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ABSTRACT

We present a new two-party construction for secure logistic regres-

sion training, which enables two parties to train a logistic regression

model on private secret shared data. Our goal is to minimize on-

line communication and round complexity, while still allowing

for an efficient offline phase. As part of our construction we de-

velop many building blocks of independent interest. These include

a new approximation technique for the sigmoid function, which

results in a secure evaluation protocol with better communication;

secure spline evaluation and secure powers computation protocols

for fixed-point values; and a new comparison protocol that opti-

mizes online communication. We also present a new two-party

protocol for generating keys for distributed point functions (DPFs)

over arithmetic sharing, where previous constructions do this only

for Boolean outputs. We implement our protocol in an end-to-end

system and benchmark its efficiency. We can securely evaluate a

sigmoid in 20 ms online time and 1.12 KB of online communication.

Our system can train a model over a database with 6000 samples

and 5000 features with online communication of 40 MB and online

time of 9 minutes.

1 INTRODUCTION

One of the most ubiquitous ways to understand and use large

amounts of data is to train models which capture the most signifi-

cant general properties of the underlying data. In many settings the

dataset used for the model training is owned by different parties

that have agreed to cooperate and create a common model across

their datasets but do not want to share record level data. Secure

multiparty computation (MPC) [25, 49] enables distributed process-

ing of their joint data which guarantees that neither party learns

anything more about the data than its designated output.

We consider the setting of two party computation (2PC) for

secure logistic regression training where each party holds a crypto-

graphic share of the input data. Secure protocols in this setting can

be used to enable two parties to train a logistic regression model

on their joint data by first secret-sharing their inputs. But they also

enable processing of data where neither of the computation parties

owns the dataset and the receiver of the output may be a different

party, assuming the computation parties are not colluding. The

latter setting is relevant in scenarios where the dataset consists of

entries collected across a large number of users and no single party

could have access to the record-level data. In this scenario the data

stewardship is distributed across two parties which are in charge

of executing a secure computation protocol for the agreed upon

functionality. Apart from keeping the input data confidential from

any single entity, this model also restricts the data to a specific use

case, which the computing parties have to agree on in advance.

Outsourcing a secure computation to a set of non-colluding

servers has been applied in practice several times in the past. The

first practical application of MPC, which was used to run a sugar

beet auction in Denmark in 2009 [7], relied on three “virtual auction-

eers", Danisko, DKS and SIMAP, who had shares of the inputs of all

sellers and bidders and executed an MPC protocol for the auction.

A second example is a study that was run by the Estonian govern-

ment, to test whether students working during studies is correlated

with worse performance and dropouts [6]. This study needed to

join tax records with education records which are held by different

government entities and are not shared. To do this in a privacy

preserving manner they executed an MPC with three parties: the

Estonian Information System’s Authority, the Ministry of Finance

IT center, and the company Cybernetica. The two databases were

shared among the three parties who executed an MPC protocol

implementing the study methodology.

The two-server setting, which we focus on in this work, was

leveraged in the system Prio [16] which implements a distributed

private aggregation protocol where two non-colluding parties re-

ceive shares from individual user devices and compute an aggregate

histogram over these inputs. This system was later used by Mozilla

Firefox to collect browser telemetry [15] where the two aggrega-

tors were run by Mozilla and the Internet Security Research Group

(ISRG). The same design underlies the Exposure Notifications Pri-

vate Analytics (ENPA) system implemented by Google and Apple

in their Exposure Notifications system [4], where the aggregators

are the National Cancer Institute (NCI) at the National Institutes of

Health (NIH), and ISRG.

An ongoing effort byGoogle Chrome, called Privacy Sandbox [28],

is developing privacy preserving measurement APIs to support ad-

vertising use cases after the deprecation of third party cookies. One

of these APIs, the attribution API [27], considers a similar mea-

surement goal, which is to compute aggregate measurement across

attributed conversions from all users. Again, an MPC system with

distributed data stewardship can be used to perform this kind of

measurement [29].

While the previous two examples show that privately aggre-

gating user data into histograms is useful by itself, the needs for

measurement systems go far beyond and require more complex

model training. Here, communication between the two computing

parties quickly becomes the most expensive part of the system.

For example, while it may be beneficial for privacy to place the

two servers into data centers operated by different cloud providers

(e.g., AWS and Google Cloud in the case of ENPA[4]), this incurs
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egress charges for all traffic between the two servers, which can

be significantly higher than intra-cloud traffic costs. Low online

communication cost is therefore a crucial design goal for practical

secure training protocols.

Logistic Regression. Logistic regression is a tool used for many

modeling and measurement settings. It is often used for binary

classification and prediction in medical [9, 22], engineering [40],

and finance [3] applications. It was the functionality of choice in

Criteo’s challenge for effective use of some of the privacy preserving

APIs proposed by Chrome [24].

Online-offline Computation Model. Our constructions consider
the online-offline computation model [21] which aims to minimize

the complexity of the protocol that is on the critical path of pro-

cessing inputs when they become available, by outsourcing some

of the computation into an input-independent offline phase which

can be executed at any time prior to the online stage. The main

metric that we optimize for in our constructions is communication

complexity which as we discussed above could be a major cost in

many cross platform two party computation settings.

We consider two settings. The first one assumes a trusted of-

fline preprocessing that can be executed centrally. This is relevant

in scenarios where there is a party which can be trusted to hon-

estly compute the different types of correlated randomness such

as multiplication triples, function secret sharing (FSS) keys, and

others. For example, in some scenarios regulator parties might be

considered trusted for the purposes of this preprocessing. Another

way to think about trusted preprocessing is measurement settings

over large numbers of clients, where the offline phase is distributed

across the clients each of which evaluates a small amount of the

required preprocessing and submits the output together with its

data shares to the two computation servers. The second setting that

we address in our protocols does not assume a trusted party for the

offline stage and proposes that it is also executed using secure com-

putation between two computation parties. While it is well-known

that any computation that a trusted party could perform, can also

be distributed using MPC [25, 49], efficiency is a concern here as

well. We therefore also investigate how to efficiently perform the

offline phase of our protocols using MPC, while still keeping the

online phase as cheap as possible.

Differentially Private Output. In our scenario, the two computa-

tion parties may reveal the output logistic model to a designated

output receiver, or alternatively may hold the model shares and

later answer inference queries in a distributed manner. While we

are not aware of any attacks that use a logistic regression model to

recover the input database, the question of how much information

different models reveal about the data used for training is an active

research area. Making the output differentially private [20] is one

approach to guarantee that it cannot be used to extract individual

records. Thus, we also consider the questions of constructing a

distributed protocol for differentially private logistic regression

training.

Our Contributions. We present a new construction for two party

secure logistic regression training over a database that is cryp-

tographically shared between the two parties and improves the

online communication cost of existing approaches. We present two

different protocols: the first one optimized solely for online commu-

nication, while the second one trades off some of the efficiency in

the online phase for supporting efficient distributed computation

in the offline phase. Both constructions can facilitate differentially

private output model.

The core technical component in our logistic regression con-

struction is a new protocol for secure sigmoid evaluation on input

that is shared between two parties. It uses a new approximation

approach for the sigmoid functionality and the final protocol offers

improved communication cost for its online phase which is 3-4x

smaller than the communication of the state of the art sigmoid

construction of SiRnn [41].

As building blocks in our main protocol we introduce several

constructions for functionalities that are of independent interest:

• A new construction for spline evaluation, which supports

fixed-point representation of the input.

• A new construction for secure computation of powers of a

value with fixed-point representation.We use this construc-

tion for secure evaluation of Taylor series approximations.

• A new construction for secure comparison with improved

online communication.

• A new construction for two-party generation of distributed

point function (DPF) keys with arithmetically shared out-

put values.

We present an end-to-end implementation of our protocols,

which is the first implementation that combines FSS-based and

secret-sharing-based techniques. We evaluate the costs of our pro-

tocols and present a variety of benchmarks including microbench-

marks for a new secure comparison which allows to trade-off online

and offline communication and cuts in half the online communica-

tion needed by the most recent construction in CrypTFlow2 [42].

Our sigmoid construction also improves 3-4x the online commu-

nication of the state of the art solution of SiRnn [41]. A secure

sigmoid evaluation runs between 16 and 19ms in different network

setting and includes 1-1.5 KB of communication. We can compare

128 bits with 512-688 bits exchanged online. Our final secure logis-

tic regression securely training trains a model over 6000 samples

with 5000 features in about 9min with 30-40 MB of communication

with accuracy close to the plaintext trained model.

1.1 Our Approach

Secure Logistic Regression (Section 3). Our construction uses sto-

chastic gradient descent for the training which is an iterative train-

ing algorithm. The computation in each iteration consists of matrix

operations and a sigmoid evaluation for the model update.

Secure Sigmoid Evaluation (Sections 4 and 5). We introduce a

new construction for secure sigmoid evaluation where the input

is shared between two parties. It leverages a new approximation

method for the sigmoid function that relies on a different approxi-

mation function for different input intervals. In particular we use

spline approximation for the input interval [0, 1) which splits the

interval in several pieces each of which is approximated with a

linear function. For large input values above a configurable thresh-

old we approximate the sigmoid value with 1, and for the value

between 1 and the threshold we use a Taylor approximation.
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To reduce the communications of the online computation of our

protocol we rely on techniques for function secret sharing which

enables non-interactive computation during the online phase. In

particular we use the multiple interval containment (MIC) function-

ality [10] to identify the input interval to use the approximation

function as well as within the spline approximation to choose the

right linear function.

Distributed Comparison Function (Appendix B). MIC gates lever-

age distributed comparison functions (DCFs) [10] which rely on

function secret sharing [11] techniques. We introduce a new reduc-

tion fromDCFs to incremental distributed point functions (iDPFs) [8],

which is conceptually simpler and cheaper than the previous con-

struction by Boyle et al. [10].

Secure Powers Computation with Fixed-Point Representation (Sec-
tion 5.2). The sigmoid approximation for values above 1 that relies

on Taylor approximation has two main components: secure ex-

ponentiation for evaluation of 𝑒−𝑥 and the a secure protocol for

power computation that enables the polynomial evaluation for the

Taylor series. For the first part we leverage the construction for

secure exponentiation of Kelkar et al. [33]. For the second part we

present a new construction inspired by the Honey Badger secure

powers computation protocol [37], which we extend to work with

fractional values in fixed-point representation.

Online-Offline Balanced Protocol (Section 6). The most significant

part of the offline computation for our protocol is the generation

of the FSS keys, which are needed for the MIC gates. In the setting

without trusted preprocessing where these keys need to be gener-

ated using two party computation, this presents significant costs

that challenge the execution of the offline computation. Existing

approaches either rely on general-purpose MPC, which in this case

is expensive due to the need for secure evaluation of a PRG, or they

use the Doerner-Shelat technique [18], which requires computation

exponential in the input size. In the application of the MIC gate for

the spline approximation this is not an issue because the inputs can

be made short by truncation, leveraging the fact that the input is a

fixed point number with absolute value ≤ 1 if we are performing

the spline evaluation. However, in the higher level interval contain-

ment functionality which identifies which type of approximation

needs to be used, this is not longer the case, since we don’t have

any simple way to reduce the size of the input. This means that we

would need an FSS gate with a large input domain, which would

have extremely high offline computation.

Secure Comparison (Section 6.1). To overcome this challenge we

modify the protocol to use a secure comparison functionality in-

stead MIC to determine the first level of input partitions. We intro-

duce a new comparison construction with a highly communication-

efficient online phase while only having modest computation and

round complexity. Our work uses techniques from secret-sharing

MPC and FSS to improve over the online communication of Rathee

et al.’s CrypTFlow2 [43] by ≈ 2.4× and Couteau [17] by ≈ 4.1× for

64-bit inputs and appropriate parameters. We reduce the number of

communication rounds by similar factors, i.e., from 6 and 12 rounds

respectively to 3.

Secure comparison is a fundamental building block for higher-

level privacy-preserving applications. Couteau [17] present an ex-

tensive list of such applications including oblivious sorting, data-

base search constructions, private set intersection, oblivious RAM,

machine learning for applications such as classification, feature

extraction, and generating private recommendations.

Secure DPF Key Generation (Appendix D). One of the main com-

ponents for the offline computation in our construction is the gen-

eration of FSS keys for distributed point functions (DPFs). Doerner

and Shelat [18] present a two party computation protocol for the

DPF key generation algorithm of Boyle et al. [11]. However, this

protocol only supports DPFs with boolean (that is, XOR-shared)

output groups.

Many applications relying DPFs including the works of Boyle

et al. [10], however, require arithmetically-shared output groups.

While Boyle et al. [10] refer to Doerner and shelat [18] in their

paper, the construction does not immediately generalize to that

setting without additional modifications. One solution is using

DPFs with boolean output shares, and then use a share conversion

protocol (for example the one from Cryptoflow2 [42]). However,

this usually requires a number of oblivious transfers proportional

to the size of the output shares, which increases the online round

and communication complexity

We present a new two-party computation protocol for the DPF

key generation algorithm which maintains the property that the

evaluation of the DPF keys generate arithmetic shares of the output.

Our construction only requires a single additional oblivious transfer

in the offline phase, independently of the size of the output shares.

1.2 Related Work

A large body of work [2, 35, 39, 44, 47] has looked at the problem of

computing various machine learning and statistical models within

MPC. A subset of these works [33, 39] have focused on forms of

regression (SecureML, Secure Poisson Regression). Other works

such as MP-SPDZ [34], EMP-Toolkit [48], 𝐴𝐵𝑌 3
[38] and Crypt-

Flow2 [42] provide solutions for logistic regression in the context

of a general MPC/ML framework. In most approaches, the main

difficulty lies in the computation of the nonlinear function, which

for logistic regression is the sigmoid function.

Other recent works have focused on efficient implementations

of the sigmoid function [36, 41, 44] using a variety of methods. Of

these, SiRnn [41] has the best efficiency, using a dynamic fixed point

representation together with Goldschmidt’s approximations to get

efficient protocols for sigmoid and other ML-related functionalities.

A separate thread of work has focused on function-secret-sharing

(FSS) as a communication-efficient primitive for a variety of MPC

problems, including learning. One prominent work by Boyle et al.

[10] shows how to compute a variety of nonlinear functions using

FSS, including spline-based approximations to the sigmoid function.

However, these construction play poorly with fixed-point represen-

tations of inputs, since they do not handle truncated multiplications

which are critical for fixed-point correctness, and therefore are hard

to use for logistic regression. Other works such as AriaNN [45]

leverage FSS gates to compute ReLU gates, and therefore neural

nets, with low communication, but do not tackle logistic regression.
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2 PRELIMINARIES

Notation. Given a finite set 𝑆 , 𝑥 ← 𝑆 indicates that an element 𝑥

is sampled uniformly at random from 𝑆 . For any positive integer 𝑛,

Z𝑛 denotes the set of integers modulo 𝑛. [𝑘] denotes the set of in-
tegers {1, . . . , 𝑘}. We use 1{𝑏} to denote the indicator function that

outputs 1 when 𝑏 is true and 0 otherwise. _ indicates computational

security parameter. For a vector v, v𝑖 ... 𝑗 denotes the vector contain-
ing elements 𝑣𝑖 , . . . , 𝑣 𝑗 . Likewise, for a matrix𝑀 ,𝑀𝑖 ... 𝑗 denotes the

matrix containing rows 𝑖 through 𝑗 from𝑀 .

Fixed-Point Representation. A fixed-point representation is pa-

rameterized by a tuple (R,𝑤, 𝑠, Fix) where R is a ring,𝑤 represents

the bitwidth, 𝑠 represents the scale (or the fractional bitwidth), and

Fix : R→ R is a function mapping 𝑥 ∈ R to its fixed-point repre-

sentation 𝑥 ∈ R. In this work, we will work over the ring Z𝐿 where

𝐿 = 2
𝑙
and 𝑠 ≤ 𝑤 < 𝑙 . Similar to previous works, we define our

mapping function Fix(𝑥) = ⌊𝑥 · 2𝑠 ⌋ mod 𝐿. In this mapping, all real

numbers having absolute value atmost 2
𝑤−𝑠

have a corresponding

fixed-point representation in the ring. Specifically, non-negative

real numbers are mapped in the range [0, 2𝑤) whereas negative
real numbers are mapped in the range (𝐿 − 2

𝑤 , 𝐿) in their two’s

complement representation. Let R∗ = [0, 2𝑤) ∪ (𝐿 − 2
𝑤 , 𝐿) denote

the part of the ring where fixed-point numbers are represented.

Note that two distinct real values might have the same fixed point

representation because of the limited fractional bitwidth. We will

use 𝑥 to denote the corresponding real-value for a fixed-point value

𝑥 . We use R𝑚𝑖𝑛 and R𝑚𝑎𝑥 to denote the maximum negative and

maximum positive values representable in R.

Secure Computation. Secure computation protocols enable func-

tionalities where parties can compute a function on their joint

private inputs in a way that guarantees only the output of the com-

putation is revealed. Our protocol constructions are in a two-party

setting and provide semi-honest security [25], i.e., the parties are as-

sumed to follow the prescribed protocol. We denote the two parties

by P0 and P1. The protocol may be divided into an offline prepro-

cessing phase (independent of parties’ inputs) and an online phase

that depends on parties’ inputs. The offline preprocessing may be

performed by a trusted third party, or by the parties executing an

MPC protocol.

Secret Sharing. We use J𝑥KR to denote an additive sharing of 𝑥 in

ring R. We drop the superscript R when it is clear from context. We

write J𝑥K = (J𝑥K0, J𝑥K1) to denote that P0 and P1 get shares J𝑥K0

and J𝑥K1 respectively, such that J𝑥K0 + J𝑥K1 = 𝑥 in R. An additive

sharing is random if J𝑥K0 and J𝑥K1 are uniformly distributed in R
subject to J𝑥K0 + J𝑥K1 = 𝑥 . When we discuss additive shares, we

generally mean random additive shares. Additive shares are also

called arithmetic shares.

Analogously, we use ⟨𝑏⟩ to denote a randomXOR-sharing of a bit

𝑏 ∈ {0, 1}, consisting of bits ⟨𝑏⟩0 and ⟨𝑏⟩1) such that ⟨𝑏⟩0⊕ ⟨𝑏⟩1 = 𝑏.

Truncation. Suppose parties are holding additive-sharing of a

fixed-point value 𝑥 where the scale is 𝑠 bits. Then they can use

Ftruncate to reduce the scale to 𝑠 ′ bits where 0 ≤ 𝑠 ′ ≤ 𝑠 . An efficient

instantiation of Ftruncate was described in SecureML [39]: Suppose

𝑥0 and 𝑥1 are the shares of 𝑥 held by party P0 and P1 respectively.

Then, in order to perform truncate operation, both parties can just

locally truncate the last 𝑠 − 𝑠 ′ bits of their individual shares to get

new shares 𝑥 ′
0
and 𝑥 ′

1
. Let 𝑥 ′ denote the true truncated value of

𝑥 after truncating the last 𝑠 − 𝑠 ′ bits. Mohassel and Zhang [39]

show that Recon(𝑥 ′
0
, 𝑥 ′

1
) ∈ {𝑥 ′ − 1, 𝑥 ′, 𝑥 ′ + 1}. In other words, this

non-interactive truncation protocol incurs a small error in the least

significant bit of the fractional part of the FXP value. For our pur-

poses, this error will be tolerable as the FXP representation itself

admits an error in the least significant bit of the fractional part

compared to the actual real value.

2.1 Logistic Regression

Logistic regression is a probabilistic classifier which uses super-

vised machine learning [32]. The classification function 𝑓 takes

an observation which is a vector of features ®𝑥𝑖 and outputs the

estimated class with highest likelihood. It leverages the sigmoid

functionality 𝜎 (𝑧) = 1

1−𝑒−𝑧 to assign probability an input feature

vector ®𝑥 maps to class using the weight vector ®𝑤 and a bias term

𝑏 describing the model. The evaluation 𝜎 (®(𝑥) · ®𝑤 + 𝑏) gives the
probability of mapping ®𝑥 to the class 1.

The learning process for logistic regression takes a set of labeled

training samples ( ®𝑥𝑖 , 𝑦𝑖 ) and aims to learn parameters ®𝑤 that make

the predictions 𝑦′
𝑖
as close as possible to the true labels 𝑦𝑖 . This is

done by minimizing the (regularized) cross-entropy loss function

LCE (𝑦,𝑦′) = −(𝑦 log𝑦′ + (1 − 𝑦) log 1 − 𝑦′) which measures the

distance between predicted and true value.

Stochastic gradient descent computes optimal weights w by

minimizing the average loss over the 𝑛 training samples:

w̃ = argminw
1

𝑛

𝑛∑︁
𝑖=1

LCE (𝑓 (xi,w), 𝑦𝑖 ).

This is done by computing the gradient gi ← ∇𝑤LCE (𝑓 (xi,w), 𝑦𝑖 )
of the loss function at a random batch of 𝐵 training points. The

model is then updated as w← w − 𝛼
𝐵

∑
𝑖∈[𝐵 ]

g𝑖 .

SGD runs until convergence when the gradient norm falls be-

low a threshold. However, in the context of secure computation

protocols we will run a fixed number of iterations to avoid leakage

about the private samples based on the time for convergence. The

mini-batch technique makes each iteration over a subset of the

samples rather than the whole batch.

In practice, the regularized cross-entropy loss is often used:

LCE (𝑦,𝑦′) = −(𝑦 log𝑦′ + (1 − 𝑦) log 1 − 𝑦′) − _

2

| |𝑤 | |2

The regularization parameter _ guides themodel towardsweights

with smaller magnitude, which reduces overfitting in practice.

2.2 Multiplication Triples

Suppose parties are holding additive-sharing of values 𝑥,𝑦 ∈ R.
Then they can use a functionality FMult to get an additive sharing

of 𝑧 ∈ R such that 𝑧 = 𝑥 · 𝑦. In the pre-processing model, FMult
can be efficiently realized by generating correlated randomness in

the form of beaver triples in the offline phase, and then consuming

them in the offline phase. This incurs an online communication of

2 ring elements per-party.

For multiplying an 𝑛 ×𝑚 matrix X with another𝑚 × 𝑘 matrix

Y, one could call a protocol for FMult repeatedly on individual
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values in the matrix. This would incur an online of 2𝑛𝑚𝑘 ring

elements per party. However, there is amore (online) efficientmatrix

multiplication protocol based onmatrix beaver triples which incurs

an online communication of 2(𝑛𝑚 +𝑚𝑘) per party. Hence, we will
use FmatMult to abstractly represent a functionality which enables

multiplication of two additively shared matrices.

For multiplying a 𝑛 ×𝑚 matrix X with a sequence of matrices

{Yi}𝑖∈[𝑛] where Yi has dimension𝑚 × 𝑘𝑖 , there exists yet another
optimization compared to the naive method of calling FmatMult
repeatedly. This optimization is based on correlated matrix beaver

triples and incurs an online communication of 2(𝑛𝑚 +𝑚∑
𝑖 𝑘𝑖 )

per party. Hence, we will use FcorrMatMult to abstractly represent a

functionality which enables this kind of multiplication.

Suppose parties are holding a boolean sharing of values 𝑥,𝑦 ∈
{0, 1}. Then they can use FAND functionality to get a boolean shar-

ing of 𝑧 ∈ {0, 1} such that 𝑧 = 𝑥∧𝑦. The protocol for realizing FAND
is similar to the protocol for realizing FMult. It uses bit beaver triples
and incurs an online communication of 2 bits elements per-party.

Although the above multiplication functionalities are defined for

integers, they can also be extended to real numbers represented in

fixed-point format. For realizing such functionalities for fixed-point

inputs, parties can use the same protocol that works over integers

with an additional protocol for truncation at the end, where 𝑠 least

significant bits are truncated from the result in order to adjust the

fractional scale. In our work, we use the non-interactive truncation

protocol from SecureML [39] described in Section 2.

2.3 Function Secret Sharing

We use Boyle et al.’s definition of function secret sharing (FSS) [11].

At a high level, a 2-party FSS is an algorithm that efficiently splits

a function 𝑓 into two additive shares 𝑓0 and 𝑓1. These shares must

satisfy the following two properties: (1) 𝑓𝑖 hides 𝑓 and (2) 𝑓0 (𝑥) +
𝑓1 (𝑥) = 𝑓 (𝑥) for every input 𝑥 . Note that the output reconstruction
in (2) is additive. Now, we define formally.

Definition 2.1. A 2-party FSS scheme is a pair of algorithms

(Gen, Eval) such that:

• Gen(1_ , 𝑓 ) is a probabilistic polynomial time algorithm

that given 1
_
and 𝑓 , a description of a function 𝑓 , outputs

a pair of keys (𝑘0, 𝑘1). 𝑓 explicitly includes the input group

description G𝑖𝑛 and the output group description G𝑜𝑢𝑡 .
• Eval(𝑏, 𝑘𝑏 , 𝑥 ) is a polynomial time algorithm that for a party

index𝑏, a key 𝑘𝑏 defining 𝑓𝑏 : G𝑖𝑛 → G𝑜𝑢𝑡 outputs 𝑓𝑏 (𝑥) ∈
G𝑜𝑢𝑡 .

Indeed, one can trivially split a function 𝑓 by secret sharing 𝑓 ’s

truth table. The key challenge is to compactly represent the function
shares 𝑓0 and 𝑓1 while keeping Eval efficient.

Secure Computation via FSS. [12] showed that the FSS par-

adigm can be used to efficiently evaluate some function families

in 2PC. This 2PC via FSS can be cast in the preprocessing model,

where Gen and Eval correspond to the offline/online phase, respec-

tively. As in secret-sharing MPC, the function is represented as a

circuit of gates. The parties step though the circuit gate-by-gate,

following the semantics of gate evaluation in the respective pro-

tocol. Note that unlike in secret-sharing MPC, the FSS inputs and

outputs are public whereas the function is secret-shared. As the

parties cannot learn the values on any intermediate circuit wires,

the protocol needs to take care to use masked inputs and outputs

for each gate 𝑔 : G𝑖𝑛 → G𝑜𝑢𝑡 . That is, the input is masked with 𝑟 𝑖𝑛

and the output with 𝑟𝑜𝑢𝑡 . Then, each gate 𝑔 implements an offset

function 𝑔 [𝑟
𝑖𝑛,𝑟𝑜𝑢𝑡 ] (𝑥) = 𝑔(𝑥 − 𝑟 𝑖𝑛) + 𝑟𝑜𝑢𝑡 . Hence, each gate first

unmasks the input 𝑥 and only then executes the function 𝑔. The

output of 𝑔 is masked with 𝑟𝑜𝑢𝑡 prior to reconstruction. This step

is repeated for each gate until both parties evaluate the last circuit

gate. Importantly, 𝑃0 and 𝑃1 learn the output mask of the last gate,

allowing them to obtain the circuit output.

Additional definitions and useful preliminaries appear in Appen-

dix A.

3 SECURE LOGISTIC REGRESSION

Our goal is to develop concretely-efficient secure two-party com-

putation protocols for logistic regression training, in particular

focusing on online communication and rounds. As previous works

in this direction [39, 46], we work with arithmetic secret-sharing

(see Section 2) and train the model with stochastic gradient de-

scent (SGD). We note that there are alternatives to SGD for training

logistic regression, such as Bayesian approaches, conjugate gradi-

ent descent, and Newton’s method. However, these have not been

deeply explored in MPC, and are generally less efficient even in

plaintext, hence we do not explore them in this work.

Our protocol is described in Algorithm 1. It makes heavy use of

correlated matrix-vector multiplication using Beaver triples, and

also crucially depends on an implementation of the sigmoid func-

tion in MPC.

As we describe in the following sections, our novel contributions

lie in the construction of sigmoid using a mix of MPC primitives

including DCFs, DPFs, Taylor approximation, and an efficient secure

exponentiation protocol.

Algorithm 1: Logistic Regression Protocol

Public inputs: Number of iterations𝑇 , dataset dimensions 𝑛,𝑘 ,

batch size 𝐵, learning rate 𝛼 , regularization parameter _.

Private inputs: Secret-shared dataset J𝑋 K ∈ 𝑅𝑛×𝑘
and labels

JyK ∈ 𝑅𝑛
.

1 Let Jw0K be the initial secret-shared model with arbitrary weights.

2 for 𝑡 = 1 to𝑇 :

3 for 𝑏 = 1 to ⌊𝑛/𝐵⌋ :
4 𝑖 ← (𝑏 − 1) · 𝐵 + 1

5 𝑗 ← min(𝑛,𝑏 · 𝐵)
6 J𝑋𝐵K← J𝑋𝑖 ... 𝑗 K
7 JuK← FcorrMatMult

(
J𝑋𝐵K, Jwt−1K

)
8 JsK← FSigmoid (u)
9 JdK← JsK − Jy𝑖 ... 𝑗 K

10 JgK← FcorrMatMult
(
J𝑋𝐵

⊤K, JdK
)

11 JwtK← Jwt−1K − (𝛼/𝐵) · (JgK + _ · Jwt−1K)
12 return JwTK.

4 SECURE SIGMOID

The key challenge of computing a single step of SGD is evaluating

real-valued sigmoid function. Traditionally, MPC protocols were
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designed to evaluate functions represented either as Boolean cir-

cuits or arithmetic circuits. Sigmoid function cannot be succintly

represented as such a circuit. This is because the sigmoid function

requires to compute (1) exponentiation of a public base to a secret

exponent as well as (2) division by a secret divisor:

𝑆 (𝑥) = 1

1 + 𝑒−𝑥
Division is traditionally approximated via Goldschmidt’s or New-

ton’s methods, which are expensive iterative methods. Similarly,

exponentiation is either approximated by decomposing the expo-

nent into bits, which is costly, or via low-degree polynomials and

piecewise linear functions, which are inaccurate.

In this section, we present our sigmoid functionality (Algorithm

2). Note that this functionality represents our sigmoid approxima-

tion and differs from the cleartext sigmoid. We explain how our

sigmoid approximation is MPC-friendly and describe how we se-

curely implement this functionality. We point to Section 5.1 and

Section 5.2 for detail on how we implement the more complex

components of our functionality.

4.1 Sigmoid Approximation

As can be seen from Figure 3 in the appendix, the sigmoid function is

’symmetric’ around the 𝑦-axis. More specifically, 𝑆 (𝑥) + 𝑆 (−𝑥) = 1

for all 𝑥 ∈ 𝑅. This implies we can focus on evaluating 𝑆 (𝑥) and
then compute 𝑆 (−𝑥) = 1 − 𝑆 (𝑥) locally.

For 𝑥 ≥ 0, we need to compute both division and exponentiation

in MPC. First, we demonstrate how we bypass directly computing

division.

Note that
1

1+𝑒−𝑥 is in the form
1

1+𝑟 . Hence, we can apply 𝑑-degree
Taylor series approximation:

1

1 + 𝑟 = 1 − 𝑟 + 𝑟2 − 𝑟3 + . . . + 𝑟𝑑

This approximation requires to compute additions and powers of

𝑟 . As a result, it can be expressed as an arithmetic circuit, and thus

is MPC-friendly. While addition is a virtually free local operation,

computing powers is an expensive interactive operation.We present

a concretely efficient protocol for computing powers in Section 5.2

based on the protocol of [37]. Our protocol computes all powers of
𝑟 (irrespective of the degree) in only 2 communication rounds.

However, this approximation works well only when 𝑟 << 1. We

therefore use this approximation only on the interval [0, 1

𝑒 ]. As
𝑟 = 𝑒−𝑥 , we use this technique when 𝑥 ≥ 1. In order to compute

𝑒−𝑥 , we use the 1-round exponentiation technique of Kelkar et al.

[33]. We note that the exponentiation protocol from [33] assumes

a known (arbitrary) bound on how negative the exponent can be.

So in order to comply with that assumption, we do not use this

exponentiation protocol if the exponent is too negative. Rather,

we just set the sigmoid output directly to 1. We fix the bound

as 𝑙𝑓 /log
2
(𝑒), i.e. whenever 𝑥 ≥ 𝑙𝑓 /log

2
(𝑒), we set the sigmoid

output to 1. This bound can be justified by observing that for any

𝑥 ≥ 𝑙𝑓 /log
2
(𝑒), 𝑒−𝑥 < 2

−𝑙𝑓
. Hence the fixed point representation

of the result of exponentiation is exactly 0 in this case.

Now, it remains to explain howwe evaluate sigmoid for 𝑥 ∈ [0, 1).
We evaluate a spline defined piecewise by lines via the FSS spline

gate as explained in Section 5.1.

Importantly, neither party should learn which technique is used

to compute sigmoid (i.e. in which interval 𝑥 belongs). Thus, all

evaluations are run simultaneously. At the end, the right output

is obliviously selected and fresh secret shares are output to each

party.

Algorithm 2: Approximate Sigmoid

Parameters:

Let𝑚 be the number of lines defining a spline.

Let 𝑙𝑓 be the number of fractional bits.

Let 𝑑 be the degree of Taylor series approximation.

Private input:

Let 𝑥 ∈ 𝑅 be the sigmoid input.

Sigmoid(𝑥) :

1 if 𝑥 < 0 then

2 𝑆 ← 1 − Sigmoid(−𝑥) .
3 else

4 if 𝑥 < 1 then

5 𝑆 ← Spline(𝑚, [0, 1))
6 else

7 if 𝑥 log
2
(𝑒) ≥ 𝑙𝑓 then

8 𝑆 ← 1

9 else

10 𝑟 ← 𝑒−𝑥

11 𝑆 = 1

1+𝑟 ← 1 − 𝑟 + 𝑟 2 − . . . ± 𝑟𝑑
12 return 𝑆

5 SECURE SIGMOID WITH TRUSTED OFFLINE

SETUP

In this section, we describe details for our approach for securely
computing the sigmoid approximation described in Algorithm 2

with a focus on minimizing the online communication complexity.

Towards that end, we assume that the offline phase is part of a

trusted setup phase. In practical settings, such a trusted setup can

be performed by a trusted third party. Another possibility, when

the intermediate models are protected by DP (see Algorithm 11 in

Appendix E), is to outsource the setup phase to (semi-honest) clients.

These may provide a portion of the precomputed setup alongside

the inputs they upload to the two MPC parties. We will discuss how

to perform the offline phase in MPC as well in Section 6.

Our sigmoid approximation will work by first using FMIC to de-

termine if the shares of the input 𝑥 lie in the range [0, 1), [1, 1

log
2
(𝑒) ),

[ 1

log
2
(𝑒) ,∞), or the negative equivalents of these ranges. FMIC

yields arithmetic shares of 1 if 𝑥 was in that range, and arithmetic

shares of 0 otherwise. In parallel, we compute the sigmoid approxi-

mations on each range using the tailored technique for that range

described above (spline-approximation, exponentiation-and-Taylor-

Approximation, or hardcoding), using the 𝑆 (−𝑥) = 1−𝑆 (𝑥) identity
for the negative intervals. We then compute a dot product of the

outputs of FMIC with the outputs of the tailored sigmoid computa-

tions to “select” the output of sigmoid on 𝑥 using the approximation

corresponding to the interval in which 𝑥 lies. This dot product can

be computed using standard Beaver multiplication.
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In the following sections we discuss how to build the tailored

sigmoid implementations for each interval.

5.1 Secure Spline Computation

A spline is a special function defined piecewise by polynomials.

Formally, a spline function 𝑆 : R → R on an interval [𝑎, 𝑏) is
specified as a partition of𝑚 intervals {𝑎𝑖 , 𝑏𝑖 }𝑖∈[𝑚] with a 𝑑 degree

polynomial 𝑝𝑖 defined for each of the intervals. The value of the

function 𝑆 on input 𝑥 ∈ [𝑎, 𝑏] is equal to 𝑝𝑖 (𝑥) where 𝑎 ≤ 𝑥 < 𝑏.

For our specific use-case of sigmoid approximation, we use degree 1

polynomials on𝑚 intervals. Note that such a polynomial𝑄 (𝑥) is of
the form𝑄 (𝑥) = 𝑎𝑥 +𝑏 where 𝑎, 𝑏 are publicly known values. Given

a secret-sharing of 𝑥 , parties can locally compute a sharing of𝑄 (𝑥).
Note that when computing 𝑄 over fixed-point input 𝑥 , we need to

perform a truncate operation on the product 𝑎𝑥 before adding it

to 𝑏. This can be performed using the non-interactive truncation

protocol described in Section 2.

For constructing a spline protocol, we will let the parties lo-

cally evaluate degree 1 polynomials 𝑄𝑖 defined for each of the𝑚

intervals. Let ®𝑄 represent a length𝑚 vector containing the result

of evaluating 𝑄𝑖 on 𝑥 for each of the 𝑚 intervals. Now, parties

can use MIC gate described earlier to generate shares of a vector

®𝐵 = [𝑏1, 𝑏2, . . . , 𝑏𝑚] where 𝑏𝑖 = 1{𝑝𝑖 ≤ 𝑥 ≤ 𝑞}. Finally, they can

take a dot-product between ®𝑄 and ®𝐵 to derive the actual spline re-

sult. Such a dot-product can be securely implemented using a single

call to FmatMult. Thus, the total communication cost of securely

evaluating a spline is 2 + 4𝑚 elements of communication. This can

be performed in 2 online rounds where the first round is used for

MIC gate evaluation and the second round is used for FmatMult. In

Appendix I, we describe an optimized protocol for performing the

dot-product which reduces the overall communication of spline

to just 6 elements of communication. Crucially, this optimization

makes the online communication cost of spline independent of the

number of intervals𝑚.
1

5.2 Secure Powers Evaluation

To evaluate a Taylor series approximation inside MPC, we need a

procedure to securely compute a 𝑑-degree polynomial which, in

turn, requires computing the (secret-shares of) consecutive powers

{𝑥, 𝑥2, . . . , 𝑥𝑑 } for a (secret-shared) input 𝑥 . Naively, one could

invoke FMult repeatedly 𝑑 times in order to generate these powers.

However, this makes the communication-cost proportional to the

degree 𝑑 . In [37], the authors proposed a novel protocol to generate

all 𝑑 powers using a single element of online communication per

party, where the masked value 𝑥mask = 𝑥 − 𝑟 is revealed. The

protocol leverages a new type of offline pre-processing correlation

called “random powers”. In such a correlation, parties have a sharing

of {𝑟, 𝑟2, . . . , 𝑟𝑑 } for a uniformly random 𝑟 ∈ R. For a (secret-shared)
input 𝑥 in the online phase, the parties “consume” these special

correlations in order to generate a sharing of {𝑥, 𝑥2, . . . , 𝑥𝑑 }. The
main observation in the protocol is the following relationship:

1
In our experiments, we implemented the naive approach without this optimization.

Our calculations show that the overall sigmoid communication in our experiments

will be reduced to ≈ 58% in the distributed (2PC) offline setting and to ≈ 44% in the

trusted offline setting.

J𝑥𝑖𝑟 𝑗 K = J𝑟 𝑖+𝑗 K + 𝑥mask

( 𝑖−1∑︁
𝑙=0

J𝑥𝑖−1−𝑙𝑟 𝑗+𝑙 K
)

(1)

The aforementioned protocol works only for integer inputs

(mapped to ring elements in the natural way) and it is unclear how

to directly extend it to inputs represented in fixed-point format. The

main challenge is that Equation 1 now needs to be evaluated over

real numbers instead of ring elements in order to get the correct

result. We observe that emulating the evaluation of Eq. 1 over reals

inside a ring requires the following: i) Performing fixed point mul-

tiplications instead of ring multiplication (i.e. we need to perform a

truncation operation after every ring multiplication to adjust the

scale
2
), ii) Ensuring that none of the intermediate values in the

computation wrap around the ring, since a multiplication wrap-

ping prior to truncation corrupts the share. While incorporating

the first condition into Eq. 1 might seem straightforward, it is less

obvious how to incorporate the second condition. The reason is

that the term 𝑟 𝑖+𝑗 will almost always wrap around the ring when 𝑟

is sampled from the fixed-point region of the ring. Note that this

wraparound is not an issue when we want to evaluate Eq. 1 over

integers.

We observe that in our specific use-case of sigmoid evaluation,

the input 𝑥 to the powers protocol is of the form 𝑒−𝑧 . As we have
already discussed that considering only 𝑧 ≥ 0 suffices for sigmoid

evaluation (due to its symmetric nature), this means that we can

assume that 𝑥 is always a real numbered value between (0, 1].
With this observation in place, we are able to incorporate condi-

tion ii mentioned earlier in the following way: Instead of sampling

𝑟 from the entire fixed-point region of the ring, we sample it only

from the region representing real numbers between [0, 1). While

this ensures that the fixed point representations of powers of 𝑟 don’t

wrap around the ring, it creates another issue: Revealing the (fixed-

point representation of) masked value 𝑥mask is no longer secure.

The reason is that the distribution of the fixed-point representation

of 𝑥mask is no longer uniform over the ring.

To get around the above issue, we make the following obser-

vation: Although it is insecure to reveal 𝑥mask in its entirety, it is

fine to reveal the absolute fractional value of 𝑥mask, denoted by

𝑥fracMask, because this distribution is still uniform. Then the actual

value of 𝑥mask is either +𝑥fracMask if 𝑥 ≥ 𝑟 , and −𝑥fracMask other-

wise. We also observe that parties can locally compute a sharing of

bit 𝑡 = 1{𝑥 ≥ 𝑟 } as shown in Line 7 in Algorithm 3.

In the actual protocol, we invoke a fixed-point adapted version

of the powers protocol from [37] on both +𝑥fracMask and −𝑥fracMask.

Then parties can select the correct set of powers using a multiplexer

where the selection bit is set to 𝑡 . We describe our complete protocol

in Algorithm 3 where we use FMUX2 as a black-box.

When FMUX2 is replaced by an actual 2-round OT protocol, the

first round of OT can be parallelized with Line 2 by invoking FMUX2
on (𝑝𝑐

𝑖
, 𝑝1⊕𝑐

𝑖
, 𝑓 ) instead, thus making the selection bit of FMUX2

independent of the result of reconstruction on Line 2. Hence, the

overall protocol will require 2 online rounds. The per-party online

2
A potential option is to perform all multiplications first (without truncations) and

only do truncations at the very end, but this approach would require the ring size to

be proportional to the degree 𝑑 (in order to accommodate the intermediate increase in

the scale), and hence will be inefficient.
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communication cost is 𝑠 bits for Line 2 and 1 + 2𝑘𝑙 when realizing

FMUX2 using OT as described earlier. Thus the total communication

happens to be 2(𝑠 + 1 + 2𝑘𝑙) bits.

Algorithm 3: Fixed-point powers Protocol

ΠfxpPowers :

Input : J𝑥K, where 𝑥 ∈ [0, 2𝑠 ) and 𝑥 ∈ [0, 1)
Output : J𝑦K, J𝑦2K, . . . , J𝑦𝑘K, where 𝑦 = 𝑥

Precomputation: J�̂�K, J𝑟 2K, . . . , J𝑟𝑘K, where 𝑟 ∈ R and 𝑟 ← [0, 1)

1 J𝑥 − 𝑟K← J𝑥K − J𝑟K
2 𝑥fracMask := Recon(J𝑥 − 𝑟K𝑠 ) , where J𝑥 − 𝑟K𝑠 is the 𝑠 least

significant bits of J𝑥 − 𝑟K and Recon happens in the ring 𝑍2
𝑠 .

3 Let ⟨𝑐 ⟩ be a default sharing of bit 𝑐 denoting the public carry bit in

the most significant place during the above additive

reconstruction.

4 {𝑝0

𝑖
}𝑖∈[𝑘 ] ← ΠmaskPowers (𝑥0

fracMask) , where 𝑥
0

mask := 0
𝑙−𝑠 | |𝑥mask

5 {𝑝1

𝑖
}𝑖∈[𝑘 ] ← ΠmaskPowers (𝑥1

fracMask) , where 𝑥
1

mask := 1
𝑙−𝑠 | |𝑥mask

// The actual value of 𝑥 − 𝑟 is 𝑥0

fracMask if 𝑥 ≥ 𝑟 , and 𝑥1

fracMask otherwise.

6 Let 𝑓 denote the bit of J𝑥 − 𝑟K at location 𝑠 + 1 from LSB.

7 ⟨𝑡 ⟩ := ⟨𝑐 ⟩ ⊕ 𝑓

8 // 𝑑 = 0 if 𝑥 ≥ 𝑟 , and 1 otherwise

9 ∀𝑖 ∈ [𝑘 ] : res𝑖 ← FMUX2 (𝑝0

𝑖
, 𝑝1

𝑖
, ⟨𝑡 ⟩) .

// Parties use the 𝑡 bit to select the correct set of powers.

10 return res1, res2, . . . , res𝑘

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

// Local subprocedure invoked by each party P𝑖
ΠmaskPowers :

Input: 𝑥mask where 𝑥mask ∈ [0, 2𝑠 )
Output: J𝑦K, J𝑦2K, . . . , J𝑦𝑘K, where 𝑦 = �𝑥mask

1 𝐴← Initialize empty 2D array of dimension (𝑘 + 1) × (𝑘 + 1)
2 for 𝑖 = 0 to 𝑘 :

3 𝐴0,𝑖 ← J𝑟 𝑖K
4 for 𝑙 = 1 to 𝑘 :

// Compute all 𝐴𝑖,𝑗 where 𝑙 = 𝑖 + 𝑗
5 𝑠 ← 0

6 for 𝑖 = 1 to 𝑙 :
7 𝑗 ← 𝑙 − 𝑖
8 𝑠 += 𝐴𝑖−1, 𝑗

// Invariant : 𝑠 =
∑

𝑘<𝑖J �𝑦𝑖−1−𝑘𝑟 𝑗+𝑘K
9 𝐴𝑖,𝑗 ← J𝑟 𝑖+𝑗 K + FfxpMult (𝑥mask, 𝑠)

// Invariant: 𝐴𝑖,𝑗 will store J�𝑦𝑖𝑟 𝑗 K following Equation 1

10 return 𝐴1,0, 𝐴2,0, . . . , 𝐴𝑘,0

5.3 Secure Polynomial Evaluation

Suppose parties hold a secret-sharing of (fixed-point representa-

tion of) a real value 𝑥 and would like to evaluate a polynomial

𝑄 (𝑥) = ∑𝑑
𝑖=1

𝑎𝑖𝑥
𝑖
, where the coefficient 𝑎𝑖 ∈ R are publicly known.

A straightforward way to do so is the following: Parties invoke

ΠfxpPowers to learn sharing of {𝑥, 𝑥2, . . . , 𝑥𝑘 }, and then perform a

local linear sum of the shares of 𝑥𝑖 weighted by coefficient 𝑎𝑖 . Thus

the overall procedure would require the same online communi-

cation cost as ΠfxpPowers. We observe that one could do better by

making a slight modification to ΠfxpPowers. Specifically, in Line 9,

instead of invoking the FMUX2 for all 𝑖 ∈ [𝑘], parties can first locally
compute a weighted linear sum 𝑃0 =

∑𝑘
𝑖=0

𝑎𝑖𝑝
0

𝑖
and 𝑃1 =

∑𝑘
𝑖=0

𝑎𝑖𝑝
1

𝑖
,

and then use a single invocation of FMUX2 on inputs (𝑃0, 𝑃1, ⟨𝑡⟩).
This reduces the total communication cost of the protocol to only

2(𝑠 + 1 + 2𝑙) bits, thus making it independent of the degree 𝑑 of the

polynomial 𝑄 . We will refer to this optimized protocol as ΠfxpPoly.

5.4 Theoretical Cost Analysis of Secure Sigmoid

We will now analyze the online communication cost for our sig-

moid protocol. Our overall secure sigmoid construction invokes 1

MIC gate requiring 2𝑙 bits of total communication, 2 secure expo-

nentiations requiring 4𝑙 bits of total communication, 2 invocations

of ΠfxpPoly requiring 4 + 12𝑙 bits of total communication, 2 secure

spline invocations on 10 intervals between [0, 1) requiring 84𝑙 bits

of total communication, and one invocation of FmatMult in the end

to combine the results requiring 24𝑙 bits of total communication.

Thus, the total overall communication for the secure protocol is

126𝑙 + 4 bits of communication. With the dot-product optimization

mentioned in Appendix I, this cost will be reduced to 54𝑙 + 4 bits.

The entire sigmoid computation can be performed in 4 online

rounds. In the first round, we evaluate MIC gate, secure exponenti-

ations and round 1 of secure spline in parallel. In the second round,

we complete round 2 of secure spline and also invoke round 1 of

ΠfxpPoly on the result of secure exponentiation. In the third round,

we complete round 2 of ΠfxpPoly. In the fourth and final round, we

perform a single round of FmatMult between the MIC gate outputs

and the results of ΠfxpPoly and secure spline.

6 SECURE SIGMOIDWITH DISTRIBUTED

OFFLINE SETUP

In the previous section, we outlined a secure sigmoid construc-

tion which is highly communication efficient in the online phase

assuming parties have access to a trusted offline setup phase, possi-

bly using a trusted third party. However, in the real world, such a

trusted third party might not be always available or, in some cases,

even undesirable. In such scenarios, it becomes essential that the

two parties be able to securely emulate the trusted offline phase in

an efficient manner.

Looking back at our construction in the previous section, we

observe that the FSS preprocessing forms the bottleneck cost of

securely emulating the trusted offline phase in a 2PC setting. This

happens because the FSS key generation algorithm involves the

usage of a PRG, and naively running the FSS key generation al-

gorithm inside 2PC will involve the cost of computing the PRG

circuit (for e.g. AES) using 2PC. This will typically
3
blow up the

communication cost of the offline phase by atleast linear in the size

of PRG circuit.

In this section, we will discuss an alternative approach for com-

puting sigmoid which will enable a communication efficient offline

phase while adding a mild communication overhead in the online

3
This is true for approaches like Garbled Circuit or standard GMW-style secret-sharing

based MPC. However, by assuming hardness of problems based on algebraic structures

with richer homomorphic properties (e.g. LWE, LPN etc), one can reduce the communi-

cation below the circuit size. Currently, these approaches however are computationally

much more inefficient than standard MPC approaches to be practical.
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phase. We do this by simply replacing the offline-expensive MIC

gate (which is based on FSS) with a novel communication efficient

secure comparison protocol.

Our new construction will be nearly a drop-in replacement for

the FMIC functionality based on FSS. However, one difference is

that our construction returns XOR boolean shares rather than arith-

metic shares of a boolean value. This means that rather than a

Beaver-multiplication based dot-product, we instead use FMUX on

the outputs of comparison in order to select the tailored sigmoid

evaluation on the interval corresponding to input 𝑥 . The parties

will use the output of our new comparison as FMUX input to either

retrieve shares of the sigmoid evaluation on the interval, or shares

of 0, and then add together these shares across all intervals to select

the sigmoid result.

6.1 Secure Comparison

Suppose party 𝑃0 has a private input 𝑥 while party 𝑃1 has a private

input𝑦. The output of a secure comparsion functionality, henceforth

denoted as FCMP, is a Boolean sharing of 1{𝑥 < 𝑦}, a bit indicating
the result of comparison, where 𝑥 and 𝑦 are bitstrings of length

𝑙 (interpreted as unsigned bit representation of positive integers).

More formally,

F 𝑙
CMP (𝑥,𝑦) → (𝑏0, 𝑏1)

where 𝑥,𝑦 ∈ {0, 1}𝑙

and 𝑏0, 𝑏1 is a Boolean sharing of bit 𝑏 := 1{𝑥 < 𝑦}

A common approach to computing secure comparison is divide-

and-conquer [17, 23], which first splits the larger input strings into

smaller strings, performs comparisons on these smaller strings,

and then combines the results. Rathee et al.’s CrypTFlow2 [42]

efficiently instantiates the aforementioned template for perform-

ing secure comparison via a formula from Garay et. al. [23]. In

our observations, we identify that the major communication cost

of CrypTFlow2’s online phase stems from invoking 1-out-of-2
𝑚

oblivious transfers (OTs), where𝑚 is the bit length of the smaller

strings.

Another line of work based on function secret sharing (FSS)

[10] performs secure comparison using a distributed comparison

function (DCF). One caveat of directly using FSS to perform the

entire comparison (i.e. using a single DCF for comparing two large

strings) is the expensive cost of running the FSS offline phase in

2PC. While Doerner and Shelat [18] propose an elegant approach

for doing FSS offline phase, their technique is efficient only for

small domains. This is because it requires locally computing an

exponential (in input bit length) number of PRGs. There is currently

no better communication-efficient technique in the literature for

conducting the FSS offline phase.

Our insight is to combine the recent approaches in secret-sharing

MPC and FSS literature to achieve the best of both worlds. We begin

with CrypTFlow2 [42] protocol which, as mentioned earlier, is a

divide-and-conquer type protocol. Specifically, for 𝑥 = 𝑥1 | |𝑥0 and

𝑦 = 𝑦1 | |𝑦0, where 𝑥,𝑦 ∈ {0, 1}𝑙 are 𝑙 bit strings that we want to
compare, the following relationship holds:

𝑥 < 𝑦 = (𝑥1 < 𝑦1) ⊕ [(𝑥1 = 𝑦1) ∧ (𝑥0 < 𝑦0)] (2)

The key idea is to recursively apply this equation 𝑙𝑜𝑔 𝑞 times

to obtain 𝑞 𝑚-bit leaves. More specifically, let 𝑥 = 𝑥𝑞 | | . . . | |𝑥0

and 𝑦 = 𝑦𝑞 | | . . . | |𝑦0 where 𝑥𝑖 , 𝑦𝑖 are 𝑚-bit strings, 𝑞 = 𝑙
𝑚 (for

ease of exposition, assume 𝑚 divides 𝑙 and 𝑞 is a power of two),

and _ is a security parameter. Now, in the first phase (the divide

phase), CrypTFlow2 splits the large strings 𝑥,𝑦 into𝑞 smaller strings

{𝑥𝑖 , 𝑦𝑖 }𝑖∈[0,𝑞−1] and compares 𝑥𝑖 against 𝑦𝑖 for each 𝑖 ∈ [0, 𝑞 − 1].
In the second phase (the conquer phase), CrypTFlow2 combines the

results of comparisons on smaller strings efficiently in a binary-tree

like fashion (induced by the recursive expansion of Equation 2) to

compute the final comparison 𝑥 < 𝑦.

To perform the first phase, CrypTFlow2 uses 1-out-of-2
𝑚

OTs

which add ≈ 2
𝑚

communication cost to the protocol for each of the

small string comparisons. Our main insight is that this phase can

be completely replaced with FSS-based comparison which incurs a

communication cost of only 2𝑚 bits per small string comparison.

Note that since this phase only performs comparison on small

strings, we can directly use FSS gate for small domains and avoid

the expensive overhead costs in the offline phase.

Our full comparison protocol is presented in Algorithm 4. See

Appendix A.1 for definitions of relevant sub-functionalities.

Before proceeding further, we note that an alternative formula-

tion of secure comparison lets the two parties hold secret shares

of 𝑥 and 𝑦 as input (instead of private inputs) and learn a secret

shared bit 𝑏 representing the comparison output. We will use GCMP
to denote this alternative functionality which is more relevant in

the context of secret-sharing MPC, for example in our secure logis-

tic regression use-case. As mentioned in [17], this problem can be

non-interactively and black-box reduced to FCMP. The observation

is based on the following relationship which reduces the task of

comparing two shared values 𝑥,𝑦 to the task of securely computing

the MSB of 𝑥 − 𝑦:

𝑥 < 𝑦 = 𝑀𝑆𝐵(𝑥 − 𝑦) (3)

Now, in order to compute the MSB of some 𝑙 bit secret value 𝑧,

where P0 and P1 hold share 𝑧0 and 𝑧1 respectively, we can use the

following observation:

𝑀𝑆𝐵(𝑧) = 𝑀𝑆𝐵(𝑧0) ⊕ 𝑀𝑆𝐵(𝑧1) ⊕ 1{2𝑙−1 − 1 − 𝑧0 < 𝑧1} (4)

Using 2𝑛 invocations of GCMP and a 𝑛 invocations of FAND,
one can easily realize the functionality captured by MIC gate for

𝑛 public intervals. In our sigmoid use-case for distributed offline

setup, we will replace the MIC gate with multiple invocation of

GCMP and FAND. Since the number of intervals is small (exactly 6 to

be specific), this replacement increases the online communication

cost of our protocol by only a small amount.

6.2 Secure FSS Key Generation

As we have seen, we can reduce secure comparison to evaluation

of a DCF using Algorithm 4, and using Appendix B this further

reduces to an iDPF evaluation. However, in order to implement the

offline phase of our protocol, we also need to generate iDPF keys

efficiently. We discuss our novel approach to this in Appendix D,

together with the reasons why the approaches of [10] and [18] are

insufficient.
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Algorithm 4: Secure comparison protocol,

∏
CMP

Input: P0, P1 hold 𝑥 ∈ {0, 1}𝑙 and 𝑦 ∈ {0, 1}𝑙 , respectively.
Output: P0, P1 learn a uniform boolean sharing 1{𝑥 < 𝑦 }.
Parameters: 𝑙,𝑚 such that𝑚 ≤ 𝑙 . Fix 𝑞 =

⌈
𝑙
𝑚

⌉
FSS preprocessing: 𝑞 independent pairs of FSS keys

{𝑘eq,𝑖
0

, 𝑘
eq,𝑖
1
}𝑖∈[0,𝑞−1] for F𝑚EQ , 𝑞 independent pairs of FSS keys

{𝑘 lt,𝑖
0

, 𝑘
lt,𝑖
1
}𝑖∈[0,𝑞−1] for F𝑚CMP. P0 and P1 hold input masks

{rin0
eq,𝑖

, rin0
lt,𝑖 }𝑖∈[0,𝑞−1] and {rin1

eq,𝑖
, rin1

lt,𝑖 }𝑖∈[0,𝑞−1] respectively.
Both parties hold a sharing of output mask

{Jrouteq,𝑖K, Jroutlt,𝑖K}𝑖∈[0,𝑞−1]

1 P0 & P1 parse their input as 𝑥 ← 𝑥𝑞−1 | | . . . | |𝑥0 and 𝑦 ← 𝑦𝑞−1 | |
. . . | |𝑦0, respectively, where 𝑥𝑖 , 𝑦𝑖 ∈ {0, 1}𝑚, 𝑞 = 𝑙/𝑚.

// Part I: Compute shares of 1{𝑥𝑖 = 𝑦𝑖 } and 1{𝑥𝑖 < 𝑦𝑖 }.
2 for 𝑖 ∈ {0, . . . , 𝑞 − 1} :
3 P0 sets 𝑥

eq
𝑖

= 𝑥𝑖 + rin0
eq,𝑖

and 𝑥 lt
𝑖
= 𝑥𝑖 + rin0

lt,𝑖
. It sends 𝑥

eq
𝑖
, 𝑥 lt

𝑖
to

P1.

4 P1 sets 𝑦
eq
𝑖

= 𝑥𝑖 + rin1
eq,𝑖

and 𝑦lt
𝑖
= 𝑥𝑖 + rin1

lt,𝑖
. It sends 𝑦

eq
𝑖
, 𝑦lt

𝑖
to

P0.

5 P0 & P1 locally invoke Evalcmp (𝑏, 𝑘 lt,𝑖
𝑏

, 𝑥 lt
𝑖
, 𝑦lt

𝑖
) , where 𝑏 is the

party id, to obtain boolean sharing Jlt′0,𝑖K. They set

Jlt0,𝑖K = Jlt′0,𝑖K ⊕ Jroutlt,𝑖K.
6 P0 & P1 locally invoke Evaleq (𝑏, 𝑘eq,𝑖

0
, 𝑥

eq
𝑖
, 𝑦

eq
𝑖
) , where 𝑏 is the

party id, to obtain boolean sharing Jeq′
0,𝑖K. They set

Jeq
0,𝑖K = Jeq′

0,𝑖K ⊕ Jrouteq,𝑖K.

// Part II: Combine shares of 1{𝑥𝑖 = 𝑦𝑖 } and 1{𝑥𝑖 < 𝑦𝑖 }.
7 for 𝑖 ∈ {1, . . . , log𝑞 } :
8 for 𝑗 ∈ {0, . . . , 𝑞

2
𝑖 − 1} :

9 P0 & P1 invoke FAND using Jlt𝑖−1,2𝑗 K and Jeq𝑖−1,2𝑗+1K to
obtain JtempK.

10 P0 & P1 set Jlt𝑖,𝑗 K = Jlt𝑖−1,2𝑗+1K ⊕ JtempK.
11 P0 & P1 invoke FAND using Jeq𝑖−1,2𝑗 K and Jeq𝑖−1,2𝑗+1K to

obtain Jeq𝑖,𝑗 K.
12 return Jlt

log𝑞,0K

6.3 Theoretical cost analysis of Secure Sigmoid

with Distributed Offline Setup

Wewill now analyze the online communication cost for our sigmoid

protocol for this distributed offline setting. As mentioned before, the

difference in this sigmoid compared to the previous section is that

the task of MIC gate is performed using secure comparison protocol.

In our work, we set the parameter𝑚 = 16 in the secure comparison

protocol. For 6 intervals, emulating the MIC gate using secure com-

parison and AND gates requires a total communication of 48𝑙 + 192

bits. Besides this, like the previous sigmoid construction, we invoke

2 secure exponentiations requiring 4𝑙 bits of total communication, 2

invocations of ΠfxpPoly requiring 4+12𝑙 bits of total communication,

2 secure spline invocations on 10 intervals between [0, 1) requiring
84𝑙 bits of total communication. One additional change is the fol-

lowing: Instead of using one invocation of FmatMult in the end to

combine the results, we now use 6 invocations of FMUX requiring

24𝑙 + 12 bits of total communication. This modification is needed

because the outputs of secure comparison are boolean shares and

hence not directly compatible for a multiplication with arithmetic

shared values. Thus, the total overall communication for the secure

protocol is 172𝑙 + 144 bits of communication
4
. The entire protocol

without the MIC gate emulation (using secure comparison) can be

performed in 3 rounds as described in Section 5.4. Our emulation of

MIC gate using secure comparison protocol requires log(𝑙/𝑚) + 2

number of online rounds. For 𝑚 = 16 and 𝑙 ≤ 64, this requires

atmost 4 rounds. These rounds can be performed in parallel with

the secure exponentiation, ΠfxpPoly and secure spline protocols. In

the end, the FMUX rquires an additional 2 rounds of communication.

Thus for 𝑙 ≤ 64, the sigmoid protocol requires 6 online rounds.

7 EXPERIMENTAL EVALUATION

Implementation Details. We implemented our technique in

C++ and compile our systemwith the Bazel build system [5].We use

the native C++ uint64_t for most operations. For some operations,

we use uint_128 from the Abseil library [26].

Experimental Setup. We ran our experiments on two compute-

optimized c2-standard-8 Google Cloud instances with 32 GB RAM

and Intel Xeon CPU at 3.1GHz clock rate. Our implementation runs

on a single thread and utilizes a single core of the instance. In the

LAN setting, both instances were deployed in the us-central1 region

where the mean network latency was 0.15ms and the bandwidth

was ≈ 1.5𝐺𝐵/𝑠 . In theWAN setting, one instance was in us-central1

while the other was in us-west2. The mean network latency was

49ms and the bandwidth 50𝑀𝐵/𝑠 . All runtimes are end-to-end

totals for client and server, including communication, with all com-

putation sequentialized (i.e. server and client do not compute at the

same time).

Cloud costs. We include the monetary cost of running our proto-

cols onGCP, using the prices listed at https://cloud.google.com/pricing/list.

For measuring computational cost, we use the CPU spot price of

$0.02 per-hour for pre-emptible virtual machines, and use network

cost of $0.08 per GB for egress to the internet. All prices are in USD.

This reflects the bulk batch computation setting, with parties situ-

ated in different cloud providers, as has been used in other works

such as [30].

7.1 Sigmoid Experiments

Approximating the sigmoid function is the most challenging and

costly component of gradient descent (see our discussion in Ap-

pendix H). For that reason, we benchmark our sigmoid protocols

separately. In this section, we refer to our sigmoid protocol with

trusted offline setup (Section 5) as 𝑉 1 and our sigmoid protocol

with distributed offline setup (Section 6) as 𝑉 2. We show runtime,

communication and monetary cost in Table 1, for a batch of 10
2, 10

3,

and 10
4
sigmoid inputs and the following parameters: 20 fractional

bits, 63-bit ring size, 31 bit-width, 10 spline intervals in [0, 1), and
Taylor series of degree 10.

SigmoidAccuracy. Figure 1 (also Figure 5 in the appendix) gives
visual representations of our sigmoid accuracy as compared to the

Python floating point implementation of sigmoid ("true" sigmoid).

We note that in Figure 1, our sigmoid nearly exactly overlaps with

the "true" sigmoid. In Figure 5 in appendix, we show that our error

remains tiny, on the order of 10
−4

when using 20 fractional bits.

4
With the dot-product optimization mentioned in Appendix I, this cost will be reduced

to 100𝑙 + 144 bits
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Figure 1: Our sigmoid with trusted offline setup (top) and

distributed offline setup (bottom) executed in 2PC vs stan-

dard python sigmoid implementation.

Table 1: Comparison of our sigmoids with trusted (V1) and

distributed (V2) offline setup to SiRnn.

Technique

Time for # Instances (sec) Comm. per USD Cost

10
2

10
3

10
4

Instance (KB) per 10
6
runs

Sigmoid V1 (LAN) 1.89 19.19 192.23 1.12 $0.192

Sigmoid V1 (WAN) 2.27 19.95 191.97 1.12 $0.192

Sigmoid V2 (LAN) 1.61 16.27 164.47 1.57 $0.211

Sigmoid V2 (WAN) 2.28 17.49 166.427 1.57 $0.212

SiRnn (LAN) 0.08 0.10 0.25 4.88 $0.372

Benchmark Comparisons. We compare to the most recent

secure sigmoid protocol SiRnn [41] in Table 1. In SiRnn paper, au-

thors show that their sigmoid protocol strictly improves over other

state-of-the-art sigmoid approximations such as MiniONN [36] and

DeepSecure [44], hence we focus our comparison on SiRnn.

Note that our comparison is not exact. SiRnn was benchmarked

on a 16-bit ring while we used 64-bit ring. Additionally, we used 20

bits of floating point precision while SiRnn used 12. SiRnn was run

on a more powerful 3.7GHz processor (vs. our 3.1GHz processor),

one of our network settings (50MB/s network with 49ms latency)

was slower than SiRnn’s network setting (377 MB/s LAN network

with 0.8 ms latency). Furthermore, SiRnn only reports total time

and does not divide their costs into offline/online phases (SiRnn is

not really designed to be separated out into an offline-online model

without nullifying the optimizations that make SiRnn efficient). We

report only online time in our comparison.

Even with the differences in environment setting, the compari-

son is informative. We see that we have a gain of 3 − 4× in online

communication and a 30-50% lower monetary cost in a cloud envi-

ronemnt. Furthermore, we have a fixed number of rounds versus

an unspecified number of rounds in SiRnn. However, our compu-

tational costs are significantly higher, due to our use of relatively

expensive (but still practically efficient) primitives such as DCF and

DPF.

7.2 Logistic Regression Experiments

We evaluated our logistic regression experiments on four datasets.

We do basic preprocessing on the datasets with the help of Scikit-

learn’s machine learning library (remove rows with missing fea-

tures, normalize features with Scikit-learn’s StandardScaler, shuf-
fle the rows, etc.). To facilitate testing, we split each dataset into a

training set (70%) and a testing set (30%). We summarize the dataset

sizes in Table 2.

Table 2: Datasets we used for our experiments.

Titanic Arcene Criteo Uplift Gisette

Training Size 500 70 7000 4200

Testing Size 214 30 3000 1800

Total Size 714 100 10000 6000

# Features 6 10000 15 5000

Learning Rate 𝛼 1 0.1 0.1 1

Regularization _ 0.0001 0.0001 0.1 0.1

Prediction Threshold 0.43 0.18 0.59 0.64

# Iterations 6 6 6 6

Datasets.
• Titanic. This dataset is used to predict which passengers

survived the Titanic shipwreck. Survival is modeled as

a function of passenger class, ticket cost, and basic de-

mographics such as sex, age range etc. Our preprocessed

dataset contains data on 714 passengers and 6 features.

• Arcene. This dataset contains information from the Na-

tional Cancer Institute and the Eastern Virginia Medical

School. The dataset is used to determine whether a patient

has cancer. There are 100 patients and 10
4
features.

• Criteo Uplift. This dataset predicts whether a user targeted
by advertising purchases a product (i.e. converts). We re-

duced the dataset size to 10000 data points and 15 features.

The features constitute data about the user, whether the

user was targeted by advertising, and if a visit occurred

for the user. This dataset is highly imbalanced. From 10000

data points, there were only 47 conversions.

• Gisette. This dataset attempts to separate the digits 4 and

9. The digits were originally encoded in a fixed-size 28 ×
28 image and preprocessed to yield 5000 features. Our

preprocessed Gisette dataset contains 6000 digit samples.

Accuracy Evaluation. We compare accuracy of our 2PC proto-

cols against a plaintext floating-point implementation in Table 4.We

use 6 iterations of logistic regression, using parameters described

above . Our 2PC protocols perform very similarly to plaintext logis-

tic regression in all cases except Criteo Uplift, where we observe a
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moderate loss in Accuracy and also F1 Score. This dataset is espe-

cially challenging for logistic regression since the distributions of

labels are heavily imbalanced.

Performance Evaluation. We present our end-to-end runtime

and total communication costs in Table 5. All versions use the

parameters described above, and run for 6 iterations. Our runtimes

and communication are totals for both parties. We observe that our

costs grow nearly linearly with the number of examples, but are

relatively independent of the number of features. This emphasizes

that the sigmoid is the source of the bulk of our protocol costs.

Comparison to previous works. There are relatively few works

that focus on logistic regression training: most are focused on either

inference or training of other models. The most prominent previous

work discussing logistic regression is [39], which uses a relatively

coarse approximation to logistic regression (see Figure 4), and has

a high communication in their sigmoid implementation due to

bitwise operations.

7.3 Secure Comparison Experiments

We benchmark our new comparison protocol separately. In this

section, we evaluate secure comparison experimentally against

Boyle et al.’s [10] FSS comparison gate. In Appendix F, we evaluate

analytically against the state of the art.

Performance Comparison. We implement the FSS comparison

protocol of Boyle et al. [10] and compare to our protocol

∏
CMP

in Table 3. In

∏
CMP, we split a 64-bit input string into four 16-bit

smaller strings. Recall that our new comparison approach makes

offline phase feasible with existing techniques. We achieve that

while only adding a little communication in the online phase (0.06

KB per 64-bit comparison). Our experiment shows that our protocol

in fact reduces total runtime from 0.39ms to 0.22ms on a low-latency

LAN network.

Table 3: Comparison of our new

∏
CMP protocol to the FSS

protocol [10] on a batch of 1000 inputs.∏
CMP FSS Comparison [10]

LAN (sec) 0.22 0.39

WAN (sec) 0.56 0.39

Communication (KB) 63.62 0

8 CONCLUSION AND FUTUREWORK

In this work, we show that techniques from FSS can be combined

with secret-sharing MPC to get the best of both worlds in terms of

online communication cost. More specifically, we can get reduced

communication in the online phase while still having an efficient

offline phase. We demonstrate this idea successfully by designing

a novel secure logistic regression training protocol with the best

known online communication, a secure sigmoid evaluation con-

struction with 3 − 4𝑥 communication improvement and a secure

comparison protocol that reduces online communication over prior

works by ≈ 2−4× for appropriate parameters and similarly reduces

their online communication rounds.

Table 4: Accuracy comparison of our 2PC algorithms with

plaintext algorithm implemented in Python floating point.

Python Plaintext 2PC Approach V1 2PC Approach V2

Titanic Dataset

F1 Score 0.77551 0.77551 0.77551

Accuracy 0.79439 0.79439 0.79439

Arcene Dataset

F1 Score 0.76923 0.76923 0.76923

Accuracy 0.8 0.8 0.8

Criteo Uplift Dataset

F1 Score 0.47059 0.38462 0.38462

Accuracy 0.994 0.98933 0.98933

Gisette Dataset

F1 Score 0.96987 0.96540 0.96540

Accuracy 0.97056 0.96611 0.96611

Table 5: Total costs of running our 2PC gradient descent for

6 iterations on 4 datasets with 20 fractional bits of precision.

2PC V1 2PC V2 2PC with DP V1 2PC with DP V2

Titanic Dataset (500 × 6)

LAN (sec) 57.1 54.4 57.1 54.0

WAN (sec) 61.3 59.9 61.5 59.2

Comm (MB) 3.4 4.7 3.4 4.7

Cost (USD) 0.06c 0.07c 0.06c 0.07c

Arcene Dataset (70 × 10000)

LAN (sec) 9.7 9.2 9.6 9.1

WAN (sec) 13.4 13.6 13.7 13.5

Comm (MB) 1.5 1.7 1.39 1.6

Cost (USD) 0.02c 0.02c 0.018c 0.02c

Criteo Uplift Dataset (7000 × 15)

LAN (min) 13.3 12.8 13.3 12.8

WAN (min) 13.6 12.8 13.6 12.8

Comm (MB) 46.9 65.4 46.9 65.4

Cost (USD) 0.81c 0.93c 0.81c 0.93c

Gisette Dataset (4200 × 5000)

LAN (min) 8.9 8.4 8.8 8.4

WAN (min) 9.3 8.8 9.1 8.6

Comm (MB) 28.7 39.7 28.4 39.5

Cost (USD) 0.53c 0.60c 0.52c 0.59c

While FSS-based techniques reduce online communication, they

could come with more expensive offline phase. We show how to

combine FSS and secret sharing techniques to reduce the input

length for the FSS keys that are needed. Further, we introduce two

party computation techniques for the offline FSS key generation

that support arithmetic output shares that can be integrated with

secret sharing computation.

Our construction can compare 128 bit numbers with 512 bits

online communication and can evaluate a sigmoid function on 20-

bit shared input with 1.12 KB of online communication. Training

logistic regression across 6000 samples with 5000 features can be

done with less than 30 MB.
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Figure 2: Incremental DPF gives compact secret sharing of

values on the nodes of a binary tree with a single non-

zero path. In this example, 𝛼 = 101 and the values on the

path to the leaf at index 𝛼 are 𝛽1, 𝛽2, 𝛽3. All other nodes

are 0. This figure shows the reconstructed secret shares

Eval(0, 𝑘0, ·) ⊕Eval(1, 𝑘1, ·). The keys are generated as (𝑘0, 𝑘1) ←
Genidpf (𝛼, 𝛽1, 𝛽2, 𝛽3).

[50] Jiayuan Ye and Reza Shokri. 2022. Differentially Private Learning Needs Hidden

State (Or Much Faster Convergence). CoRR abs/2203.05363 (2022).

A ADDITIONAL PRELIMINARIES

Incremental Distributed Point Functions. Introduced by Boneh
et al. [8], incremental distributed point functions (iDPF) are a gen-

eralization of the standard distributed point function (DPF). At a

high level, a DPF is a compressed pseudorandom 2-party secret-

sharing of a unit vector of length 2
𝑛
. More specifically, DPF allows

a compressed 2-party secret-sharing of a point function 𝑓𝛼,𝛽 where

𝛼 ∈ {0, 1}𝑛, 𝛽 ∈ F, and:

𝑓𝛼,𝛽 (𝑥) =
{
𝛽 if 𝑥 = 𝛼

0 otherwise

Such a secret sharing is represented by a pair of keys (𝑘0, 𝑘1)
where key 𝑘𝑏 is the share held by Party 𝑃𝑏 . Incremental DPFs (iDPF)

are a generalization of DPF which allow compressed sharing of a

binary tree with 2
𝑛
leaves and a unique special path from root to

leaf. I.e., there is a single non-zero path in the tree, ending at leaf

𝛼 , whose nodes have non-zero values 𝛽1, . . . , 𝛽𝑛 . More specifically,

iDPF allows a 2-party secret-sharing of an all-prefix point function
𝑓𝛼, ¯𝛽 , where 𝛼 ∈ {0, 1}𝑛, ¯𝛽 = ((G1, 𝛽1), . . . , (G𝑛, 𝛽𝑛)), and for each

𝑙 ∈ [𝑛]:
𝑓𝛼, ¯𝛽 :

⋃
𝑙 ∈[𝑛]

{0, 1}𝑙 →
⋃
𝑙 ∈[𝑛]

G𝑙 , and

𝑓𝛼, ¯𝛽 (𝑥1, . . . , 𝑥𝑙 ) =
{
𝛽𝑙 if (𝑥1, . . . , 𝑥𝑙 ) = (𝛼1, . . . , 𝛼𝑙 )
0 otherwise

We sometimes allow an iDPF to be evaluated over the empty pre-

fix. We now present iDPF formally, see Figure 2 for more intuition.

We closely follow the definitions of Boneh et al. [8], with on major

difference being that we expose the EvalNext function as part of

our definition. We will use this in our reduction from distributed

comparison functions to iDPFs.

Definition A.1. A 2-party iDPF scheme is a tuple of three algo-

rithms (Genidpf , EvalNextidpf , EvalPrefixidpf) such that:

• Genidpf (1_, (𝛼, (G1, 𝛽1), . . . , (G𝑛, 𝛽𝑛))) is a PPT key gener-
ation algorithm that given security parameter 1

_
and a func-

tion description (𝛼, (G1, 𝛽1), . . . , (G𝑛, 𝛽𝑛)), outputs a pair
of keys and public parameters (𝑘0, 𝑘1, pp = (pp

1
, . . . , pp𝑛)).

Recall that 𝛼 ∈ {0, 1}𝑛 represents the index of the leaf

at the bottom of the non-zero path while 𝛽1 ∈ G1, . . . , 𝛽𝑛 ∈
G𝑛 correspond to the values on the nodes of the non-zero

path (apart from the root node). pp includes the public

values _, 𝑛, (G1, . . . ,G𝑛).
• EvalNextidpf (𝑏, st𝑙−1

𝑏
, pp𝑙 , 𝑥𝑙 ) is a polynomial time incre-

mental evaluation algorithm that given a party id 𝑏 ∈ {0, 1},
secret state st𝑙−1

𝑏
, public parameters pp𝑙 , and input evalu-

ation bit 𝑥𝑙 ∈ {0, 1}, outputs an updated state and output

share (st𝑙
𝑏
, 𝑦𝑙

𝑏
).

Intuitively, EvalNext represents the evaluation on some

partial value 𝑥 ∈ {0, 1}𝑙−1
and outputs a secret sharing 𝑦𝑙

𝑏
of the value on the 𝑥 | |𝑥𝑙 th node of the binary tree and an

updated state st𝑙
𝑏
.

• EvalPrefixidpf (𝑏, 𝑘𝑏 , pp, (𝑥1, . . . , 𝑥𝑙 )) is a polynomial time

prefix evaluation algorithm that given a party id 𝑏 ∈ {0, 1},
iDPF key 𝑘𝑏 , public parameters pp, and input prefix

(𝑥1, . . . , 𝑥𝑙 ) ∈ {0, 1}𝑙 , outputs an additive secret sharing of

the output value 𝑦𝑙
𝑏
.

Next, we present iDPF correctness and security.

Definition A.2. (Gen, EvalNext, EvalPrefix) from Definition A.1

is an iDPF scheme if it satisfies the following requirements:

• Correctness. For all _, 𝑛 ∈ N, 𝛼 ∈ {0, 1}𝑛 , abelian groups

and values
¯𝛽 = ((G1, 𝛽1), . . . , (G𝑛, 𝛽𝑛)), level 𝑙 ∈ [𝑛], and

input prefix (𝑥1, . . . , 𝑥𝑙 ∈ {0, 1}𝑙 ), the following require-

ments hold:

– EvalNext: 𝑃𝑟 [𝑦𝑙
0
+ 𝑦𝑙

1
= 𝑓𝛼, ¯𝛽 (𝑥1, . . . , 𝑥𝑙 )] = 1, where

probability is taken over:

(𝑘0, 𝑘1, pp) ← Genidpf (1_, (𝛼, (G1, 𝛽1), . . . , (G𝑛, 𝛽𝑛))),
And for each 𝑏 ∈ {0, 1}, 𝑦𝑙

𝑏
is:

(1) st0
𝑏
← 𝑘𝑏

(2) for 𝑗 = 1 to 𝑙 :

(3) (st𝑗
𝑏
, 𝑦

𝑗

𝑏
) ← EvalNextidpf (𝑏, st𝑗−1

𝑏
, pp𝑗 , 𝑥 𝑗 )

(4) return 𝑦𝑙
𝑏

– EvalPrefix: 𝑃𝑟 [𝑦𝑙
0
+ 𝑦𝑙

1
= 𝑓𝛼, ¯𝛽 (𝑥1, . . . , 𝑥𝑙 )] = 1, where

probability is taken over:

(𝑘0, 𝑘1, pp) ← Genidpf (1_, (𝛼, (G1, 𝛽1), . . . , (G𝑛, 𝛽𝑛))),
And for each 𝑏 ∈ {0, 1}:
𝑦𝑙
𝑏
← EvalPrefixidpf (𝑏, 𝑘𝑏 , pp, (𝑥1, . . . , 𝑥𝑙 ))

• Security. For every 𝑏 ∈ {0, 1}, there is a PPT simulator

𝑆𝑖𝑚𝑏 , such that for every sequence ((𝛼, ¯𝛽)_)_∈N of poly-

nomial size all-prefix point functions and polynomial size

input sequence 𝑥_ , the outputs of the Real and Ideal exper-
iments are computationally indistinguishable:

– Real_ :
(𝑘0, 𝑘1, pp) ← Genidpf (1_, (𝛼, (G1, 𝛽1), . . . , (G𝑛, 𝛽𝑛))),
Output (𝑘𝑏 , pp)

– Ideal_ :
Output 𝑆𝑖𝑚𝑏 (1_, (𝑛,G1, . . . ,G𝑛))

14



A naive approach to constructing iDPF would be to generate one

DPF key for each prefix length, i.e. a total of 𝑛 independent keys.

Then, evaluate 𝑥 ∈ {0, 1}𝑙 with the 𝑙th key. This solution would

yield key size quadratic in the input length 𝑛. [8] gives a more direct

construction with key size linear in 𝑛.

Theorem A.3 (Concrete cost of iDPF [8]). Given a PRG 𝐺 :

{0, 1}_ → {0, 1}2_+2, there exists a iDPF scheme with key-size _ +
(_ + 2)𝑛 +∑𝑖∈[𝑛]𝑚𝑖 bits, where 𝑛 is the bit-length of 𝛼 and𝑚𝑖 is the
bit-length of 𝛽𝑖 . For𝑚′𝑖 = 1 + ⌈𝑚𝑖/_⌉, the key generation algorithm
Gen invokes 𝐺 at most 2

∑
𝑖∈[𝑛]𝑚

′
𝑖
times and the algorithm Eval

invokes 𝐺 at most
∑
𝑖∈[ |𝑥 | ]𝑚

′
𝑖
times.

Distributed Comparison Function (DCF). A DCF is a central

building block of many FSS gates including interval containment,

spline, and comparison. It is a FSS scheme for a function 𝑓 <
𝛼,𝛽

, which

outputs 𝛽 if 𝑥 < 𝛼 and 0 otherwise. For a vector of size 2
𝑛
, the

current most efficient construction has a key size ≈ 𝑛(_ + 𝑛) [10].
In this work, we introduce a new simple DCF construction by

black-box reducing it to iDPF. We believe this construction is of

independent interest and present it in Appendix B.

Dual Distributed Comparison Function (DDCF). DDCF is

a variant of DCF and a class of functions 𝑓𝛼,𝛽1,𝛽2
: {0, 1}𝑛 → G.

Parameterized by 𝛼, 𝛽1, 𝛽2, DDCF outputs 𝛽1 for 0 ≤ 𝑥 < 𝛼 and

𝛽2 for 𝑥 ≥ 𝛼 . DDCF can be constructed from DCF using 𝑓𝛼,𝛽1,𝛽2
=

𝛽2 + 𝑓 <𝛼,𝛽1−𝛽2

(𝑥).

A.1 Miscellaneous 2PC functionalities

A.1.1 Oblivious Transfer. We will use F 𝑘
OT to denote the two-

party 1-out-of-2 chosen input oblivious transfer functionality, where

the sender’s input to FOT are two strings𝑚0,𝑚1 ∈ {0, 1}𝑘 and the

receiver’s input is a choice bit 𝑐 ∈ {0, 1}. The receiver obtains𝑚𝑐

as output from F 𝑘
OT whereas the sender has no output. In the pre-

processing model, one can generate random OT (ROT) correlation

which consists of (𝑟0, 𝑟1, 𝑏) where 𝑟0 ∈ {0, 1}𝑘 , 𝑟1 ∈ {0, 1}𝑘 , 𝑏 ∈
{0, 1} and distribute this across the two-parties. The sender gets

(𝑟0, 𝑟1) whereas the receiver gets (𝑏, 𝑟𝑏 ). In the online phase, these

ROT correlations can be cheaply consumed to realize F 𝑘
OT effi-

ciently.

A.1.2 Multiplexer. Following prior work [42], we will use the

FMUX to denote a multiplexer functionality. Suppose parties hold

arithmetic shares of 𝑥 and boolean sharing of a selection bit 𝑏. Then

they can use FMUX to get an arithmetic sharing of 𝑥 if 𝑏 = 1, and

arithmetic sharing of 0 otherwise. As mentioned in prior work [42],

a protocol for FMUX can be realized using 2 (simulataneous) calls

to FOT. In some scenarios, a variant of FMUX, denoted by FMUX2,

might be more useful. It takes as input arithmetic shares of 𝑥0 and

𝑥1, along with boolean sharing of a selection bit 𝑏. Then it outputs

a fresh sharing of 𝑥0 if 𝑏 = 0, and a fresh arithmetic sharing of 𝑥1

otherwise. A protocol for FMUX2 can be realized using a single call

to FMUX in the following way: Parties locally compute a sharing

of 𝑥1 − 𝑥0, invoke FMUX on it using the share of bit 𝑏, and finally

locally add the sharing of 𝑥0 to their output from FMUX.

A.1.3 Functionalities based on FSS. We will now describe some

of the functionalities which can be realized efficiently using Func-

tion Secret Sharing primitive. We note that gates based on FSS

operate on masked inputs and produce masked outputs (instead of

standard secret-sharing MPC gates which operates on input shares

and produce output shares). Specifically, a masked value 𝑥mask for

a secret input 𝑥 is computed as 𝑥mask := 𝑥 + 𝑟 , where 𝑟 is a uni-

form random element from the same domain as 𝑥 . The mask 𝑟 is

sampled during an offline phase and is used in constructing the

pre-processing material for FSS based gates. As described in [10],

we can easily convert from a masked value to a secret-shared value

by letting parties hold a secret-sharing of the mask from the offline

phase.

Equality Gate. Let 𝑥,𝑦 ∈ U𝑁 be inputs to the equality gate.

The output is a Boolean sharing 1{𝑥 = 𝑦}. More formally:

FEQ (𝑥,𝑦) → (𝑏0, 𝑏1)
where 𝑥,𝑦 ∈ U𝑁
and 𝑏0, 𝑏1 is a Boolean sharing of bit 𝑏 := 1{𝑥 = 𝑦}

Boyle et. al. [12] constructed an equality gate by making two

observations. First, 𝑥 = 𝑦 can be evaluated by zero-testing 𝑥 − 𝑦,
i.e. 1{𝑥 − 𝑦 = 0}. Second, equality test can be reduced to a single

DPF call. Recall that the inputs to FSS gates are masked. I.e., let

𝑥,𝑦 be the masked inputs and rin0 , r
in
1 their masks. Then, equality

holds when 𝑥 − rin0 = 𝑦 − rin1 , or equivalently, 𝑥 − 𝑦 = rin0 − r
in
1 . In

other words, we evaluate a DPF function that evaluates to 𝛽 = 1

when 𝛼 = rin0 − r
in
1 , 0 otherwise. We present the full construction in

Algorithm 5.

Algorithm 5: FSS Gate for FEQ
Input: P0, P1 hold 𝑥mask := 𝑥 + rin0 , where 𝑥mask ∈ G1, and

𝑦mask := 𝑦 + rin1 , where 𝑦 ∈ G2

Output: P0, P1 learn a uniform boolean sharing 𝑏mask = 𝑏 ⊕ rout,
where 𝑏 := 1{𝑥 = 𝑦 }.

// Part I: Offline Phase.

Geneq𝑛 (1_, rin0 , rin1 , rout) :
1 Let rin0 ∈ G1 and rin1 ∈ G2.

2 Let 𝛼 ← rin0 − rin1 , 𝛽 = 1.

3 𝑘′
0
, 𝑘′

1
← GenDPF (1_, 𝛼, 𝛽)

4 Sample random additive shares rout0 , rout1 ← JroutK.
5 Let 𝑘𝑏 = 𝑘′

𝑏
| |routb .

6 return (𝑘0, 𝑘1)

// Part II: Online Phase.

Evaleq𝑛 (𝑏, 𝑘𝑏 , 𝑥mask, 𝑦mask) :
7 Parse 𝑘𝑏 = 𝑘′

𝑏
| |routb .

8 return EvalDPF (𝑏, 𝑘′
𝑏
, 𝑥mask − 𝑦mask) + routb

Comparison Gate. Let 𝑥 ∈ U𝑁 , 𝑦 ∈ U𝑁 be inputs to the com-

parison gate. The output is a Boolean sharing 1{𝑥 < 𝑦}.
We present the comparison gate of Boyle et. al. [10] in Algorithm

6. This comparison gate requires a single invocation of DDCF, and

thus a single invocation of DCF. Note that we slightly modify the

protocol to make it syntactically compatible with our secure com-

parison. I.e., we (1) write the comparison for 𝑥 < 𝑦 rather than

[10]’s 𝑥 > 𝑦 and (2) the output group is U2 instead of U𝑁 .
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Algorithm 6: FSS Gate for F𝑛
CMP

Input: P0, P1 hold 𝑥mask := 𝑥 + rin0 , where 𝑥mask ∈ G1, and

𝑦mask := 𝑦 + rin1 , where 𝑦 ∈ G2

Output: P0, P1 learn a uniform boolean sharing 𝑏mask = 𝑏 ⊕ rout,
where 𝑏 := 1{𝑥 < 𝑦 }.

// Part I: Offline Phase.

Gencmp
𝑛 (1_, rin0 , rin1 , rout) :

1 Let 𝑦 = (2𝑛 − (rin0 − rin1 )) ∈ U𝑁 and 𝛼 (𝑛−1) = 𝑦 [0,𝑛−1) .

2 (𝑘 (𝑛−1)
0

, 𝑘
(𝑛−1)
1

) ← GenDDCF
𝑛−1

(
1
_, 𝛼 (𝑛−1) , 𝛽1, 𝛽2,U2

)
, where

𝛽1 = 1 ⊕ 𝑦 [𝑛−1] , 𝛽2 = 𝑦 [𝑛−1] ∈ U2.

3 Sample random rout0 , rout1 ← U𝑁 s.t. rout0 ⊕ rout1 = rout.

4 For 𝑏 ∈ {0, 1}, let 𝑘𝑏 = 𝑘
(𝑛−1)
𝑏

| |routb .

5 return (𝑘0, 𝑘1)

// Part II: Online Phase.

Evalcmp
𝑛 (𝑏, 𝑘𝑏 , 𝑥mask, 𝑦mask) :

6 Parse 𝑘𝑏 = 𝑘
(𝑛−1)
𝑏

| |routb .

7 Set 𝑧 = (𝑥mask − 𝑦mask) ∈ U𝑁 .

8 Set𝑚
(𝑛−1)
𝑏

← EvalDDCF𝑛−1
(𝑏, 𝑘 (𝑛−1)

𝑏
, 𝑧 (𝑛−1) ) , where

𝑧 (𝑛−1) = 2
𝑛−1 − 𝑧 [0,𝑛−1) − 1.

9 return 𝑏 · 𝑧 [𝑛−1] +𝑚 (𝑛−1)
𝑏

− 2 · 𝑧 [𝑛−1] ·𝑚 (𝑛−1)
𝑏

+ routb

Multiple Interval Containment (MIC) gate. Boyle et. al. [10]
presented an FSS gate for the FMIC functionality. Such a function-

ality is parameterized by a set of𝑚 intervals {𝑝𝑖 , 𝑞𝑖 }𝑖∈[𝑚] where
𝑝𝑖 , 𝑞𝑖 ∈ U𝑁 . It takes as input a masked value 𝑥mask, and outputs a

sequence of bits {𝑏𝑖 } where 𝑏𝑖 = 1{𝑝𝑖 ≤ 𝑥 ≤ 𝑞𝑖 }.

B BLACK-BOX REDUCTION FROM DCF TO

IDPF

We now describe our reduction from DCFs to iDPFs. Our construc-

tion is based on the following intuition. Suppose the two parties

have shares J𝑣𝑛−1K of an (𝑛 − 1)-bit DCF 𝑓 <
𝛼1 ...𝛼𝑛−1,𝛽

evaluated at

the 𝑛 − 1-bit prefix 𝑥1, ..., 𝑥𝑛−1 of 𝑥 . They now want to get J𝑣𝑛K, i.e.,
shares of the output of the 𝑛-bit DCF 𝑓 <

𝛼,𝛽
on input 𝑥 . There are

four cases.

(1) 𝑥1, . . . , 𝑥𝑛−1 ≠ 𝛼1, . . . , 𝛼𝑛−1. Then no matter what 𝛼𝑛 and

𝑥𝑛 are, 𝑣𝑛 = 𝑣𝑛−1.

(2) 𝑥1, . . . , 𝑥𝑛−1 = 𝛼1, . . . , 𝛼𝑛−1, and 𝛼𝑛 = 0. Then no matter

what 𝑥𝑛 is, 𝑥 ≥ 𝛼 , and so 𝑣𝑛 = 𝑣𝑛−1 = 0.

(3) 𝑥1, . . . , 𝑥𝑛−1 = 𝛼1, . . . , 𝛼𝑛−1, and 𝛼𝑛 = 1, 𝑥𝑛 = 1. Then

𝑥 = 𝛼 and therefore 𝑣𝑛 = 𝑣𝑛−1 = 0.

(4) 𝑥1, . . . , 𝑥𝑛−1 = 𝛼1, . . . , 𝛼𝑛−1, and 𝛼𝑛 = 1, 𝑥𝑛 = 0. Then

𝑣𝑛−1 = 0, but 𝑣𝑛 = 𝛽 .

Observe that only in the last case, 𝑣𝑛 ≠ 𝑣𝑛−1, and more precisely,

𝑣𝑛 = 𝑣𝑛−1 + 𝛽 . Now if we can construct shares of a value 𝛿 , such

that 𝛿 = 0 in cases (1)–(3), and 𝛿 = 𝛽 in case (4), then 𝑣𝑛 = 𝑣𝑛−1 + 𝛿 ,
which allows us to recursively build a DCF for arbitrary 𝑛.

Our main observation is that we can use a𝑛−1-bit DPF, evaluated

on 𝑥1, . . . , 𝑥𝑛−1, to obtain shares of 𝛿 . Observe that in case (1), any

DPF will satisfy 𝛿 = 0. To distinguish between case (2) on one side,

and (3) and (4) on the other, we only need to look at 𝛼𝑛 , and set the

DPF value to be 0 when 𝛼𝑛 = 0, and 𝛽 otherwise. Finally, observe

that the distinction between (3) and (4) can be made at evaluation

Algorithm 7: FSS Gate for FMIC

Input: P0, P1 hold 𝑥mask := 𝑥 + rin0 , where 𝑥mask ∈ G1, and

𝑦mask := 𝑦 + rin1 , where 𝑦 ∈ G2

Output: P0, P1 learn a uniform arithmetic sharing of

𝑏𝑖mask = 𝑏𝑖 + routi , where 𝑏𝑖 := 1{𝑝𝑖 ≤ 𝑥 ≤ 𝑞𝑖 }.

// Part I: Offline Phase.

Genmic
𝑛,𝑚,{𝑝𝑖 ,𝑞𝑖 }𝑖

(1_, rin, {routi }𝑖∈[𝑚] ) :
1 Let 𝛾 = (𝑁 − 1) + rin

2 (𝑘 (𝑁−1)
0

, 𝑘
(𝑁−1)
1

) ← GenDCF𝑛 (1_, 𝛾, 1,U𝑁 )
3 for 𝑖 = 1 to𝑚 :

4 Set 𝑞′
𝑖
= 𝑞𝑖 + 1, 𝛼

(𝑝 )
𝑖

= 𝑝𝑖 + rin, 𝛼 (𝑞)𝑖
= 𝑞𝑖 + rin,

𝛼
(𝑞′)
𝑖

= 𝑞𝑖 + 1 + rin.
5 Sample random 𝑧𝑖,0, 𝑧𝑖,1 ← U𝑁 such that:

𝑧𝑖,0 + 𝑧𝑖,1 = rout + 1{𝛼 (𝑝 )
𝑖

> 𝛼
(𝑞)
𝑖
} − 1{𝛼 (𝑝 )

𝑖
> 𝑝𝑖 } +

1{𝛼 (𝑞
′)

𝑖
> 𝑞′

𝑖
} + 1{𝛼 (𝑞)

𝑖
= 𝑁 − 1}

6 For 𝑏 ∈ {0, 1}, let 𝑘𝑏 = 𝑘
(𝑁−1)
𝑏

| | {𝑧𝑖,𝑏 }𝑖
7 return (𝑘0, 𝑘1)

// Part II: Online Phase.

Evalmic
𝑛,𝑚,,{𝑝𝑖 ,𝑞𝑖 }𝑖 (𝑏, 𝑘𝑏 , 𝑥mask) :

8 Parse 𝑘𝑏 = 𝑘
(𝑁−1)
𝑏

| | {𝑧𝑖,𝑏 }𝑖 .
9 for 𝑖 = 1 to𝑚 :

10 Set 𝑞′
𝑖
= 𝑞𝑖 + 1 mod 𝑁 .

11 Set 𝑥
(𝑝 )
𝑖

= 𝑥 + (𝑁 − 1 − 𝑝𝑖 ) and 𝑥 (𝑞
′)

𝑖
= 𝑥 + (𝑁 − 1 − 𝑞′

𝑖
) .

12 Set 𝑠
(𝑝 )
𝑖,𝑏
← EvalDCF𝑛 (𝑏, 𝑘 (𝑁−1)

𝑏
, 𝑥
(𝑝 )
𝑖
) .

13 Set 𝑠
(𝑞′)
𝑖,𝑏
← EvalDCF𝑛 (𝑏, 𝑘 (𝑁−1)

𝑏
, 𝑥
(𝑞′)
𝑖
) .

14 𝑦𝑖,𝑏 = 𝑏 · (1{𝑥mask > 𝑝𝑖 } − 1{𝑥mask > 𝑞′
𝑖
} − 𝑠 (𝑝 )

𝑖,𝑏
+ 𝑠 (𝑞

′)
𝑖,𝑏
+ 𝑧𝑖,𝑏 ) .

15 return {𝑦𝑖,𝑏 }𝑖

time, since it only depends on 𝑥 . That is, we only use the DPF result

at all if 𝑥𝑛 = 0, and set 𝛿 = 0 otherwise.

Algorithm 8 shows our construction in detail. In addition to the

two DPF keys, the two parties obtain an additional secret-shared

value, which can be interpreted as the iDPF evaluation at the empty

prefix. It is used to initialize 𝑣1. For 𝑖 = 2, . . . , 𝑛, 𝑣𝑖 is then con-

structed from 𝑣𝑖 − 1 and 𝛿 = (1 − 𝑥) · 𝑦𝑖 , where 𝑦𝑖 is the iDPF

evaluation at level 𝑖 . Correctness follows by the above recursion

argument.

Theorem B.1 (Concrete cost of DCF using iDPF). Given a
PRG 𝐺 : {0, 1}_ → {0, 1}2_+2, there exists a DCF scheme with key-
size 𝑛(_ +𝑚 + 2) − 2 bits, where 𝑛 is the bit-length of 𝛼 and𝑚 is the
bit-length of 𝛽 . For𝑚′ = 1+ ⌈𝑚/_⌉, the key generation algorithmGen
invokes 𝐺 at most 2(𝑛 − 1)𝑚′ times and the algorithm Eval invokes
𝐺 at most (𝑛 − 1)𝑚′ times.

Proof B.1 (Efficiency). Note that in our reduction, 𝛽𝑖 at each
level of iDPF is either set to 𝛽 or 0. Therefore, for all 𝑖 ∈ [𝑛], |𝛽𝑖 | =
|𝛽 | =𝑚.

Following from Theorem A.3 and the fact that we can set the iDPF
domain size to be 𝑛 − 1 (instead of 𝑛), the key-size turns out to be
_+(_+2) (𝑛−1)+(𝑛−1)𝑚 bits. Since we require an additional sharing
of 𝛽1, the total DCF key size becomes _+ (_+2) (𝑛−1) + (𝑛−1)𝑚+𝑚
bits which simplifies to 𝑛(𝑚 + _ + 2) − 2 bits.
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The cost of GenDCF and EvalDCF algorithms can be computed
based on the underlying cost of GeniDPF and EvaliDPF algorithms.
Following from the Theorem A.3 and the fact that we can set the
domain size of iDPF to be 𝑛−1, the total PRG invocations inGeniDPF
(and hence in GenDCF) turns out to be 2(𝑛 − 1)𝑚′ where𝑚′ = 1 +
⌈𝑚/_⌉. In EvalDCF, we perform an EvalNextiDPF at each of the 𝑛 − 1

prefixes of the input 𝑥 which will cost
∑

𝑗 ∈[2,𝑛]𝑚
′ = (𝑛 − 1)𝑚′ PRG

evaluations.

Algorithm 8: DCF to iDPF reduction

GenDCF𝑛 (1_, 𝛼, 𝛽) :

1 Let 𝛼 = 𝛼1, . . . , 𝛼𝑛 ∈ {0, 1}𝑛 be the bit decomposition of 𝛼

2 Let {𝛽1, . . . , 𝛽𝑛 } be a sequence of values such that: 𝛽𝑖 := 𝛽 if

𝛼𝑖 = 1, and 0 otherwise.

3 (𝑘0, 𝑘1, pp) ← GeniDPF
𝑛−1
(𝛼, 𝛽2, . . . , 𝛽𝑛)

4 Choose random J𝛽1K0
, J𝛽1K1

such that J𝛽1K0 + J𝛽1K1 = 𝛽1.

5 return

(
(𝑘0, J𝛽1K0), (𝑘1, J𝛽1K1), pp

)
EvalDCF𝑛

(
𝑏, (𝑘𝑏 , J𝛽1K𝑏 ), pp, 𝑥

)
:

1 Let 𝑥 = 𝑥1, . . . , 𝑥𝑛 ∈ {0, 1}𝑛 be the bit decomposition of 𝑥

2 Let 𝑣1 = (1 − 𝑥1) · J𝛽1K𝑏 , st1 = 𝑘𝑏

3 for 𝑖 = 2 to 𝑛 :

4 (st𝑖 , 𝑦𝑖 ) ← EvalNextiDPF𝑛−1
(𝑏, st𝑖−1, 𝑘𝑏 , 𝑥1 . . . 𝑥𝑖−1)

5 𝑣𝑖 ← 𝑣𝑖−1 + (1 − 𝑥𝑖 ) · 𝑦𝑖
6 return 𝑣𝑛−1

Comparison with original DCF construction. Boyle et al. [10] pre-
sented a direct construction of DCF by carefully modifying and

making non black-box changes to a prior DPF construction [11].

We provide a conceptually simpler DCF construction by making

black-box use of iDPFs (which have a richer structure than DPF).

As an added benefit, the key size of our DCF construction is smaller

than Boyle et al. [10] by _ +𝑚 + 2 bits. In terms of computation,

our construction doesn’t require any PRG evaluations at the first

bits, and so it saves𝑚′ = ⌊𝑚/_⌋ PRG evaluations.

C SECURE COMPARISON PROTOCOL

C.1 Extensions and Optimizations

Wewill now discuss some extensions and optimizations for Protocol∏
CMP which are borrowed from CrypTFlow2 [42].

Note that as written, Protocol

∏
CMP only works when 𝑞 =

⌈
𝑙
𝑚

⌉
is a power of 2. If that is not the case, then the induced recursion tree

is not a perfect binary tree. However, this case can be handled by

creating maximal possible perfect binary trees and connecting the

roots of the same using the Equation 2 as described in Cryptflow2

[42].

As observed in CrypTFlow2 [42], the 2 calls to FAND in steps 9

and 11 have a common input Jeq𝑖−1,2𝑗+1K. This fact can be leveraged
by using a pair of correlated-bit triple for realizing the two FAND
calls. A pair of correlated bit-triple is of the form (J𝑎1K, J𝑏K, J𝑐1K),
(J𝑎2K, J𝑏K, J𝑐2K), for 𝑎1, 𝑎2, 𝑏 ∈𝑅 {0, 1}, where 𝑎1 ∧ 𝑏 = 𝑐1 and

𝑎2∧ 𝑏 = 𝑐2. Such correlated-bit triple enable two calls to FAND using

just 3 elements of communication (per party) whereas standard

triple requires 4 elements of communication (per party). Such a

correlated bit triple can be efficiently generated using 1 invocation

of

(
8

1

)
OT2 which will cost 2_ + 16 bits of communication in the

offline phase (by leveraging OT extension techniques). In the online

phase, consuming a correlated bit triple requires 6 bits of total

communication to compute both FAND calls.

C.2 Cost Analysis

We will now analyze the communication cost, rounds and compu-

tation complexity of our secure comparison protocol

∏
CMP. To do

so, we will separately estimate the cost of the online phase and the

offline phase.

• Online phase

– Communication : Line 5 and 6 require invocation of an FSS

gate for comparison and equality, respectively, on𝑚 bit strings.

Each invocation of an FSS gate requires communication of

𝑚 bits per party. Since Line 5 and 6 are executed for a total

of 𝑞 = 𝑙/𝑚 times, the total communication cost of Part I is

4𝑙 . The communication cost for Part II, after accounting for

the optimizations described in CrypTFlow2 [42], is exactly

6(𝑞 − 1) − 2 log𝑞. This brings the total online communication

cost of our protocol to be 4𝑙 + 6𝑞 − 6 − 2 log𝑞 bits.

– Rounds : We note that all 𝑞 invocations of Line 5 and 6 can be

performed in parallel. Since FSS gates only require 1 round of

interaction, Part I only costs 1 round. In Part II, all invocations

within the second loop can be parallelized however the first

loop needs to be sequentially computed. Therefore, Part II

ends up costing log𝑞 rounds. In total,

∏
CMP requires log𝑞 +1

rounds.

– Computation : The computation cost is mainly dominated

by Line 5 and 6 which require evaluation of FSS gate for

comparison and equality testing. Each evalutation of FSS gate

on𝑚 bit inputs requires𝑚 PRG evaluations. This results in a

total of 2𝑙 PRG evaluations per FSS gate per party.

• Offline phase: The cost of the offline phase depends on the cost

of generating FSS keys (for later use in Part I) and bit-triples (for

later use in Part II). We will analyze it in the following points.

– Communication : For Part II, we use the estimates from CrypT-

Flow2 [42] which depend on the cost of generating 𝑞−1−log𝑞

correlated bit-triple and log𝑞 standard bit-triple. By leverag-

ing OT extension techniques, this can be generated using a

total communication of (2_+16) (𝑞−1)−_ log𝑞 bits (excluding

the cost of base OTs). For estimating the offline cost corre-

sponding to Part I, we appeal to the Doerner-Shelat technique

[18] which we describe in Appendix D. As per our estimate,

each DCF and DPF generation will require a communication

cost of𝑚(12_ + 10) and 2 +𝑚(12_ + 8) bits of communication

respectively. Since we are using 𝑞 DCFs and DPFs in total, the

communication cost will become 24𝑙_ + 18𝑙 + 2𝑞. Adding this

with the cost for generating bit-triples, we get a total offline

communication cost of _(24𝑙 + 2𝑞 − log𝑞) + 18(𝑙 +𝑞) − 2_− 16.

– Rounds : The round complexity of offline phase is dominated

by the cost of generating DCF keys using the Doerner-Shelat

technique which requires 5 rounds per level of DCF tree. Since

there are𝑚 levels in the tree, the total round complexity comes

out to be 5𝑚.
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– Computation : The computation cost of offline phase is domi-

nated by the local PRG evaluations needed for generating DCF

and DPF keys. The Doerner-Shelat technique (see Section 6.2)

requires a PRG evaluation for each node in the DCF/DPF tree.

Since there are 2
𝑚+1 − 1 nodes in the tree and we need 𝑞 DCFs

and DPFs, the total computation cost is approximately equiva-

lent to the cost of performing 2𝑞(2𝑚+1 − 1) PRG evaluations.

D EFFICIENT 2PC GENERATION OF FSS KEYS

As we have seen, we can reduce secure comparison to evaluation

of a DCF using Algorithm 4, and using Appendix B this further

reduces to an iDPF evaluation. However, in order to implement the

offline phase of our protocol, we also need to generate iDPF keys

efficiently.

A straight-forward way to generate these keys in MPC is to

implement GeniDPF using a generic MPC compiler. This, however,

has the drawback of requiring PRG calls inside the MPC, making

this approach inefficient in practice. Doerner and shelat [18] present

a construction that does not require secure PRG evaluations. While,

it comes at a computation cost that is linear in the domain size (i.e.,

exponential in the input size), and its round complexity is linear

in the input size, it is still efficient enough in our case, where the

domain for any single DCF is small.

However, the original Doerner-shelat construction is not suffi-

cient to obtain DPF keys that generate arithmetic shares for domains

larger than one bit. This is often the format required to compose

with other secret-sharing-based MPC protocols, which is also the

case for our construction.

While one option is to convert from Boolean to arithmetic shares

after the DPF evaluation in the online computation, this would re-

quire additional rounds of interaction and communication. In the

spirit of reducing online communication as far as possible without

sacrificing offline performance, we instead develop a new construc-

tion for generating DPF keys with arithmetic output shares directly.

Also note that while previous work [10] claims a construction

of Doerner-shelat for DCFs with arbitrary output groups, their

construction is missing a crucial step, namely the computation of 𝑡∗

in Step 10 of Fig. 9 of [10]. The main challenge for this construction

is the fact that in order to compute the value correction words

included in the DPF keys, the parties need to identify which one

of them holds share 1 and which one holds share 0 of the control

bit corresponding to the node on the evaluation path at every level.

There are 2
𝑙
nodes at level 𝑙 , and each party can locally evaluate its

shares for all nodes, but the parties do not know which node is on

the evaluation path.

So we need to implement this oblivious selection of the shares

of appropriate node whose index is shared between the two parties.

We leverage the following observation. The value of the control bit

is one only for nodes that lie on the evaluation path and is zero for

all other nodes. Since we have binary shares, this means that for

all nodes not on the evaluation path, the shares of the two parties

are equal. This means that if each party sums up its shares for the

control bits of all nodes in the last level, the resulting values will

differ by one and the party who has the larger value holds a share 1

of the control bit of the evaluation path node in the last level, while

the other party has share 0.

We can solve the problem by comparing the two sums of shares of

control bits at the last level, but in as we are trying to generate these

DPF keys in order to solve a comparison problem more efficiently,

so this is less satisfying. Our second observation is that since these

values differ just by one, it is sufficient to consider only their last

two bits to compute the comparison bit. This allows us to compute

𝑡∗ using a single AND-Gate.
We present the details our Doerner-shelat construction for iDPFs

with arbitrary output groups in Algorithm 9. The two parties hold

secret shares of 𝛼 and {𝛽𝑖 }𝑖∈[𝑛] , and would like to generate the

iDPF keys for 𝑓𝛼,{𝛽𝑖 }𝑖∈[𝑛] . In order to get a protocol for distributed

DCF key generation, observe that we only need to compute shares

𝛽1, . . . 𝛽𝑛 in Algorithm 8 given 𝛼1, . . . , 𝛼𝑛 and 𝛽 . As 𝛽𝑖 = 𝛼𝑖 · 𝛽 , this
reduces to 𝑛 parallel calls to FMUX. Finally, observe that in groups

where −𝑥 = 𝑥 (such as boolean sharing), J𝑊 0

𝐶𝑊
K = J𝑊 1

𝐶𝑊
K in Step

11, and so the last FMUX2 call can be saved in that case, making the

entire second MPC linear.

E ADDING DIFFERENTIAL PRIVACY

In this section, we discuss how our solution can also provide differ-

ential privacy for its output, which limits the leakage from the final

model about individual training samples. As we mentioned in the

introduction, our approach allows that the two computation parties

obtain cryptographic shares of the logistic regression parameters

which they use to jointly answer inference queries. So one option

for enabling differential privacy will be at that query level.

However, we consider here the case where the trained regression

model is released to a single party and the goal is to guarantee DP

for the model parameters. Since our training construction used SGD,

we will also use the DP-SGD approach introduced by Abadi et al. [1]

for general SGD ML training and the instantiation of Jayaraman et.

al. [31] for the setting of logistic regression presented in Algorithm

10. Jayaraman et. al. [31] provides a two party computation protocol

for secure training of logistic regression when the input data is

horizontally partitioned between the two parties. We adapt their

framework to the setting where the input is fully secret-shared

between the two parties.

In Algorithm 11 we give the pseudocode for implementing the

DP-SGD algorithm in MPC. The MPC protocol is similar to the

non-DP algorithm in Algorithm 1, except in each iteration, the

computation parties make the gradient differentially private using

noise perturbation. We assume that this noise is generated in an

offline phase where computation parties get secret shares for noise

vectors. In the online phase, they add these shares of noise to the

gradient update. Techniques for two party generation of DP noise

were presented by Dwork at al. [19] and Champion et al. [13].

If we only want to guarantee DP from the output of the secure

logistic regression training, then we can reveal the DP gradient

update to the two computation parties as shown in Algorithm 11.

This would enable some efficiency optimization replacing a secure

matrix multiplication with a plaintext matrix multiplication. While

this approach still provides DP for the output, it is not known

what is the exact privacy comparison between revealing only the

final DP output model and all intermediate DP gradient updates.

However, recent works [14, 50] show that keeping the DP-SGD
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Algorithm 9: Secure Distributed GeniDPF

Inputs: Each party holds additive shares of 𝛼 ∈ {0, 1}𝑛 (bitwise)

and {𝛽𝑖 }𝑖∈[𝑛] where 𝛽𝑖 ∈ G𝑖
Output: iDPF keys for 𝑓𝛼,{𝛽𝑖 }𝑖∈[𝑛]
Parameters: Let𝐺 : {0, 1}_ → {0, 1}2(_+1) and
Convert : {0, 1}_ → {0, 1}_+1 be PRGs.

Each party P𝑏 performs the following:

1 Sample 𝑠∅
𝑏
∈ {0, 1}_ , set 𝑡 ∅

𝑏
= 𝑏.

2 for 𝑙 = 1 to 𝑛 :

3 For all 𝑤 ∈ {0, 1}𝑙−1
, compute 𝑠

𝑤,𝐿

𝑏
| |𝑡𝑤,𝐿

𝑏
| |𝑠𝑤,𝑅

𝑏
| |𝑡𝑤,𝑅

𝑏
= 𝐺 (𝑠𝑤

𝑏
) .

4 Compute

𝑠𝐿
𝑏
| |𝑡𝐿

𝑏
| |𝑠𝑅

𝑏
| |𝑡𝑅

𝑏
=
⊕

𝑤∈{0,1}𝑙−1 𝑠
𝑤,𝐿

𝑏
| |𝑡𝑤,𝐿

𝑏
| |𝑠𝑤,𝑅

𝑏
| |𝑡𝑤,𝑅

𝑏
.

5 Secure Computation:

- Inputs: Boolean sharing of 𝛼𝑙 , arithmetic sharing of

{𝑠𝐿
𝑏
, 𝑠𝑅
𝑏
, 𝑡𝐿
𝑏
, 𝑡𝑅
𝑏
}𝑏∈{0,1} .

- Compute:

J𝑠𝑅K← J𝑠𝑅
0
K ⊕ J𝑠𝑅

1
K

J𝑠𝐿K← J𝑠𝐿
0
K ⊕ J𝑠𝐿

1
K

J𝑠𝐶𝑊 K← FMUX2

(
J𝑠𝑅K, J𝑠𝐿K, J𝛼𝑙 K

)
J𝑡𝐿𝐶𝑊 K← J𝑡𝐿

0
K ⊕ J𝑡𝐿

1
K ⊕ J𝛼𝑙 K ⊕ J1K

J𝑡𝑅𝐶𝑊 K← J𝑡𝑅
0

K ⊕ J𝑡𝑅
1

K ⊕ J𝛼𝑙 K

- Output 𝑠𝐶𝑊 , 𝑡𝐿
𝐶𝑊

, 𝑡𝑅
𝐶𝑊

to both

6 For all 𝑤 ∈ {0, 1}𝑙−1
, set

𝑠
𝑤 | |0
𝑏
| |𝑠𝑤 | |1

𝑏
← (𝑠𝑤,𝐿

𝑏
| |𝑠𝑤,𝑅

𝑏
) ⊕ 𝑡𝑤

𝑏
· (𝑠𝐶𝑊 | |𝑠𝐶𝑊 )

7 For all 𝑤 ∈ {0, 1}𝑙−1
, set

𝑡
𝑤 | |0
𝑏
| |𝑡𝑤 | |1

𝑏
← (𝑡𝑤,𝐿

𝑏
| |𝑡𝑤,𝑅

𝑏
) ⊕ 𝑡𝑤

𝑏
· (𝑡𝐿

𝐶𝑊
| |𝑡𝑅

𝐶𝑊
)

8 For all 𝑤 ∈ {0, 1}𝑙 , set 𝑠𝑤
𝑏
| |𝑊 𝑤

𝑏
← Convert(𝑠𝑤

𝑏
)

9 Compute𝑊 𝑙
𝑏
← ∑

𝑤∈{0,1}𝑙
𝑊 𝑤

𝑏
.

10 Compute𝑇 𝑙
𝑏
← 𝑏 + (−1)𝑏 · ∑

𝑤∈{0,1}𝑙
𝑡𝑤
𝑏
.

Let 𝜏0

𝑏
and 𝜏1

𝑏
denote the two least significant bits of𝑇𝑏 .

11 Secure Computation:

- Inputs: Arithmetic sharing of 𝛽𝑙 , private inputs𝑊
𝑙
𝑏
, 𝜏0

𝑏
, 𝜏1

𝑏
for

Party P𝑏 .
- Compute:

J𝑡∗K← 1 ⊕ 𝜏1

0
⊕ 𝜏1

1
⊕ (𝜏0

0
· 𝜏0

1
)

J𝑊 0

𝐶𝑊 K← J𝛽𝑙 K −𝑊 𝑙
0
+𝑊 𝑙

1

J𝑊 1

𝐶𝑊 K← −J𝛽𝑙 K +𝑊 𝑙
0
−𝑊 𝑙

1

J𝑊𝐶𝑊 K← FMUX2

(
J𝑊 0

𝐶𝑊 K, J𝑊 1

𝐶𝑊 K, J𝑡∗K
)
.

- Output𝑊𝐶𝑊 to both

12 Set𝐶𝑊 𝑙 ← 𝑠𝐶𝑊 | |𝑡𝐿𝐶𝑊
| |𝑡𝑅

𝐶𝑊
| |𝑊𝐶𝑊

13 Output 𝑘𝑏 ← 𝑠∅
𝑏
| |𝐶𝑊 1 | | . . . | |𝐶𝑊 𝑛

intermediate states hidden allows for faster convergence and spend-

ing less privacy budget for strongly convex loss functions for noisy

stochastic gradient descent. Our DP secure computation training

algorithm supports hiding these intermediate states at the same

online communication cost.

Algorithm 10: DP SGD

Public inputs: Number of iterations𝑇 , Dataset size 𝑛, Batch size 𝐵,

Lipschitz value𝐺 = 1, Smoothness value 𝐿 = 0.25, Learning rate

𝛼 = 1/𝐿, DP parameters 𝜖 and 𝛿

Private inputs: Dataset X, y having 𝑘 features

1 Let w0 be the initial model with arbitrary weights

2 for 𝑡 = 1 to𝑇 :

3 Compute gradient gt ← 1

𝐵
X𝑇
𝐵
× (Sigmoid(X𝐵 ×wt−1) − YB)

4 Perturb gradient g̃t ← gt + N(0, 𝜎2𝐼𝑝 ) where 𝜎2 =
8𝐺2𝑇 log(1/𝛿 )

𝑛2𝜖2

5 Update model wt ← wt−1 − 𝛼 · g̃t
6 return w𝑇

Algorithm 11: DP-SGD Logistic Regression Protocol

Public inputs: Number of iterations𝑇 , dataset dimensions 𝑛,𝑘 ,

batch size 𝐵, Lipschitz value𝐺 = 1, smoothness value 𝐿 = 0.25,

learning rate 𝛼 = 1/𝐿, DP parameters 𝜖 and 𝛿 , regularization

parameter _.

Private inputs: Secret-shared dataset J𝑋 K ∈ 𝑅𝑛×𝑘
and labels

JyK ∈ 𝑅𝑛
. Secret shares J𝑟𝑡 K ∈ 𝑅𝑘

of noise drawn from

N(0, 𝜎2𝐼𝑝 ) , for each 𝑡 ∈ [𝑇 ].

1 Let w0 be the initial model with arbitrary weights.

2 for 𝑡 = 1 to𝑇 :

3 for 𝑏 = 1 to ⌊𝑛/𝐵⌋ :
4 𝑖 ← (𝑏 − 1) · 𝐵 + 1

5 𝑗 ← min(𝑛,𝑏 · 𝐵)
6 J𝑋𝐵K← J𝑋𝑖 ... 𝑗 K
7 JuK← J𝑋𝐵K · wt−1
8 JsK← FSigmoid (u)
9 JdK← JsK − Jy𝑖 ... 𝑗 K

10 JgK← FmatMult
(
J𝑋𝐵

⊤K, JdK
)

11 JwtK← Jwt−1K − (𝛼/𝐵) · (JgK + _ · Jwt−1K) + J𝑟𝑡 K
12 wt ← Reconstruct(JwtK)
13 return wT.

Jayaraman et. al. [31] also present an output-perturbation DP

technique for logistic regression, which adds noise only to the

final model, rather than at each level of gradient descent. We note

that our original protocol in Algorithm 1 can easily be modified

to use the output perturbation technique, by having both parties

collaboratively generate shares of the output perturbation noise

and add it to their respective shares of the output before revealing

them.

As noted in [31], adding the noise iteratively to the gradient

or directly to the output may have different impact on the accu-

racy of the final model depending on the setting, though adding

noise iteratively generally results in more accurate models. We are

able to support both options between Algorithms 1 (with output-

perturbation at the end of training) and Algorithm 11.

F COMPARISON PROTOCOL

MICRO-BENCHMARKS

In this section, we benchmark the offline and online communication

costs of our new comparison protocol

∏
CMP for different values of 𝑙

(the bit length of the comparison inputs) and𝑚 (into which the 𝑙-bit
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Figure 3: Plaintext Sigmoid Function

Figure 4: Plaintext Comparison of V1 sigmoid to SecureML’s

approximation.

inputs are split) in Table 7, and compare it against Cryptflow2 [42]

in Table 8. Note that the offline costs in Table 8 for𝑚 ≥ 16 are empty

as the paper does not specify the appropriate OT extension costs

for this parameter regime. We present a comprehensive comparison

to state of the art in Table 6. We choose appropriate parameters for

the block length𝑚 for each work. Note that if 𝑙 ≤ 𝑚, then we set

𝑚 = 𝑙 . Our offline costs exclude the cost of base oblivious transfers.

G ADDITIONAL FIGURES

In this section, we show plaintext sigmoid in Figure 3 and demon-

strate how our plaintext sigmoid approximation compares to the

plaintext approximation in SecureML in Figure 4. In Figure 5, we

measure the absolute error (defined w.r.t. plaintext python imple-

mentation shown in Figure 3) for three different implementations:

plaintext sigmoid approximation in fixed point (top), 2PC sigmoid

with trusted offline setup (middle), and 2PC sigmoidwith distributed

offline setup (bottom). We do this experiment for input values in

the range [−20, 20] at increments of 0.1.

H BOTTLENECK COST OF SECURE LOGISTIC

REGRESSION

In each iteration of logistic regression, we perform sigmoid evalua-

tions proportional to the batch size along with 2 correlated matrix

multiplications (Line 7 and Line 10 in Algorithm 1). Assuming 𝑛

Figure 5: Absolute difference error (×10
−5
) of our sigmoid

approximation in plaintext fixed point representation (top),

with trusted offline setup run in 2PC (middle), and with

distributed offline setup run in 2PC (bottom).

training examples, batch size 𝐵, number of epochs𝑇 , we first discuss

the cost associated with the correlated matrix multiplications.

In the online phase, there is a one-time cost of 2𝑛𝑘 elements of

communication (associated with the dataset 𝑋 ). Additionally, the

per iteration (inner loop) communication cost of multiplying 𝑋𝐵

with 𝑤𝑡−1 (Line 7 in Algorithm 1) is 2𝑘 elements, and the cost of

multiplying 𝑋𝐵
⊤
with 𝑑 (Line 10 in Algorithm 1) is 2𝐵 elements.

Hence, we have a communication of 2𝑘 + 2𝐵 elements per iteration.

Since there are 𝑇 · ⌊𝑛/𝐵⌋ iterations, the total communication cost

of matrix multiplications for the entire logisitic regression training

comes out to be 2𝑛𝑘 +𝑇 · ⌊𝑛/𝐵⌋ (2𝑘 + 2𝐵) elements.

20



Table 6: Concrete communication and round costs of our comparison protocol vs. prior works as functions of 𝑙 .

Our Approach (m = 16) CrypTFlow2 (𝑚 = 4) [42] CrypTFlow2 (𝑚 = 7) [42] Couteau16 [17]

𝑙 comm. rounds comm. rounds comm. rounds comm. rounds

Offline Phase

4 1.51 KB 80 rounds 0.03 KB 1 round 0.03 KB 1 round 0.19 KB 2 rounds

8 3.02 KB 80 rounds 0.08 KB 1 round 0.08 KB 1 round 0.44 KB 2 rounds

16 6.04 KB 80 rounds 0.19 KB 1 round 0.13 KB 1 round 1.02 KB 2 rounds

32 12.09 KB 80 rounds 0.43 KB 1 round 0.24 KB 1 round 1.85 KB 3 rounds

64 24.21 KB 80 rounds 0.93 KB 1 round 0.55 KB 1 round 3.83 KB 3 rounds

128 48.47 KB 80 rounds 1.95 KB 1 round 1.11 KB 1 round 6.36 KB 3 rounds

Online Phase

4 8 bits 1 round 20 bits 2 rounds 20 bits 2 rounds 30 bits 2 rounds

8 16 bits 1 round 60 bits 3 rounds 144 bits 3 rounds 162 bits 6 rounds

16 32 bits 1 round 142 bits 4 rounds 416 bits 4 rounds 308 bits 6 rounds

32 132 bits 2 rounds 308 bits 5 rounds 978 bits 5 rounds 530 bits 12 rounds

64 270 bits 3 rounds 642 bits 6 rounds 2290 bits 6 rounds 1120 bits 12 rounds

128 548 bits 4 rounds 1312 bits 7 rounds 4714 bits 7 rounds 2101 bits 12 rounds

Table 7: Comm. cost of

∏
CMP as function of 𝑙 and𝑚.

𝑙

𝑚
4 8 16 32 64 128

Offline Phase (KB)

4 1.51 - - - - -

8 3.04 3.02 - - - -

16 6.10 6.05 6.04 - - -

32 12.26 12.14 12.09 12.07 - -

64 24.58 24.33 24.21 24.16 24.14 -

128 49.24 48.72 48.47 48.35 48.30 48.28

Online Phase (bits)

4 16 - - - - -

8 36 32 - - - -

16 78 68 64 - - -

32 164 142 132 128 - -

64 338 292 270 260 256 -

128 688 594 548 526 516 512

Note that the sigmoid is invoked on 𝐵 inputs per iteration (and

𝑛 per epoch). Therefore, the total online cost of sigmoid across 𝑇

epochs is𝑇 ·𝑛 · 𝑠 , where 𝑠 is the number of elements communicated

per sigmoid. Hence, sigmoid becomes a bottleneck whenever the

following condition is satisfied:

𝑇 · 𝑛 · 𝑠 > 2𝑛𝑘 +𝑇 · ( 2𝑘𝑛
𝐵
+ 2𝑛)

𝑠 > 2( 𝑘
𝑇
+ 𝑘

𝐵
+ 1)

The above condition is often true for large datasets and/or when

per sigmoid communication cost is high (which is true because of

its nonlinear nature).

Table 8: Comm. cost of CrypTFlow2 as function of 𝑙 and𝑚.

𝑙

𝑚
4 8 16 32 64 128

Offline Phase (KB)

4 0.03 - - - - -

8 0.08 0.03 - - - -

16 0.19 0.08 - - - -

32 0.44 0.19 - - - -

64 0.94 0.44 - - - -

128 1.95 0.94 - - - -

Online Phase (bits)

4 20 - - - - -

8 60 264 - - - -

16 142 788 6.5 × 10
4

- - -

32 308 1838 1.9 × 10
5

4.2 × 10
9

- -

64 642 3940 4.5 × 10
5

1.2 × 10
10

1.8 × 10
19

-

128 1312 8146 9.8 × 10
5

3 × 10
10

5.5 × 10
19

3.4 × 10
38

Note that in terms of latency (round complexity), the sigmoid

computation dominates the matrix multiplication. This is because

each matrix multiplication only requires 1 round of communication

whereas accurate sigmoid approximation typically requires more

rounds (in our case it requires 4 rounds for trusted offline (dealer)

setting and 6 rounds for distributed (2PC) offline setting).

I OPTIMIZED DOT PRODUCT

We compute sigmoid on the [0, 1) interval by evaluating a spline

of one degree polynomials of the form 𝑎𝑖𝑥 + 𝑏𝑖 , where 𝑎𝑖 and 𝑏𝑖
are public coefficients. At a high level, we evaluate J𝑥K on each

interval 𝑖 and then select only the interval output where 𝑥 actually

belongs. More specifically, each party can evaluate the spline on

each interval with the same input J𝑥K to get J𝑎𝑖𝑥 + 𝑏𝑖K using local

operations. For 𝑛 intervals, 𝑃0, 𝑃1 hold:
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J𝑎1𝑥 + 𝑏1K, . . . , J𝑎𝑛𝑥 + 𝑏𝑛K
We then use a FSS multi-interval containment gate to get a

sharing of one-hot encoded vector 𝑑 , with 1 only at the interval

interval 𝑡 where the input belongs, 0 elsewhere. E.g., if 𝑥 belongs

to interval 𝑡 = 3, 𝑃0 and 𝑃1 hold:

J𝑑K = J0, 0, 1, 0, . . . , 0K
Now we want to compute the dot product of these two vectors

to get a sharing of evaluating 𝑥 on the proper interval. Naively

multiplying the two vectors pairwise requires communicating 4𝑛

ring elements. We now show how to reduce the communication to

just 4 elements (i.e. independent of the number of intervals).

Note that 𝑎𝑖 and 𝑏𝑖 are public. Hence, 𝑃0 and 𝑃1 can locally

compute:

J𝑎𝑡 K← J𝑑1K𝑎1 + . . . + J𝑑𝑛K𝑎𝑛
J𝑏𝑡 K← J𝑑1K𝑏1 + . . . + J𝑑𝑛K𝑏𝑛

Now 𝑃0, 𝑃1 do a single Beaver triple multiplication and compute:

J𝑎𝑡𝑥 + 𝑏𝑡 K
Importantly, this single product requires communicating a total of

only 4 ring elements.
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