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Abstract. Given the high transaction confirmation latencies in public blockchains, cryp-
tocurrencies such as Bitcoin, Ethereum, etc. are not yet suitable to support real-time services
such as transactions on retail markets. There are several solutions to address this latency
problem, with layer-2 solutions being the most promising ones. Existing layer-2 solutions,
however, suffer from privacy and/or collateral issues when applied to retail environments
where customer-merchant relationships are usually ephemeral.
In this paper, we propose Nirvana, that can be combined with existing cryptocurrencies
to provide instant, anonymous and unlinkable payment guarantees. Nirvana does not re-
quire any trusted third party. It conceals the identities of honest participants, thus ensuring
customer anonymity within the system while only relying on efficient Groth-Sahai proof sys-
tems. We introduce a novel randomness-reusable threshold encryption that mitigates double-
spending by revealing the identities of malicious users. We formally prove how our scheme
provides customer anonymity, unlinkability of transactions and payment guarantees to mer-
chants. Our experiments demonstrate that Nirvana allows for fast (zero-confirmation) global
payments in a retail setting with a delay of less than ∼ 1.7 seconds.

Keywords: Blockchain, Instant Payments, Privacy-Preserving, Threshold Encryption,
Non-Interactive Zero-Knowledge proofs, Structure-Preserving Threshold Signatures,
Pseudo-Random Functions, Commitment.

1 Introduction

Public decentralized cryptocurrencies such as Bitcoin and Ethereum offer increased trans-
parency and avoid trust in a central party. However, that comes at the cost of performance
which precludes high throughput, real-time applications. First, the throughput is rather
low; for Bitcoin the theoretical maximum limit has been shown to be 27 transactions per
second (tps) [Geo19]. For the sake of comparison, Visa reached up to 47k tps [Tri13],
while Alipay’s peak was 459k tps in 2019.3 Second, the latency of transaction confirmation
is rather high, because transactions need to be verified by multiple parties rather than
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by a central operator. The latency of Ethereum for transaction confirmation is around 3
minutes [MWD+20] for transaction confirmation, whereas Visa only requires a few sec-
onds [CDE+16].

Motivation. These weaknesses are a hindrance in the mass adoption of cryptocurren-
cies, especially in a retail setting that typically requires fast financial settlements. Various
solutions to address these issues in popular public blockchains (e.g., Bitcoin) have been
proposed. These are mainly based on alternative consensus schemes [BSAB+19], shard-
ing [WSNH19] and layer-2 solutions [GMR+20]. Alternative consensus schemes and shard-
ing mostly focus on increasing the transaction throughput. Layer-2 solutions emerged as a
promising area of research to increase transaction throughput and solve the latency prob-
lem. Their approach allows a group of mistrusting parties to execute an application amongst
themselves, hence bypassing the performance constraints of the underlying blockchain. The
main requirement for these solutions to work is an unreusable monetary deposit (collateral)
on the underlying blockchain, which is used to make final settlements. However, the existing
proposals have several inherent limitations that make them suboptimal for retail payments.
These limitations are discussed in the next section. Additionally, a new flavour of layer-
2 solutions, referred to as rollups, is picking up traction in both industry and academia
alike [But21,Eth21,Bje21,Ben21]. Similar to their predecessors (e.g., payment channels),
rollups handle transactions away from the main blockchain, while taking advantage of the
integrity properties offered by the underlying blockchain. However, these solutions are hy-
brid in the sense that, each transaction present in the rollup has some corresponding data
on the main blockchain. Due to this property, rollups are not vulnerable to data availability
attacks [GMR+20], which makes them applicable in a more general setting (unlike chan-
nels, channel hubs, or sidechains, that are application-specific [But21]). Despite having the
advantage of increasing the transaction throughput of Ethereum up to 100 times compared
to its current throughput [But21], rollups do not reduce the total confirmation time taken
by each individual transaction.

This calls for a line of research that focuses on improving the high transaction confir-
mation latency of public blockchains while solving the shortcomings of the current state-of-
the-art. Although such solutions already exist in literature [MWD+20], there is a significant
room for improvement. Further motivation for our solution can be found in App. A

Our Solution.We proposeNirvana, an overlay network that provides instant, anonymous
and unlinkable payment guarantees for payments made on existing public blockchains in a
retail setting (customer-merchant interactions).

Nirvana is inspired by the abundant literature on e-cash
schemes [Cha82,CFN90,Bra94,Sch95,FTY96,CHL05,CG08,CGT08,BCKL09,BCFK15]
and hence driven by the notion of exposing identities belonging to malicious entities while
maintaining the privacy of honest actors. It serves as an abstraction layer for payment
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guarantees in a retail setting (in parallel to actual on-chain payments), thus can be used
as an extension to any blockchain-based cryptocurrency.

The participants in Nirvana include customers willing to purchase products/services
using their cryptocurrencies while expecting short confirmation times; an established con-
sortium of merchants willing to accept cryptocurrency payments; witnesses who are selected
from the merchant consortium and a group of authorities responsible for registration of
users and verification of collaterals. The customers and authorities only need to be online
when performing an action such as making a payment (customers) or registering users
(authorities). Merchants and witnesses, however, need to be online to communicate and
accept fast payments, especially when incentivized to do so. This incentivization helps in
absolving possible concerns of witness availability. With Nirvana, we aim to hide the real
identity of honest customers from all other participants, while ensuring that the transac-
tions made by them are instant and unlinkable within the system. Most importantly, none
of the participants have to trust each other.

In order to briefly explain our solution, we assume a customer, a merchant and a set
of authorities. The customer wants to pay for their products with a cryptocurrency of
their choice, for instance, Bitcoin. Due to the notorious transaction confirmation latency
of Bitcoin, the merchant cannot be guaranteed a payment for ∼ 60 minutes on average.
As its first contribution, Nirvana solves this latency problem by providing the merchant
with an instantaneous payment guarantee.

Registration: During registration, the customer deposits a one-time collateral in a smart
contract controlled by Nirvana deployed on any smart contract supporting blockchain (e.g.,
Ethereum4 or Celo5). The customer receives a Structure-Preserving Threshold Signature
(SPTS) from the majority of authorities on a secret Pseudo-Random Function (PRF) key
certifying that they own a collateral in Nirvana. Along with this certificate, customers
are also issued a fixed list of witnesses responsible for that collateral. These witnesses are
randomly selected by the authorities from the list of merchants.

Payment: Once a registered customer wants to issue a payment guarantee to the mer-
chant, they make an on-chain payment to the merchant’s blockchain address. Subsequently,
they prove ownership of a collateral in Nirvana by using a combination of SPTS, Commit-
ment and Non-Interactive Zero-Knowledge proofs (NIZK) (explained in detail in Sect. 3).
The customer also provides the transaction hash of their on-chain payment to the merchant.
Note that our construction relies on Groth-Sahai proof system that provides efficient NIZKs
in the standard model. This allows Nirvana to make its second contribution, i.e., ensuring
protocol-level customer anonymity and providing unlinkability of transactions. Note that
we assume blockchain transaction privacy to be orthogonal to our work.

Verification: Once the merchants receive an on-chain transaction, they have two op-
tions: either wait for the on-chain payment to be confirmed or request an instant pay-

4 https://ethereum.org/en/
5 https://celo.org/
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ment guarantee in Nirvana. Assuming that the merchant opts for verifying the Nirvana
payment guarantee, they proceed by first verifying the NIZK proof and SPTS signature
attached to the guarantee. Once verified, they forward it to the assigned witnesses in order
to ensure that this guarantee is not being double-spent. Note that these guarantees only
work for a fixed latency period called an epoch. This epoch can be set to easily encom-
pass the average latency period of most existing public blockchains. The witnesses then
check if they have received a similar payment guarantee in the current epoch. If they have
not received a similar guarantee, they record this one as fresh and store it locally along
with the current timestamp. Each witness deletes the timestamps from previous epochs
for storage efficiency. In the rare case of a double-spend, each witness informs the receiv-
ing merchant, who then cancels the transaction. Subsequently, as our third contribution,
we propose a novel randomness-reusable Threshold encryption in bilinear groups (rbTE)
that enables the witnesses to combine the payment guarantees and reveal the identity of
the perpetrator. Later, this identity is communicated to the authorities who blacklist this
malicious customer as a penalty. Now assume another case, where the customer does not
double-spend their payment guarantee, yet they double-spend their actual payment in the
underlying blockchain. In this case, the collateral of the customer in Nirvana can be used
to remunerate the victim merchant (explained in detail in Sect. 3). This means that an
honest customer never needs to replenish their collateral unlike in most existing layer-2
solutions [PD16,Net19,DW15,MBB+19,HAB+17,KZF+18] and the merchant is guaranteed
a payment.

Our Contributions and Results. This paper makes the following contributions:

1. Nirvana provides an instant payment guarantee to merchants in a retail setting, en-
abling customers to make payments with the cryptocurrency of their choice and avail
services without needing to wait for on-chain payment confirmation or replenish their
collaterals.

2. Nirvana ensures protocol-level customer anonymity and unlinkability of transactions
between customers and merchants when used on top of any blockchain. We assume
blockchain transaction privacy to be orthogonal to our work; however, by utilizing
Nirvana overlay network, public blockchains can still benefit from its ability to provide
instant transaction confirmation. Privacy-preserving ledgers such as Zcash and Monero,
on the other hand, enjoy the performance enhancement offered by Nirvana without
the risk of losing privacy.

3. We propose a novel randomness-reusable threshold version of the ElGamal encryption,
(see App. B.5) which enables participants to reveal the identity of malicious customers
when they double-spend without relying on trusted third parties; otherwise their iden-
tity is always preserved. This combination reveals the identity and collateral details
of the perpetrator, ensuring remuneration to the victims and blacklisting of malicious
entities.
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4. We formally prove that Nirvana preserves the anonymity of honest customers and
unlinkability of transactions, yet at the same time guarantees payment to the merchants.

5. We implement Nirvana and show that it allows for fast global retail payments. The
average spending time taken by a customer using Nirvana is ∼ 0.71 seconds (s) with
the combined verification times taken by merchants and witnesses being ∼ 1.16 s.

Outline. This paper is organized as follows: Sect. 2 provides preliminaries and system
model of Nirvana and describes our assumptions. Sect. 3 describesNirvana’s construction
in detail along with a security analysis, followed by its instantiation in Sect. 4. In Sect. 5
we evaluate Nirvana’s performance and demonstrate its efficiency and scalability. Sect. 6
gives an overview of the related work. Sect. 7 concludes our work.

2 Preliminaries and System Architecture

Throughout this paper, we suppose the security parameter of the scheme to be λ with
unary representation of 1λ, and negl(λ) denotes a negligible function. We use x←$X to
denote that x is sampled uniformly from the set X. Also, |X| denotes the cardinality of
a set X. [n] denotes the set of integers in the range of 1 through n. We assume a field of
prime order F and denote F<d[X] as a set of univariate polynomials with degree < d. We
denote by y ← A(x; r) that for a given input of x, and a random string r, we get an output
of y. The algorithms are randomized unless explicitly stated otherwise “PPT” refers to
“Probabilistic Polynomial Time”. Two computationally indistinguishable distributions A
and B are denoted by A ≈λ B.

Remark 2.1. For ease of reading, the secret values in Nirvana’s construction are repre-
sented with a hat operator (e.g., ŝk) and masked values are represented with the notation
x′ for the value x.

Definition 2.1 (Bilinear groups [BF01]). A Type-III bilinear group generator6 BG(1λ)
returns a tuple (G1,G2,GT , p, e, g, h), consisting of cyclic Abelian groups G1, G2, and GT

with the same prime order p. For given generators of groups G1 and G2 namely g and h,
an efficient non-degenerate Type-III bilinear pairing is denoted by e : G1×G2 → GT , such
that, ∀ a, b ∈ Zp : e(ga, hb) = e(gb, ha) = e(g, h)ab and e(g, h) ̸= 1GT

.

Definition 2.2 (Indexed Diffie-Hellman Message Space [SSKP22]). For a given
hash function H that is modeled in the random oracle, MH

iDH is called the indexed DH
message space, if we have:

1. ∀ (id,M1,M2) ∈MH
iDH ∃ m ∈ Zp : ggg = H(id),M1 = gggm,M2 = hm.

6 No nontrivial homomorphism between G1 and G2 exists [GPS08].
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2. No two messages use the same index, i.e., ∀ (id,M1,M2) ∈ MH
iDH, (id

′,M ′1,M
′
2) ∈

MH
iDH, if id = id′ ⇒ (M1,M2) = (M ′1,M

′
2) ∈MiDH.

More formally, we recall the indexed DH message space generator in Fig. 1, such that
iDHH : I× Zp → I×G1 ×G2, where I is the index space.

iDHH(id,m)

1 : ggg ← H(id)

2 : M1 = gggm

3 : M2 = hm

4 : return (id,M1,M2) ∈MH
iDH

H(id)

1 : If QH[id] =⊥:
2 : r←$Zp

3 : QH[id]← gr := ggg

4 : return QH[id]

Fig. 1: Indexed Diffie-Hellman Message Space in the ROM.

2.1 Nirvana participants

As shown in Fig. 2, in Nirvana the participants are divided into two groups: authorities
AU , and users, which include the customers C, merchantsM, and witnesses W.

Authorities

Customer
2. Customer registration

3. Collateral certification

Customer

1. Merchant consortium
initialization

Merchant/Witnesses

Fig. 2: Nirvana participants and their registration process.

1 Authorities: AU are responsible for maintaining the system, along with the reg-
istration of users and certification of customers’ collaterals. AU pregenerate keys for a
fixed number of merchants during setup phase by assuming an upper bound ℓ (e.g., 1M
merchants at once).

2 Merchant Consortium: We assume that the merchants in Nirvana form a fixed
consortiumM that consists of both large retailers and small shops, where |M| ≤ ℓ. Once
this consortium is formed, new merchants can join until the upper bound set by AU is
reached. After that,M does not change. Upon joining the consortium, a merchantMm ∈M
generates a pair of signing/verification keys ( ˆsgkbm, vkbm) and sends its verification key vkbm
to the AU along with their collateral. In return, they receive a unique public key pkbm along
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with a registration certificate certbm from the majority of AU . This consortium is assumed
to be fixed before customers are allowed to register.

3 Customers: A customer in Nirvana can be any person who owns some cryptocur-
rency and is willing to use it to make payments in a retail context. Whenever a customer
Cn ∈ C, where |C| ≤ k, wants to register in Nirvana, they choose a pair of (pkcn, ŝkcn),
where its secret key ŝkcn corresponds to its secret identity. Customers register in Nirvana
by providing their public key and requesting a certificate of registration, certcn, from the
majority of authorities.

4 Customer collaterals: A customer Cn can request multiple fixed collaterals in
Nirvana. Each of these collaterals have to be certified by the majority of authorities. A
list of collaterals for Cn is recorded in a set of CLn, and consists of a tuple (k̂j ,Mj , certj)

where k̂j is a unique secret value to redeem the collateral and Mj is an indexed DH

message format of the secret value k̂j . Each collateral that is uncertified by the authorities
has certj =⊥; however, once certified (certj ̸=⊥) and a list of witnesses (Wj) is appended
to it. For honest customers, these collaterals are reusable since they only act as payment
guarantees.

5 Witness: Each certified collateral is assigned a random list of witnesses (W ⊆M)
by the AU . Witness Wi ∈ W is responsible to ensure that a collateral is not double-spent
by the customers. To do this, each witness locally stores a list of payment guarantees that
they encounter within a given epoch.

a Instantiation: During the setup phase of Nirvana, upon the establishment of the
merchant consortium, each merchant is allocated a uniform interval (SWi

) and added to the
witness set (Wi ∈ W). For this we use a cryptographic hash function, H : {0, 1}∗ → {0, 1}µ
modeled in the random oracle. Then we have:

w⋂
i=1

SWi
= ∅, ∀ W1 ̸= W2 ∈ W and

w⋃
i=1

SWi
= [0, 2µ) ,

where µ is the bit length output of the hash function.

b Witness selection: Inspired by witness selection scheme of Osipkov et
al. [OVHK07], we assume a reputation system based on proactive responsiveness. AU
maintain a list of intervals for each witness, which changes after every epoch depending
on the responsiveness of a witness. More formally, for a given cryptographic hash func-
tion H : {0, 1}∗ → {0, 1}µ, we assign a witness range SWi

= [sWi,1, sWi,2) for a witness
Wi ∈ W ⊂ [0, 2µ). This is done such that

⋂w
i=1 SWi

> log10(w) and
⋃w

i=1 SWi
= [0, 2µ),

where w is the total number of witnesses. Based on their reputation, the witnesses will be
assigned larger/smaller ranges that can be updated regularly. As mentioned before, AU
provide a signature to the secret PRF key in the indexed DH message spaces (id,M1,M2)
s.t. the index is a commitment to k̂j . A re-randomized signature can be provided by the
customer as a collateral proof for the merchants. In order to provide real-time double-
spending prevention, the authorities also allocate witnesses for each collateral based on a
hash function modeled in random oracle.
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c Witness incentives: As argued in [OVHK07], preventing double-spending helps
the community as a whole and does not leave merchants (also playing the role of wit-
nesses) with unpaid transactions. However, a more concrete motivation could be the fi-
nancial incentives earned by witnesses for each honest signature they provide. Mavroudis
et al. [MWD+20] point out that if a receiving merchant agrees to pay a small percentage
(0.5%) of their transaction to the witnesses, they could save on high card payment fees
(1.5-5%) for each transaction.

d Reputation update: After every pre-determined epoch, SWi
for i ∈ {1, . . . ,W} is

updated by AU such that it reflects the responsiveness of each Wi in the previous epoch.
For a more responsive Wi, the interval is increased, and similarly for a less responsive Wi,
the interval is decreased. This is done while satisfying

⋂w
i=1 SWi

= ∅, ∀ W1 ̸= W2 ∈ W and⋃w
i=1 SWi

= [0, 2µ).

Remark 2.2 (Merchant/Witness collateral). As merchants are required to also take on the
role of witnesses, AU require them to deposit collaterals upon registration in the consor-
tium. Like Snappy [MWD+20], each merchant is required to deposit a collateral equal
to the total payments that all merchants in the consortium expect to receive within a
given confirmation period, also known as epoch. This deposit (admittedly high for smaller
merchants) is mandatory to maintain the security of system.

Remark 2.3. It is important to note that due to the random selection of witnesses from the
set of merchants, it is possible that a merchant is chosen to be their own witness. However,
this does not cause any issues to our security, as an incorrect signature from a witness (in
this case the receiving merchant itself), leads to slashing of their deposit. We also assume
that the merchant has no financial incentive to cheat in this scenario.

Remark 2.4. In Nirvana, the majority of the authorities randomly assign a list that con-
sists of a logarithmic number of witnesses to each collateral in order to proactively detect
double-spending of a payment guarantee during an epoch. This list consists of the identi-
ties of witnesses along with a signature from authorities. This signature acts as a proof of
responsibility for the assigned witnesses. The list of assigned witnesses needs to be public
since the payee merchant is required to forward the received payment guarantee to each
witness in the list. However, due to this public witness list, two payment guarantees be-
come identical to an observer; making Nirvana transactions done by the same customer
linkable. To overcome this issue, a customer appends a list of dummy witnesses of size
poly-logarithmic in the order of the size of Nirvana’s merchant consortium to the as-
signed witnesses. This is done such that the proof of responsibility is still verifiable by each
assigned witness; while all unassigned witnesses discard the guarantee. The list of dummy
witnesses can be altered in each transaction, which makes it hard to trace and link two
transactions done by the same customer.

8



2.2 Threat model and assumptions

In Nirvana, we assume active adversaries, meaning the adversary can take malicious ac-
tions during the security game to disrupt the protocol. We assume that the customers and
merchants are fully malicious and actively try to perform double-spending and generate
fake proofs of double-spending respectively. During a transaction, the adversary can control
an arbitrary number of customers and merchants except the target merchant accepting the
payment guarantee. We assume that at least 50% of AU are honest. This set of authori-
ties consists of Nirvana itself along with a group of merchants. The policy for selection
of this group of merchants is beyond the scope of this paper; however, a possible policy
could be to select the group of merchants with the most transactions in the network and if
required, randomly change this set of merchants for fairness [CGMV18]. Real life examples
such as Facebook’s Diem [Fac21] show that implementing such a consortium is possible.
We assume side-channel attack [BP15,TBP20] resistance to be important yet orthogonal
to our work. Finally, we also assume that the cryptocurrency of the customers choice is
reliable; however, we do not explicitly assume that the chosen cryptocurrency supports
private transactions. As a workaround, customers can utilise mixers like CoinJoin [Max13]
that provide a layer of privacy to public cryptocurrencies such as Bitcoin.

Our system is designed with retail markets as its primary use-case; however, it can be
used for any use-case where the customer userbase is larger than the merchant userbase.
Nirvana assumes a fixed network of known merchants in the system who form a con-
sortium. Similar to [MWD+20], the merchants in the Nirvana consortium do not accept
any risk, and only provide services when they are guaranteed a payment. The consortium
merchants have permanent and reliable network connections, and only accept payment
guarantees when they are online. Customers are not expected to be online, unless trans-
acting with a merchant. We also assume that the merchants in the Nirvana consortium
who also play the part of witnesses for customer collaterals are fairly responsive and stay
online when incentivized to do so.

Epoch: In Nirvana, time is divided into certain intervals of predetermined length that
start from the time a customer performs a payment, called epochs. The choice of this epoch
duration is a design choice, which can be defined with the transaction confirmation latency
of public cryptocurrencies in the worst case. Each witness deletes payment guarantees
older than the present epoch from their local storage for storage efficiency, since customer
collaterals are reusable.

Collateral assumptions: Nirvana assumes a fixed, reusable collateral, the amount
of which depends on how much money the customer plans to spend during an epoch. For
instance, a Bitcoin transaction takes ∼ 60 minutes to be finalized, hence the amount of
Nirvana’s fixed collateral is decided to be sufficient for this latency period. For all honest
customers, these collaterals can be used as payment guarantees again in the next epoch.
Revocation of a collateral can be easily handled by putting the publicly available blinded
certificate in a revoked list or a blacklist depending on whether an honest customer churns
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or a malicious customer is banned from Nirvana. This list can be checked by merchants
when they accept these blinded certificates as guarantees of payments. Additionally, Peeters
and Pashalidis [PP13] show how the checking of these blacklists can also be done in a
privacy-preserving way.

Communication channel: For Nirvana we assume perfect synchronicity, so there is
a strict time limit between rounds. Also we assume the existence of secure channels for
all the communications within the protocol, thus an adversary cannot overhear or tamper
with the transferred messages [BCFK15].

3 Nirvana: Generic Construction

In this section, we give an overview of Nirvana’s protocol, and later formalize its generic
construction. Finally, we prove the security properties of Nirvana.

3.1 Protocol overview

In order to explain Nirvana protocol, we assume that the set of authorities is already
established and the merchants in the network have registered and formed a consortium. As
illustrated in Fig. 3, the protocol between a customer and a merchant proceeds as follows:

Customer Merchant

AuthoritiesSmart contract

1. Register

2. Collateral deposit 

4. Collateral  
verification

3. Collateral 
certification 5. Collateral 

acceptance

6. Provide payment  
guarantee

7. Verify payment 
guarantee

8. Accept payment 
guarantee

9. Provide service

Witnesses

Fig. 3: Nirvana protocol overview.

1 In order to avail the services of Nirvana, the new customer begins by register-

ing themselves with the majority of authorities. 2 After successfully registering in the

network, the customer deposits a collateral in Nirvana’s smart contract. 3 Once the
deposit is confirmed on the blockchain where Nirvana’s smart contract is deployed, the
customer asks for a collateral certification, which is necessary to prove that the customer
owns some collateral in Nirvana. This proof is used to generate payment guarantees for
merchants. 4 Upon receiving the certification request of the customer, the authorities

check the smart contract to confirm if the customer deposited a collateral. 5 Once con-
firmed, the authorities provide the customer with a signed certificate of their collateral’s
existence in the network. Along with this confirmation, the customer is also assigned a
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signed list of witnesses in charge of tracking the collateral usage. 6 During a transaction
in the retail market, the customer makes a payment to the target merchant using the cryp-
tocurrency of their choice. Once the payment is in pending state on the blockchain, the
customer generates a payment guarantee by using the certified collateral and sends this to
the target merchant along with the assigned list of witnesses and the transaction hash of
their cryptocurrency payment. 7 The target merchant forwards this payment guarantee
to the assigned witnesses who individually confirm that they have not seen a similar guar-
antee in the current epoch. 8 Upon confirmation, each witness returns a signed payment

guarantee to the merchant. 9 On receiving signed payment guarantees from a majority of
the witnesses, the merchant aggregates these signatures and accepts the payment guarantee
and provides the customer with necessary services/products.

3.2 Formal construction

Nirvana relies on cryptography to achieve its goals. More precisely, it builds on Pseudo-
Random Function (PRF), Non-Interactive Zero-Knowledge (NIZK) arguments, Signatures
(S), Structure-Preserving Threshold Signatures (SPTS), Commitments (CO), and a novel
randomness-reusable Threshold Encryption in the bilinear pairing groups (rbTE). We list
the formal definition and the underlying security properties for the listed primitives in
App. B and outline the scheme in Algo. 1 for security parameter 1λ and a family of collision-
resistant hash functions H. The list of master public keys is considered as an implicit
input for all algorithms except the parameter generation algorithm. We now formalise the
functions in the Algo. 1 as follows:

– PGen(1λ,H,RL) is a PPT algorithm that takes security parameter 1λ, a family of
cryptographic hash functions H : {0, 1}∗ → {0, 1}µ and a relation RL as inputs. It
returns the master public key mpk as output. All the following functions implicitly take
these data as inputs.

– AuKeyGen(AU) is a distributed PPT algorithm that is executed by the group of au-
thorities AU that returns the pair of signing/verification keys ( ˆsgki, vki) for 1 ≤ i ≤ n
along with a global verification key vka. AU [ ˆsgkai, vkai, vka]ni=1 represents the list of
credentials for AU .

– MKeyGen(Mm) is a PPT algorithm that is executed by merchant Mm ∈M in order to
join the network. It initially generates a pair of signing/verification keys ( ˆsgkbm, vkbm)
and returns a tuple ( ˆsgkbm, vkbm, pkbm =⊥, ˆcertbm =⊥). The list of keys belonging to
the group of merchants is recorded inM[ ˆsgkbi, vkbi]

ℓ
i=1.

– MRegister(AU [ ˆsgkai]ti=1,M[vkbi]
ℓ
i=1) is a distributed PPT algorithm that is run by any

subset of AU of size at least t to register the merchants who deposit a collateral to join
Nirvana’s merchant consortium and assign them a public key pkbm. For each merchant
Mm ∈ M, it takes the secret signing key of the authorities AU [ ˆsgkai] for 1 ≤ i ≤ t,
and returns a pair (pkbm, ˆcertbm) along with an interval Sm that is used for witness
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selection. After this phase, the list of parameters for the mth merchant can be updated
asM[ ˆsgkbm, vkbm, pkbm, ˆcertbm,Sm].

– CuKeyGen(Cn) is a PPT algorithm run by the customers, that for each customer Cn ∈ C,
generates an initial secret key ŝkcn and its corresponding public key pkcn. It returns a
tuple of (pkcn, ŝkcn, ˆcertcn =⊥) along with a zero-knowledge proof πcn to prove that
pkcn is well-formed. The list of customers’ keys are kept in C[ŝkci, pkci, ˆcertci =⊥]ki=1.

– CuRegister(AU [ ˆsgkai]ti=1, C[pkcn], πcn) is a distributed PPT algorithm executed by any
subset of AU of size at least t to certify the public key pkcn of a customer Cn corresponds
to some secret value ŝkcn under a proof πcn. Once the customer Cn is registered by the
authorities, it receives a certificate ˆcertcn and it updates C[pkcn, ŝkcn, ˆcertcn].

– CuCreate(C[ ˆcertcn]) is a PPT algorithm executed by the customer to request for certifi-
cation of their collateral. A successfully registered customer Cn, with certificate ˆcertcn
̸=⊥, can deposit collaterals in Nirvana. For each deposit j in Nirvana’s smart con-
tract, the customer samples a random value kj from a uniform distribution K in a
way that the deposit is not directly linkable to the customer. Then it returns a tuple
CL[k̂j ,Mj ] as an uncertified collateral along with a proof of knowledge of k̂j and the

fact that it belongs to K and Mj ← iDHH(k′j , k̂j), where k′j is the commitment on k̂j .

– AuCreate(AU [ ˆsgkai]ti=1, C[cert′cn], πcert, CL[Mj ], πj) is a distributed PPT algorithm exe-
cuted by a group of authorities AU of size at least t. It takes the authorities’ secret
signing keys ( ˆsgkai), an indexed DH message space of PRF key and a re-randomized
certificate (cert′n) as inputs. To create a certified collateral, it checks the validity of the
proof πj and whether this collateral exists in the smart contract, and returns the certifi-
cate ˆcertj along with the signed witness list (Wj , σWj

). The list of parameters for each

collateral is kept as CL[k̂j , k
′
j , ˆcertj ,Wj , σWj

]. Note that no SPT S.Recon(.) algorithm
is operated upon, and a user may execute this algorithm if it receives at least t partial
signatures from the authorities.

– Spend(C[ŝkcn, ˆcertcn], CL[k̂j , ˆcertj ,Wj , σWj
],M[pkbm], t) is a PPT algorithm that is exe-

cuted by a customer Cn ∈ C who performs a payment to the merchant Mm ∈M using
the cryptocurrency of their choice at time t. The registered customer uses a certified
collateral CL[k̂j , ˆcertj ,Wj , σWj

] to provide a payment guarantee to the merchant Mm.
It returns the transaction details as a list of parameters T [xm, πm, Rt], which contains a
pair of instance (xm) and proof (πm), along with a set of auxiliary data Rt. A customer
can use different collaterals that they own in Nirvana and combine them if needed by
using the aggregation algorithm in our SPTS construction.

– Vf(M[pkbm], T [πm, xm, Rt], t) is a deterministic algorithm executed by the mer-
chant Mm ∈ M to check the validity of a received payment guarantee. If the
proof is verified successfully and the majority of witnesses confirm that they have
not seen a similar payment guarantee in the current epoch (by providing their
signatures), the merchant verifies their individual signatures and aggregates them.
Once the aggregation is complete, the merchant provides the items/services to
the customer without waiting for the transaction confirmation of the customer’s
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original payment on the blockchain. If the proof verification fails, or the majority
of witnesses do not confirm the guarantee, the merchant rejects the payment guarantee.

Algorithm 1: Nirvana: Generic Construction.

1 Function PGen(1λ,H,RL):
2 H←$H
3 (c⃗rs, t̂s, t̂e)← ZK.Kc⃗rs(1

λ,RL)

4 (pp)← SPT S.Setup(1λ)
5 return mpk := (pp,H, c⃗rs)

6 Function AuKeyGen(AU):
7 (

⃗̂
sgka, v⃗ka, vka)← SPT S.KGen(mpk, n, t)

8 return (AU [ ˆsgkai, vkai, vka]ni=1)

9 Function MKeyGen(Mm):

10 ( ˆsgkbm, vkbm)← DS.KGen(pp)
11 return (M[ ˆsgkbm, vkbm])

12 Function MRegister(AU [ ˆsgkai]ti=1,

M[vkbi]
ℓ
i=1):

13 for j ∈ range(ℓ) do
14 (pkbj , pkb)← rbT E .KGen(mpk, ℓ, t, 2)

15 Sj ← H(AU [ ˆsgkai]ti=1, vkbj)

16 return (M[pkbi]
ℓ
i=1, [Si]ℓi=1, pkb)

17 Function CuKeyGen(Cn):

18 ŝkcn ←$Z∗
p

19 pkcn = gŝkcn

20 πcn ← PoK{(ŝkcn) : pkcn := gŝkcn}
21 return (C[pkcn, ŝkcn], πcn)

22 Function CuRegister(AU [ ˆsgkai]ti=1,
C[pkcn], πcn):

23 if ZK.Vf(c⃗rs, πcn, pkcn) == 1 then
24 ( ˆcertcn)←

SPT S.Sign(AU [ ˆsgkai]ti=1, pkcn)

25 return (C[ ˆcertcn])

26 Function CuCreate(C[ŝkcn, ˆcertcn]):

27 k̂j ← PRF .KGen(pp)
28 k′

j ← CO.Com(pp, k̂j)

29 πj ← PoK{(k̂i) : k′
j := Com(k̂j)}

30 Mj := (k′
j ,M1,M2)← iDHH(k′

j , kj)
31 µ←$Z∗

p

32 (cert′cn)← SPT S.Randz( ˆcertcn;µ)
33 πcert ←

PoK{(µ, pkcn) : SPT S.Vf(cert′cn) = 1}
34 return (CL[k̂j ,Mj ], πj , C[cert′cn], πcert)

35 Function AuCreate(AU [ ˆsgkai, vka]ti=1,
C[cert′cn], πcert, CL[Mj ], πj):

36 if ZK.Vf(c⃗rs, πcert, cert
′
cn) == 1 ∧

ZK.Vf(c⃗rs, πj , k
′
j) == 1 then

37 ( ˆcertj)←
SPT S.Par-Sign(AU [ ˆsgkai]ti=1,Mj)

38 Wj ← H( ˆcertj)
39 (σWj )←

SPT S.Par-Sign(AU [ ˆsgkai]ti=1,Wj)

40 return (CL[ ˆcertj ,Wj , σWj ])

41 Function Spend(C[ ˆcertcn, ŝkcn],

CL[k̂j , ˆcertj ,Wj , σWj ],M[pkbm], t):
42 µ←$Z∗

p

43 (cert′j)← SPT S.Randz( ˆcertj ;µ)
44 (σ′

j)← SPT S.Randz(σj ;µ)
45 (rt)← PRFk̂j

(t)

46 Rt := e(rt, h)

47 Ctm ← rbT E .Enc(pkbm, ŝkcn; rt)

48 ŵm = ( ˆcertj , µ, k̂j ,Wj , σWj , rt, ŝkcn)

49 xm = (cert′j , Ctm,W′
j , σ

′
Wj

)

50 πm ← ZK.P(RL, c⃗rs, xm, ŵm)
51 return (T [πm, xm, Rt])

52 Function Vf(M[pkbm], T [πm, xm, Rt], t):
53 if ZK.Vf(RL, c⃗rs, xm, πm) == 1 then
54 for i ∈Wi do
55 if SPT S.Vf(vka, σ′

Wi
, Rt) == 1

∧ Rt ̸∈ Li then

56 (σRt)← DS.Sign( ˆsgkbi, Rt)

57 if DS.Vf(vkWi
, σRt) == 1 ∧

|σRi | ≥ log(w)/2 then
58 return 1

59 Function RevealID(Ctm, Ctm′ , v):

60 (ŝkn)← rbT E .Dec(Ctm, Ctm′ , v)
61 return (skn)
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– RevealID(Ctm, Ctm′ , v) is a deterministic algorithm that takes two ciphertexts Ctm and
Ctm′ generated under the public key of two distinct merchants m and m′ and returns
the plaintext, i.e., the ID of the customer and the secret to their collateral k̂j . This ID

can be used by AU to blacklist the cheating customer and the secret k̂j can be used to
remunerate the victim merchant.

3.3 Security Analysis

Next we formally define the two main security requirements for Nirvana, namely
(1) Anonymity of honest customers and Unlinkability of payment guarantees, and (2) Pay-
ment certainty. Later, we formally prove that the proposed generic construction described
in Algo. 1 satisfies these requirements. In the following definitions, it is implicitly assumed
that there exists a PPT adversary A who has access to the following oracles provided by
the challenger B:

– Oracle OAuCorrupt(.): Adversary A, by having access to this oracle, can corrupt at most
t − 1 authorities and receive their internal states. The set of corrupted authorities is
denoted by AU ′.

– Oracle OCuCorrupt(.): Adversary A can corrupt any customer Cn ∈ C by querying this

oracle, and receive its uncertified secret key ŝkcn. The list of corrupted customers is
denoted by C′.

– Oracle OColCorrupt(.): A can corrupt at most qD collaterals CLj ∈ CL to receive their

uncertified secret value k̂j . The list of corrupted collaterals is represented by CL′.
– Oracle OMCorrupt(.): Adversary A can corrupt any merchant Mm ∈ M and receive its

uncertified public key pkbm. The list of corrupted merchants is denoted byM′.
– Oracle OWCorrupt(.): Adversary A can corrupt at most log10(w)/2 − 1 witnesses and

receive their internal states. The list of corrupted witnesses is denoted by W ′.
– Oracle ORevoke(.): Adversary A can revoke at most qR certified collaterals CLj ∈ CL

and redeem the deposited money. The list of revoked collaterals is denoted by CLR.
– Oracle OSpend(.): Adversary A can make at most qS payment guarantees created by

any arbitrary non-corrupted customer to any non-corrupted merchant.
– Oracle OVf(.): Adversary A has access to this oracle to check the validity of a payment

guarantee.

Definition 3.1 (Payment Unlinkability and Anonymity). Nirvana preserves the
anonymity of honest customers and provides unlinkability of payment guarantees, if
no PPT adversary A by getting access to OAuCorrupt,OCuCorrupt,OColCorrupt,OMCorrupt,
ORevoke,OSpend,OVf oracles, OANON in short, and with advantage of AdvANON

A (λ, b) =
2
(
(ExpANON

A (1λ, b) = 1)− 1/2
)
, has a non-negligible chance of winning the following ex-

periment, i.e., ∣∣AdvANON
A (λ, b = 0)−AdvANON

A (λ, b = 1)
∣∣ ≤ negl(λ) .
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The only restriction here is that the adversary cannot query OSpend(.) oracle on the
challenge collaterals and secret identities.

ExpANON
A (1λ, b)

1:
(
mpk,H,AU [ ˆsgkai, vkai, vka]ni=1,M[ ˆsgkbi, vkbi, pkbi]

ℓ
i=1

)
← AllGen(1λ,H,RL)

2:
(
Mm, ŝk

∗
0, ŝk

∗
1, k̂

∗
0 , k̂

∗
1

)
← AOANON(mpk)

3: b←$ {0, 1}
4: (πb, xb, Rt,b) ←$Spend

(
C[ ˆcert

∗
b , ŝk

∗
b ], CL[k̂∗

b , ˆcert
∗
b ],M[pkbm], t

)
5: b′ ←$AOANON (T [πb, xb, Rt,b])
6: if b′ == b :
7: return 1
8: else return 0

More precisely, this property enforces that no PPT adversary can expose any informa-
tion about the transaction such as the identity of honest customers or be able to link it
to any other transaction made by the customer. In reality, the adversary could choose any
two challenge collaterals with different lists of witnesses, allowing him to distinguish be-
tween them by checking this list. Therefore, in order to ensure that such trivial attacks are
excluded, we quantified unlinkability and privacy over all valid adversaries such that both
challenge collaterals have the same list of witnesses. As we discussed earlier in Remark 2.4,
a secondary set of witnesses is added to the main list in order to increase the probability
of this event occurring in the actual game.

Definition 3.2 (Payment Certainty). Nirvana provides payment cer-
tainty (PC) if no transaction τ is approved with a non-negligible advan-
tage such that qS + qR + τ > qD. No PPT adversary A with access to
OAuCorrupt,OCuCorrupt,OColCorrupt,OMCorrupt,ORevoke,OSpend,OVf oracles, OPC in short,
can win the following experiment with a non-negligible advantage in λ and we can write,

AdvPCA (λ) := Pr[ExpPCA (1λ) = 1] ≤ negl(λ) .

ExpPCA (1λ)

1:
(
mpk,H,AU [ ˆsgkai, vkai, vka]ni=1,M[ ˆsgkbi, vkbi, pkbi]

ℓ
i=1

)
← AllGen(1λ,H,RL)

2: (π∗, x∗, R∗
t )← AOPC(mpk)

3: if ZK.Vf (RL, c⃗rs, π
∗, x∗) == 1 ∧ qD < qS + qR :

4: return 1
5: else return 0
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More precisely, Nirvana provides payment certainty if no entity, not even after collud-
ing with a group of participants, can transfer and/or revoked more money than the amount
deposited.

Remark 3.1 (Auditing and Double-Spend Detection). In a secure and anonymity preserving
payment guarantee system with the above mentioned properties, if a malicious customer
attempts to use one collateral to pay multiple merchants at the same time, Nirvana’s
construction ensures that the cheating entity is caught and their identity is revealed to the
network.

Theorem 3.1. If the Pseudo-Random Function is correct and weakly-robust, the signa-
ture and Structure-Preserving Threshold signature schemes are existentially unforgeable,
the commitment scheme is computationally hiding and binding, the randomness-reusable
threshold encryption is statistically semantic secure, the NIZK proof is zero-knowledge and
knowledge sound, and the hash function is built in the random oracle model then the pro-
posed generic construction in Algo. 1 describes an unlinkable, anonymity-preserving, and
certain payment guarantee method as defined in Section 3.

Proof. The proof can be found in App. C.

4 Nirvana: An Efficient Instantiation

Until now, we presented the generic construction of an overlay network that provides in-
stant, anonymous and unlinkable payment guarantees. The implementation of our con-
struction completely relies on the use-case; however, in this section we aim to demonstrate
the efficiency of Nirvana’s generic construction in providing payment guarantees to mer-
chants by selecting specific cryptographic primitives along with the reasons for our choice
as follows:

Pseudo-Random Function: In order to make customers’ collaterals reusable, we utilise
a weakly-robust PRF proposed by Dodis and Yampolskiy [DY05]. Let a cyclic group G of
prime order p with a generator g. The PRF on input x ∈ Zp under key space Zp is defined
by PRFk(x) = g1/(k+x), where k←$Zp is a secret key.

In Nirvana, the input x is the time of payment occurrence (which is verified by the
target merchants). This makes the proof of knowledge of the secret key Schnorr-friendly.
However, our generic construction requires AU to sign an indexed DH message of this key
as a masked PRF key for privacy, as a malicious customer can generate multiple fake proofs
and the signature provides non-repudiation of the collateral’s origin.

Structure-Preserving Threshold Signature (SPTS): As mentioned above, in order to
verify the validity of customers’ collaterals, our work adopts SPS [AFG+10] (see App. B.3).
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Since Nirvana is designed with the main idea of preserving the anonymity of honest cus-
tomers and providing unlinkability of transactions in its network, we require unlinkable sig-
natures, such as blind signatures [Cha82]. However, we observe that Nirvana differs from
existing e-cash schemes [CFN90,FY93,CHL05], since it does not provide actual payments
but only a guarantee of payments happening in parallel (on the underlying blockchain).
Hence, we require the signatures to be reusable in our use-case, and blind signatures do
not achieve this property [CDHK15]. Another motivation for our choice of SPS signatures
is their compatibility with Groth-Sahai proof systems [GS08], which enables efficient verifi-
cation of collaterals in zero knowledge.7 Although the SPS relies on a single authority and
does not meet our requirements, recently, Sedaghat et al. [SSKP22] defined the notion of
(non-interactive) SPTS and proposed an efficient instantiation over indexed Diffie-Hellman
message spaces, stated in Def. 2.2. In a (n, t)-SPTS scheme (see App. B.3), the secret sign-
ing key is distributed among n authorities and the generation of any signature requires
the cooperation of a subset of authorities of size at least t. Moreover, any adversary that
learns t− 1 or fewer shares of the secret key cannot forge a valid signature. The key gen-
eration phase can be executed either by a trusted dealer or a distributed key generation
protocol. Since in Nirvana no trusted third party exists then we recall their proposed
non-interactive SPTS based on the Pedersens’s DKG [Ped91].

– (pp) ← SPT S.Setup(1λ): It takes the security parameter 1λ as input and executes
the bilinear pairing group generator BG(1λ) and returns the global public parameters
pp = (G1,G2,GT , e, g, h, p) as output.

– (
ˆ⃗
sk, v⃗k, vk) ← SPT S.KGen(pp, t, n): For a given group of authorities {Au1, . . . , Aun},
this probabilistic algorithm takes pp and integers t, n ∈ poly(λ) s.t. 1 ≤ t ≤ n as inputs
and acts as follows:
1. Each authority Aui, 1 ≤ i ≤ n, samples two initial random integers (xi0, yi0)←$Z∗p

and does the following:
a) It samples t random pairs {xij , yij}tj=1 and forms two univariate polynomials

Fi[X] = xi0+xi1X+ . . .+xitX
t ∈ Zp[X] and Gi[X] = yi0+yi1X+ . . .+yitX

t ∈
Zp[X] of degree t and commits the coefficients by publishing, Vij = (V1ij , V2ij) =
(hxij , hyij ) ∀j ∈ {0, . . . , t}.

b) It sends the pair of (Fi(ℓ), Gi(ℓ)) to the ℓ
th authority, Auℓ, s.t. ℓ ∈ {1, . . . , n}\{i}

and keeps (Fi(i), Gi(i)) secret.
2. Authority Aui checks the consistency of the received shares, (Fℓ(i), Gℓ(i)), from au-

thority Auℓ by computing the equations hFℓ(i) =
∏t

j=0 V
ij

1ℓj and hGℓ(i) =
∏t

j=0 V
ij

2ℓj .
If these equations hold, authority Aui accepts the shares, otherwise it will reject
and report the faulty authority Auℓ.

3. Any faulty authority that receives at least t complaints is labelled as disqualified.
At the end of this phase t parties from the set of qualified authorities, Q ⊂ AU , do
next steps.

7 https://crypto.ethereum.org/blog/groth-sahai-blogpost
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4. The global verification key is determined as vk := (vk1, vk2) :=
(
∏

i∈Q V1i0,
∏

i∈Q V2i0) = (h
∑

i∈Q xi0 , h
∑

i∈Q yi0).

5. Each qualified authority Aui defines its private key share ŝki as a pair of ŝki =
(ski,1, ski,2) =

(∑
ℓ∈Q Fℓ(i),

∑
ℓ∈QGℓ(i)

)
.

6. The corresponding verification key vki is obtained by computing, vki =(
hF (i), hG(i)

)
=

(∏
ℓ∈Q

∏t
j=0 (V1ℓj)

ij ,
∏

ℓ∈Q
∏t

j=0 (V2ℓj)
ij
)
, where F [X] =∑

ℓ∈Q Fℓ[X] and G[X] =
∑

ℓ∈QGℓ[X].

7. For the disqualified authorities Auj for j ∈ {1, . . . , n} \Q we define ˆskj = (0, 0) and
corresponding verification key vkj = (1G2 , 1G2).

It then returns the vectors
ˆ⃗
sk = (ŝk1, . . . , ŝkn) and v⃗k = (vk1, . . . , vkn) for each party

Aui for i ∈ [n] along with a common verification key vk.
– (σi)← SPT S.Par-Sign(pp, ŝki,M): An authority Aui who owns the secret signing key

ŝki takes an indexed DH message M := (id,M1,M2) ∈MH
iDH as input and it then runs

the hash function H(id) to get the random basis ggg. If e(ggg,M2) = e(M1, h), it computes

the partial signature σi = (ggg, si) = (ggg,gggski1M
ski2
1 ) and returns σi as output; otherwise

it responds by ⊥.
– (0, 1) ← SPT S.Par-Vf(pp, vki, M̃ , σi): The partial verification algorithm takes the ith

verification keys vki, a partial signature σi and message M̃ := (M1,M2) ∈ MiDH as
inputs. If all conditions: M1, si ∈ G1, ggg ̸= 1G1 and M2 ̸= 1G2 , e(ggg,M2) = e(M1, h) and
e(ggg, vki1)e(M1, vki2) = e(si, h) hold, then it returns 1 (accept); otherwise it returns 0
(reject).

– (σ,⊥)← SPT S.Recon(pp, {i, σi}i∈T ): The reconstruction algorithm takes a set of ver-
ified partial signatures {σi}i∈T . It returns a reconstructed signature by computing

σ := (ggg, s) :=
(
ggg,

∏
i∈T s

LT
i (0)

i

)
, where LTi (0) is the Lagrange coefficient for the ith

index corresponding to set T (see App. B.2) and returns σ as output if and only if
|T | ≥ t, otherwise it returns ⊥.

– (0, 1) ← SPT S.Vf(pp, vk, M̃ , σ): To verify a reconstructed signature σ, this algorithm
takes the verification key vk and message M̃ ∈MiDH as inputs. If all conditions: M1, s ∈
G1, ggg ̸= 1G1 and M2 ̸= 1G2 , e(ggg,M2) = e(M1, h) and e(ggg, vk1)e(M1, vk2) = e(s, h) hold,
then it returns 1 (accept); otherwise it returns 0 (reject).

The correctness and Threshold EUD-CiMA-security with adaptive adversary is formally
proved in [SSKP22]. Despite not being discussed in [SSKP22], the signature components
and underlying message are efficiently re-randomizable. In general, one can re-randomize
a signature σ = (h, s) by sampling a random integer r←$Z∗p so that σ′ = (h′, s′) = (hr, sr)

can be verified under the re-randomized message M̃ ′ = (M ′1,M
′
2) = (M r

1 ,M
r
2 ).

In addition to the authorities who use the SPTS scheme to compute signatures in
order to ensure that no customer can generate fake collateral proofs, witnesses in Nir-
vana also need to sign payment guarantees that they have not seen in the current epoch.
This is done to ensure a merchant that this payment guarantee is not being double-spent.
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However, unlike the authorities, witnesses do not need a threshold and re-randomizable
signature scheme that is compatible with Groth-Sahai proof systems [GS08]; however, it
needs to be aggregatable [MWD+20]. Hence, the witnesses in our instantiation rely on BLS
signatures [BLS04].

BLS Signatures: Based on the formal definition of a signature scheme in App. B.3, we
outline BLS signatures [BLS04] as an efficient and aggregatable signature scheme. For a
given security parameter 1λ and cyclic group (G, p), the BLS signature consists of the
following PPT algorithms:

- (pp)← Setup(1λ): Given security parameter 1λ, it samples h←$G and a hash-to-curve
function H : {0, 1}∗ → G. It returns pp = (H, h) as output.

– (vk, ˆsgk) ← DS.KGen(pp): This algorithm takes pp and samples a random integer
s←$Z∗p and returns the pair of signing/verification keys ( ˆsgk, vk) = (s, hs).

– (σ) ← DS.Sign( ˆsgk,m): This deterministic algorithm takes as inputs the signing key
ˆsgk and message m ∈M and computes σ = H(m)s and returns the signature σ.

– (0, 1) ← DS.Vf(vk, σ,m): The verification algorithm takes vk, σ and message m as
inputs. It return 1 (accept), if σ ∈ G1 and the equation e(σ, h) = e(H(m), vk) holds,
otherwise it returns 0 (reject).

Commitment: As we already discussed the given SPTS construction is defined over the
indexed DH message spaces and each secret PRF key needs to get an index. In this case
we utilize a commitment to the secret scalar message as an index (see App. B.4). The
hiding property of such cryptographical primitives masks the secret PRF keys used in
our construction. In addition, the binding property of a commitment scheme ensures the
unforgeability of these secret PRF keys. Over a cyclic group (G, p), we recall the Pedersen
commitment scheme [Ped92] as an efficient and structure-preserving construction. (to avoid
complex proof systems in the proof of knowledge of committed value.)

– (pp) ← CO.Setup(1λ): It takes the security parameter 1λ as input, picks two gen-
erators g←$G and h←$G uniformly at random and returns the public parameters
pp = (G, p, g, h) as output.

– (com) ← CO.Com(pp,m): It takes the public parameters pp and a message m ∈ Zp

as inputs, picks random opening τ ←$Z∗p and computes and outputs the commitment
com = gτhm.

– (0, 1) ← CO.Vf(pp, com,m′, τ ′): It computes com′ = gτ
′
hm

′
, if com = com′ it accepts

and returns 1: else it responds with 0 and rejects the commitment.

The preservation of customer’s anonymity and the unlinkability of transactions while
providing payment guarantees is the main motivation of Nirvana; however, this can lead
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to some issues. In the case of a collusion between a malicious witness and a customer, the
identity of the witness is publicly known, but the customer still remains anonymous. To
tackle this issue, we introduce a novel randomness-reusable threshold encryption, which
enables participants to reveal the identity of a customer when they double-spend with-
out relying on a trusted third party. Using this identity, the malicious customer can be
blacklisted and could also undergo possible legal procedures that are orthogonal to our
work.

Collaborative Key Generation is a variation of DKG that uses threshold cryptography
to achieve distributed key generation. The (n, t)-DKG generates n pairs of secret and public
keys such that at least t parties among n are required to execute a key oriented operation,
whereas any subset of size smaller than t is not able to execute it. Likewise in a (n, t, k)-
CKG, a global public key pk corresponding to a secret key sk is shared among n parties
such that any subset of larger than k can rebuild pk and any subset of larger than k < t ≤ n
can reconstruct the sk. The main difference here is that any operation that needs the secret
key sk requires the cooperation of at least t collaborators, whereas the public key itself can
be reconstructed by at least k < t parties.

Randomness-Reusable Threshold Encryption: By referring to formal definition
of randomness-reusable (n, t)-threshold encryptions (see App. B.5), we introduce a
randomness-reusable variant of the ElGamal threshold encryption [DF90]. For given public
parameters pp = (G1,G2,GT , g, h, p, e), the construction is defined as follows:

– (p⃗k, pk)← rbT E .KGen(pp, ℓ, t, 2): The key generation is a collaborative algorithm that is
executed by the group of authoritiesAU of size n to generate public keys for ℓmerchants,
defined in the Algo. 1 with a fixed threshold k = 2, while their corresponding secret
keys remain hidden as long as the majority of the authorities are honest (t ≥ n/2+ 1).

1. Each authority AU i samples an initial random value xi0←$Z∗p and does the follow-
ing:

a) It samples a random integer {xi1}, forms a polynomial Fi[X] = xi0 + xi1X ∈
Zp[X] and commits the coefficients by publishing, Vij = hxij ∀ j ∈ {0, 1}.

b) It broadcasts Fi(j) to the rest of authorities as a share corresponding to the jth

merchants.

2. Each authority checks the consistency of the received shares, Fi(j), from AU i by
computing the equations gFi(j) = Vi0V

j
i1 for all merchants’ label j ∈ [ℓ]. If this

equation holds, the shares generated by AU i will be accepted, otherwise it will
reject and then report the faulty authority AU i.

3. Any faulty authority that receives at least t ≥ n/2 + 1 complaints is labelled as
disqualified. At the end of this phase t parties from the set of qualified authorities,
Q ⊂ AU perform the next steps.
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4. The global public key is determined as pk :=
∏

i∈Q Vi0 = h
∑

i∈Q xi0 .
5. Each merchantMj is assigned by a public key pkj that is obtained by computing,

pkj = hF (j) =
∏

i∈Q
(
Vi0(Vi1)

j
)
, where F [X] =

∑
i∈Q Fi[X].

These steps complete the collaboration key generation phase and return the set of public
keys {pkj}1≤j≤ℓ along with the global public key pk.

– (Ctj) ← rbT E .Enc(pp, pk,m, pkj): The encryption algorithm takes public parameters
pp, global public key pk, the message m and public key pkj as inputs. It samples
r←$G1 uniformly at random and generates the ciphertext underlying each recipient
by computing (Ctj , v) :=

(
e(r, pkj),m · e(r, pk)

)
.

– (m,⊥) ← rbT E .Dec(pp, Ctj , Ctj′ , v): The decryption algorithm takes twin ciphertexts
(Ctj , v) and (Ctj′ , v) along with public parameters pp as inputs. Let J = {j, j′}, it

computes grsT : z =

(
Ct

LJ
j (0)

j · Ct
LJ
j′ (0)

j′

)
and then returns m := v/z, otherwise, it

responds with ⊥.

Non-Interactive Zero-Knowledge proofs: Until now, we have seen how reusable col-
laterals can be verified without the risk of a double-spending attack. However, in order to
preserve the anonymity of customers in Nirvana, the merchant should be able to verify a
payment guarantee without needing to access all information. Hence, we require NIZKs to
convince the merchant that a payment guarantee provided by a customer is correct without
requiring the customer to reveal their secret information. To do this, we need two proper-
ties of NIZKs, i.e., zero-knowledge and knowledge soundness defined in App. B.6. Based
on the chosen building blocks, the prover should generate four NIZK proofs as follows:

π1 =
{(

w1 := k̂j , x1 = (pp, comj)
)
: y1 := CO.Com(pp, k̂j)

}
,

π2 =

{(
w2 := k̂j , x2 = (pp, Rt)

)
: y2 := R

k̂j
t

}
,

π3 =

{(
w3 := (rt, k̂j), x3 = (pp, pkbm, Ctm)

)
: y3 := Ct

k̂j
m

}
,

π4 =
{(

w4 := (−t · ŝkcn, k̂j), x2 = (pp, Ct)
)
: y4 := (v/pkcn)

k̂j · e(g, h)−t·ŝkcn
}

.

Respectively, the verifier can check the validity of the proofs by running the NIZK’s
verify algorithm along with checking whether the equations e(g, h) · R−tt = y2, e(g,mpk) ·
(v)−t = y4 and e(g, pkbm) · (Ctm)−t = y3 hold or not.

Despite the fact that the described relation can be proved by the standard Schnorr
proofs [Sch90], in this paper, we use the Groth-Sahai proof systems [GS08] that are secure
in the standard model and support a straight-line extraction of the witnesses, i.e., avoids
rewinding as required for Fiat-Shamir (FS) heuristic [FS87]. More precisely, non-interactive
versions of Schnorr proofs obtained via the FS heuristic and its security is guaranteed only
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within the random oracle model [BR93]. This leads to protocols only providing heuristic
security guarantees [CGH98]: this is problematic if they are within composable frameworks
such as the universal composability (UC) framework [Can01] that we leave it to the future
works.

Groth-Sahai (GS) proof system [GS08]. Groth and Sahai proposed efficient and
practical Non-Interactive Zero-Knowledge (NIZK) proofs and Non-Interactive Witness In-
distinguishable (NIWI) proofs in the standard model for algebraic statements that are
bilinear group-dependent languages. In this paper, we take one of the instantiation pro-
posed in [GS08] that relies on the symmetric external Diffie-Hellman (SXDH) assumption
over prime order groups. Over an asymmetric bilinear group (G1,G2,GT , p, e), the rela-
tion over variables X1, . . . ,Xm ∈ G1, Y1, . . . ,Yn ∈ G2 and a constant T ∈ GT can be any
product-pairing equation (PPE) on the form:

n∏
i=1

e(Ai,Yi)
m∏
i=1

e(Xi, Bi)
m∏
j=1

n∏
i=1

e(Xj ,Yi)µi,j = T ,

where (A1, . . . , An) ∈ G1, (B1, . . . , Bm) ∈ G2 and {µi,j}1≤i≤m & 1≤j≤n ∈ Zm·n
p are constant.

The high-level idea is that by taking the setup parameters and the common reference
string (CRS), the prover can commit to the hidden variables (witness components) and then
provide the proofs to convince the verifier about the validity of above relation underlying
the statement to be proven. Note that the GS-proof is Witness-Indistinguishable (WI) when
T ∈ GT while this can be transformed into a Zero-Knowledge proof system if T = 1GT

.

To be more concrete, we outline a simple case of m = n = 1 for the above mentioned
PPE and the CRS contains group elements f1 = (gx, f1) ∈ G1 and f2 = (gy, f2) ∈ G1. The
prover computes the commitments CX = (1G1 ,X ) ·f1r1 ·f2s1 and CY = (1G1 ,Y) ·f1r2 ·f2s2 ,
where r1, r2, s1, s2←$Z∗p are sampled uniformly at random by the prover. In addition, the
prover sends the proof π = (π1, π2) = (g−r1x g−r2y , g−s1x g−s2y ) and the tuple (CX , CY , π) to the
verifier. The verifier checks whether the equation T = e(CX , gx)e(CY , gy)e(f1, π1)e(f2, π2)
holds or not.

5 Performance Analysis

In this section, we demonstrate the performance of Nirvana. Based on the application, the
costs incurred in each phase are divided into two parts, termed “offline phase” and “online
phase”. The former includes the parameter generation, key generation and registration
functions. The latter is solely responsible for spending and verification and is the main
focus of this evaluation.

We implementedNirvana by using the Charm-Crypto framework [AGM+13], a Python
library for Pairing-based Cryptography and obtained the benchmarks on four AWS EC2
instances.
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Table 1: The list of scenarios and the location of entities.

Scenarios
Nirvana

Location

Customer

Location

Merchant

Location

Witness

Location

Average

Spending Time

Average

Verification Time

1 Singapore California Frankfurt London 0.93 0.99

2 Singapore Frankfurt London California 0.35 1.27

3 Frankfurt London California Singapore 0.85 1.24

As can be seen in Tab. 1, we ran three sets of experiments, with the following loca-
tion configurations: 1 Nirvana located in Singapore, customer in California, merchant in

Frankfurt and witnesses in London. 2 Nirvana located in Singapore, customer in Frank-

furt, merchant in London and witnesses in California. 3 Nirvana located in Frankfurt,
customer in London, merchant in California and witnesses in Singapore.

For the sake of convenience, during our implementation, we assumed that all witnesses
are located in the same location. However, placing the witnesses in different locations would
only add a small delay based on their distance from the merchant; in order to reflect this
delay, we do sequential witness verification instead of parallel verification.

All our EC2 instances had the same computational configuration, i.e., an Ubuntu Server
20.04 LTS (HVM) with an Intel (R) Xeon(R) CPU @ 2.50 GHz and 16 GB of memory.
We apply the Barreto-Naehrig (BN254) curve (also known as type F groups), y2 = x3 + b
with embedding curve degree 12 [BN06]. In this pairing group, the base field order is 256
bits. Based on our Python code8, the overhead of the spending and verification algorithm
is summarized in Fig. 4.

Latency: Fig. 4 shows the almost constant relationship between the total number of
witnesses for each collateral and their spending time. With spending time, we capture the
Spend functionality in Algo. 1, where the customer generates the payment ciphertext and
NIZK proofs to provide a payment guarantee to the merchant. It also includes the time
required to send the payment guarantee to a merchant located in either of the locations
in Tab. 1. As can be seen, the time required to generate a payment guarantee in Nirvana
for merchants in Scenario 1 and 3 is almost identical because the distance between the
customer and merchant in both scenarios is roughly the same (i.e., California to Frankfurt
and London to California). The effect of distance is also reflected in Scenario 2 when the
customer is in Frankfurt and the merchant is in London, with each payment guarantee only
taking 350 ms on average to be spent as compared to ∼ 900 ms in the other two cases.

Fig. 4 shows the linear relationship between the total number of witnesses for each
collateral and the verification time required by a merchant and witnesses. With verification
time, we capture the Vf functionality in Algo. 1, where the merchant verifies the NIZK

8 https://github.com/NirvanaPayments/Nirvana
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Fig. 4: Analysis of time required for spending and verification of payment guarantees in
Nirvana.We have considered three different scenarios for the location of participants as
described in Tab. 1.

proofs provided by the customer as a payment guarantee and waits for a majority of the
witnesses to approve that this guarantee is unique. It also includes the time required to
receive these proofs from the customer located in either location in Tab. 1. As can be seen,
the time required to verify a payment guarantee in Nirvana for merchants located in all
locations grows linearly with a total number of witnesses, with verification only requiring
990 ms on average in Scenario 1 with two witnesses and 1.3 s on average with 6 witnesses.
This is due to the requirement of each individual witness to check their local storage for
these guarantees, sign the guarantee if it is unique and finally send the signed guarantee
to the merchant. Similar to spending, the distance between countries also effects the time
taken to verify each payment guarantee. In scenario 1 of Tab. 1, the merchant and witnesses
are located nearby, hence the verification only takes 990 ms when each collateral is assigned
to two witnesses as compared to ∼ 1.25 s for both scenario 2 and 3. This is because of the
latency incurred due to the geographical distance between, e.g., California and London.

Smart contract cost: Tab. 2 provides USD equivalents of the cost of executing functions
(such as registration, etc.) on Nirvana’s smart contract. Since our smart contract can be
deployed on any Ethereum Virtual Machine (EVM) supporting blockchain, we calculated
the costs on both Ethereum (high Gas fees) and Celo (low Gas fees) using the current
conversion rates and a Gas price (Gwei) of 27 for Ethereum and 2.42 for Celo.9 As can
be seen in Tab. 2, one-time registration of a customer costs them 107 400 Gas or $7.37
on Ethereum and $0.67 on Celo. This Gas cost is a bit high due to the requirement for
customers to store a secret to enable victim merchants to redeem their collateral on the
smart contract. However, this cost goes down for merchant registration since merchants

9 https://ethgasstation.info/, https://explorer.bitquery.io/celo_rc1/gas

24

https://ethgasstation.info/
https://explorer.bitquery.io/celo_rc1/gas


do not need to store a secret to redeem their collaterals, hence only costing 54 317 Gas or
$3.73 on Ethereum and $0.34 on Celo. In case a victim merchant wants to claim a malicious
customer’s collateral, it costs them 34 972 Gas or $2.40 on Ethereum and $0.22 on Celo.
Finally, if a merchant or customer want to withdraw their money from Nirvana’s smart
contract, it costs them 22 525 Gas or $1.55 on Ethereum and $0.14 on Celo.

Table 2: Costs of transactions in Nirvana’s smart contract deployed on Ethereum and
Celo.

Function Gas USD (Ethereum) USD (Celo)

Customer reg. 107 400 7.37 0.67

Merchant reg. 54 317 3.73 0.34

Claim collateral 34 972 2.40 0.22

Withdraw collateral 22 525 1.55 0.14

We acknowledge that Nirvana is not cost efficient when used on Ethereum; however,
it is important to note that with the current ETH 2.0 roadmap10, efforts are being made
to lower the Gas fees on Ethereum and eventually make it more usable for Nirvana. More
information on the functionality of Nirvana’s smart contract can be found in App. D

6 Related Work

Threshold-Issuance Anonymous credentials (TIAC). Anonymous Credentials (AC)
are an important privacy-preserving authentication technique, which allows users to prove
the possession of attributes while preserving their anonymity from verifiers. A popu-
lar approach to construct ACs is to rely on specific signature schemes like Camenisch-
Lysyanskaya [CL03,CL04] or Pointcheval-Sanders signatures [PS16], which can sign at-
tribute vectors and can be re-randomized to support unlinkable verifications. The use of
zero-knowledge proofs in verification, in addition, allows to prove ownership of undisclosed
attributes.

Basically, a credential system is a certificate that is generated via a cryptographic pro-
cess executed by the credential issuer authority. Before generating such a certificate, the
authority verifies the information that this certificate certifies. However, AC constructions
are prone to compromise since they rely on a single credential issuer authority; hence,
a single point of failure. In order to overcome this issue, Sonnino et al. proposed Co-
conut [SAB+19], a so-called Threshold-Issuance AC (TIAC) system, that enables a sub-
set of credential issuers to jointly issue credentials and already found practical applica-

10 https://ethereum.org/en/eth2/
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tions [BSKD22,TBA+22]. More precisely, they rely on a threshold variant of PS signa-
tures [PS16] and distribute the signing among n credential issuers where a cooperation
of t issuers is required to generate a valid credential. This improves the availability and
also solves the single point of failure problem of centralized AC schemes. Meanwhile no
subset of credential issuers less than t can generate a fake credential and also the creden-
tials are re-randomizable, which protects the anonymity of the parties even in the case
of collusion between authorities and a verifier. In blockchains, threshold issuance setting
is more desirable, because decentralized blockchains guarantee integrity when the number
of dishonest authorities is below a threshold (Byzantine fault tolerance). By retaining the
structure of the scheme and avoiding structure-destroying primitives like hash functions,
our suggested system can improve the efficiency of the Coconut. While Coconut is practical
from a performance point of view and already found practical applications11, it unfortu-
nately lacks a rigorous security analysis. Recently, Rial and Piotrowska [RP22] conducted a
security analysis of Coconut modeled via an attribute-based access control with threshold
issuance functionality in the UC model. However, this analysis required some changes to
the original Coconut scheme. As an independent line of research, we believe the collateral
issuance function described in Algo. 1 can be considered as a TIAC, while it relies on a
structure-preserving threshold signature that can simplify the UC model. We leave it as
an interesting future work.

E-cash. The idea of balancing privacy dates back to the introduction of untraceable
electronic (or “digital”) payment schemes involving a customer, bank and merchant by
Chaum [Cha82]. His idea enabled a customer to get a “coin”, signed blindly by an issuing
bank. This coin could later be used for payments to a merchant in exchange for a service. Fi-
nally, the merchant would then deposit this coin back to the issuing bank for remuneration.
Since these coins were digital, double-spending them was conceptually trivial because dig-
ital information is easy to copy. As a solution, in “on-line” e-cash [Cha82] the issuing bank
was asked to verify each transaction individually before it was marked successful. Chaum,
Fiat and Naor later extended this idea to support “off-line” payments, i.e, a customer could
make untraceable payments to the merchant without involving a bank for every transac-
tion [CFN90] . Due to this “off-line” nature of payments, the solution for double-spending
combined prevention with tamper-resistant hardware with detection through successful
tracking, i.e., the issuing bank would check the list of all coins spent, and once double-
spending was spotted the identity of the perpetrator would be revealed. This approach of
realizing offline payments while detecting double-spending, known as the Chaum-Fiat-Naor
approach (CFN paradigm) was adopted and improved by several following e-cash systems.
Franklin and Yung [FY93] provided the first provably secure e-cash scheme, D’Amiano
and Crescenzo [DD95] proposed a storage efficient transferrable e-cash scheme that made
forwarding received e-cash to other merchants possible and Okamoto and Ohta [OO92]

11 https://github.com/nymtech/coconut
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proposed the first untraceable divisible e-cash scheme. Another e-cash scheme proposed
by Osipkov et al. [OVHK07], inspired by Brands’s work involving a tamper-proof device
with observers [Bra94], relies on a co-operative peer-to-peer (p2p) network for preventing
double-spends in real time. There is a plethora of literature with several improvements to
Chaum’s e-cash [Bra94,Sch95,FTY96,CHL05,CG08,CGT08,CG10,BCKL09,BCFK15]. All
these schemes, however, work with centrally issued currency and mostly rely on a custo-
dian bank to catch double-spending, except [OVHK07] where a co-operative p2p network
is utilised. Nirvana is similar to [OVHK07] in the sense that it also uses an underlying
currency (the cryptocurrency of user’s choice) and has parties responsible for spotting
double-spending attempts (merchants/witnesses instead of banks).

Payment channels/networks/hubs. Layer-2 solutions such as payment chan-
nels [Hea13], or its extensions such as payment channel networks (e.g., Lightning net-
work [PD16], Raiden [Net19], Bolt [GM17]) and payment hubs (TumbleBit [HAB+17])
provide instant transaction confirmation, at the cost of some drawbacks. Payment chan-
nels require depositing and constantly replenishing a collateral for each merchant a cus-
tomer wants to transact with. This requirement makes the utilization of payment channels
expensive. Moreover, they do not support unilateral payments (customer-to-merchant pay-
ments); payment channel networks enable transferring money over established channels
between parties (routes), but suffer from route availability issues in case any involved
party is unresponsive. Moreover, due to the unilateral nature of payments in retail mar-
kets, the funds locked in a channel deplete quickly, and hence their plausibility to act as
intermediaries decreases [MWD+20]. Although fund re-balancing techniques [KG17] exist
to tackle this issue, they require a user to have multiple channels; more centralized layer-2
schemes [HAB+17,KZF+18] that do not require multiple collaterals and solve route avail-
ability issues, either require a substantial collateral to be deposited by the intermediary
and/or they do not guarantee privacy from such intermediaries. These hubs also become
a single point of failure, and increase data availability risks. Despite the risks that cen-
tral hubs entail, Avarikioti et al. [AHWW20] suggested that payment channel networks
are more stable and efficient when centralized structures are present. Moreover, Zabka
et al. [ZFSD22] show the rising centrality in lightning network, an instantiation of pay-
ment channel networks on Bitcoin blockchain. Hence it becomes increasingly important
to make such semi-decentralized architectures more trustless, robust and secure. With
Nirvana, we propose a completely trustless, robust, anonymity-preserving and unlinkable
semi-decentralized solution that does not require a customer to make multiple collaterals,
or constantly replenish them. Additionally, Nirvana also offers customer anonymity and
unlinkability of payment guarantees to its participants.

Snappy. Recently, Mavroudis et al. proposed Snappy [MWD+20], which solves the la-
tency problem of existing public blockchains such as Ethereum and enables fast (zero-
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confirmation) and secure payments. This is achieved by designating a set of untrusted
validators (state-keepers). These state-keepers are tasked to track all payments of a cus-
tomer, s.t. a merchant never receives an invalid payment. In the scenario of an invalid
payment, the merchants can redeem their payments from the customer’s deposit on an
Ethereum smart contract, also known as the arbiter. Due to this functionality, customers
never have to replenish their deposits as long as they behave honestly, since this deposit is
only used in case of misbehaviour. The merchants are also required to deposit collaterals
to prevent collusion with malicious customers. This guarantee of remuneration enables a
merchant to instantly accept an on-chain payment, as they are ensured a payment even
in the worst case, such as a customer performing a double-spending attack. Snappy, by
design, does not offer any protocol-level anonymity from the arbiter and state-keepers.
This is due to the fact that all transactions are in the clear, and the set of state-keepers
is the same. Hence, the transaction details of all customers is available to them. Nirvana
ensures protocol-level customers’ anonymity and unlinkability of payment guarantees. Like
Snappy, deposits in Nirvana are reusable unless used to compensate victims for the actions
of misbehaving parties.

LDSP: LDSP [NCWW21] is a concurrent work to Nirvana that aims to solve privacy
issues of Snappy while providing fast payments. However, LDSP does not support reusable
collaterals.

Table 3: Efficiency and Functionalities Comparison.

Scheme
Customer
Anonymity

Transaction
unlinkability

Privacy-
Balancing

Efficient
Transaction
Approval

Re-usability of
Collaterals

Blockchain Transaction ✓a ✓a ✗ ✗ -

Snappy [MWD+20] ✗ ✗ ✗ ✓ ✓
Nirvana ✓ ✓ ✓ ✓ ✓

a Depends on the underlying blockchain.

Comparison of Nirvana with related work: In Tab. 3, we compare Nirvana with
Snappy on several characteristics, such as: 1 Customer Anonymity preservation
(CA) and Transaction Unlinkability (TU): A payment system should preserve the
anonymity of honest entities and provide unlinkability of payments. As discussed before,
Snappy [MWD+20] is not privacy-preserving by design; however, Nirvana fulfill this re-

quirement. 2 Privacy-Balancing (PB): Much like traditional e-cash schemes, a pay-
ment system should balance the privacy of its participants by revealing the identities of
all malicious entities who try to perform double-spending. This requirement is not fulfilled
by Snappy. Thanks to our novel rbTE scheme (see Sect. 4), Nirvana fulfills this require-

ment. 3 Efficient Transaction Approval (ETA): A payment system should enable
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instant and secure payments. Both Snappy and Nirvana provide ETA. Nirvana only re-
quires a small subset (log10(n)) of the merchant consortium of size n to approve a payment
guarantee and regardless of our enhanced design choices, Nirvana’s evaluation shows its
efficiency in doing so. 4 Re-usability of collaterals (RE): A payment system should
only use collaterals as payment guarantees and not actual means of payments. Snappy and
Nirvana support reusable collaterals as long as the customers are honest. However, in
Nirvana, this is achieved in a privacy-preserving way with only the dishonest customers
losing their collaterals and privacy. In terms of a normal blockchain transaction, it can be
privacy-preserving in some cases (e.g., Monero [Noe15]), but it does not fulfill any other
requirement.

7 Conclusion and Future Work

In this paper, we proposed Nirvana. It provides anonymity-preserving and unlinkable
payment guarantees for instant confirmation of on-chain payments. Nirvana complements
recent solutions for increasing the transaction throughput of permissionless blockchains by
solving the latency problem and enabling a high system-level transaction throughput. It
allows merchants in a retail system to safely accept zero-confirmation payments without risk
of double-spending. Nirvana uses a collaborative p2p network to prevent double-spending
in real time. Additionally, we designed a novel randomness-reusable threshold scheme,
that enables participants to audit the payments in the network and reveal the identity of
malicious customer who perform double-spending. We formally proved that Nirvana is
secure w.r.t. two main security features namely customers’ anonymity and unlinkability of
transactions and payment certainty for merchants. Our evaluation showed the capability of
Nirvana in allowing for fast global payments with a delay of less than ∼ 1.7 seconds. As
future work, Nirvana can be modified to handle merchant churn, as the witness allocation
and collateral requirements prevent merchants from instantly dropping out and assume a
fixed consortium. The extension of our privacy-balancing payment guarantee mechanism
to capture other possible types of illicit activities using cryptocurrencies, such as terrorist
funding, money laundering, also paves a promising path for future research.
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J. Comput. Syst. Sci., 37(2):156–189, 1988.
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A Motivation for Nirvana

As already discussed in Sect. 6, despite providing numerous improvements to
the performance and scalability of public blockchains, existing layer-2 propos-
als [PD16,Net19,DW15,MBB+19,Hea13,HAB+17,KZF+18] have a fundamental limitation,
i.e., collateral depletion. While this issue is somewhat addressed with collateral re-balancing
techniques [KG17], this technique imposes additional requirements such as having multiple
channels. Moreover, the state of these channels has to be favourable in order to allow funds
to be transferred between them. Hence, collateral reusability becomes an interesting prop-
erty for solutions that provide instant finality to payments made with cryptocurrencies.
Mavroudis et al. [MWD+20] proposed Snappy, that provides instant transaction finality
with a concept called payment guarantee. Payment guarantees assure a payee (merchant)
that they will receive a payment once the transaction on the underlying blockchain has
reached its eventual finality, even if the payer (customer) is malicious. Their design is
simple, efficient and most importantly, the collateral provided by a payer is small and
reusable. This reusablity comes from the abstraction of payment guarantees, where the
customer makes a payment on the underlying blockchain and assures the payee about this
payment by using irrefutable evidence that this payment will be successful. The design
of Snappy is tuned for efficiency and simplicity; hence, it completely overlooks any kind
of privacy-preservation. The identities of the customers are known to every participant,
along with the transaction amounts and the identity of payees. Snappy’s design relies on
the availability of data (public transaction details) in order to ensure double-spends cannot
happen, hence making their scheme private would not be possible with its current building
blocks. Of course, the identity of merchants can be replaced with cryptographic commit-
ments; however, upon opening this commitment on the arbiter smart contract in order to
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reclaim their funds, a merchant would link the payment to themselves. For more details,
interested readers are referred to [MWD+20].

With Nirvana we improve upon Snappy’s idea of payment guarantees and offer collat-
eral reusability along with privacy-preservation, namely, customer anonymity, transaction
amount obfuscation and transaction unlinkability. The choice of our building blocks is di-
rectly in line with our aim to provide the aforementioned privacy properties in an efficient
manner. By utilizing the combination of PRF and SPTS, we enable a payer to provide
a proof of solvency by utilizing efficient Groth-Sahai NIZK proofs. This is because of the
structure-preserving nature of these schemes. By using any other kind of threshold sig-
natures that employs hash functions, we would have to utilize zk-SNARKs to prove the
knowledge of pre-image of the hash function. This becomes a problem especially because
the time required to generate a proof using zk-SNARKs is linear in the order of circuit size.
Hence, the customer would require more time to spend their payment guarantee. We enable
proactive double-spending detection efficiently, by assigning a unique set of fixed witnesses
to each collateral. Unlike Snappy, transactions in Nirvana do not utilize an Ethereum
address as a pseudonym since it is not required. This is because in Snappy, if a witness
gets the same transaction from a customer, they can identify it and catch double-spending
attempts by just looking at the address. Nirvana borrows concepts from e-cash, and due
to our novel randomness-reusable ElGamal encryption we enable both proactive and offline
double-spend detection. For proactive double-spending detection, the witnesses constantly
merge every existing payment guarantee in their storage with the freshly received one. If
any of these guarantees is being double-spent, the guarantees merge together to reveal the
identity of the malicious customer. Similar technique can be applied by an offline witness to
track cheaters. Please note that the witnesses can remove these guarantees from their stor-
age after a fixed period of time called epoch. To the best of our knowledge we are the first
ones to utilize these building blocks and design an instant finality layer-2 scheme that uti-
lizes reusable collaterals, while offering several privacy-preserving properties. Admittedly,
our system design is somewhat centralized due to the presence of authorities. In order to
offer these properties, we need to rely on such a design. However, despite the risks that
central hubs entail, Avarikioti et al. [AHWW20] suggested that payment channel networks
are more stable and efficient when centralized structures are present. Moreover, Zabka et
al. [ZFSD22] show the rising centrality in lightning network, an instantiation of payment
channel networks on Bitcoin blockchain. Hence it becomes increasingly important to make
such semi-decentralized architectures more trustless, robust and secure. With Nirvana, we
propose a trustless, robust, anonymity-preserving and unlinkable semi-decentralized solu-
tion that does not require a customer to make multiple channels, or constantly replenish
them.
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B Cryptographic Building-Blocks

Nirvana heavily relies on cryptography to achieve its goals. In this section, we begin with
reviewing the required building blocks, which include Pseudo-Random Functions (PRFs),
Shamir Secret Sharing, Digital Signature (DS), Structure Preserving Threshold Signatures
(SPTS), Commitments (CO) and Non-Interactive Zero-Knowledge (NIZK) proofs. Finally,
we also introduce a novel randomness-reusable variant of the threshold ElGamal encryption
to balance the privacy of the users. Next the utilized cryptographical primitives and their
security requirements are discussed.

B.1 Pseudo-Random Function (PRF)

Definition B.1 (Pseudo-random Functions [GGM84]). Let K and I be the key and
input spaces, respectively. We say a family of functions like f : K × I → F is a pseudo-
random function (PRF) family if it is efficiently computable and for all PPT distinguishers
D we have, ∣∣∣∣ Pr

k←$K
[DPRFk accepts]− Pr

g ←$G
[Dg accepts]

∣∣∣∣ ≤ negl(λ) ,

where DO denotes the output of distinguisher D when given access to oracle O. It is assumed
that the distinguisher can adaptively choose the inputs and G : I → F is a set of uniformly
random functions.

We recall the weak notion of robustness for a PRF function, defined by Damg̊ard et
al. [DGK+21], such that no PPT adversary can find a key that produces collisions with a
PRF generated by an honest key.

Definition B.2 (Weakly-Robust PRF [DGK+21]). A PRF scheme, ΨPRF , under
query set Q = (x, y) ∈ I × F is weakly-robust if for all PPT adversaries A we have:

Pr

[
k←$KGen(λ), (x∗, k∗)←$APRFk(.)(1λ) :

∃ (x, y) ∈ Q,PRFk∗(x∗) = y = PRFk(x)

]
≤ negl(λ) .

B.2 Shamir Secret Sharing

A (n, t)-Shamir Secret Sharing (SSS) [Sha79] divides a secret s among n shareholders such
that each subset of t shareholders can reconstruct secret s and any smaller subset of them
learn nothing about the secret. For this purpose, the dealer who knows the secret s forms a
polynomial f(x) of degree t+1 with a randomly chosen coefficients such that f(0) = s. Then
the dealer securely provides each shareholder with si = f(i), i ∈ {1, . . . . , n}. Particularly,
each subset of T ⊂ {1, . . . , n} with size at least t by pooling their shares can reconstruct
the secret s using the Lagrange polynomial interpolation as s = f(0) =

∑
i∈T siL

T
i (0),

where LTi (x) =
∏

j∈T ,j ̸=i
x−j
i−j .
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B.3 Digital Signatures and SPTS

Digital signatures are an electronic analogue of written signatures that ensure data authen-
tication, and the non-repudiation of the sender. Next we formally define digital signature
and list their security requirements.

Definition B.3 (Digital Signature). For a given security parameter 1λ, a digital sig-
nature consists of the following PPT algorithms defined as follows:

- (pp) ← DS.Setup(1λ): It takes the security parameter 1λ as input and outputs the set
of public parameters pp.

– (vk, ˆsgk) ← DS.KGen(pp): This algorithm takes the global public parameters pp and
returns the pair of signing/verification keys ( ˆsgk, vk) associated with a message space
M.

– (σ) ← DS.Sign(pp, ˆsgk,m): On input of the signing key ˆsgk and a message m ∈ M
This algorithm outputs a signature σ.

– (0, 1) ← DS.Vf(pp, vk, σ,m): This deterministic algorithm takes as inputs the verifica-
tion key vk, a signature σ and m and outputs either 1 (accept) or 0 (reject).

The primary security requirements for a signature scheme are correctness and unforge-
ability against chosen message attack, which are defined as follows:

Definition B.4 (Correctness). A digital signature scheme, ΨDS , is called correct, if we
have,

Pr

∀ ( ˆsgk, vk)← KGen(pp),m ∈M :

Vf
(
pp, vk,m,Sign(pp, ˆsgk,m)

)
= 1

 ≥ 1− negl(λ) .

Definition B.5 (EUF-CMA). A digital signature, ΨDS , is called EUF-CMA-secure if for
all PPT adversaries A with an access to the signing oracle OSign we have:

AdvEUF-CMA
DS,A (λ) = Pr

∀ (pp)← Setup(1λ), ( ˆsgk, vk)← KGen(pp),

(σ∗,m∗) ←$AOSign(pp, vk) :

m∗ ̸∈ Qmsg ∧ Vf(vk, σ∗,m∗) = 1

 ≤ negl(λ) ,

where the signing oracle OSign takes a message m ∈M, runs Sign(pp, ˆsgk,m) and adds the
message to a query set Qmsg.

A digital signature is called structure-preserving [AFG+10], when it preserves the group
structure over bilinear group setting, if it satisfies the following requirements:

– The verification key consists of G1 and G2 group elements.
– The signature consists of group elements in G1 and G2.
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– The messages are composed of G1 and G2 elements.

– Only G1 and G2 membership and pairing product equations of the form of∏
i

∏
j ê(Gi, Hj)

ci,j = 1T need to be considered in the verification algorithm, where
Gi ∈ G1 and Hj ∈ G2 and ci,j ∈ Zp.

By avoiding structure-destroying operations such as hash functions, SPS are able to
construct efficient schemes when combined with other primitives such as Zero-Knowledge
proof systems. In a SPS, both signed messages and signatures are group elements that
can be used to verify the validity of a signature by performing pairing-product equations.
These unique properties make the SPS schemes attractive for a variety of privacy-preserving
applications, like anonymous credentials [Fuc11,CDHK15], anonymous e-cash [BCF+11] or
access control encryption [SP21]. Moreover, these signatures are efficiently re-randomizable
under the knowledge of a secret randomness such that the re-randomized and original sig-
natures are computationally indistinguishable. We utilise this property of re-randomization
to ensure unlinkability of transactions in Nirvana.

Given the fact that the SPS relies on a single issuer then it does not meet Nirvana’s
desirable properties. In this aim, we recall the definition of Structure-Preserving Threshold
Signatures from a recent work of Sedaghat et al. [SSKP22]: it preserves the SPS’s properties
while mitigating the needed trust to a single entity.

Definition B.6 (Structure-Preserving Threshold Signatures [SSKP22]). For a
given security parameter 1λ and an asymmetric bilinear group, a (n, t)-SPTS over message
spaceM, consists of the following PPT algorithms:

– (pp) ← SPT S.Setup(1λ): It takes the security parameter 1λ as input and returns the
set of global public parameters pp as the output.

– (
ˆ⃗
sgk, v⃗k, vk)← SPT S.KGen(pp, t, n): The key generation is a distributed and interactive
algorithm that takes the global public parameters pp, and integers t, n ∈ poly(1λ) s.t. 1 ≤
t ≤ n, as inputs. It then returns the vectors of secret signing keys

ˆ⃗
sgk = ( ˆsgk1, . . . , ˆsgkn)

and verification keys v⃗k = (vk1, . . . , vkn) along with a common verification key vk.
– (σi) ← SPT S.Par-Sign(pp, ˆsgki,m): It takes the public parameter pp, the ith signing

key ˆsgki and a message m ∈ M as inputs. The partial signing algorithm then returns
the partial signature σi as output.

– (0, 1)← SPT S.Par-Vf(pp, vki,m, σi): It takes the ith verification key vki, message m ∈
M and partial signature σi as inputs. It then returns either 1 (accept) or 0 (reject).

– (σ,⊥) ← SPT S.Recon(pp, {i, σi}i∈T ): It takes public parameters pp and successfully
verified partial signatures {i, σi} over subset T ∈ {1, . . . , n} as inputs. It returns a
reconstructed signature σ if |T | > t, otherwise it responds with ⊥.

– (0, 1)← SPT S.Vf(pp, vk,m, σ): It takes the public parameters pp, verification key vk, a
message m ∈M and a reconstructed signature σ as inputs. It outputs either 1 (accept)
or 0 (reject).
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As it is discussed in [SSKP22], two main security requirements for a SPTS scheme over
the indexed DH message spaces are correctness and threshold existential unforgeability
under chosen indexed message attacks. We refer the readers to this paper for more details.

B.4 Commitment schemes

A commitment scheme [BCC88] is a strong cryptographic primitive, which allows a com-
mitter to commit to a secret value with two main security properties, i.e., Perfect Hiding
and Computational Binding. Informally, perfect hiding guarantees that the commitment
does not reveal any information about the hidden committed value. Computational hiding
ensures that a committer cannot open a commitment under two distinct messages.

Definition B.7 (Commitment schemes [BCC88]). A commitment scheme ΨCO over
the message space ofM and opening space of T consists of the following PPT algorithms:

– (pp) ← CO.Setup(1λ): The setup algorithm takes the security parameter 1λ as input
and returns the public parameters pp as output.

– (com) ← CO.Com(pp,m): The commitment algorithm takes the public parameters pp
and a message m ∈M as inputs, and outputs a commitment com ∈ C computed under
the random opening value τ ∈ T .

– (0, 1)← CO.Vf(pp, com,m′, τ ′): The verification algorithm is a deterministic algorithm
that given commitment com ∈ C, public parameters pp, a message m′ ∈ M and an
opening value τ ′ ∈ T as inputs, returns a bit that indicates either accept (1) or reject
(0).

The primary security requirements for a commitment can be defined as follows:

Definition B.8 (Correctness). A commitment scheme, ΨCO, satisfies correctness, if we
have:

Pr

[
∀ m ∈M ∧ (pp)← Setup(1λ) :

Vf (pp,m,Com(pp,m; τ), τ) = 1

]
≥ 1− negl(λ) .

Definition B.9 (Computationally Hiding). A commitment, ΨCO, satisfies Computa-
tionally Hiding, if for all PPT adversaries A we have:

∣∣∣∣∣2Pr
[
(pp)← Setup(1λ), (m0,m1)←$ACom(.)(pp), b←$ {0, 1},
(comb)← Com(pp,mb), b

′ ← A(pp, comb) : b == b′

]
− 1

∣∣∣∣∣ ≤ negl(λ) .

The commitment scheme is called perfectly hiding if the above probability is equal to 0.
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Definition B.10 (Computationally Binding). A cryptographic commitment scheme,
Ψcom, meets computationally binding security, if for all PPT adversaries A we have,

Pr

[
(pp)← Setup(1λ), ((com,m0, τ0), (com,m1, τ1)) ←$ACom(.)(pp) :

Vf(pp, com,m0, τ0) = Vf(pp, com,m1, τ1) = 1 ∧m0 ̸= m1

]
≤ negl(λ) .

The commitment scheme is called perfectly binding if the above probability is 0.

B.5 Threshold Encryption

Definition B.11 (Threshold Encryption). A (n, t)-threshold encryption (TE) scheme,
ΨTE, over the message space M and ciphertext space C, consists of five PPT algorithms
defined as follows:

– (pp, ŝk)← T E .Setup(1λ,R, t): This probabilistic algorithm takes the security parameter
1λ, the set of receivers R and an integer t ∈ poly(λ) as inputs. It returns the secret key
ŝk and the corresponding public parameters pp as outputs.

– (ŝki, pki) ← T E .KGen(ŝk, i): Key generation is a probabilistic algorithm that takes the
secret key ŝk along with an index i ∈ R as inputs and returns secret key ŝki as output.

12

– (Ct) ← T E .Enc(pp,m): The encryption algorithm takes the public parameters pp, and
a message m ∈M as inputs. It returns ciphertext Ct ∈ C as output. When we want to
assign a specific value to the random integer r, we write Enc(pp,m; r).

– (pdj)← T E .PDec(pp, skj , Ct): The partial decryption algorithm is run by receiver j ∈ R
and takes the public parameters pp, the secret key ˆskj of the receiver j and a ciphertext
Ct as inputs. It returns a partially decrypted ciphertext pdj as output.

– (⊥,m)← T E .Dec(pp, Ct, {pdj}j∈K): The decryption algorithm takes the public param-
eters pp, a ciphertext Ct and the partially decrypted ciphertexts {pdj}j∈K as inputs. If
|K| ≥ t, it returns m ∈M, else it responds by ⊥.

The primary security requirements for a (n, t)-threshold encryption are correctness and
static semantic security and partial decryption simulatability based on the static security
definitions of Reyzen et al. [RSY21].

Definition B.12 (Correctness). A (n, t)-threshold encryption, ΨTE, for all λ and mes-
sages m ∈M and R is called correct if for any |K| ≥ t we have:

Pr

(pp, ŝk)← Setup(1λ,R, t), (ŝki, pki)← KGen(ŝk, i),

Dec
(
pp, {PDec(ŝkj , Ct)}j∈K,Enc(pp,m)

)
= m

 ≥ 1− negl(λ) .

12 Note that in the notion of a standard threshold encryption, this algorithm does not return public key
while in the randomness-reusable threshold encryption no secret key is returned.
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Definition B.13 (Static Semantic Security [RSY21]). A (n, t)-threshold encryption,
ΨTE, is said to be (n, t)-statically semantic secure (SSS) if for all PPT adversaries A in
winning the following experiment we have Pr[ExpSSSA (1λ,R, t) = 1] ≤ 1/2−negl(λ). Where
adversary A has access to a partial decryption oracle and can obtain up to t − 1 partially
decrypted values of the given ciphertext.

ExpSSSA (1λ,R, t)
1: C ← A(1λ,R, t)
2: (ŝki)← T E .KGen(msk, i) For i ∈ [n];
3: (m0,m1)← AO({ŝki}i∈C);
4: b←$ {0, 1},
5: (Ctb)← T E .Enc(pp,mb);
6: b′ ←$AO(Ctb);
7: if (b′ = b ∧ |m0| ̸= |m1| ∧ |R ∩ K| < t) :
8: return 1

A threshold variant of the ElGamal encryption. An additively homomorphic
threshold encryption was proposed by Desmedt and Frankel [DF90] as a variation of the
ElGamal encryption over (G, g, p) such that G is a cyclic group of prime order p with
generator g. It consists of the following algorithms:

– (pp, ŝk)← T E .Setup(1λ,R, t): This probabilistic algorithm picks an integer s←$Zp and
a random polynomial f ←$F[X] of degree t−1 s.t. f(0) = s and sets h := gs. It returns
the public parameter pp = (h, g) and the secret key ŝk = (f, s).

– (ŝki)← T E .KGen(ŝk, i): The key generation algorithm takes msk = (f, s), and receiver
index i ∈ R as inputs. It returns the secret key ŝki = f(i) as output.

– (Ct)← T E .Enc(pp,m): The encryption algorithm to encrypt a messagem ∈M samples
a random integer r←$Zp and returns the ciphertext Ct := (u, v) := (gr,m · hr).

– (pdj) ← T E .PDec(pp, ŝkj , Ct): A receiver who knows the secret key ŝkj , partially de-

crypts the ciphertext by computing pdj = uskj .
– (m,⊥)← T E .Dec(pp, Ct, {pdj}j∈K): The decryption algorithm takes public parameters

pp, ciphertext Ct = (u, v), the partially decrypted values {pdj}j∈K as inputs. If |K| ≥ t,

it computes us : z =
∏

j∈K pd
LK
j (0)

j , where LKj (0) is a Lagrange coefficient according to
subset K and returns m := v/z, else it responds with ⊥

Next we define a randomness-reusable variation of the ElGamal threshold encryption,
where the encryptor can encrypt a single message multiple times under the same random-
ness.

– (pp, ŝk) ← rT E .Setup(1λ,R, t): It samples a random integer s←$Zp and a random
polynomial f ←$F[X] of degree t−1 s.t. f(0) = s and sets h = gs. It returns pp = (g, h)
and ŝk = (f, s) as outputs.
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– (ŝki, pki) ← rT E .KGen(ŝk, i): It takes ŝk and an index i ∈ R as inputs and computes

the secret key ŝki = f(i) and the corresponding public key pki = gŝki . It then returns
(ŝki, pki) as output.

– (Ct) ← rT E .Enc(pp, {pki}i∈K,m): It takes m ∈ M, the set of public parameters of
receivers intended in a chosen set K ⊂ R as inputs. It samples a random integer
r←$Zp and computes Ct := (u, {Ctj}j∈K, v) := (gr, {uj = pkrj}j∈K,mhr).

– (pdj)← rT E .PDec(pp, ŝkj , Ct): It takes jth receiver’s secret key ŝkj s.t. j ̸∈ K and then

partially decrypts the ciphertext by computing pdj = uŝkj and returns pdj as output.

– (m,⊥)← rT E .Dec(pp, Ct, {pdj}j∈K′): The decryption algorithm takes Ct, the partially
decrypted values {pdj}j∈K′ such that ,K,K′ ⊂ R. If |K ∪ K′| ≥ t, it computes us : z =∏

j∈K u
LK
j (0)

j

∏
j∈K′ pd

LK′
j (0)

j and returns m := v/z, otherwise it responds with ⊥.

Similar to the original threshold ElGamal scheme, the ciphertext in this scheme leaks
no information about the message as long as the threshold is not reached. The sender
selects a subset K ⊂ R and the subset K′ can be considered as a complement set for K to
reach the threshold t such that |K ∪ K′| ≥ t.

B.6 Non-Interactive Zero-Knowledge arguments

Zero-Knowledge proofs [GMR89] are two-party protocols, which are a fundamental and
powerful cryptographic tool. They allow a prover to convince the verifier about the validity
of a statement without revealing any other information. Non-Interactive Zero-Knowledge
proofs remove the interaction between the parties in two possible settings, either the Ran-
dom Oracle Model (ROM) [FS87] or the Common Reference String (CRS) model [BFM88].
We recall the definition of NIZK arguments13 in the CRS model, in which the prover is
computationally bounded to ensure the soundness. Hence, for security parameter 1λ, let
R be a relation generator, such that R(1λ) returns an efficiently computable binary re-
lation RL = {(x,w)}, where x is the instance and w is the corresponding witness. Let
L = {x : ∃ w | (x, ŵ) ∈ RL} be the NP-language consisting of the statements in relation
RL.

Definition B.14 (NIZK arguments). Formally, a NIZK argument ΨNIZK for R consists
of a tuple of PPT algorithms ZK.(Kc⃗rs,P,Vf, Sim), defined as follows:

– (c⃗rs, t̂s, t̂e) ← ZK.Kc⃗rs(1
λ,RL): The CRS generator as a probabilistic algorithm takes

the security parameter 1λ and relation RL as inputs. It then generates common reference
string c⃗rs by sampling a simulation trapdoor t̂s and an extraction trapdoor t̂e. It keeps
the trapdoors (t̂e, t̂s) hidden while publishes c⃗rs.

13 The CRS does not depend on the language distribution or language parameters.
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– (π,⊥)← ZK.P(RL, c⃗rs, x, ŵ): Prove as a probabilistic algorithm takes the CRS, c⃗rs, and
a pair of statement and witness (x, ŵ) as inputs. If (x, ŵ) ∈ RL it returns a proof π,
otherwise it responds with ⊥. This algorithm sometimes is denoted by PoK{ŵ | (x, ŵ) ∈
RL}.

– (0, 1)← ZK.Vf(RL, c⃗rs, x, π): Verification as a deterministic algorithm takes CRS, c⃗rs,
and a pair of statement and proof (x, π) as inputs. It either returns 1 (accept) or 0
(reject).

– (π′)← ZK.Sim(RL, c⃗rs, t̂s, x): The Simulator algorithm takes the tuple (RL, c⃗rs, ts, x) as
input and without knowing the corresponding secret witness, outputs a simulated proof
π′ s.t. it is computationally indistinguishable from π.

Definition B.15 (Completeness). A NIZK argument ΨNIZK is called complete for rela-
tion RL ∈ R, if for all security parameters 1λ and (x, ŵ) ∈ RL, we have:

Pr

[
(c⃗rs, t̂s, t̂e)← Kc⃗rs(1

λ,RL) :

Vf(RL, c⃗rs, x,P(RL, c⃗rs, x, ŵ)) = 1

]
≥ 1− negl(λ) .

Definition B.16 (Soundness). A NIZK argument, ΨNIZK, is Sound for any relation
RL ∈ R, if for all PPT adversaries A, we have:

Pr

[
(c⃗rs, t̂s, t̂e)← Kc⃗rs(1

λ,RL), (x, π)← A(RL, c⃗rs) :

Vf(RL, c⃗rs, x, π) = 1 ∧ x ̸∈ LR

]
≤ negl(λ) .

Definition B.17 (Statistically Zero-Knowledge). A NIZK argument, ΨNIZK, is called
statistically Zero-Knowledge, if for all security parameter 1λ, and all PPT adversaries A
we have, εunb0 ≈λ εunb1 , where,

εb = Pr
[
(c⃗rs, t̂s, t̂e)← Kc⃗rs(1

λ,RL) : AOb(·,·)(RL, c⃗rs) = 1
]
·

Here, the oracle O0(x, ŵ) returns ⊥ (reject) if (x, ŵ) ̸∈ RL, otherwise it returns
ZK.P(RL, c⃗rs, x, ŵ). Similarly, O1(x, ŵ) returns ⊥ (reject) if (x, ŵ) ̸∈ RL, otherwise it
returns ZK.Sim(RL, c⃗rs, x, t̂s).

Definition B.18 (Computational Knowledge-Soundness). A NIZK argument,
ΨNIZK, is called computationally (adaptively) knowledge-sound for R, if for all PPT ad-
versary A and (RL) ∈ R, there exists an extractor ExtA, s.t. for all 1λ we have,

Pr

[
(c⃗rs, t̂s, t̂e)← Kc⃗rs(1

λ,RL), (x, π)← A(RL, c⃗rs),

(ŵ)← ExtA(RL, c⃗rs, t̂e, π) : (x, ŵ) ̸∈ RL ∧ Vf(RL, c⃗rs, x, π) = 1

]
≤ negl(λ) .
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C Omitted Proofs

C.1 Proof of Theorem 3.1

Proof. To prove this theorem we demonstrate that the proposed scheme is secure w.r.t
two main security properties namely Anonymity of honest customers and Unlinkability of
payment guarantees, and payment certainty.
Anonymity of honest customers and Unlinkability of payments. For each pay-
ment request, the customer should transfer a tuple T [π, x, Rt] where Rt is the auxiliary
data at time slot t to convince the merchant and the group of witnesses about the unique-
ness of a collateral. To prove that Nirvana preserves the anonymity of honest customers
and provides unlinkability of payments we show that no PPT adversary A, by provid-
ing two pair of challenge secret keys/collateral keys ( ˆsk∗0, k̂

∗
0) and ( ˆsk∗1, k̂

∗
1), can distinguish

between (π0, x0, Rt,0) and (π1, x1, Rt,1) as the output of the spending algorithm. This prop-
erty is guaranteed because of three main security properties for the given primitives: Zero-
Knowledge of the NIZK proof, computationally hiding property of commitment scheme,
static semantically secure property of randomness-reusable threshold encryption in bilinear
groups and also the weakly robust for the given PRF.

Let the hybrid Hb be the case where the Anonymity experiment, ExpANON
A (λ, b) is

run for b = {0, 1}. In this case, we form a sequence of hybrids and show that each of the
successive hybrids are computationally indistinguishable from the preceding ones.

– Hybrid Hb
1: In this game, we modify Hb by creating the challenge NIZK proof πb and

running π′b ← ZK.Sim(c⃗rs, t̂s, xb).

The Zero-Knowledge property of NIZK arguments provided in Def. B.17 guarantees
that this experiment is indistinguishable from the one for Hb.

– Hybrid H2
b : In this game, we modify Hb

1 by committing ŝk
∗
1−b instead of ŝk

∗
b .

According to the hiding property of the given commitment scheme, this experiment is
indistinguishable from H1

b .

– Hybrid H: In this game, we modify H2
b by assuming the challenger runs the threshold

encryption algorithm under the message m1−b instead of mb.

According to the Static Semantic Security property of the proposed randomness-reusable
Threshold encryption, this experiment is indistinguishable fromH2

b . To be more concrete,A
cannot distinguish between Ctb and Ct1−b as long as no twin ciphertext is generated even if
the proofs are simulated. Thereby we have, H0 ≈λ H1

0 ≈λ H2
0 ≈λ H ≈λ H1

1 ≈λ H2
1 ≈λ H1.

To conclude this security property for the proposed construction, it is straightforward to
show that the output of a PRF under two distinct keys is computationally indistinguishable
and no PPT adversary can distinguish Rt,0 and Rt,1.
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Payment Certainty. We prove this property by contradiction. Let there is a PPT ad-
versary A that can break the payment certainty of the scheme and pass the verification
phase without meeting the corresponding requirements. The proof relies on the existence
of a weakly-robust PRF, a Knowledge Sound NIZK argument, an existentially unforge-
able SPS construction, computationally binding of commitment scheme, and a Statically
Semantic Secure randomness-reusable Threshold encryption. Having played a sequence of
indistinguishable games between BWR,BEUF-CMA,BKS,BCB,BSSS and a PPT adversary A,
we gradually turn the payment certainty security game into the security features of the
underlying primitives.

– Game G0: In the first security game, let A forms a challenge transaction τ∗ such that∑
Lc + τ∗ > colA return a valid pair (π∗, x∗) with a non-negligible advantage ϵ. By

contradiction, we assume A can win this game with a non-negligible advantage ϵ and
we can write, AdvPCNirvana(A) = Pr[A Wins G0] ≥ ϵ.

– Game G1: In this game, we modify G0 such that the existence of an extraction trap-
door is assumed. In this case, there exists an extractor that takes te and the received
tuple (π∗, x∗) as inputs, and returns the corresponding witness (ŵ∗) ← Ext(t̂e, x∗, π∗)
such that w∗ = (cert∗, ID∗, r∗t , k

∗). The indistinguishability of G0 and G1 can be proven
via the Knowledge Extraction property of NIZK arguments, defined in Def. B.18. This
property guarantees the existence of an efficient extractor under non-falsifiable assump-
tions and we can write, AdvPCNirvana(A) = Pr[A Wins G0] ≈ Pr[A Wins G1] and this
advantage consequently depends on two possible cases,

Pr[A Wins G1] = Pr[A Wins G1 : (w
∗, x∗) ∈ RL] + Pr[A Wins G1 : (w

∗, x∗) ̸∈ RL] .

The probability of an adversary in the latter case can be bounded by the advantage a
NIZK’s knowledge soundness adversary faces.

AdvPCNirvana(A) ≤ Pr[A Wins G1 : (w
∗, x∗) ∈ RL] +AdvksNIZK(Bks) .

Hence, the adversary can win the game when the event of (w∗, x∗) ∈ RL occurs.

– Game G2: The challenger for the payment certainty security game can modify G1 to
an attacker against the weakly-robust PRF security game. The intended key k∗ is either
a valid key k∗ ∈ K or it is generated under a random key k∗ ̸∈ K. The latter case will
be bounded by the advantage of BWR attacker, then we can write,

Pr[A Wins G2] = Pr[A Wins G2 : k
∗ ∈ K] + Pr[A Wins G2 : k

∗ ̸∈ K] ≤
Pr[A Wins G2 : k

∗ ∈ K] +AdvWR
PRF(BWR) .

– Game G3: This is the game G2, except for a valid pair of witness and statement in RL

and a valid PRF key in K, one can reduce it to a forgery attack for the underlying SPS
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scheme. More specifically, if k∗ ̸∈ Qmsg then Bsps returns the pair (k∗, σ∗) as a forgery
of the defined EUF-CMA security game in Def. B.5. We can write,

AdvPCNirvana(A) ≤ AdvksNIZK(Bks) +AdvWR
PRF(BWR) + Pr[A Wins G3 : k

∗ ̸∈ Qmsg]+

Pr[A Wins G3 : k
∗ ∈ Qmsg] ≤ AdvksNIZK(Bks) +AdvWR

PRF(BWR)+

AdvEUF-CMA
sps (BEUF-CMA) + Pr[A Wins G3 : k

∗ ∈ Qmsg] .

Since it is assumed that the adversary A cannot fulfill one of the above requirements,
the probability of Pr[A Wins G3 : k

∗ ∈ Qmsg] is equal to zero. Then we can write,

AdvPCNirvana(A) ≤ AdvksNIZK(Bks) +AdvWR
PRF(BWR) +AdvEUF-CMA

sps (BEUF-CMA) .

Since it is assumed AdvPCNirvana(A) ≥ ϵ, then at least for one of the aforementioned cases
we have AdvksNIZK(Bks) ≥ ϵ/3 or AdvWR

PRF(BWR) ≥ ϵ/3 or AdvEUF-CMA
sps (BEUF-CMA) ≥ ϵ/3.

This contradicts the defined security properties, and we can conclude the theorem.

D Smart contract functionality

The transition between states happens depending on the function calls on the smart con-
tract. For simplicity, we describe here only the functionality of the smart contract focusing
on one customer and multiple merchants. We refer to Nirvana’s smart contract as NirSC ,
an entity is referred to as ex where x = c or m for customer or merchant respectively. The
underlying ledger is referred to as LSC and an entity’s account on that ledger is referred
to as AccxL where x = c or m respectively. The private ledger of the merchants is referred
to as Bullm, since it behaves like a bulletin board. NirSC has seven states as follows:

init: NirSC is deployed. ec can now deposit funds (colc). If so, then change state to ready.
Else do not change state.
ready: ec successfully registers by depositing colc in NirSC . If colc is available in NirSC ,
change state to pay. Else do not change state.
pay: If ec has made payment (paymi), change state to reclaimm. Else do not change state.
reclaimm: Check Bullm for double-spends from ec. If double-spend present, use secret
to reclaim paymi and change state to withdraw. If no double-spend found until actual
payment received, change state to reclaimc.
reclaimc: If 1 day has passed since paymi , reclaim paymi and add it to colc. Then, change
state to withdraw. Else do not change state.
withdraw: If ex wants to exit Nirvana, send money from NirSC to AccxL and change state
to exit. Else change state to ready.
exit: Remove ex from NirSC and change state to init.
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