑦, 𝑦, 𝑤) and (𝑎′, 𝑏,′ 𝑐′) = (𝑥_, _)

2. 𝑦 − 𝑣 − 𝑤 = 0, where: (𝑎, 𝑏, 𝑐) = (𝑥, 𝑦, 𝑤) and (𝑎′, 𝑏,′ 𝑐′) = (𝑣, _, _)

3. 𝑤5 + 𝛽𝑣𝑣 + 𝜌′ + 𝑣 − �̃� = 0,where: (𝑎, 𝑏, 𝑐) = (𝑣, 𝑣, 𝑤) and (𝑎′, 𝑏,′ 𝑐′) = (�̃�, _, _)

4. 𝑣 − �̃�− 𝑣 − 𝜅, where: (𝑎, 𝑏, 𝑐) = (�̃�, 𝑣, 𝑣) and (𝑎′, 𝑏,′ 𝑐′) = (_, _, _)

Thus, we are able to perform one AnemoiJive round in 4 constraints, 2 additional
constraints to account for the initial linear layer, and 1 extra constraint for the final Jive2
addition (using the “next” wires). Using the calculations of [ASTW22], the prover cost for

24

Table 7: Constraints comparison of several hash functions for Plonk. We fix 𝑠 = 128, and
prime field sizes of 256, 384.

𝑚 Constraints

Poseidon 3 110
2 88

ReinforcedConcrete 3 378
2 236

AnemoiJive 2 79

(a) With 3 wires.

𝑚 Constraints

Poseidon 3 98
2 82

ReinforcedConcrete 3 267
2 174

AnemoiJive 2 60

(b) With 4 wires.

each constraint increases by a factor between of at most 40% (usually smaller, as the cost
is often dominated by exponentiation costs which scale more favourably), compared to
standard 3-wire Plonk. Thus, even under the most conservative estimate the optimized
version outperforms the standard one. With four wires, we are able to also eliminate 𝑤, by
replacing it with 𝑦 − 𝑣, reducing each round to 3 constraints, and need 1 fewer constraint
for the final Jive2 sum.

We summarize our findings in Table 7. We extrapolate the 𝑚 = 2 costs for Poseidon
and ReinforcedConcrete by assuming a Jive2 mode of operation is feasible at no additional
overhead or increase in rounds.We note while that the costs between Poseidon and Anemoi
are directly comparable as they use the same features (namely 𝑥5 and “next constraint”
selectors), ReinforcedConcrete leverages lookup tables [BGK+21, GW20] instead. We do
note that by [ASTW22, Table 2], the additional cost (compared to standard Plonk) for
these features is between 22% and 40% for 3 wires and between 10% and 33% for 4 wires.
The lower range represents the impact to prover exponentiations and the higher range
represents the impact to prover FFTs.

8 Conclusion
We have made several contributions towards both the theoretical understanding and the
practical use of arithmetization-oriented hash functions. Our main contribution is of
course Anemoi, a family of permutations that are efficient across various arithmetization
methods, yielding gains from 10% up to more than 50% depending on the context, over
existing designs. Furthermore, in order to be able to design its main component, the
Flystel structure, we had to first identify the link between arithmetization-orientation
and CCZ-equivalence. We hope that functions such as the Flystel itself as well as similar
ones will be studied by mathematicians as we believe those to be of independent interest.

Finally, we provided a new simple mode, Jive𝑏, which adds to the growing list of
permutation-based mode of operations to provided 𝑏-to-1 compression functions of particu-
lar relevance in Merkle trees. It allows us to further improve upon the state-of-the-art,
so that AnemoiJive requires only 60 Plonk constraints in total (when 4 wires are used),
compared to the best sponge-based instance of Poseidon which requires 98 Plonk constraints.

Acknowledgements
Thanks to Markulf Kohlweiss, Antoine Rondelet and Duncan Tebbs for proof-reading a
draft version of the paper and for providing insightful comments and suggestions. Thanks
to Duncan Tebbs for providing an independent estimation of the Flystel circuit cost in
terms of R1CS constraints.

25

References
[AAB+19] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan

Szepieniec. Design of symmetric-key primitives for advanced cryptographic
protocols. Cryptology ePrint Archive, Report 2019/426, 2019. https://
eprint.iacr.org/2019/426.

[AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan
Szepieniec. Design of symmetric-key primitives for advanced cryptographic
protocols. IACR Trans. Symm. Cryptol., 2020(3):1–45, 2020.

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and
Tyge Tiessen. MiMC: Efficient encryption and cryptographic hashing with
minimal multiplicative complexity. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 191–219,
Hanoi, Vietnam, December 4–8, 2016. Springer, Heidelberg, Germany.

[ASTW22] Miguel Ambrona, Anne-Laure Schmitt, Raphael R. Toledo, and Danny
Willems. New optimization techniques for plonk’s arithmetization. Cryptology
ePrint Archive, Paper 2022/462, 2022. https://eprint.iacr.org/2022/
462.

[Bar04] Magali Bardet. Étude des systèmes algébriques surdéterminés. Applications
aux codes correcteurs et à la cryptographie. Theses, Université Pierre et Marie
Curie - Paris VI, December 2004.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Greg Maxwell. Bulletproofs: Short proofs for confidential transactions
and more. In 2018 IEEE Symposium on Security and Privacy, pages 315–334,
San Francisco, CA, USA, May 21–23, 2018. IEEE Computer Society Press.

[BBC+20] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Großschädl,
Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, and Qingju Wang.
Lightweight AEAD and hashing using the Sparkle permutation family. IACR
Trans. Symm. Cryptol., 2020(S1):208–261, 2020.

[BC90] Jurjen N. Bos and Matthijs J. Coster. Addition chain heuristics. In Gilles
Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 400–407, Santa
Barbara, CA, USA, August 20–24, 1990. Springer, Heidelberg, Germany.

[BCD+20] Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder, Gregor Leander,
Gaëtan Leurent, María Naya-Plasencia, Léo Perrin, Yu Sasaki, Yosuke Todo,
and Friedrich Wiemer. Out of oddity - new cryptanalytic techniques against
symmetric primitives optimized for integrity proof systems. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume
12172 of LNCS, pages 299–328, Santa Barbara, CA, USA, August 17–21, 2020.
Springer, Heidelberg, Germany.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. SNARKs for C: Verifying program executions succinctly and in zero
knowledge. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 90–108, Santa Barbara, CA, USA,
August 18–22, 2013. Springer, Heidelberg, Germany.

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak.
In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,

26

https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2022/462
https://eprint.iacr.org/2022/462

volume 7881 of LNCS, pages 313–314, Athens, Greece, May 26–30, 2013.
Springer, Heidelberg, Germany.

[BDPVA07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. In ECRYPT hash workshop, number 9. Citeseer, 2007.

[Ber08] Daniel J Bernstein. The Salsa20 family of stream ciphers. In New stream
cipher designs, pages 84–97. Springer, 2008.

[BGK+21] Mario Barbara, Lorenzo Grassi, Dmitry Khovratovich, Reinhard Luefteneg-
ger, Christian Rechberger, Markus Schofnegger, and Roman Walch. Re-
inforced concrete: Fast hash function for zero knowledge proofs and veri-
fiable computation. Cryptology ePrint Archive, Report 2021/1038, 2021.
https://eprint.iacr.org/2021/1038.

[BS01] Alex Biryukov and Adi Shamir. Structural cryptanalysis of SASAS. In Birgit
Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 394–405,
Innsbruck, Austria, May 6–10, 2001. Springer, Heidelberg, Germany.

[BS10] Alex Biryukov and Adi Shamir. Structural cryptanalysis of SASAS. Journal
of Cryptology, 23(4):505–518, October 2010.

[BSCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. Cryptology ePrint Archive, Report 2014/349, 2014.
https://ia.cr/2014/349.

[BSGL20] Eli Ben-Sasson, Lior Goldberg, and David Levit. Stark friendly hash – survey
and recommendation. Cryptology ePrint Archive, Report 2020/948, 2020.
https://ia.cr/2020/948.

[BSV07] Thomas Baignères, Jacques Stern, and Serge Vaudenay. Linear cryptanalysis
of non binary ciphers. In Carlisle M. Adams, Ali Miri, and Michael J. Wiener,
editors, SAC 2007, volume 4876 of LNCS, pages 184–211, Ottawa, Canada,
August 16–17, 2007. Springer, Heidelberg, Germany.

[CCZ98] Claude Carlet, Pascale Charpin, and Victor Zinoviev. Codes, bent functions
and permutations suitable for DES-like cryptosystems. Designs, Codes and
Cryptography, 15(2):125–156, 1998.

[CDP17] A. Canteaut, S. Duval, and L. Perrin. A generalisation of Dillon’s APN
permutation with the best known differential and nonlinear properties for all
fields of size 24𝑘+2. IEEE Transactions on Information Theory, 63(11):7575–
7591, Nov 2017.

[CLO07] David Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms.
an introduction to computational algebraic geometry and commutative algebra.
2007.

[CM97] Robert S Coulter and Rex W Matthews. Bent polynomials over finite fields.
Bulletin of the Australian Mathematical Society, 56(3):429–437, 1997.

[CP19] Anne Canteaut and Léo Perrin. On CCZ-equivalence, extended-affine equiva-
lence, and function twisting. Finite Fields and Their Applications, 56:209–246,
2019.

27

https://eprint.iacr.org/2021/1038
https://ia.cr/2014/349
https://ia.cr/2020/948

[DGGK21] Christoph Dobraunig, Lorenzo Grassi, Anna Guinet, and Daniël Kuijsters.
Ciminion: Symmetric encryption based on toffoli-gates over large finite fields.
Springer-Verlag, 2021.

[DL18] Sébastien Duval and Gaëtan Leurent. MDS matrices with lightweight circuits.
IACR Trans. Symm. Cryptol., 2018(2):48–78, 2018.

[DP19] Orr Dunkelman and Léo Perrin. Adapting rigidity to symmetric cryptography:
Towards" unswerving" designs. In Proceedings of the 5th ACM Workshop on
Security Standardisation Research Workshop, pages 69–80, 2019.

[Dwo15] Morris Dworkin. Sha-3 standard: Permutation-based hash and extendable-
output functions, 2015-08-04 2015.

[Fau99] Jean-Charles Faugére. A new efficient algorithm for computing gröbner bases
(f4). Journal of Pure and Applied Algebra, 139(1):61–88, 1999.

[Fau02] Jean Charles Faugère. A new efficient algorithm for computing gröbner bases
without reduction to zero (f5). In Proceedings of the 2002 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’02, pages 75–83,
New York, NY, USA, 2002. Association for Computing Machinery.

[FGLM93] J.C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of
zero-dimensional gröbner bases by change of ordering. Journal of Symbolic
Computation, 16(4):329–344, 1993.

[FM11] Jean-Charles Faugère and Chenqi Mou. Fast algorithm for change of ordering
of zero-dimensional Gröbner bases with sparse multiplication matrices. In IS-
SAC 2011 - International Symposium on Symbolic and Algebraic Computation,
pages 115–122, San Jose, United States, June 2011. ACM.

[GKR+21a] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A new hash function for Zero-Knowledge
proof systems. In 30th USENIX Security Symposium (USENIX Security 21),
pages 519–535. USENIX Association, August 2021.

[GKR+21b] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A new hash function for zero-knowledge
proof systems. In Michael Bailey and Rachel Greenstadt, editors, USENIX
Security 2020, pages 1–17. USENIX Association, August 2021.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complex-
ity of interactive proof systems. SIAM Journal on Computing, 18(1):186–208,
1989.

[GØSW22] Lorenzo Grassi, Morten Øygarden, Markus Schofnegger, and Roman Walch.
From farfalle to megafono via ciminion: The prf hydra for mpc applications.
Cryptology ePrint Archive, Report 2022/342, 2022. https://ia.cr/2022/
342.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 305–326, Vienna, Austria, May 8–12, 2016.
Springer, Heidelberg, Germany.

28

https://ia.cr/2022/342
https://ia.cr/2022/342

[GW19] Ariel Gabizon and Zachary J. Williamson. Proposal: The turbo-
plonk program syntax for specifying snark programs. Available online
at https://docs.zkproof.org/pages/standards/accepted-workshop3/
proposal-turbo_plonk.pdf, 2019.

[GW20] Ariel Gabizon and Zachary J. Williamson. plookup: A simplified polynomial
protocol for lookup tables. Cryptology ePrint Archive, Report 2020/315, 2020.
https://eprint.iacr.org/2020/315.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments of
knowledge. Cryptology ePrint Archive, Report 2019/953, 2019. https:
//eprint.iacr.org/2019/953.

[Hir16] Shoichi Hirose. Sequential hashing with minimum padding. In NIST Work-
shop on Lightweight Cryptography 2016. National Institute of Standards and
Technology (NIST), 2016.

[Knu95] Lars R. Knudsen. Truncated and higher order differentials. In Bart Preneel,
editor, FSE’94, volume 1008 of LNCS, pages 196–211, Leuven, Belgium,
December 14–16, 1995. Springer, Heidelberg, Germany.

[Lou94] W.W.A.P. Loustaunau. An Introduction to Grobner Bases. American Mathe-
matical Soc., 1994.

[LTYW18] Yongqiang Li, Shizhu Tian, Yuyin Yu, and Mingsheng Wang. On the general-
ization of butterfly structure. IACR Trans. Symm. Cryptol., 2018(1):160–179,
2018.

[McL21] Michael B. McLoughlin. addchain: Cryptographic addition chain generation
in go. Repository https://github.com/mmcloughlin/addchain, October
2021.

[Nyb94] Kaisa Nyberg. Differentially uniform mappings for cryptography. In Tor Helle-
seth, editor, EUROCRYPT’93, volume 765 of LNCS, pages 55–64, Lofthus,
Norway, May 23–27, 1994. Springer, Heidelberg, Germany.

[PUB16] Léo Perrin, Aleksei Udovenko, and Alex Biryukov. Cryptanalysis of a theorem:
Decomposing the only known solution to the big APN problem. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of
LNCS, pages 93–122, Santa Barbara, CA, USA, August 14–18, 2016. Springer,
Heidelberg, Germany.

[SAD20] Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe. Rescue-prime: a
standard specification (SoK). Cryptology ePrint Archive, Report 2020/1143,
2020. https://eprint.iacr.org/2020/1143.

29

https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://github.com/mmcloughlin/addchain
https://eprint.iacr.org/2020/1143

Table 8: Gröbner basis computation on the ℱCICO system with ℓ = 1 over F215 .
𝑛𝑟 𝑑solv(ℱCICO) Macaulay bound Step degrees Total F4 time (𝑠)
2 8 9 3 → 8 0.009
3 12 13 3 → 12 0.510
4 15 17 3 → 15 11.580
5 18 21 3 → 18 344.050
6 21 25 3 → 21 14807.639

A Details on Algebraic Attacks
We now provide more technical content related to the Gröbner basis attack on Anemoi.
Regardless of the value of 𝑞 we have

(𝑥𝑗+1, 𝑦𝑗+1) := ℋ(ℳ𝑥(𝑥𝑗 , 𝑦𝑗)[0] + 𝑐𝑗 ,ℳ𝑥(𝑥𝑗 , 𝑦𝑗)[1] + 𝑑𝑗),

where ℳ𝑥 is the linear layer and where (𝑐𝑗 , 𝑑𝑗) ∈ F2
𝑞 are round constants.

A.1 Characteristic 2
For even characteristic we chose 𝑄𝑖(𝑥) = 𝛽𝑥3 + 𝛾 and 𝑄𝑓 (𝑥) = 𝛽𝑥3 + 𝛿 for 𝛾 ̸= 𝛿, so that

(𝑢, 𝑣) = ℋ(𝑥, 𝑦)⇔
{︂

(𝑣 − 𝑦)3 + 𝛽𝑦3 + 𝛾 − 𝑥 = 0
(𝑣 − 𝑦)3 + 𝛽𝑣3 + 𝛿 − 𝑢 = 0.

Assuming a linear layer of the form ℳ𝑥 : (𝑥, 𝑦) ↦→ (𝑥 + 𝛼𝑦, 𝛼𝑥 + (𝛼2 + 1)𝑦) where 𝛼 is a
primitive element of F𝑞 = F2𝑛 , the cubic equations at hand are{︂

𝑓𝑗 := (𝑦𝑗+1 − 𝛼𝑥𝑗 − (𝛼2 + 1)𝑦𝑗 − 𝑑𝑗)3 + 𝛽(𝛼𝑥𝑗 + (𝛼2 + 1)𝑦𝑗 + 𝑑𝑗)3 − 𝛼𝑦𝑗 − 𝑥𝑗 − 𝑐𝑗

𝑔𝑗 := (𝑦𝑗+1 − 𝛼𝑥𝑗 − (𝛼2 + 1)𝑦𝑗 − 𝑑𝑗)3 + 𝛽𝑦3
𝑗+1 − 𝑥𝑗+1.

Experiments for Conjecture 1.

We compared the behaviour of Magma’s F4 algorithm on the ℱCICO system for various
values of 𝑛𝑟. In Table 8, “𝑑solv(ℱCICO)" stands for the maximal degree which occurs while
computing the Gröbner basis and “Macaulay bound" is equal to 4𝑛𝑟 + 1. The F4 algorithm
consists in a sequence of steps, each of these steps considering all pairs of polynomials
having minimal degree and treating them at the same time. Column “Step degrees" lists the
degree of these steps and may provide more information than just the solving degree alone.
More precisely, the “𝑥→ 𝑦" indication means that the working degree of F4 increases by 1
at each step from degree 𝑥 to degree 𝑦 and that no degree fall polynomials occur, which
can be considered as the expected pattern in this case. On the one hand, we see that the
ℱCICO system seems to behave as such by looking at the sequence of step degrees. On the
other hand, the solving degree grows more slowly than the Macaulay bound which is the
expected bound for a random cubic system in 2𝑛𝑟 equations and more than 2𝑛𝑟 variables.
Finally, the lower bound of 3𝑛𝑟 that we give in Conjecture 1 seems quite conservative
regarding our results.

A.2 Odd characteristic
In this section, we explain why the analysis may be more complicated for odd 𝑞 and we
give the results of our Magma experiments to support Conjecture 2. This part is a bit
more involved and we refer the reader to [CLO07, Bar04] for some details on Gröbner
basis computation. We may consider a DRL ordering such that the largest variables are

30

the 𝑦𝑖’s and for which 𝑦𝑛𝑟
> · · · > 𝑦0 > 𝑥𝑛𝑟−1 > · · · > 𝑥1 > 𝑥𝑛𝑟

> 𝑥0. This choice is quite
natural since 𝑥0 and 𝑥𝑛𝑟

are the fixed variables in CICO. Similarly to Appendix A.1, the
expressions for 𝑓𝑗 and 𝑔𝑗 can be obtained from the verification equations

(𝑣 − 𝑦)𝛼 + 𝛽𝑦2 + 𝛾 − 𝑥 = 0
(𝑣 − 𝑦)𝛼 + 𝛽𝑣2 + 𝛿 − 𝑢 = 0.

These are polynomials of degree 𝛼 with leading monomial 𝑦𝛼
𝑗+1, and their difference

ℎ𝑗 := 𝑔𝑗 − 𝑓𝑗 is quadratic with leading monomial 𝑦2
𝑗+1. By Buchberger’s First Criterion,

this implies that polynomial pairs involving equations from different rounds 𝑖 ̸= 𝑗 do not
need to be treated in the first step of F4 since the leading terms are coprime. In particular,
this first step only selects the pairs {ℎ𝑗 , 𝑓𝑗} and therefore it may be relevant to analyze
what happens for only one round:

Lemma 1. A Gröbner basis for {ℎ𝑗 , 𝑓𝑗} can be found in degree 𝛼+1 and the set of leading
terms in the reduced Gröbner basis is

𝜁𝑗 := {𝑦2
𝑗+1, 𝑦𝛼

𝑗 } ∪ {𝑦𝑗+1𝑥𝑢
𝑗+1𝑦𝛼−1−𝑢

𝑗 , 0 ≤ 𝑢 ≤ 𝛼− 3}.

In particular, there is one quadratic leading term and 𝛼− 1 leading terms of degree 𝛼. The
latter come from degree falls from degree 𝛼 + 1 to degree 𝛼.

Experiments for Conjecture 2.

We proceed in the same way as in Appendix A.1 to derive the following Table 9 but we
do not include the Macaulay bound. Instead, we compare the behaviour of Magma’s F4
on ℱ and ℱCICO for various values of 𝛼 and 𝑛𝑟 to grasp the effect of the fixed variables.
Compared to Table 8, we may also bracket the maximal degree of a polynomial in the
reduced Gröbner basis in columns “𝑑solv(ℱ)" and “𝑑solv(ℱCICO)".

A first observation is that the results for ℱ and ℱCICO are the same when 𝛼 = 3. This
might be a consequence of Lemma 1. Indeed, the leading terms in the system do not
depend on the 𝑥𝑗 variables in this case, and therefore fixing 𝑥0 = 0 and 𝑥𝑛𝑟

= 0 does not
seem to affect the analysis. Moreover, the behaviour of the Gröbner basis algorithm seems
quite close to the one on a regular system: the sequence of step degrees increases steadily
until we reach the maximal degree. Also, there are no degree falls apart from the ones
associated to the plateau at 𝛼 + 1 = 4 which are once again a consequence of Lemma 1. All
seems to happen as if there were no 𝑥𝑗 variables, so among {ℎ𝑗 , 𝑓𝑗} one would only keep
𝑓𝑗 since ℎ𝑗 expresses 𝑥𝑗+1 in terms of larger variables. Also, note that the observed value
2𝑛𝑟 + 1 for the maximal degree indeed corresponds to the Macaulay bound 𝑛𝑟(3− 1) + 1
for {𝑓0, . . . , 𝑓𝑛𝑟−1} assuming that it is regular.

When 𝛼 grows, the behaviour of ℱCICO starts to deviate from the one of ℱ . The unusual
behaviour of the computation may also be seen by looking at the sequence of step degrees
which is quite erratic. In particular, many degree fall polynomials at degree larger than
𝛼 + 1 occur and they imply why the solving degree remains quite low. We have not been
able to analyze these degree falls at high degree. Overall, an explanation only based on
simple algebraic considerations seems out of reach since it would probably be valid for any
value of 𝛼 while the observed results depend a lot on 𝛼. Still, it is reasonable to believe
that the increased sparsity of the system for large 𝛼 comes into play.

Regarding the experimental lower bound of Conjecture 2, it would be tempting to
suggest an increase of 𝑑solv larger than 2 at each round when 𝛼 is higher, for instance 3 for
𝛼 = 11 and more generally 𝜆𝛼 for 𝛼 where 𝛼 ↦→ 𝜆𝛼 slowly increases. However, looking at
the case 𝛼 = 9 between rounds 2 and 3 and rounds 3 and 4 should not give us confidence
regarding a constant increase, and also there are no theoretical arguments (for instance
Hilbert series based ones) to support such a claim.

31

Table 9: Gröbner basis computation on ℱ and ℱCICO for 3 ≤ 𝛼 ≤ 11 and for various
number of rounds (odd characteristic).

𝛼 𝑛𝑟 𝑑solv(ℱ) 𝑑solv(ℱCICO) Step degrees ℱCICO
3 2 5 5(5) 3,4,4,5

3 7 7(7) 3,4,4,5,6,7
4 9 9(9) 3,4,4,5,6,7,8,9
5 11 11(11) 3,4,4,5,6,7,8,9,10,11
6 13 13(13) 3,4,4,5,6,7,8,9,10,11,12,13

5 2 10(10) 7(6) 5,6,6,6,6,7,6,6
3 15(15) 8(8) 5,6,6,6,6,7,8,8,8,8,8,8
4 18(18) 10(10) 5,6,6,6,6,7,8,8,8,9,9,9,9,10,10,10,10
5 12(12) 5,6,6,6,6,7,8,8,8,9,9,9,9,10,9,10,9,10,10,11,11,11,11,12,12,12

7 2 14(14) 8(7) 7,8,8,8,8,8,8,8,8,7,7
3 10(9) 7,8,8,8,8,8,8,9,10,10,10,10,10,10,10,10
4 12(12) 7,8,8,8,8,8,8,9,10,10,10,10,11,11,11,12,11,12,12,12,12,12,12,12

9 2 18(18) 10(9)
3 13(11)
4 15(?)

11 2 12(10)
3 15(13)
4 18(?)

32

B Reference Implementation
A full reference implementation of Anemoi, including AnemoiJive and AnemoiSponge, is
provided in our GitHub4 repository. It contains various routines to evaluate these functions
and to generate the corresponding systems of equations as well. Nevertheless, we include
some snippets from this implementation below.

The following SAGE functions evaluate the linear layers that are used in Anemoi
depending on the number ℓ of columns.

1 def M_2(x_input , b):
2 x = x_input [:]
3 x[0] += b*x[1]
4 x[1] += b*x[0]
5 return x
6
7 def M_3(x_input , b):
8 """ Figure 6 of [DL18]. """
9 x = x_input [:]

10 t = x[0] + b*x[2]
11 x[2] += x[1]
12 x[2] += b*x[0]
13 x[0] = t + x[2]
14 x[1] += t
15 return x
16
17
18 def M_4(x_input , b):
19 """ Figure 8 of [DL18]. """
20 x = x_input [:]
21 x[0] += x[1]
22 x[2] += x[3]
23 x[3] += b*x[0]
24 x[1] = b*(x[1] + x[2])
25 x[0] += x[1]
26 x[2] += b*x[3]
27 x[1] += x[2]
28 x[3] += x[0]
29 return x

The following function computes the number of rounds using our heuristic.
1 def get_n_rounds (s, l, alpha):
2 """ Returns the number of rounds needed in Anemoi (based on the
3 complexity of algebraic attacks).
4
5 """
6 r = 0
7 complexity = 0
8 while complexity < 2**s:
9 r += 1

10 complexity = binomial (
11 2*l*r + alpha + 1 + 2*(l*r -2) ,
12 2*l*r
13)**2
14 r += l+1 # security margin
15 if r > 10:
16 return r
17 else:
18 return 10

4https://github.com/vesselinux/anemoi-hash/

33

https://github.com/vesselinux/anemoi-hash/

Finally, the two modes in which Anemoi can be plugged are implemented by the
following function. They both take an input P which must implement a permutation.
Concretely, it must be such that calling P(x) on a list x of elements of the relevant field
returns a list of elements of the same field of the same size.

1 def jive(P, b, _x):
2 """ Returns an output b times smaller than _x using the Jive mode of
3 operation and the permutation P.
4
5 """
6 if b < 2:
7 raise Exception ("b must be at least equal to 2")
8 if P. input_size () % b != 0:
9 raise Exception ("b must divide the input size!")

10 x = _x [:]
11 u = P(x)
12 compressed = []
13 c = P. input_size ()/b # length of the compressed output
14 for i in range (0, c):
15 compressed . append (sum(x[i+c*j] + u[i+c*j]
16 for j in range (0, b)))
17 return compressed
18
19 def sponge_hash (P, r, h, _x):
20 """ Uses Hirose ’s variant of the sponge construction to hash the
21 message x using the permutation P with rate r, outputting a digest
22 of size h.
23
24 """
25 x = _x [:]
26 if P. input_size () <= r:
27 raise Exception ("rate must be strictly smaller than state size!")
28 # message padding (and domain separator computation)
29 if len(x) % r == 0 and len(x) != 0:
30 sigma = 1
31 else:
32 sigma = 0
33 x += [1]
34 x += (len(x) % r)*[0]
35 padded_x = [[x[pos+i] for i in range (0, r)]
36 for pos in range (0, len(x), r)]
37 # absorption phase
38 internal_state = [0] * P. input_size ()
39 for pos in range (0, len(padded_x)):
40 for i in range (0, r):
41 internal_state [i] += padded_x [pos][i]
42 internal_state = P(internal_state)
43 if pos == len(padded_x) -1:
44 # adding sigma if it is the last block
45 internal_state [-1] += sigma
46 # squeezing
47 digest = []
48 pos = 0
49 while len(digest) < h:
50 digest . append (internal_state [pos])
51 pos += 1
52 if pos == r:
53 pos = 0
54 internal_state = P(internal_state)
55 return digest

34

	Introduction
	Theoretical Background
	Modes of Operation
	Random Oracle: the Sponge Structure
	Merkle Compression Function: the Jive Mode

	The Flystel Structure
	On CCZ-Equivalence and Arithmetization-Orientation
	High Level View of the Flystel Structure
	Characteristic 2
	Odd Characteristic
	Implementation Aspects

	Description of Anemoi
	Round Function
	Higher Level Algorithms
	Specific Instances

	Security Analysis
	Differential and Linear Attacks
	Integral Attacks
	Invariant Subspaces
	Algebraic Attacks

	Benchmarks
	R1CS Systems
	Plonk

	Conclusion
	Details on Algebraic Attacks
	Characteristic 2
	Odd characteristic

	Reference Implementation

