
Practical Side-Channel Attack on Masked Message
Encoding in Latticed-Based KEM

Jian Wang∗†, Weiqiong Cao∗, Hua Chen∗, Haoyuan Li∗†
∗Institute of Software, Chinese Academy of Sciences, Beijing, China

†University of Chinese Academy of Sciences, Beijing, China
Email: {wangjian2019, caoweiqiong, chenhua, haoyuan2019}@iscas.ac.cn

Abstract—To defend against the rising threat of quantum com-
puters, NIST initiated their Post-Quantum Cryptography(PQC)
standardization process in 2016. During the PQC process, the
security against side-channel attacks has received much attention.
Lattice-based schemes are considered to be the most promising
group to be standardized. Message encoding in lattice-based
schemes has been proven to be vulnerable to side-channel attacks,
and a first-order masked message encoder has been presented.
However, there is still a lack of security evaluation for the first-
order masked message encoder under different implementations.
In this paper, we analyzed the security of the first-order masked
message encoder of Kyber. We found although masked Kyber
certainly is able to defend against the previous side-channel
attacks, there still exist some exploitable leakages. With the help
of the leakages, we propose a deep learning-based key recovery
attack on message encoding of masked Kyber. We recover the
original message from masked message encoding and then enable
a chosen-ciphertext attack to recover the secret key. In our
experiments, the whole secret key of masked Kyber768 was
recovered with only 9 traces and the success rate of attack was
close to 100%.

Index Terms—Side-channel attack, Lattice-based cryptogra-
phy, Kyber, Masking, Deep learning

I. INTRODUCTION

With quantum computers, Shor’s algorithm [1] can break the
cryptosystems based on the classical computationally infeasi-
ble problems(e.g. RSA, ECC), which are playing important
roles in today’s communication, financial, IoT, etc. In recent
years, more and more progress on quantum computers has
been made by Google [2], USTC [3], IBM [4], etc. Updat-
ing cryptosystems with new cryptography primitives against
quantum computers becomes urgent. In 2016, the National
Institute of Standards and Technology(NIST) initiated their
Post-Quantum Cryptography(PQC) standardization process,
and received 69 algorithms from all over the world. Now,
the PQC process has reached the third round, 7 finalists will
continue to be reviewed for consideration for standardization
at the conclusion of the third round, and NIST expects security
in relation to side-channel attacks can have a larger focus [5]
in this round.

In the third round of the PQC process, 4 of the 7 finalists are
constructed from the lattice-based computationally infeasible
problems, in which Kyber [6] is viewed as one of the most
promising Key Encapsulation Mechanism(KEM) [5]. Accord-
ingly, many studies on side-channel security of lattice-based
schemes have been proposed over the years. In [7], Primas

et al. proposed the first side-channel attack on the number
theory transform(NTT) of RLWE-based schemes. They used
a combination of template attack and belief propagation to
achieve a single-trace key recovery attack. Subsequently, this
attack got improved by Pessl [8] and Hamburg [9] et al. The
correlation power analysis on polynomial multiplication of
secret key has been discussed in [10]. Besides the classical
side-channel attacks on key-dependent operation, the side-
channel assisted chosen-ciphertext attacks have attracted much
attention. In these attacks, the side-channel information is used
as oracles to reveal some information about secret key, and
these oracles can be categorized as plaintext check oracle [11]
[12] [13], message recovery oracle [14] [15] and decryption
failure oracle [16] [17]. To defend against side-channel attacks,
masking is an efficient method that is firstly proposed in [18].
In [19], Oder et al. proposed the first first-order masking for the
CCA-secured lattice-based schemes. Subsequently, improve-
ments on masked binomial sampler [20], and comparison [21]
[22] [23] were proposed. Furthermore, first-order and higher-
order masked implementations of Kyber [24] [25] and Saber
[26] [27] have been achieved.

A. Related work

1) Message Recovery Attack on Message Encoding: Due
to the session key between the two communicating parties
derived from the input message, the key can be deduced
if the message is recovered. In [28], Amiet et al. proposed
the first side-channel message recovery attack on latticed-
based schemes. in which the message encoding of NewHope(a
second-round algorithm in NIST’s PQC process) was targeted.
They employed simple power analysis(SPA) to recover the
message from NewHope with an compiler optimization flag
”-O0” and template attack to recover the message from ”-O3”
compilation result respectively. Next, Sim et. al [29] imple-
mented the message recovery attack on multiple lattice-based
schemes in different compilation optimization by clustering or
neural network algorithms.

2) Message Recovery based Chosen-Ciphertext Attack :
In 2020, Ravi et al. [12] used electromagnetic leakage from
error correct codes or FO-transform as a plaintext check
oracle, proposed a generic key recovery attack on lattice-
based KEMs. However, the plaintext check oracle can only
distinguish one bit of the message, and thereby only recover
one secret coefficient every time. Hence, recovering the whole

secret key needs thousands of traces. After that, Xu et al.
[14] used SPA on the message encoding to recover the whole
message with only a single trace. Based on the single-trace
message recovery, they can recover the whole secret key of
Kyber512 1 with 8 traces, which is 7680 in [12]. Furthermore,
Ravi et al. [15] improved the ciphertext-chosen method in [14],
reduced the number of needed traces to 6.

3) Masked Message Encoding: Since message encoding
is vulnerable to side-channel attacks, implementing secure
message encoders is important in CCA-secure lattice-based
KEMs. In [19], Oder et al. firstly proposed a first-order masked
message encoder for NewHope KEM. In [30], Heinz et al.
introduced the masked encoder of [19] into their first-order
masked Kyber implementation, and it was also applied to
Saber as introduced in [26]. In addition, converting Boolean
masking of the message to Arithmetic masking bit-wisely
[24] is another implementation of a secure masked message
encoder, but it costs too much for a first-order masking
scheme.

4) High-order Attack on Masked Lattice-Based Schemes:
In [31], based on the approach introduced in [32], Ngo et al.
proposed a key recovery attack on the message decoding in
masked Saber [26]. They combined the side-channel leakage
when decoding two shares of one bit as input to training a
neural network, which can recover the original message bit
with several traces. This attack not only doesn’t need any
profiling device but can improve accuracy by using more than
one trace without considering the randomness caused by re-
masking. In [33], Ngo et al. achieved a key recovery attack
on masked and shuffled Saber by a similar method.

To sum up, the message encoding in lattice-based schemes
is vulnerable to side-channel attacks. Accordingly, the masked
encoder proposed in [19] is an effective countermeasure to
defend against side-channel attacks and has been implemented
in multiple masked implementations of lattice-based schemes.
However, the security of masked encoder still lacks enough
evaluation, a practical attack on masked decoder has been
proposed in [31]. Whether there are high-order attacks that
can threaten the masked encoder is still an open question.

B. Contributions

In this paper, we target the masked Kyber implementation in
[30] and propose a practical side-channel attack on its masked
message encoding. Our contributions can be summarized as
follows:

• The proposed attack is the first practical attack on the
masked message encoding. Although the previous attacks
[28] [29] [14] on the message encoding without masking
can be extended to analyze the masked encoding, it will
be infeasible once the implementation of masked encod-
ing is under the weak leakage case of low Signal-Noise-
Ratio(SNR), unevenness or masking (which is common in

1The Kyber512 they used here is the version from the second round of
PQC process with η1 equals 2. In the third round, the η1 of Kyber512 is
increased to 3.

actual implementations). On the contrary, the restrictions
above do not affect our attack performed successfully.

• The leakage model of our attack is more general. The
single-bit leakage model used in the previous attacks [28]
[29] [14] may be broke by compilation optimization. Our
attack is based on a byte leakage model. Even though
there is no exploitable leakage to distinguish a single
bit(i.e., the power trace is not regular to distinguish the bit
iteration), our model can still employ all the leakage of
bits in one byte to recover the message without precisely
locating the points in the trace.

• Our attack is validated on a Cortex-M4-based develop-
ment board, and we were able to achieve close to 100%
accuracy in both message recovery and key recovery for
1000 experiments.

The code and data used in this paper will be publicly available.

C. Organization

The remainder of this paper is organized as follows: We
provide notations and basic principles of related work in
Section II. In Section III, we introduce our 2-stage key
recovery attack and show how we improve our attack with
imperfect message recovery. We use realistic experiments to
validate our methodologies in Section IV. Finally, we conclude
this paper and future work in Section V.

II. PRILIMINARIES

A. Notations

Let q be prime and Zq be the ring of integers modulo q.
We define the ring of polynomials Rq = Zq[X]/(Xn + 1)
for some interger n and denote lower case letters like v as
polynomials over Rq . Similarly, Rk×1

q represents vectors with
k elements and Rk×l

q matrices of dimension k × l over Rq .
The transpose of a vector u or a matrix A are denoted by
uT and AT , respectively. vi and u[i] are denoted as the
i-th coefficient in v and the i-th polynomial in vector u,
A[i][j] is denoted as the polynomials located in i-th row,
j-th column of matrix A. When we use NTT(a), we apply
number theory transform(NTT) to each polynomial in a. v̂
represents a polynomial in NTT-domain, û and Â represent
a vector and a matrix whose polynomials are in NTT-domin.
Multiplication in any ring is denoted by · operator whereas
point-wise multiplication is denoted by ◦ operator.

For x ∈ R, we write ⌊x⌉ to mean the closest interger
to x. We use U to denote the uniform distribution on Rq ,
whereas χη denotes a center binomial distribution with support
[−η...η]. Byte arrays of length z are denoted as Bz , and by
{0, 1}z , we denote the set of z bits. In our paper, we let
m ∈ B32 , and we denote m[i] as the i-th byte in m and
mi as the i-th bit in m. In masked cases, 2 shares of m are
denoted as m′ and m′′, this is also applied to m[i] and mi.

B. Kyber

Kyber is one of the 7 finalists in the third round of the
NIST’s PQC standardization process [34]. In this paper, we
use Kyber to showcase our attack. The security of Kyber bases

on the hardness of solving the learning-with-errors problem
in module lattices(MLWE [35]). Kyber consists of a chosen-
plaintext attack secured public-key encryption(CPAPKE) and
a chosen-ciphertext attack secured key encapsulation mecha-
nism(CCAKEM). CPAPKE consists of three parts: key gen-
eration(Algorithm 1), encryption(Algorithm 2) and decryp-
tion(Algorithm 3). FO-transformation [36] [37] is applied to
CPAPKE to get CCAKEM, the core part of CCAKEM is
key decapsulation(Algorithm 4) based on a decryption and
re-encryption. The three parameter sets Kyber512, Kyber768
and Kyber1024 are claimed to the security of AES-128, AES-
192 and AES-256 respectively. In this paper, we focus on
Kyber768, but our approaches can also be applied to the other
two sets. Parameters in Kyber768 are shown in Table I. k = 3
means secret key s has 3 polynomials, η1 = 2 means the
coefficients in s belong to {−2,−1, 0, 1, 2}.

Algorithm 1 CPAPKE.Gen
Output: Secret key sk
Output: Public key pk

1: d← B32
2: (seedA, r)← G(d)
3: Â← U(Rk×k

q , seedA)
4: (s, e)← χη1

(Rk×1
q ; r)× χη1

(Rk×1
q ; r)

5: ŝ← NTT(s), ê← NTT(e)
6: t̂← Â ◦ ŝ+ ê
7: sk ← ŝ, pk ← (t̂||seedA)
8: return (sk, pk),

Algorithm 2 CPAPKE.Enc
Input: Public key pk
Input: Message m ∈ B32
Input: Random coins r ∈ B32
Output: Ciphertext s

1: ÂT ← U(Rk×k
q , seedA)

2: r← χη1
(Rk×1

q ; r)
3: e1 ← χη2(Rk×1

q ; r)
4: e2 ← χη2(Rq; r)
5: r̂←NTT(r)
6: u← NTT−1(ÂT ◦ r̂) + e1
7: v ← NTT−1(b̂T ◦ r̂) + e2+encode(m)
8: c1 ← Compress(u, du)
9: c2 ← Compress(v, dv)

10: return (c1||c2)

Algorithm 3 CPAPKE.Dec
Input: Ciphertext c/ ∗ c = (c1||c2) ∗ /
Input: Secret Key ŝ
Output: Message m

1: u← Decompress(c1, du)
2: v ← Decompress(c2, dv)
3: m← decode(v− NTT−1(NTT(u)◦ŝ))
4: return m

Algorithm 4 CCAKEM.Dec
Input: Ciphertext c/ ∗ c = (c1||c2) ∗ /
Input: Secret Key ŝ
Output: Session key K

1: m′ ← CPAPKE.Dec(̂s, c)
2: K̄ ′, r′ ← G(m′||H(pk))
3: c′ ← CPAPKE.Enc(pk,m′, r′)
4: if c = c′ then
5: return K ← KDF(K̄||′H(c))
6: else
7: return K ←KDF(z||H(c))
8: end if

TABLE I
PARAMETER SETS OF KYBER768

parameters n q k (η1, η2) (du, dv)
values 256 3329 3 (2, 2) (10, 4)

C. Side-Channel Attack on Message Encoding

In Kyber’s algorithm specification [34], message encoding is
considered as a special form of Decompression, it is a mapping
between a message and a polynomial as shown in (1)

M : {0, 1}n → Rq (1)

Concretely, message encoding maps each bit of the message
to the corresponding coefficient in the polynomial as (2).

r[i] =

{
0 if mi = 0

⌊ q2⌉ if mi = 1
(2)

In Kyber’s reference implementation [34], message encoder
is implemented as Listing 1.

1 void poly_frommsg(poly *r, const uint8_t msg[32]) {
2 size_t i, j;
3 int16_t mask;
4

5 for (i = 0; i < 32; i++) {
6 for (j = 0; j < 8; j++) {
7 // mask = 0xffff/0x0000
8 mask = -(int16_t)((msg[i] >> j) & 1);
9 r->coeffs[8 * i + j] = mask & ((KYBER_Q

+ 1) / 2);
10 }
11 }
12 }

Listing 1. Kyber’s reference message encoding

When a message bit is 0(or 1), the variable mask(not related
to the masking introduced in Section II-D) is 0x0000(0xffff),
respectively. The difference in hamming weight between the
two possible values of mask is 16, which is a strong power
leakage in microcontroller. In [29], Sim et al. defined the
variables with strong hamming weight difference like mask
here as determiner, we follow this definition in this paper.
Using mask as a determiner, the attacker is able to distinguish
whether a message bit in Kyber is 0 or 1 by observing power
traces or leveraging some simple extracted features in traces
[28] [29].

D. Masked Encoder

Masking [18] is a widely used countermeasure against
side-channel attacks. It splits a secret intermediate value into
multiple parts called shares and perform all the operations on
each of the shares individually. A first-order masking splits
any secret variable x into 2 shares x1 and x2, satisfying
x = x1+x2 in Arithmetic masking or x = x1⊕x2 in Boolean
masking.

First masked message encoder for lattice-based scheme is
proposed in [19] and applied to implementation of Kyber
[30] and Saber [26]. Masked message encoder in Kyber is
shown in Algorithm 5. The main idea is to encode two shares
individually, then subtract round error correctly and securely.
Our attack targets the separate encoding part, corresponding
to step 3, 4 in Algorithm 5. The subtraction part is not the
focus of this paper, so we won’t go into it here.

Algorithm 5 Masked Kyber.Encode
Input: m′,m′′ / ∗m = m′ ⊕m′′ */
Output: A1, A2 / ∗A = A1 +A2, A = m ∗ q/2 */

1: a′, a′′ ← reshare(m′)
2: b′, b′′ ← reshare(m′′)
3: A1 = encode(m′)
4: A2 = encode(m′′)
5: A1 = A1 − (a′b′)− (a′b′′)− (a′′b′)− (a′′b′′)
6: return (A1, A2)

III. METHODOLOGIES

A. Analyzing mkm4

In [30], Heinz et al. presented the first open-source Cortex-
M4 implementation of masked Kyber: mkm4. In mkm4,
the masked encoder presented in [19] (see Section II-D) is
implemented and the core code of masked encoder is listed in
Listing 2, where the same operations as Listing 1 are applied
to m′ and m′′ in sequence.

1 for (i = 0; i < KYBER_SYMBYTES; i++) {
2 for (j = 0; j < 8; j++) {
3 mask = -((msg->share[0].u8[i] >> j) & 1);
4 r->polys[0].coeffs[8 * i + j] += (mask & ((

KYBER_Q + 1) / 2));
5 }
6 }
7

8 for (i = 0; i < KYBER_SYMBYTES; i++) {
9 for (j = 0; j < 8; j++) {

10 mask = -((msg->share[1].u8[i] >> j) & 1);
11 r->polys[1].coeffs[8 * i + j] += (mask & ((

KYBER_Q + 1) / 2));
12 }
13 }
14 /*code about subtracting m_1*m_2 is omitted*/

Listing 2. Masked encoder in mkm4

To evaluate its security, we intended to perform a SPA as in
[28] at first. We selected a message containing 32 0xff bytes
and encapsulated it as ciphertext. Then, we decapsulated the
ciphertext in the device under attack and captured the power
consumption trace of decapsulation. We expected there are

Fig. 1. Power consumption of masking message encoding(top) and amplifi-
cation of the first peak(bottom)

two similar sets of 256 repeated peaks in the single trace,
which indicates that the leakages in Section II-C are still
exploitable. However, as shown in Fig. 1, we only found 32
peaks for each share(the upper one in Fig. 1) and didn’t find
any available leakage for SPA in each peak(the lower one
in Fig. 1). To understand this phenomenon, we obtained its
assembly code from the optimized compilation intermediate
result. For simplicity, we omit unrelated code lines here. The
related instructions for encoding one bit are shown in Listing 3.
Since the code segment for encoding one byte are too long,
we will not show it here.

1 ldrh r7, [r2, #4]
2 mov r4, #1665
3 // mask = -((msg->share[0].u8[i] >>2) & 1)
4 sbfx lr, r3, #2, #1
5 // coeffs += (mask & ((KYBER_Q + 1) / 2))
6 and lr, r4, lr
7 add lr, r7
8 strh lr, [r2, #4]

Listing 3. simplified assembly code of encoding a message bit in mkm4

In step 7 of Algorithm 2, the encoded message is added to
v , and v = bT · r+ e2. The simplified encoding process can
be described as follows: the coefficients of v are loaded into
registers of the microcontroller at first, and then the message
will be encoded. Subsequently, the encoded results are added
to the coefficients of v and then the coefficients of v are
stored back in memory at the end. In previous works, there are
usually the following assumptions: 1) message is encoded bit-
by-bit; 2) during encoding one bit, loading mask from memory
and storing mask to memory offer a strong and regular leakage
about the value of the bit. However, there is no exploitable bit
leakage in our analysis. By analyzing the assembly code of
encoding one byte, we draw some reasons for the phenomenon
as follows:

• Low Signal-Noise-Ratio(SNR): The difference of power
consumption between operations in registers and memory

can reach 1000 times [38], which means the only two
message-dependent operations sbfx and and don’t cause
a strong leakage. When the encoded results are added
to v, v is equivalent to a random masking, and thereby
storing the coefficients of v can’t leak useful information
about message.

• Unevenness: Limited by register quantity, the microcon-
troller will process different bits and coefficients irreg-
ularly, and power traces are not even during encoding
one byte. It is difficult to locate the points of encoding a
specific bit.

• Masking: In the masked case, the two shares m′ and m′′

are changed every decapsulation, so we can’t use specific
traces to search points-of-interest(POI), build template as
in [28] [29] or average multiple traces to improve SNR
like [14].

To sum up, the masked encoder with compilation opti-
mization breaks the correlation between message bits and
power consumption efficiently. Natrually, the corresponding
implementation of masked Kyber can resistant the previous
side-channel attack on message encoding. However, we still
found some exploitable leakages during the masked encoding
and proposed a more general 2-stage side-channel attack to
achieve key recovery. The following two subsections will
introduce our attack in detail.

B. Message Recovery on Masked Message Encoding

As mentioned above, if recovering the original message in
the decapsulation of masked Kyber, it is needed to recover m′

and m′′ with a single trace at first. However, in our case,
it is difficult to obtain the points of interest or labels of
templates due to the low SNR, unevenness and masking for
the implementation of masked Kyber. In [32], Maghrebi et al.
have proven that joining the trace points of each share to train
a neural network can be used to recover the original secret
key of AES. Using this method, we can also train a model
to directly recover the original message without recovering
m′ and m′′. Moreover, the deep learning-based side-channel
attack performs well in low SNR environments and is therefore
suitable for our scenario. In addition, we recover the message
byte-wisely in order to avoid the unevenness.

Concretely, we introduce the deep learning technology into
the side-channel attack on message encoding to achieve a
feasible sing-trace attack. Benefiting from the powerful ability
of deep learning, in profiling phase, we can profile the relation
between m and power leakage from encoding m′ and m′′.
We use unmasked message byte m[i] as label and join power
traces from encoding m′[i] and m′′[i] as input of model. The
method described here is similar to that in [31], but they target
the incremental storage leakage of Saber’s message decoding
and are based on a bit model. Hence, they need to build 8
models for 8 bits in one byte, while we only need to train one
model to recover all message bytes.

Without loss of generality, we use Multi-Layer Percep-
tion(MLP) as our profiling algorithm, which is one of the
simplest deep learning models. The MLP structure we use here

TABLE II
MLP STRUCTURE IN MESSAGE RECOVERY ATTACK, l = 190 IN OUR CASE

Layer Type (Input, Output)shape Parameters
Batch Normalization 1 (2l, 2l) 2l*4

Dense1 (2l, 512) 195072
Batch Normalization 2 (512, 512) 2048

Dense2 (512, 256) 131328
Batch Normalization 3 (256, 256) 1024

Output (256, 256) 65792

is shown in TableII. We use ReLu as activate the function of
Dense layers and use softmax as activate function of the
output layer, respectively. We select cross entropy as the loss
function and use adam as our optimizer. In addition, to avoid
overfitting, we add Dropout with a rate of 0.5 to drop 50%
nodes of Dense layers during training.

Since we can generate the ciphertext from any chosen
message and decapsulate it by the device under attack, the
device under attack can be viewed to be our profiling device
without any extra profiling device.

The first step of the profiling phase is to collect some traces
and the corresponding labels. For each trace capturing, we
select random message m and encapsulate it into ciphertext
ct. Then, we send ct to the device under attack and capture
the traces during decapsulation. We store traces and denote
m[i] as labels, and with every decapsulation, we can get one
trace and 32 byte-labels.

After capturing traces, we need to locate leakage points
corresponding to every m′[i] and m′′[i]. The message encoding
is located near the end of the decapsulation and searching from
almost the end of the captured trace, we can find two similar
32-segment repeating patterns. All we need is to measure their
length and divide them into 32 sub-traces corresponding to 32
bytes of m′ and 32 bytes of m′′ respectively. Joining every
two sub-traces of m′[i] and m′′[i], we set the joined sub-trace
as input for our MLP model, the original message byte will
be the label during training. We call this phrase preprocessing,
and after we finish the trace preprocessing, we can train the
neural network model NN .

Once we have finished model training, we get a trained
model NN ∗. The trained model has the ability to recover
message byte value from power traces captured from the
device under attack, which runs a masked Kyber decapsula-
tion implementation. The whole message recovery process is
shown in Algorithm 6

As the SNR is low, it is difficult to acquire a perfect
model, there may be some false positive cases during message
recovery. In [31], they decapsulate one ciphertext multiple
times and get multiple recovered messages. For every message
bit, they use majority voting of multiple recovered messages
to improve accuracy. In our cases, 256 possible results exist,
so majority voting doesn’t fit here. Since the output of our
MLP model is activated by the softmax function, we obtain a
weight vector from the output of the neural network, and we
select the class with the most weights as our recovery result.

Algorithm 6 Message Recovery Attack
1: /*Profiling Stage*/
2: for i = 0 to N do
3: msg ← RandomBytes(32)
4: ct← Encaps(msg, pk)
5: Trace[i]← Capture(Decaps(ct, sk))
6: Label[i]← msg
7: end for
8: (X, y)← PreProcess(Trace, Label)
9: NN ∗ ← Train(NN , X, y)

10:
11: /* Attack Stage*/
12: malicious ct← construct()
13: Traceattack ← Decaps(maliciousct, sk)
14: X∗[32]← PreProcess(Traceattack)
15: for i = 0 to 32 do
16: msg[i]← argmax(NN ∗(X∗[i]))
17: end for

We observed that in case of incorrect recoveries, although the
correct results do not have the most weight, they are ranked
high. With a high accuracy of our model, we can average
several result vectors of d sub-traces to increase the ranking
of correct candidates and decrease the ranking of incorrect
candidates. In this way, we can achieve recovery accuracy very
close to 100%, we’ll show its efficiency in Section IV.

C. Key Recovery

We can simplify CPAPKE.Dec(Algorithm 2) as m =
decode(v− su), where (u, v) is ciphertext and s is secret key.
That means the message can be seen as a linear combination
of ciphertext and secret key. In our attacker model, we can
select a message to construct ciphertext as we want, and if
we construct some ciphertext with a special structure, we can
recover some information about the secret key. In [14], Xu
et al. treated it as a classification problem. They choose a
fixed v and search several intervals of u to perform a One-vs-
Rest(OvR) classification, only need 4 traces, they can recover
one polynomial of s. The theoretical number of traces required
to achieve the N -categories classification problem is ⌈log2 N⌉,
which is 3 here. In [15], Ravi et al. reduced this number to 3
by random search of (u, v), our key recovery attack refers to
[15].

Following Ravi et al. [15], we used a random search and
selected 3 ciphertext pairs shown in Table III. Specifically,
when we target i-th polynomial in s, we construct ciphertext
as v =

∑256
j=1 kvx

j , and u[i] = ku where u[i] is the i-th
polynomials in u and other polynomials in u are 0. In this
case, the message bit mj = decode(kv − ku ∗ sj [i]), we can
recovery s[i][j] by the recovered 3 mjs.

In [14], Xu et al. used 960 traces to achieve a 98% accuracy
rate, only 502 of 512 coefficients are recovered correctly. They
need to exhaustive search

(
10
512

)
∗ 510/2 times to find the

correct secret key. Our message recovery and average method

TABLE III
MALICIOUS CIPHERTEXT PAIRS

Secret (ku, kv)
Coeffs (107, 2705) (624, 1873) (1252, 0)
−2 O O O
−1 O O X
0 O X O
1 O X X
2 X O O

aO refers to the case of mj = 0, X refers to
mj = 1

Fig. 2. Capture configuration

in Section III-B reduce this search space to be negligible, we
will show the details in Section IV.

IV. EXPERIMENTS

A. Setup

For our experiments, we targeted an STM32F303 micro-
controller featuring an ARM Cortex M4 core, which is the
standard platform for evaluating embedded software imple-
mentations of the schemes running in NIST’s PQC process
[39]. The specific target board comes with the ChipWhisperer
Lite [40], which is the equipment we used for measurement.
The measurements done with the ChipWhisperer Lite will be
voltage measurements over a shunt-resistor placed between the
target processor and its supply.

The target device was programmed with the mkm4 [30],
which is the first open-source masked Kyber implementation
based on the famous post-quantum cryptography test frame-
work pqm4 [41]. We used Kyber768 parameter set where
η1 = 2 and k = 3. We compiled the implementation using
arm-none-eabi-gcc [42] with optimization flag ”-O3”.

B. Model Training

1) Capture Traces: We set the STM32F3 microcontroller
as a server and our laptop as a client. Every time we selected
a random message m and encapsulated m with the public
key into ciphertext ct on the client, then we sent ct to the
server through a serial port. During decapsulation, we captured
power traces and saved m[0]...m[31] as labels. Our capture
configuration is shown in Fig. 2.

2) Traces Pre-Process: In this stage, we first divided each
trace into two sub-traces, corresponding to the encoding of
m′ and m′′. We named the first point of the first sub-trace
the start-point. In each sub-trace, which contains 32 repeated

Fig. 3. Accuracy of validation set during train for different start-points, the
labels in upper left mean distance from original start-point

segments, we spliced the i-th segments in each sub-trace and
denote it as X[i], respectively, we denoted m[i] as y[i]. In this
way, we obtained 32 pairs of training data like (X[i], y[i])
from each trace. In our experiments, we captured 1000 traces
for training.

3) Model Training: With a training set of 32,000 data,
we aimed to train a simple but still efficient neural network
model to identify the 256 possible values of the message
bytes encoded in masked Kyber. Following the structure and
hyperparameters stated in Section III-B, we implemented an
MLP model with Keras(version 2.8.0) [43], a widely used deep
learning API written in Python. Since we had a trigger to
enable trace capturing, we could precisely locate and divide
traces. When we trained the model, getting satisfying results
was to be expected. When training to 26-th epoch, the accuracy
of the validation set had exceeded 99%, and when the number
of epochs reached 47, the accuracy reached 100%. However,
our attack doesn’t rely on the trigger and exact division. To
verify it, we set multiple experiments with different start-
points, and the results are shown in Fig. 3. We found that
the model achieves nearly 100% accuracy in an interval of up
to 80 points, while it takes only 190 points to encode one byte
on average.

C. key recovery

We used (ku, kv) in Table III to construct malicious ci-
phertext ct, and since k = 3, we needed to construct a total
of 9 ciphertexts. We captured traces during decapsulating the
9 ciphertexts, and recover their corresponding messages in
sequence. Following Table III, we use the i-th bit of every
three messages to recover the i-th coefficient of polynomials
of secret key s. We repeated our key recovery experiment
1000 times. Finally, we found that there only were 239 error
coefficients in all 1000∗768 coefficients, which means we only
got 0.239 error coefficients in every key recovery. Our key

TABLE IV
COMPARISON WITH PREVIOUS RELATED WORK

Target Number of traces Success RateProfiling Attack

Our work Masked Kyber 1000
3 ∗ k 99.97%
6 ∗ k 99.999%

[14] Kyber 800 480 ∗ k 98%
[31]a Masked Saber 1000 36 ∗ k 99.37%

aThey didn’t give a success rate, we calculated this result based
on their success rate on message recovery.

recovery attack leaves a search space of only
(

1
768

)
∗ 0.239 =

183.552, much smaller than the results in [14].
To further narrow the search space, we applied our average

method here. We captured 2000 traces and set d = 2, which
means we averaged 2 output vectors to recover one message
byte. In this case, we got 4 error coefficients during 1000
experiments. With the average method, to recover the secret
key of masked Kyber768, we just need 18 traces and 3.072
times brute-force search.

The comparison with previous related work is summarized
in Table IV.

V. CONCLUSION

In this work, we analyzed the security of first-order masked
message encoding and found it could defend against the
previous proposed side-channel attacks on message encoding
efficiently. However, exploitable leakage still exists, we in-
troduced deep learning into side-channel attacks on message
encoding and built a 2-stage attack that can recover the secret
key with only 9 traces. Our approach combines information
from two shares, and it is should be categorized as a high-
order attack. Therefore, we didn’t break the first-order security
assumption, but as a general countermeasure, the first-order
masked message encoder doesn’t offer enough side-channel
security.

In [24], Bos et al. implemented an arbitrary-order but high-
cost masked encoder with secure conversions between Boolean
and Arithmetic masking. Whether more cost leads to more
security will be a meaningful topic that we will continue to
explore in the future.

ACKNOWLEDGMENT

This work is supported by the National Key Research and
Development Program of China (2020YFA0309704).

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303–332, 1999.

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell, et al., “Quantum
supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505–510, 2019.

[3] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H.
Luo, J. Qin, D. Wu, X. Ding, Y. Hu, et al., “Quantum computational
advantage using photons,” Science, vol. 370, no. 6523, pp. 1460–1463,
2020.

[4] C. Jerry, D. Oliver, and G. Jay, “Ibm quantum breaks the
100-qubit processor barrier,” 2021. https://research.ibm.com/blog/
127-qubit-quantum-processor-eagle.

[5] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, J. Kelsey,
Y.-K. Liu, C. Miller, D. Moody, R. Peralta, et al., “Status report on
the second round of the nist post-quantum cryptography standardization
process,” US Department of Commerce, NIST, 2020.

[6] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “Crystals-kyber: a cca-secure
module-lattice-based kem,” in 2018 IEEE European Symposium on
Security and Privacy (EuroS&P), pp. 353–367, IEEE, 2018.

[7] R. Primas, P. Pessl, and S. Mangard, “Single-trace side-channel at-
tacks on masked lattice-based encryption,” in International Conference
on Cryptographic Hardware and Embedded Systems, pp. 513–533,
Springer, 2017.

[8] P. Pessl and R. Primas, “More practical single-trace attacks on the
number theoretic transform,” in International Conference on Cryptology
and Information Security in Latin America, pp. 130–149, Springer, 2019.

[9] M. Hamburg, J. Hermelink, R. Primas, S. Samardjiska, T. Schamberger,
S. Streit, E. Strieder, and C. van Vredendaal, “Chosen ciphertext k-
trace attacks on masked cca2 secure kyber,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, pp. 88–113, 2021.

[10] C. Mujdei, A. Beckers, J. Bermundo, A. Karmakar, L. Wouters, and
I. Verbauwhede, “Side-channel analysis of lattice-based post-quantum
cryptography: Exploiting polynomial multiplication,” Cryptology ePrint
Archive, 2022.

[11] J.-P. D’Anvers, M. Tiepelt, F. Vercauteren, and I. Verbauwhede, “Timing
attacks on error correcting codes in post-quantum schemes,” in Proceed-
ings of ACM Workshop on Theory of Implementation Security Workshop,
pp. 2–9, 2019.

[12] P. Ravi, S. S. Roy, A. Chattopadhyay, and S. Bhasin, “Generic side-
channel attacks on cca-secure lattice-based pke and kems.,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 3, pp. 307–335, 2020.

[13] R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma,
“Curse of re-encryption: A generic power/em analysis on post-quantum
kems,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 296–322, 2022.

[14] Z. Xu, O. M. Pemberton, S. S. Roy, D. Oswald, W. Yao, and Z. Zheng,
“Magnifying side-channel leakage of lattice-based cryptosystems with
chosen ciphertexts: The case study of kyber,” IEEE Transactions on
Computers, 2021.

[15] P. Ravi, S. Bhasin, S. S. Roy, and A. Chattopadhyay, “On exploiting
message leakage in (few) nist pqc candidates for practical message
recovery attacks,” IEEE Transactions on Information Forensics and
Security, 2021.

[16] Q. Guo, T. Johansson, and A. Nilsson, “A key-recovery timing attack
on post-quantum primitives using the fujisaki-okamoto transformation
and its application on frodokem,” in Annual International Cryptology
Conference, pp. 359–386, Springer, 2020.

[17] S. Bhasin, J.-P. D’Anvers, D. Heinz, T. Pöppelmann, and M. Van Beiren-
donck, “Attacking and defending masked polynomial comparison for
lattice-based cryptography,” IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pp. 334–359, 2021.

[18] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound ap-
proaches to counteract power-analysis attacks,” in Annual International
Cryptology Conference, pp. 398–412, Springer, 1999.

[19] T. Oder, T. Schneider, T. Pöppelmann, and T. Güneysu, “Practical cca2-
secure and masked ring-lwe implementation,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2018, no. 1,
pp. 142–174, 2018.

[20] T. Schneider, C. Paglialonga, T. Oder, and T. Güneysu, “Efficiently
masking binomial sampling at arbitrary orders for lattice-based crypto,”
in IACR International Workshop on Public Key Cryptography, pp. 534–
564, Springer, 2019.

[21] F. Bache, C. Paglialonga, T. Oder, T. Schneider, and T. Güneysu,
“High-speed masking for polynomial comparison in lattice-based kems,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 483–507, 2020.

[22] J.-P. D’Anvers, D. Heinz, P. Pessl, M. van Beirendonck, and I. Ver-
bauwhede, “Higher-order masked ciphertext comparison for lattice-
based cryptography,” Cryptology ePrint Archive, 2021.

[23] J.-P. D’Anvers, M. Van Beirendonck, and I. Verbauwhede, “Revisiting
higher-order masked comparison for lattice-based cryptography: Algo-
rithms and bit-sliced implementations,” Cryptology ePrint Archive, 2022.

[24] J. W. Bos, M. Gourjon, J. Renes, T. Schneider, and C. van Vredendaal,
“Masking kyber: First-and higher-order implementations,” IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, pp. 173–
214, 2021.

[25] T. Fritzmann, M. Van Beirendonck, D. Basu Roy, P. Karl, T. Scham-
berger, I. Verbauwhede, and G. Sigl, “Masked accelerators and instruc-
tion set extensions for post-quantum cryptography,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, vol. 2022, no. 1,
pp. 414–460, 2021.

[26] M. V. Beirendonck, J.-P. D’anvers, A. Karmakar, J. Balasch, and
I. Verbauwhede, “A side-channel-resistant implementation of saber,”
ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 17, no. 2, pp. 1–26, 2021.

[27] S. Kundu, J.-P. D’Anvers, M. Van Beirendonck, A. Karmakar, and I. Ver-
bauwhede, “Higher-order masked saber,” Cryptology ePrint Archive,
2022.

[28] D. Amiet, A. Curiger, L. Leuenberger, and P. Zbinden, “Defeating
newhope with a single trace,” in International Conference on Post-
Quantum Cryptography, pp. 189–205, Springer, 2020.

[29] B.-Y. Sim, J. Kwon, J. Lee, I.-J. Kim, T.-H. Lee, J. Han, H. Yoon,
J. Cho, and D.-G. Han, “Single-trace attacks on message encoding in
lattice-based kems,” IEEE Access, vol. 8, pp. 183175–183191, 2020.

[30] D. Heinz, M. J. Kannwischer, G. Land, T. Pöppelmann, P. Schwabe, and
D. Sprenkels, “First-order masked kyber on arm cortex-m4,” Cryptology
ePrint Archive, 2022.

[31] K. Ngo, E. Dubrova, Q. Guo, and T. Johansson, “A side-channel attack
on a masked ind-cca secure saber kem implementation,” IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, pp. 676–707,
2021.

[32] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic
implementations using deep learning techniques,” in International Con-
ference on Security, Privacy, and Applied Cryptography Engineering,
pp. 3–26, Springer, 2016.

[33] K. Ngo, E. Dubrova, and T. Johansson, “Breaking masked and shuffled
cca secure saber kem by power analysis,” in Proceedings of the 5th
Workshop on Attacks and Solutions in Hardware Security, pp. 51–61,
2021.

[34] A. Roberto, B. Joppe, D. Léo, K. Eike, L. Tancrède, L. Vadim,
M. S. John, S. Peter, S. Gregor, and S. Damien, “Crystals-
kyber (version 3.02) – submission to round 3 of the nist post-
quantum project,” Submission to the NIST Post-Quantum Cryptogra-
phy Standardization Project, 2020. https://pq-crystals.org/kyber/data/
kyber-specification-round3-20210804.pdf.

[35] A. Langlois and D. Stehlé, “Worst-case to average-case reductions for
module lattices,” Designs, Codes and Cryptography, vol. 75, no. 3,
pp. 565–599, 2015.

[36] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and
symmetric encryption schemes,” in Annual international cryptology
conference, pp. 537–554, Springer, 1999.

[37] D. Hofheinz, K. Hövelmanns, and E. Kiltz, “A modular analysis of the
fujisaki-okamoto transformation,” in Theory of Cryptography Confer-
ence, pp. 341–371, Springer, 2017.

[38] D. A. Patterson and J. L. Hennessy, Computer Organization and Design
RISC-V Edition: The Hardware Software Interface. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1st ed., 2017.

[39] A.-S. Jacob, “Programmable hardware, microcontrollers and vector in-
structions,” 2018. https://groups.google.com/a/list.nist.gov/g/pqc-forum/
c/ 0mDoyry1Ao/m/Tt7yHpjSDgAJ.

[40] “Cw1173 chipwhisperer-lite - newae hardware product documentation.”
https://rtfm.newae.com/Capture/ChipWhisperer-Lite.

[41] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, “PQM4:
Post-quantum crypto library for the ARM Cortex-M4.” https://github.
com/mupq/pqm4.

[42] “Arm gnu toolchain.” https://developer.arm.com/Tools%20and%
20Software/GNU%20Toolchain.

[43] “Keras.” https://github.com/keras-team/keras.

https://research.ibm.com/blog/127-qubit-quantum-processor-eagle
https://research.ibm.com/blog/127-qubit-quantum-processor-eagle
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/_0mDoyry1Ao/m/Tt7yHpjSDgAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/_0mDoyry1Ao/m/Tt7yHpjSDgAJ
https://rtfm.newae.com/Capture/ChipWhisperer-Lite
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://developer.arm.com/Tools%20and%20Software/GNU%20Toolchain
https://developer.arm.com/Tools%20and%20Software/GNU%20Toolchain
https://github.com/keras-team/keras

	Introduction
	Related work
	Message Recovery Attack on Message Encoding
	Message Recovery based Chosen-Ciphertext Attack
	Masked Message Encoding
	High-order Attack on Masked Lattice-Based Schemes

	Contributions
	Organization

	PRILIMINARIES
	Notations
	Kyber
	Side-Channel Attack on Message Encoding
	Masked Encoder

	Methodologies
	Analyzing mkm4
	Message Recovery on Masked Message Encoding
	Key Recovery

	experiments
	Setup
	Model Training
	Capture Traces
	Traces Pre-Process
	Model Training

	key recovery

	Conclusion
	References

