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Abstract. Masking is a popular secret-sharing technique that is used to protect
cryptographic implementations against physical attacks like differential power analysis.
So far, most research in this direction has focused on finding efficient Boolean masking
schemes for well-known symmetric cryptographic algorithms like AES and Keccak.
However, especially with the advent of post-quantum cryptography (PQC), arithmetic
masking has received increasing attention from the research community. In practice,
many PQC algorithms require a combination of arithmetic and Boolean masking,
which makes the search for secure and efficient conversion algorithms between these
domains (A2B/B2A) an interesting but very challenging research topic. While there
already exist lots of tools that can help with the formal verification of Boolean
masked implementations, the same cannot be said about arithmetic masking and
accompanying mask conversion algorithms.
In this work, we demonstrate the first formal verification approach for (any-order)
Boolean and arithmetic masking which can be applied to both hardware and software,
while considering side-effects such as glitches and transitions. First, we show how
a formal verification approach for Boolean masking can be used in the context of
arithmetic masking such that we can verify A2B/B2A conversions for arbitrary mask-
ing orders. We investigate various conversion algorithms in hardware and software,
and point out several new findings such as glitch-based issues for straightforward
implementations of [CGV14]-A2B in hardware, transition-based leakage in Goubin-
A2B in software, and more general implementation pitfalls when utilizing common
optimization techniques in PQC. We provide the first formal analysis of table-based
A2Bs from a probing security perspective and point out that they might not be easy
to implement securely on processors that use of memory buffers or caches.
Keywords: Side-Channel Attacks · Arithmetic Masking · Formal Verification ·
Glitches

1 Introduction
Passive side-channel attacks, including power or electromagnetic analysis, are among the
most relevant attack vectors against cryptographic devices like smart cards, that are
physically accessible by an attacker [KJJ99,QS01]. A commonly used approach to protect
cryptographic implementations against these attacks is to implement algorithmic coun-
termeasures, for example masking [CRB+16,GIB18,GMK16, ISW03,RBN+15]. Masking
schemes split input and intermediate values of cryptographic computations into d + 1
random shares such that observations of up to d shares do not reveal any information about
the native (unmasked) value. Boolean masking schemes, where native values correspond
to the XOR-sum over its shares, have received much attention since such schemes are
applicable to almost all symmetric cryptographic algorithms. However, especially with
the advent of post-quantum cryptography (PQC), arithmetic masking schemes have also
gained increased importance in the research community since they generally represent a
better fit for these kinds of algorithms. In arithmetic masking, native values correspond to
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the arithmetic addition over their shares which allows to express arithmetic operations
much more efficiently than with Boolean masking. In practice however, arithmetic masking
often has to be combined with Boolean masking since PQC algorithms often make use
of various symmetric building blocks to achieve CCA2-security or for sampling random
numbers [FO99,BGR+21,SPOG19]. Masked versions of these algorithms hence require
efficient conversion techniques between Boolean and arithmetic masks, typically referred
to as A2B/B2A conversions in literature, and are hence also the main focus of research on
arithmetic masking. On top of that, many works in the past have shown that designing
masked implementations with practical security requires a detailed understanding of the
targeted hardware platform, as architectural side-effects like glitch or transition effects can
violate basic assumptions of masking schemes such as independence of leakage. This makes
the design of masked cryptographic implementations a notoriously error-prone and time
consuming task, which is why there is strong need for verification tooling that supports
this effort to the highest possible extend.

While there already exists a vast amount of literature on the verification of Boolean mask-
ing, including formal verification approaches like Rebecca [BGI+18], maskVerif [BBC+19],
Coco (Alma) [GHP+21,HB21], SILVER [KSM20], or scVerif [BGG+21], the same cannot
be said about arithmetic masking.

Limitations of Existing Approaches On the formal verification side, the first works on
proving formal security specifically of arithmetic masking schemes were published with
QMVerif by Gao et al. [GXZ+19] and LeakageVerif by Meunier et al. [MPH21]. While
these works already form a good foundation, these tools are limited in several ways.

In 2019, Gao et al. published QMVerif, a tool for the verification of first-order
Boolean and arithmetically masked software implementations [Gao20], which works in
two steps. First, QMVerif uses type inference to efficiently compute the distribution of
every internal program variable, which is either uniform, independent of private inputs,
dependent on private inputs or unknown. This step leads to inconclusive results due
to the lack of completeness guarantees of type inference, and false positives are very
likely [MPH21]. In that case, QMVerif moves on to the model-counting step, and encodes
the verification problem into a SAT equation to compute the exact missing probability
distributions. While model-counting is complete, it is does not scale, which is also why
they often need to resort to GPU acceleration [GXSC20]. This scalability issue also leads
to the author’s conclusion that model-counting-based masking verification approaches
are generally infeasible in the context of arithmetic masking. Besides that, QMVerif is
limited to masked software, the input program must follow a specific high-level syntax,
must not include any branches, loops or functions, and variables are limited to 8 bit. The
leakage model of QMVerif hence also does not consider hardware side-effects like glitches
and transitions, and it is unclear wether QMVerif can be applied to conversions without a
power-of-two-modulus. The same authors later propose HOME for higher orders following
the same approach, but do not evaluate it for higher-order arithmetic masking. Since the
tool is not (yet) open-source, it is not possible to investigate its further functionality.

More recently, Meunier et al. [MPH21] propose LeakageVerif, a verification library
based on the substitution algorithm suggested by Barthe et al. [BBD+15]. Although the
evaluation shows that LeakageVerif is more efficient than QMVerif, it does not provide
a model-counting step in case the substitution fails, and is therefore not complete and fails
to verify common A2B/B2A conversions such as Goubin-A2B [Gou01] and [CGV14]-B2A
correctly. Additionally, the tool works for first-order software implementations only, does
not consider glitches, cannot verify table lookups and is also not evaluated for moduli
which are not a power of two. The masked implementation must be provided in Python.

In general, both QMVerif and LeakageVerif are sound (leakages are never missed),
but can only achieve completeness (leaks are only reported if they really exist) in many
scenarios if they fall back to expensive and exact model-counting. The evaluation executed
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by Meunier et al. [MPH21] shows that it is very likely that the model-counting step is
necessary due to a high rate of false-positives, which makes both approaches inefficient in
some cases.

In 2021, Bos et al. demonstrate the verification of a first-order masked software
implementation of Kyber [BGR+21] using an extended version of the tool scVerif [BGG+21]
that simulates typical leakage behaviour of ARM microprocessors when executing code
that is written in an intermediate language close to ARM assembly. scVerif was not
evaluated for other arithmetically masked programs, so no general statement about its
efficiency or accuracy can be made. It does consider hardware side-effects but only if they
have been identified in prior experiments, which means the method is not sound and binds
the evaluation stronger to the microarchitecture, while leaving no potential for masked
hardware.

Other existing verification tools for Boolean masking often also perform exact model-
counting, and are therefore unlikely to be applicable to arithmetic masking due to scalability
issues. For example, maskVerif has been shown infeasible in this context by several
works [GXSC20,GZSW19,MPH21], while we expect SILVER [KSM20] to also not be able
to deal with the complexity of arithmetic expressions since it tracks exact distributions
with the help of binary decision diagrams. In 2018, Bloem et al. suggests to approximate
Fourier coefficients of Boolean functions [BGI+18] as a way to perform a cheaper variant of
model counting that achieves soundness but not completeness. The resulting approach was
evaluated for Boolean masked hardware (Rebecca), and later for software on concrete
CPU netlists (Coco) [GHP+21,HB21], and has shown to be efficient with a relatively low
rate of false positives. However, it was not evaluated for arithmetic masking in terms of
efficiency, accuracy, and general applicability for PQC relevant use cases.

Our Contribution We improve this situation by discussing in detail how the security
of arithmetically masked software/hardware can be efficiently verified using verification
approaches tailored to Boolean masking. More concretely, we provide the following
contributions:

• We show how verification methods based on approximated Fourier coefficients of
Boolean functions (as used by Rebecca/Coco) can be efficiently applied in the
context of arithmetic masking. The resulting verification approach can successfully
be applied to both masked hardware and masked software written in Assembly
language, and that its soundness is sufficient for many PQC/ARX applications. This
approach is also the first to consider physical defaults (glitches, transitions) and the
first to be evaluated for higher-orders in the context of arithmetic masking.

• In case of hardware implementations, we analyze different versions of the [CGV14]-
A2B/B2A conversion algorithms and identify potential weaknesses caused by glitches.
We then present a proof-of-concept implementation that is secured against glitches
and can be fully verified using our approach.

• In the context of software implementations, we analyze various popular A2B/B2A
conversion algorithms using power of two or prime moduli and provide new insights
on implementation aspects that can reduce their protection order. More concretely,
we report new findings of transition leakages in Goubin-A2B [Gou01] and point
out more general pitfalls when using lazy-reduction techniques in the context of
masking. Additionally, we are the first to investigate architecture side-effects of
table-based A2Bs and discuss why they might not be easy to implement securely
on processors that make use of memory buffers or caches. Last but not least, we
also show applicability of this approach in the context of symmetric cryptographic
schemes by verifying the security of masked software implementations of one round
of Speck and the ARX-box Alzette.
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Outline We cover preliminaries on masking and verification techniques in Section 2.
The main idea behind the verification approach is described in Section 3. Section 4
and Section 5 cover our findings of investigating various hardware/software A2B/B2A
conversion algorithms. We conclude our paper in Section 6.

Open Source We plan to publish the software and hardware implementations on Github1.

2 Background
In this section, we cover necessary background on Boolean and arithmetic masking, and
corresponding conversion techniques. Since our approach is based on Rebecca/Coco, we
briefly describe the verification concept and the applied adversary model.

2.1 Masking Schemes and Applications

Masking is a prominent algorithmic countermeasure against Differential Power Analysis
[KJJ99] that splits intermediate values of a computation into d + 1 uniformly random
shares [CRB+16,GIB18,GMK16, ISW03], such that an attacker who observes up to d
shares cannot deduce information about native (unshared) intermediate values. Boolean
masking is commonly used for symmetric cryptographic algorithms, and uses the exclusive
or (⊕) operation to split a value b into d+ 1 uniformly random shares b0 . . . bd such that:

b =
⊕
i

bi = b0 ⊕ · · · ⊕ bd

In arithmetic masking schemes, the relation between shares of a value a is the modular
addition:

a =
∑
i

ai = a0 + · · ·+ ad mod q

In both cases, masking linear functions is trivial since they can simply be computed
for each share individually. Masking non-linear functions is more challenging since these
functions operate on all shares of a native value and thus usually require additional fresh
randomness to avoid unintended direct combination of shares. The concrete masking
technique, Boolean or arithmetic, determines which operations are (non-)linear.

Nowadays, one well-known application of arithmetic masking are post-quantum crypto-
graphic (PQC) algorithms that often operate on large matrices or polynomials where each
coefficient is an element in Fq. Here, operations like matrix/polynomial multiplication can
be efficiently masked in the arithmetic domain when broken down into coefficient-wise
modular addition/multiplications using e.g. the number theoretic transform (NTT). How-
ever, in practice, arithmetic masking often has to be combined with Boolean masking since
building blocks including Gaussian samplers and lattice decoding, or constructions like the
Fujisaki-Okamoto transform for achieving CCA2-security are more efficiently masked in
the Boolean domain. Therefore, many masked implementations use dedicated conversion
algorithms to transform shares from the arithmetic to the Boolean domain (A2B) and vice
versa (B2A). Besides PQC, arithmetic masking is also applied to ARX-based symmetric
cryptographic algorithms like SHA-256 or ChaCha, but in these cases the resulting run-
time overhead is significantly higher compared to Boolean masked variants of non-ARX
symmetric algorithms.

1TBD
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2.2 Mask Conversion Techniques
Many cryptographic schemes require to switch between the Boolean and the arithmetic
domain when respective masking techniques are applied. The performance of the protected
scheme is mainly determined by the A2B and B2A conversions used, which is why there
has been a lot of research in this direction [CGV14, CGTV15, Cor17, Cor17, CGMZ22,
CGP+12,SPOG19,SMG15]. Existing conversion algorithms either follow an algebraic or a
table-based approach. An algebraic conversion algorithm performs the whole conversion at
once, while table-based approaches first pre-compute a table which is later used during
the actual conversion. B2A conversions can be done very efficiently following the algebraic
approach, while A2B is less efficient, and therefore often apply a table-based approach.

In 2001, the first algebraic conversion algorithms were proposed by Goubin [Gou01].
The first algebraic conversion algorithms for higher orders were presented by Coron et al.
[CGV14]. They propose the SecAdd algorithm, which allows to securely add Boolean shares
at any order using a power-of-two modulus. Many follow-up works use [CGV14]-A2B/B2A
as a basis, and suggest several performance improvements [CGTV15,BCZ18,HT19,Cor17].
Since PQC applications often require a prime modulus, Barthe et al. [BBE+18], and later
Schneider et al. [SPOG19] suggest how to adapt [CGV14]-B2A to work with prime moduli.

Table-based A2B conversion algorithms use pre-computed tables to reduce the computa-
tion effort during the actual conversion. In general, A2B conversions transform the shares
together with the carry which is produced in an arithmetic addition. The pre-computed
tables are used to handle the conversion of the carry, and prevent unintended unmasking
of native values. The first table-based A2Bs were suggested by Coron-Tchulkine [CT03]
and Neiße-Pulkus [NP04]. They were however shown to be incorrect and insecure by
Debraize [Deb12], who suggests several corrected and optimized versions of their algorithms.
Recently, Beirendonck et al. [BDV21] show that Debraize-A2B does also not fulfill its
security claims, and propose two further table-based A2Bs. So far, the work by Coron et
al. [CGMZ22] is the only work on table-based conversion for higher orders.

A2B/B2A conversions are applied to masked implementations of various PQC and
ARX schemes against side-channel attacks. For example, the SecAdd algorithm by Coron et
al. [CGV14] has been used as a cryptographic primitive in several software [AFM17,GR19,
BGR+21,CGTV15,SPOG19,BBE+18] and hardware implementations [FBR+21,CEvMS15].
Debraize-A2B has also been applied recently in works on masking PQC [BGR+21,OSPG18].

2.3 Masking Verification with Rebecca/Coco
Rebecca [BGI+18] is a tool to formally verify Boolean-masked hardware implementations
defined by gate-level netlists. In order to verify a circuit, a label is assigned to each
circuit input. The label is either a share, fresh randomness or unimportant. During
the verification process, these labels are propagated through the circuit and each gate is
assigned a correlation set according to the propagation rules. In general, a correlation
set contains information about the statistical dependence of the respective gate on the
circuit inputs. Tools like Silver [KSM20] compute these dependencies accurately, while
Rebecca approximates statistical dependency with non-zero Fourier coefficients [BGI+18].
A term, which is either a label or a combination of labels, with a non-zero Fourier coefficient
indicates statistical dependence on the respective circuit input. The approximation is
performed by not tracking the exact Fourier coefficient, but only whether a term has a
non-zero coefficient or not. A correlation set contains all terms with non-zero coefficients.

Later, an optimized variant of this approach was implemented in Coco, a tool for
the formal verification of (any-order) Boolean masked software implementations on con-
crete CPUs [GHP+21,GPM21]. The main purpose of Coco is to analyze the potential
implications of hardware side-effects like glitches within a CPU on masked software imple-
mentations. Coco can additionally incorporate control flow logic, which is required for the
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verification of executed software and iterative hardware circuits. Before the verification,
the CPU netlist is simulated together with a masked assembly implementation, in order
to obtain a trace of the (constant) data-independent control signals like memory/register
access patterns and branches. Next, similar to Rebecca, initial labels are assigned to reg-
isters and memory locations, which are further propagated through the netlist for multiple
cycles to construct correlation sets, while considering software-specific control signals. The
verification fails if there exists a gate in the netlist which directly correlates with a native
value. In that case, Rebecca reports the leaking gate, while Coco additionally reports
the exact clock cycle.

2.4 Adversary Model
The classic probing model for hardware [ISW03] allows an attacker to observe the values of
up to d wires in a masked circuit. The circuit is dth-order secure if the adversary is not able
to learn anything about the native value by combining all these observations. The standard
probing model for software allows the adversary to probe intermediate program values
accordingly. Faust et al. [FGP+18] suggest the robust probing model as an extension of the
classic probing model to additionally capture side-effects by the usage of (g, t, c)-extended
probes to observe glitches (g = 1), transitions (t = 1) or coupling (c = 1).

In this work we use the so-called time-constrained probing model, which was introduced
by [GHP+21], and is currently adopted by Coco for masked software implementations
executed by a specific CPU. The main difference to the classic/robust probing model is
the time restriction of each probe to one clock cycle, which is necessary to correctly model
the execution of masked software on netlist level. More concretely, in the time-constrained
probing model the attacker uses (g, t, 0)-extended probes to observe the value of any
specific gate/wire in the CPU netlist for the duration of one clock cycle. The gate/wire
and cycle can be chosen independently for each probe. A masked software implementation
is dth-order secure in the time-constrained probing model if the attacker cannot learn
anything about native values when combining all observed values.

The time-constrained probing model can be applied to masked hardware circuits and
allows to handle iterative circuits directly without the need to perform unrolling2 thanks
to its time-awareness. In Appendix C we give an example of an iterative circuit and its
unrolled version based on the suggestion of [BGSD10]. Verification approaches adopting
the classic/robust probing model usually unroll the processed iterative circuit, which works
well for simple circuits, but is more difficult for circuits with more complex control logic,
such as state machines. Iterative circuits can be seen as a reduced version of a CPU, and
therefore allows the direct application of the time-constrained probing model.

The original version of Coco provides two different verification modes. Stable verifi-
cation focuses on pure algorithmic security. Transient verification uses (g, t, 0)-extended
probes, and therefore considers algorithmic security and wire/register transitions and
glitches within the hardware. For the purpose of this work, we add a third mode, the
Transitions verification mode, working with (0, t, 0)-extended probes, which is convenient
since it reports stable and transition leaks, but without the runtime overhead of the
transient mode.

3 Verification of Arithmetic Masking in the Boolean Do-
main

In this section, we explain how one can perform verification of arithmetic masking using
a method based on approximating Fourier coefficients of Boolean functions that was

2We apply the definitions of [BGSD10], since there exists no official wording yet.
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previously used by the tools Rebecca/Coco in the context of Boolean masking. In
Section 3.1 we recall how arithmetic expressions, when directly broken down into equivalent
Boolean expressions, can be represented at bit-level. In Section 3.2 we discuss optimization
strategies that can be used to reduce the complexity of the derived Boolean expressions
for the initial labeling and to more efficiently propagate expressions through dedicated
arithmetic addition circuits. We also comment on the soundness and completeness of the
resulting approach. Finally, we give a small self-contained example using correlation set
notation in Section 3.3.

Notation Similar to Coron et al. [CGV14], we identify a specific bit at position i of a
variable a by superscript, which denotes with a(i) the i-th bit of variable a. a0 is the least
significant bit (LSB). When considering a Boolean or arithmetic native variable x, we
identify the individual shares by subscript, for example x = x1 ⊕ x2 ⊕ .... We apply the
correlation set notation of Bloem et al. [BGI+18], which denotes the correlation set of a
gate/wire w by C(w) = {...}. ⊗ denotes the element-wise multiplication of two correlation
sets as introduced in [GHP+21]. We use small letters for symbolic expressions, while
capital letters are used to identify wires in a circuit.

3.1 Modeling Arithmetic Expressions using Boolean Logic
A netlist represents a circuit design after logic synthesis that models gates as Boolean
functions mapping 1-bit inputs to a 1-bit output, and indicates their interconnection. We
aim at performing netlist-level verification of a circuit on bit granularity. In the end, a
bitwise view on all terms computed by the circuit must still valid in the context of masking.
This implies that the dependencies between the shares must be described using Boolean
equations on bit granularity. Such a mapping can be obtained based on the definition of
the Ripple-carry adder, which represents a cascade of 1-bit full adders, where each carry
bit ripples to the next full adder. Each full adder takes two 1-bit summands and a 1-bit
carry-in, and computes the arithmetic sum and respective carry-out [Man82].

Consider a sum s, which is computed from the summands u and v such that s = u+ v.
If u and v are n-bit values, s is represented by n+ 1 bits, and hence, n+ 1 full adders are
needed to compute s. Each full adder takes two summand bits u(i) and v(i) together with
the carry-in c(i), and computes s(i) as:

s(i) = u(i) ⊕ v(i) ⊕ c(i) with c(0)=0 (1)

The carry-out bit c(i+1) is then computed based on the carry-in c(i) by the following
recursive formula:

c(i+1) = (u(i) ⊕ v(i)) ∧ c(i) ∨ (u(i) ∧ v(i)) (2)
Equation 1 already gives a valid first-order Boolean sharing for s using the two shares

x1 = u and x2 = v ⊕ c.
If a sum t is split into three summands u, v and w such that t = u+ v + w, basically

the same equations apply, and t can be computed in two steps. In the first step, the partial
sum s = u+ v is computed, which yields the carry c. In the second step, t is computed by
adding the partial sum to the remaining summand: t = s+w, which produces the carry e.
Again, we can represent t in Boolean logic:

t(i) = s(i) ⊕ w(i) ⊕ e(i) (3)
= u(i) ⊕ v(i) ⊕ c(i) ⊕ w(i) ⊕ e(i) (4)

Equation 4 gives a valid second-order Boolean sharing for t using three shares x1 =
u, x2 = v and x3 = w ⊕ c⊕ e. Formulas for more than three summands can be derived in
a similar way, each resulting in a valid higher-order sharing. When working with d + 1
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Boolean sharing

a(i) ⊕ r(i) ⊕ r(i)

b
(i)
0 b

(i)
1

Arithmetic sharing

a(i) ⊕ r(i) ⊕ c(i) ⊕ r(i)

b
(i)
0 b

(i)
1

Figure 1: Initial labeling for Boolean and arithmetic masking as given to the verifier

shares, the first d Boolean shares would always be equal to the first d arithmetic shares,
while the last Boolean share needs to additionally include the carry.

3.2 Tailoring the Verification Approach
Arithmetically masked circuits process arithmetic input shares, while Rebecca/Coco
expects Boolean input shares. The derived Boolean equations for arithmetic expressions
in Section 3.1 can now be used to translate arithmetic shares to the Boolean domain,
such that Rebecca/Coco could work with it. In the following, we describe how one can
obtain such a translation in a correct and efficient way, how the resulting expressions can
be propagated more efficiently in some cases, and comment on soundness, completeness
and scalability of the resulting approach.

Initial Labeling Tools for the formal verification of masking require a set of initial labels
that specify the location/dependency of shares on circuit inputs, registers or memory cells
that are then further tracked throughout a circuit. In the case of (first-order) Boolean
masking, each bit of a native value a(i) is initially masked with a random mask r(i).
Therefore, the native value a(i) can simply be expressed as the XOR between the two
shares a(i)⊕r(i) and r(i). As shown in Figure 1, the labels assigned prior to the verification
would then be b(i)0 = a(i) ⊕ r(i) and b(i)1 = r(i).

In the case of (first-order) arithmetic masking, each bit of a native value a(i) is initially
masked with a random mask r(i) using modular additions. According to Equation 1, the
native value a(i) can be expressed as the XOR between the two shares a(i) ⊕ r(i) ⊕ c(i) and
r(i). In contrast to Boolean masking, we also need to include the carry of the addition c(i),
which depends on lower bits of a(i) and r(i). The first option to obtain a valid labeling for
arithmetic shares is thus to resolve c(i) recursively according to Equation 2. The initial
labels would then be given by b(i)0 = (a(i) ⊕ r(i))⊕ c(i), and b(i)1 = r(i). Here, the carry c(i)
is computed recursively for each bit position, which adds already quite complex terms to
the correlation set at the beginning of the verification, especially for the more significant
bits of the arithmetic shares since the depend in a non-linear way on all lower bits.

It is however also possible to use a different initial labeling that incorporates additional
information that is available at the beginning of the verification and significantly simplifies
the resulting Boolean expressions. More concretely, with each c(i) being a non-linear
combination of all lower bits (including their masks), this expression alone must never
be observable by an attacker. Put differently, each bit of a fresh arithmetic share is
only independent of any native values because the term r(i) is added in a linear way and
does not occur in any of the lower bits (and thus also not c(i)). It is hence sufficient to
verify if the linear term r(i) in a certain bit of one arithmetic share ever gets in contact
with the same r(i) in the corresponding bit of the other share, similarly as in the case
of Boolean masking (c.f. Figure 1). This simplification leads to simpler expressions for
the initial labels and thus improves verification runtime. Note that this simplification is
only used for deriving initial labels but not during mask refresh operations throughout the
masked computation where our assumptions on unique usage of fresh randomness does
not necessarily hold anymore. This simplification also applies to initial labels of higher
order arithmetic masking in a similar manner.
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Fourier Expansion of Arithmetic Addition One particularly challenging aspect of veri-
fying arithmetic masking is scalability due to complex dependencies between shares on
bit-level, introduced by the carry when an arithmetic addition is computed. In hardware,
arithmetic additions are often performed by dedicated sub-circuits. For example, CPUs
usually have such an adder circuit in their ALU (Arithmetic Logic Unit). We propose the
Fourier expansion of arithmetic additions, which allows to directly obtain correlation sets
for the result of an adder circuit, instead of computing an individual correlation set for
every gate within the adder, and thus speeds up the verification runtime. In Section 5.1
we give more details about how this can be used to increase the performance of software
verification, and how it can be integrated into Coco.

In Equation 5 we propose the Fourier expansion W of an addition.

W (s(j)) = 1
2u

(j) · v(j) · c(j) + 1
2u

(j) + 1
2v

(j) − 1
2W (c(j)) (5)

The expansion of the sum is based on the Fourier expansion of the carry given in Equation 6.

W (c(j)) = 1
2W (c(j−1)) + 1

2v
(j) + 1

2u
(j) − 1

2u
(j) · v(j) ·W (c(j−1)) (6)

More details on how we derived both expansions are given in Appendix A.

Soundness and Completeness While masking verification based on approximated Fourier
coefficients of Boolean functions is sound, it is not complete. Throughout a masked compu-
tation it might happen that certain terms in the exact Fourier representation cancel out or
evaluate to constants. Our verification approach might miss such situations since it only
keeps track of whether a term occurs in a correlation set or not (for performance reasons),
which ultimately results in an overapproximation of the exact Fourier representation. If
such a situation occurs, i.e. multiple shares with of a native value with a correlation
coefficient of zero are combined, the verifier would report a leak that does however not
exist in practice (which implies non-completeness). Soundness is however guaranteed by
the fact that the verifier always keeps track of an overapproximation of all the terms that
a register/wire could depend on, hence, a real leak can never be missed.

In case of sound but not complete masking verification approaches, the amount of
false positive leakage reports in realistic scenarios plays an important for practicality.
Simply speaking, the longer a computation becomes, the more likely a false positive occurs.
Note however that after every mask refresh operation, the newly introduced randomness
essentially eliminates possible future false-positive leaks caused by over-approximation
that has happened thus far. In other words, as long as mask refreshing occurs somewhat
frequently (which is generally the case) the occurrence of false positive leak reports will
generally be quite low. Later, in Section 4 and Section 5, we show that the soundness of
our approach is in fact sufficient to perform meaningful verification of masked SW/HW
implementations in many typical PQC/ARX applications.

During our analysis in this work, we only really observe a single false positive when
verifying Goubin-A2B [Gou01] in software. We discuss this case in more detail in Section 5.2.

3.3 Example

Assume an example circuit which takes two 2-bit arithmetic shares a + r (input signal
A0) and r (input signal A1), and two bits of fresh randomness s (input signal S). The
ultimate goal is to compute (A0 + S) +A1 by using two Full Adders. In order to verify
the first-order security of this circuit, one first assigns the respective labels to the inputs
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which result in the following correlation sets:

C(A(0)
0 ) = {{b(0)

0 }}, C(A(1)
0 ) = {{b(1)

0 }}

C(A(0)
1 ) = {{b(0)

1 }}, C(A(1)
1 ) = {{b(1)

1 }}
C(S(0)) = {{s(0)}}, C(S(1)) = {{s(1)}}

The input bits are propagated to the first adder, which computes (A0 + S). We obtain
the following correlation sets at the output signals of the first adder:

C(Adder1(0)
sum) = C(A(0)

0 )⊗ C(S(0)) = {{b(0)
0 , s(0)}}

C(Adder1(1)
sum) = C(A(1)

0 )⊗ C(S(1))⊗ C(Adder1(1)
carry)

= {{b(1)
0 , s(1)}} ⊗ {{1}, {b(0)

0 }, {s(0)}, {b(0)
0 , s(0)}}

= {{b(1)
0 , s(1)}, {b(1)

0 , s(1), b
(0)
0 }, {b

(1)
0 , s(1), s(0)}, {b(1)

0 , s(1), b
(0)
0 , s(0)}}

C(Adder1(2)
sum) = C(Adder1(2)

carry)

Note that the second bit of the adder has to be labeled with the carry of the addition.
These correlation sets are then propagated to the second adder:

C(Adder2(0)
sum) = C(A(0)

1 )⊗ C(Adder1(0)
sum) = {{b(0)

1 , b
(0)
0 , s(0)}}

C(Adder2(1)
sum) = C(A(0)

1 )⊗ C(Adder1(1)
sum)⊗ C(Adder2(1)

carry)

= {{b(1)
1 , b

(1)
0 , s(1)}, {b(1)

1 , b
(1)
0 , s(1), b

(0)
0 }, {b

(1)
1 , b

(1)
0 , s(1), s(0)},

{b(1)
1 , b

(1)
0 , s(1), b

(0)
0 , s(0)}}

C(Adder2(2)
sum) = C(Adder1(2)

sum)⊗ C(Adder2(2)
carry)

C(Adder2(3)
sum) = C(Adder2(2)

carry)

Obviously, (A0 + S) + A1 is a valid operation in the context of arithmetic masking
and this is also visible on bit-level. The computation of the carry bits of the second adder
combines shares in a non-linear way, which typically leads to a leak. However, the addition
is still secure in the end since (A0 + S) adds randomness to each share bit linearly. When
performing an addition of two operands we always conservatively label one bit more than
the size of the largest operand to correctly capture bit width of the result independently
on the concrete input values. Note that by performing modular reduction one can clear
the carry residing in the most significant bit (MSB). This type of computation occurs
very frequently in the beginning of A2B algorithms when two arithmetic shares should be
added since the addition of fresh randomness is equivalent to a mask refreshing operation.

4 Application to Masked Hardware Implementations
In this section we apply our verification approach to hardware implementations of [CGV14]-
A2B. While it has already been shown in the past that this algorithm is secure in the
stable setting, which is also confirmed by our verifier, we want to put our focus mainly on
settings where we also consider transition and glitch effects. We show, both via a formal
analysis, and in empirical evaluations, that hardware side-effects can reduce the protection
order of the implementation. While the straight-forward approach of adding additional
register stages whenever needed can eliminate this problem, we also want to point out
that this comes with a noticeable increase of latency. More research on more efficient
constructions may be useful.
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Figure 2: Schematic image of [CGV14]-A2B when implemented in hardware. The arithmetic
input shares a0, a1 are transformed into Boolean shares b0, b1. The carry computation
happens in the SecAdd module, from which we draw the first part responsible for bits 0 of
the final result.

[CGV14]-A2B/B2A In 2014, Coron et al. have proposed the first higher-order mask
conversion algorithm, which we refer to as [CGV14]-A2B/B2A in the following. This
algorithm is based on the SecAdd function and allows to perform arithmetic additions in a
Ripple-carry fashion on Boolean shares. The carry bit is computed based on Equation 2,
which can be rewritten as:

c(i+1) = u(i) ∧ v(i) ⊕ u(i) ∧ c(i) ⊕ v(i) ∧ c(i) with c(0) = 0 (7)

Figure 2 shows [CGV14]-A2B conversion for the 16-bit native value a, split into the
16-bit shares a0 and a1, which starts with refreshing the arithmetic shares a0 into x0,
and a1 into x1, and then computes the shared carries c0 and c1 bit by bit using secure
masked AND gadgets (SecAnd). During the conversion, a is expressed as a = b0 ⊕ b1 with
b0 = x0 ⊕ x1 ⊕ c0 and b1 = y0 ⊕ y1 ⊕ c1. The resulting Boolean shares are b0 and b1.

The corresponding B2A conversion chooses the first arithmetic share a0 randomly,
and computes a1 = (b0 ⊕ b1) − a0 using SecAdd. The algorithm is very efficient for
hardware implementations [FBR+21], since both A2B and B2A are based on SecAdd. Both
conversion algorithms can also be applied to higher orders. In Section 5 we formally evaluate
both [CGV14]-B2A, and a second-order masked software implementation of [CGV14]-A2B.

4.1 Formal Analysis
We implement [CGV14]-A2B with 16-bit shares in hardware. We store all inputs in
registers, and implement the remaining parts as a pure combinatorial circuit, which takes a
single cycle to finish and therefore does not require a state machine. Figure 2 corresponds
to the resulting hardware module. The input shares as well as the 16-bit random values
r0, r1 and three 14-bit random values qxy, qxc and qyc are stored in registers. The verifier
confirms algorithmic security for this single-cycle implementation, while in the transient
case under the consideration of glitches, first-order side-channel protection is not given.
More concretely, glitches in the initial remasking phase and the SecAnd modules, which are
part of the bigger SecAdd, may lead to a temporary combination of shares due to delayed
addition of randomness.
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Table 1: Verification of [CGV14]-A2B (broken and fixed) in Hardware
Algorithm Input

shares
Runtime
(cycles)

Verification result/runtime
Stable Transitions Transient

[CGV14] 16 bit 1 Ë 11 s Ë 10 s é 1 s
[CGV14] 16 bit 34 Ë 56 s Ë 2 min Ë 3 min

Initial Remasking Figure 2 shows that in the first step, the arithmetic shares a0 and
a1 are refreshed with the fresh random values r0 and r1, resulting in x0, x1, y0 and y1,
which are further passed to the SecAdd module. Two XOR gates at the circuit’s inputs are
used to perform the remasking. In the worst case, a glitch at the output of the XOR gate
propagates the pure values of a0 and a1. The input of SecAdd will then be the arithmetic
shares (x0 = a0, y0 = a1, x1 = y1 = 0), and the circuit computes a0 + a1 = a for a short
time frame in the beginning of the clock cycle, until all wires stabilize and the randomness
arrives at the gates. As a solution, we add a single additional register stage to store the
result of these XOR computations. This ensures that the SecAdd module’s input comes
out of a register instead of combinatorial logic, and will therefore not glitch.
SecAnd [CGV14] suggest to use the masked AND gate proposed by Ishai et al. [ISW03],
called ISW-AND, and provide a row of formal security arguments. We integrate ISW-ANDs
as SecAnd-blocks in our hardware implementation. Formal verification however reports a
leak due to glitches in the SecAnd module because the ISW AND gate is not glitch-resistant,
and also does not fulfill the required composability properties. These findings have been
confirmed by several prior works [MPG05,FGP+18,CPRR13]. As a solution, we suggest to
insert two register stages to the SecAnd component. Works like [MMSS19,FGP+18] confirm
our observation that these two register stages are indeed needed in this case. Combined
with the register stage inserted for the initial remasking, this results in a high latency
overhead, i.e., for n-bit input shares, the implementation now requires 34 = 2 + 2 × n
cycles to complete, and also utilizes a state machine in order to control the execution.

We evaluate our verification approach for masked hardware circuits in Table 1 by
comparing the broken single-cycle implementation to the one which adapts our fixes. All
experiments are run using a 64-bit Linux Operating System on an Intel Core i7-7600U
CPU with a clock frequency of 2.70 GHz and 16 GB of RAM. The security on algorithmic
level of both implementations can be shown in 11 seconds and respectively 56 seconds in
the stable case. We need around a second to find the issues in the transient case, and
about three minutes to prove that our fixes indeed provide first-order protection.

Our implementation serves the purpose of a proof-of-concept. In general, there exist
several ways to further optimize [CGV14]-A2B in hardware. For example, one possibility
would be to replace SecAnd with another masked AND gadget, which has less latency.
However, we consider the discussion of these optimizations along with the evaluation of
area and performance overhead out of scope for this paper.

4.2 Empirical analysis
In the last section we discuss the outcome of the formal analysis which indicates that
glitches in the design are problematic in the context of masking. As a second step, we
show practical evidence for the proposed statements.

Evaluation Setup We practically evaluate [CGV14]-A2B using a first-order t-test on
the NewAE CW305 Artix-7 FPGA evaluation board connected to a PicoScope 6404C at
312.5 Ms/s sampling rate. The hardware design operates at a clock frequency of 1 MHz. In
order to show whether or not the implementation exhibits first-order leakage, we perform
Welch’s t-test following the guidelines of Goodwill et al. [GJJR11]. Welch’s t-test is a
standard method to measure information leakage of masked implementations. The basic
idea is to create two sets of measurements, one representing the power consumption of the
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Figure 3: T-test scores of the original (left) and the secured (right) implementation
of [CGV14]-A2B using 400 000 power traces

design with random inputs, and one with constant inputs. In our case, we set the native
value a to 0 and choose a0 randomly and a1 such that a0 + a1 = a for the fixed set. For
the random set, we generate a0 and a1 randomly. We use fresh random values for r0, r1
and all q in both cases. From these trace sets, one can compute Welch’s t-score to measure
the significance of the difference of means of the two distributions. The null-hypothesis
is that both trace sets have equal means. It is rejected with a confidence greater than
99.999% if the absolute t-score does not exceed 4.5. In that case, the trace sets cannot be
distinguished from each other.

Discussion Figure 3 shows our leakage assessment using 400 000 traces. The results for
the original, unprotected single-cycle implementation are presented on the left. The t-test
score shows significant peaks over the 4.5 border, indicating first-order leakage. On the
right side, the leakage evaluation of our 34-cycle fixed implementation is shown, in which
the t-score does not cross the significance boarder. Thus, these measurements confirm the
security claim made by the formal tool. In Appendix B we show the functionality of the
measurement setup by turning the random number generator off.

Note that Coco verifies ASIC netlists of masked implementations and identifies wires
where dangerous glitches might occur. The exact structure of this netlist must be reflected
on the final FPGA layout to make concrete security statements, which is why we cannot
simply synthesize the hardware design to the FPGA. The synthesis process will possibly
merge multiple ASIC gates into a single lookup table (LUT) on the FPGA, and the
original netlist structure will not be preserved. Consequently, one might see artifacts in
the measurements stemming from this merging process, e.g. because the strict separation
of shares is lost in the translation process [CBG+17]. Therefore, we must ensure to map
each gate in the verified ASIC netlist to a functionally equivalent FPGA LUT, in order to
preserve the original netlist structure as good as possible.We achieve this by mapping each
ASIC gate to a LUT with 2 inputs and one output, by putting a dont_touch = "true"
on every gate/wire in the netlist. Additionally, we ensure that the final FPGA layout
facilitates the measurement of transient effects such as glitches.

5 Application to Masked Software Implementations
In this section we discuss how Coco can be used to identify leaks in arithmetically
masked RISC-V assembly implementations. In the beginning, we discuss the software
verification setup. Then, we focus on algebraic conversions, including [CGV14], [SPOG19]
for prime moduli and Goubin-A2B/B2A [Gou01], for which we point out several register
overwrite leaks. We discuss the table-based conversion algorithms of Debraize [Deb12]
and Beirendonck et al. [BDV21], and explain how table lookups can be formally verified
from a probing-security perspective. For each algebraic/table-based algorithm, we give a
brief introduction, discuss our findings and - in case a leak is reported - give a pseudocode



14 Formal Verification of Arithmetic Masking in Hardware and Software

description for better understanding. To conclude the section, we verify the masked
ARX-based schemes Speck 32/64 and Alzette.

5.1 Software Verification Setup
When analyzing masked software implementations, potential issues are either caused by
flaws in the algorithmic design, or due to microarchitectural side-effects of the processor’s
hardware. Flaws in the algorithmic design are mainly attributed to non-uniform sharings
of intermediate variables, accidental combinations of masks, or transition leakage caused
by variable overwrites. However, even if such issues are taken into account there is still no
guarantee that such an algorithm, once implemented for a specific processor, will be free of
leaks. For example, a recent work by Gigerl et al. [GHP+21] has analyzed the RISC-V Ibex
core in terms of architecture side-effects for masked software, and has pointed out multiple
additional potential sources of leakage due to the design of the register file, the SRAM,
the ALUs, and the load-store unit. As one of their results, they created a secured Ibex3

that incorporates some relatively cheap hardware fixes that mostly eliminate glitch-related
issues that are otherwise difficult to deal with purely on software-level.

For the purpose of this paper we are not so much interested into further netlist
modifications, but rather focus on potential flaws in the algorithmic design of masked
software implementations. We want to use their secured Ibex core as a reference platform
that comes with a concrete list of hardware side-effects that do or do not need to be taken
into consideration in software, thus allowing for an even playing field when evaluating and
comparing different masked software implementations of A2B/B2A conversion algorithms.
More specifically, the certain common microarchitectural leakages do not need to be
addressed in software because the secured Ibex already has appropriate fixes on netlist-
level. These fixes include:

• A glitch-resistant register file which allows to read and write shares without combi-
nation, as long as the respective software constraints are met

• No hidden registers or always-active computation units
• A glitch-resistant model of the SRAM (similar to the register file)

For more details on these fixes, we refer to the work of Gigerl et al. [GHP+21]. When
a masked assembly implementation is executed by the secured Ibex and the software
constraints are met, the leakages which are left are primarily register/memory overwrites
and leaks caused by algorithmic flaws. The results of the following analysis can therefore
be ported to any other microprocessor, as long as the respective device-specific fixes against
these leaks, either in hardware or in software, are implemented.

The synthesis process will transform the adder, which lies in the ALU of the secured
Ibex, to a set of logic gates. Theoretically, each gate is each assigned a correlation set
during verification, which is very time-consuming. We wrap up the addition into a custom
adder "gate" instead of splitting it up, which means only the output wires of the adder
must be assigned correlation sets. In order to achieve this, we identify the addition in
the CPU design before synthesis (which is trivial), move it into a distinct module, and
apply keep hierarchy on this module, which results in a single adder gate on netlist level.
In case of the secured Ibex core, the adder gate is represented by 2× 32-bit inputs, and
creates a 33-bit output, for which we can compute the correlation set quite efficiently using
Equation 5 and Equation 6. Without this optimization, the synthesizer would split the
adder up into individual logic gates and one would check the correlation of each of these
gates individually. Consequently, especially verification in transient mode would then not

3https://github.com/IAIK/coco-ibex

https://github.com/IAIK/coco-ibex
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Table 2: Verification of masked software implementations. The verification result is either
Ë(no issues were found), (Ë) (no issues were found except for potentially insecure table
lookups), é(algorithmically insecure implementations) or é(false positive).

Algorithm Input
shares

Runtime
(cycles)

Verification result/runtime
Stable Transitions Transient

A2Bs
[CGV14] 4 bit 225 Ë 41 s Ë 67 s Ë 3 min
[CGV14] 16 bit 984 Ë 4 min Ë 5 min Ë 16 min
[CGV14] (2nd order) 4 bit 1240 Ë 3.8 min Ë 6 min Ë 20 min
Debraize [Deb12] ! 4 bit

(n = 2, k = 2)
140 é 35 s - -

Debraize [Deb12] ! 16 bit
(n = 4, k = 4)

450 é 118 s - -

[BDV21]-fixed-Debraize ! 4 bit
(n = 2, k = 2)

180 (Ë) 38 s (Ë) 48 s -

[BDV21]-Dual-Lookup ! 4 bit
(n = 2, k = 2)

105 (Ë) 28 s (Ë) 30 s -

Goubin [Gou01] 16 bit 170 é 37 s é -
B2As

Goubin [Gou01] 16 bit 23 Ë 5 s Ë 8 s Ë 19 s
[CGV14] 4 bit 650 Ë 6 min Ë 4 min Ë 11 min
[CGV14] 16 bit 2475 Ë 11 min Ë 16 min Ë 38 min
[SPOG19],
without final reduction

4 bit,
(q = 257,
log2 q = 9)

400 Ë 2 min Ë 21 min -

ARX-based schemes
Speck 32/64 (Goubin-B2A,
[CGV14]-A2B)
(1 round)

6 × 16 bit 1465 Ë 6 min Ë 13 min Ë 5.13 h

Alzette (Goubin-B2A,
[CGV14]-A2B)
(1 round)

2 × 32 bit 3082 Ë 29 min Ë 2.48 h Ë 27 h

be possible in a feasible time frame 4. It is important to note that this does not affect
the soundness guarantees of our approach because the correlation sets computed for the
outputs of the adder gates are identical to the correlation sets of an adder which is split
up.

5.2 Verification of Algebraic Share Conversions
[CGV14]-A2B/B2A In Section 4 we discuss the verification of [CGV14] conversion
algorithms in hardware. When verified on a CPU netlist, the algorithm in general behaves
very similar. As shown in Table 1, we implement [CGV14]-A2B and -B2A in software and
verify it successfully. We provide 16-bit A2B and B2A implementations which we verify
in all three verification modes. Additionally, we implement 4-bit first- and second-order
implementations, which can also successfully be verified with our approach. Compared
to the results of Section 4, where we verify a 34-cycle implementation in 3 min, we can
verify the respective software implementation (~1000 cycles) in 20 min, which shows the
efficiency of our tool. Interestingly, both QMVerif and LeakageVerif have to fall back
to exhaustive enumeration when verifying [CGV14]-B2A, while the other direction (A2B)
is possible [MPH21].

[SPOG19]-B2A Various existing A2Bs/B2As work with power-of-two moduli exclusively,
while many lattice-based constructions require a prime modulus. To address this issue, one
can first transform the shares computed in Fq to F2k , and then apply conversion algorithms
working with power-of-two moduli, as shown by Oder et al. [OSPG18]. Another possibility
is to alter a F2k -conversion algorithm to work in Fq. For example, [SPOG19]-B2A is an
adaption of [CGV14]-B2A, such that it can handle arbitrary moduli. The authors’ goal
was to build a masked binomial sampler, which is why they did not propose an A2B. The

4Runtime of a few hours for a single 32-bit addition
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Algorithm 1 [SPOG19] B2A (simplified for 1st order)
Input: k-bit shares b0, b1 such that b = b0 ⊕ b1
Output: Shares a0, a1 ∈ Fq such that b = a0 + a1 mod q
1: b′0 ← b

(k−1)
0

2: b′1 ← b
(k−1)
1

3: a0, a1 ← B2A_Bit(b′0, b
′
1)

4: R $← Rq

5: a0 ← (a0 + R) mod q
6: a1 ← (a1 − R) mod q
7: for j = 2 to k − 1 do
8: b′0 ← b

(k−j)
0

9: b′1 ← b
(k−j)
1

10: C0, C1 ← B2A_Bit(b′0, b
′
1)

11: R
$← Rq

12: C0 ← (C0 + R) mod q
13: a0 ← ((a0 << 1) + C0) mod q
14: C1 ← (C1 − R) mod q
15: a1 ← ((a1 << 1) + C1) mod q
16: end for
17: return a0, a1

Algorithm 2 [SPOG19] B2A_Bit
(simplified for 1st order)
Input: 1-bit shares b′0, b

′
1 such that b = b′0⊕

b′1
Output: E0, E1 such that E0 + E1 = b

mod q
1: E0

$← Rq

2: E1 ← b′1 − E0 mod q
3: E1 ← E1 − 2 · (E1 · b′0) mod q
4: E0 ← E0 − 2 · (E0 · b′1) mod q
5: E1 ← E1 + b′1 mod q
6: returnE1, E0

transformation process handles the Boolean shares bit by bit, and was proven secure against
side-channel adversaries at arbitrary orders. We construct a first-order implementation
of [SPOG19] B2A with a modulus q = 257 and 4-bit input shares according to Algorithm 1
and Algorithm 2.

When verifying such an implementation on bit-granularity, reductions mod q are a
major obstacle since they create very complex dependencies between the individual bits of
a share that would drastically increase verification runtime. Fortunately however, many
practical implementations already use efficient reduction methods like Montgomery [Mon85]
or Barret [Bar86] reductions in combination with lazy reduction, i.e., skipping reductions
as long as intermediate values are guaranteed to fit inside 32-bit words (on 32-bit architec-
tures) [BKS19]. These tricks not only improve runtime of the algorithms but also help to
reduce the verification runtime drastically. We consider an implementation of [SPOG19]
B2A that delays the Barret reduction until the end of the conversion. We verify its security
in the stable and transition case (c.f. Table 2). In this setting, we want to point out and
interesting pitfall that should be avoided when using lazy reduction techniques in the
context of masking. For example, Algorithm 2 first generates a random number E0 ∈ Fq,
and then computes E1 based on both shares b′0, b′1, using E0 as fresh randomness. If one
now lazily skips the reductions in Lines 2 and 3, the upper bits of E1 will not be masked
by E0 anymore due to the smaller bit width. Hence, to mitigate this potential pitfall on
32-bit architectures, one could simply always use 32-bit words of randomness whenever
mask refreshing is required.

Goubin-A2B/B2A Goubin-A2B algorithm [Gou01], given in Algorithm 3, converts the
arithmetic shares a = a0 +a1 into Boolean shares b0, b1 with the help of a recursion formula.
The second Boolean share b1 is set to the second arithmetic share a1. The first Boolean
share b0 is computed by choosing b0 = a ⊕ b1 = (a0 + a1) ⊕ b1 and rewriting the term
recursively: b0 = a0 ⊕ un−1 with u0 = 0, ui+1 = 2(ui ∧ (a0 ⊕ a1)⊕ (a0 ∧ a1)). In a similar
spirit, [Gou01] B2A algorithm transforms the Boolean shares b = b0 ⊕ b1 into arithmetic
shares b = a0 + b1 mod 2k based on the property a0 = (b ⊕ b1) − b1. If we verify these
implementations, we can already successfully verify the security of the B2A conversion in
the stable, transition, and transient case. However, we do encounter several issues with
the A2B conversion that we now describe in more detail. To the best of our knowledge,
these findings have not been reported so far.

First, Goubin-A2B has several problems regarding insecure register transitions. For
example, even if we ensure that our assembly implementation uses dedicated registers for
each of the variables in Algorithm 3, the intermediate Y , after being updated in Line 9
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Algorithm 3 Goubin-A2B [Gou01]
Input: n-bit shares a0, a1 such that a = a0 + a1

mod 2n

Output: n-bit shares b0, b1 such that a = b0 ⊕ b1
1: Y ← U(0, 1)n

2: T ← 2Y
3: b0 ← Y ⊕ a1
4: Ω← Y ∧ b0
5: b0 ← T ⊕ a0
6: Y ← Y ⊕ b0
7: Y ← Y ∧ a1
8: Ω← Ω⊕ Y
9: Y ← T ∧ a0
10: Ω← Ω⊕ Y
11: for i← 0 to n− 1 do
12: Y ← T ∧ a1
13: Y ← Y ⊕ Ω
14: T ← T ∧ a0
15: Y ← Y ⊕ T
16: T ← 2Y
17: end for
18: b0 ← b0 ⊕ T
19: b1 ← a1
20: return b0, b1

will leak the XOR between the old (Yold) and the new (Ynew) value. More concretely, the
attacker observes:

Yold = Yline 6 ∧ a1

= (Yline 1 ⊕ b0line 5) ∧ a1

= (Yline 1 ⊕ (T ⊕ a0)) ∧ a1

Ynew = T ∧ a0

Yold ⊕ Ynew = ((Yline 1 ⊕ (T ⊕ a0)) ∧ a1)⊕ (T ∧ a0)
= (a0 ∧ a1)⊕ (a0 ∧ T )⊕ (a1 ∧ Y )

Hence, for every bit >= 0, this expression will correlate with native value a. Another
similar situation occurs in Line 12 where Yold = T ∧ a0 is overwritten by Ynew = T ∧ a1 in
the first loop iteration.

Second, the verifier indicates that Goubin-A2B might not be executed securely due
to the computation of Ω⊕ Y in Line 10. Taking a closer look at this concrete problem,
we determine that in this case we experience a false positive as already mentioned in
Section 3.2. In Line 10, when the processor computes Ω⊕ Y , an attacker might probe the
least significant bit of the expression, which is

(Y (0) ∧ (Y (0) ⊕ a(0)
1 ))⊕ (a(0)

1 ∧ (Y (0) ⊕ a(0)
0 ))

The exact Fourier expansion of this expression does not contain a single term which
depends on both a(0)

0 and a(0)
1 alone, but only in connection with Y (0), and is therefore

properly masked. However, it does look like a leak to the verifier because the approximated
correlation set contains a set {a(0)

0 , a
(0)
1 } where the mask Y (0) is not contained, which

represents a leak. We give the exact calculation in Appendix D.
According to [MPH21], both QMVerif and LeakageVerif also fail to verify Goubin-

A2B correctly because their tools produce false positives. Unfortunately, they do not
discuss the exact issue, and therefore we were not able to make further investigations.

5.3 Verification of Table-based Share Conversions
Besides algebraic approaches, several A2Bs utilize table lookups, such as the ones from
Debraize [Deb12] and Beirendonck et al. [BDV21]. These algorithms start with computing
one or multiple lookup-tables which they then use for the actual conversion. A table
lookup represents a data-dependent memory access, i.e., an operation that loads data from
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Algorithm 4 Table T generation
[Deb12]
Input: k
Output: Conversion table T , random vari-

ables r, ρ
1: r ← U(0, 1)k

2: ρ← U(0, 1)
3: for i← 0 to 2k − 1 do
4: T [ρ||i]← (i+ r)⊕ (ρ||r)
5: T [(ρ⊕ 1)||i]← (i+ r + 1)⊕ (ρ||r)
6: end for
7: return T, r, ρ

Algorithm 5 Debraize-A2B [Deb12]
Input: (n · k)-bit shares a0, a1 such that a = a0 + a1

mod 2(n·k), T, r, ρ
Output: (n · k)-bit shares b0, b1 such that a = b0 ⊕ b1
1: a0 ← a0 − (r||...||r||...||r) mod 2n·k

2: β ← ρ
3: for i← 0 to n− 1 do
4: Split a0 into (a0h||a0l), split a1 into (a1h||a1l)
5: a0 ← a0 + a1l mod 2(n−i)·k

6: β||x′i ← T [β||a0l]
7: x′i ← x′i ⊕ a1l

8: a0 ← a0h, a1 ← a1h

9: end for
10: b0 = (x′0||...||x

′
i||...||x

′
n−1)⊕ (r||...||r||...||r)

11: b1 = a1
12: return b0, b1

memory address that is data-dependent. Coco was mostly intended to verify symmetric
cryptography, where table lookups are not common and have therefore not been considered
previously. However, our study shows that the verification approach can be successfully
applied under specific conditions, which we will discuss in the following. All table-based
A2Bs that we are aware of fulfill these conditions, and can therefore be successfully verified.

First, it must be possible to compute all entries in the table with a single unique
function f(i), with i being the table index. For example, Debraize A2B initially fixes the
random values r and p, which will stay the same for the table generation and for all future
A2B conversions. The table then is generated based on the function f(i) = i+r+p⊕ (p||r),
which is unique for Debraize-A2B since r and p are already generated before. This ensures
that every table entry is assigned the same label during the verification independently of
the address such that effectively it is not relevant which memory location is considered.

Second, the evaluation platform must guarantee constant-time memory accesses, i.e.,
memory accesses always require the same amount of cycles independently of the memory
address. For example, the Ibex core contains a state machine in the LSU to handle
misaligned memory accesses. If such a memory access occurs, multiple memory locations
must be fetched, and therefore the further program execution is paused. Hence, the later
execution of the CPU depends on the memory address, which does not fulfill the constant
control-flow requirement any more. Therefore, we simply disable the secured Ibex core’s
ability to perform misaligned memory accesses. We argue that, for the purpose of verifying
masked software implementations, this modification is quite reasonable since constant-time
implementations are anyway a desired property of cryptographic implementations.

The verified A2B algorithms usually pre-generate a table, and later perform loads
to this table with an address which is labeled as a share. However, our approach can
also potentially be used to verify stores to memory at a labeled address. The result of
such a load instruction however correlates with both the address, and the data which was
written to memory. Likewise, when performing a store to a memory location using an
address which corresponds to a share of a native value, we expect that the memory location
correlates with the address and the data. Note that this behavior was also observed by
Bos et al. [BGR+21].

5.4 Application to Table-based Conversion Algorithms
Table-based A2Bs use an arithmetic sharing a = a0 + a1 which should be converted into a
Boolean sharing of the form a = b0⊕a1. One Boolean share is immediately taken over from
the arithmetic sharing (a1), while the main challenge of the conversion is to derive b0. From
a mathematical perspective, b0 can be obtained by computing b0 = a⊕ a1 = (a0 + a1)⊕ a1.
From a masking perspective, (a0 + a1) will however immediately leak the native value a,
which is prevented by using a pre-computed look-up table T . The look-up table is used
to store T [a0] = (a0 + r) ⊕ r for a fixed r [BDV21]. Generating T [a0] for each possible



Barbara Gigerl, Robert Primas and Stefan Mangard 19

value of a0 is however often not efficient, which is why many A2B algorithms split up the
arithmetic shares into smaller chunks and generate T for each of these chunks.

Debraize-A2B In 2012, Debraize [Deb12] propose an improved table-based A2B based
on the works of Coron-Tchulkine [CT03] and Neiße-Pulkus [NP04]. Algorithm 4 shows the
generation of the lookup-table, while the actual conversion is shown in Algorithm 5. The
ultimate goal is to compute b0 = (a0 + a1)⊕ a1. Debraize-A2B splits up the input shares
into n parts of k bits each, and then iterates over these parts. Debraize-A2B refers to
these parts as a0l and a1l, which consist of k bits each and are updated in every iteration.
Every transformation yields a carry bit ci, that has to be considered in the next iteration
respectively. The precomputed table T is used to look up the value of (a0l + a1l) ⊕ a1l.
We implement Debraize-A2B with n = 2, k = 2 as well as n = 4, k = 4 and verify its
execution as shown in Table 2. Two leaks are already reported in the stable verification
mode (indicated by é), which points towards algorithmic errors.

First, a leak occurs when performing the table lookup in Line 6, due to a combination of
the address bits and the memory content. Figure 4 sketches a simplified table lookup with
4-bit addresses and 8-bit data on gate level. Performing such an access means comparing
the memory address (indicated by addr) to the memory address of every memory cell
(indicated by Data), and reading the respective data value in case of a match. The address
bits are first compared to the address of the data, which is 4 ((0110)b) in this case. The
comparison is realized by four XNOR and one AND gate, leading to the signal eq, which is
1 in case the address matches the data address, or 0 otherwise. eq is then fed into the eight
AND gates which determine whether the respective data is read or not. When performing
the table lookup in Debraize-A2B in the first iteration, the address bits of depend on ρ,
and (a0l − r + a1l

). Furthermore, eq depends on β ∨
∨
i(a0l − r + a1l

)(i) and the content
of the lookup-table is determined by (i+ r)⊕ (ρ||r). i is a constant in this case. The AND
gates at the lookup-table read output combine eq with a single bit from the lookup-table,
which cancels out the random values r and ρ and allows to probe a value depending on
the native value.

One can argue that an SRAM module is constructed in a way such that eq and the
memory cell content will never be combined. However, in bigger CPUs, the memory access
logic is much more complicated and might contain buffers or caches, which employ such
an addressing mechanism. For example, data caches usually require the computation of a
tag based on the address, and compare this tag to the one in the cache, which - on netlist
level - roughly corresponds to what is illustrated in Figure 4.

Second, the value obtained from the lookup-table in the first iteration is not uniformly
distributed, but used as a mask in the algorithm. For more details we refer to the work
of Beirendonck et al. [BDV21], who already report and discuss the leak in detail. They
discover the issue by empirical measurements, and provide a theoretical analysis afterwards.
We want to emphasize that another advantage of our verification approach is the fast
discovery of such bugs, which happens in 35 s and 118 s according to Table 2 in this case,
which is much quicker than empirical/theoretical evaluations. Due to the formal approach,
we immediately see which instruction causes the leak, since Coco reports the leaking
cycle and netlist gate, and therefore one does not need to carry out a laborious empirical
analysis.

[BDV21]-A2Bs In their work, Beirendonck et al. propose two new secure table-based
A2Bs. [BDV21]-fixed-Debraize A2B represents a secured version of Debraize-A2B, which
replaces the non-uniform mask with a fresh mask in every loop iteration. [BDV21]-Dual-
Lookup A2B works with two precomputed tables, which are however smaller than the
lookup-table proposed by Debraize, and therefore more efficient.

We verify both algorithms by choosing parameters n = 2, k = 2. As shown in Table 2,
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addr(3) addr(2) addr(1) addr(0)

0 1 1 0

Data

eq

Figure 4: Table lookup on netlist level using 4-bit addresses and 8-bit data words. The
address addr is compared to the constant address of the SRAM cell ((0110)b). If both
values are equal, the resulting 1-bit signal eq is 1, and 0 otherwise. eq is further used to
decide whether the respective data word should be read or not.

table lookups cause a similar leak as we already discussed for Debraize-A2B. Since the
issue however strongly depends on the underlying microarchitecture, and no further issues
were found, we mark it with (Ë) in the table.

5.5 Application to ARX-based Constructions
The ARX (Addition-Rotation-XOR) design principle has been used for several well-
known symmetric cryptographic constructions like the block cipher Speck [BSS+13],
the stream cipher ChaCha [Ber08], or the hash function SHA-256 [Nat02]. Masking
these implementations requires both Boolean masking (for the Rotation and XOR) and
arithmetic masking (for the addition), which adds a lot of overhead. There are basically
two options to deal with this. First, one can apply an algorithm like SecAdd, which
implements modular addition directly on Boolean shares [DGC17,CGV14,SMG15,KRJ14].
Another possibility is to first convert the Boolean shares to arithmetic shares, then perform
the addition on arithmetic shares, and convert the shares back to the Boolean domain.

We focus on first-order implementations of Speck 32/64 [BSS+13], and the 64-bit
ARX-based S-box Alzette [BBdS+20]. Alzette is a central building block of Sparkle, a
lightweight cryptographic permutation which is currently one of the finalists of the NIST
LWC Standardization Process [TMC+21]. Furthermore, the Schwaemm AEAD cipher
and the Esch family of hash functions are based on Sparkle, and therefore use Alzette.
We verify one round of Speck 32/64, and one round of the Alzette S-box. In both cases,
we decide to stick to Boolean masking in general and perform conversions where necessary.
We switch to arithmetic masking using Goubin-B2A before each addition, perform the
addition on arithmetic shares, and switch back to the Boolean domain using [CGV14]-A2B.
As shown in Table 2, we verify both algorithms with our approach. We are able to verify
algorithmic security in under 30 minutes for both schemes (stable mode). For the transient
mode, the verification requires several hours, which is mostly spent by solving the SAT
equation, and therefore offers several possibilities for further optimization.

6 Conclusion
In this paper, we presented an approach for the formal verification of masked software
and hardware implementations, which supports both arithmetic and Boolean masking
schemes of any order. On the hardware side, we show that glitches may cause issues
in the context of masking for a straightforward implementation of [CGV14]-A2B. We
demonstrate that this issue exists in practice using empirical measurements. On the
software side, we first analyze algebraic share conversions, report a previously unknown
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register transition issue in Goubin-A2B and provide new insights on the security of lazy
reduction, a popular optimization technique in PQC. Second, we discuss table-based
conversions and demonstrate that table lookups might not be secure due to architectural
side-effects. Last but not least, we underline the scalability of our approach by applying it
to entire round functions of masked ARX-based ciphers.
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A Fourier Expansion of the Arithmetic Addition

Recall the Fourier expansion of the AND, OR and XOR functions:

And W (a ∧ b) = 1
2 + 1

2a+ 1
2b−

1
2ab

Or W (a ∨ b) = −1
2 + 1

2a+ 1
2b+ 1

2ab

Xor W (a⊕ b) = ab

Additionally, note that Fourier expansions represent Boolean functions as a polynomial over
the real domain {1,−1}, where 1 represents False and -1 represents True. Consequently,
monomials xc with even exponents c evaluate to 1 in Fourier expansions. The Fourier
expansion of the carry and sum can hence be expressed as:

Carry W (c(j)) = W ((u(j) ⊕ u(j)) ∧ c(j−1)) ∨ (u(j) ∧ u(j)))
= −(0.25u(j))2(u(j))2c(j−1) − 0.25(u(j))2(u(j))2 − 0.25(u(j))2u(j)c(j−1) − 0.25u(j)(u(j))2c(j−1)

+ (0.25u(j))2u(j) + 0.25u(j)(u(j))2 − 0.5u(j)u(j)c(j−1) + 0.25u(j)c(j−1) + 0.25u(j)c(j−1)

+ 0.25u(j) + 0.25u(j) + 0.25c(j−1) + 0.25
= 0.25c(j−1) − 0.25− 0.25u(j)c(j−1) − 0.25u(j)c(j−1) + 0.25u(j) + 0.25u(j)

− 0.5u(j)u(j)c(j−1) + 0.25u(j)c(j−1) + 0.25u(j)c(j−1)

+ 0.25u(j) + 0.25u(j) + 0.25c(j−1) + 0.25
= 0.5c(j−1) + 0.5u(j) + 0.5u(j) − 0.5u(j)u(j)c(j−1)

W (c[0]) = 1
Sum W (sum(j)) = W (W (u(j) ⊕ u(j))⊕ c(j))

= W (u(j)u(j) ⊕ c(j))
= u(j)u(j)W (c(j))
= 0.5u(j)u(j)c(j) + 0.5u(j) + 0.5u(j) − 0.5c(j)
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B Sanity Check Measurement Setup (RNG Off)

Figure 5: T-test statistics of the fixed version of [CGV14] A2B with 400 000 traces and
RNG off.

C Iterative and unrolled circuits

Comb. Round
Function

clk

Input

Figure 6: Iterative circuit [BGSD10]

Comb.
Round

Function
Comb.
Round

Function

clk

Input

Figure 7: Unrolled circuit [BGSD10]

D False positive in Goubin-A2B

For reasons of readability, we omit to indicate that we always refer to the LSB, i.e., skip
(0).
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Approximated Fourier expansion

C((Y ∧ (Y ⊕ a1))⊕ ((Y ⊕ a0) ∧ a1)) =?
C(Y ⊕ a0) = {{Y, a0}}
C(Y ⊕ a1) = {{Y, a1}}

C(Y ∧ (Y ⊕ a1)) = {{1}, {Y }, {Y, a1}, {a1}}
C((Y ⊕ a0) ∧ a1)) = {{1}, {Y, a0}, {a1}, {Y, a0, a1}}

C((Y ∧ (Y ⊕ a1))⊕ ((Y ⊕ a0) ∧ a1)) = C((Y ⊕ a0) ∧ a1))⊗ C(Y ∧ (Y ⊕ a1))}
= {{1}, ...{Y 2, a0, a1}, ...}

Note: Y 2 = 1 because in Fourier expression each element is either 1 (False) or -1 (True).

Exact fourier expansion

W ((Y ∧ (Y ⊕ a1))⊕ ((Y ⊕ a0) ∧ a1)) =?
W (Y ⊕ a0) = Y a0

W (Y ⊕ a1) = Y a1

W (Y ∧ (Y ⊕ a1)) = −0.5Y 2a1 + 0.5Y a1 + 0.5Y + 0.5
= −0.5 a1 + 0.5Y a1 + 0.5Y + 0.5

W ((Y ⊕ a0) ∧ a1)) = −0.5Y a0a1 + 0.5Y a0 + 0.5 a1 + 0.5
W ((Y ∧ (Y ⊕ a1))⊕ ((Y ⊕ a0) ∧ a1)) = −0.25Y 2a0a

2
1 + 0.25Y a0a

2
1 + 0.25Y 2a0 − 0.5Y a0a1

+ 0.25Y a2
1 + 0.25Y a0 + 0.50Y a1 − 0.25 a2

1 + 0.25Y + 0.25
= −0.25 a0 + 0.25Y a0 + 0.25 a0 − 0.5Y a0a1

+ 0.25Y + 0.25Y a0 + 0.50Y a1 − 0.25 + 0.25Y + 0.25
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