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Abstract. Oblivious RAM (ORAM) is a powerful technique to prevent harmful
data breaches. Despite tremendous progress in improving the concrete perfor-
mance of ORAM, it remains too slow for use in many practical settings; recent
breakthroughs in lower bounds indicate this inefficiency is inherent for ORAM
and even some natural relaxations.
This work introduces snapshot-oblivious RAMs, a new secure memory access
primitive. Snapshot-oblivious RAMs bypass lower bounds by providing security
only for transcripts whose length (call it c) is fixed and known ahead of time.
Intuitively, snapshot-oblivious RAMs provide strong security for attacks of short
duration, such as the snapshot attacks targeted by many encrypted databases.
We give an ORAM-style definition of this new primitive, and present several
constructions. The underlying design principle of our constructions is to store the
history of recent operations in a data structure that can be accessed obliviously.
We instantiate this paradigm with data structures that remain on the client, giving
a snapshot-oblivious RAM with constant bandwidth overhead. We also show how
these data structures can be stored on the server and accessed using oblivious
memory primitives. Our most efficient instantiation achieves O(log c) bandwidth
overhead. By extending recent ORAM lower bounds, we show this performance
is asymptotically optimal. Along the way, we define a new hash queue data
structure—essentially, a dictionary whose elements can be modified in a first-in-
first-out fashion—which may be of independent interest.

1 Introduction

Users of cloud computing services trust providers to store sensitive data. Encryption
can protect the data itself, but cannot prevent information from being disclosed by
attacks on metadata like the memory access patterns. A long line of work has con-
clusively demonstrated that access pattern attacks can be used to reveal sensitive in-
formation. In some settings, access patterns alone can be used to completely decrypt
data [34,32,9,22,28,23,24,37,14,36].

Oblivious RAM (ORAM) is a technique that can hide memory access patterns
and therefore prevent these kinds of harmful attacks. ORAM is quite useful, but its
strong security guarantees come at a cost, both asymptotic and concrete. With the best
known constructions [4] achievingO(log n) overhead for an n-entry memory, and with a
matching Ω(log n) lower bound by [38], it seems impossible to have an ORAM scheme
where the cost of each memory access does not depend on the total memory size.
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Unfortunately, even relaxing security requirements does not allow bypassing the
Ω(log n) lower bound. Indeed, similar lower-bounds have been shown for differentially
oblivious RAMs [42], or even when the memory access pattern is known ahead of
time [6,19]. The attempt to gain efficiency in various settings has led to primitives such
as structured/searchable encryption [13,48,11], which allows for fast database lookup at
the cost of allowing attacks in some settings [9]. Alternatively, prior works have assumed
the a-priori knowledge of a certain distribution of memory accesses [21], or provided an
ORAM-based mechanisms for adjusting searchable encryption leakage [15].

Motivated by the goal of securing worst-case memory access patterns without depen-
dence on the size of the entire memory, in this paper we tackle the following question:

How can we sidestep the Ω(log n) lower bound, while providing a meaningful and
general security guarantee for memory access patterns?

1.1 Our Contributions

We begin with the observation that many attacks on real systems follow a common pattern:
an attacker gains access to an already-running system, is present in the system for a
relatively short time, then either leaves or loses access because the attack was detected.
The Verizon Data Breach Incident Report (DBIR) underscores the commonality of these
kinds of attacks: for example, in 2021 it found nearly five thousand incidents of “Basic
Web Application Attacks”, simple attacks in which an attacker compromises the web
application and quickly performs only a few actions, such as downloading emails. DBIR
also found that roughly 50% of detected security incidents were detected within a few
days [1]. A limiting case of this model is the so-called “snapshot” threat model targeted
by many encrypted databases, where the attacker obtains only a one-time snapshot of
the database system, giving it only the currently-running queries [23].

Thus, for encrypted memory primitives it makes sense to consider an attack model
where the attacker sees only a “window” of memory access patterns of bounded size;
however, the attacker cannot see the system’s memory access pattern before the attack
began, nor can it see the access pattern after the attack has concluded. Thus, we define
the notion of c-Snapshot ORAM, which maintains ORAM-like security guarantees but
against a weaker adversary which is limited to observing only c memory operations.

Definition 1 (informal). We say a RAM emulator RE is c-snapshot oblivious in case
the following holds. For any two sequences of operations −→op1

,−→op2 of the same length,
and for any subsequences of c operations: −→op1

c ⊆ −→op
1, −→op2

c ⊆ −→op
2, it holds that the

access patterns seen while executing −→op1
c and −→op2

c are computationally indistinguishable.

Next, with Definition 1 in hand, we then present our first c-Snapshot ORAM construction
where the client’s overhead is polylogarithmic in c but independent of n. More formally,

Theorem 1 (informal). There exists a c-snapshot oblivious RAM emulator withO(log2 c)
bandwidth overhead, using Õ(log c) client storage.

In particular, Theorem 1 offers the “best of both words” ORAM construction, as the
client obtains a meaningful security guarantee against realistic adversaries while having
its overhead not depend on n. Next, we proceed to reduce the client’s storage to constant,
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while maintaining polylogarithmic (in c) overhead for the server. We achieve this in the
amortized setting. See Theorem 2 below.

Theorem 2 (informal). There exists a c-snapshot oblivious RAM emulator withO(log c)
amortized bandwidth overhead, using constant client storage.

Finally, we proceed to find the lower bound for c-snapshot ORAMs. Here, we show
that any c-snapshot secure construction with constant storage must have an Ω(log c)
amortized bandwidth overhead. In particular, this makes the construction in Theorem 2
asymptotically optimal.

Theorem 3. Any c-snapshot oblivious RAM emulator using constant client storage,
must have a lower bound of Ω(log c) amortized bandwidth overhead.

1.2 Technical Overview

Motivated by the challenge of bypassing the ORAM lower bound while still providing
meaningful security guarantees in a natural setting, in Section 3 we begin by presenting
our definition of a c-snapshot ORAM. Our aim is to provide security against an adversary
that is capable of only seeing a window of at most c operations. We formalize this with
an IND-CPA style game in which the adversary needs to distinguish which of two
chosen transcripts were executed, given only the access patterns of the last c operations
and the state of the memory before these operations. We also prove our definition
has several desirable properties: notably, c-snapshot obliviousness implies security for
smaller snapshots as well.

In this paper, we do not assume any encryption on the memory content and let
adversary only see the accessed address. In practice, we can either use a standard “read,
re-encrypt, write back” paradigm, or secret-sharing under multi-party setting.
A folklore 1-snapshot oblivious scheme. With the definition of c-snapshot ORAM in
hand, we proceed to analyze a folklore RAM emulator which simply permutes memory
addresses using a PRP, while hiding the operation type by performing a read and a write
for both operation types. As we show in Section 4, this results in a 1-snapshot ORAM,
as the adversary only sees an access to a single pseudorandom memory location.
Getting c > 1. Moving to the more general goal of c-snapshot obliviousness, we
proceed to hide repeated accesses to the same memory locations by the client using a
size-c queue. More specifically, we ask the ORAM client to maintain a queue of size
O(c), which intuitively acts as a cache for the last c accesses. While addresses the are not
present in the queue are fetched from the server’s memory, we access a dummy element
in case the address is present. Notably, as the attacker only sees a window of c, we do not
need to re-shuffle, as any eviction of the queue is guaranteed to be touching an address
which was last accessed more than c operations ago. This ensures that any address is
accessed at most once in every size-c window, intuitively mimicking the 1-snapshot
ORAM construction. See Section 5 for details.
Achieving polylogarithmic storage. Our next step is to reduce the storage required by
the client from O(c) to polylog(c). An intuitive approach will be to recursively delegate
the client’s storage to the server using an oblivious RAM. Because storage complexity
of the construction in Section 5 in linear in c, such a recursive composition will result in
reducing the client’s storage overhead.
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In Sections 6 and 7.1 we present different constructions using a custom data structure
we call an Oblivious Hash Queue (OHQ). More specifically, we begin by observing that
obliviously delegating the client’s queue to the server is simpler than general ORAM, as
the queue only supports a limited set of operations. By efficiently solving the oblivious
queue delegation problem, in Section 6 we are able to obtain c-snapshot oblivious
construction with O(log2 c) bandwidth overhead, using Õ(log c) client storage. Further
refining our OHQ technique, in Section 7.1 we obtain a construction with O(log c)
amortized bandwidth and constant client overhead, albeit with a worse concrete efficiency
compared to the construction in Section 6.
A matching lower bound. Directly following from Larsen and Nielsen lower
bound [38], in Section 7.3 we show a lower bound for obtaining c-snapshot ORAM,
proving that every secure construction must have an Ω(log c) amortized bandwidth
overhead. We reuse Larsen and Nielsen’s result in the c-snapshot security setting. This
essentially proves the asymptotic optimality of the construction in Section 7.1, limiting
future improvements to lower order terms.

1.3 Related Work

ORAM. There are two kinds of oblivious RAM: hierarchical ORAM, initially proposed
in [19] and following works [19,35,43,20,41,4], and tree based ORAM, proposed by Shi
et al. in [47] and followed by [47,17,12,49,44,51]. Computationally secure ORAM is
optimized by [4] with an amortized bandwidth overhead of O(log n), and de-amortized
by [5]. These above ORAM constructions satisfies the most strict security definition (see
Section 2.2). ORAM can be more efficient if it is designed for a specific usage, such as
oblivious data structure [52] and zero-knowledge ORAM [26,27].

Variants of the basic ORAM model include the offline setting and the balls-in-bins
model. Boyle and Naor [6] showed how to construct an ORAM scheme in the offline
setting. Jafargholi et al. [30] gave a statistically secure offline ORAM with Ω(log n)
overhead, using an oblivious priority queue. Read only ORAM [53] supports only read
operation in the online setting. If we remove the ball-in-bin model, ORAM efficiency
can be enhanced given server computation ability [2,16,40,25]. Differentially private
ORAM [50] further weakens the security requirement by requiring that the access
patterns of adjacent transcripts (vs. any two transcripts) are statistically close.
Structured encryption. Most of searchable encryption and structured encryption
schemes [31,18,21,15] assumes a fully persistent adversary. But there are works assum-
ing non-persistent adversary such as [3]. In their setting, adversary is only observing
snapshots of database but not access pattern of queries. A line of works on leakage
suppression [31] uses a cache to store most recent accessed queries, and retrieve from
cache if queried again. However this does not allow writing things back to main memory
unless a rebuild, which incurs an amortized Ω(log n) overhead. Our schemes (Section 5,
6) allow writes back to main memory because we require security to hold only for a
short operation sequence. A follow-up on leakage suppression [18] allows addition and
deletion of keys in a multimap.

A recent line of work has studied intermediate security for persistent adversaries
that is stronger than typical structured encryption but weaker than ORAM. For example,
Pancake [21] shows how to do efficient key-value lookups with access pattern hiding in
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a setting where the distribution of queries is known a priori, and queries are independent.
SEAL [15] combines structured encryption with ORAM, allowing more fine-grained
tradeoffs between access pattern hiding (against persistent adversaries) and efficiency.
Lower bounds. Larsen and Nielsen [38] gave the first cell-probe lower boundΩ(log n)
for online ORAM, answering the question asked in [6], which also reduced lower
bound for offline ORAM to sorting circuits. A follow-up work from Jacob et al. [29]
gave lower bounds for oblivious data structures. A recent work [33] generalized the
overhead to both online and offline ORAM. Weiss and Wichs [53] showed lower bound
for read only online ORAM, and Persiano and Yeo [42] gave a Ω(n) lower bound
for differentially private RAM. Larsen et al. [39] gave an ORAM lower bound under
multi-server setting. Recently, Patel et al. showed there is an inherent inefficiency in
encrypted multi-maps with even decoupled key-equality pattern leakage, which leads to
a Ω(log n) overhead in the leakage cell probe model. Cash et al. gave lower bound for
one-round ORAM [8], which requires either Ω(

√
N) bandwidth overhead or Ω(

√
N)

client storage. Our snapshot oblivious RAM (Section 5.2) is also one-round but has
constant overhead and needs Θ(c) client storage.

2 Preliminaries

2.1 Pseudorandom Permutation

Definition 2. (Pseudorandom permutation) A Pseudorandom permutation (PRP) is
a function family E : K × {0, 1}n → {0, 1}n. We define the PRP security game
PRP(E,A, i). First, a key k is randomly generated from K and a random permutation
π is randomly generated from all permutations of n elements Perms(n). The adversary
has access to an oracle Ok

i . When the adversary queries a string s, it receives either
Ek(s) in the case i = 0 or π(s) in the case i = 1. Finally the adversary outputs a bit b.
We say that E is a secure PRP if for all nuPPT adversaries A playing the PRP security
game.

Advprp
E (A) =

∣∣Pr[PRP(E,A, 0) = 1]− Pr[PRP(E,A, 1) = 1]
∣∣,

the advantage defined above is negligible.

2.2 ORAM

In this section, we describe the syntax of our execution model and RAM emulator. We
then proceed to define the correctness requirements of RAM emulators, as well as their
obliviousness security definitions.
Execution model and terminology. We define a random access memory (e.g., RAM)
DB to be an array of M entries, where each entry contains at least m ≥ dlogMe-bits.
We define an operation to be a tuple (op, idx , val) where op is either read or write, idx
is an integer between 0 and M − 1, and val is either a bit string of length m or the ⊥
symbol. Finally, we define a transcript to be a sequence of operations.
A note on “blocks”. Many works on ORAM [49,41,4] additionally define a “block”
of memory to be a sequence of memory locations that can be accessed with unit cost.
While we do not use blocks in this paper, and for simplicity assume that one operation
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Run(RE, DB, T ):

st0←$ REMemR,MemW.init(DB)

For x = 1 to |T |:
stx, respi←$ REMemR,MemW.exec(sti−1, T [x])

respArr ← resp1|| · · · ||resp|T |
Return respArr

MemR(idx):

Return Mem[idx ]

MemW(idx , val):

Mem[idx ]← val

Return⊥

Execute(DB, T ):

Mem← empty array of length M

For x = 1 to |DB|:
Mem[x]← DB[x]

For x = 1 to |T |:
op, idx , val ← T [x]

If op = read:
respx ← Mem[idx ]

If op = write:
Mem[idx ]← val

respx ←⊥
respArr ← resp1|| · · · ||resp|T |
Return respArr

Fig. 1. RAM emulator correctness.

only reads or writes to a single memory location, we do note that our results can be
easily extended to account for block memory accesses.

RAM emulators. A RAM emulator RE is a pair of algorithms (init, exec) that simulates
a RAM. Both init and exec have oracle access to two procedures — MemR and MemW
— that allow reading and writing to an array Mem of size M . Below, we will mostly
leave implicit the length of each array entry, and simply assume they are large enough.
(To draw an analogy to encrypted databases, RE is the “client” and the array Mem it
reads and writes through its oracles is the “server”.)

The randomized initialization procedure RE.init(DB) takes an array of sizeN where
each input is m bits long, representing the initial state of the memory, as input. It outputs
an initial state st0. The randomized execute procedure RE.exec(st, (op, idx , val)) takes
as input a state st and an operation. It executes the operation and outputs the result and a
new state. (Below, in cases where the result is not used, we will omit it.)

Access pattern. We define an access pattern of an emulator RE on an array DB and
transcript T to be the sequence of MemR and MemW oracle calls, and the first argument
(accessed index) made by RE during init and while calling exec on each operation in the
transcript. As an abuse of notation, we will sometimes use RE(DB,T ) to refer to the
access pattern corresponding to executing the operations in T on DB.

Correctness and efficiency. Intuitively, a RAM emulator RE should always return
the same results as the “canonical” RAM implementation Execute outlined in Figure 1
(right). More formally, for a RAM emulator RE we define correctness using the pseu-
docode in Figure 1 (left). That is, we say that RE is correct if for any database DB and
transcript T , the output of Run(RE, DB, T ) is equal to the output of Execute(DB,T )
with probability 1 over the random choices made during init and exec.

Bandwidth overhead. One of the main measures of efficiency for RAM emulators is
bandwidth overhead, namely the increase in memory usage compared to the baseline
of just executing the transcript directly. Formally, for an emulator RE, database DB,
and transcript T , we define the bandwidth overhead as Ex[|RE(DB,T )|/|T |] where the
expectation is taken over the randomness of RE.
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ObSec(RE,A, n, `, i):

AP← [ ]

(DB0, T0), (DB1, T1)←$A0(l)

If |DB0| 6= |DB1| ∨ |T0| 6= ` ∨ |T1| 6= `:
Return⊥

st0←$ REMemR,MemW.init(DBi)

For x = 1 to |Ti|:
stx←$ REMemR,MemW.exec(stx−1, Ti[x])

b←$A1(AP).
Return b

MemR(idx):

AP← AP ‖ (r, idx)

Return Mem[idx ]

MemW(idx , val):

Mem[idx ]← val

AP← AP ‖ (w, idx)

Return⊥

Fig. 2. ORAM security game definition in pseudocode.

Oblivious RAM Emulators. Next we define the notion of obliviousness for RAM
emulators, see Figure 2. In this pseudocode, the adversary has two stages. The first stage
adversaryA0 chooses the arrays (databases) DB0, DB1 and the transcripts T0, T1. Next,
the second stage adversaryA1 tries to guess the bit b. We note thatA1 is not given access
to the contents of memory: all its input AP contains is the memory address accessed
by each oracle call, and its type (r or w). This is make the definition agnostic to the
way the memory contents are hidden—i.e., our definition can just as easily apply to a
setting where the memory is encrypted as it can to one where RE is run in multi-party
computation.

Definition 3. (Oblivious RAM emulator security) We define the ObSec advantage of an
adversary A = (A0,A1) against RAM emulator RE as

Advobl
RE(A) =

∣∣Pr[ObSec(RE,A, n, `, 0) = 1]− Pr[ObSec(RE,A, n, `, 1) = 1]
∣∣ .

We say the RAM emulator RE is computationally oblivious if for any nuPPT adversary
A, Advobl

RE(A) = negl(n).

Semi-honest security. Finally, we note that because MemR and MemW read and write
Mem, neither these ORAM definitions capture servers that modify memory contents or
reply with stale values. Such attacks can be prevented using standard techniques [45].

2.3 Oblivious Maps

Below, we will use oblivious maps, which are oblivious data structures akin to ORAM
but tailored for specific operation types (less generic than memory read/write).

As proposed in [52], we give oblivious map the following syntax. An oblivious map
OM has an initialize function OM.init(N) which takes N as the maximum capacity and
outputs an initial state. As with ORAMs, we view oblivious maps as having oracle access
to MemR and MemW oracles to manipulate their memory. OM has an execution func-
tion that supports four operations: Find, Insert, Update, Delete. OM.Find(key) returns
the value associated to key . OM.Insert(key , val) inserts the key value pair in to the map.
OM.Update(key , val) replaces the value associated to key by val . OM.Delete(key)
deletes the key value pair whose key is key . The execute function additionally inputs
and outputs a state.
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We require oblivious maps to satisfy a variant of the ORAM security definition
defined above. Let OblivMapSec denote the security game. (We omit pseudocode since
it is almost identical to ObSec.)

Definition 4. (Oblivious map) We define the advantage of A against OM as

AdvOMap
OM (A) =

∣∣Pr[OblivMapSec(OM,A, N, `, 0) = 1]

− Pr[OblivMapSec(OM,A, N, `, 1) = 1]
∣∣.

If this advantage is negligible for all nuPPT adversaries, we say OM is an oblivious
map.

3 Snapshot-Oblivious RAM Emulators

In this section, we introduce our new primitive: c-snapshot oblivious RAM emulators.
(We will usually shorten this to c-snapshot ORAMs.) The syntax of the new primitive
is similar to ORAM, but with one important change: we allow the init procedure to
take, in addition to the initial array DB, a natural number c denoting the number of
operations’ access patterns the adversary gets to see. The syntax is otherwise unchanged.
The correctness notion for RAM emulators must change slightly as well: for a RAM
emulator to be correct, the correctness condition defined in Section 2 must hold with
probability 1 for every possible choice of c.
c-snapshot obliviousness. Next we explain our new security notion, c-snapshot
obliviousness. Before formally stating the definition, we will briefly discuss the space of
possible definitions, and identify some desirable properties of a snapshot-obliviousness
definition. First, we expect snapshot-obliviousness should be strictly weaker than plain
obliviousness. Namely, any ORAM should be c-snapshot oblivious for any c. Second,
for any c′ < c, it should be the case that c-snapshot obliviousness implies c′-snapshot
obliviousness. Finally, to meaningfully capture snapshot attacks on real systems, we
would like snapshot-obliviousness to allow the adversary to see any c operations of its
choosing, without restricting the adversary to any particular locations.
Our definition. We give the pseudocode of our definition in Figure 3. Like plain
obliviousness, the definition allows the adversary to specify two pairs of an array and
transcript. The game runs RE.init on the ith pair using the oracles MRH and MWH,
which allow the emulator to manipulate the memory Mem without recording the access
patterns. Then the game runs RE.exec on all but the last c operations of Ti, again without
recording the access patterns. Next, the game proceeds to execute final c operations of
the transcript via RE.exec, but this time using MemR and MemW which record their
access patterns in AP. Finally, the game runs the second adversary A1 on the recorded
access patterns AP, and (implicitly) the state of A0. A1 in turn is expected to correctly
guess i.

Definition 5. (c-snapshot obliviousness) Let RE be a RAM emulator and c be a fixed
number, the c-SnapObSec advantage of the adversary A = (A0,A1) against RE is

Advsnap
RE (A) =

∣∣Pr[SnapObSec(RE,A, n, c, 0) = 1]

− Pr[SnapObSec(RE,A, n, c, 1) = 1]
∣∣ .
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SnapObSec(RE,A, n, c, i):

AP← [ ]

(DB0, T0), (DB1, T1)←$A0(n, c)

If |DB0| 6= |DB1| or |T0| 6= |T1| then Return⊥
st0←$ REMRH,MWH.init(DBi, c)

For x = 1 to |Ti| − c:
stx←$ REMRH,MWH.exec(stx−1, Ti[x])

For x = |Ti| − c + 1 to |Ti|:
stx←$ REMemR,MemW.exec(stx−1, Ti[x])

b←$A1(AP).
Return b

MemR(idx):

AP← AP ‖ (r, idx)

Return Mem[idx ]

MemW(idx , val):

Mem[idx ]← val

AP← AP ‖ (w, idx)

Return⊥

MRH(idx):

Return Mem[idx ]

MWH(idx , val):

Mem[idx ]← val

Return⊥

Fig. 3. SnapORAM security game.

The emulator RE is said to be (computationally) c-snapshot oblivious if for any nuPPT
adversary A, Advsnap

RE (A) = negl(n).

Comparing to obliviousness. We now argue that our c-snapshot obliviousness defini-
tion is a natural restriction of regular ORAM. In particular, if for a RAM emulator RE
there exists a c and an adversary A with non-negligible c-SnapObSec advantage, we can
build a reduction B = (B0,B1) that breaks ORAM security. The reduction B0 works
by running A0 (with c as an argument) and outputting the two pairs it outputs. Then,
B1 uses its access patterns AP to construct A1’s inputs. (Note that A1 takes the initial
state of the memory Mem0 as well as the access patterns of the last c operations; B1 can
construct both with AP. Clearly, A’s c-SnapObSec advantage is a lower bound on B’s
ORAM advantage.
Requiring equal length transcripts. In the SnapObSec game, as in ObSec above, we
require the adversary to output two equal length transcripts. This restriction is necessary
in ObSec to prevent a trivial distinguishing attack based on the transcript length. However,
astute readers may notice that since an adversary can only view the access pattern of
c operations, specifying two differing-length transcripts does not give a SnapObSec
adversary a trivial win. The c-snapshot obliviousness definition could conceivably be
strengthened by removing the restriction that the transcripts are of equal length. However,
the security analyses of some c-snapshot ORAM constructions below —e.g., UHQoram
in Section 7—would require a non-standard transcript-length-hiding property of an
underlying ORAM. Lifting the length restriction is a good question for future work.
Observing the last c operations. Our c-snapshot obliviousness definition allows the
adversary to design the whole transcript but restricts the observing window to be the last
c operations at the end of the transcript. We claim this setting is as strong as allowing to
put the observing window anywhere in the middle of the transcript. For a typical ORAM
not handling batching transcripts, the way to access one physical memory position,
though randomized, does not depend on the remaining transcripts after that. This means
any operation after the observing window will not change the distribution of access
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FSOMemR,MemW.init(DB, c):

kP ←$K
For idx = 0 to |DB| − 1:

MemW(idx , DB[E−1
kP

(idx)])

Return kP

FSOMemR,MemW.exec(st, (op, idx , val)):

kP ← st

If op = read:
resp← secure-read(kP , idx)

If op = write:
resp← secure-write(kP , idx , val)

Return st, resp

secure-read(kP , idx):

c← MemR[EkP
(idx)]

MemW(EkP
(idx), c)

Return d

secure-write(kP , idx , val):

MemR[EkP
(idx)]

MemW(EkP
(idx), val)

Return⊥

Fig. 4. The FSO RAM emulator, and the definition of secure-read and secure-write. (Note that
both secure-read and secure-write implicitly have access to the same oracles as exec.)

patterns the adversary gets. Due to this independence, it is without loss of generality to
put the c accesses at the end of the transcript.

c′-snapshot obliviousness for c′ < c. The security definition immediately leads to
a result that any snapshot-oblivious RAM emulator initialized with a DB and some
number c is still secure if the adversary observes access pattern of c′ operations and
c′ < c. We note, however, that this is different from saying any c-snapshot oblivious
RAM emulator is c′-snapshot oblivious: this statement is not necessarily even correct.
In SnapObSec game, the RE is initialized by a parameter c, so an adversary against a
c-snapshot oblivious RAM emulator is getting access pattern from a RE is initialized by c.
However, proving this would require building a reduction that wins the c-snapshot game
given an adversary that wins the c′-snapshot game, and it’s not clear if the adversary
can simulate the view of a c′-snapshot adversary given its inputs (computed from a
c-snapshot ORAM initialized with c fixed). We believe that for restricted classes of
snapshot-oblivious RAMs, this statement is true, but we leave the details to future work.

4 FSO: A 1-Snapshot Oblivious RAM

Next we will give a “warm-up” analysis of a folklore snapshot-oblivious RAM, FSO,
and show that it meets 1-snapshot obliviousness.

The scheme. In Figure 4, we give the pseudocode of FSO. It uses a pseudorandom
permutation E. During init, FSO samples a PRP key, then loads the array into memory
according to the permutationE. (The parameter c is ignored during init.) Then, it outputs
the keys as its initial state.

During exec, the scheme performs either secure-read or secure-write depending on
op. Both perform a writeback to hide the operation type: they first read index EkP

(idx )
with MemR, and write it back to the same location with MemW. If the operation was
a read, exec returns the value, else it returns nothing. Clearly, this scheme has both
constant bandwidth overhead and constant client storage.
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ICQoramMemR,MemW.init(DB, c):

Q← [ ] ; f ← 0

kP ←$K
For idx = 0 to |DB|+ 2c− 1:

If E−1
kP

(idx) < N :

MemW(idx , DB[E−1
kP

(idx)])

Else: MemW(idx , 0m)

Return (Q, kP , kE)

ICQoramMemR,MemW.exec(st, (op, idx , val)):

Q, kP ← st

If idx in Q:
secure-read(kP , |DB|+ f)

f ← (f + 1) mod 2c

Else:

(continue)
d← secure-read(kP , idx)

Q.push(idx , d)

If op is read:
resp← Q[idx ]

If op is write:
Q[idx ]← val

resp←⊥
If |Q| > c:
idx , val ← Q.pop()

secure-write(kP , idx , val)

Else:
secure-write(kP , |DB|+ f,⊥)

f ← (f + 1) mod 2c

Return (Q, kP ), resp

Fig. 5. ICQoram, an insecure queue-based scheme. The secure-read and secure-write procedures
are as defined in Figure 4. Three stages are in execution function, the second one is shaded.

Security of FSO. The security of FSO for restricted adversaries seems to be folklore—
see, e.g., Cash [7]— but to our knowledge has never been formally proven. We validate
this folklore by showing FSO is c-snapshot oblivious for c = 1.

Theorem 4. If E is a secure PRP, then FSO RAM emulator is 1-snapshot oblivious.

Proof. We define G0 to be the case that FSO initializes on DB0 and executes on T0. In
G1 FSO initializes on DB1 and executes on T1. We want to show that both G0 and G1

are indistinguishable from Ghybrid where the adversary observes read and write a same
but random idx in the access pattern.

In G0, G1, Ghybrid, the adversary observes AP = (r, idx ′)||(w, idx ′). The first part
of AP comes from secure-read and the second part comes from secure-write.

The difference between Gi and Ghybrid is that the idx ′ in AP is EkP
(idx ) in Gi,

which is computed by a PRP; while in Ghybrid, it is truly random, or we can say it
is from a random permutation π, idx ′ = π(idx ) for fixed idx . If Gi and Ghybrid is
distinguishable, we can tell difference between PRP and truly random permutation by
a simple reduction, |Pr[Gi,hybrid = 1]− Pr[Ghybrid = 1]| ≤ Advprp

E (Ci). Therefore, by
the 2-step reduction, |Pr[G0 = 1]− Pr[G1 = 1]| ≤ 2Advprp

E (C).

5 The c-queue Scheme

In the previous section, we showed a simple c-snapshot oblivious RAM. In this section
we will show how to get c > 1. Before giving our construction, we will describe a natural
approach that turns out to be insecure.

5.1 An Insecure Scheme

The FSO scheme in Section 4 is only 1-snapshot obliviousness because it leaks repetitions
in accesses: reading the same “logical” address twice causes the scheme to make the
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same physical accesses. To make a secure scheme for general c we’d like the property
that physical accesses are all distinct whether or not logical accesses are.

A natural way to ensure this is to augment FSO with a queue of recent accesses.
It keeps track of which entries were accessed in the last c operations, along with their
values. If any recently-accessed entries are accessed again within c operations, the
scheme reads them from the queue instead of from the remote memory. To prevent the
server from learning if the queue was used, the scheme can access a fake element.

The ICQoram scheme in Figure 5 formalizes this idea. ICQoram.init works as in
FSO, except it also adds 2c dummy elements. The procedure ICQoram.exec has three
stages. First, it fetches address idx to the queue Q. If idx is already in the queue, it
fetches a dummy element, otherwise reads idx into the queue. Second, it processes the
operation (op, idx , val). If the operation is a write, it updates the value of idx in the
queue; else, it stores val as the read’s return value. Finally, ICQoram performs eviction.
If the size of queue is greater than c, it writes the oldest element back to main memory,
otherwise it writes a dummy element.

This scheme is fairly efficient: it requiresO(c) additional storage in physical memory,
O(c) additional client state, and has constant bandwidth overhead.
Security. The access pattern for each operation is one secure-read and one secure-write.
If ICQoram could guarantee that for any c operations, the indices touched in the 2c
secure-reads and secure-writes were different, it could be proven secure using a straight-
forward extension of the proof for FSO in Section 4.

However, this guarantee does not hold. ICQoram only makes sure the c secure-read
have distinct indices; the c secure-write indices depend on what is residing in the queue
in a way that can be exploited by an attacker to distinguish between two transcripts.
We demonstrate this with a concrete example. (We remind the reader that although the
attacker can only observe the access pattern of c operations, it can choose the entire
transcript.) Let c = 3, |DB| = 10, and take the two transcripts

T0 = read(1), read(2), read(3), read(4), read(5),

T1 = read(1), read(2), read(3), read(4), read(1) .

At the end of the third operation, for both transcripts, there are three indices in the
queue, 1, 2, 3. Now we start the execution of the fourth and fifth operations. For T0, the
access pattern of last two operations is secure-read(4), secure-write(1), secure-read(5),
secure-write(2). But access pattern of transcript T1 is secure-read(4), secure-write(1),
secure-read(1), secure-write(2). Since the adversary can see access pattern for the last
three operations, it can tell T0 or T1 from whether the third to last secure-write touches
the same address with the second to last secure-read.

5.2 CQoram: A c-Snapshot ORAM

Though ICQoram is insecure, the queue-based approach can be fixed. Fixing ICQoram
is challenging because of a three-way tension between bounded state size, correctness,
and security: to keep the queue’s size bounded, elements in it must eventually be evicted.
For correctness, the evicted element must be written back to its location in main memory;
otherwise, an element updated while in the queue will not have the correct value in
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CQoramMemR,MemW.init(DB, c):

WQ← [ ] ; RQ← [ ] ; f ← 0

kP ←$K
For ı = 0 to c− 1:

WQ.push(⊥,⊥)

RQ.push(⊥,⊥)

For idx = 0 to |DB|+ 2c− 1:
If E−1

kP
(idx) < N :

MemW(idx , DB[E−1
kP

(idx)])

Else: MemW(idx , 0m)

Return (WQ,RQ, kP )

CQoramMemR,MemW.exec(st, (op, idx , val)):

WQ,RQ, kP ← st

If idx in WQ:
WQ.push(⊥,⊥)

secure-read(kP , |DB|+ f)

f ← (f + 1) mod 2c

Else if idx in RQ:
d← RQ[idx ]

(continue)
WQ.push(idx , d)

secure-read(kP , |DB|+ f)

f ← (f + 1) mod 2c

Else:
d← secure-read(kP , idx)

WQ.push(idx , d)

If op = read:
resp← WQ[idx ]

If op = write:
WQ[idx ]← val

resp←⊥
(idx ′, val′)← WQ.pop()

RQ.push(idx ′, val′)

If val′ 6=⊥:
secure-write(kP , idx ′, val′)

Else:
secure-write(kP , |DB|+ f,⊥)

f ← (f + 1) mod 2c

RQ.pop()

Return (WQ,RQ, kP ), resp

Fig. 6. The CQoram scheme, a c-snapshot ORAM.

the future. But to maintain security—namely, the invariant that all 2c accesses are
distinct—this location must not be touched again after eviction.

We begin with the simple observation that a second “read-only” queue could be used
to keep track of the elements that were recently evicted from the main queue. This could
be checked during exec to prevent duplicate accesses, preventing the attack above. Our
CQoram scheme will use this idea; as we will see, there are several important subtleties
that must be dealt with. Notably, care must be taken if an element is written while it is in
this secondary read queue.
The CQoram scheme. We give pseudocode of the scheme in Figure 6. As with FSO,
CQoram uses a PRP E with key space K. The CQoram.init procedure is nearly identical
to ICQoram’s init, except it initializes two queues—the write queue WQ and the read
queue RQ—instead of just one, and fills the queues with dummies. The invariant of this
scheme is that at the beginning and end of CQoram.exec, both two queues have exactly
c elements, either real or dummy, in them.

As with ICQoram, the CQoram.exec procedure has three main phases. First, it checks
both WQ and RQ for the index idx to be accessed; like ICQoram, if either queue contains
idx it reads a dummy, else it reads idx from main memory. One important new step is in
the second branch, which checks RQ. Here, if idx is found in RQ, it will move it and
its value back into WQ to maintain the invariant that WQ always contains the element.
(We do not need to delete the element from RQ—the copy in RQ will always be deleted
before the element is evicted from WQ.)

The second phase is executing the operation on the element. This phase is the same
as in ICQoram. The third phase of CQoram.exec, eviction, is necessarily quite different
than in ICQoram. It begins by popping the front (oldest) element from WQ and pushing
it into RQ anyway. Then it checks if that element is a dummy; if not, writes the element
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back to main memory, otherwise writes a dummy. Finally, pop the front element from
RQ and (implicitly) deletes it. Finally, we note that CQoram has the same asymptotic
performance as ICQoram; concretely, CQoram requires twice as much client storage as
ICQoram, but has identical bandwidth and storage overhead.
Security of CQoram. Next we prove that CQoram is a c-snapshot oblivious RAM
emulator for any c. We begin with a lemma showing that any size-2c subsequence of
accesses made with CQoram are to distinct memory locations. Below, we will treat
the pair of entries in AP made by our secure-read or secure-write procedures as one
“access”, since either procedure just performs a writeback—a read, then a write—on one
memory location.

Lemma 1. LetDB be an array ofN m-bit strings, and T be a transcript of n operations.
Let x1, x2, . . . , x2n be random variables denoting the sequence of indices in Mem ac-
cessed by CQoram while executing T on DB. For any i ∈ [1, 2n] let {xi, . . . , xi+2c−1}
be the subsequence of at most 2c accesses starting with xi. Then with probability 1 over
the random coins of CQoram, all accesses in this subsequence are distinct.

Proof. We prove this statement in two steps. First, we observe that it is sufficient to
prove a weaker statement: namely that for any size-2c sequence of physical accesses, the
first access xi occurs only once in that sequence. This implies all size-2c subsequences
are distinct because if there was a subsequence where this did not hold, there would
also be a size-2c subsequence where the first access occurred more than once in that
subsequence.

Next we prove that the first access occurs only once. The 2c memory accesses
are either “real” array values or dummies. We know that real values are at position
EkP

(1), . . . , EkP
(N), and dummies are at position EkP

(N + 1), . . . , EkP
(N + 2c);

thus, dummies cannot have the same address as real values, and so xi = xi+j can only
be the case if they are either both dummies or both real values.

Since the subsequence has 2c memory accesses there are at most 2c dummies being
touched. During CQoram.init we add 2c dummies, and we use the counter f to make
sure each dummy is accessed only once. Thus, if the accesses are both to dummy values,
they must be distinct.

Now we only care about the case where xi and xi+j are both to real values, and let
idx i and idx i+j be the corresponding real indices. First, we will state three facts about
CQoram.exec. (1) Any access to a real value happens either because of secure-read or
secure-write. (2) secure-read(idx i) happens only if idx i is neither in WQ or RQ. (3)
secure-write(idx i) happens only when idx i is popped from WQ.

There are four cases to analyze.
– secure-read(idx i), . . . , secure-read(idx i+j) After idx i is read, it is pushed into
WQ. idx i is popped after c new elements are pushed into WQ. Each operation will
push exactly 1 element into WQ. Therefore, in the next c − 1 operations, idx i is
always in WQ, so idx i 6= idx i+j and xi = xi+j for all j.

– secure-read(idx i), . . . , secure-write(idx i+j) After idx i is read, it is pushed into
WQ and it is written only when idx i is popped out. Thus, in the next c−1 operations,
idx i is always in WQ, so idx i 6= idx i+j for all j.

– secure-write(idx i), . . . , secure-read(idx i+j). First, idx i is pushed into RQ after
being written. We read the index idx i from the memory only if it is not in WQ or
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RQ. idx i is popped only after c new elements are pushed into RQ. Each operation
will push 1 element into RQ. Therefore, in the next c− 1 operations, idx i is always
in RQ, and idx i 6= idx i+j for all j. (Note that this is the case where ICQoram fails
to prevent duplicate reads.)

– secure-write(idx i), . . . , secure-write(idx i+j). As above, idx i is popped from WQ
after being written. We write the index idx i to the memory only if it is already in
WQ. It takes one operation to read idx i to WQ again and at least c− 1 operations
before being popped out, so idx i 6= idx i+j for all j.

Thus, we have proved that xi is only accessed once, and we are done.

Theorem 5. The CQoram scheme is a c-snapshot oblivious RAM emulator, for any c.

Proof. Each operation has one secure-read and one secure-write, which writes a (r, idx )||
(w, idx ) to the access pattern AP. In c operations, the 2c read/write indices are distinct by
Lemma 1. Call these x1, . . . , x2c. Then AP has 2c copies of (r, idx∗)||(w, idx∗) where
the 2c idx∗ = EkP

(xi) are distinct and pseudorandom, which are indistinguishable from
a hybrid game that idx∗ are π(1), · · · , π(2c) where π is a random permutation.

Discussion The CQoram scheme has constant bandwidth overhead because each plain-
text operation is done by one secure-read and one secure-write, each of which does two
memory accesses. So |CQoram(DB,T )|/|T | = 4 = O(1). But it needs O(c) client
storage.

We can store the queue on the server, but during CQoram.exec, we need to check the
queues’ contents. This operation needs to iterate the entire queue, so it has to introduce a
linear overhead in c. Therefore on each queue operation, we scan and update the entire
queue, which gives us an O(c) bandwidth overhead and constant client storage. In the
next section, we will present a much more efficient way to outsource the queue’s storage
to the server.

Readers may find that different from the ICQoram scheme, we pad the size of queues
to c. Note that this does not fix the insecurity of ICQoram. Instead, if we choose to store
the queues on the client’s side, removing the paddings even enhances the efficiency.
However, if we pop WQ only when |WQ| > c, the latest version of some memory
contents may be arbitrarily old. Suppose the transcript is repeatedly writing some values
to address 1 to c− 1, then these updated values are never uploaded because the queue
has size c−1. Therefore if a client is shutdown unexpectedly, the “back-up” value on the
server can be extremely out of date. Our CQoram scheme makes sure that every updated
memory value will be uploaded to the server every c operations.

6 Oblivious Hash Queue based c-SnapORAM

As we described above, for the CQoram scheme, the read and write queues can be
stored on the server and simply streamed to the client during each CQoram.exec. This
allows constant client-side storage but incurs O(c) bandwidth overhead, which may be
prohibitive if c is large.

To reduce this overhead, we could instead store the queues in a smaller ORAM.
Since the amount of storage needed for the queues is only O(c), this would in principle
allow us to reduce the overhead of CQoram exponentially, to something like O(log c).
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However, making this strategy work is quite challenging. The read and write queues
in CQoram are used in several different ways in CQoram.exec: searching for (idx , val)
pairs, updating their values, and pushing and popping elements in a first-in, first-out
fashion. Ultimately, no existing data structure efficiently provides the combination of
dictionary and queue properties we need, so we invent our own novel data structure,
which we term the hash queue.

In this section, we will introduce the syntax of hash queue and give an oblivious
hash queue security definition. We show how to build a c-snapshot ORAM (PHQoram)
using an oblivious hash queue, and how to use oblivious map to build an oblivious hash
queue (OMOHQ). The PHQoram construction has polylogarithmic bandwidth overhead,
which will be further reduced in Section 7.

Definition 6. (Hash queue) A hash queue is a pair of algorithms: an initialization
function HQ.init(c) and an execution function HQ.exec(op, args) where args is a tuple
of arguments.

A hash queue is initialized by calling its initialization function with argument c,
which represents the maximum size of the hash queue. After initialization, the HQ.exec
function takes a state as input and output, and supports the following four types of
operation:

– op = Find, args = (key). The data structure searches on key and returns val if key
is found, otherwise returns ⊥.

– op = Push, args = (key , val). Insert the key value pair.
– op = Access, args = (op′, key , val). If op′ is read, searches for key and returns its

value. If op′ is write, searches on key and replaces its value by val and returns ⊥. If
key is not found, the data structure returns ⊥0, a reserved failure symbol distinct
from ⊥.

– op = Pop, args = (). Returns the oldest key-value pair and deletes it.

Below, we will abuse notation slightly and replace exec with the hash queue operation it
executes. E.g., HQ.Find(key) instead of HQ.exec(Find, (key)).

6.1 Hash Queue Security

A natural security definition for hash queues is an ORAM-style notion that requires
hiding everything except the operation count. This kind of definition is typical of other
oblivious data structures [52]. However, such a definition is stronger than what we need:
our goal is to replace the client-side queues in CQoram with hash queues; in CQoram
(Figure 6). Notice that no matter what the transcript is, for each CQoram.exec, we always
search idx in WQ, then execute push, modify, and pop in the WQ. Likewise, we search
in RQ at the beginning (not always, but we can do a dummy search), then push and pop.
That is to say the sequence of operation executed on a queue which will be replaced by
an oblivious hash queue, is always the same and publicly known in advance. Because of
such observation, we propose our first obliviousness definition. We give the pseudocode
for our public operation obliviousness security notion for hash queues in Figure 7.

Similar to the security game of RAM emulators, we define both of init, exec as
relative to a pair of oracles MemR,MemW. Cryptographic primitives like hash queue
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PublicOpOblivHashSec(HQ,A, n, i):

AP← []

st0←$ HQMemR,MemW.init(n)

T0, T1←$A0(n)

For x = 1 to `:
If T0[x].op 6= T1[x].op then Return⊥
op, args ← Ti[x]

stx←$ HQMemR,MemW.exec(stx−1, op, args)

b←$A1(AP)

Return b

Fig. 7. Game defining public operation obliviousness for a hash queue. AP is modified by oracles
MemR,MemW as defined in Figure 2 during the execution of exec function.

use the same MemR,MemW oracles to access the entire physical memory. To make sure
the primitives do not overwrite others’ memory, each primitive is allocated a primitive
identifier pid and memory space when calling init. MemR,MemW implicitly take pid
as an argument and add a proper offset to get the physical memory address.

Definition 7. (Public-operation oblivious hash queue) For a two-part adversary A
playing game defined in Figure 7, we define the public-operation obliviousness advantage
of A against HQ as

Advopo
HQ(A) =

∣∣Pr[PublicOpOblivHashSec(n,HQ,A, 0) = 1]

− PublicOpOblivHashSec(n,HQ,A, 1) = 1
∣∣.

If for a hash queue HQ, for any nuPPT adversary A, the above advantage is negligible,
we say that HQ is public-operation oblivious.

The game is similar to our obliviousness notion for RAM emulators in Section 2. It
lets the adversary A0 output two pairs of transcripts with the same “operation pattern”,
executes the ith transcript, and gives the A1 the access patterns and outputs its guess b.

6.2 A c-Snapshot ORAM From Hash Queues

Next we describe a generic transformation that builds a c-snapshot ORAM from any
hash queue meeting the public-operation obliviousness property defined above. (In
the next subsection, we will construct a hash queue which enjoys this property.) We
call our construction PHQoram, and give its pseudocode in Figure 8. At a high level,
PHQoram follows the strategy we outlined above of outsourcing CQoram’s read and
write queues to the server. PHQoram replaces RQ with a hash queue rOHQ, and likewise
replaces WQ with a hash queue wOHQ. The procedure PHQoram.init initializes the two
queues independently in non-overlapping regions of Mem (handled by MemR,MemW
oracles), then samples a PRP key and fills the rest of Mem with DB entries and dummy
elements. The procedure PHQoram.exec works similarly to CQoram.exec, with a few
important differences. Most notably, it executes both wOHQ.Find and rOHQ.Find,
whereas CQoram does not check RQ if the index is found in WQ. This prevents leaking
the hash queue contents based on the number of accesses to each hash queue.
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PHQoramMemR,MemW.init(DB, c):

kP ←$K
stwq ←$ wOHQMemR,MemW.init(c)

strq ←$ rOHQMemR,MemW.init(c)

f ← 0

For i = |DB|+ 2c to |DB|+ 3c− 1:
stwq ←$ wOHQ.Push(stwq, i,⊥)

strq ←$ rOHQ.Push(strq, i,⊥)

For i = 0 to |DB|+ 2c− 1:
If E−1

kP
(i) < |DB|:

MemW(i,DB[E−1
kP

(i)])

Else: MemW(i, 0m)

Return kP , stwq, strq

PHQoramMemR,MemW.exec(st, op, idx , val)):

kP , stwq, strq ← st

valw, stwq ←$ wOHQMemR,MemW.Find(stwq, idx)

valr, strq ←$ rOHQMemR,MemW.Find(strq, idx)

If valw 6=⊥:
secure-read(kP , |DB|+ f)

(continue)
stwq ←$ wOHQMemR,MemW.Push(stwq, |DB|+ f,⊥)

f ← (f + 1) mod 2c

Else If valr 6=⊥:
secure-read(kP , |DB|+ f)

stwq ←$ wOHQMemR,MemW.Push(stwq, idx , valr)

f ← (f + 1) mod 2c

Else:
d← secure-read(kP , idx)

stwq ← wOHQMemR,MemW.Push(stwq, idx , d)

resp, stwq ← wOHQMemR,MemW.Access(stwq, op, idx , val)

(idx ′, val′), stwq ←$ wOHQ.Pop(stwq)

strq ←$ rOHQMemR,MemW.Push(strq, idx
′, val′)

If val′ 6=⊥:
secure-write(kP , idx ′, val′)

Else:
secure-write(kP , |DB|+ f,⊥)

f ← (f + 1) mod 2c

strq ←$ rOHQMemR,MemW.Pop(strq)

Return (kP , stwq, strq), resp

Fig. 8. Construction of PHQoram c-Snapshot ORAM emulator in pseudocode. The exec procedure
starts on the left and continues on the right.

It is not too hard to see that if wOHQ, rOHQ has bandwidth overhead g(c) for each
operation, then PHQoram has bandwidth overheadO(g(c)). Regardless of which branch
is taken, PHQoram does the following things on each RAM operation:

wOHQ.Find, rOHQ.Find, secure-read,wOHQ.Push,wOHQ.Access,
wOHQ.Pop, rOHQ.Push, secure-write, rOHQ.Pop.

Since there are a constant number (7) of hash queue operations each with g(c) overhead
and a constant number (2) of accesses to the “main” memory with O(1) overhead, the
overall bandwidth overhead is O(g(c)).

Theorem 6. Let E be a secure PRP and wOHQ, rOHQ be public-operation oblivious
hash queues. Then the PHQoram scheme in Figure 8 is a c-snapshot oblivious RAM
emulator.

Proof. We will prove c-snapshot obliviousness by reduction. The high-level strategy
is as follows: first, we will perform two game hops to “decouple” the operations made
against the two hash queues from the adversary’s chosen transcripts in SnapObSec.
(Specifically, we will simply execute the same operation sequence on wOHQ and rOHQ,
but with dummy arguments.) In these hybrid games we will ensure the correctness of
the distribution of accesses to the main memory using local queues; effectively, after
these two game hops, the access pattern to the main memory will be distributed as in the
CQoram scheme. Then, we can use a variant of the security argument for CQoram to
perform one more game hop which changes the PRP’s outputs to a random subset of the
memory locations.
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We now proceed more formally. Let A be a SnapObSec adversary. We will show
that there exists adversaries B, C, and D such that

Advsnap
PHQoram(A) ≤ 2Advopo

wOHQ(B) + 2Advopo
rOHQ(C) + 2Advprp

E (D) .

We do this via a sequence of games. Game G0 is SnapObSec(PHQoram,A, c, 0).
Game G1 is the same as G0 except for two additional (local) queues, WQ and RQ, are
added to PHQoram.exec that “mirror” (resp.) wOHQ and rOHQ: any modifications
made to wOHQ or rOHQ are also made to their corresponding local queues, but the
access pattern is otherwise unchanged. Clearly, this does not affectA’s view, so Pr[G0 =
1] = Pr[G1 = 1].

Next we define the game G2. This game is identical to G1, except the arguments
to all wOHQ operations (except the state) are replaced with fixed values: all indices
are replaced with zero. The local queue WQ is used in place of wOHQ. We can upper-
bound the difference in advantage between G1 and G2 by building a reduction B0 to the
public-operation obliviousness of wOHQ. The reduction B0 works as follows: first, it
runs A0 to get (DB0, T0), (DB1, T1). Then, it samples kP and with its own simulated
MemR,MemW oracles initializes rOHQ and executes PHQoram on (DB0, T0) as in
G1. However, B0 only uses WQ and does not perform wOHQ operations; instead, it
marks the access patterns of these operations in AP with ⊥ and records the operations
that would have been executed against wOHQ. This is the “induced” transcript of
operations on wOHQ in G1. Call this transcript −→opG1

w . Concretely, it consists of c
Push operations made during init, then for each RAM operation, the transcript contains
Find,Push,Access,Pop. (Note that the sequence of wOHQ operation types is fixed and
does not depend on the RAM operation.) Then, B0 constructs the “dummy” transcript
−→opG2

w , containing the same operation types but with all-zero arguments; it then outputs
−→opG1

w ,−→opG2
w as its chosen transcripts in its PublicOpOblivHashSec game. When B0 gets

the array of access patterns in the second stage of the PublicOpOblivHashSec game, it
uses them to fill in the entries of AP which were marked with ⊥ previously.

At this point, B0 has an access pattern array AP which is distributed as in G1 if
i = 0 in PublicOpOblivHashSec, and distributed as in G2 if i = 1. Thus, B0 can simply
truncate AP to the last c operations, compute the state of Mem before these operations,
run A1 as in SnapObSec, and return its output. By construction,

|Pr[G1 = 1]− Pr[G2 = 1]| ≤ Advopo
wOHQ(B0) .

Next we define G3, which is the same as G2 except we also replace the argu-
ments to rOHQ with “dummy” all-zeros strings. (Note that, like wOHQ, the opera-
tion types executed on rOHQ while PHQoram executes a RAM operation are fixed to
Find,Push,Pop.) By an argument similar to the above, we can construct a reduction C0 to
the public-operation obliviousness of rOHQ, giving us that |Pr[G2 = 1]− Pr[G3 = 1]| ≤
Advopo

rOHQ(C0) .
In G3, only the accesses to the “main” memory (i.e., the permuted array) depend on

(DB0, T0). Dummy operations are made against wOHQ and rOHQ; the actual state of
those queues is kept track of locally, as in the CQoram scheme in Section 5. Next, we
construct game G4, where the “main” memory consists of indices of the 2c accesses to
the main memory (secure-reads and secure-writes) seen by A are chosen by sampling a
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OMOHQMemR,MemW.init(n):

head, tail ← 0

For i = 1 to n + 1:
MemW(i, 0m)

stom←$ OMMemR,MemW.init(n)†

Return (stom, head, tail, n)

OMOHQMemR,MemW.Access(op, key, val):

If op = write:
OMMemR,MemW.Update(key, val)

Return⊥
If op = read:

Return OMMemR,MemW.Find(key)

OMOHQMemR,MemW.Find(key):

Return OMMemR,MemW.Find(key)

OMOHQMemR,MemW.Push(key, val):

OMMemR,MemW.Insert(key, val)

MemW(tail, key)

tail ← (tail + 1) mod (n + 1)

OMOHQMemR,MemW.Pop():

key′ ← MemR(head)

head ← (head + 1) mod (n + 1)

val′ ← OMMemR,MemW.Find(key′)

OMMemR,MemW.Delete(key′)

Return (key′, val′)

Fig. 9. The OMOHQ hash queue construction. All operations input and output the state returned
from init; we leave this implicit for brevity. († We leave implicit the domain separation in these
MemR/MemW oracles. See Section 6.)

subset of [1, . . . , |DB|+ 2c] uniformly at random. By an argument very similar to the
proof of Theorem 5, we can build D0 and E0 so that

|Pr[G3 = 1]− Pr[G4 = 1]| ≤ Advprp
E (D0) .

In game G4,A’s view does not depend on either (DB0, T0) or (DB1, T1). Thus, we can
perform the previous game transitions in reverse to get to SnapObSec(PHQoram,A, c, 1).
A standard argument lets us build B, C,D whose advantages are at most twice the right-
hand sides of the above terms; applying the triangle inequality yields the result.

6.3 Constructing Public-operation Oblivious Hash Queues

Now that we have shown that c-snapshot ORAMs can be built from hash queues with
public-operation obliviousness, we just need to construct a hash queue meeting this
security notion. In this subsection we will give such a construction, which we call
OMOHQ.
The OMOHQ construction. In Figure 9, we give the pseudocode of OMOHQ. It is built
from an oblivious map which supports Insert,Find,Delete,Update, and an array which
serves as a queue. The init function initializes OM, chooses a key k′E , and writes an
array of all-zeros to the memory. It also initializes two queue pointers head , tail to zero.
The Find and Access procedures are essentially pass-throughs to their corresponding
oblivious map operations, where Access branches on the op input. The Push and Pop
procedures use both the array and OM. Push inserts key , val in the end of the hash
queue, by storing it at the tail position and inserting the key/value pair in OM. Pop does
the reverse—removing the key/value pair at the front of the hash queue. It does this by
reading and decrypting the key stored at head and using two OM operations to read its
value val ′ and delete it.

Theorem 7. If OM is an oblivious map, then OMOHQ in Figure 9 is a public operation
oblivious hash queue.
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Proof. The high-level strategy is similar to the proof of Theorem 6: we will transition
from PublicOpOblivHashSec with i = 0 to a game where all OM operations take fixed,
dummy arguments, and use a local map to ensure the accesses to the array have the
correct distribution. From there, we will transition to a game where the accesses in
the array depend on the transcripts output by the adversary in PublicOpOblivHashSec.
Reversing these transitions will get us to PublicOpOblivHashSec with i = 0.

We proceed via a sequence of game transitions. Let A be an adversary, and let game
G0 be PublicOpOblivHashSec(PHQoram,A, n, 0). We transition to game G1, where a
local map data structure “mirrors” the oblivious map OM. Then, we transition to game
G2, where the arguments to OM operations are fixed to be all-zeros, and the array’s
contents are determined using the local map. We can upper-bound the difference in these
two games outputting 1 by building a reduction B0 to the obliviousness of OM. The
reduction B0 runs A to obtain T0, T1, then simulates OMOHQ on T0 to determine the
induced OM transcript. Then, B submits this along with the fixed all-zeros OM transcript
as its chosen transcripts in the OblivMapSec game. It uses the access patterns it receives
to simulate A’s access pattern input. By construction, |Pr[G1 = 1]− Pr[G2 = 1]| ≤
Advom

OM(B0) .

We next move to gameG3, which is the same asG2 except the array accesses depend
only on the operation type, but not the arguments. The access pattern to the array is
actually identically distributed inG2 andG3: observe that in OMOHQ, the way the array
is accessed depends only on the operation type: init writes to it n times, Push writes to
position tail , and Pop reads from head . Thus, for any pair of transcripts output by the
adversary in PublicOpOblivHashSec, the access pattern to the array is fixed because the
transcripts must have the same operation sequence. Thus, the game G3 is identical to
G2, giving Pr[G2 = 1] = Pr[G3 = 1].

In game G3, the access patterns and the memory contents do not depend on ei-
ther of A’s output transcripts; thus, we can reverse these game transitions to get to
PublicOpOblivHashSec with i = 1. By applying an argument similar to the one at the
end of the proof of Theorem 6, the result follows.

Asymptotic and concrete performance. The asymptotic performance of the c-
snapshot ORAM PHQoram depends on how OM in OMOHQ is instantiated. A special-
purpose oblivous map data structure (e.g. [52]) is likely to be the most efficient choice.
The best-known oblivious maps achieve O(log2 n) bandwidth overhead for size-n mem-
ory. This implies that the bandwidth overhead of OMOHQ, and thus the PHQoram
construction, is O(log2 c) for c-snapshot obliviousness.

The concrete performance of PHQoram is a more complex question, as it depends
greatly on implementation specifics. The best-known oblivious map construction has
good asymptotics, but its concrete bandwidth overhead is still quite large for small
databases: for example, the evaluation of [46] shows that reading an eight-byte key/value
pair requires communicating over 100 KBs to the client. Despite exponentially worse
asymptotics, it may be the case that the CQoram scheme is more efficient than PHQoram
for practical values of c, due to its small constants. It does not seem inherent that oblivious
maps perform poorly for small memory sizes; we leave improving them in this parameter
regime to future work.
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UniqInsertOblivHashSec−→op(HQ,A, n, i):

AP← []

st0←$ HQMemR,MemW.init(n)

T0, T1←$A0(n,−→op)

If !(UI(T0) ∧ UI(T1)) then Return⊥
For x = 1 to `:

opx, args
i
x ← Ti[x]

stx←$ HQMemR,MemW.exec(stx−1, opx, args
i
x)

b←$A1(AP).
Return b

Fig. 10. Unique insertion oblivious hash queue security definition. The function UI(T ) returns 1 if
the keys given to Push operations are all distinct, and 0 otherwise.

7 Asymptotically-Optimal c-Snapshot ORAM

In this section, we give tight upper and lower bounds on the asymptotic performance
of c-snapshot ORAMs. Beginning with the upper bound, we propose a new oblivious
hash queue security definition different from Section 6 and show the UHQoram con-
struction in Section 7.1 using an instance (CCOHQ) of our new oblivious hash queue
variant. UHQoram is a modification of PHQoram which guarantees an important unique-
insertion property for the queues: namely, that duplicate keys are never Pushed. Though
a seemingly small change, we show that guaranteeing unique insertions is crucial because
it allows weakening the security requirements on UHQoram’s hash queues, admitting
more efficient instantiations.

We show CCOHQ, a hash queue construction meeting this weakened security re-
quirement with O(log n) bandwidth overhead for n items. Instantiating UHQoram with
CCOHQ gives a c-snapshot ORAM with O(log c) bandwidth overhead. Finally, in
Section 7.3, we extend the seminal Ω(log n) lower bound of [38]. Our lower bound
implies that any c-snapshot ORAM must have Ω(log c) bandwidth overhead, implying
UHQoram is asymptotically optimal in terms of bandwidth overhead.

We first define the weakened hash queue security notion that UHQoram will use.

Definition 8. (Unique-insertion oblivious hash queue) Let HQ be a hash queue, and
let −→op be a sequence of hash queue operation types. Let UniqInsertOblivHashSec be the
game in Figure 10. We define the −→op-unique insertion obliviousness advantage of an
adversary A against HQ as

Advuio
HQ,−→op(A) =

∣∣Pr[UniqInsertOblivHashSec−→op(HQ,A, n, 0) = 1]

− Pr[UniqInsertOblivHashSec−→op(HQ,A, n, 1) = 1]
∣∣ .

We call HQ −→op-unique-insertion oblivious if for all nuPPT adversaries A, Advuio
HQ(A)

is negligible. If HQ is −→op-unique-insertion oblivious for all −→op, we simply say it is
unique-insertion oblivious.

Looking ahead, we will only analyze −→op-unique-insertion oblivious for our CCOHQ
hash queue construction for the fixed −→op induced by the UHQoram c-snapshot ORAM;
thus, below we will always refer to −→op-unique-insertion oblivious.
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UHQoramMemR,MemW.init(DB, c):

kP ←$K; h, f ← 0

stwq ←$ wOHQMemR,MemW.init(c)

strq ←$ rOHQMemR,MemW.init(c)

For i = |DB|+ 2c to |DB|+ 3c− 1:
wOHQ.Push(−1||i,⊥)

rOHQ.Push(−1||i,⊥)

For i = 0 to |DB|+ 2c− 1:
If E−1

kP
(i) < |DB|:

MemW(i,DB[E−1
kP

(i)])

Else: MemW(i, 0m)

Return (kP , stwq, strq, h, f)

gvr(w0, w1, r0, r1, h
′):

If w0 6=⊥:
wqv← w0

h′′ ← h′

Else if w1 6=⊥:
wqv← w1

h′′ ← h′ − 1

Else:
wqv←⊥
h′′ ← h′

If r0 6=⊥:
rqv← r0

Else if r1 6=⊥:
rqv← r1

Else:
rqv←⊥

Return wqv, rqv, h′′

UHQoramMemR,MemW.exec(st, (op, idx , val)):

kP , stwq, strq, h, f ← st

h′ ← bh/cc
w0 ← wOHQ.Find(h′||idx)

w1 ← wOHQ.Find(h′ − 1||idx)

r0 ← rOHQ.Find(h′ − 1||idx)

r1 ← rOHQ.Find(h′ − 2||idx)

wqv, rqv, h′′ ← gvr(w0, w1, r0, r1, h
′)

If wqv 6=⊥:
secure-read(kP , |DB|+ f)

wOHQ.Push(h′|||DB|+ f,⊥)

f ← (f + 1) mod 2c

Else if rqv 6=⊥:
secure-read(kP , |DB|+ f)

wOHQ.Push(h′||idx , rqv)
f ← (f + 1) mod 2c

Else:
d← secure-read(kP , idx)

wOHQ.Push(h′||idx , d)

resp← wOHQ.Access(op, h′′||idx , val)
(h̃||idx ′, val′)← wOHQ.Pop()

rOHQ.Push(h̃||idx ′, val′)
If val′ 6=⊥:

secure-write(kP , idx ′, val′)

Else:
secure-write(kP , |DB|+ f,⊥)

f ← (f + 1) mod 2c

rOHQ.Pop()

h← h + 1

Return resp, (kP , stwq, strq, h, f)

Fig. 11. Construction of UHQoram c-snapshot ORAM. The function gvr is a helper function used
during exec. All hash queue operations in exec input and output a state. Oracles MemR,MemW
are as defined in Figure 2.

7.1 The UHQoram Construction

The UHQoram construction is depicted in pseudocode in Figure 11. It is substantially
similar to PHQoram above, with two important differences. First, in addition to the
counter f , there is another counter h for the total number of operations executed. This
counter is used to derive a “round” number, which is prepended to the index when it is
written to either of the hash queues. This round number ensures all keys written to the
hash queues are distinct (we will argue this more formally in Theorem 8). Another change
from PHQoram is the addition of two calls to Find at the beginning of UHQoram.exec.
Because each hash queue entry has a round number prepended, we need to check all
possible round numbers to be sure to find an entry.

The final change is the use of a helper function gvr during exec. This helper function
takes the result of the four Find operations, and outputs the correct value and the round
number needed to modify the correct element in wOHQ.Access. The case logic in gvr
looks complex, but it is just ensuring the newest copy of the element is always selected.
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UHQoram has the same asymptotic overhead as the hash queue: if each hash queue
operation takes g(c) bandwidth, each UHQoram operation takes O(g(c)) bandwidth.

Next we will state and prove a security theorem for UHQoram. This theorem will
prove it is a c-snapshot ORAM by reduction to the PRP security, and the unique-insertion
obliviousness of wOHQ, rOHQ.

We do not need unique-insertion obliviousness of wOHQ, rOHQ to hold for any
operation sequences; for simplicity we instead focus on the two sequences induced by
our UHQoram construction above. Specifically, define

−→opw = Push, . . . ,Push,Find,Find,Push,Access,Pop, . . .

where there are c Pushes, then copies of the Find,Find,Push,Access,Pop sequence.
This is the sequence run on wOHQ by UHQoram above. Likewise, define

−→opr = Push, . . . ,Push,Find,Find,Push,Pop, . . . .

This is the operation sequence for the rOHQ hash queue in UHQoram. The next theorem
proves that as long as wOHQ and rOHQ are (resp.) −→opw and −→opr-unique-insertion
oblivious hash queues, UHQoram in Figure 11 is a c-snapshot oblivious RAM emulator.

Theorem 8. Let E be a secure PRP and wOHQ be −→opw-, and rOHQ be −→opr-unique-
insertion oblivious hash queues. Then UHQoram in Figure 11 is a c-snapshot oblivious
RAM emulator.

Proof. The proof is substantially similar to that of Theorem 6 above; the chief difference
is that we reduce to a weaker security property of the hash queues (unique-insertion
obliviousness for −→opw and −→opr). Thus, we only need to extend our previous argument
to explain why the unique-insertion property holds for wOHQ and rOHQ. First, define
a “round” to be a group of c operations. We begin by proving there are no duplicate
key insertions into wOHQ. An array entry idx , val can be inserted into wOHQ in only
three places, namely the three branches of the first if-statement of UHQoram.exec. If it
is inserted in the first branch, it is a dummy; since there are 2c dummies but the round
counter h′ increments every c operations, duplicate insertion is impossible there.

If it is inserted in the second branch, it is being re-added to wOHQ from rOHQ. In
this case, the element had been in wOHQ previously; however, the round counter h′

must be different from the one that was used in the previous insertion to wOHQ — this
second branch can only happen c operations after the initial insertion.

If idx , val is inserted in the third branch, idx was neither in wOHQ nor rOHQ.
Since the round counter for this insertion is always the current one, this insertion must be
unique, since idx was last in wOHQ (with any round counter) at least c operations ago.

We’ve proven that wOHQ never sees a duplicate insertion, but still need to prove
this holds for rOHQ. Observe that rOHQ contains exactly the same keys as wOHQ
did c operations ago — essentially, rOHQ is an older replica of wOHQ. Thus, because
wOHQ has the unique-insertion property, rOHQ does as well, and we are done.
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CKHMemR,MemW.init(n):

A1 ← [], A2 ← []

h1, h2←$H
For i = 1 to 3n:
A1[i].key← null

A1[i].value← null

A2[i].key← null

A2[i].value← null

Return (h1, h2)

CKHMemR,MemW.Insert(k, v):

z.key← k

z.value← v

x← 1

While x < 6n and z.key 6= null:
i← x mod 2

swap z and Ai[hi(z.key)]

x← x + 1

If x = 6n: REHASH

CKHMemR,MemW.Find(k):

If A1[h1(k)].key = k:
Return A1[h1(k)].value

Else if A2[h2(k)].key = k:
Return A2[h2(k)].value

Else: Return⊥

CKHMemR,MemW.Delete(k):

If A1[h1(k)].key = k:
A1[h1(k)].value← null

If A2[h2(k)].key = k:
A2[h2(k)].value← null

CKHMemR,MemW.Update(k, v):

If A1[h1(k)].key = k:
A1[h1(k)].value← v

If A2[h2(k)].key = k:
A2[h2(k)].value← v

Fig. 12. Pseudocode for cuckoo hashing algorithms. For space reasons we leave the definition of
the rehashing procedure implicit.

7.2 Constructing Unique-insertion Oblivious Hash Queues

Now, we give an oblivious hash queue called CCOHQ. Our pseudocode is in Figure 13.
As with OMOHQ, our construction consists of two parts: an array to maintain first-in-
first-out order and a dictionary data structure. In CCOHQ, though, we do not use a generic
oblivious map: instead, we use a specific construction, namely cuckoo hashing running
on top of a generic ORAM. We give pseudocode for cuckoo hashing in Figure 12. (Recall
that cuckoo hashing supports O(1) time worst case lookup and delete, and expected
O(1) time insert.) Note that to achieve bandwidth overhead O(log c), we need to use an
ORAM whose bandwidth overhead O(logN), such as OptORAMa [4]. We depict this
in the figure by having the cuckoo hash CKH use simulated memory read/write oracles
built from ORAM, denoted OMR and OMW. We also apply a PRP to the keys before
they are inserted into the cuckoo hash table. As we will see below, this is important
to ensure security. We draw the reader’s attention to the fact that this is different from
oblivious cuckoo hashing in [10,4]. Their hash tables only support one-time lookups
after being initialized but we need multiple time lookups and modifications.

Security of CCOHQ. Recall that UHQoram only needs hash queues that are unique-
insertion oblivious for the two fixed operation sequences —−→opw and −→opr—defined
above. Thus, we only need to prove CCOHQ satisfies −→opw and −→opr-unique-insertion
obliviousness to conclude that UHQoram in Figure 11 is a c-snapshot oblivious RAM
emulator when instantiated with CCOHQ.

Theorem 9. Let E be a secure PRP and ORAM be an oblivious RAM. Then CCOHQ
in Figure 13 is a −→opw- and −→opr-unique insertion oblivious hash queue.



26 Yang Du, Daniel Genkin, and Paul Grubbs

CCOHQMemR,MemW.init(n):

kC ←$K ; head, tail ← 0

For i = 1 to n + 1:
MemW(i, 0m)

sto←$ ORAMMemR,MemW.init(2n)

stc←$ CKHOMR,OMW.init(n)

Return (sto, stc, kC , head, tail, n)

CCOHQMemR,MemW.Access(op, key, val):

If op = write:
CKHOMR,OMW.Update(EkC

(key), val)

Return⊥
If op = read:

Return CKHOMR,OMW.Find(EkC
(key))

CCOHQMemR,MemW.Find(key):

Return CKHOMR,OMW.Find(EkC
(key))

CCOHQMemR,MemW.Push(key, val):

CKHOMR,OMW.Insert(EkC
(key), val)

MemW(tail, key)

tail ← (tail + 1) mod (n + 1)

CCOHQMemR,MemW.Pop():

key′ ← MemR(head)

head ← (head + 1) mod (n + 1)

val′ ← CKHOMR,OMW.Find(EkC
(key′))

CKHOMR,OMW.Delete(EkC
(key′))

Return (key′, val′)

Fig. 13. The CCOHQ hash queue. All operations take a state as input and output. All operations
executed by the cuckoo hash table CKH are executed with simulated memory read/write oracles
built from ORAM.

Before the proof we give an idea of why a simple combination of cuckoo hashing and
an ORAM does not give us an oblivious data structure that supports arbitrary insertion,
even if we do not hide operation type. This is because the number of memory accesses
made during insertion depends on the number of swaps. Take these two transcripts:

T1 = Insert(1), . . . , Insert(100), Insert(0),Delete(0), Insert(0),Delete(0), . . .

T2 = Insert(1), . . . , Insert(100), Insert(101),Delete(1), Insert(102),Delete(2), . . . .

Both transcripts insert 1 to 100 at the beginning. Then the first one repeatedly inserts
0 and deletes 0, while the second one inserts new keys and deletes old keys. Now let’s
analyze the transcripts starting the first Delete operation. In the first transcript, since 0 is
always deleted before being inserted, inserting 0 takes only one ORAM access. However,
in the second transcript, inserting new keys such as 101, 102, ... is very likely to incur
swaps, and therefore makes the access pattern longer than the previous one.

Proof. At a high level, the proof has the following steps. We will begin in game
UniqInsertOblivHashSec−→opw

with i = 0. Then, we move to a game where the array
is replaced by all zeros, and the queue is stored locally. Then, we use the obliviousness
of ORAM to make a series of changes to the transcript of cuckoo hash operations: in
one game transition, we change all Update operations to Finds. Then, we change the
arguments of all Finds to all-zeros, and all second arguments of Insert to zeros (keeping
the indices the same). At this point, we are in a game where only the indices passed
to CKH.Insert and CKH.Delete depend on the adversary’s chosen transcript. However,
since we can guarantee duplicate indices are never passed to CKH.Insert, we can apply
the PRP security to swap the set of indices for a random subset of [|DB|].

We now proceed formally. Let A be an adversary, and let game G0 be
UniqInsertOblivHashSec−→opw

(CCOHQ,A, n, 0). Let T0 be A’s left transcript.
We build the game G1, which is just like G0 except in all CCOHQAccess operations,

CKH.Find is always executed instead of choosing between Find and Update based
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on whether the operation is a read or a write. Again, the correctness of the values
is maintained locally instead of by writing them to the cuckoo hash table. Note that
this does not change the number of (oblivious) memory accesses made by CKH, since
both Find and Update only access two locations. We can build a reduction B to the
obliviousness of ORAM to get |Pr[G1 = 1]− Pr[G0 = 1]| ≤ Advobl

ORAM(B) .
Next is game G2, which is the same as G1 except all CKH.Find operations have

all-zeros arguments, and values written using CKH.Insert are replaced with zeros; cor-
rectness is ensured with local copies. Since this also does not change the number of
operations executed, we can use a similar argument to build another reduction C to the
obliviousness of ORAM, yielding |Pr[G2 = 1]− Pr[G1 = 1]| ≤ Advobl

ORAM(C) .
In game G2, only the indices passed to CKH.Insert and CKH.Delete depend on the

adversary’s transcript T0. In gameG3, we replace the set of indices passed to CKH.Insert
with a random subset of [|DB|]. This will change the number of memory accesses made
by CKH.Insert, since a different number of swaps will be needed to insert the indices into
the hash table. However, because of the unique-insertion property, in game G2 the hash
table contains the PRP evaluated on distinct keys; thus, by PRP security, the distribution
of these inputs (and therefore of the swaps) is very similar in game G3. We can build a
reductionD to the PRP security ofE to get |Pr[G3 = 1]− Pr[G2 = 1]| ≤ Advprp

E (D) .
Reversing these game transitions in a manner similar to the proofs above lets us

transition to game UniqInsertOblivHashSec−→opw
(CCOHQ,A, n, 1), and we are done.

Finally, the proof for −→opr-unique-insertion obliviousness is similar, so we omit it.

7.3 Lower bound

The lower bound for snapshot-oblivious RAM emulator follows from Larsen & Nielsen’s
lower bound [38]. In this subsection we first restate the main theorem of [38], then show
that c-snapshot ORAM can simulate a normal ORAM in a parameter regime where the
Larsen & Nielsen lower bound applies.

Theorem 10. (Larsen & Nielsen lower bound [38]) Any online ORAM with n blocks
of memory, consisting of r ≥ 1 bits each, must have an expected amortized bandwidth
overhead of Ω(log(nr/m)) on a sequence of Θ(n) operations. Here m denotes the
client memory in bits.

Applying this theorem to our setting where each block is only one address and the client
memory is constant, which means r,m are constant, we obtain the following corollary.

Corollary 1. Any RAM emulator defined in Section 2.2 initialized with a database of
size N , executing on a sequence of N operations, with constant client storage, is secure
only if it has an expected amortized bandwidth overhead of Ω(log(N)) .

The idea of our result is to use a snapshot-oblivious RAM emulator to simulate a
full ORAM. Notice that if the transcript is of length c, and the memory is at least of size
c, the c-snapshot-oblivious RAM emulator becomes a secure RAM emulator executing
a sequence of c operations, and the corollary above applies. Thus, the lower bound of
amortized bandwidth overhead is Ω(log(c)).

Theorem 11. Let c > 0 be an integer. If RE is a c-snapshot oblivious RAM emulator,
then RE must have Ω(log c) expected amortized bandwidth overhead if the client has
constant memory.
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Proof. Suppose for contradiction that RE is a c-snapshot oblivious RAM emulator, and
it has o(log c) bandwidth overhead. We initialize RE on any database of size c. Given
a transcript of c operations, RE can securely emulate the RAM by the definition of
c-snapshot obliviousness, but its o(log c) bandwidth overhead contradicts Corollary 1.

8 Conclusion

In this work, we initiated the study of snapshot-oblivious RAMs, a new oblivious memory
primitive. There are many interesting open questions which we leave for future work.

First, while we prove that our UHQoram scheme is asymptotically optimal in terms
of bandwidth overhead, its concrete performance is likely to be quite poor. Evaluating
the concrete performance of c-snapshot ORAMs, and improving concretely upon the
constructions of this paper, is a clear interesting question.

In this work we do not tackle the question of how system designers should choose
c. This is a complex and highly contextual question; it is natural to imagine system
designers choosing c by weighing the risks of different compromises in their systems.
Which risks to consider, are questions we leave to future work.

For our security model to be an accurate characterization of real compromises, it
should be the case in real systems that the amount of information about past operations
is limited. If, for example, a system stored the history of every memory access on disk,
the limited-time compromise model in this paper would be unrealistic.

Prior work found that existing systems do, in fact, store a great deal of information
about past operations [23]. Realizing our security model in today’s systems is indeed a
challenge. We believe building systems with limited memories is ultimately tractable,
and a fascinating research problem in its own right. In addition to being of theoretical
interest today, our work builds a foundation for cryptography that can take advantage of
these kinds of system-level guarantees in the future.

Finally, there are many interesting ways to extend and enrich our snapshot security
model. One very clear open question is building schemes that remain secure even for
multiple snapshot compromises that are separated in time. Real systems are sometimes
compromised multiple times, so this extension is well-motivated practically. Another
interesting enhancement is transcript-length-hiding: namely, requiring that the number
of total operations executed is hidden by the snapshot-oblivious RAM.
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