
Faster Yet Safer: Logging System Via Fixed-Key Blockcipher

Viet Tung Hoang
Florida State University

tvhoang@cs.fsu.edu

Cong Wu
Florida State University

wu@cs.fsu.edu

Xin Yuan
Florida State University

xyuan@cs.fsu.edu

Abstract
System logs are crucial for forensic analysis, but to be useful,
they need to be tamper-proof. To protect the logs, a number
of secure logging systems have been proposed from both
academia and the industry. Unfortunately, except for the re-
cent KennyLoggings construction, all other logging systems
are broken by an attack of Paccagnella et al. (CCS 2020). In
this work, we build a secure logging system that improves
KennyLoggings in several fronts: adoptability, security, and
performance. Our key insight for performance gain is to use
AES on a fixed, known key. While this trick is widely used in
secure distributed computing, this is the first time it has found
an application in the area of symmetric-key cryptography.

1 Introduction

LOGGING MATTERS. Security breaches happen frequently,
with millions of victims and widespread damages [17]. To
investigate and recover from such incidents, people crucially
rely on system logs for information of system execution his-
tory; there is now a cottage industry on how to use system
logs for forensic analysis [27, 31, 34, 36]. Indeed, a recent
survey from VMware Carbon Black [46] reports that 75% of
the security specialists consider system logs to be the most
valuable artifact during an incident investigation. Due to this
demand, the global market of log management software is now
a billion-dollar business, and it keeps growing steadily [1].

LOGGING SYSTEMS ARE BROKEN. Still, logs are only use-
ful as long as attackers cannot tamper with them. But system
logs are usually the first target of an experienced attacker to
hide the traces of the intrusion. In the same VMware Carbon
Black survey above, 87% of the respondents indicate that log
tampering is a top evasion tactic.
To cope with the situation above, there have been a plethora
of secure logging systems, from both academia and the in-
dustry [16, 19, 21, 29, 35, 38, 39, 42, 45]. These solutions
either (i) produce integrity proofs for the logs and protect
the signing key via forward security [19, 38], or (ii) rely on

trusted hardware [29, 39]. In this line of research, the focus
is to give further utilities (such as public verifiability) or im-
prove performance. Security of these schemes is generally
not questioned; the consensus is that they work. Surprisingly,
in a recent work [40], Paccagnella et al. challenge this be-
lief, giving an attack that breaks all current logging systems
in Linux.

Specifically, there is often a non-negligible window of time
between (i) the moment that a system event occurs and its log
is generated, and (ii) the time when the log is committed and
becomes tamper-proof. Even worse, this time interval grows
with the system load. As a result, under an attack that causes
a burst of logging events, there is enough time for the attacker
to gain root privilege, and then undetectably modify the logs
of the intrusion activities before they are committed.

What causes those time intervals? In Linux, when a system
event occurs, the kernel creates a log message and puts it
in a queue. Later the log will be dequeued and sent to the
user space for a secure logging system to commit and store
in the log entries. For performance reason, messages in the
queue must be processed asynchronously, resulting in such
time intervals.

STATE OF THE ART: KENNYLOGGINGS. To thwart the at-
tack above, Paccagnella et al. suggest that a secure logging
system should operate within the kernel space, creating in-
tegrity proofs for logs before they are put in the queue. This
approach however imposes stringent performance require-
ments on the logging systems, excluding prior designs that are
based on public-key cryptography [35] or have non-constant
complexity [21, 42]. Paccagnella et al. thus opt to follow a
design of Bellare and Yee [16] for building KennyLoggings,
the first kernel-based secure logging system. Their bench-
marks show that KennyLoggings has just 8%–11% overhead
on log-intensive applications.

Conceptually, KennyLoggings produces integrity proofs for
log messages via a Message Authentication Code (MAC)
scheme. To ensure that an attack cannot steal a signing key,
once we sign for a message under the current key Ki, we

1

derive a new key Ki+1← H(Ki) and erase Ki, where H is a
cryptographic hash function that is instantiated via Blake2 [4].
Instantiating the MAC scheme is however tricky, as log mes-
sages are usually short, but standard MAC schemes (such as
GMAC [23]) are only optimized for long data. Paccagnella et
al. thus opt to use SipHash [3], a dedicated MAC design for
short messages. To improve performance, instead of deriving
keys on the fly, KennyLoggings precomputes 200,000 keys
and refills when half of them are used and deleted.

COULD WE DO BETTER? Despite the impressive perfor-
mance statistics of KennyLoggings, a closer look reveals that
it still leaves much to be desired.

First, KennyLoggings is based on Blake2 and SipHash. While
these cryptographic tools have been used in a number
of software such as the Linux kernel, they are not NIST-
approved algorithms, preventing government agencies from
using KennyLoggings.1 It is therefore desirable to build an
AES-based alternative for better adoptability from govern-
ment agencies and companies.

Next, KennyLoggings may significantly increase the latency
of system calls in a busy multi-threading environment, from
40% to 53%, according to the benchmarks in [40].

In addition, due to the key precomputation, KennyLoggings
has to hoard 200,000 keys, occupying 3.2 MB in kernel mem-
ory. Storing lots of sensitive information makes it vulnerable
to side-channel attacks such as [33]. It is therefore advisable
to reduce the amount of keying material to a few hundred
bytes. Turning off key precomputation in KennyLoggings
however decreases the performance by 8.6% on average [40].

Also, KennyLoggings has to store an integrity proof per log
message, resulting in substantial overheads in storing the
logs and transmitting them to the auditor. In particular, while
KennyLoggings uses an 8B tag, the actual overhead is 19B
per message, because the binary tag is encoded as a 16B string
of ASCII characters, and there is an additional 3B label for
preserving the semantics of Linux Audit records. Given that
an average log message is roughly 378B [37], the storage over-
head of KennyLoggings is estimated to be around 5.14% [40].

Finally, while the signing and verification of KennyLoggings
are already fast, it is still desirable to rev up the speed of these
operations.

WARMUP: QUICKLOG. Following the blueprint in [16], we
first build QuickLog, an AES-based logging system whose
signing is on par with KennyLoggings, but its verification is 6–
8 times faster. For example, it takes QuickLog just 73 nsto ver-
ify a 256-byte log message, whereas KennyLoggings needs
about 529 ns. Moreover, QuickLog only has 32-byte keying
material, which is much easier to protect against side-channel
attacks. We note that our experimental server only supports

1For example, according to NIST SP 800-175B [6], “when a federal
agency requires the use of cryptography (e.g., for encryption), an approved
algorithm must be used; approval is indicated by inclusion in a FIPS or SP.”

128-bit AES-NI; the performance gap between QuickLog and
KennyLoggings is likely to widen for latest machines that
support 512-bit VAES instructions.

There are several obstacles in building an AES-based logging
system whose performance is on par with KennyLoggings. As
mentioned earlier, log messages are usually short, but standard
blockcipher-based MAC schemes are not optimized on short
messages. Even worse, they have a relatively expensive setup
cost. In many MAC applications, this one-time cost can be
amortized over many uses under the same key. Unfortunately,
here we only sign one message per key, and thus we have to
pay the cost for every single use. Worse still, if we want to run
AES-NI from the Linux kernel, we have to save all floating-
point unit (FPU) registers first, make AES calls, and then later
restore those registers. This FPU context-switching incurs a
heavy performance penalty, which is particularly problematic
if all we need is to sign just one short message.

To deal with the issues above, instead of using AES with a
secret key, we use AES with a fixed, known key and model it as
an ideal permutation. The MAC key is instead used to whiten
the input and output of AES, following the Even-Mansour
design of blockcipher [22, 24]. As a result, although we keep
evolving the MAC key, we always use AES with the same
fixed key.

The trick of a fixed-key blockcipher is widely used in secure
distributed computing to improve the performance of circuit
garbling [11, 12]. By using a fixed key instead of changing key
per operation, we can avoid disrupting the AES-NI pipeline
and do not have to pay the key setup cost. Thanks to the
pipelining of AES-NI, the verification cost of QuickLog is
considerably faster than its signing cost, because we have
only one message to sign at a time, but lots of data to verify.

On the other hand, given that we only need to sign one mes-
sage per key, we realize that we do not need a fully-fledged
MAC. Instead, what we need is just a one-time MAC. The
classic, theoretical way to realize a one-time MAC is via a
pairwise independent hash function [47], but existing con-
structions unfortunately do not meet our speed demand. We
instead build a one-time MAC that we call XMAC by borrow-
ing design ideas of the XOR MAC construction [9]. There
are however fundamental differences between XMAC and
XOR MAC. For example, XMAC is based on a fixed-key
blockcipher whereas under XOR MAC, the blockcipher key
is secret. Moreover, XMAC is stateless because we only need
a one-time MAC; in contrast XOR MAC is either stateful or
probabilistic.

The security proof of XMAC is nontrivial if one wants a strong
bound. A naive approach is to rely on the known result that the
Even-Mansour construction is a good PRF [22, 24] but one
would end up with an inferior bound ℓ(p+ ℓ)/2128, where p
is the number of queries to the ideal permutation and ℓ is the
block length of the message that we sign. Our proof instead
yields a stronger bound (p+ℓ)/2128. We also give a matching

2

attack, showing that our security bound is tight.
The XMAC construction is so fast that despite the heavy
penalty of the FPU context switching above, our signing cost
is faster than KennyLoggings for messages longer than 256B.
Thus for applications whose average log length is beyond
256B, one can heuristically predict that QuickLog is better
than KennyLoggings. This 256B threshold holds for many
real-world situations. For example, a study by Ma et al. [37]
observes that under realistic conditions, the average log length
of a web server is about 378B.
While QuickLog follows the blueprint of Bellare and Yee [16],
a proof is needed to warrant its security. Indeed, although
KennyLoggings claims to inherit the security in [16], we point
out a glitch in its design that completely voids the correct
proof in [16]. While one can give a new (nontrivial) proof
to justify the security of KennyLoggings, it indicates that a
rigorous treatment is needed for QuickLog. To achieve this
goal, we give a simpler framework for the security of logging
system than the original treatment of Bellare and Yee. (The
latter is complex because it aims to deal with a more general
situation where MAC keys evolve over time intervals, and
messages within the same interval are signed under the same
key.) We then show that QuickLog has 96-bit security under
our threat model, which is stronger than the conventional
64-bit security of many NIST standards such as GCM [23].

EVEN BETTER: QUICKLOG2. In both QuickLog and
KennyLoggings, each log message has a corresponding tag,
resulting in substantial storage overheads. To eliminate this
storage cost, we build QuickLog2, an optimized version of
QuickLog with a single aggregate tag that authenticates all
log messages. Even better, with aggregate authentication,
QuickLog2 can directly thwart the truncation attack where
an adversary tries to delay the detection of its intrusion
by deleting some recent log messages with their tags. In
contrast, in QuickLog and KennyLoggings, one has to resort
to additional mechanisms (such as requesting signing a
known message immediately prior to an audit).
In addition, by avoiding appending an integrity proof to each
logging event, QuickLog2 also improves the signing time,
yet still retains the same verification speed as QuickLog.
For example, to sign a 256-byte message, QuickLog and
KennyLoggings need 366 ns and 362 ns respectively, whereas
QuickLog2 only needs 205 ns. Our benchmarks also show
that in busy multi-threading environments, QuickLog2 in-
troduces much less overhead than both QuickLog and
KennyLoggings. On the other hand, QuickLog2 has 48B
of sensitive material to protect against side-channel attacks,
which is slightly higher than QuickLog (32B), but still much
smaller than KennyLoggings (3.2MB).
We now describe how to add aggregate authentication to
QuickLog. A prior work of Ma and Tsudik [35] suggests
the following way to update the aggregate tag T when we
have a new log message Mi. First sign Mi to get a correspond-

ing tag Ti as usual, but then update T via T ← H(T ∥ Ti),
where H is a collision-resistant hash function such as SHA-2.
Unfortunately, if we incorporate this method into QuickLog,
it will significantly increase both the signing and verification
time. Borrowing ideas from [30], we instead update T via
T ← T⊕Ti, making the overhead of the aggregation negligi-
ble. Note that under our approach, the verification algorithm
is fully parallelizable. In contrast, the method of [35] forces
the auditor to make a long chain of hashing.

The xor trick above first appears in the work of Katz and
Lindell [30] for aggregating MAC signatures. Yet it has never
been used for prior logging systems due to an obvious attack.
In particular, for prior designs, one evolves keys over time
intervals, and in each interval, multiple messages are signed
under the same key. Thus the xor trick will fail to detect if
log messages of the same interval are reordered. It however
does work for our setting, as there is only a single message to
sign per key. Still, proving that this method can cope with the
truncation attack goes beyond what the abstraction of the xor
trick in [30] can deliver.

We formalize a game-based framework to capture the secu-
rity of logging protocols with aggregate authentication. We
then generically show that using the xor trick on a secure log-
ging scheme in the Bellare-Yee blueprint (such as QuickLog)
meets the new notion. In particular, our proof implies that
QuickLog2 also has 96-bit security.

A PERSPECTIVE. The move from standard secret-key block-
cipher to fixed-key blockcipher is simple in hindsight but
indicates a major conceptual leap. Indeed, while the trick of
using a fixed-key blockcipher has seen widespread use in se-
cure distributed computing, it has found no application in the
area of symmetric-key cryptography. The reason is simple:
one usually encrypts or authenticates many messages per key,
and for such settings, there is no performance advantage in
using AES on a fixed key compared to the standard way of
running AES on a secret key. Our paper introduces the first
application in the area of symmetric-key cryptography that
benefits from using a fixed-key blockcipher. Finding other
applications of this technique is an interesting direction for
future work.

CONCURRENT RELATED WORK. In a concurrent and inde-
pendent work, Ahmad, Lee, and Peinado [2] build HardLog,
a logging system that employs a novel audit device to syn-
chronously store critical log messages. Non-critical logs are
still processed asynchronously, but HardLog ensures that the
delay is bounded within 15 ms. This approach is complemen-
tary to ours; combining the two solutions will lead to the best
of both worlds, namely the fine-grained log availability of
HardLog, and the synchronous authentication of QuickLog2.

3

Game Gprf
F (A)

b←${0,1}; K←$ K
f←$ Func(Dom,Rng)
b′←$ AFn; Return (b′ = b)

procedure Fn(M)

If b = 1 then return FK(M)

Else return f (M)

Figure 1: Game defining PRF security of a function F : K ×
Dom→ Rng.

2 Preliminaries

NOTATION AND TERMINOLOGY. Let ε denote the empty
string. For a string x we write |x| to refer to its bit length,
and x[i : j] is the bits i through j (inclusive) of x, for 1≤ i≤
j≤ |x|. By Func(Dom,Rng) we denote the set of all functions
f : Dom→ Rng and by Perm(Dom) the set of all permuta-
tions π : Dom→ Dom. We use ⊥ as a special symbol to
denote rejection, and it is assumed to be outside {0,1}∗.
If X is a finite set, we let x←$ X denote picking an element
of X uniformly at random and assigning it to x. If A is an
algorithm, we let y← A(x1, . . . ;r) denote running A on in-
puts x1, . . . and coins r, and assigning the output to y. By
y←$ A(x1, . . .) we denote picking r at random and letting
y← A(x1, . . . ;r). We write A f to indicate that adversary A
has oracle access to a function f .

GAMES. We use the game-playing framework of [15]. (See
Fig. 1 for an example.) We write G(A)⇒ b to denote the
event of running game G with an adversary A that results in b.
We also write G(A) to abbreviate G(A)⇒ true.

PRF. Let F : K ×Dom→ Rng be a function. For an adver-
sary A , define its advantage in breaking the PRF security
of F as

Advprf
F (A) = 2 ·Pr[Gprf

F (A)]−1 ,

where game Gprf
F (A) is defined in Fig. 1. If the function F is

built on top of an ideal permutation π then A is also given
oracle access to both π and π−1.

(ONE-KEY) EVEN-MANSOUR SCHEME. The Even-
Mansour constructions [22, 24] is a well-known way to
build a blockcipher EM[π] : {0,1}n×{0,1}n → {0,1}n on
top of a permutation π : {0,1}n → {0,1}n. In particular,
EM[π](K,M) = π(K⊕M)⊕K. The following Lemma 2.1
gives a bound on the PRF security of EM[π] in the ideal-
permutation model; it combines the well-known PRP bound
of EM [22, 24] with the PRP/PRF Switching Lemma [14].

Lemma 2.1. Let π : {0,1}n→{0,1}n be a permutation that
we will model as an ideal permutation. Define EM[π] as above.
Then for an adversary A making at most q Fn queries and at
most p queries to π and π−1,

Advprf
EM[π](A)≤ q(p+q−1)

2n .

Game Gmac1
F (A)

(M,σ)←$ A ; K←$ K ; T ← F(K,M)

(M′,T ′)←$ A(T,σ); T ∗← F(K,M′)
return (M′ ̸= M and T ′ = T ∗)

Figure 2: Game defining single-user security of a one-time
MAC F .

3 One-time MAC

In this section we’ll formalize a notion of one-time MAC, and
show how to realize it via a fixed-key blockcipher.

3.1 Security Notions

ONE-TIME MAC. A one-time MAC is a function F : K ×
Dom → Rng. It takes as input a key K ∈ K and a mes-
sage M ∈ Dom, and then deterministically produces a tag
T ← F(K,M).

For an adversary A , we define its advantage in breaking secu-
rity of F as

Advmac1
F (A) = Pr[Gmac1

F (A)] ,

where game Gmac1
F (A) is in Fig. 2. Informally, the adver-

sary A first specifies a message M and stores its state in a
string σ. It is then given back its state σ and the genuine tag T
of M. The goal of the adversary is to forge a message M′ ̸= M
and its corresponding tag T ′.

The security notion above is a weaker variant of the standard
MAC notion where the adversary can specify many messages
and learn their corresponding tags. A standard MAC construc-
tion therefore can be used to sign many messages. In contrast,
a one-time MAC construction is intended to sign a single mes-
sage. Aiming for just a one-time MAC allows us to realize
this goal with a very simple and efficient construction via a
fixed-key blockcipher.

MULTI-USER SECURITY. In practice one would use a one-
time MAC to sign many messages, with one fresh random key
for each message. This is the multi-user setting, introduced
by Biham [18] in symmetric cryptanalysis and by Bellare,
Boldyreva, and Micali [7] in public-key cryptography. To
capture the multi-security of a one-time MAC F , for an ad-
versary A , we let

Advmu–mac1
F (A) = Pr[Gmu–mac1

F (A)] ,

where game Gmu–mac1
F (A) is defined in Fig. 3. Informally, A

is given a signing oracle. For each v-th query Mv, the oracle
creates a secret fresh random key Kv and returns the tag T ←
F(Kv,Mv). The adversary then creates a forgery (i,M′,T ′). It
wins the game if M′ ̸= Mi and T ′ = F(Ki,M′).

4

Game Gmu–mac1
F (A)

v← 0; (i,M′,T ′)←$ ASign

T ∗← F(Ki,M′); Return (M′ ̸= Mi and T ′ = T ∗)

Procedure Sign(M)

v← v+1; Kv←$ K ; Mv←M; T ← F(Kv,M)

Return T

Figure 3: Game defining multi-user security of a one-time
MAC F . If the adversary makes q signing queries then its
forgery output (i,M′,T ′) must satisfy i ∈ {1, . . . ,q}.

3.2 The XMAC Construction
We now show how to build a one-time MAC via a fixed-key
blockcipher; we call this construction XMAC.

THE XMAC CONSTRUCTION. Let n be a multiple of 8 and let
π : {0,1}n→ {0,1}n be a permutation. Let τ,r ∈ {1, . . . ,n}
such that r is a multiple of 8. For an integer i ∈ {1, . . . ,2r},
let [i]r denote an r-bit encoding of i. The XMAC construction
only processes byte strings up to (2r − t) · t bytes, where
t = (n− r)/8, its tag length is τ bits, and its key space is
{0,1}n. It is described in Fig. 4. Note that the list of counters
we use in signing a message uniquely encodes its byte length.
This ensures that the signing message and the forgery one
will result in different sets of AES inputs.
To implement XMAC, we can instantiate π via AES with a
constant key, meaning that n = 128. In our construction, we
pick r = 16. In other words, our XMAC implementation can
digest messages up to (216−14) ·14 = 917,308 bytes. This is
enough if one wants to use XMAC for system logging, as log
messages are short. In practice, log size rarely goes beyond
1KB; in our benchmarks, log size in fact never exceeds 400B.
The default maximum log size of Linux Audit is 8KB, way
below the limit of XMAC.
The design of XMAC takes inspiration from the XOR MAC
construction [9], but there are major differences between the
two. In particular, while XOR MAC is either stateful or ran-
domized,XMAC is stateless and deterministic. As a result, not
only is XMAC simpler than XOR MAC, it is also faster. More-
over, XMAC is based on a fixed-key blockcipher whereas un-
der XOR MAC, the blockcipher key is secret. Thus XMAC
is preferred in the setting where one has to update key per
signing, as there is no key setup and we can avoid disrupting
the AES-NI pipeline.

DISCUSSION. Traditional blockcipher-based MAC (such as
GMAC [23]) typically aims to minimize the number of block-
cipher calls. Such designs strive to use ⌈m/16⌉ parallel calls
to authenticate an m-byte message, at the expense of some
setup cost (such as building a look-up table for fast finite-
field multiplications). This approach is not suitable for our
setting, because (i) having an expensive setup cost is undesir-
able when one only authenticates a single message per key,

procedure XMAC[π,τ](K,M)

M1 ∥ · · · ∥Mm←M // |Mm| ≤ n− r, and other |Mi|= n− r
v← n− r−|Mm|; u← v/8; R← K
For i = 1 to m−1 do Xi← [i]r ∥Mi; R← R⊕π(Xi⊕K)

Xm← [m+u]r ∥ (Mm0v); R← R⊕π(Xm⊕K)

Return R[1 : τ]

π

M

π π

T

� M� M�� � �

K K K

���
τ

π

M

π π

T

� M� M�� � �

K K K

���
τ

�

Figure 4: The one-time MAC construction XMAC (top) and
an illustration of XMAC for the 3-block case, where the mes-
sage is either full-block (middle), or fragmentary (bottom)
with a one-byte padding. For the last block, we will pad 0’s if
necessary, and increase the counter with the byte length of the
padding. The box MSBτ outputs the τ-bit prefix of the input.

and (ii) for short messages, a few extra blockcipher calls have
little impact on the running time, thanks to the pipelining of
AES-NI. The XMAC construction thus uses ⌈m/14⌉ parallel
blockcipher calls for an m-byte message, with no setup cost.

CAVEAT. We note that XMAC must not be used to sign more
than one message per key. For example, suppose that we use

5

XMAC to sign messages M1 = 0n−r ∥0n−r, M2 = 1n−r ∥1n−r,
and M3 = 0n−r ∥ 1n−r on the same key. Let T1,T2,T3 be the
corresponding tags. Then one can forge the tag of M4 =
1n−r ∥0n−r via T4 = T1⊕T2⊕T3.

SINGLE-USER SECURITY OF XMAC. The following result
shows that XMAC is a good one-time MAC in the ideal-
permutation model; the proof is in Section 3.3. Note that if
we use a variant of XMAC that is based on the Even-Mansour
construction and rely on Lemma 2.1 then we will end up with
an inferior bound ℓ(p+ℓ)

2n + 1
2τ .

Theorem 3.1. Let π : {0,1}n→{0,1}n be a permutation that
we will model as an ideal permutation. Define XMAC[π,τ] as
above. Consider an adversary A that makes at most p ideal-
permutation queries, and its two messages are of at most ℓ
blocks (each of n− r bits). Then

Advmac1
XMAC[π,τ](A)≤ 4p+2ℓ

2n +
1
2τ

.

MULTI-USER SECURITY OF XMAC. The following result
shows that XMAC also has good multi-user one-time MAC
security in the ideal-permutation model. The proof is in Sec-
tion 3.4.

Theorem 3.2. Let π : {0,1}n→{0,1}n be a permutation that
we will model as an ideal permutation. Define XMAC[π,τ]
as above. Consider an adversary A that makes at most p
ideal-permutation queries and q≥ 1 signing queries, and its
messages are of at most s blocks (each of n− r bits). Then

Advmu–mac1
XMAC[π,τ](A)≤ 4q(p+ s)

2n +
1
2τ

.

MATCHING ATTACKS. The bound in Theorem 3.2 consists
of two important terms 1/2τ and pq/2n that correspond to
actual attacks. To have advantage 1/2τ, one simply picks an
arbitrary message M′, samples T ′←${0,1}τ, and then outputs
(1,M′,T ′). For the term pq/2n, consider the following attack
for the case τ = n.

• First, pick arbitrary distinct (n− r)-bit strings M and M′.
Let X = [1]r ∥M and X ′ = [1]r ∥M′.

• Next, for every i ≤ q, query Sign(M) to get answer Ti.
Note that each Ti is π(Ki⊕X)⊕Ki, where Ki is the i-th key.

• Pick arbitrary distinct L1, . . . ,Lp ∈ {0,1}n. For every k ≤
p, compute Vk← π(Lk⊕X)⊕Lk. If there are some i and k
such that Ti =Vk then we guess the key Ki as Lk, and then
output the forgery as (i,M′,π(Lk⊕X ′)⊕Lk).

To analyze the attack above, we will use the following in-
equality.

Lemma 3.3. [10] Let q ≥ 1 be an integer and a ≥ 0 a real
number. Assume aq≤ 1. Then (1−a)q ≤ 1−aq/2.

First, since L1, . . . ,Lp are distinct and K1, . . . ,Kq←${0,1}n,
the chance that there is a collision Lk = Ki is 1− (1− p/2n)q.
Using Lemma 3.3 with a = p/2n, the chance that there is a
collision Lk = Ki (and thus a matching Vk = Ti) is at least

1− (1− p/2n)q ≥ pq/2n+1 .

Still, given a matching Ti =Vk, we need to analyze the con-
ditional probability that Lk = Ki, since there might be false
positives. Fix i and k. Let Hit be the event that Ki = Lk and
let Bad be the event that Ki ̸= Lk but somehow Ti =Vk. Note
that the events Hit and Bad are disjoint. Our goal is to bound
Pr[Hit | Hit∪Bad]. From Bayes’ theorem,

Pr[Hit | Hit∪Bad] =
Pr[Hit∪Bad | Hit] ·Pr[Hit]

Pr[Hit∪Bad]

=
Pr[Hit]

Pr[Hit]+Pr[Bad]

=
1

1+Pr[Bad]/Pr[Hit]
.

For fixed i and k, the chance that Ki = Lk is 1/2n, whereas
given that Ki ̸= Lk, the conditional probability that Ti =
π(Ki⊕X)⊕Ki and Vk = π(Lk⊕X)⊕Lk are the same is at most
1/(2n−1)≤ 2/2n. Therefore

Pr[Bad] = Pr[Ki ̸= Lk and Ti =Vk]

≤ Pr[Ti =Vk | Ki ̸= Lk]≤
2
2n .

Hence Pr[Bad]/Pr[Hit] ≤ 2, and thus Pr[Hit | Hit∪Bad] ≥
1/3. As a result, the attack above wins with advantage at least
pq/6 ·2n.

TIGHTNESS OF THE BOUND. The matching attack for the
term pq/2n above can be extended to work with a general τ,
but the advantage will dwindle by a factor of 2n−τ. Thus while
our bound is tight if τ is close to n, there might be room for
improvement for the case that τ is much smaller than n (such
as n = 128 and τ = 64). We leave this as an open problem.

3.3 Proof of Theorem 3.1

PROOF OUTLINE. As a stepping stone, we will define an in-
termediate notion that we call two-time PRF. It is an analogue
of the standard PRF notion but (i) the adversary is now al-
lowed only two PRF queries, and (ii) if the PRF is built on top
of an ideal permutation π then the adversary is given access
to both π and π−1, but it is prohibited from querying them
after the second PRF query. We will show that a two-time
PRF is also a good one-time MAC; the proof is similar to
the classic proof that PRF security implies MAC security. We
will then prove that XMAC is a good two-time PRF via the
H-coefficient technique [20, 41], and thus XMAC is also a
good one-time MAC.

6

Game Gprf2
F (A)

b←${0,1}; K←$ K
f←$ Func(Dom,Rng)
count← 0; b′←$ AFn

Return (b′ = b)

procedure Fn(M)

count← count+1
If count > 2 then return ⊥
If b = 1 then return FK(M)

Else return f (M)

Figure 5: Game defining two-time PRF security of a function
F : K ×Dom→ Rng.

DEFINING TWO-TIME PRF. Let F : K ×Dom→ Rng be a
function. For an adversary A , define its advantage in breaking
the two-time PRF security of F as

Advprf2
F (A) = 2 ·Pr[Gprf2

F (A)]−1 ,

where game Gprf2
F (A) is defined in Fig. 5. This game is similar

to the standard PRF game in Fig. 1, but after the second query,
the Fn oracle only returns ⊥. In other words, the adversary
is effectively limited to two queries. If the function F is built
on top of an ideal permutation π then A is also given oracle
access to both π and π−1, but it is prohibited from querying
them after the second PRF query.
We stress that in defining two-time PRF security, it is cru-
cial that the adversary is not allowed to query π and π−1

after the second PRF query. Dropping this restriction will
lead to the following devastating attack on XMAC for the
typical case τ = n. In particular, pick an arbitrary (n− r)-
bit string M. Query M and M′ = M ∥M to the Fn oracles
to get answers T and T ′ respectively. Let B1 = [1]r ∥M and
B2 = [2]r ∥M. Note that in the real world, T = K⊕π(K⊕B1)
and T ′ = K⊕π(K⊕B1)⊕π(K⊕B2). One then can recover the
key K via π−1(T⊕T ′)⊕B2, and return 1 if T = K⊕π(K⊕B1).
This attack wins with advantage 1−1/2n.

TWO-TIME PRF IMPLIES ONE-TIME MAC. The following
result shows that any good two-time PRF is also a good one-
time MAC; the proof is in the full version of our paper. As a
result, below we will focus on proving two-time PRF security
of XMAC.

Proposition 3.4. Let F : K ×Dom→ Rng be a function. For
any adversary A , we can construct an adversary B of about
the same time such that

Advmac1
F (A)≤ Advprf2

F (B)+
1
|Rng|

.

Adversary B uses the same amount of resources as A , and its
messages are the same as those of A .

XMAC IS A GOOD TWO-TIME PRF. The following result
shows that XMAC is a good two-time PRF in the ideal-
permutation model.

Proposition 3.5. Let π : {0,1}n → {0,1}n be a permuta-
tion that we will model as an ideal permutation. Define

XMAC[π,τ] as above. Consider an adversary B that makes
at most p ideal-permutation queries, and its two messages
are of at most ℓ blocks (each of n− r bits). Then

Advprf2
XMAC[π,τ](B)≤ 4p+2ℓ

2n .

The proof of Proposition 3.5 is in the full version of our
paper. Here we sketch some high-level intuitions. Let M
and M′ be the PRF queries, with |M| ≥ |M′|, and let T and T ′

be the corresponding PRF outputs. In the real world, these
queries internally result in calling π(X1⊕K), . . . ,π(Xm⊕K)
for M, and π(X ′1⊕K), . . . ,π(X ′s⊕K) for M′. Since the list
of counters uniquely encodes the message byte length, and
M ̸= M′ due to the definitional restriction, there must be some
Xt ̸∈ {X ′1, . . . ,X ′s}.
Intuitively, we want to show that in the real world (where
outputs are generated via XMAC), it is unlikely that the ad-
versary can query π(X) with X ∈ {Xt⊕K,X ′s⊕K}, or query
π−1(Y) that ends up with answer Xt⊕K or X ′s⊕K. If this does
not happen then R ← π(Xt⊕K) and R′ ← π(X ′s⊕K) serve
as one-time pads to make T and T ′ pseudorandom.2 Using
the H-coefficient technique [20, 41], we can instead consider
the chance this bad event happens in the ideal world, for
K←${0,1}n independent of the adversary’s view.
The convenience above however comes with a cost. Note
that in both worlds, we can reconstruct the one-time pads R
and R′ via (T,T ′,K), and all π(Xi) with i ∈ {1, . . . ,m}\{t},
and all π(X ′j) with j≤ s−1. Using the H-coefficient technique
requires us to show that in the ideal world, it is unlikely that
the adversary can query π−1(Y) with Y ∈ {R,R′}, or query
π(X) that ends with answer R or R′. This bad event leads to
inconsistency, as in the ideal world, in general R ̸= π(Xt⊕K)
and R′ ̸= π(X ′s⊕K). To bound the chance this event happens,
we rely on the fact that in the ideal world, the string K and
the second PRF output are uniformly random, independent of
the adversary’s ideal-cipher queries and their answers.

XMAC IS A GOOD ONE-TIME MAC. Consider an adver-
sary A attacking the one-time MAC security of XMAC[π,τ]
that makes at most p ideal-permutation queries, and its two
messages are of at most ℓ (n− r)-bit blocks. From Proposi-
tion 3.4 for Rng = {0,1}τ, we can construct an adversary B
such that

Advmac1
XMAC[π,τ](A)≤ Advprf2

XMAC[π,τ](B)+
1
2τ

.

Adversary B makes at most p ideal-permutation queries and
its two messages are of at most ℓ (n− r)-bit blocks. Then
from Proposition 3.5,

Advprf2
XMAC[π,τ](B)≤ 4p+2ℓ

2n .

2It is possible that X ′s ∈ {X1, . . . ,Xm}, meaning that we also use R′ in
producing T , but it is protected by R.

7

Hence
Advmac1

XMAC[π,τ](A)≤ 4p+2ℓ
2n +

1
2τ

.

3.4 Proof of Theorem 3.2
The key idea of the proof is to reduce the multi-user one-time
MAC security to the notion of two-time PRF defined in Sec-
tion 3.3 using a standard hybrid argument. This is established
in Proposition 3.6 below; the proof is in the full version of
our paper.

Proposition 3.6. Let F : K ×Dom→ Rng be a function.
For any adversary A making q≥ 1 signing queries, we can
construct an adversary B of about the same time such that

Advmu–mac1
F (A)≤ q ·Advprf2

F (B)+
1
|Rng|

.

Adversary B runs A and calls F to compute the tags for all
but one signing messages of A , and queries the remaining
signing message and the forgery message of A to its PRF
oracle.

Back to the multi-user security of XMAC, from Proposi-
tion 3.6, we can construct an adversary B of at most Q ideal-
permutation queries whose two messages are of at most ℓ
blocks, where Q+ ℓ= p+ s, such that

Advmu–mac1
XMAC[π,τ](A)≤ q ·Advprf2

XMAC[π,τ](B)+
1
2τ

. (1)

From Proposition 3.5,

Advprf2
XMAC[π,τ](B)≤ 4Q+2ℓ

2n ≤ 4(Q+ ℓ)

2n =
4(p+ s)

2n . (2)

Combining Eq. (1) and Eq. (2) gives us the claimed bound.

4 Warmup: QuickLog

4.1 Formalizing Security of Logging Systems
THREAT MODEL. Following prior work [16, 40], we consider
an adversary that initially has non-privileged access to a ma-
chine via, say stolen credentials, and then mounts an attack to
escalate privilege. We assume that this attack invokes some
system calls that are recorded in the system’s audit logs. How-
ever, after gaining full system control, the adversary can mod-
ify the logs to hide the traces of the attack and avoid detection.

We assume that the audit logs are periodically sent to a trusted
machine for analysis. For the auditor to detect tampering of
logs, the logging system will include a short tag for each log
as a proof of integrity. Initially, the logging system and the
auditor share a secret short state; the logging system will then
update the state for each tag it signs and erase the prior state
from the host’s memory. We assume that (i) it is impossible for

the adversary to recover deleted states, and (ii) before gaining
privileged access, the adversary cannot retrieve partial infor-
mation of secrets in kernel memory, say using side-channel
attacks such as [33].

SYNTAX OF LOGGING PROTOCOL. Syntactically, a logging
protocol Π consists of a pair of deterministic algorithms
(Update,Sign) and is associated with a state space S .
• Initially, a root state S0←$ S is sampled. Derive

(K1,S1) ← Update(S0), share S0 with the auditor, and
erase S0 from the host’s memory.

• When we need to sign the i-th log message Mi, we retrieve
(Si,Ki) and generate the tag Ti← Sign(Ki,Mi). We then
update (Ki+1,Si+1)←Update(Si) and delete (Ki,Si) from
the host’s memory so that they are no longer available for
the adversary after it gains full system control.

• Given a root state S0 and message-tag pairs (M1,T1), . . . ,
(Mq,Tq), an auditor can verify the integrity of these logs
by iteratively deriving (Ki,Si)←Update(Si−1) and check-
ing if Ti = Sign(Ki,Mi) for every i≤ q.

The syntax above is a simplified version of the framework
of Bellare and Yee [16]; the latter instead evolves keys over
time intervals. As a result, messages within the same interval
are signed under the same key. However, as pointed out by
Paccagnella et al. [40], if an attack happens within an interval,
the adversary can get the signing key of the current interval
and undetectably hide the traces of its intrusion. We follow
their conservative recommendation, signing just one message
per key. This also substantially simplifies the syntax, since
one does not have to worry about the deletion or reordering
of messages within the same interval.

SECURITY NOTION FOR LOGGING PROTOCOLS. For an ad-
versary A attacking a logging protocol Π, we define its ad-
vantage in breaking the forward authenticity (FA) of Π as

Advfa
Π(A) = Pr[Gfa

Π(A)] ,

where game Gfa
Π
(A) is defined in Fig. 6. Initially the game

samples a state S0←$ S , and runs A with access to a sign-
ing oracle. For the v-th signing query Mv, the oracle runs
Update(Sv−1) to get an updated key Kv and state Sv, and then
returns the tag Tv← Sign(Kv,Mv). When A finishes querying,
its saves its internal state to a string σ. The adversary is then
given back σ and the last state Sq (but now without oracle
access to Sign) to output a forgery (M′,T ′). It wins the game
if M′ ̸= Mi but T ′ = Sign(Ki,M′).
The notion of forward authenticity is a simplified version of
the notion of forward-secure MAC of Bellare and Yee [16] in
which there is only one signing message per time interval. We
now give an intuition for why achieving this goal makes the
logs tamper-proof. Suppose that when the adversary gets full
control of the system, it obtains the state Sq (and thus knows
all the subsequent keys and states), but the system calls of
its attack are already recorded in the logs M1, . . . ,Mq. These

8

Game Gfa
Π
(A)

S0←$ S ; v← 0; (i,σ)←$ ASign

(M′,T ′)←$ A(Sv,σ)

T ∗← Sign(Ki,M′)
Return (M′ ̸= Mi and T ′ = T ∗)

procedure Sign(M)

v← v+1; Mv←M
(Kv,Sv)← Update(Sv−1)

Tv← Sign(Kv,Mv)

Return Tv

Figure 6: Game defining the forward authenticity of a logging
protocol Π.

procedure QuickLog[F,G].Update(S)
S′← F(S, [0]n); K′← F(S, [1]n); Return (K′,S′)

procedure QuickLog[F,G].Sign(K,M)

T ← G(K,M); Return T

Figure 7: The logging protocol QuickLog, built on top of a
PRF F and a one-time MAC G. Here for each integer a ∈
{0, . . . ,2n−1}, we let [a]n denote an n-bit encoding of a.

messages are signed under the (now deleted) keys K1, . . . ,Kq.
Suppose that later an auditor receives the stream of tampered
message-tag pairs (M′1,T

′
1),(M

′
2,T

′
2), Let i ≤ q be the

smallest index that Mi ̸=M′i . (This index must exist, otherwise
the auditor will find out the intrusion.) The forward authentic-
ity ensures that T ′i will be different from Sign(Ki,Mi), leading
to a detection of the tampering.

We note that by mounting a truncation attack (that is, deleting
the most recent log messages), an adversary may be able to
delay detection until the next verification period, but will be
ultimately detected. To avoid detection delay, Paccagnella et
al. [40] suggest that an administrator should request signing
a known message immediately prior to an audit.

4.2 The QuickLog System
DESCRIPTION OF QUICKLOG. Let F : K × {0,1}n →
{0,1}n be a PRF and let G : {0,1}n ×Dom → {0,1}τ be
a one-time MAC. The logging protocol QuickLog[F,G] with
message space Dom is described in Fig. 7. We instantiate F
via the Even-Mansour method EM[π] (that is described in
Section 2) and G via XMAC[π,τ] (that is described in Sec-
tion 3.2). The underlying permutation π for both constructions
is AES with the all-zero key.

QuickLog follows the blueprint in the work of Bellare and
Yee [16] but uses a one-time MAC instead of a standard MAC.
The key idea for performance improvement here is to build
both F and G on top of a fixed-key blockcipher.

DISCUSSION. Paccagnella et al. [40] suggest that one should
implement a logging protocol in the kernel to avoid their
race attack. Unfortunately, to implement XMAC efficiently
one needs to use vector instructions such as Intel SSE2, but
calling them from the Linux kernel incurs a performance
penalty. In particular, one has to save all floating-point unit

Game Gu(A)

S0←${0,1}n; v← 0
(i,σ)←$ ASign

(M′,T ′)←$ A(Sv,σ)

T ∗← G(Ki,M′)
Return (M′ ̸= Mv and T ′ = T ∗)

procedure Sign(M)

v← v+1; Mv←M
Kv,Sv←${0,1}n

If v > q−u then
Kv← F(Sv−1, [0]n)
Sv← F(Sv−1, [1]n)

Tv← G(Kv,Mv)

Return Tv

Figure 8: Game Gu in the proof of Theorem 4.1.

adversary BFn(A)

U←${1, . . . ,q}
v← 0; (i,σ)←$ ASign

(M′,T ′)←$ A(Sv,σ)

T ∗← G(Ki,M′)
If (M′ ̸= Mi and T ′ = T ∗)

Return 1
Else return 0

procedure Sign(M)

v← v+1; Mv←M
Kv←${0,1}n

If v = q−U +1 then
Kv← Fn([0]n)
Sv← Fn([1]n)

Else if v > q−U then
Kv← F(Sv−1, [0]n)
Sv← F(Sv−1, [1]n)

Tv← G(Kv,Mv)

Return Tv

Figure 9: Constructed adversary B in the proof of Theo-
rem 4.1.

(FPU) registers before using the vector instructions, and then
later restoring those. We stress that this issue only affects
the performance of the signing operation, as the verification
is implemented in the user space. Despite this penalty, our
experiments show that the signing part of QuickLog is on par
with that of its competitor, KennyLoggings [40].

SECURITY OF QUICKLOG. The following result shows that
QuickLog achieves forward authenticity for generic F and G.

Theorem 4.1. Let F : K ×{0,1}n→{0,1}n be a PRF and
let G : {0,1}n×Dom→{0,1}τ be a one-time MAC. For an
adversary A making q signing queries, we can construct an
adversary B such that

Advfa
QuickLog[F,G](A)≤ q ·Advprf

F (B)+Advmu–mac1
G (A) .

Adversary B runs A and makes 2(q−1) calls to F, q+1 calls
to G on the messages of A , plus two PRF queries.

Proof. For each u ∈ {0, . . . ,q}, consider game Gu in Fig. 8.
Game Gq corresponds to game Gfa

QuickLog[F,G](A). In con-
trast, in game G0, all the keys and states are sampled uni-
formly at random, and thus this game corresponds to game
Gmu–mac1

G (A).

We now construct the adversary B . It picks U←${1, . . . ,q}
and then runs A . It tries to simulate game GU (A), but for
the (q−U + 1)-th signing query M, it will instead use its
own PRF oracle Fn to compute Kq−U+1 ← Fn([0]n) and

9

Sq−U+1← Fn([1]n). The code of B is given in Fig. 9. Then

Advprf
F (B) = EU←${1,...,q}

[
Pr[GU (A)]−Pr[GU−1(A)]

]
=

1
q

q

∑
u=1

Pr[Gu(A)]−Pr[Gu−1(A)]

=
1
q

(
Pr[Gq(A)]−Pr[G0(A)]

)
=

1
q

(
Advfa

QuickLog[F,G](A)−Advmu–mac1
G (A)]

)
as claimed.

The following result establishes the security bound for
QuickLog in the special case that F is the Even-Mansour
construction EM[π] and G is XMAC[π,τ].

Corollary 4.2. Let π : {0,1}n → {0,1}n be a permutation
that we will model as an ideal permutation. Let F be the
Even-Mansour construction EM[π], and let G be XMAC[π,τ].
Consider an adversary A making q signing queries and at
most p ideal-permutation queries, and its messages are of at
most s blocks. Then

Advfa
QuickLog[F,G](A)≤ 6pq+4q2 +6sq

2n +
1
2τ

.

Proof. From Theorem 4.1, we can construct an adversary B
such that

Advfa
QuickLog[F,G](A)≤ q ·Advprf

F (B)+Advmu–mac1
G (A) .

Adversary B makes at most p + 2(q− 1) + s ideal-cipher
queries, and two PRF queries. From Lemma 2.1,

Advprf
F (B)≤ 2(p+2q+ s)

2n .

Moreover, from Theorem 3.2,

Advmu–mac1
G (A)≤ 4q(p+ s)

2n +
1
2τ

.

Summing up,

Advfa
QuickLog[F,G](A)≤ 6pq+4q2 +6sq

2n +
1
2τ

as claimed.

INTERPRETING THE BOUND. At the first glance, the bound
in Corollary 4.2 looks like a typical birthday bound (also
known as 64-bit security) of many NIST standards, such as
GCM [23]. However, a closer look reveals that it is much
stronger. Note that here q is the number of log messages in a
single auditing round. It is reasonable to assume that q≤ 230,
as a study by Ma et al. [37] observes just 2.76 million logging

events per day on average for a web server under realistic
conditions. Under this assumption, for n = 128 (the block
length of AES), the bound is roughly (p+ s)/296, meaning
that we actually have 96-bit security.

REMARK. Had we followed the route in [16] to reduce the
forward authenticity of QuickLog to the single-user one-time
MAC security of XMAC, we would have ended up with an
interior term q/2τ. Our approach instead yields a much better
term 1/2τ. This allows one to use a short tag length (say 8
bytes) for QuickLog, saving storage cost.

4.3 The KennyLoggings System
A GLANCE AT KENNYLOGGINGS. KennyLoggings [40]
also follows the blueprint of Bellare and Yee [16], but the
state Si and the key Ki are conflated. In particular, one derives
Ki← H(Ki−1) via a cryptographic hash function H that is in-
stantiated via Blake2b [4]. To sign a message M under key K,
one uses a PRF that is instantiated from SipHash [3].

To speed up performance, KennyLoggings pre-computes
200,000 keys, and refills when half of the keys are used and
deleted. As a result, KennyLoggings has to erase a prior key
by, say writing zeros to this memory location. One has to be
careful to ensure that a compiler will not remove these seem-
ingly useless writes [48]. In contrast, QuickLog maintains
just a single key and state, and during an update, it writes
the new key and state to the memory location of the old one.
Since the new key and state will be used later, this naturally
avoids compilers’ optimization of eliminating dead stores.3

A GLITCH IN KENNYLOGGINGS. While Paccagnella et
al. [40] claim that KennyLoggings inherits the security proof
from the work of Bellare and Yee [16], the conflation of the
key and state actually voids the security guarantee from [16].
One can still justify the security of KennyLoggings by mod-
eling Blake2b as a (programmable) random oracle (instead
of a pseudorandom generator as in [16]), but the proof is
non-trivial.

5 QuickLog2: Aggregate Authentication

The syntax of logging protocols in Section 4.1 requires that
each log message has a corresponding τ-bit tag. This substan-
tially increases the costs of storing the logs and transmitting
them to the auditor. In this section, we formalize the syntax
and security definition for logging protocols with aggregate
authentication [35]. In such a logging protocol, there is only
a single τ-bit aggregate tag to authenticate all log messages,
cutting costs in storage and transmission of the logs. Even bet-
ter, the use of aggregate authentication can directly thwart the

3KennyLoggings cannot use the new keys to overwrite the old ones. In
particular, key erasure has to be performed immediately after each sign-
ing. Thus the signing thread of KennyLoggings cannot wait until its key-
generating thread to wake up to overwrite the old keys.

10

truncation attack without employing additional mechanisms
as suggested in [40]. We then show how to extend QuickLog
to another scheme QuickLog2 of aggregate authentication
with negligible overheads.

5.1 Formalizing Security
SYNTAX. A logging protocol Π with aggregate authen-
tication consists of a triple of deterministic algorithms
(Update,Sign,Merge) and is associated with a state space S
and a tag length τ.

• Initially, a root state S0←$ S is sampled and an aggregate
tag T is initialized to 0τ. Derive (K1,S1)← Update(S0),
share S0 with the auditor, and erase S0 from the host’s
memory.

• When we need to sign the i-th log message Mi, we retrieve
(Si,Ki) and generate the tag Ti← Sign(Ki,Mi). We then
update T ←Merge(T,Ti) and (Ki+1,Si+1)←Update(Si).
Finally, we delete (Ki,Si,Ti) from the host’s memory.

• Given a root state S0, messages (M1, . . . ,Mq), and an ag-
gregate tag T , an auditor can verify the integrity of these
logs by (1) initializing T ∗ ← 0τ, and (2) iteratively de-
riving (Ki,Si) ← Update(Si−1), Ti ← Sign(Ki,Mi), and
T ∗ ← Merge(T ∗,Ti) for every i ≤ q, and (3) checking
if the final T ∗ is the same as the given T .

DEFINING SECURITY. For an adversary A attacking a log-
ging protocol Π with aggregate authentication, we define its
advantage in breaking the forward aggregate authenticity
(FA2) of Π as

Advfa2
Π (A) = Pr[Gfa2

Π (A)] ,

where game Gfa2
Π
(A) is defined in Fig. 10. Initially the ad-

versary generates log messages (M1, . . . ,Mq) and an internal
state σ. The game then samples a state S0←$ S , and generates
the corresponding aggregate tag T for (M1, . . . ,Mq). The ad-
versary is then given back its internal state σ, the aggregate
tag T , and the state Sq to produce a forgery (M′1, . . . ,M

′
r,T
′).

It wins the game if (1) the forged tag T ′ is exactly the aggre-
gate tag of (M′1, . . . ,M

′
r) for the state S0, and (2) if r ≥ q then

we require (M1, . . . ,Mq) ̸= (M′1, . . . ,M
′
q) to avoid trivial wins.

We now give an intuition for why achieving the FA2 goal
makes the logs tamper-proof. Suppose that when the adver-
sary gets full control of the system, it obtains the state Sq (and
thus knows all the subsequent keys and states) and the current
aggregate tag T , but the system calls of its attack are already
recorded in the logs M1, . . . ,Mq. These messages are signed
under the (now deleted) keys K1, . . . ,Kq. Suppose that later an
auditor receives the tampered messages (M′1, . . . ,M

′
r) and an

aggregate tag T ′. The auditor will compute the corresponding
aggregate tag T ∗ of (M′1, . . . ,M

′
r) and compares it with T ′.

Without loss of generality, assume that if r ≥ q then we must
have (M′1, . . . ,M

′
q) ̸= (M1, . . . ,Mq), otherwise the auditor can

Game Gfa2
Π

(A)

(M1, . . . ,Mq,σ)←$ A ; S0←$ S
T ← Agg(M1, . . . ,Mq)

(M′1, . . . ,M
′
r,T
′)←$ A(Sq,T,σ)

T ∗← Agg(M′1, . . . ,M
′
r)

If r < q then return (T ∗ = T ′)
Else return (T ∗ = T ′)∧ ((M1, . . . ,Mq) ̸= (M′1, . . . ,M

′
q))

procedure Agg(M1, . . . ,Mv)

T ← 0τ

For i← 1 to v do
(Ki,Si)← Update(Si−1); Ti← Sign(Ki,Mi)

T ←Merge(T,Ti)

Return T

Figure 10: Game defining the FA2 security of a logging pro-
tocol Π with aggregate authentication.

find out the intrusion. The FA2 notion ensures that T ′ ̸= T ∗

(even if the adversary performs a truncation attack, meaning
r < q), and thus the auditor can detect the tampering.

5.2 The QuickLog2 System
DESCRIPTION OF QUICKLOG2. A simple construction for
the Merge algorithm, suggested by Ma and Tsudik [35], is via
T ← H(T,Ti), where H is a collision-resistant hash function
such as SHA-2 or SHA-3. Unfortunately, if we incorporate
this method into QuickLog, it will significantly increase both
the signing and verification time. We instead use T ← T⊕Ti,
making the overhead of the aggregation negligible. Note that
under our approach, the verification algorithm is fully par-
allelizable. In contrast, the method of Ma and Tsudik [35]
forces the auditor to make a long chain of hashing.

The idea for the xor trick is from the work of Katz and Lin-
dell [30] for aggregating MAC signatures. Their mechanism
however has never been used for prior logging systems due to
an obvious attack. In particular, for prior designs, one evolves
keys over time intervals, and in each interval, multiple mes-
sages are signed under the same key. Thus the xor trick will
fail to detect if log messages of the same interval are reordered.
It however does work for our setting, as there is only a single
message to sign per key. Still, proving that this method can
cope with the truncation attack goes beyond what the abstrac-
tion of the xor trick in [30] can deliver. In particular, unlike
the the application in [30] that merely requires the individual
tags to be unpredictable, here we need them to be pseudoran-
dom.4 To realize this goal, we exploit the fact that XMAC is
a two-time PRF (as defined in Section 3.3).

Formally, we extend QuickLog to a scheme QuickLog2 of

4To see why, observe that under the truncation attack, the adversary is
given the checksum T1⊕·· ·⊕Tq of the individual tags T1, . . . ,Tq. It then
needs to produce some r < q, together with T1⊕·· ·⊕Tr . Thus the tag Tq acts
as a one-time pad to protect T1, . . . ,Tq−1.

11

procedure QuickLog2[F,G].Update(S)
S′← F(S, [0]n); K′← F(S, [1]n); Return (K′,S′)

procedure QuickLog2[F,G].Sign(K,M)

T ← G(K,M); Return T

procedure QuickLog2[F,G].Merge(T,Ti)

Return T⊕Ti

Figure 11: The logging protocol QuickLog2 with aggregate
authentication, built on top of a PRF F and a two-time PRF G.
Here for each integer a ∈ {0, . . . ,2n−1}, we let [a]n denote
an n-bit encoding of a.

aggregate authentication as shown in Fig. 11. The algorithms
Sign and Update of QuickLog2 remain the same as those
of QuickLog, and its Merge algorithm is built on top of the
xor trick. We stress that the primitive G is now required to be
a two-time PRF instead of merely a one-time MAC.

SECURITY OF QUICKLOG2. The following result shows that
QuickLog2 achieves FA2 security for generic F and G.

Theorem 5.1. Let F : K ×{0,1}n→{0,1}n be a PRF and
let G : {0,1}n×Dom→{0,1}τ be a two-time PRF. For an ad-
versary A making q signing messages and r forgery messages,
we can construct an adversaries B and D such that

Advfa2
QuickLog[F,G](A)≤ q ·Advprf

F (B)+q ·Advprf2
G (D)+

1
2τ

.

Adversary B runs A and makes 2(q−1) calls to F, q+r calls
to G on messages of A , plus two PRF queries. Adversary D
runs A and makes r+q−2 calls to G on r−1 forgery mes-
sages and q−1 signing messages of A , plus two PRF queries
on the remaining messages.

Proof. Since the adversary A receives the state Sq, it can
compute the subsequent keys Ki (with i > q). Thus with-
out loss of generality, we assume that A only generates at
most q forgery messages. Indeed, suppose that A outputs
(M′1, . . . ,M

′
r,T
′) with r > q. Then it could instead produce

(M′1, . . . ,M
′
q,T

′⊕Tq+1⊕·· ·⊕Tr) to win with the same advan-
tage, where Ti← G(Ki,M′i). Hence from now on, we assume
that r ≤ q. For each u ∈ {0, . . . ,q}, consider game Gu in
Fig. 12. Game Gq corresponds to game Gfa2

QuickLog2[F,G](A).
In contrast, in game G0, all the keys and states are sampled
uniformly at random.

We now construct the adversary B . It picks U←${1, . . . ,q}
and then runs A . It tries to simulate game GU (A), but will
use its own PRF oracle Fn to compute Kq−U+1← Fn([0]n)
and Sq−U+1← Fn([1]n). The code of B is given in Fig. 13.

Game Gu(A)

(M1, . . . ,Mq,σ)←$ A ; S0,S1,K1, . . . ,Sq,Kq←${0,1}n

T ← Agg(M1, . . . ,Mq)

(M′1, . . . ,M
′
r,T
′)←$ A(Sq,T,σ)

T ∗← Agg(M′1, . . . ,M
′
r)

If r < q then return (T ∗ = T ′)
Else return (T ∗ = T ′)∧ ((M1, . . . ,Mq) ̸= (M′1, . . . ,M

′
q))

procedure Agg(M1, . . . ,Mv)

T ← 0τ

For i← 1 to v do
If (i > q−u) then

Ki← F(Si−1, [0]n); Si← F(Si−1, [1]n)
Ti← G(Ki,Mi); T ← T⊕Ti

Return T

Figure 12: Game Gu in the proof of Theorem 5.1.

adversary BFn(A)

(M1, . . . ,Mq,σ)←$ A ; S0,S1,K1, . . . ,Sq,Kq←${0,1}n

U←${1, . . . ,q}; T ← Agg(M1, . . . ,Mq)

(M′1, . . . ,M
′
r,T
′)←$ A(Sq,T,σ)

T ∗← Agg(M′1, . . . ,M
′
r)

If r < q then return (T ∗ = T ′)
Else return (T ∗ = T ′)∧ ((M1, . . . ,Mq) ̸= (M′1, . . . ,M

′
q))

procedure Agg(M1, . . . ,Mv)

T ← 0τ

For i← 1 to v do
If (i = q−U +1) then

Ki← Fn([0]n); Si← Fn([1]n)
Else if (i > q−U) then

Ki← F(Si−1, [0]n); Si← F(Si−1, [1]n)
Ti← G(Ki,Mi); T ← T⊕Ti

Return T

Figure 13: Constructed adversary B in the proof of Theo-
rem 5.1.

Then

Advprf
F (B) = EU←${1,...,q}

[
Pr[GU (A)]−Pr[GU−1(A)]

]
=

1
q

q

∑
u=1

Pr[Gu(A)]−Pr[Gu−1(A)]

=
1
q

(
Pr[Gq(A)]−Pr[G0(A)]

)
=

1
q

(
Advfa2

QuickLog2[F,G](A)−Pr[G0(A)]
)

.

To bound Pr[G0(A)], consider games Pu in Fig. 14 for every
u ∈ {0, . . . ,q}. Game Pq coincides with game G0, whereas
in game P0, all the individual tags are sampled uniformly at
random, subject to the condition that if M′i = Mi then they
will have the same individual tag. Note that in game P0, the
correct aggregate tag T ∗ of the forgery messages is uniformly
random over {0,1}τ, independent of whatever the adversary A

12

Game Pu(A)

(M1, . . . ,Mq,σ)←$ A ; S0←$ S ; T ← 0τ

For i← 1 to q do
Ki←${0,1}n; Ti← Sign(i,Ki,Mi); T ← T⊕Ti

Sq←${0,1}n; (M′1, . . . ,M
′
r,T
′)←$ A(Sq,T,σ); T ∗← 0τ

For i← 1 to r do
If M′i = Mi then T ∗i ← Ti else T ∗i ← Sign(i,Ki,M′i)
T ∗← T ∗⊕T ∗i

If r < q then return (T ∗ = T ′)
Else return (T ∗ = T ′)∧ ((M1, . . . ,Mq) ̸= (M′1, . . . ,M

′
q))

procedure Sign(i,K,M)

If i≤ u then V ← G(K,M) else V←${0,1}n

Return V

Figure 14: Game Pu in the proof of Theorem 5.1.

adversary DFn(A)

(M1, . . . ,Mq,σ)←$ A ; T ← 0τ; U←${1, . . . ,q}
For i← 1 to q do

Ki←${0,1}n; Ti← Sign(i,Ki,Mi); T ← T⊕Ti
Sq←${0,1}n; (M′1, . . . ,M

′
r,T
′)←$ A(Sq,T,σ); T ∗← 0τ

For i ∈ {1, . . . ,r} do
If M′i = Mi then T ∗i ← Ti else T ∗i ← Sign(i,Ki,M′i)
T ∗← T ∗⊕T ∗i

If r < q then return (T ∗ = T ′)
Else return (T ∗ = T ′)∧ ((M1, . . . ,Mq) ̸= (M′1, . . . ,M

′
q))

procedure Sign(i,K,M)

If i =U then V ← Fn(M)

If i <U then V ← G(K,M) else V←${0,1}n

Return V

Figure 15: Constructed adversary D in the proof of Theo-
rem 5.1. In the for-loop i ∈ {1, . . . ,r}, the list {1, . . . ,r} is
ordered so that the number U , if it belongs to this set, is the
last element. This ensures that if G is built on top of ideal
primitives (as in the case of XMAC), D will never call them
after the second PRF query.

receives. Thus the chance that it can guess T ∗ correctly is 2−τ.
In other words, Pr[P0(A)] = 2−τ.

We now construct an adversary D. It picks U←${1, . . . ,q}
and then runs A . It tries to simulate game PU (A), but uses its
PRF oracle to sign messages MU and M′U . If the simulated
game returns true then D returns 1, otherwise it returns 0.
The code is given in Fig. 15. Then

Advprf2
G (D) = EU←${1,...,q}

[
Pr[PU (A)]−Pr[PU−1(A)]

]
=

1
q

q

∑
u=1

Pr[Pu(A)]−Pr[Pu−1(A)]

=
1
q

(
Pr[Pq(A)]−Pr[P0(A)]

)
=

1
q

(
Pr[G0(A)]− 1

2τ

)
.

Summing up,

Advfa2
QuickLog2[F,G](A) = q ·Advprf

F (B)+q ·Advprf2
G (D)+

1
2τ

as claimed.

In the case that F is the Even-Mansour construction EM[π]
and G is XMAC[π,τ], the following result derives the secu-
rity bound for QuickLog2. The bound is comparable to that
of QuickLog; that is, QuickLog2 also has 96-bit of security
under the assumption that q≤ 230.

Corollary 5.2. Let π : {0,1}n → {0,1}n be a permutation
that we will model as an ideal permutation. Let F be the
Even-Mansour construction EM[π], and let G be XMAC[π,τ].
Consider an adversary A making q signing queries and at
most p ideal-permutation queries, and its messages are of at
most s blocks. Then

Advfa2
QuickLog2[F,G](A)≤ 6pq+4q2 +8sq

2n +
1
2τ

.

Proof. From Theorem 5.1, we can construct an adversaries
B and D such that

Advfa2
QuickLog2[F,G](A)≤ q ·Advprf

F (B)+q ·Advprf2
G (D)+

1
2τ

.

Adversary B makes at most p + 2(q− 1) + s ideal-cipher
queries, and two PRF queries. Adversary D makes at most
p+s ideal-cipher queries, plus at most two PRF queries whose
total block length is at most s. From Lemma 2.1,

Advprf
F (B)≤ 2(p+2q+ s)

2n .

Moreover, from Proposition 3.5,

Advprf2
G (D)≤ 4(p+ s)+2s

2n =
4p+6s

2n .

Summing up,

Advfa2
QuickLog2[F,G](A)≤ 6pq+4q2 +8sq

2n +
1
2τ

as claimed.

6 Implementation

We implement both QuickLog and QuickLog2 on the Linux
kernel, version 3.10.0-1160, on top of Linux Audit, the stan-
dard system log collection framework of Linux. Below, we
will briefly review the architecture of the Audit system.

THE AUDIT SYSTEM. The Audit system consists of two main
components: kauditd (in the kernel) and auditd (in the user
space). It applies a (rule-based) audit filter on each system

13

call to check if a log is needed. The log message, if created,
will be put into a buffer. Later, kauditd will asynchronously
dequeue messages from the buffer and send them to auditd
to create log entries. The race attack in [40] takes advantage
of this asynchronous processing to modify a log message
before it is committed to the log entries. To thwart this attack,
following the approach in [40], we will sign each log message
before it enters the buffer.

IMPLEMENTING QUICKLOG. In QuickLog, the initial 16-
byte state S0 is generated via the get_random_bytes func-
tion, a cryptographically secure source of randomness. At
system startup, QuickLog will initialize S0 and then derive
the subsequent key-state pair (K1,S1). To do that, we modify
the code of the audit_init function, which initializes the
kernel components of Linux Audit.

We modify the code of the audit_log_end function to sign
log messages right before they enter the buffer. In addition, we
extend the spinlock that protects the existing critical section of
the audit_log_end function to cover the signing operation.

As described in Fig. 7, QuickLog is based on a PRF and
a one-time MAC; the former is instantiated from the Even-
Mansour construction EM[π] and the latter from XMAC[π,τ].
Here the permutation π is AES-128 with the all-zero key, and
the tag length τ is 64 (the same length as KennyLoggings).
The tag length is somewhat short, compared to standard MAC
constructions, but it is justified in Section 4.

The implementation of XMAC makes use of the Intel’s SIMD
vector extension and the AES-NI instruction set to maxi-
mize the speed.5 Unfortunately, such use inside the kernel
requires one to save the values of all floating-point unit reg-
isters via kernel_fpu_begin, and later restore them via
kernel_fpu_end. This incurs a penalty of 100–120 nsfor
each signing operation. The verification operation is however
implemented in the user space and is therefore not affected.

On the other hand, note that one is given lots of message-tag
pairs to verify. By exploiting the pipelining of AES-NI, we
improve the amortized speed of the verification operation.

IMPLEMENTING QUICKLOG2. Unlike QuickLog, for
QuickLog2 we do not have to write individual tags Ti to the
user space. We instead maintain a single aggregate tag T
in the memory, and update T ← T⊕Ti when Ti is available.
Since we only need to store a single aggregate tag, we use
the full tag length τ = 128 for QuickLog2.

7 Experiments

In this section, we measure and compare the performance
of QuickLog, QuickLog2, and the optimized version of

5Since our experimental machine does not support 256-bit and 512-bit
VAES, we use 128-bit AES-NI in the implementation. It is expected that
using 256-bit or 512-bit VAES in newer CPUs will further improve the
performance of QuickLog.

KennyLoggings (that has key precomputation). The unmodi-
fied Linux kernel (version 3.10.0-1160) is used as the baseline.

EXPERIMENT SETUP. We run experiments on a server with
two Intel Xeon Gold 6240 processors. Each processor has 18
cores and 2.60 GHz base frequency. The server runs CentOS
7.8 with Linux 3.10.0-1160 kernel and has 192GB of DDR4
RAM. Following [40], we configure Linux Audit to log all
forensics-related system calls via the same ruleset in [36, 39],
and use a buffer whose capacity is 220 entries. We however
add an additional rule to filter proctitle logs, as the information
they provide is redundant [44]:

• A proctitle log is supposed to record the full command
line that triggers the corresponding log event. But if the
corresponding process is invoked from, say a bash shell,
then the corresponding proctitle log only records “bash”.

• In the case that proctitle logs can capture the command-
line information, this can also be found in the entries of
execve syscall.

In fact, proctitle logs are never intended to have any forensic
significance. A Linux kernel announcement [43] explicitly
warns that:

“Proctitle is controllable by userspace, and thus should
not be trusted. It is meant as an aid to assist in debugging.”

In the NAS benchmarks [5], the size of proctitle logs con-
centrates around 77B. Ridding them bumps the average log
size from 199B to 310B, passing the break-even point 256B
between QuickLog and KennyLoggings.

7.1 Microbenchmarks
HOW WE BENCHMARK. We first evaluate the application-
independent performance of the Sign and Verify opera-
tions of QuickLog and QuickLog2, and compare that to
KennyLoggings. To eliminate the effect of the spinlock on
the Sign operation, we implement a kernel module and manu-
ally execute the Sign operations in that module. We measure
the performance of each operation for several message sizes,
from 64B to 384B, which covers the typical log size in our
applications. For each message size, we run 10 iterations. For
each iteration, we run the operation for 200,000 times, and
measure the median latency. We report the median of those
10 median timings; their standard deviation is within 5% of
the median.

For QuickLog, the reported running time of the Sign opera-
tion is the total time to sign a message, update the key and
state, and append the tag to the log. The running time of the
Verify operation however only includes the signing and up-
dating time. For the Sign/Verify operations of QuickLog2,
the running time consists of the signing time and the time
to update the key, state, and aggregate tag. For the Sign op-
eration of KennyLoggings, we report the total time to sign a

14

message, erase the current key, and append the tag to the log;
key precomputation cost is ignored. For the Verify operation
of KennyLoggings, the running time includes both the sign-
ing and the key generation cost, since keys now have to be
computed on the fly.

RESULTS. The experiment results are in Table 1 and Table 2.
For the Sign operation, due to an FPU context-switching
penalty, QuickLog is slightly slower than KennyLoggings on
small data (256B and below). Once data are large enough
so that the penalty is no longer the dominant cost, QuickLog
starts to outperform KennyLoggings, but the performance gap
is small for the typical log sizes. QuickLog2 is however much
faster than both QuickLog and KennyLoggings for all mes-
sage sizes, because it avoids appending tags to log messages.

64B 128B 256B 320B 384B

KennyLoggings 276 307 362 391 417
QuickLog 325 348 366 386 403
QuickLog2 169 187 205 225 242

Table 1: Latencies (in ns) for the Sign operation.

64B 128B 256B 320B 384B

KennyLoggings 417 462 529 576 601
QuickLog 44 53 73 91 98

Table 2: Latencies (in ns) for the Verify operation. QuickLog2
has exactly the same timing as QuickLog.

The Verify operation of QuickLog is implemented in the user
space, and does not bear the context-switching penalty. More-
over, thanks to the pipelining of AES-NI, one can improve
the amortized cost of QuickLog’s verification by exploiting
the fact that there are lots of data to verify. For example, it
takes a naive implementation 95 nsto verify a 256-byte mes-
sage, but our optimized code only needs 73 ns. QuickLog2
has about the same verification cost as QuickLog, because it
only adds an extra xor operation. On the other hand, the verifi-
cation of KennyLoggings includes the (somewhat expensive)
key generation. As a result, for verification, KennyLoggings
is 6–8 times slower than QuickLog/QuickLog2 for all mes-
sage sizes.

7.2 System-call Benchmarks

HOW WE BENCHMARK. Next, we measure the effect of
QuickLog,QuickLog2, and KennyLoggings on the execution
time of individual system calls when logging is enabled. We
first run the system calls on a single thread to measure the
added latency. We then run those on multiple (4, 8, and 16)
threads to study the effect on the spinlock contention as well
as the overall additional work.

KennyLogging QuickLog QuickLog2

1 4 8 16
0

10

20

30

40

50

O
v
e
rh

e
a
d
 (

%
)

(a) open

1 4 8 16
0

10

20

30

40

50

O
v
e
rh

e
a
d
 (

%
)

(b) write

1 4 8 16
0

10

20

30

40

50
O

v
e
rh

e
a
d
 (

%
)

(c) read

1 4 8 16

Thread Count

0

10

20

30

40

50

O
v
e
rh

e
a
d
 (

%
)

(d) stat

Figure 16: The relative overhead of QuickLog, QuickLog2,
and KennyLoggings on system-call latency, compared to the
unmodified Linux kernel.

.

We choose the following system calls in our experiments:
open (342-byte logs), read (280-byte logs), write (284-byte
logs), and stat (304-byte logs). They are also used in [40] to
evaluate KennyLoggings. Following [40], in the experiments,

15

each thread will run for 10 iterations, In each iteration, we
invoke the system call 100,000 times, and compute the median
latency. We measure the median of those 10 median timings;
their standard deviation is within 5% of the median. Based
on these median timings, we report the relative overhead of
QuickLog,QuickLog2, and KennyLoggings compared to the
unmodified Linux kernel.

RESULTS. The benchmark results are shown in Fig. 16. When
there is just a single thread, KennyLoggings has similar
performance as QuickLog, because their signing costs are
comparable for the log sizes in the benchmarks. As more
cores are used, the performance gap between QuickLog and
KennyLoggings widens. To understand this phenomenon, re-
call that KennyLoggings hides the (somewhat expensive) cost
of key generation from the critical path by using an additional
kernel thread. The cost of key generation is negligible if there
are only a few threads, but it will be manifest in busy multi-
threading environment. In contrast, QuickLog has no hidden
computation, and is therefore more efficient in multi-threading
environments. On the other hand, as expected, QuickLog2 sig-
nificantly reduces the overhead, compared to both QuickLog
and KennyLoggings.

7.3 Application Benchmarks

HOW WE BENCHMARK. To understand the system-wide im-
pact of QuickLog,QuickLog2, and KennyLoggings in realis-
tic situations, we evaluate them using a number of application
benchmarks, including I/O-intensive benchmarks and CPU-
intensive benchmarks.

The first test suite consists of the following I/O-intensive
benchmarks: NGINX [28], apache2 [25], redis [32], and
HAProxy [26]; the first three benchmarks are also used in [40]
to evaluate KennyLoggings. Each experiment consists of 10
iterations; we compute the median running time of those and
make sure that the standard deviation is within 5% of the
median. In each iteration, we use apache bench (for NGINX,
apache2, and HAProxy) and redis-benchmark (for redis) to
send 30,000 serial requests locally within the same machine.
Based on the median timings, we report the relative over-
head of QuickLog, QuickLog2, and KennyLoggings over the
unmodified Linux kernel.

The second test suite consists of CPU-intensive programs
from the NAS parallel benchmarks [5]. The High Perfor-
mance Computing (HPC) workloads in the NAS parallel
benchmarks allow us to evaluate the three secure logging
systems in a realistic multi-threading environment. We run
the CG, FT, MG, LU, BT, SP, and IS programs from the NAS
parallel benchmarks on a single node. The problem size for
all the benchmarks is Class A. BT and SP use 36 processes
because these two programs require a perfect square number
of processes. All other benchmarks use 32 processes because
they require the number of processes to be a power of two.

We perform each experiment 20 times, and report the median
execution time as well as the corresponding relative overhead
over the unmodified Linux kernel. For all cases, the standard
deviation is within 5% of the reported median.

RESULTS FOR I/O-INTENSIVE BENCHMARKS. The results
of the I/O-intensive benchmarks are shown in Table 3; the per-
formance of KennyLoggings is consistent with the reported
results in [40]. In all cases, QuickLog just slightly outper-
forms KennyLoggings because (1) their signing costs are
comparable for the range of log sizes,6 and (2) the key gen-
eration cost of KennyLoggings is negligible if an application
uses only one or two threads, as reported in [40]. On the other
hand, the signing time of QuickLog2 is at least 1.6 times
faster than QuickLog for the log sizes in the benchmarks. As
a result, QuickLog2’s overhead is roughly 1.6 times smaller
than that of QuickLog, for most cases.

RESULTS FOR CPU-INTENSIVE BENCHMARKS. The re-
sults for the NAS benchmarks are shown in Table 4. The
overhead of KennyLoggings is more substantial in the busy
multi-threading environment, as the hidden cost of key com-
putation is now manifest. The average log message size is
310B in these programs; and most message sizes are be-
tween 296B and 388B. The signing latencies of QuickLog and
KennyLoggings are comparable for these message sizes as
shown in Table 1. Yet for most benchmarks, QuickLog’s over-
head is roughly half of that of KennyLoggings. Again, recall
that the signing cost of QuickLog2 is at least 1.6 times faster
than QuickLog for these log sizes. As a result, QuickLog2’s
overhead is at least 1.6 times smaller than that of QuickLog
for all cases.

8 Conclusion

In this work, we build a secure logging system QuickLog2
that improves the state of the art, KennyLoggings [40], in
several fronts: adoptability, performance, and security. Our
implementation is open source and available at https://
github.com/TsongW/QuickLog.git.

To achieve the goals above, we introduce a new cryptographic
primitive, one-time MAC, and realize it efficiently via the
XMAC construction. While XMAC resembles the XOR-MAC
construction [9], XMAC is simpler and faster because (i) it
only needs to authenticate a single message per key, and (ii)
it is built on top of AES with a fixed key, avoiding the cost of
key setup and disrupting the AES-NI pipeline. We also realize
that the xor trick in [30] can be used to aggregate MAC tags
in our setting.

Our paper brings us another step forward in protecting system
logs of Linux machines. Studying how to mount the race at-
tack of [40] on Windows-based logging systems and building

6The majority (83.2%) of log messages are from 281B to 339B; the
remaining messages are rather short, from 60B to 165B.

16

https://github.com/TsongW/QuickLog.git
https://github.com/TsongW/QuickLog.git

Events/second KennyLoggings QuickLog QuickLog2

NGINX 10,623 10.7 9.4 5.7
apache2 11,087 9.5 7.3 4.4
HAProxy 10,127 9.6 7.7 5.1
redis 3,223 8.8 8.1 5.9

Table 3: The relative overhead (%) of QuickLog, QuickLog2, and KennyLoggings compared to the unmodified Linux kernel in
I/O-intensive benchmarks, together with the number of log events per second that they sign.

Vanilla Linux KennyLoggings QuickLog QuickLog2
Time (s) Time (s) Overhead (%) Time (s) Overhead (%) Time (s) Overhead (%)

CG 0.19 0.22 12.50 0.21 9.37 0.2 3.65
FT 0.39 0.44 12.66 0.41 6.46 0.40 3.36
MG 0.23 0.27 14.22 0.26 9.90 0.24 5.17
LU 1.47 1.63 11.54 1.54 5.12 1.50 2.66
BT 1.85 2.02 9.52 1.95 5.52 1.91 3.46
SP 1.54 1.79 14.78 1.65 5.31 1.61 3.26
IS 0.20 0.23 15.50 0.22 8.51 0.21 4.00

Table 4: Median execution time of QuickLog, QuickLog2, and KennyLoggings with their relative overhead compared to the
unmodified Linux kernel in the NAS parallel benchmarks.

a Windows version of QuickLog2 is an important task for
future work.

Acknowledgements

We thank Usenix Security reviewers for useful feedback,
and Riccardo Paccagnella for many helpful discussions.
Viet Tung Hoang and Cong Wu were supported in part by
NSF grants CICI-1738912, CRII-1755539, and CNS-2046540
(CAREER). Xin Yuan was supported in part by NSF grants
CICI-1738912, CRI-1822737, and SHF-2007827.

References

[1] Michelle Abraham and Christopher Kissel. Worldwide
Security and Information Event Management Market
Shares, 2020: SaaS-Focused Rise. Technical report,
Splunk, 2020.

[2] Adil Ahmad, Sangho Lee, and Marcus Peinado. HARD-
LOG: Practical Tamper-Proof System Auditing Using
a Novel Audit Device. In 2022 IEEE Symposium on
Security and Privacy, 2022.

[3] Jean-Philippe Aumasson and Daniel J. Bernstein.
SipHash: A fast short-input PRF. In Steven D. Galbraith
and Mridul Nandi, editors, INDOCRYPT 2012, volume
7668 of LNCS, pages 489–508. Springer, Heidelberg,
December 2012.

[4] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-
O’Hearn, and Christian Winnerlein. Blake2: simpler,
smaller, fast as md5. In International Conference on
Applied Cryptography and Network Security, pages 119–
135. Springer, 2013.

[5] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning,
R.L. Carter, L. Dagum, R.A. Fatoohi, P.O. Frederickson,
T.A. Lasinski, R.S. Schreiber, H.D. Simon, V. Venkatakr-
ishnan, and S.K. Weeratunga. The NAS Parallel Bench-
marks. Int. J. High Perform. Comput. Appl., 5(3):63–73,
September 1991.

[6] Elaine Barker. NIST SP 800-175B. Guideline for us-
ing cryptographic standards in the federal government:
Cryptographic mechanisms. 2016.

[7] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali.
Public-key encryption in a multi-user setting: Security
proofs and improvements. In Bart Preneel, editor, EU-
ROCRYPT 2000, volume 1807 of LNCS, pages 259–274.
Springer, Heidelberg, May 2000.

[8] Mihir Bellare, Rafael Dowsley, Brent Waters, and Scott
Yilek. Standard security does not imply security against
selective-opening. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237
of LNCS, pages 645–662. Springer, Heidelberg, April
2012.

[9] Mihir Bellare, Roch Guérin, and Phillip Rogaway. XOR
MACs: New methods for message authentication using

17

finite pseudorandom functions. In Don Coppersmith,
editor, CRYPTO’95, volume 963 of LNCS, pages 15–28.
Springer, Heidelberg, August 1995.

[10] Mihir Bellare and Viet Tung Hoang. Identity-based
format-preserving encryption. In Bhavani M. Thurais-
ingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017, pages 1515–1532. ACM Press,
October / November 2017.

[11] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and
Phillip Rogaway. Efficient garbling from a fixed-key
blockcipher. In 2013 IEEE Symposium on Security and
Privacy, pages 478–492. IEEE Computer Society Press,
May 2013.

[12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway.
Foundations of garbled circuits. In Ting Yu, George
Danezis, and Virgil D. Gligor, editors, ACM CCS 2012,
pages 784–796. ACM Press, October 2012.

[13] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possi-
bility and impossibility results for encryption and com-
mitment secure under selective opening. In Antoine
Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS,
pages 1–35. Springer, Heidelberg, April 2009.

[14] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The
security of cipher block chaining. In Yvo Desmedt,
editor, CRYPTO’94, volume 839 of LNCS, pages 341–
358. Springer, Heidelberg, August 1994.

[15] Mihir Bellare and Phillip Rogaway. The security of
triple encryption and a framework for code-based game-
playing proofs. In Serge Vaudenay, editor, EURO-
CRYPT 2006, volume 4004 of LNCS, pages 409–426.
Springer, Heidelberg, May / June 2006.

[16] Mihir Bellare and Bennet S. Yee. Forward-security
in private-key cryptography. In Marc Joye, editor, CT-
RSA 2003, volume 2612 of LNCS, pages 1–18. Springer,
Heidelberg, April 2003.

[17] Tara Siegel Bernard, Tiffany Hsu, Nicole Perlroth, and
Ron Lieber. Equifax Says Cyberattack May Have Af-
fected 143 Million in the U.S. The New York Times, Sept
07, 2017.

[18] Eli Biham. How to decrypt or even substitute DES-
encrypted messages in 228 steps. Inf. Process. Lett.,
pages 117–124, 2002.

[19] Erik-Oliver Blass and Stephan Marwedel. Secure log-
ging with syslog-ng: Tamper evidence and confiden-
tiality. In Free and Open source Software Developers’
European Meeting (FOSDEM 2020), 2020.

[20] Shan Chen and John P. Steinberger. Tight security
bounds for key-alternating ciphers. In Phong Q. Nguyen
and Elisabeth Oswald, editors, EUROCRYPT 2014, vol-
ume 8441 of LNCS, pages 327–350. Springer, Heidel-
berg, May 2014.

[21] Scott A. Crosby and Dan S. Wallach. Efficient data struc-
tures for tamper-evident logging. In Fabian Monrose,
editor, USENIX Security 2009, pages 317–334. USENIX
Association, August 2009.

[22] Orr Dunkelman, Nathan Keller, and Adi Shamir. Min-
imalism in cryptography: The Even-Mansour scheme
revisited. In David Pointcheval and Thomas Johans-
son, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 336–354. Springer, Heidelberg, April 2012.

[23] Morris J. Dworkin. NIST SP 800-38D. Recommenda-
tion for block cipher modes of operation: Galois/Counter
Mode (GCM) and GMAC. 2007.

[24] Shimon Even and Yishay Mansour. A construction of
a cipher from a single pseudorandom permutation. In
Hideki Imai, Ronald L. Rivest, and Tsutomu Matsumoto,
editors, ASIACRYPT’91, volume 739 of LNCS, pages
210–224. Springer, Heidelberg, November 1993.

[25] Apache Software Foundation. Apache2. https://
httpd.apache.org/. Accessed on 2021-12-7.

[26] LLC HAProxy Technologies. HAProxy 1.5.18. http:
//www.haproxy.org/. Accessed on 2021-12-7.

[27] Md Nahid Hossain, Sadegh M. Milajerdi, Junao Wang,
Birhanu Eshete, Rigel Gjomemo, R. Sekar, Scott D.
Stoller, and V. N. Venkatakrishnan. SLEUTH: Real-
time attack scenario reconstruction from COTS audit
data. In Engin Kirda and Thomas Ristenpart, editors,
USENIX Security 2017, pages 487–504. USENIX Asso-
ciation, August 2017.

[28] Nginx Inc. NGINX 1.20.1. https://www.nginx.
com/. Accessed on 2021-12-7.

[29] Vishal Karande, Erick Bauman, Zhiqiang Lin, and Lati-
fur Khan. SGX-log: Securing system logs with SGX. In
Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi,
and Xun Yi, editors, ASIACCS 17, pages 19–30. ACM
Press, April 2017.

[30] Jonathan Katz and Andrew Y. Lindell. Aggregate
message authentication codes. In Tal Malkin, editor,
CT-RSA 2008, volume 4964 of LNCS, pages 155–169.
Springer, Heidelberg, April 2008.

[31] Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung
Lee, Wen-Chuan Lee, Shiqing Ma, Xiangyu Zhang,
Dongyan Xu, Somesh Jha, Gabriela F. Ciocarlie, Ashish

18

https://httpd.apache.org/
https://httpd.apache.org/
http://www.haproxy.org/
http://www.haproxy.org/
https://www.nginx.com/
https://www.nginx.com/

Gehani, and Vinod Yegneswaran. MCI : Modeling-
based causality inference in audit logging for attack in-
vestigation. In NDSS 2018. The Internet Society, Febru-
ary 2018.

[32] Redis Labs. redis 6.2.6. https://redis.io/. Ac-
cessed on 2021-12-7.

[33] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In William Enck and Adrienne Porter
Felt, editors, USENIX Security 2018, pages 973–990.
USENIX Association, August 2018.

[34] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun
Li, Zhenyu Wu, Junghwan Rhee, and Prateek Mittal. To-
wards a timely causality analysis for enterprise security.
In NDSS 2018. The Internet Society, February 2018.

[35] Di Ma and Gene Tsudik. A new approach to secure
logging. ACM Transactions on Storage (TOS), 5(1):1–
21, 2009.

[36] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xi-
angyu Zhang, and Dongyan Xu. MPI: Multiple per-
spective attack investigation with semantic aware exe-
cution partitioning. In Engin Kirda and Thomas Risten-
part, editors, USENIX Security 2017, pages 1111–1128.
USENIX Association, August 2017.

[37] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. Pro-
Tracer: Towards practical provenance tracing by alter-
nating between logging and tainting. In NDSS 2016.
The Internet Society, February 2016.

[38] Giorgia Azzurra Marson and Bertram Poettering. Prac-
tical secure logging: Seekable sequential key generators.
In Jason Crampton, Sushil Jajodia, and Keith Mayes,
editors, ESORICS 2013, volume 8134 of LNCS, pages
111–128. Springer, Heidelberg, September 2013.

[39] Riccardo Paccagnella, Pubali Datta, Wajih Ul Hassan,
Adam Bates, Christopher Fletcher, Andrew Miller, and
Dave Tian. Custos: Practical tamper-evident audit-
ing of operating systems using trusted execution. In
Network and Distributed System Security Symposium
(NDSS 2020), 2020.

[40] Riccardo Paccagnella, Kevin Liao, Dave Tian, and Adam
Bates. Logging to the danger zone: Race condition
attacks and defenses on system audit frameworks. In
CCS 2020, pages 1551–1574, 2020.

[41] Jacques Patarin. The “coefficients H” technique (in-
vited talk). In Roberto Maria Avanzi, Liam Keliher,
and Francesco Sica, editors, SAC 2008, volume 5381

of LNCS, pages 328–345. Springer, Heidelberg, August
2009.

[42] Tobias Pulls and Roel Peeters. Balloon: A forward-
secure append-only persistent authenticated data struc-
ture. In Günther Pernul, Peter Y. A. Ryan, and Edgar R.
Weippl, editors, ESORICS 2015, Part II, volume 9327 of
LNCS, pages 622–641. Springer, Heidelberg, September
2015.

[43] William Roberts. [PATCH v5 3/3] audit: Audit
proc/<pid>/cmdline aka proctitle. The Linux Ker-
nel mailing list, February 2014. https://lkml.org/
lkml/2014/2/6/353.

[44] Richard Roth. Reproducibility by Ontological represen-
tation of Provenance. Master’s thesis, TU Wien, 2018.

[45] Bruce Schneier and John Kelsey. Cryptographic support
for secure logs on untrusted machines. In Aviel D. Ru-
bin, editor, USENIX Security 98. USENIX Association,
January 1998.

[46] VMware Carbon Black. Global Incident Response
Threat Report - The Ominous Rise of “Island Hopping”
& Counter Incident Response Continues. Technical
report, 2019.

[47] Mark N. Wegman and Larry Carter. New hash functions
and their use in authentication and set equality. Journal
of Computer and System Sciences, 22:265–279, 1981.

[48] Zhaomo Yang, Brian Johannesmeyer, Anders Trier Ole-
sen, Sorin Lerner, and Kirill Levchenko. Dead store
elimination (still) considered harmful. In Engin Kirda
and Thomas Ristenpart, editors, USENIX Security 2017,
pages 1025–1040. USENIX Association, August 2017.

19

https://redis.io/
https://lkml.org/lkml/2014/2/6/353
https://lkml.org/lkml/2014/2/6/353

A Artifact Appendix

A.1 Abstract
The artifact contains the source code and installation scripts
for the secure logging systems QuickLog and QuickLog2
in the paper. We also provided scripts to evaluate their
application-independent signing and verification speeds, so
that reviewers can reproduce the experiment results in Section
7.1 of the paper. We also included the code and scripts for
installing and evaluating the competitor KennyLoggings.

A.2 Artifact check-list (meta-information)
• Run-time environment: CentOS 7 (Linux version 3.10.0-

1160.49.1.el7). We also tested our code on Ubuntu 18 (Linux
5.4.0-120-generic) to ensure that our code works with other
Linux distributions. The code requires root access.

• Hardware: Our code requires that the machine supports AES-
NI, which is generally available in modern CPUs.

• Execution: Our code runs in Linux. For the evaluation of the
signing cost, we provide two separate sets of scripts for Linux
version 5 and prior versions.

• Metrics: The evaluation scripts report the stand-alone execu-
tion time for the signing and verification operations.

• Output: For each iteration, the script runs the operation for
200,000 times and computes the median execution time. It runs
for 10 such iterations, and outputs the median and standard
deviation of those 10 median timings. Users can customize the
message size.

• Experiments: We provide instructions for how to install our
logging schemes in the Linux kernel and evaluate their signing
and verification speeds in the README file of the github link
below. This allows one to reproduce the experiment results in
Section 7.1 of the paper.

• How much disk space required (approximately)?: 10MB.
• How much time is needed to prepare workflow (approx-

imately)?: Two hours (for downloading the Linux kernel
source code and patching the kernel).

• How much time is needed to complete experiments (approx-
imately)?: 10 minutes.

• Publicly available (explicitly provide evolving ver-
sion reference)?: Our code and scripts are pub-
licly available at https://github.com/TsongW/QuickLog/
tree/1d1cb65ace83308306c1ae80e884a1f4ed68facd

• Code licenses (if publicly available)?: GNU v3.0

A.3 Description
A.3.1 How to access

The code and scripts are publicly available at the github link above.

A.3.2 Hardware dependencies

Our code requires that the machine supports AES-NI, which is gen-
erally available in modern CPUs.

A.3.3 Software dependencies

Our code requires the availability of the source code of Linux kernel.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A.

A.4 Installation
• Download the Linux kernel source v3.10.0-1160.49.1.el7.
• Use the patches in the patches directory of the github link.

Follow the guidelines to patch the Linux kernel at https://
wiki.centos.org/HowTos/Custom_Kernel.

A.5 Experiment workflow
We provided scripts for compiling and benchmarking the schemes
in the README file of the github link above.

A.6 Evaluation and expected results
The paper uses three benchmarks to evaluate the secure log-
ging schemes; the artifact however only contains scripts
to reproduce the first one. This benchmark measures the
application-independent execution time of the signing and
verification operations. For signing cost, we expect that
(1) QuickLog and KennyLoggings have comparable perfor-
mance for realistic log sizes (64B–384B), and (2) QuickLog2
is about twice faster than the other two schemes. For verifica-
tion cost, we expect that (1) QuickLog and QuickLog2 have
the same performance, whereas (2) KennyLoggings is 6–10
times slower. In our experiments, the standard deviation is
within 5% of the median timing.

A.7 Experiment customization
N/A

A.8 Notes
The submission version of our paper contained only Quick-
Log. In the final version, we added an improved scheme
QuickLog2 that has much faster signing time, better secu-
rity, and no storage cost.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

20

https://github.com/TsongW/QuickLog/tree/1d1cb65ace83308306c1ae80e884a1f4ed68facd
https://github.com/TsongW/QuickLog/tree/1d1cb65ace83308306c1ae80e884a1f4ed68facd
https://wiki.centos.org/HowTos/Custom_Kernel
https://wiki.centos.org/HowTos/Custom_Kernel

	Introduction
	Preliminaries
	One-time MAC
	Security Notions
	The XMAC Construction
	Proof of Theorem 3.1
	Proof of Theorem 3.2

	Warmup: QuickLog
	Formalizing Security of Logging Systems
	The QuickLog System
	The KennyLoggings System

	QuickLog2: Aggregate Authentication
	Formalizing Security
	The QuickLog2 System

	Implementation
	Experiments
	Microbenchmarks
	System-call Benchmarks
	Application Benchmarks

	Conclusion
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

