
IACR Transactions
ISSN XXXX-XXXX, Vol. 0, No. 0, pp. 1–19. DOI:XXXXXXXX

Linked Fault Analysis
Ali Asghar Beigizad1, Hadi Soleimany1 and Sara Zarei1

Cyber Research Center, Shahid Beheshti University, Tehran, Iran
beigizad@yahoo.com,h_soleimany@sbu.ac.ir,sarazareei.94@gmail.com

Abstract. Various fault models, each with a distinct effect, have been introduced. The
process of injecting a fault is not overly complicated, however it can be challenging to
inject an exploitable fault. The influence of a fault model should be evaluated based
on characteristics like as cost, repeatability, and practicability of desirable faults.
Additionally, there must be efficient techniques for leveraging the injected fault to
retrieve the key, especially in the presence of common countermeasures.
In this paper we introduce a new fault analysis technique called “linked fault analy-
sis”(LFA) which can be interpreted as a more powerful variation of several well-known
fault attacks against implementations of symmetric primitives in various scenarios
particularly in software implementations. While in a traditional fault attack, the fault
model is defined based on the relation between the correct value and the defective one
produced by fault injection, the LFA leverages a model in which the fault involves
more than one intermediate value, the target variable X, and a second variable Y . We
demonstrate that LFA allows the attacker to perform fault attacks with significantly
less data (relative to previously presented fault attacks in the same class) and without
the input control need.
Keywords: Fault Analysis · Linked Fault

1 Introduction
Fault attacks are a sort of physical attack in which the attacker deliberately produces a
fault in the targeted device in order to obtain information about its secret key by observing
the device’s response to the fault. According to the duration of the fault, it is possible
to classify induced faults into one of three categories. The vast majority of proposed
fault attacks are based on transient faults, which only have a temporary impact on the
system. With their application on RSA, Boneh et al. introduced this type of fault attack
for the first time [BDL97]. The second type is permanent fault where their effects are
permanent for the rest of the device’s lifetime. The persistent fault is the third form of
fault, which persists but can be removed by resetting the target device. Schmidt first
introduced the basic concept [SHP09], which was then taken by Zhang et al., who offered
a more specialized framework [ZLZ+18] that has gained a great deal of recent attention
[PZRB19, GPT19, CB19, SBH+21, ESP20, CGR20, ZZJ+20].

The great majority of research on transient fault attacks against symmetric primitives
focuses on the ability of this category of attacks to transform an intermediate value into a
faulty one. The attacker adds a fault to value X to turn it into the defective value X ′. Most
of the time, it is assumed that the obtained faulty value and its corresponding correct value
have some extractable relationships. One can mention fault models like stuck-at, bit-flips,
random fault, random-AND fault, biased fault, etc., where the referred interconnection is
distinct in each case. In this work, we acquire an unprecedented perspective to shine light
on an out-of-sight sort of relation and propose a novel fault-based attack dubbed “linked
fault analysis”(LFA) based on it. LFA can be interpreted as a more powerful variation

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/XXXXXXXX
mailto:beigizad@yahoo.com,h_soleimany@sbu.ac.ir,sarazareei.94@gmail.com
http://creativecommons.org/licenses/by/4.0/


2 Linked Fault Analysis

of several well-known fault attacks against software implementations of cryptographic
primitives in various scenarios. While in a traditional fault attack, the fault model is
defined based on the relation between the correct value and the defective one produced
by fault injection, the LFA leverages a model in which the fault involves more than one
intermediate value, the target variable X, and a second variable Y . The relationship
brought on by the fault effect would be the change of the X value according to the Y
value. We entitle this event as a linked change and take its advantage toward our intended
novel analysis.

1.1 Overview of Prior Transient Fault Attacks
What would be a decent place to dive if you wanted to explore the vast universe of fault
attacks? Classifications appear to be rational starting points to avoid getting lost between
the various and varied fault attacks that have been proposed thus far and their attributes
and application. Therefore, adhering to conventions, we, too, opt for this entryway to open
our new outlook on this world and determine where our newly launched attack will land.
However, before discussing different existing categorizations, we must first answer a critical
question: Which criterion yields a more precise or thorough classification? Fortunately or
not, this is not a single-answer question. Numerous variables can play a major or minor
role in certain applications or settings. Different fault attack tactics include different
demands and assumptions, each advantageous and appropriate in a particular context.
The quantity of faulty and correct ciphertexts required to carry out a successful attack is,
for example, a typical criterion used in the literate for comparing fault attacks. Though
this is quite an essential attribute, especially when the number of queries is limited (for
instance due to the fresh-key policy), in practical situations, the fewer ciphertexts may
be of minor priority, and other factors gain heavier consideration. Consider, for instance,
the attacker’s ability to encrypt the same input several times. Or the behavior of the
attack while encountering the underlying countermeasures. Our surveys indicate that
considering these last two factors simultaneously, will cover a good number of most famous
introduced attacks in the field. It can also pinpoint the precise location of LFA. Thus, in
what follows, we attempt to provide more information about these two benchmarks and
classify well-known existing fault attacks based on them.

Control vs. no-control over the inputs From this point of view, attacks can be
classified based on whether the attacker can repeatedly encrypt a fixed plaintext or not.
The fixed input is assumed to be chosen by the attacker in some of these attacks and in
some others, this is not a necessary condition. In each case, the underlying assumption
is the attacker’s access to the input and continually asking for the same plaintext to be
encrypted.

Bypassing vs. losing to redundant-based countermeasures In the presence of
standard redundant-based countermeasures (infection-based [GST12, TBM14, FCL+20]
or detection-based [BCN+06]), the adversary is unable to detect defective ciphertexts.
Hence there it would not be possible for him/her to execute attacks that rely on the
faulty ciphertext. Nevertheless, the fault cannot be discovered if it does not alter any
intermediate value. This phenomenon is known as an ineffective fault. Some attacks are
able to circumvent standard countermeasures because they exclusively employ such kind
of events.

The classification of the aforementioned categories into four subcategories is shown in
Table 1. Differential Fault Analysis (DFA) [BS97] requires that both correct and faulty
ciphertexts correspond to a given plaintext. DFA has been widely applied to numerous un-
protected implementations of block ciphers [SMC09, AM12, AM13, AMT13], authenticated
encryption schemes [RCC+16] and even stream ciphers [DCAM15]. Extensive research has
been conducted on DFA, and multiple generalized and automated frameworks have been
developed to identify vulnerabilities against this form of attack [SMD18, BHL18, HBZL19].



Ali Asghar Beigizad, Hadi Soleimany and Sara Zarei 3

Table 1: Classifications of Prior Transient Fault Attacks on Block Ciphers

Input’s Control No need to Control
Cannot Bypass countermeasures DFA, IDFA, DFIA, CFA SFA, LDFA∗

Bypass countermeasures FTA, FSA, SEFA IFA, SIFA, LIFA∗∗

∗,∗∗ Linked-DFA and Linked-IFA, proposed in this research (Section 3).

Similar to the classical type of differential cryptanalysis, the Impossible Diferential Fault
Attack (IDFA) is a differential-based fault attack based on an impossible characteristic
[DFL11]. Algebraic Fault Attack (AFA) is similar to DFA in that both faulty and correct
outputs are analyzed [ZGZ+13, ZZG+13, ZGZ+16]. However, AFA constructs algebraic
equations and focuses on the solution of a system of equations instead of using differential
characteristics. Differential Fault Intensity Analysis (DFIA) [GYTS14] is another method
in which the key-recovery procedure relies on the repetition of encryption for a fixed
plaintext and the knowledge of the value of faulty ciphertexts. Collision Fault Analysis
(CFA) [BK06] applies when an attacker can encrypt two related inputs, injects a fault
into one of the computations, and then exploits a collision that may occur (usually in the
outputs). Therefore, redundant-based countermeasures can prevent these attacks, and the
attacker must also control the input to perform these attacks.

Fault Sensitivity Analysis (FSA) [LSG+10] needs encrypting the same plaintext during
the profiling phase in order to determine the critical fault injection intensity for various
plaintexts. The adversary should be able to determine whether the injected flaw was
effective. Therefore, FSA does not necessarily require faulty ciphertexts. Fault Template
Attack (FTA) [SBR+20] is a promising technique that can circumvent redundant-base
countermeasures since it does not rely on faulty ciphertexts. However, an attacker should
be able to encrypt a fixed (but unknown) plaintext several times. Therefore, both SFA
and FTA can circumvent redundant-based countermeasures, but in practice the attacker
must control the input to repeat the encryption process of the same input.

Statistical Fault Analysis (SFA) [FJLT13] demands faulty ciphertexts but does not
require repeated encryption over a particular plaintext; therefore, it can be thwarted by
redundant-based countermeasures.

Several attacks without input control have been presented to circumvent redundant-
based countermeasures. These attacks exclusively target cases in which the error has no
effect on the computation. This class includes the Safe Error Attack (SEA) [YJ00] , which
is typically relevant to public-key cryptographic systems, as well as the Ineffective Fault
Analysis (IFA) [Cla07] and its statistical counterpart (SIFA) [DEK+18]. IFA typically uses
models such as stuck-at faults, which are difficult to achieve in practice and require the
use of costly tools such laser [SBHS15, SHS16].

1.2 Our Contributions
In certain applications, it is not possible to encrypt (or sign) the same message more than
once. Protocols in which the message is padded with a random value are a prominent
illustration of such situations. Consequently, fault attacks that require input control
(whether they require chosen plaintexts or repeated computation with an unknown input)
are inapplicable in such applications. Consider as another example the devices that use
block ciphers in operation modes such as Cipher feedback (CFB), Output feedback (OFB),
and Counter mode (CTR). Despite the fact that it is frequently believed that the underlying
block cipher is utilized in ECB mode, alternative modes like CTR, OFB, and CFB may
also be applied in real-world applications, where the input is fundamentally not repeated.
The modes construct the following block by encrypting successive values which depend
on a value “counter” or “initial value (IV)” that will not repeat over an extended period.



4 Linked Fault Analysis

Attacks that require input control are challenging to carry out in these applications because
it is not always possible for an attacker to reset the value of the counter [BBB+18].

Methods that do not require the attacker to have input control frequently rely on
particular statistical characteristics. As a result, the key recovery approach often needs
more samples (in comparison to attacks with input control) to statistically distinguish the
right key from the wrong one. The first proposed fault attack against symmetric primitives,
DFA, involves input control but uses a lot fewer data than SFA. The tiny amount of data
can be important in some real-world situations. However, as this kind of attack often
requires input control, acquiring less data is not possible for free. In this paper, we propose
a new fault technique that allows us to perform fault attacks with significantly less data
(relative to previously presented fault attacks in the same class) and without the input
control need.

The existence of relationships between two intermediate values, one in the correct
computation process and the other in the faulty computation, is a prerequisite for DFA
and CFA. This trait enables the attacker to make use of these relations and carry out the
attack despite the limited data availability. We use a similar strategy in our first suggested
method, however, our approach is based on correlations between the intermediate values
of only faulty computation. This can be regarded within the framework of the differential
fault approach as an internal differential property that does not require access to the
correct computation. Thus, our offered technique can be conducted with a very small
number of inputs (similar to DFA and CFA) and does not require repeating the encryption
process (similar to SFA).

We demonstrate our method’s considerable adaptability by showing its applicability to
ineffective ciphertexts too. The power of these ciphertexts is in circumventing redundant-
based countermeasures. Similar to attacks that do not require input control and are
applicable in the face of countermeasures (such as SIFA), our method can greatly minimize
the amount of required data. Additionally, our method gives the attacker the ability
to identify missed fault occurrences under specific circumstances, which is essential in
real-world applications because missed faults can significantly affect SIFA’s performance.

Skipping the execution of a single or multiple microprocessor instruction is a highly
effective way for modifying processed values. Variation the input voltage and inducing
a clock glitch are inexpensive approaches that can result a variety of faults. One should
note that certain faults, such as those that target the equality check in detection-based
countermeasures or reduce the number of iterations in a loop, are apparent targets and
must therefore be protected. So, the community is already aware of the necessity to protect
these obvious faulting targets with additional safeguards.

2 Preliminaries

2.1 Notations
While most of the fault attacks are not specific to any particular cipher, in the interest of
clarity, we will describe the attacks with an illustration using an R-round word-oriented
Substitution-Permutation Network (SPN) cipher. The majority of block ciphers, such as
AES, have SPN structure. Let us assume a standard SPN design EK(P ) which accepts a
b-bit plaintext P and k-bit key to produce the cipehrtext C. The process of encrypting the
plaintext using the cipher can be viewed as an iteration of an invertible function that is
referred to as round funtion Fskr

(), where skr stands for the r-th round key for 1 ≤ r ≤ R.
As implied by the name of the structure, each round of the cipher employed a substitution
NL (non-linear layer) and a permutation L (linear layer), followed by the addition of a
round key. Typically, the substitution layer is constructed by combining a number of
relatively basic nonlinear bijective functions known as Sboxes. The b-bit state formed of L



Ali Asghar Beigizad, Hadi Soleimany and Sara Zarei 5

SB SR MC AK

xr yr zr wr wi

Figure 1: AES round function

words of the same length (m = b/L) and are represented. Let xr[i] and yr[i] represent,
respectively, the i−th word input into the substitution layer in the r−th round and the
i−th word output from it where 0 ≤ j ≤ L − 1 and 1 ≤ r ≤ R. As L is linear, it could be
eliminated in the final round or replaced with a simpler version. A group operation, like
addition and XOR, can be employed to combine subkeys into states.

While our approaches are applicable to any block cipher, we focus on AES because it is
the most widely used cipher in practical applications.AES is a 128-bit block cipher with a
key size of 128, 192, or 256 bits with a substitution-permutation network (SPN) structure.
AES operates on an array of eight bytes (m = 8). In our experiments, we considered AES
with 128-bit keys, denoted by AES-128, which contains R = 10 rounds, each of which
involves four transformations: SubByte (SB), ShiftRows (SR), MixColumns (MC), and
AddRoundKey (AK). Exceptionally, the last round lacks MixColumns. xr represents the
state input of round r, while yr, zr, and wr represent the states after applying the SB, SR,
and MC operations of round r, respectively. Since the output of the r−th round is the
input of the (r + 1)−th round, we represent it with the notation xr+1.

2.2 DFA
Differential fault analysis was originally introduced in [BS97] and is the most prevalent
technique for fault analysis. The assumption is that the attacker can inject a difference at
a certain intermediate value in a given round. In other words, the attacker is aware of
the distinction between the faulty value and the correct value in the intermediate value.
Typically, the injected fault is injected into one of the state’s words preceding the nonlinear
layer. In the basic technique for the key-recovery procedure, the attacker guesses the
subkey bits involved in the last rounds of the cipher and partially decrypts both faulty and
correct ciphertexts in order to compute the desired intermediate value. It is expected that
the intended difference will be observed more frequently for the correct key than for the
wrong key. This technique exploits the fact that the input difference and output difference
of Sboxes have a precise relationship.

2.3 SIFA
The Statistical Fault Attack employs a biased distribution across an intermediate value.
The attacker decrypts given faulty ciphertexts with the key candidates across the final
round(s) of the cipher and computes a statistical scoring function S(p̂) for each key
candidate to determine how closely the computed distribution matches the predicted
distribution with the correct key. Given N samples, depending on whether the attacker
is aware or unaware of the faulty value’s distribution p, different statistical test can be
utilized.

If distribution of faulty value p is known, log-likelihood ratio (LLR) statistic can be
used as it is described in Equation (1), where θ denotes the uniform distribution.

LLR(k) = N
∑
x∈X

p̂k(x) · log2
p(x)
θ(x) . (1)



6 Linked Fault Analysis

If the faulty distribution is biased but it is unknown to the attacker, Squared Euclidean
Imbalance (SEI) can be used as sown in Equation (2).

SEI(k) =
∑
x∈X

(p̂k(x) − θ(x))2 . (2)

As a result, the attacker either use S(p̂) = LLR(k) or S(p̂) = SEI(k) to rank the
candidates of key. S(p̂) follows a normal distribution large amount of samples N is
obtained by the attacker:

S(p̂) ∼

{
N(µp, σ2

p) if p̂ was produced by p,

N(µθ, σ2
θ) if p̂ was produced by θ.

Selçuk [Sel08] proved the difference ∆a between the score of correct key k and the score of
a wrong key with rank 2κ−a of 2κ possible keys also has a normal distribution:

∆a ∼ N(µ∆, σ2
∆) , (3)

where µ∆ = µp − µθ − σθ · Φ−1
0,1(1 − 2−a) and σ∆ ≈ σp. The quantity a is referred as

advantage of the attack and can be up to κ. The success probability of an attack with
a-bit advantage,can be estimated based on Equation (4) [BGN12, Sel08]:

P(∆a > 0) = Φ0,1

(
µp − µθ − σθ · Φ−1

0,1(1 − 2a)
σp

)
. (4)

The number of required ciphertexts in LLR and SEI tests can be estimated based on
Equation (5) and Equation (6), repsectively.

NLLR ≈
2 · [Φ−1

0,1(PS) + Φ−1
0,1(α)]2

C(p, θ) (5)

NSEI ≈
β · Φ−1

0,1(α)
C(p, θ) for PS = 0.5. (6)

where C(p, θ) deontes the capacity and is given in Equation (7) in case p is close to θ.

C(p, θ) =
∑
x∈X

(p(x) − θ(x))2

θ(x) . (7)

SIFA is simultaneously enabled by SFA and IFA methods. SIFA utilizes a biased
distribution of intermediate value over ineffective faults. SIFA is able to evade detection-
and infection-based countermeasures since it only requires ineffective outputs.

2.4 Limitations of Instruction Skip Attacks in Block ciphers
A variety of laser pulses [BCN+06, TK10], electromagnetic pulses [DDR+12, MDH+13a,
DDRT12], clock glitches [BGV11, KH14, EHH+14, YGS15, YGS+16], and power glitches
[SH08] have been suggested as methods for skipping one or more instructions on microcon-
trollers. The majority of these attacks on symmetric-key primitives need input control, and
more significantly, they cannot circumvent common countermeasures by nature. Following
is a brief discussion of instruction-skipping attacks against block ciphers.

The loops and functions can be easily disrupted by a fault injection; hence, it is feasible
to bypass a significant portion of the encryption and perform standard cryptanalysis, such
as differential cryptanalysis, to the output [MDH+13b]. It is doubtful that a reduced-
round cipher will yield ineffective output, preventing this type of attack from evading
redundant-based countermeasures.



Ali Asghar Beigizad, Hadi Soleimany and Sara Zarei 7

An other possible attack is to bypass the addition instruction of the final round key,
which is added to the state via an exclusive-or operation [BGV11, BJC15]. The last round
subkey can be easily obtained by computing the exclusive-or of the faulty ciphertext with
the correct ciphertext. Skipping addition is a well-known attack technique that has been
also employed against stream ciphers [FXKH17]. Pessl and Prokop recently demonstrated
at CHES 2021 that addition instruction skip can be used to attack lattice-based KEMs
[PP21]. Despite the public key schemes [SH08, BBKN12], this approach is not typically
relevant to symmetric primitives in the presence of standard countermeasures. Given that
symmetric primitives are not based on algebraic structures, skipping an operation typically
results in an active fault that can be identified by redundancy.

Another method is to skip the equality check for skipping the conditional branching
following the redundant computation [EHH+14].

3 Linked Fault Analysis (LFA)
3.1 Fautl Model
We target software-based implementations on microcontrollers by introducing a new fault
analysis which exploits "instruction skips," a common fault injection technique on these
devices. As we will demonstrate in the following sections, our method is effective and
practical, can be conducted with inexpensive tools, and can circumvent countermeasures
based on redundancy. In our attack’s model we assume that the attacker can control
the intensity and duration of the fault. Besides, we presume, similar to the majority of
proposed fault attacks, that the attacker is aware of the timing. It should be noted that in
most circumstances, it is assumed that the fault’s location (time) is known to the attacker,
however this can be established by trial and error. We assume that the nonlinear layer of
the target block cipher is implemented using one or more precomputed look-up tables that
are known to the attacker, and that each table is called several times throughout round
function execution.

In this paper, we employ the instructions skip technique to induce a fault on an
intermediate value v such that the faulty value v′ is linked to another intermediate value
u, where the attacker is unaware of the values of u, v and v′. We show that under some
conditions, if u and v are processed after one another, the value of faulty v (i.e. v′) becomes
identical to the value of u. This fault can be induced using cheap instruments through
the use of well-timed power spikes or clock glitches. This linked fault across intermediate
values may result in linked words in the ciphertexts, which an attacker can use to obtain
information about the secret key. This fault can be happened by instruction skip in at
least two situations:

1. Sometimes, in order to accelerate the encryption process of software implementation,
auxiliary variables are used to store the words of the input state that will be processed
in parallel during the subsequent steps. The sequential loading of two distinct words
of the input state into the variables like u and v is an appropriate target for our
attack.

2. The nonlinear layer of block ciphers typically consists of Sboxes. To execute the
nonlinear layer, the Sbox (or Sboxes) is progressively invoked with distinct values.
Alternately, one may utilize larger, precomputed look-up tables for both nonlinear
and linear layers. However,loading the output of such look-up tables is an integral
feature of the vast majority of block ciphers and can be exploited to generate a linked
fault in the input or output of the called function.

For the time being, we will assume that the instruction skip occurs perfectly. We will



8 Linked Fault Analysis

SB SR AK

x′
10 y′

10 z′
10 C ′

Figure 2: Last Round of AES: Similar-colored bytes are linked together.

discuss the effect of missed or unwanted faults later in the last subsection and explain how
to deal with them.

3.2 Linked Differential Fault Attack (LDFA)
In the absence of redundant-based Countermeasures, attacks like DFA and CFA are appli-
cable. A common property of DFA and CFA is utilizing the existence of two intermediate
values that are either identical or related in the process of correct and faulty computations.
This property permits the attacker utilize deterministic relations and perform the attack
with extremely small amount of data. In our first proposed method, we apply this same
idea, but instead, our method is based on relations between the intermediate values of the
faulty computation itself. For the sake of clarity, we will first discuss our attack against
AES, followed by a generic key-recovery approach against any cipher.

Assume that the byte x[j] becomes equal to x[i]) or y[j] becomes equal to S(x[i]) when
instruction skip is injected during the execution of Sboxes. This fault causes two bytes
(with unknown values), z′

10[SR[i]] and z′
10[SR[j]], to become equal following a ShiftRow

operation. After adding the subkey sk10, the corresponding bytes of ciphertexts C ′[SR[i]]
and C ′[SR[i]] are not necessarily exactly equal but they can be used to retrieve information
about the subkey. Figure 2 demonstrates the propagation of a linked fault for i = 1 and
j = 5. Given a faulty ciphertext C ′, the attacker can guess the value of two bytes of the
last round sk10[SR[i]] sk10[SR[j]], and partially decrypt the ciphertext C ′ to compute
intermediate values z′

10[SR[i]] and z′
10[SR[j]] for the guessed key. If z′

10[SR[i]] ̸= z′
10[SR[j]],

the guessed key is wrong otherwise it can be candidate for the correct key. The probability
a wrong key survives is 2−8. Since there are 216 possible values for sk10[SR[i]] sk10[SR[j]],
only 216 · 2−8 = 28 candidates remain. Hence, the number of remaining key candidates is
reduced by a factor of 28 with evaluating the faulty ciphertext of each linked fault. In other
words, the attacker can retrieve 8-bit information about the last round key by injecting
only one fault and utilizing only one faulty ciphertext. Given h distinct linked faults and
faulty ciphertexts, the residual key entropy reduces from k bits to (k − 8 × h) bits. As
previously noted in Section 3.1, the actual number of linked faults that an attacker is able
to inject relies on the implementation and, more specifically, the number of look up tables
that are called throughout the round function’s execution.

While we presented the attack for the AES cipher, it may be applied to any cipher by
adopting a similar technique that has been utilized for key recovery in various differential
fault attacks. Assume that u and v, two m−bit intermediate values in the r-th round, are
linked after fault injection. In other words, u and v either satisfy the relation u′ = l(v),
for example, they are equal. The intermediate values u and v, as well as some subkey bits
over the last round(s), influence a portion of the ciphertext. In other words, it is possible
to determine the intermediate values u′ and v by guessing the value of these subkey bits.
These bits are referred to as the target key bits. There are τ = 2κ candidates for a κ-bit
target key. Given N faulty ciphertexts C ′

1, C ′
2, ..., C ′

N , it is possible to partially decrypt
the ciphertexts for a guessed key k and determine if the relation u′ = l(v) holds. This
technique is illustrated in Algorithm 1. For the correct key, the relation u′ = l(v) holds in
all cases, whereas for the wrong key, it holds with probability 2−m·N . Equation (8) can
be used to compute the number of faulty ciphertexts needed to eliminate all wrong key



Ali Asghar Beigizad, Hadi Soleimany and Sara Zarei 9

candidates.

τ · 2−m·N < 1 ⇒ 2κ−m·N ≤ 1 ⇒ κ − m · N ≤ 0 ⇒ N ≥ κ

m
(8)

Algorithm 1 Key-recovery process in LDFA
Require: Faulty ciphertexts C′

1, C′
2, . . . , C′

N , Key candidates for last round(s) k0, ..., kτ−1.
Ensure: Correct Key
1: for ℓ = 0 to (τ − 1) do
2: for h = 1 to N do
3: (u′, v)← E−1

kℓ
(C′

h) ▷ Partial decryption
4: if u′ = l(v) then
5: cnt[ℓ] = cnt[ℓ] + 1
6: end if
7: end for
8: end for
9: return argmaxℓ(cnt[ℓ])

One should note that in contrast to DFA, this method does not require the correct
ciphertext. Hence the attacker does not need to repeat the encryption process twice for
a specific input value, which requires control over the input. We call this technique as
Linked Differential Fault Attack (LDFA) because it leverages the difference between the
bytes of ciphertexts that are linked in some way. However, the benefit of LDFA over other
approaches such as DFA and SFA is evident. LDFA uses linked bytes to take advantage of
the favorable features of known attacks (limited number of data necessary in DFA and no
need to control input in SFA) and overcome their limitations (control of input in DFA and
CFA, and a large number of required data in SFA).

Similar to attacks such as DFA and SFA, LDFA cannot circumvent redundant-based
countermeasures. In the following part, we demonstrate that linked fault analysis is
adaptable to be utilized in applications employing conventional countermeasures.

3.3 Linked Ineffective Fault Attack (LIFA)
Some proposed attacks concentrate on ineffectual faults. As they let the attacker to
circumvent several fault countermeasures, such as detection-based and infection-based
countermeasures, these attacks have an obvious benefit. Injecting a stuck-at fault that
is proposed in IFA is not a simple process, and it is not always practicable due to the
need for costly equipment and specific knowledge about the target. SIFA utilizes an
unbiased distribution of a targeted intermediate value over ineffective events. SIFA does
not necessitate a complicated mechanism to inject the fault, but it cannot be performed
with a few ineffective ciphertexts. To distinguish the correct key from a wrong key,
sufficient ineffective ciphertexts must be collected in order to detect the desired bias in the
distribution of the targeted intermediate value.

In contrast to IFA, LFA does not require complex equipment. LFA, unlike SIFA, does
not rely on a static that cannot be distinguished by a small number of data. Therefore,
linked fault analysis appears to be a suitable technique when a redundant countermeasure
is utilized in the target device. Following is a description of how LFA can be easily adapted
to be performed over ineffective ciphertexts.

Similar to the previous subsection, we first outline the attack by considering a linked
fault in AES that causes the byte x′[j] to become equal to x[i] or y′[j] to become equal
to S(x[i]). The faulty ciphertext C ′ is unavailable to the attacker when redundant-based
countermeasures are present. Nevertheless, if y10[i] is equal to y10[j], the fault has no
effect on the processed data. In other words, if the relation y10[i] = y10[j] holds, the fault
is ineffective, and the device outputs the faulty ciphertext, which is actually the correct
one. The probability of observing an ineffective ciphertext is 2−8. This indicates that,



10 Linked Fault Analysis

on average, the attacker must repeat the process 28 times for each fault. After that, the
attacker can retrieve 8-bit information about the key in a similar manner explained in the
previous subsection by observing an ineffective event.

Generally speaking, linked faults occur between two m-bit intermediate values u and
v, where m is quite small (typically 4 or 8 in most of the ciphers). Adopting LFA over
ineffective events is therefore highly efficient, as one ineffective fault happens on average for
every 2m faulty computations. Since LFA requires a very small number, the total amount
of data required for LIFA might be significantly less than for other ineffective fault variant
attacks.

3.4 Utilizing a Link Between the Words of Faulty Ciphertext
As previously discussed, LFA has an intriguing feature that produces a link between the
faulty value (v′) and another value (u). The existence of such a link may be conveyed
to the faulty ciphertext (C ′) in the sense that one portion of the faulty ciphertext (e.g.
C ′[i]) has a key-dependent link to another portion (e.g. C ′[j]), although likely with a more
complex relation (e.g. C ′[i] = f(C ′[j], skR)) holds for a known function f). This part
demonstrates that this link can be utilized in two situations. First, we demonstrate that it
is likely to be employed for a key-recovery attack that is faster. Then, we demonstrate
that it assists the attacker in determining the location of the flaw if the attacker lacks
detailed knowledge of the implementation. In order to demonstrate the advantage of a
key-dependent link in a faulty ciphertext, we will analyze the LFA on AES example from
the preceding sections.

3.4.1 More Efficient Key Recovery

In previous subsections, the secret key was retrieved in a conventional manner. Pilling of
the last round for a guessed key and checking a characteristic for the intermediate value(s)
is a key-recovery method that dates back to the 1990s, prior to the introduction of fault
attacks. In this section, we demonstrate that it may be possible to retrieve the key more
efficiently without requiring the partial decryption of (faulty) ciphertexts in a traditional
manner.

In the following part, for the sake of clarity, we will study the attack on the final round
of AES to explain how one portion of the faulty ciphertext can be linked to another via
a key-dependent relationship. As shown in Equation (9), it is straightforward to verify
that the bytes of faulty ciphertexts C ′[SR[i]] and C ′[SR[j]] are linked based on the value
∆sk10[i, j] ≜ sk10[SR[i]] ⊕ sk10[SR[j]].

C ′[SR[i]] ⊕ C ′[SR[j]] = (z′
10[SR[i]] ⊕ sk10[SR[i]]) ⊕ (z′

10[SR[j]] ⊕ sk10[SR[j]]) = ∆sk10[i, j]
(9)

Equation (9) states that the relation between the linked bytes of ciphertext depends
on the value of the key and it is deterministic.

Pr(C ′[SR[i]] ⊕ C ′[SR[j]] = α) =
{

1 α = ∆sk10[i, j],
0 α ̸= ∆sk10[i, j].

(10)

As illustrated in Algorithm 2, the relation given in Equation (10) allows an attacker to
extract one byte of information about the final subkey with only one faulty ciphertext and
without the need to perform costly key guessing.

It worth mentioning that in case of ineffective fault, z10[SR[i]] and z10[SR[j]] have a
similar relationship (after the ShiftRow operation) and Algorithm 2 can be used similarly
but over ineffective ciphertexts.



Ali Asghar Beigizad, Hadi Soleimany and Sara Zarei 11

Pr(C[SR[i]] ⊕ C[SR[j]] = α|i) =
{

1 α = ∆sk10[i, j],
0 α ̸= ∆sk10[i, j].

(11)

Algorithm 2 Efficient key-recvoery attack on last round AES
Require: Faulty ciphertexts C′

1, C′
2, . . . , C′

N ▷ In case of LIFA, only ineffective ciphertexts are considered
Ensure: Correct value of ∆sk10[i, j]
1: for h = 1 to N do
2: δ ← C′

h[SR[i]]⊕ C′
h[SR[j]]

3: cnt[δ] = cnt[δ] + 1
4: end for
5: return argmaxδ(cnt[δ])

3.4.2 Unknown Fault’s Location

In this section, we illustrate that the assumption of precise knowledge of the loading order
of intermediate values can be relaxed if some ciphertext words have a specified relationship
similar to the preceding section’s illustration. If we suppose that an m-bit relation
C ′[i] = f(C ′[j], skR] holds in a general instance, the attacker may be able to determine the
values of i and j. The basic principle is to examine the relationship C ′[i] = f(C ′[j], skR]
for all possible values of i and j over all key candidates. This process is illustrated in
Algorithm 3. If we take two portions of ciphertexts that are not affected by the fault, this
relation is expected to hold with a probability of 2−m even for the correct key, whereas it
always holds for a right guess of i and j for the correct key. Given N faulty ciphertexts
and assuming that there are ℓ1, ℓ2, and τ candidates for i, j, and skR, respectively, the
relation holds about ℓ1 · ℓ2 · τ2−m times for an incorrect guess. Equation (12) can be used
to compute the number of faulty ciphertexts required to eliminate all wrong guesses. For
example, the last round attack on AES has respectively ℓ1 = 16, ℓ2 = 16, and τ = 256
possibilities for i, j, and skR (here it refers to ∆sk10[i, j]), while m = 8-bit filtering is
provided. Given N=3 faulty ciphertexts, the attacker is able to determine not only the
value of ∆sk10[i, j], but also the location of the fault and how it is linked to other word.
It should be noted that a similar technique may be applied to LIFA, however rather than
exploiting faulty ciphertext, the attacker applies Algorithm 3 on ineffective ciphertexts.

ℓ1·ℓ2·τ2−m·N < 1 ⇒ 2log(τ+ℓ1+ℓ2)−m·N ≤ 1 ⇒ log(τ+ℓ1+ℓ2)−m·N ≤ 0 ⇒ N ≥ log(τ + ℓ1 + ℓ2)
m

(12)

Algorithm 3 Finding the location of fault
Require: Faulty ciphertexts C′

1, C′
2, . . . , C′

N ▷ In case of LIFA, only ineffective ciphertexts are considered
Ensure: Location of fault and its linked word (i, j), and correct value of ∆sk10[i, j]
1: for h = 1 to N do
2: for i = 0 to 15 do
3: for j = i + 1 to 15 do
4: δ ← C′

h[SR[i]]⊕ C′
h[SR[j]]

5: cnti,j [δ] = cnti,j [δ] + 1
6: end for
7: end for
8: end for
9: return argmaxi,j,δ(cnti,j [δ])



12 Linked Fault Analysis

3.5 Affect of Missed and Unwanted Faults
Until now, we have assumed that fault injection is perfect, which is rarely the case in
practice. It is possible that fault will not be injected as desired due to a number of factors.
In this part, we first explore the influence of these occurrences and then demonstrate that
LFA is less affected by undesirable events than other fault analyses.

3.5.1 Unwanted Faults

In certain instances, the instruction skip may occur in an undesirable location. “Unwanted
fault” describes a situation in which the fault is not injected at the desired time (or
location). Injecting fault at the incorrect time can result in an undesirable fault. This can
occur due to either the unintentional noise that occurs naturally in practical experiments
or the intentional noise that results from hiding countermeasures. Hiding countermeasures,
such as shuffling and dummy operations, are intended to make fault injection into a specific
place more complex by restricting the attacker’s knowledge of the precise moment of
instruction execution and processed data. Dummy operations incur significant additional
expenses, and their impact against attacks like SEFA is limited. However, shuffling appears
to be a successful, low-overhead countermeasure against the vast majority of fault attacks.

3.5.2 Missed Faults

There may be instances in which no instruction skip occurs. These instances, which cannot
be distinguished from ineffective events, are referred to as “missed faults”. Even with
robust equipment and perfect setup, it is possible to have missed faults. Due to the fact
that missed faults might be interpreted as ineffective faults, they have a substantial effect
on fault attacks that employ ineffective events. This fact stimulated the development of
novel attacks [PP21, VZB+22] that utilize correct ciphertexts that correspond to effective
faults, called non-faulty effective ciphertexts. However, an attacker must perform the
encryption twice to obtain non-faulty effective ciphertexts: once to compute the faulty
encryption to determine if it is effective, and again to obtain the corresponding correct
ciphertext.

3.5.3 LFA in the Presence of Undesired Cases

Most fault attacks, if not all, effect through missed and unwanted faults since they are
typically indistinguishable from desired faults, especially when the attacker lacks input
control to repeat the experiment with a fixed input. In this part, we demonstrate how
LFA may manage undesirable situations without requiring input-controlled computation
repetition.

In this part, we solely discuss situations where extra countermeasures, such as shuffling,
are not employed. It indicates that the noise is the result of a missed fault or that the
fault was introduced at the incorrect moment due to a weakness in the attack’s setup. We
denote the rate of missed faults and unwanted (and unintentional) faults by Πm and Πu,
respectively. Performing N experiments, there exist about N × (1 − (Πm + Πu)) cases
in which the relation u′ = l(v) always holds. Since no fault occurs or it occurs in wrong
location for other N × (Πm + Πu) cases, the relation u′ = l(v) holds with the probability of
2−m. In contrast to the situation which was discussed in Section 3.2 and Section 3.3, the
relation u′ = l(v) is not deterministic. However, as it is shown in Equation (13), u′ = l(v)
satisfies for the correct key and a wrong key with different probability.

Pr(u′ = l(v)) =
{

(1 − (Πm + Πu)) + 2−m · (Πm + Πu) Correct key
2−m · (Πm + Πu) Wrong key.

(13)



Ali Asghar Beigizad, Hadi Soleimany and Sara Zarei 13

Hence, the attack can apply Algorithm 1 similarly but he requires utilize more data.
Similar discussion holds for the key recovery attack presented in Section 3.4.1 in which we
assume a key-dependent relation like C ′[i] = f(C ′[j], skR)) holds for two parts of faulty
ciphertext where f is a known function. For instance we can consider again the last round
attack on AES. Since no fault occurs or it occurs in wrong location for other N ×(Πm +Πu)
outputs, the value of C[SR[i]] + C[SR[j]] is a random 8-bit value. Hence, the distribution
of is not uniform as it is indicated in Equation (14).

Pr(C[SR[i]] ⊕ C[SR[j]] = α) =
{

(1 − (Πm + Πu)) + 2−8 · (Πm + Πu) α = ∆sk10[i, j],
2−8 · (Πm + Πu) α ̸= ∆sk10[i, j].

(14)
Consequently, Algorithm 2 can be applied similarly here but the required data increases.

4 Countermeasures and Further Discussions
4.1 Shuffling
Shuffling is a simple and effective countermeasure against fault attacks. The main principle
behind shuffling is to randomize the order of operations that can be executed in any order.
Sboxes can be executed in any order when it comes to block ciphers, for example. In the
presence of shuffling, an attacker cannot predict the order of the calling look-up tables
because it is randomized each cipher execution. As a result, injecting fault at a certain
time does not necessarily affect a fixed intermediate value. This is why the performance
of the majority of fault attacks is severely impacted by shuffling. Even SEFA, which is
substantially less susceptible to noise than SIFA, is shown to be equally affected by the
shuffling.

As explained in Section 3.4.2, in the key-recovery procedure of LFA, the attacker should
not necessarily know which byte has been altered and how it is linked to other bytes. Even
in this instance, it is presumed that the fault location and its linked word have been fixed
(but unknown). In the key-recovery procedure of LFA, the attacker must be aware of which
byte has been altered and how it is linked to other bytes. Input state contains L words
that can be processed in L(L − 1) distinct ways. In order to generate a linked fault such as
u′ = l(v), the values of u and v must be processed sequentially and at precisely the same
moment that the attacker injects the fault (see Section 3.1). However, this is not the case
when shuffling is present. After injecting a fault, if shuffling is employed, there are two
possible outcomes. The intended fault occurs when the intermediate values u and v (or v
and u) are processed during the injection of fault. The likelihood of such an occurrence
is 2

L(L−1) . With probability 1 − 2
L(L−1) , the intermediate values processed during fault

injection deviate from what the attacker desires. In these instances, the relation u′ = l(v)
may randomly satisfy with a probability of 2−m. Hence, as it is shown in Equation (15),
u′ = l(v) satisfies for the correct key and a wrong key with different probability.

Pr(u′ = l(v)) =
{

2
L(L−1) + 2−m · (1 − 2

L(L−1) ) Correct key
2−m Wrong key.

(15)

4.2 Repetition of instructions
The linked fault presented in this research can be generated in practice by skipping
instructions. Various instruction-level countermeasures for defending the implementation
against fault attacks have been researched and presented in prior studies. Idempotent
instructions (such as the move instruction) can be implemented multiple times without



14 Linked Fault Analysis

affecting the output [PM19]. This countermeasure should be utilized with caution, as the
number of repetitions plays an essential role. For example, in our experiment, duplicating
the instructions does not prevent the attack, but we might still perform LFA with more
samples. In addition, there are some security concerns regarding the protection offered by
multiple copies of instructions. While it is sometimes assumed that these countermeasures
can only be compromised by injecting several faults using an expensive fault injection
setup, it is demonstrated that their security can be compromised by injecting a single
clock glitch with a low-cost tool [YGS+16]. Despite these issues, it is undeniable that
instruction-level countermeasures such as the repeating of idempotent instructions can
make the application of LFA substantially more difficult, particularly when combined with
other countermeasures such as Shuffling.

5 Experiments
We come up with the realization of the linked fault by means of a basic yet typical setup.
We set our target system’s (µController’s) clock to be fed by an external clock. The clock
is then built utilizing a Field-Programmable Gate Array (FPGA). By doing so, the first
achievement is the ability to increase the µController’s working frequency from its highest
achievable value to tens of times, using the FPGA’s internal Phase-Locked Loop (PLL).
Take an ATMEGA328p case, we have an increase from 16MHz to 160 MHz. The second
achievement is the ability to induce the fault at the exact desirable point in time and
algorithm calculations in every repetition of the fault inducement. In fact, the FPGA’s
high synchronicity with the µController allows us, as attackers, to have an accurate control
over the time and location of our fault. The mechanism includes an alerting signal from
the desired point of the algorithm (suppose the start of the next to last round of the AES).
From the FPGA side, this signal triggers the commencement of the frequency perturbation.
Two more subsidiary parameters aid in finely determining the exact point at which the
frequency rise will result in an linked fault, as well as the duration of the increase. We
refer to these two parameters as the the fault’s start and offset value, respectively. In what
follows, we describe and report the result of our first experiment.

We consider an 8-bit AVR µController (ATMEGA328p) on which the AES algorithm
is running. We target the start of the last AES round. The AES implementation is carried
out through a conventional C code with standard libraries in which the realization of
the substitution box is by means of T-tables. Since our attack involves only a single
instruction skip, the performance of the attack will not significantly be affected by the
usage of assembly-optimized code. Our primary results show that out of 23862 tests, we
successfully achieve linked fault in almost 99.1% of them. We observe ineffective faults,
missed faults, and unwanted faults in 108, 42, and 54 of the experiments, respectively.

6 Conclusions
In this study, we present a new technique for fault analysis that employs a link between
a faulty intermediate value and a second intermediate value. Our method, unlike most
fault analysis techniques, does not rely on a biased fault model and has the potential
to circumvent many countermeasures. We proved the impact of LFA by suggesting
two key-recovery approaches. Our first technique, LDFA, is applicable to unprotected
implementations of block ciphers that require an extremely minimal amount of data.
LIFA, our second method, can circumvent conventional detection- and infection-based
countermeasures. LIFA is less affected by missed faults or unwanted faults compared to
SIFA, although, unlike SEFA, it does not require input control.



Ali Asghar Beigizad, Hadi Soleimany and Sara Zarei 15

References
[AM12] Subidh Ali and Debdeep Mukhopadhyay. Differential fault analysis of twofish.

In Inscrypt, volume 7763 of Lecture Notes in Computer Science, pages 10–28.
Springer, 2012.

[AM13] Subidh Ali and Debdeep Mukhopadhyay. Improved differential fault analysis
of CLEFIA. In FDTC, pages 60–70. IEEE Computer Society, 2013.

[AMT13] Subidh Ali, Debdeep Mukhopadhyay, and Michael Tunstall. Differential fault
analysis of AES: towards reaching its limits. J. Cryptogr. Eng., 3(2):73–97,
2013.

[BBB+18] Anubhab Baksi, Shivam Bhasin, Jakub Breier, Mustafa Khairallah, and
Thomas Peyrin. Protecting block ciphers against differential fault attacks
without re-keying. In HOST, pages 191–194. IEEE Computer Society, 2018.

[BBKN12] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache.
Fault injection attacks on cryptographic devices: Theory, practice, and
countermeasures. Proc. IEEE, 100(11):3056–3076, 2012.

[BCN+06] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire
Whelan. The sorcerer’s apprentice guide to fault attacks. Proc. IEEE,
94(2):370–382, 2006.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults (extended abstract). In Walter
Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, International
Conference on the Theory and Application of Cryptographic Techniques, Kon-
stanz, Germany, May 11-15, 1997, Proceeding, volume 1233 of Lecture Notes
in Computer Science, pages 37–51. Springer, 1997.

[BGN12] Céline Blondeau, Benoît Gérard, and Kaisa Nyberg. Multiple differential
cryptanalysis using LLR and χ2 statistics. In Ivan Visconti and Roberto De
Prisco, editors, Security and Cryptography for Networks – SCN 2012, volume
7485 of LNCS, pages 343–360. Springer, 2012.

[BGV11] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. An in-depth
and black-box characterization of the effects of clock glitches on 8-bit mcus.
In FDTC, pages 105–114. IEEE Computer Society, 2011.

[BHL18] Jakub Breier, Xiaolu Hou, and Yang Liu. Fault attacks made easy: Differential
fault analysis automation on assembly code. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(2):96–122, 2018.

[BJC15] Jakub Breier, Dirmanto Jap, and Chien-Ning Chen. Laser profiling for the
back-side fault attacks: With a practical laser skip instruction attack on AES.
In CPSS@ASIACSS, pages 99–103. ACM, 2015.

[BK06] Johannes Blömer and Volker Krummel. Fault based collision attacks on AES.
In FDTC, volume 4236 of Lecture Notes in Computer Science, pages 106–120.
Springer, 2006.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Advances in Cryptology - CRYPTO ’97, 17th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997,
Proceedings, volume 1294 of Lecture Notes in Computer Science, pages 513–
525. Springer, 1997.



16 Linked Fault Analysis

[CB19] Andrea Caforio and Subhadeep Banik. A study of persistent fault analysis. In
Shivam Bhasin, Avi Mendelson, and Mridul Nandi, editors, Security, Privacy,
and Applied Cryptography Engineering - 9th International Conference, SPACE
2019, Gandhinagar, India, December 3-7, 2019, Proceedings, volume 11947 of
Lecture Notes in Computer Science, pages 13–33. Springer, 2019.

[CGR20] Sébastien Carré, Sylvain Guilley, and Olivier Rioul. Persistent fault analysis
with few encryptions. In Guido Marco Bertoni and Francesco Regazzoni,
editors, Constructive Side-Channel Analysis and Secure Design - 11th Inter-
national Workshop, COSADE 2020, Lugano, Switzerland, April 1-3, 2020,
Revised Selected Papers, volume 12244 of Lecture Notes in Computer Science,
pages 3–24. Springer, 2020.

[Cla07] Christophe Clavier. Secret external encodings do not prevent transient fault
analysis. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems - CHES 2007, 9th International Workshop,
Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727 of Lecture
Notes in Computer Science, pages 181–194. Springer, 2007.

[DCAM15] Prakash Dey, Abhishek Chakraborty, Avishek Adhikari, and Debdeep
Mukhopadhyay. Improved practical differential fault analysis of grain-128. In
DATE, pages 459–464. ACM, 2015.

[DDR+12] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, P. Orsatelli, Philippe
Maurine, and Assia Tria. Injection of transient faults using electromagnetic
pulses -practical results on a cryptographic system-. IACR Cryptol. ePrint
Arch., page 123, 2012.

[DDRT12] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria. Elec-
tromagnetic transient faults injection on a hardware and a software imple-
mentations of AES. In FDTC, pages 7–15. IEEE Computer Society, 2012.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard,
Florian Mendel, and Robert Primas. SIFA: Exploiting ineffective fault in-
ductions on symmetric cryptography. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018(3):547–572, 2018.

[DFL11] Patrick Derbez, Pierre-Alain Fouque, and Delphine Leresteux. Meet-in-the-
middle and impossible differential fault analysis on AES. In CHES, volume
6917 of Lecture Notes in Computer Science, pages 274–291. Springer, 2011.

[EHH+14] Sho Endo, Naofumi Homma, Yu-ichi Hayashi, Junko Takahashi, Hitoshi Fuji,
and Takafumi Aoki. A multiple-fault injection attack by adaptive timing
control under black-box conditions and a countermeasure. In COSADE,
volume 8622 of Lecture Notes in Computer Science, pages 214–228. Springer,
2014.

[ESP20] Susanne Engels, Falk Schellenberg, and Christof Paar. SPFA: SFA on multiple
persistent faults. In 17th Workshop on Fault Detection and Tolerance in
Cryptography, FDTC 2020, Milan, Italy, September 13, 2020, pages 49–56.
IEEE, 2020.

[FCL+20] Jingyi Feng, Hua Chen, Yang Li, Zhipeng Jiao, and Wei Xi. A framework for
evaluation and analysis on infection countermeasures against fault attacks.
IEEE Trans. Inf. Forensics Secur., 15:391–406, 2020.



Ali Asghar Beigizad, Hadi Soleimany and Sara Zarei 17

[FJLT13] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault
attacks on AES with faulty ciphertexts only. In Wieland Fischer and Jörn-
Marc Schmidt, editors, 2013 Workshop on Fault Diagnosis and Tolerance
in Cryptography, Los Alamitos, CA, USA, August 20, 2013, pages 108–118.
IEEE Computer Society, 2013.

[FXKH17] Kazuhide Fukushima, Rui Xu, Shinsaku Kiyomoto, and Naofumi Homma.
Fault injection attack on salsa20 and chacha and a lightweight countermeasure.
In TrustCom/BigDataSE/ICESS, pages 1032–1037. IEEE Computer Society,
2017.

[GPT19] Michael Gruber, Matthias Probst, and Michael Tempelmeier. Persistent fault
analysis of ocb, DEOXYS and COLM. In 2019 Workshop on Fault Diagnosis
and Tolerance in Cryptography, FDTC 2019, Atlanta, GA, USA, August 24,
2019, pages 17–24. IEEE, 2019.

[GST12] Benedikt Gierlichs, Jörn-Marc Schmidt, and Michael Tunstall. Infective
computation and dummy rounds: Fault protection for block ciphers without
check-before-output. In LATINCRYPT, volume 7533 of Lecture Notes in
Computer Science, pages 305–321. Springer, 2012.

[GYTS14] Nahid Farhady Ghalaty, Bilgiday Yuce, Mostafa Taha, and Patrick Schaumont.
Differential fault intensity analysis. In 2014 Workshop on Fault Diagnosis
and Tolerance in Cryptography, pages 49–58. IEEE, 2014.

[HBZL19] Xiaolu Hou, Jakub Breier, Fuyuan Zhang, and Yang Liu. Fully automated
differential fault analysis on software implementations of block ciphers. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2019(3):1–29, 2019.

[KH14] Thomas Korak and Michael Hoefler. On the effects of clock and power supply
tampering on two microcontroller platforms. In FDTC, pages 8–17. IEEE
Computer Society, 2014.

[LSG+10] Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko
Takahashi, and Kazuo Ohta. Fault sensitivity analysis. In Stefan Mangard and
François-Xavier Standaert, editors, Cryptographic Hardware and Embedded
Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA,
August 17-20, 2010. Proceedings, volume 6225 of Lecture Notes in Computer
Science, pages 320–334. Springer, 2010.

[MDH+13a] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson, and
Emmanuelle Encrenaz. Electromagnetic fault injection: Towards a fault
model on a 32-bit microcontroller. In FDTC, pages 77–88. IEEE Computer
Society, 2013.

[MDH+13b] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson, and
Emmanuelle Encrenaz. Electromagnetic fault injection: Towards a fault
model on a 32-bit microcontroller. In FDTC, pages 77–88. IEEE Computer
Society, 2013.

[PM19] Sikhar Patranabis and Debdeep Mukhopadhyay. Idempotent Instructions
to Counter Fault Analysis Attacks, pages 195–208. Springer International
Publishing, Cham, 2019.

[PP21] Peter Pessl and Lukas Prokop. Fault attacks on cca-secure lattice kems. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):37–60, 2021.



18 Linked Fault Analysis

[PZRB19] Jingyu Pan, Fan Zhang, Kui Ren, and Shivam Bhasin. One fault is all it needs:
Breaking higher-order masking with persistent fault analysis. In Jürgen Teich
and Franco Fummi, editors, Design, Automation & Test in Europe Conference
& Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019, pages 1–6.
IEEE, 2019.

[RCC+16] Debapriya Basu Roy, Avik Chakraborti, Donghoon Chang, S. V. Dilip Kumar,
Debdeep Mukhopadhyay, and Mridul Nandi. Fault based almost universal
forgeries on CLOC and SILC. In SPACE, volume 10076 of Lecture Notes in
Computer Science, pages 66–86. Springer, 2016.

[SBH+21] Hadi Soleimany, Nasour Bagheri, Hosein Hadipour, Prasanna Ravi, Shivam
Bhasin, and Sara Mansouri. Practical multiple persistent faults analysis.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):1–24, 2021.

[SBHS15] Bodo Selmke, Stefan Brummer, Johann Heyszl, and Georg Sigl. Precise laser
fault injections into 90 nm and 45 nm sram-cells. In CARDIS, volume 9514
of Lecture Notes in Computer Science, pages 193–205. Springer, 2015.

[SBR+20] Sayandeep Saha, Arnab Bag, Debapriya Basu Roy, Sikhar Patranabis, and
Debdeep Mukhopadhyay. Fault template attacks on block ciphers exploiting
fault propagation. In EUROCRYPT (1), volume 12105 of Lecture Notes in
Computer Science, pages 612–643. Springer, 2020.

[Sel08] Ali Aydin Selçuk. On probability of success in linear and differential crypt-
analysis. Journal of Cryptology, 21(1):131–147, 2008.

[SH08] Jörn-Marc Schmidt and Christoph Herbst. A practical fault attack on square
and multiply. In FDTC, pages 53–58. IEEE Computer Society, 2008.

[SHP09] Jörn-Marc Schmidt, Michael Hutter, and Thomas Plos. Optical fault attacks
on AES: A threat in violet. In Luca Breveglieri, Israel Koren, David Nac-
cache, Elisabeth Oswald, and Jean-Pierre Seifert, editors, Sixth International
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2009,
Lausanne, Switzerland, 6 September 2009, pages 13–22. IEEE Computer
Society, 2009.

[SHS16] Bodo Selmke, Johann Heyszl, and Georg Sigl. Attack on a DFA protected
AES by simultaneous laser fault injections. In FDTC, pages 36–46. IEEE
Computer Society, 2016.

[SMC09] Dhiman Saha, Debdeep Mukhopadhyay, and Dipanwita Roy Chowdhury. A
diagonal fault attack on the advanced encryption standard. IACR Cryptol.
ePrint Arch., page 581, 2009.

[SMD18] Sayandeep Saha, Debdeep Mukhopadhyay, and Pallab Dasgupta. Expfault:
An automated framework for exploitable fault characterization in block
ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):242–276, 2018.

[TBM14] Harshal Tupsamudre, Shikha Bisht, and Debdeep Mukhopadhyay. Destroying
fault invariant with randomization - A countermeasure for AES against
differential fault attacks. In CHES, volume 8731 of Lecture Notes in Computer
Science, pages 93–111. Springer, 2014.

[TK10] Elena Trichina and Roman Korkikyan. Multi fault laser attacks on protected
CRT-RSA. In FDTC, pages 75–86. IEEE Computer Society, 2010.



Ali Asghar Beigizad, Hadi Soleimany and Sara Zarei 19

[VZB+22] Navid Vafaei, Sara Zarei, Nasour Bagheri, Maria Eichlseder, Robert Primas,
and Hadi Soleimany. Statistical effective fault attacks: The other side of the
coin. IEEE Trans. Inf. Forensics Secur., 17:1855–1867, 2022.

[YGS15] Bilgiday Yuce, Nahid Farhady Ghalaty, and Patrick Schaumont. Improving
fault attacks on embedded software using RISC pipeline characterization. In
FDTC, pages 97–108. IEEE Computer Society, 2015.

[YGS+16] Bilgiday Yuce, Nahid Farhady Ghalaty, Harika Santapuri, Chinmay Desh-
pande, Conor Patrick, and Patrick Schaumont. Software fault resistance is
futile: Effective single-glitch attacks. In FDTC, pages 47–58. IEEE Computer
Society, 2016.

[YJ00] Sung-Ming Yen and Marc Joye. Checking before output may not be enough
against fault-based cryptanalysis. IEEE Transactions on computers, 49(9):967–
970, 2000.

[ZGZ+13] Xinjie Zhao, Shize Guo, Fan Zhang, Zhijie Shi, Chujiao Ma, and Tao Wang.
Improving and evaluating differential fault analysis on LED with algebraic
techniques. In FDTC, pages 41–51. IEEE Computer Society, 2013.

[ZGZ+16] Fan Zhang, Shize Guo, Xinjie Zhao, Tao Wang, Jian Yang, François-Xavier
Standaert, and Dawu Gu. A framework for the analysis and evaluation
of algebraic fault attacks on lightweight block ciphers. IEEE Trans. Inf.
Forensics Secur., 11(5):1039–1054, 2016.

[ZLZ+18] Fan Zhang, Xiaoxuan Lou, Xinjie Zhao, Shivam Bhasin, Wei He, Ruyi Ding,
Samiya Qureshi, and Kui Ren. Persistent fault analysis on block ciphers.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):150–172, 2018.

[ZZG+13] Fan Zhang, Xinjie Zhao, Shize Guo, Tao Wang, and Zhijie Shi. Improved
algebraic fault analysis: A case study on piccolo and applications to other
lightweight block ciphers. In COSADE, volume 7864 of Lecture Notes in
Computer Science, pages 62–79. Springer, 2013.

[ZZJ+20] Fan Zhang, Yiran Zhang, Huilong Jiang, Xiang Zhu, Shivam Bhasin, Xinjie
Zhao, Zhe Liu, Dawu Gu, and Kui Ren. Persistent fault attack in practice.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(2):172–195, 2020.


	Introduction
	Overview of Prior Transient Fault Attacks
	Our Contributions

	Preliminaries
	Notations
	DFA
	SIFA
	Limitations of Instruction Skip Attacks in Block ciphers

	Linked Fault Analysis (LFA)
	Fautl Model
	Linked Differential Fault Attack (LDFA)
	Linked Ineffective Fault Attack (LIFA)
	Utilizing a Link Between the Words of Faulty Ciphertext 
	Affect of Missed and Unwanted Faults

	Countermeasures and Further Discussions
	Shuffling
	Repetition of instructions

	Experiments
	Conclusions

