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Abstract. As for any cryptographic algorithm, the deployment of post-
quantum CCA-secure public key encryption schemes may come with the
need to be protected against side-channel attacks. For existing post-
quantum schemes that have not been developed with leakage in mind,
recent results showed that the cost of these protections can make their
implementations more expensive by orders of magnitude. In this paper,
we describe a new design, coined POLKA, that is specifically tailored for
this purpose. It leverages various ingredients in order to enable efficient
side-channel protected implementations such as: (i) the rigidity property
(which intuitively means that de-randomized encryption and decryption
are injective functions) to avoid the very leaky re-encryption step of the
Fujisaki-Okamoto transform, (ii) the randomization of the decryption
thanks to the incorporation of a dummy ciphertext, removing the adver-
sary’s control of its intermediate computations and making these com-
putations ephemeral, (iii) key-homomorphic computations that can be
masked against side-channel attacks with overheads that scale linearly in
the number of shares, (iv) hard physical learning problem to argue about
the security of some critical unmasked operations. Furthermore, we use
an explicit rejection mechanism (returning an error symbol for invalid
ciphertexts) to avoid the additional leakage caused by implicit rejection.
As a result, all the operations of POLKA can be protected against leakage
in a much cheaper way than state-of-the-art designs, opening the way
towards schemes that are both quantum-safe and leakage-resistant.

1 Introduction

Recent research efforts showed that designing post-quantum chosen-ciphertext-
secure public-key encryption (PKE) schemes that allow efficient implementa-
tions offering side-channel security guarantees is extremely challenging with ex-
isting techniques. One well-documented issue arises from the Fujisaki-Okamoto
(FO) transform that is frequently used for building key encapsulation mecha-
nisms (KEMs) with chosen-ciphertext (IND-CCA) security from PKE schemes
or KEMs that only provide weak security notions like one-wayness under pas-
sive attacks (OW-CPA security) [12,43]. The FO transformation and its vari-
ants are, for example, used in the NIST post-quantum finalists KYBER [5, 21]
and SABER [11,31], where the CCA-secure KEM is combined with a secret-key
(authenticated) encryption scheme into a hybrid PKE system.



Recall that a KEM system (Keygen, Encaps, Decaps) is a PKE scheme that
does not take any plaintext as input, but rather computes an encryption of a
random symmetric key K. To encrypt a plaintext M via the hybrid KEM/DEM
framework [74], the Encaps algorithm often samples a random m, which is used
to derive a symmetric key K and random coins r from a random oracle (K, )
H(m) before deterministically encapsulating K as cxem = Encaps, (m,r). Next,
a secret-key scheme (E,D) (a.k.a. data encapsulation mechanism, or DEM) is
used to compute Csym = Ex (M) in order to obtain a hybrid PKE ciphertext ¢ =
(Ckem, Csym)- The receiver can then recover m = Decaps,;,(Crem) and (K, 1)
H(m) before obtaining M = Dg (csym ). It is known that the hybrid construction
provides IND-CCA security if the underlying KEM is itself IND-CCA-secure
and if the DEM satisfies a similar security notion in the secret-key setting [74].
In order to secure the KEM part against chosen-ciphertext attacks, the FO
transform usually checks the validity of the incoming cge,, by testing if cgem =
Encaps,;(m,7) (a step known as “re-encryption”) after having recovered the
random coins r from (K,r) <— H(m) upon decryption.

In the FO transform, the first computation during a decryption attempt is
Decaps,, (Ckem ), where Decaps is the underlying decapsulation of the OW-CPA
secure KEM. While this has no impact in a black-box security analysis, in the
context of side-channel chosen-ciphertext attacks the adversary remains able to
target this component using many cge,, values [63,68,77] of its choice, leaving an
important source of vulnerabilities. Indeed, the adversary is free to adaptively
feed Decaps,;, with (invalid) ciphertexts and craft cgesn, in such a way that an
internal message m with only few unknown bits is re-encrypted via the FO
transform. This allows side-channel attacks to directly exploit the leakage of
these bits obtained during the re-encryption test ciem < Enca psp,g(m7 r) to infer
information about sk. This task is surprisingly easy since all the leakage samples
of the deterministic re-encryption can be exploited for this purpose (i.e., much
more than the few rounds of leakage that are typically exploited in divide-and-
conquer side-channel attacks against symmetric encryption schemes) [59].

In parallel, several pieces of work started to analyze masked implementations
of KYBER and SABER [12,18,22,41]. These works typically indicate large overheads
when high security levels are required, which can be directly connected to a large
amount of leaking intermediate computations [6]. In particular, these implemen-
tations all consider a uniform protection level for all their operations, that is
in contrast with the situation of symmetric cryptography where so-called lev-
eled implementations, in which different (more or less sensitive) parts of a mode
of operation are protected with different (more or less expensive) side-channel
countermeasures, can lead to important performance gains [ ]

In this paper, we therefore initiate the study of quantum-safe CCA-secure
public-key encryption schemes that have good features for leakage-resistant (LR)
implementations. The seed ingredients we propose for this purpose are three-
fold. First, we leverage the rigidity property introduced by Bernstein and Per-
sichetti [16], as it allows building CCA-secure encryption schemes without rely-
ing on re-encryption nor on the FO transform. Despite removing an important



source of leakage, getting rid of the FO transform is not yet sufficient to enable
leveled implementations for KYBER (or SABER), since the rest of their operations
remains expensive to protect [0]. Therefore, we also propose to randomize the
decryption process by incorporating a “dummy ciphertext”. It brings the direct
benefit of removing the adversary’s control on all intermediate computations
that are dummied, while making these computations ephemeral, which is in
general helpful against leakage. This second step already allows an interesting
leveling between computations that require security against simple power analy-
sis (SPA) and differential power analysis (DPA) attacks.! Eventually, we observe
that the structure of the KEM’s remaining DPA target shares similarities with
the key-homomorphic re-keying schemes used in symmetric cryptography to pre-
vent side-channel attacks [35,39,61]. Building on this observation, we propose
to implement this DPA target such that only its key-homomorphic parts are
(efficiently) protected thanks to masking, by relying on the recently introduced
Learning With Physical Rounding (LWPR) assumption [38]. In short, the LWPR
assumption is a physical version of the crypto dark matter introduced by Boneh
et al. [20]. The latter assumes that low-complexity PRFs can be obtained by
mixing linear mappings over different small moduli. LWPR further leverages the
possibility that one of these mappings is computed by a leakage function.

We additionally observe that by carefully instantiating the symmetric au-
thenticated encryption scheme of the DEM as an Encrypt-then-MAC one with
a one-time key-homomorphic MAC, the overheads due to the side-channel coun-
termeasures can be reduced to linear in the number of shares used for masking
for this part of the computation. And we finally combine these different in-
gredients into a new efficient post-quantum CCA-secure public-key encryption
scheme, called POLKA (standing for POst-quantum Leakage-resistant public Key
encryption Algorithm), that simultaneously provides excellent features against
leakage and a proof of IND-CCA security (in the sense of the standard definition
without leakage) under the standard RLWE assumption.

Without leakage, we show that POLKA provides CCA security in the quantum
random oracle model (QROM) [19]. Our construction is a hybrid KEM-DEM
encryption scheme built upon a variant of a public-key encryption scheme due
to Lyubashevsky, Peikert and Regev (LPR) [58], which is well-known to provide
IND-CPA security under the ring learning-with-errors (RLWE) assumption. In
order to obtain a KEM, we modify the LPR system so as to recover the sender’s
random coins upon decryption. In contrast with the FO transformation and
its variants, this is achieved without derandomizing an IND-CPA system, by
deriving the sender’s random coins. Instead of encrypting a random message m
to derive our symmetric key K, we always “encrypt” 0 and hash the random coins
consisting of a tuple (7, e1, e3) € R of small-norm ring elements sampled from the
noise distribution. These elements (r, 1, e3) are then encoded into a pair cxemn =
(a-r+ep,b-r+es) € R,QI, where a,b € R, are random-looking elements included

! Informally, SPAs are side-channel attacks where the adversary can only observe the
leakage of a few inputs to the target operation for a given secret. DPAs are attacks
where the adversary can observe the leakage of many such inputs.



in the public key. Using its secret key, the decryptor can extract (r,eq, e2) from
Ckem and check their smallness. This verification/extraction step is designed in
such a way that decapsulation natively provides rigidity [16] without relying on
re-encryption. Namely, due to the way to recover (r,ej,es2) from crem, we are
guaranteed that deterministically re-computing cxem = (a-r4e€1,b-r+es) would
yield the incoming ciphertext. This allows dispensing with the need to explicitly
re-compute Cgen, in the real scheme, thus eliminating an important source of
side-channel vulnerability that affects KYBER and SABER.

In a black-box security analysis, our KEM can be seen as an injective trap-
door function that maps (r,e1,e2) € R3 to (a-r+e1,b 7+ e2). As long as we
sample (r, ey, es) from a suitable distribution, ¢k, is pseudorandom under the
RLWE assumption. However, to ease the use of efficient side-channel counter-
measures upon decryption, we also leverage the fact that our injection satisfies
a (bounded) form of additive homomorphism for appropriate parameters. That
is, if we generate what we call a dummy ciphertext ¢}, by having the decryp-
tor honestly run the basic encapsulation step using its own random coins, the
decapsulation of Cxem = Ckem + Chpy, Should give the sum of the random coins
chosen by the sender and the receiver. Then, we can easily remove the additional
dummy random coins after some additional tests. Introducing Cgen, in the de-
cryption process removes the adversary’s freedom of forcing the computation of
Decaps,, (Ckem) to take place on a cgermm under its control, which helps us pro-
tecting the secret key. Moreover, the underlying coins of cke,, are now split into
two shares upon decryption and they are only recombined in a step where we
can safely derive K. To implement this idea, we prove the CCA security of our
scheme in its variant endowed with a probabilistic decryption algorithm.

With leakage, we argue that POLKA offers a natural path towards efficient
leveled implementations secured against side-channel attacks. For this purpose,
we first use a methodology inspired from [15] to identify the level of security
required for all its intermediate computations. We then focus on how to secure
the polynomial multiplication used in POLKA against DPA, by combining mask-
ing for its key-homomorphic parts and a variant of the aforementioned LWPR
assumption after the shares recombination. Our contributions in this respect are
twofold. On the one hand, we define the LWPR variant on which POLKA relies and
discuss its difference from the original one. Given that LWPR is an admittedly
recent assumption and in view of the important performance gains it can lead
to, we additionally specify instances to serve as cryptanalysis targets. On the
other hand, we describe a hardware architecture for these masked operations,
which confirms these excellent features (e.g., simplicity to implement them se-
curely, performance overheads that are linear in the number of shares). Overall,
protecting the long-term secret of our prototype implementation only needs to
combine the masking of key-homomorphic computations (which has linear over-
heads in the number of shares) with SPA security for other computations, that
is quite directly/cheaply obtained thanks to parallelism in hardware. Protect-
ing the message confidentiality additionally requires protecting its symmetric
cryptographic components (i.e., hash function and authenticated encryption).



We insist that our leakage analysis is not (yet) about sufficient security con-
ditions but about necessary conditions that implementers must fulfill to avoid
critical attack paths. Such an analysis has been shown sufficiently informative to
compare designs in the symmetric setting. We see no reason why things would
significantly differ here. Formally proving the leakage-resistance of POLKA is a
natural next step and an important open problem. So our goal is to show that
(i) by considering the need for side-channel countermeasures as a design crite-
rion, we can considerably limit the attack vectors, and (ii) by combining design
tweaks (e.g., rigidity, dummy operations, LWPR, key-homomorphism) we can
make the cost of countermeasures significantly lower than, say KYBER or SABER.

As a last result to confirm the generality of our findings, we also show that
they can naturally apply to an LR variant of the NTRU cryptosystem [27], which
already satisfies the rigidity property, can be enhanced with a dummy mechanism
and has internal computations that also generate LWPR samples.

2 Technical Overview of POLKA & Related Works

TECHNICAL OVERVIEW. Our construction can be seen as a rigid and randomness-
recovering version of the RLWE-based encryption scheme described in [58]. By
“randomness-recovering,” we mean that the decryption procedure recovers the
message and the sender’s random coins. A randomness-recovering encryption
scheme is rigid [16] if, when the decryptor obtains a message m and random-
ness r, running the encryption algorithm on input of (m,r) necessarily yields
the incoming ciphertext. While rigidity can always be achieved by adding a re-
encryption step (as pointed out in [48]), this generally introduces one-more place
of potential side-channel vulnerabilities, which is precisely exploited in [63,68,77].
In order to eliminate the need for an explicit re-encryption step, it is thus desir-
able to have a decryption algorithm which is natively injective (when seen as a
deterministic function). The first difficulty is thus to build a rigid, randomness-
recovering PKE/KEM under the standard RLWE assumption. Our goal is to
achieve this without sacrificing the efficiency of the original LPR system while
remaining reasonably competitive with NIST finalists.

The LPR cryptosystem is not randomness-recovering. In a cyclotomic ring
R =7Z[X]/(X™+ 1), it involves a public key containing a pair (a,b =a - s+ e),
where a € R/(qR) is uniform, s € R is the secret key and e is a noise. To
encrypt m € R/(pR) (for some moduli p < ¢), the sender chooses small-norm
randomness 7, e1,es € R and computes (¢1,¢2) = (a-r+e1,b-r+ea+m-|q/p]),
so that the receiver can obtain ¢; — ¢; - s mod ¢ = m - |¢/p] + small. While m
is then computable, there is no way to recover (r, ey, e2) from the “decryption
error” term small. To address this problem, a folklore solution is to introduce
distinct powers of p. Suppose we want to build a randomness-recovering en-
cryption of 0 (which is sufficient to build a KEM). The sender can then com-
pute (c1,co) = (p?> -a-r+p-ey,p*-b-r+ ez), which allows the receiver to
obtain 4 = ¢y — ¢, - s mod ¢ = p?er — pe1s + es. Since the right-hand-side
member is small, the receiver can efficiently decode (r,ej,es) € R3 from p.



Unfortunately, the latter construction is not rigid. Suppose that an adversary
can somehow compute a non-trivial pair (u,u - s) € R? given (a,a - s+ e). It
can then faithfully compute (c1,c2) = (p?>-a -7 +p-e,p?>-b-7r + e2) and
turn it into (¢}, ch) = (¢1 + u,c2 + u - ), which yields a “decryption collision”
p=co—cy-8=ch—ch-s. Besides, as shown in [32], computing a pair (u,u - )
(for an arbitrary, possibly non-invertible v # 0) given (a,a - s + €) can only
be hard in rings R/(qR) = Z4[X]/(®1(X)) X - -+ x Z¢[X]/(P¢(X)) that have no
small-degree factors, which rules out NTT-friendly rings. Even for rings where
$(X) = X™ + 1 splits into degree-n/2 factors, the problem (called SIP-LWE
in [32]) is non-standard and its hardness is not known to be implied by RLWE.?
Here, we take a different approach since we aim at rigidity without relying on
stronger assumptions than RLWE and without forbidding fully splitting rings.

We modify the original LPR system in the following way. The public key
contains a random a € R/(¢qR) and a pseudorandom b € R/(gR), which is now
of the form b = p- (a-s+e), for small secrets s,e € R and a public integer p such
that |le|lo < p/2. We also require b to be invertible over R/(gR), so that the key
generation phase must be repeated with new candidates (s, e) until b is a unit.
To compute an encapsulation, we sample Gaussian ring elements r,e1,e5 € R
and compute Cgem = (c1,¢2) = (a1 +e1,b-r+ e2), where K = H(r,e1,ez) is
the encapsulated key. Decapsulation is performed by using s € R to compute
W= co—p-c1-s mod g, which is a small-norm element p = es+p-small € R that
reveals ea = p mod p. Given ey, the receiver then obtains r = (cz —e3) -b~% and
e1 = ¢1 —a-r, and checks the smallness of (r, e, e2). The decapsulation phase is
natively rigid (without re-encryption) as it outputs small-norm (r, ey, es) € R3
if and only if (c1,¢c2) = (a-r+e1,b -1+ ea).

Our hybrid encryption scheme builds on a variant of the above KEM with
explicit rejection, where the decapsulation phase returns an error symbol | on
input of an invalid cgep,. It thus departs from NIST finalists that all rely on
KEMs with implicit rejection, where the decapsulation algorithm never outputs
1, but rather handles invalid encapsulations cgen, by outputting a random key
K' + H(z,¢kem) derived from an independent long-term secret 2.3 While our
scheme could have relied on implicit rejection in a similar way, we chose to avoid
additional computations involving extra secret key components z. The reason is
that, if we were to introduce additional key material z, it should also be DPA-
protected with possibly heavy side-channel countermeasures.

When it comes to proving security in the QROM, the use of an explicit-
rejection KEM introduces some difficulty as it is not clear how to deal with
invalid ciphertexts. While the classical ROM allows inspecting all random oracle
queries and determining if one of them explains a given ciphertext, we cannot

2 D’Anvers et al. [32] defined a homogeneous variant of SIP-LWE which is uncondition-
ally hard, even in fully splitting rings. Still, relying on this variant incurs a partial
re-encryption to enforce the equality ca = c5.

3 When the hybrid KEM-DEM framework is instantiated with an implicit rejection
KEM, invalid ciphertexts are usually rejected during the symmetric decryption step
as decrypting csym with a random key K’ yields L.



use this approach in the QROM because RO-queries are made on superpositions
of inputs. Our solution is to use an implicit-rejection KEM only in the security
proof. In a sequence of games, we first modify the decryption oracle so as to
make the rejection process implicit. Then, we argue that, as long as the DEM
component is realized using an authenticated symmetric encryption scheme, the
modified decryption oracle is indistinguishable from the real one. After having
modified the decryption oracle, we can adapt ideas from Saito et al. [73] in order
to tightly relate the security of the hybrid scheme to the RLWE assumption.

As mentioned earlier, avoiding re-encryption does not suffice to ensure side-
channel resistance. As a first countermeasure, we modify the decapsulation step
and add a dummy ciphertext (¢}, c5) = (a -7’ +€},b- ' + e}) for fresh receiver-
chosen randomness 7/, e, € to (c1, ca) before proceeding with the decapsulation
of (¢1,82) = (c1 + ¢}, ca + ¢). This simple trick prevents the adversary from
controlling the ring elements that multiply the secret key s at the only step
where it is involved. We even show in Section 5 how this computation can be
protected against DPA with minimum overheads by combination the masking
countermeasure and a LWPR assumption. Additionally, the choice of (cf,c})
as an honestly generated encapsulation allows continuing the decryption pro-
cess as if (¢1, ) was the ciphertext computed from the (still) small-norm coins
(F,e1,e2) = (r+1',e1 + €,e2 + €). That is, we do not have to remove the
noise terms as we can retrieve 7, &; and €s and test their smallness. Since 1/, e}
and ef, do have small norm, if the decryption succeeds until this step, then r, e;
and es must be small as well (with a small constant slackness factor 3). There-
fore, the dummy ciphertext/KEM makes it possible to eliminate an exponential
amount of invalid ciphertexts without having ever tried to re-compute the cor-
rect (r,e1,e2). In case of an early rejection, and because the secret key s is now
protected with a hidden and pseudorandom (¢1,¢2), the leakage only provides
limited information related to the ephemeral values in (r/,e),e}) which were
sampled independently of the adversary’s view. If no rejection occurs, (r/, e}, €})
has components of (small but) sufficiently large norm to hide (at least most of
the bits of) (7, e1, ea) if the adversary gets the full leakage of (7,1, é3). At that
time, we can safely recover (r,e1,ez) and check their norm (to eliminate the
slackness) for technical reasons. This computation can only be repeated through
many decryption queries on fixed inputs, and therefore only require SPA secu-
rity (with averaging), which is cheaper to ensure than DPA security. As for the
DEM, the general solutions outlined in [15] are a natural option. But we show
an even cheaper one that leverages a key-homomorphic MAC.

RELATED WORK. As a KEM variant of LPR, POLKA bears high-level resemblance
with NewHope [4] and Peikert’s KEM [65] in that its encapsulation procedure
computes (¢1,c2) = (a-r+e1,b- 7+ e2). The main differences are that its public
key is of the form b = p - (as + ¢) (instead of b = as + e in [4,65] ) and cg is
sent along with ¢;, whereas [4,65] send a compressed version of ¢y from which a
key is extractable using s (and a “reconciliation” technique from [34,65]). Also,
decapsulation first recovers ey (instead of a noisy version of ars in [4,65]) in
order to enforce rigidity and randomness recovery. In [4,65], the compression of



c2 makes it hard to combine both properties without using Fujisaki-Okamoto.

The NTRU cryptosystem [47] can be made rigid, as observed in [27, Section
2.3] where a re-encryption-free variant of an NTRU-KEM due to Saito et al. [73]
was proposed. While the latter construction admits highly efficient instantia-
tions (as well as a tight proof in the QROM [73]), these rely on a less standard
assumption than RLWE. In a polynomial ring R = Z[X]/(®(x)), NTRU involves
a public key of the form h = p-g/f € R/(¢R), for some moduli p < ¢ and
small-norm polynomials f,g € R. Its most efficient variants rely on the assump-
tion (often called “NTRU assumption”) that h = p - g/f is indistinguishable
from a random invertible element of R/(¢gR), even when f and g are sampled
from a narrow distribution over R. In fact, some NTRU-based NIST candidates
even sample f and g from a distribution of polynomials over Z[X]/(®(X)) with
ternary coefficients in {—1,0,1}. Other works [56] sample them from a wider,
Gaussian distribution with standard deviation o < ¢'/2.

Despite recent progress [66], the NTRU problem is still less understood than
RLWE. It is in fact asymptotically easier for small-magnitude f, g: Kirchner and
Fouque [54] gave a heuristic slightly sub-exponential algorithm in the setting
where ¢ < deg(®) and || fl|co, [|g]lcc = O(1). There is even a parameter regime [2]
where NTRU is easy and RLWE remains hard when ¢ is larger than the secrets
by a sub-exponential factor in n = deg(®).

Stehlé and Steinfeld [75] showed that, when f and g are sampled from a dis-
crete Gaussian with standard deviation o > poly(n) - ¢'/2, the NTRU problem is
information-theoretically hard as the distribution of g/ f is statistically uniform
over the units of R/(gR). Using this property, Stehlé and Steinfeld gave an IND-
CPA-secure variant of NTRU that solely relies on the RLWE assumption. On the
downside, sampling f and g from such a wide Gaussian requires a significantly
larger modulus ¢ to ensure correctness. We show in Supplementary Material A
that the re-encryption-free hybrid NTRU candidate of [27, Section 2.3] can be
made side-channel-resistant by applying the same countermeasures as in POLKA.
Nevertheless, if we tune it so as to only rely on the RLWE assumption by apply-
ing the result of [75], it is significantly less efficient than POLKA. Asymptotically,
it requires a modulus ¢ = O(n”) while POLKA can make do with ¢ = O(n?) when
the noise is sampled from a Gaussian of standard deviation ag = 2(y/n).

Recently, Duman et al. [37] gave a rigorous analysis of the security of op-
timized NTRU-based KEMs. While some of their constructions are rigid, no
discussion on side-channel resistance was given in [37]. In fact, only their third
construction seems compatible with our dummy-ciphertext technique. If we sim-
ilarly set the parameters of POLKA according to the concrete hardness of RLWE
against known attacks [3], our scheme competes fairly well with the most ef-
ficient NTRU candidates of [37]. In a fully optimized instantiation, ciphertexts
and keys fit within 3Kb. Moreover, in contrast with [37], we can avoid the use
of assumptions that posit the pseudorandomness of small-polynomial ratios.

D’Anvers et al. [32] introduced a technique that obviates the need for re-
encryption when Fujisaki-Okamoto is applied to specific KEMs based on Module
LWE [55]. They somehow relaxed the rigidity property of [16] by showing that,



as long as the SIP-LWE problem is hard, a cheaper test on error terms allows
dispensing with the need to re-compute the entire ciphertext. Although their
error-term-checking technique offers noticeable computational savings in some
NIST candidates [1,406,57], it does not (and was not claimed to) protect against
side-channel leakage, as observed in [77]. POLKA departs from their approach as
it relies neither on the FO transform, nor on SIP-LWE.

The ideas we use regarding polynomial operations build on the early observa-
tion that they have good features for efficient masking: see [71,72] for examples
of key randomization (which we leverage for the parts of POLKA that require DPA
security) and [70] for an example of message randomization (which we leverage
for the parts of POLKA that require SPA security), respectively. As also observed
in these previous works, it is generally the additional operations besides the poly-
nomial multiplication that make post-quantum schemes challenging to protect
against leakage, and it is precisely this issue that POLKA aims to contribute to,
by taking advantage of the concept of leveled implementations.

Eventually, the interest of an explicit rejection mechanism was also mentioned
in the recent independent work of Hévelmanns et al. [50].

3 Background

3.1 Lattices and Discrete Gaussian Distributions

An n-dimensional lattice A C R" is the set A = {3} 2z, - b; | z € Z"} of
all integer linear combinations of a set of linearly independent basis vectors
B ={by,...,b,} CR" Let ¥ € R"*™ be a symmetric positive definite matrix,
and ¢ € R™. The n-dimensional Gaussian function on R”™ is defined as px; (x) =
exp(—7m(x —¢) "X 7!(x — ¢)). In the special case where ¥ = ¢2-1,, and ¢ = 0,
we denote it by p,. For any lattice 4 C R", the discrete Gaussian distribution

Dy s c has probability mass Prx.p, 5 .[X = x| = % for any x € A. When

c=0and X =¢?-1, we denote it by Dy .

Lemma 1 ( [62, Lemma 4.4]). For 0 = w(y/logn) there is a negligible func-
tion & = (n) such that Pryp,. , [[|x|| > oy/n] < £ -27"

3.2 Rings and Ideal Lattices.

Let n a power of 2 and define the rings R = Z[X]/(X"+1) and R, = R/qR. Each
element of R is a (n —1)-degree polynomial in Z[X] and can be interpreted as an
element of Z[X] via the natural coefficient embedding that maps the polynomial
a= Z;:OI a; X" € R to (ag,a1,...,an—1) € Z". An element of R, can similarly
be viewed as a degree-(n — 1) polynomial over Z,[X] and represented as an n-
dimensional vector with coefficients in the range {—(¢ —1)/2,...,(¢ — 1)/2}.

The Euclidean and infinity norms of an element of a € R are defined by
viewing elements of R as elements of Z" via the coefficient embedding.

The ring R can also be identified as the subring of anti-circulant matrices in



Z™*™ by viewing each a € R as a linear transformation » — a - r. This implies
that, for any a,b € R, ||a - b|lcc < ||a|| - ||b]] by the Cauchy-Schwartz inequality.

As in [52], for any lattice A, Dﬁﬁ‘f denotes the distribution of a ring element
a = Z?;Ol a; X" € R of which the coefficient vector (ag,...,a,_1)" € Z" is
sampled from the discrete Gaussian distribution Dy ..

We now recall the ring variant of the Learning-With-Errors assumption [69].
The ring LWE (RLWE) problem is to distinguish between a polynomial number
of pairs of the form (a;,a; - s+ e;), where a; ~ U(R,) and s,e; € R are sampled
from some distribution y of bounded-magnitude ring elements, and random pairs
(as,b;) ~ U(RZ). In Definition 1, the number of samples k is made explicit.

Definition 1. Let A € N a security parameter. Let positive integers n = n(\),
k = k(\), and a prime ¢ = q(n) > 2. Let an error distribution x = x(n) over
R. The RLWE,, 1 ¢, assumption says that the following distance is a negligible
function for any PPT algorithm A,

AdvﬁvE;Y;E(A) = | PrlA(*, {(a, v) o)) = 1]
— PrlA(IN, {(ai, ais + ei)}y) = 1]],

where a1, ..., a;,01,...,0, <= U(Ry), 42X, €1,...,6 < X.

For suitable parameters, the RLWE assumption is implied by the hardness of
worst-case instances of the approximate shortest vector problem in ideal lattices.

Lemma 2 ( [58]). Let n a power of 2. Let @,,(X) = X™+1 the m-th cyclotomic
polynomial where m = 2n, and R = Z[X]/(®m(X)). Let ¢ = 1 mod 2n. Let
also 7 = w(y/Togn) Then, there is a randomized reduction from 2<°1°8™) . (q/r)-
approzimate R-SVP to RLWE,, poly(n),q,x Where X = D%‘?fﬁf.

4 POLKA: Rationale and Specifications

Our starting point is a variant of the LPR cryptosystem [58], which builds on
a rigid randomness-recovering KEM. As in [58], the public key contains a ran-
dom ring element a € R, and a pseudorandom b € R,. Here, b is of the form
b=p-(a-s+e) (instead of b = a-s+e as in [58]), for secret s,e € R sampled from
the noise distribution and where p is an integer such that ||e||« < p. Another
difference with [58] is that decryption requires b to be invertible over R,.

The encryptor samples ring elements 7, e1,es € R from a Gaussian distribu-
tion and uses them to derive a symmetric key K = H(r, eq, e2). The latter is then
encapsulated by computing a pair (¢, ce) = (a-r+e1,b-r+e). The decryption
algorithm uses s € R to compute 4 = ca —p-c1 - s € Ry, which is a small-norm
ring element y = es + p - (er — e1s) € R. This allows recovering es = p mod p,
which in turn reveals r = (co —es) - b1 € R, and e; =c1 —a-r € Ry. Af-
ter having checked the smallness of (r, e1, e3), the decryption procedure obtains
K = H(r,e1,e2). The scheme provides the rigidity property of [16] as the de-
cryptor obtains (r,e1,e2) € R® such that ||7||,|le1],|le2|] < B, for some norm
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bound B, if and only if (¢1,¢2) = (a -7+ e1,b- 1 + e2). This ensures that no
re-encryption is necessary to check the validity of the input pair (¢q, c2).

In this section, our hybrid encryption scheme builds on a KEM with explicit
rejection (in the terminology of [48,67]), meaning that invalid encapsulations are
rejected as soon as they are noticed in the decryption algorithm. In the security
proof, we will switch to an implicit rejection mechanism (as defined [67, Sec-
tion 5.3]), where the decapsulation algorithm outputs a random key on input
of an invalid encapsulation. The rejection of malformed encapsulations is then
deferred to the symmetric decryption step.

4.1 The Scheme With an Additive Mask

We now describe a version of the scheme that has good features for side-channel
resistant implementation, where the decryption algorithm first adds a “dummy
ciphertext” to (c1, c2) before proceeding with the actual decryption.

Keygen(1*): Given a security parameter \ € N,

1. Choose a dimension n € N, a prime modulus ¢ = 1 mod 2n. Let the rings
R =Z[X]/(X™+1) and R; = R/(¢R) such that $(X) = X" + 1 splits
into linear factors over R,. Let R} the set of units in Ry.

2. Choose a noise parameter « € (0,1), and let a norm bound B = agy/n.
Choose an integer p € N such that 4B < p < ﬁ.

3. Sample a <= U(R,) and s,e <> DZ and compute b =p- (a-s+e). If
b¢ Ry, restart step 3.

4. Choose an authenticated symmetric encryption scheme I7°Y™ = (K, E, D)
with key length k € poly(\) and message space {0,1}¢m.

5. Let a domain Dg = {(r,e1,e2) € R® : ||r|,|le1]], |le2]| < B}. Choose a
hash function H : Dg — {0, 1}* modeled as a random oracle.

Return the key pair (PK, SK) where

PK :=(n, q, p, o, a € Ry, be Ry, II*™, H, B) and SK :=s € R.

Encrypt(PK, M): Given a public key PK and a message M € {0,1}/m:

coeff

1. Sample 7, e1, ez <= D7,

and compute
co=a-1+e € Ry, c2=b-r4+e € R,

together with K = H(r, e, e3) € {0,1}*.
2. Compute ¢y = Ex(M).
Output the ciphertext C' = (cg, ¢1, ¢2).
Decrypt(SK,C): Given SK =s € R and C = (cg, ¢1,¢2), do the following:

1. Sample 7€}, e = DP and return L if ||| > B, or |l > B, or

le5|| > B. Otherwise, compute ¢j = a -’ + €} and ¢j =b-r' + €.

11



Compute ¢ = ¢1 + ¢} and ¢ = ¢2 + .

Compute i = ¢ —p- €1 - s over Ry.

Compute e = i mod p. If ||ez|| > 2B, return L.

Compute 7 = (¢2 — é2) - b~ € Ry. If ||F|| > 2B, return L.

Compute €, = ¢ —a-T € Ry. If ||€1]] > 2B, return L.

Compute r = 7 — 1/, e = & — e} and es = & — 5. If ||r|| > B, or
llex]l > B, or ||e2|| > B, then return L.

8. Compute K = H(r,ey,ez) € {0,1}" and return

NS G W

M = Dg(co) € {0,1} U {L}.

The use of fully splitting rings may require multiple attempts to find an
invertible b € R as step 3 of Keygen. The proof of Lemma 7 shows that, unless
the RLWE assumption is false, a suitable b can be found after at most [A/logn]
iterations, except with negligible probability 2=*. In practice, a small number
of attempts suffices since a random ring element is invertible with probability
1 —n/q, which is larger than 1 — 1/n with our choice of parameters.

CORRECTNESS. Let 7 =r 41/, & = e; + €} and &; = ey + €}, over R. At step 2,
Decrypt computes ¢ = a-F+¢€1, ¢a = b-F+8&; over Ry, where ||7|, ||e1], ||e2|| < 2B
with probability 1 — 27(") over the randomness of Encrypt and Decrypt (by
Lemma 1). At step 3, the decryptor obtains

[L=¢Cy—p-C¢-s modgq
=0b-F+é)—p-(a-F+e&1) s modg
=p-(as+e)-T+e —p-aFfs—p-e1s mod q

€2 +p-er—p-eéxs,

where the last equality holds over R with overwhelming probability over the
randomness of Keygen, Encrypt and Decrypt. Indeed, Lemma 1 implies that
Is|l, lell < agy/n with probability 1 — 2= over the randomness of Keygen.
With probability 1—2-%(") over the randomness of Encrypt and Decrypt, we also
have ||7]|, le1]], ||e2]] < 2agy/n. Then, the Cauchy-Schwartz inequality implies

€2 +p-er —p-eislle < 2aqv/n+4p- (aq)’n (1)
<4p(B*+1) < q/2.

Since p/2 > 2aq+/n, step 4 recovers é; with overwhelming probability. Since
b€ Ry, Decrypt obtains 7 at step 5 and é; at step 6. Therefore, it also recovers
(r,e1,e2) at step 7 and the correct symmetric key K = H(r,e1,es) at step 8.
Correctness thus follows from the correctness of IT°Y™.

Remark 1. We note that correctness is guaranteed whenever ||s||, |le|]] < B and
1711, lle1ll, llez]]l < 2B, as it is a sufficient condition to have inequalities (1). This
will be used in the security proof.

ON DECRYPTION FAILURES. Due to the rigidity and randomness recovery prop-
erties of the scheme, the probability of decryption failure does not depend on the
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specific secret key s in use as long as ||s|| < B. If (r,e1,e2) € Dy and ||s|| < B,
we always have ||fi||coc < ¢/2, where i = ¢ —p-¢1-smod g=p-(e-T—eé1-5)+é2
unless the ciphertext is rejected at step 1 (which does not depend on s). If
(r,e1,e2) € Dy, then either: (i) We still have ||fi]lo < ¢/2 and Decrypt obtains
(r,e1,es), which are necessarily rejected; or (ii) ||f]lcc > ¢/2 but the extracted
(rf,el,el) cannot land in Dy since, otherwise, the rigidity property would imply
(c1,¢2) = (a-rT+el,b-rT +eb), in which case we would have ||il|so < ¢/2 unless
the ciphertext is rejected at step 1. Hence, if Decrypt does not return L at step
1, it computes (r,e1,e2) € Dg if and only if (¢1,¢2) = (a-r+e1,b- 7+ e2) no
matter which s of norm ||s|| < B is used at step 2.

In contrast, when m = 0 is encrypted in the LPR cryptosystem, we have
p=co—cy-smodqg=e-r—e;g-s+es. An adversary can then fix small (r, eq)
and play with many e;’s until it triggers a decryption failure when ||p||o > ¢/2.
The probability that this happens depends on the secret s (as a different s’ may
not cause rejection for a fixed (r, e1,e2)). In KYBER and SABER, the FO transform
allows restricting the adversary’s control over e; (which is derived from a ran-
dom message m using a random oracle and re-computed for verification upon
decryption) so as to make such attacks impractical. The FO transform is thus
crucial to offer a sufficient security margin against attacks like [30,33].

4.2 Black-Box Security Analysis

Our security proof uses ideas from Saito et al. [73, Section 4] to prove (tight)
security in the QROM. Their approach exploits the implicit rejection mechanism
of their KEM. Namely, when the incoming encapsulation (c1, ¢) is found invalid
upon decryption in [73], the decapsulated symmetric key K is replaced by a
random-looking K = H'(u, (¢1,¢2)), where u is a random string included in the
secret key and H' is an independent random oracle.

Here, in order to simplify the analysis of side-channel leakages in the real
scheme, it is desirable to minimize the amount of secret key operations in the
decryption algorithm and the amount of key material to protect against leakage.
Therefore we refrain from introducing an additional secret key component wu.
Instead, our security proof will first switch (in Games) to a modified decryption
algorithm where the rejection mechanism goes implicit and the decapsulation
procedure computes K as a random function of (¢1,¢z). At this point, we will
be able to apply the techniques from [73].

Since the implicit/explicit decapsulation mechanisms are used as part of a
hybrid encryption system, we can argue that they are indistinguishable by relying
on the ciphertext integrity of the symmetric encryption scheme. This is the
reason why we are considering the CCA security of the hybrid combination as a
whole, rather than that of its KEM component.* We note that similar ideas were

4 The underlying explicit rejection KEM can be proven CCA-secure secure in the
ROM but we do not prove it CCA-secure in the QROM as we only consider the
CCA security of the hybrid PKE scheme.
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previously used in the security proofs of hybrid PKE schemes [1,419], but usually
in the opposite direction (to go from implicit rejection to explicit rejection).

For the rest, the proof in the ROM carries over to the QROM since it avoids
ROM techniques that do not work in the QROM: we do not rely on the extraction
of encryption randomness by inspecting the list of RO queries to answer decryp-
tion queries, which is not possible when queries are made on superpositions of
inputs, and the RO is programmed identically for all queries.

Theorem 1. If ITY™ is a symmetric authenticated encryption scheme, the con-
struction of Section 4.1 provides IND-CCA security in the QROM under the
RLWE assumption.

Proof. The proof considers a sequence of hybrid games, which is similar to
that of [73, Theorem 4.2] from Games to Games. For each i, we denote by W;
the event that the adversary wins (i.e., d = d) in Game;. We also denote by
Encaps(PK, (r, e1, e2)) the deterministic algorithm that takes as inputs PK and
explicit randomness (r, e1,e2) € R, and outputs (c1,c2) = (a-7+e1,b- 7+ e3).

Gamej: This is the real IND-CCA game. The challenger faithfully answers
(quantum) random oracle queries. All (classical) decryption queries are an-
swered by running the real decryption algorithm. Note that a decryption
query triggers a random oracle query at step 8 of Decrypt. In the chal-
lenge phase, the adversary A outputs messages My, M; and obtains a chal-

lenge C* = (c§,ct,¢5), where ¢ = a-r* +ef, ¢ = b-r* + e}, with
r*,ef,e5 < DL and ¢f = Ex«(My) for some d < U({0,1}). Eventually,

A outputs b’ € {0,1} and its advantage is Adv(A) := | Pr[Wo] — 1/2|.
Game;: In this game, the challenger aborts and replaces A’s output by a random

bit d’ € {0,1} in the event that ||s|| > B or ||e|]| > B at step 3 of Keygen. By
Lemma 1, we have | Pr[IW;] — Pr[Wy]| < 9—12(n)

Games: We modify the decryption algorithm. Throughout the game, the chal-
lenger uses an independent random oracle Hg : R? — {0,1}" that is only
accessible to A via decryption queries (i.e., A has no direct access to Hg).
This random oracle is used to run the following decryption algorithm.

Decrypty: Given SK = s and C' = (cp, ¢1, ¢2), initialize a Boolean variable
flag = 0. Then, do the following.

1. Sample e}, el + D%‘?ffafq. If ||| > B, or |le}]| > B, or |e4|| > B,
then set flag = 1 and return 1.5 Otherwise, compute ¢j = a -7 + ¢}
and ch =b- 1" + €.

2. Compute ¢ = ¢; + ¢} and & = ¢o + .

3. Compute fi =¢2 —p- ¢ - s over R,.

4. Compute é2 = i mod p. If ||é2]] > 2B, set flag = 1.

® Decrypt, still uses explicit rejection at step 1 because the secret key is not needed at
this step and the goal of implicit rejection is to handle validity checks that depend
on the secret key and the ciphertext.
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5. Compute 7 = (¢2 — &) - b~ € R,. If ||7|| > 2B, set flag = 1.

Compute €1 = ¢ —a -7 € Ry. If ||é1]] > 2B, set flag = 1.

7. Compute r =7 —1', e; =& — e} and eg = & — ). If ||r|| > B, or
llex]] > B, or |lez]| > B, then set flag = 1.

8. If flag = 0, compute K = H(r,eq,e2) € {0,1}". Otherwise, compute
K= HQ(Cl,CQ).

9. Compute and return M = Dg(cq) € {0,1}f= U {L}.

&

Lemma 3 shows that, if the adversary can distinguish Gamey from Gamey,
we can turn it into an adversary against the ciphertext integrity of IT*¥™ (of
which the definition is recalled in Supplementary Material B).

Game;: We now simulate the random oracle® H : D — {0,1}" as
H(r,e1,e2) = H{ (Encaps(PK, (r,e1, €2))) (2)

where Hy, : R — {0,1}* is another random oracle to which A has no
direct access. At each decryption query, Decrypt, consistently computes
K as per (2) when flag = 0. In the computation of C* = (c,c},c3),
the symmetric key K* is similarly obtained as K* = Hb (c{,cg), where
(ct,¢5) = Encaps(PK, (r*,e7,e3)). Lemma 4 shows that, from A’s view,
Game; is identical to Gamey, so that we have Pr[W3] = Pr[Ws].

Game,: This game is like Games except that the random oracle H is now sim-
ulated as H(r,e1,es) = HQ(Encaps(PK, (r,el,eg))), where Hg R3 —
{0,1}" is the random oracle introduced in Gamey. In the computation of
the challenge ciphertext C* = (cf, ct, ¢5), the symmetric key K* is similarly
obtained as K* = Hq(cf, ¢3), where (¢}, ¢5) = Encaps(PK, (r*, €1, €3)), and
K is computed in the same way when flag = 0 at step 8 of Decrypt,. That is,
Gamey is identical to Games except that Hb has been replaced by Hg in the
simulation of H. Lemma 5 shows that Pr[W,] = Pr[Ws] as the two games
are perfectly indistinguishable.

Game;: This game is like Gamey except that we modify the decryption oracle.
At each query C = (cg,c1,c2), if flag = 0 at the end of step 1, then the
decryption oracle computes K = Hg(cy,c2) and returns M = Dg(co) €
{0,1}» U{L} (i.e., it ignores steps 2-7 of Decrypt, and jumps to step 8 after
having set flag = 1). Lemma 6 shows that Pr[W5] = Pr[WW,].

Gameg: We now remove the change introduced in Game;. Namely, Gameg is like
Games, but we no longer replace A’s output by a random bit if ||s|| > B or
le|| > B at the end of Keygen. By Lemma 1, | Pr[Wg] — Pr[W;]| < 277,

In Gameg, we note that the decryption oracle does not use the secret s anymore.

Game;: We modify the generation of PK. The challenger initially samples
ai,...,ar < U(Ry), e1,...,ex <= DEN  where k = [X\/logn], and com-

putes b; = a; - s + e; for each i € [k]. If none of the obtained {b;}¥_, is

5 We may assume that H outputs L on input of a triple (r,e1,e2) € Dg. A hash
function can always check domain membership before any computation.
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invertible, the challenger aborts and replaces B’s output by a random bit.
Otherwise, it determines the first index 4 € [k] such that b, € Ry and de-
fines the public key by setting a = a; and b = p - b;. Lemma 7 shows that,
under the RLWE assumption, this modified key generation procedure does
not affect A’s view and we have | Pr[Wy] — Pr[Ws]| < AdvRYE(L) + 22,

Gameg: We change again the generation of the public key. We replace the pseu-
dorandom ring elements {b; = a; - s + ¢;}F_, of Game; by truly random
bi,...,br <= U(Ry,) at the beginning of the game. Under the RLWE assump-
tion, this change goes unnoticed and a straightforward reduction shows that
| Pr[Wg] — Pr[Wr]] < AdvRYE()). As a result, since ged(p, ¢) = 1, the public
key is now distributed so that a ~ U(R,) and b ~ U(R).

Gamey: We change the generation of the challenge C* = (¢, ¢}, ¢3). In this
game, instead of computing c¢f = a-r*+ej, ¢ =b-r*+e5 with r*, e}, e5 <
D%‘Zf’f; 4> We now sample cj, ¢3 <= U (Ry) uniformly. Then, we compute ¢ as a
symmetric encryption of My under the key K* = Hg(c7, ¢5). Lemma 8 shows
that Gameg is indistinguishable from Gameg under the RLWE assumption.

In Gameg, A can no longer query H on short ring elements (r*, e, e3) that
underlie (¢}, ¢3) (in which case we would have Hg(c}, ¢5) = H(r*, 7, e3)). With
overwhelming probability 1 — 279" there exist no r*, e],e5 € R of norm < B
such that ¢ = a-r* +e7 and ¢5 = b-r* 4+ e5. Since A has no direct access to
Hq(+), this means that Hg(c7, ¢5) is now independent of A’s view.

Gamejo: In this game, we modify the decryption oracle that now rejects all
ciphertexts of the form C' = (co, ], ch) with ¢o # ¢ after the challenge
phase. Game;g is identical to Gameg until the event E;y that A queries
the decryption of a ciphertext C' = (cg, ¢}, ¢5) that would not have been
rejected in Gameg. Since ¢ = Ex+(My) is encrypted under a random key
K* = Hg(ct, c5) that is independent of A’s view, E1 would imply an attack
against the ciphertext integrity of II*¥™ (as defined in Supplementary Ma-
terial B)). We have | Pr[Wig] — Pr[Wo]| < Pr[E1g] < 2770 4 AdvAFNT()),
where @ is the number of decryption queries.

In Gamejq, the challenge C* = (cf, ¢}, c5) is obtained by encrypting ¢ under
a random key K* which is never used anywhere but in the computation of
¢ = Ex+(My). At this point, the adversary is essentially an adversary against
the indistinguishability (under passive attacks) of the authenticated encryption
scheme IT%¥™. We have | Pr[Wio] — 1/2| < AdvAFNP()).

Putting the above altogether, we can bound the advantage of an IND-CCA
adversary as

3

cca B,RLW -
AdvEH(A) < =5 - Adv, lgnlax V) + QQ+1)- AV ENT(N) - (3)
1
AE-IND
+ Adv ()\) + W,
where @ is the number of decryption queries. a

16



Lemma 3. Game, is indistinguishable from Game; as long as the authenticated
encryption scheme II°Y™ provides ciphertext integrity. Concretely, we have the
inequality | Pr[Wa] — Pr[Wh]| < % CAdVAEINT (),

Proof. The distinguishing advantage of A between the two games can be bounded
by the difference between the probabilities that a ciphertext gets rejected in
Gamey and Game;.

The difference between the two decryption oracles is that, when an invalid
pair (c1, ¢2) is detected at steps 4-7, Decrypt, sets flag = 1 and keeps going when
the decryption oracle of Game; would stop and return L.

In Games, let us assume that A queries a ciphertext (cg,c1,c2) for which
Decrypt, can be distinguished from Decrypt because, after step 1, it returns L
with a significantly different probability. This means that, in Games, we have
flag = 1 at step 8, so that Decrypt, computes K = Hg(c1,c2). Since A has
no direct access to Hg, the key K is independent of A’s view and uniformly
random over {0, 1}*. Hence, if Decrypt, does not return L at step 9, it implies
Dk (co) #L, meaning that .4 managed to forge a valid ciphertext for a completely
random key K. Concretely, the distinguishing advantage of A between the two

games can be bounded by w -AdvAE'lNT()\)7 with @) the number of decryp-

tion queries and AdvAE'lNT()\) the reduction’s advantage against the ciphertext
integrity of the authenticated encryption scheme I7°Y™. To see this, we consider

a sub-sequence of hybrid games that bridges between Game; and Games.

Game; ; (0 <7 < Q): In this game, the challenger answers the first ¢ decryption
queries by running Decrypt,. In the last () —¢ decryption queries, it simulates
the decryption oracle by running Decrypt as in Gamej.

Game; o is thus identical to Game; while Game; g corresponds to Game,. We
show that the distinguishing advantage between Game;; and Game; ;_1) is at
most i - AdvAENT()).

Suppose that A can distinguish between Game; ; and Game; (;_1) with advan-
tage ¢ = |Pr[Wy;] — Pr[Wy (;_1)]|- This can only happen if the i-th decryption
query gets rejected with significantly different probabilities in the two games.
Then, we build an adversary BAF with advantage /i against the ciphertext in-
tegrity (as defined in Supplementary Material B) of IT*¥™. Tt first guesses an
indexes j <= U([1,4]) that will be correct with probability 1/i. Namely, with
probability 1/, 7 € [1,4] will be the index of the first decryption query of the
form (-, ¢S, c5), where (cf, ¢5, ¢§) denotes the i-th decryption query.

During the IND-CCA game, BAF faithfully answers all decryption queries by
simulating Hg(+, -) on its own until the j-th query. At the j-th query (co, c§, c3),
it implicitly defines Hg(c{,c$) to be the challenge key K° in the ciphertext in-
tegrity game. To this end, it submits ¢y to its own decryption oracle and returns
whatever the latter returns. At each query of the form (-, c§,c$) after the j-th
query and before the i-th query, BAE proceeds exactly as in the j-th query. For
all queries (-, ¢1,c2) where (cq,ca) # (¢, ¢), it faithfully runs Decrypt, and sim-
ulates Hg(+,+). At the i-th query (¢, ¢S, c$), BAE halts and outputs c§ as a fake
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ciphertext in the ciphertext integrity game.
If BAE successfully guesses j € [1,4], the simulation of Game, ; is perfect until
the i-th query, at which point BAE wins against its challenger. a

Lemma 4. If ¢ > 8p(aq)?n and p > 4aq/n, Games is perfectly indistinguish-
able from Games.

Proof. We show that, from the adversary’s view, the random oracle H of Gameg
is identical to that of Games. To this end, we consider the function Encaps :
Dp — R?: (r,e1,e2) — Encaps(PK, (r,e1,e2)) and note that it is injective over
its domain Dg := {(r,e1,e2) € R? : ||7|,|le1]l, ||e2]| < B}. Indeed, there cannot
exist colliding (r,eq,e2), (7, €1,€2) € Dg. The equality b-r+ ey = b- 7 + é3 over
R, would imply

p-(a-s+e)(r—7)modqg=és — es.

Combining this with a - r + e; = aF + &; (over R,) would yield the equality
p(s-(61—e1)+e(r—7)) =é — e,

which would hold over R as the left-hand-side member is a polynomial with coef-
ficients smaller than 4p(aq)?n < ¢/2 in absolute value. However, this impossible
if €5 # e since p > 4B > ||é2 — ea||0o. If €2 = eg, it implies 7 = r (since b € qu)
and then €; = e;.

Since Encaps is injective over the domain Dg and Hg is a random function,
sois Hg (Encaps(PK, (s, ))) over Dg. The two games are thus perfectly indis-
tinguishable from A’s view since H behaves as a random function either way. O

Lemma 5. Gamey is perfectly indistinguishable from Games.

Proof. We assume that the event considered in Game; does not occur (so that
IIs]l, llel] < B) since both games have the same output distribution otherwise.
We call a ciphertext (co, ¢1,c2) good if (c1,co) satisfy

co=a-r+e € Ry, co=b-r+e€ Ry

for some triple (r, e, es) € R3 such that ||7|, |le1]], le2]| < B. For a good cipher-
text, if the decryption oracle of Games sets flag = 1 at all, the ciphertext gets
rejected at step 1 of Decrypt,. Indeed, if we have |lex + €] > 2B at step 4 of
Decrypt,, ||ez]] < B implies ||e5]| > B and similar implications hold for r" and €.
Then, if a good ciphertext is not rejected at step 1 and ||s||, ||e]| < B, Remark 1
implies that flag = 0 at step 8.

Consequently, in Games, the random oracle Hg is never evaluated on a good
ciphertext since, when Decrypt, sets flag = 1 for such a ciphertext, it rejects it
at step 1. At the same time, if we have flag = 0 at step 8, we know that the ci-
phertext is good. This means that (either via a query to H(:,-, ) or a decryption
query) H(’Q is only evaluated on good ciphertexts in Games. Since Hg and H(’Q
are evaluated on disjoint sub-domains in Games, A’s view is exactly the same as
if they were emulated using a single random oracle, as in Gamey,. ad
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Lemma 6. Games is perfectly indistinguishable from Gamey,.

Proof. Game; and Gamey are identical from A’s view until the two decryption
oracles give different outputs for some decryption query (co, c1, ¢2).

We note that, for any decryption query C' = (c¢o, ¢1, ¢2) such that the decryp-
tion oracle of Games sets flag = 1 after step 1, it always computes K = Hg(c1, ¢2)
at step 8 of Decrypt,. So, we only need to worry about decryption queries for
which the decryption oracle of Gamey never sets flag to 1.

For such ciphertexts C = (¢o, ¢1, ¢2) leading to flag = 0, the rigidity of the en-
capsulation mechanism ensures that step 7 computes (r,e1,e3) € Dg such that
c1=a-r+ey, ca =b-r+ e, meaning that (c1,ce) = Encaps(PK, (r,e1,e2)).
In this case, at step 8 of Decrypt,, the decryption oracle of Gamey computes
K = H(r,e1,e2) = Hg(cq, c2), exactly as the decryption oracle of Games does.

In both cases flag € {0,1}, Games is thus indistinguishable from Game, as
the two decryption oracles always output the same result. a
Lemma 7. Under the RIWE,, 1. 4., assumption where x = D%%ef;q and k =
[A/logn], Game; is indistinguishable from Gameg if ¢ > n?. Concretely, there
is a PPT algorithm B such that | Pr[Wy] — Pr[Wg]| < AdvERWE(N) 4272,

n,k,q,x

Proof. Game; can only be distinguished from Gameg in the event F; that the
challenger B fails to sample a pair (a;, b; = a;-s+e;) € Ry x Ry such that b; € R
after k = [A/logn] attempts. If F7 occurs with non-negligible probability, we
can build an RLWE distinguisher B as follows.

Algorithm B is given as input an RLWE instance {(a;,b;) € R2}}_; with
k = [A/logn] samples and must decide if b; ~ U(R,) for each i € [k] or
b; = a;-s+e; with e; ~ D%??ﬁ;q. If none of the ring elements {bi}f:1 is invertible
over Ry, the reduction B returns 1 (meaning that b; = a; - s + e; for all ¢ € [k]).
Otherwise, it returns 0 (meaning that b; ~ U(R,) for each i € [k]).

We claim that Pr[Fy] < AdvP"WE()) + 272, Indeed, a random b; ~ U(R,)
is non-invertible with probability n/q < 1/n since @ splits into degree-1 factors
over R,. Hence, if we sample k = [A/logn] independent by,...,b; < U(R,),
the probability of not obtaining any unit in R, is smaller than (1/n)F < 27
Hence, if b; ~ U(R,) for all i € [k], B outputs 1 with probability at most 27*.
Now, if b; = a; - s + ¢; for each ¢ € [k], B outputs 1 with probability Pr[F7] by
hypothesis. This shows that | Pr[W;] — Pr[Ws]| < Pr[F7] < AdvPRWE(\) 4272,

O

Lemma 8. Under the RLWE assumption, Gameg is indistinguishable from Gameg.
We have | Pr[Wo] — Pr[Wg]| < (1 —27*)7! ~Adv§:§3”vXE(/\), where x = DZT
and k = 2[\/logn] is the number of samples.

Proof. Assuming that the adversary can distinguish between Gameg and Gamesg,
we build an RLWE distinguisher B.

The reduction B is given k' = [A/logn] tuples (a;, b;,¢;1,¢2) € Ry X Ry
where (a;, b;) ~ U(Ryx R,) and each pair (¢; 1, ¢;,2) is either uniform over R, x R,

or of the form (¢; 1, ¢i2) = (ai-r+ei1,bi-r+e;2) for some e; 1, ;9 ~ DEM . To
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define the public key, B first checks if there exists an index ¢ € [k] such that b; is
invertible over R,. If no such index is found, B aborts and outputs a random bit.
Otherwise, it picks the first ¢ € [k] such that b; € R and defines PK by setting
a = a; and b = b;. Then, it simulates A’s view as in Gameg. In the challenge
phase, A outputs My, M. At this point, B constructs the challenge ciphertext
by setting ¢ = ¢; 1, ¢ = ¢;2 and ¢ = Ex«(My), where K* = Hg(c}, ¢5). After
the challenge phase, B answers all queries as in the first stage and eventually
outputs whatever A outputs.

Let Fail the event that none of the {b;}¥" is invertible. We have Pr[-Fail] >
1 — 27 by the same arguments as in the proof of Lemma 7. Conditionally on
=Fail, if (¢;1,¢i2) = (a; -7+ €;1,b; - 7 + €;2), then A’s view is exactly as in
Gameg. Then, when (¢;1,¢i2) = (a; -7+ €;,1,b; - 7+ e;2) for each ¢ € [K'], B
outputs 1 with probability 3 - Pr[Fail] + Pr[Ws] - Pr[-Fail.

Conditionally on event —Fail, if (¢;1,¢i2) ~ U(Rq X Ry), A’s view is iden-
tical to that of Gameg. When (¢;1,¢i2) ~ U(Rq X Ry), B thus outputs 1 with
probability % - Pr[Fail] + Pr[Wy] - Pr[—Fail]. Then, B’s advantage as an RLWE
distinguisher is at least | Pr[IWy] — Pr[Ws]| ~Pr[ﬂFaiIl. This yields the claimed
inequality | Pr[Wo] — Pr[Wg]| < (1 —272)~1. AdvBRWE()), 0

We note that bound (3) tightly relates the security of the scheme to the RLWE
assumption. On the other hand, it loses a quadratic factor O(Q?) with respect
to the ciphertext integrity of the symmetric authenticated encryption scheme.
However, the term Q(Q + 1) - Adv”F'™NT()\) becomes statistically negligible if
11°¥™ is realized using an information-theoretically secure one-time MAC, as we
discuss in the following instantiation section.

4.3 Parameters and Instantiations

PARAMETERS. In an instantiation in fully splitting rings R, (which allows faster
multiplications using the NTT in Encrypt), we use @(X) = X" + 1, where n is a
power of 2, with a modulus ¢ = 1 mod 2n.

For correctness, we need to choose « € (0,1), ¢ and p such that p/2 > 2B

and 4p(B? + 1) < ¢/2, which satisfy the requirements of Lemma 4. To apply
Lemma 2, we can set « € (0,1) so that ag = £2(v/n). To satisfy all conditions,
we may thus set p = O(n), ¢ = O(n?) and a~! = O(n?5).
CONCRETE PROPOSALS. Around the 128-bit security level, n has to be some-
where between 512 and 1024. When r, e1, es are sampled from D%?f’f; o We relax
the constraint ag = 2(y/n) but still choose ag ~ A/2 in order to apply Lemma
1 and we take into account the constraints of Lemma 4 and Lemma 7. If we set
n = 1024 so as to have a power of 2, we can use ¢ = 1813307393, g = 12, and
p = 1537, so that the pair (¢1, ¢2) fits within 7.75Kb.

In order to obtain a more optimized instantiation, we can further sample
s,e,r, e1,es from a centered binomial distributions as suggested in [4, 21, 37]
and set the parameters according to the concrete hardness against known at-
tacks via the LWE estimator [3]. As in [37], we use the distribution 5 ob-
tained by reducing 15 mod 3, where 7} is defined over Z" as the distribution
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{Zle(ai —b;) | ai,b; <= U({0,1}™)}. This modification only entails minor mod-
ifications in the security proof, which are detailed in Supplementary Material C.
We then obtain ciphertexts of 4Kb by setting n = 1024, p = 5 and ¢ = 59393.

In order to push optimizations even further, we could use rings where n does
not have to be a power of 2, as suggested in [37]. For example, the cyclotomic
polynomial @3, = X™ — X™/2 4+ 1 with ¢ = 1 mod 3n and n = 2°37 still gives
a fully splitting R, = Z4[X]/(Psy). This allows choosing n = 768, p = 5 (so
that ||é2]lec < (p —1)/2), and ¢ = 28 - 3n + 1 = 64513. Correctness is ensured
since we have [|a - bl < 2||a||||b]| for any a,b € R = Z[X]/(P3n), so that
lea+p-(e-7F—€1-5)||oo < (p—1)/2+8-p-n < (g—1)/2. We would then obtain
a ciphertext (c1,c2) that only takes 3Kb to represent.

In all instantiations, the public key can compressed down to roughly 50% of
the ciphertext size if we derive the random a € R, from a hash function modeled
as a random oracle (as considered by many NIST candidates).

INSTANTIATING THE DEM COMPONENT. The symmetric authenticated encryp-
tion scheme IT°¥™ can in general be instantiated with a a leakage-resistant Enc-
then-MAC mode of operation. Candidates for this purpose that rely on a masked
block cipher or permutation can be found in [15]. Yet, POLKA encourages the
following more efficient solution based on a key-homomorphic one-time MAC.
Specifically, if £,, is the message length, we can use a key length kK = A+2/,,, and
a pseudorandom generator G : {0,1}* — {0,1}*. To encrypt M € {0,1}%m,
we parse K = H(r,e1,e2) € {0,1}" as a triple K = (Ko, K1, K3) € {0,1}* x
({0,1}4m)2, Then, we compute a ciphertext ¢ = (¢,7) = (M®G(Ky), K1 -¢+K>),
where the one-time MAC 7 = K, - ¢ + K is computed over GF(2¢").

This specific MAC allows “annihilating” the quadratic term O(Q?) in the
security bound (3). In the ciphertext integrity experiment (defined in Sup-
plementary Material B), the adversary’s advantage can then be bounded as
(Q+1)/2% if Q is the number of decryption queries. To make the term Q(Q+1)-
AdvAE'lNT()\) statistically negligible in (3), we can assume that £,, > A+3log® A
in order to have (Q + 1)2Q/2%» < 23198°X/9tm < 2-X_ Concretely, if we set
A = 128 and assume Q < 29, we can choose £, > 308.

In terms of leakage, the computation K; - ¢ + K5 is linear in the key and
can therefore be masked with overheads that are linear in the number of shares
(rather than quadratic for a block cipher or permutation). The constraint on
the message length could be relaxed by hashing the message at the cost of an
additional idealized assumption, which we leave as a scope for further research.

5 Side-Channel Security Analysis

We now discuss the leakage properties of POLKA. In Section 5.1 we introduce the
general ideas supporting its leveled implementation and explain how its security
requirements can be efficiently fulfilled. In Section 5.2, we focus on its most novel
part, namely the variant of the LWPR assumption on which this implementation
relies. We also provide cryptanalysis challenges to motivate further research on
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hard physical learning problems. In Section 5.3 we describe a hardware archi-
tecture for the most sensitive DPA target of POLKA. Our descriptions borrow
the terminology introduced in [45] for symmetric cryptography. Namely, we de-
note as leakage-resilient implementations of which confidentiality guarantees may
vanish in the presence of leakage, but are restored once leakage is removed from
the adversary’s view; and we denote as leakage-resistant implementations that
preserve confidentiality against leakage even for the challenge encryption.

5.1 Leveled Implementation and Design Goals

The high-level idea behind leveled implementations is that it may not be neces-
sary to protect all the parts of implementation with equally strong (and there-
fore expensive) side-channel countermeasures. In the following, we describe how
POLKA could be implemented in such a leveled manner. For this purpose, and as
a first step, we follow the heuristic methodology introduced in [15] and identify
its SPA and DPA targets in decryption. The resulting leveled implementation
of POLKA is represented in Figure 1. The lighter green-colored (dummied) oper-
ations need to be protected against SPA. The darker green-colored operations
need to be protected against SPA with averaging (avg-SPA), which is a SPA
where the adversary can repeat the measurement of a fixed target intermedi-
ate computation in order to remove the leakage noise. The lighter blue-colored
operations need to be protected against DPA with unknown (dummied) inputs
(UP-DPA). The darker blue-colored operations must be protected against DPA.
Operations become generically more difficult to protect against side-channel at-
tacks when moving from the left to the right of the figure. Eventually, securing
the first four steps in the figure is needed to protect the long-term secret of
POLKA, and therefore to ensure leakage-resilience. By contrast, securing the fifth
step is only needed to ensure leakage-resistance (these values can leak in full in
case only leakage-resilience is required). Next, we first explain how these security
requirements can be efficiently satisfied by hardware designers. We then discuss
the advantages of this implementation over a uniformly protected one.

SPA and DPA protections. All the operations requiring SPA protection (with
or without averaging) can be efficiently implemented thanks to parallelism in
hardware. Typically, we expect that an implementation manipulating 128 bits
or more in parallel is currently difficult to attack via SPA, even when leveraging
advanced analytical strategies [75].”7 A bit more concretely, this reference shows
that single-trace attacks are possible for Signal-to-Noise Ratios (SNRs) higher
than one. Adversaries targeting a 128-bit secret based on 8-bit (resp., 32-bit)
hypotheses would face an SNR, of %6 (resp., i) Securing the computations in
steps 1, 3 and 4 of Figure 1 against side-channel attacks should therefore lead to
limited overheads. Note that the dependency on a dummy ciphertext in step 3
prevents the adversary to control the intermediate computations (and for exam-
ple to try canceling the algorithmic noise for those sensitive operations).

" As will be clear in conclusions, software implementations are left as an interesting
open problem. In this case, the typical option to obtain security against SPA would
be to emulate parallelism thanks to the shuffling countermeasure [79)].
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Fig. 1: Leveled implementation of POLKA.

Security against DPA is in general expected to be significantly more expen-
sive to reach. The standard approach for this purpose is to mask all the op-
erations that can be targeted, which leads to (roughly) quadratic performance
overheads [51]. Furthermore, implementing masking securely is a sensitive pro-
cess, which requires dealing with composition issues [9,29], physical defaults such
as glitches [60,64] or transitions [7, 28] or even their combination [25,26].

The main observation we leverage in POLKA is that its most critical DPA sen-
sitive operation shares similarities with the key-homomorphic re-keying schemes
used in symmetric cryptography to prevent side-channel attacks [35,38,39,61].
Namely, the operation t = (p-¢7) - s in step 2 of Figure 1 can indeed be viewed
as the product between a long-term secret s and an ephemeral (secret) value
(p-e1). As a result, it can be directly computed as t = Ele(p -¢7) - 8%, where
s =s' + 52+ ...s% and the s'’s are the additive shares of the long-term secret
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s. Besides the linear (rather than quadratic) overheads that such a solution en-
ables, key-homomorphic primitives have two important advantages for masking.
First, their long-term secret can be refreshed with linear randomness require-
ments [10]. Second, their natural implementation offers strong immunity against
composition issues and physical defaults [24]. On top of this, the fact that the
variable input of (p-¢7) - s* is dummied (hence unknown) implies that it will
need one less share than in a known input setting [17].

Even more importantly, and as discussed in the aforementioned papers on
fresh re-keying, it is then possible to re-combine the shares and to perform the
rest of the computations on unshared values, hence extending the interest of a
leveled approach. Various models have been introduced for this purpose in the
literature, depending on the type of multiplication to perform. The first re-keying
schemes considered multiplications in binary fields that require a sufficient level
of noise to be secure [13, 14]. Dziembowski et al. proposed a (more expensive)
wPRF-based re-keying that is secure even if its output is leaked in full [39].
Duval et al. proposed an intermediate solution that only requires the (possibly
noise-free) leakage function to be surjective and “incompatible” with the field
multiplication: they for example show that this happens when combining multi-
plications in prime fields with the Hamming weight leakage function, which they
formalized as the LWPR assumption [38]. Given that the multiplication of POLKA
is based on prime moduli, we next focus on this last model, which provides a
nice intermediate between efficiency and weak physical assumptions.

As for the operations of step 5 of Figure 1, we first observe that despite the
inputs of H being ephemeral, it is possible that an adversary obtains a certain
level of control over them by incrementally increasing c¢; or cy. This explains
why it must be secure against DPA (with unknown plaintexts since r,e; and
eo are unknown as long as steps 3 and 4 are secure against SPA). Finally, the
protection of the authenticated encryption is somewhat orthogonal to POLKA
since it is needed for any DEM. The standard option for this purpose would be
to use a leakage-resistant mode of operation that ensures side-channel security
with decryption leakage. As discussed in [15], state-of-the-art modes allow the
authenticated encryption scheme to be leveled (i.e., to mix SPA-secure operations
with DPA-secure ones), like the rest of POLKA. But as mentioned in Section 4.3, an
even more efficient solution is to use an Enc-then-MAC scheme with a one-time
key-homomorphic MAC that is linear in the key and therefore easy to mask.

Discussion. The main advantage of POLKA is that its structure allows avoiding
the costly implementation of uniformly protected operations based on masking.
In this respect, it is worth recalling that: (i) the removal of the dummy ciphertext
takes place as late as possible in the process (i.e., just before the hashing and
symmetric decryption), and (ii) if only the long-term secret s must be protected
(i.e., if only leakage-resilience is required), step 5 of Figure 1 does not need coun-
termeasures. Overall, these design tweaks strongly limit the side-channel attack
surface and the need to mask non-linear operations compared to algorithms like
KYBER or SABER, at the cost of an admittedly provocative LWPR assumption.
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We note that the explicit rejection process allows avoiding the need to ma-
nipulate additional long-term secret material. This is in contrast with an implicit
rejection mechanism where a pseudorandom “garbage key” is generated in case
of invalid ciphertext, the generation of which must be protected against DPA.
Yet, ensuring the leakage-resistance of POLKA against timing attacks still requires
running a dummy hash function when flag = 1 in order to ensure constant time.
Otherwise, the same granular increase of ¢; or ¢y as mentioned to justify the
DPA security requirements of H could leak information on ey, es and r if a tim-
ing channel allowed detecting whether a | message is generated during step 4
or step 5 (by the authenticated encryption scheme). This also means that it
should be hard to distinguish whether the flag is 0 or 1 with SPA to ensure
leakage-resistance. We conjecture the latter is simpler/cheaper than protecting
another long-term secret against DPA (as required with implicit rejection), but
as mentioned in introduction, POLKA could be adapted with an implicit rejection
mechanism as well (in which case, it should also be hard to distinguish whether
the key used to decrypt is a garbage one or not thanks to SPA).

5.2 Learning With Physical Rounding Assumption

We now move to the main assumption that allows POLKA to be masked with
linear overheads. Namely, we study the security of step 2 in Figure 1 after the
recombinations of the shares. In other words, we study the security of the long-
term secret s assuming that the adversary can observe the leakage of the (un-
masked) output ¢.® We start by recalling the LWPR problem introduced at CHES
2021 [38], then discuss its adaptation to polynomial multiplications needed for
POLKA. We finally propose parameters & cryptanalysis challenges.

A. The original LWPR problem can be viewed as an adaptation of the
crypto dark matter proposed by Boneh et al. in [20], which showed that low-
complexity PRFs can be obtained by mixing linear functions over different small
moduli. Duval et al. observed that letting one of these functions being implicitly
computed by a leakage function can lead to strong benefits for masking against
side-channel attacks. Intuitively, it implies that a designer only has to imple-
ment a key-homomorphic function securely (i.e., the first crypto dark matter
mapping), since the second (physical) mapping never has to be explicitly com-
puted: it is rather the leakage function that provides its output to the adversary.
The formal definition of the resulting LWPR problem is given next.

Definition 2 (Learning with physical rounding [38]). Let ¢,z,y € N*, ¢
prime, for a secret k € Fy*Y. The LWPng’f’q sample distribution is given by:

DLWPng*?q = (r,Lg (5 - 7)) for r € FY uniformly random,

8 As mentioned in subsection 5.1, the security of the internal computations of ¢ =
Zle(p -C1) - 8" is obtained thanks to masking. So here, we only need to argue that
the leakage of the recombined ¢ does not lead to strong attacks.
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where Lg : Fy — R? is the physical rounding function. Given query access to

DLWPRl v for a uniformly random k, the LWPRT v o, problem is (x, T, p, €)-hard to

solve zf after the observation of x LWPR samples no adversary can recover the
key k with time complexity T , memory complexity p and probability > e.

Concretely, the LWPR problem consists in trying to retrieve a secret key matrix
k using the information leakage emitted during its product with a random vector

r. It corresponds to a learning problem similar to LWR [8], with the rounding
function instantiated with a leakage function. Its security depends on the di-
mensions (g, x,y) and the leakage function considered. In [38], it is argued that

this problem is hard in the case of the Hamming weight leakage function that is
frequently encountered in practice (with a regular binary representation). This
problem can then be used as the basis of a fresh re-keying mechanism, producing
an ephemeral key € F7 thanks to the aforementioned product. It can be imple-
mented serially (by setting the z parameter to 1), in which case words of log,(q)
bits of ephemeral key will be produced one by one, or in a parallel manner by
increasing z, therefore producing x x log,(gq) bits of ephemeral key at once.

The security analysis of Duval et al. first shows that the complexity of var-
ious (algebraic and statistical) attacks against such a fresh re-keying scheme
grows exponentially with the (main) security parameter y. Due to the inevitably
heuristic nature of their cryptanalysis, they next use the parallelism parameter
x as a way to obtain security margins. Denoting the words of the ephemeral
key as z;, a serial implementation will leak independent HW(g(z;)) values to
the adversary, while a parallel one will leak Y7 | HW(g(z;)) values, with g(z;)
denoting the binary representation of z;. As a result, the amount of mutual infor-
mation per word that such Hamming weight leakages provide rapidly decreases

%7 which is expected to make attacks more challenging.

The instance proposed by Duval et al. uses a 31-bit prime modulus p =
231 — 1 with parameters = 4 and y = 4 (i.e., it assumes that four log,(p)-bit
multiplications can be performed in parallel). It claims 128 bits of security.

as

As can be seen in Figure 1, step 2 of POLKA shares strong similarities with
the aforementioned fresh-re-keying scheme based on LWPR, by simply viewing
the intermediate value ¢ as an ephemeral key. We next discuss the differences
between the original LWPR assumption and the one needed for POLKA.

B. Ring-LWPR. Leveraging the fact that ring variants of learning problems
are common [58], we now describe a ring version of the LWPR problem. Let
r = p-¢1. Seeing s as a long-term secret (similar to x in the original LWPR
problem), the ¢t value can be re-written as ¢ = r - s. Further denoting s; (resp.,
;) the coefficients of s (resp., r), we can write:

n—1 n—1 2n—2 min(i,n—1)
T8 = (Z SiXi> : (Z TiXi> = Z Z sirimj | X7,
=0 =0

=0 j=maz(0,i—n+1)
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The above equation highlights the matrix representation of the polynomial mul-
tiplication carried out in POLKA. If we represent polynomials as n-dimension vec-
tors, where the i-th coefficient is the polynomial’s i-th coefficient, the product
r - s can be represented as the following matrix-vector product:

rn —Tp—1...—-Tog —T1
S0
1 To . ] S1
k)
LR Sn—2
Tn—2 . - —Tnpn—1
Sn—1
Thn—1 Th—2 ... T1 To

The key is represented as the vector (rather than the matrix) in order to optimize
memory usage when splitting it into shares. This product can therefore be seen
as a large LWPR instance, with two significant differences. First, a circulant
matrix is used instead of one having independent coefficients (which we will
discuss when selecting parameters in the next subsection). Second, the size of
the matrix is (much) larger than the one in the original LWPR. Concretely,
this second difference implies that in practice, these products are unlikely to be
performed in one step: they will rather be decomposed into several submatrix-
subvector products. For this purpose, let € N be a divider of n, the s matrix
can then be split in 2 (z x n)-submatrices, denoted (By)y<,.». The product
can then be decomposed into 2+ subproducts, as illustrated by the following box:

n
ro —Tp—-1...—T2 —T1
S0
1 To . -T2 S1
. Sn—2
Tn—2 . c T Tn—1
Sn—1
Th—1 Th—2 ... T1 To

with x serving as a parameter to adapt the security vs. performance tradeoff, as
in the original LWPR. For a given k, one can explicitly obtain the coefficient i, j

Lif P Then7 B,Z’J = (21(uz+i7j)<0_

of B,,. For a proposition P, denote 1p = { 0 else
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1)-Tupti—j (mod n) and the (z xn)-submatrices are therefore Toeplitz, determined
by their first line and first column, each other value being equal to their top-left
neighbor. Concretely, the x parameter sets the number of coefficients that are
computed in parallel, so that an adversary will be granted access to 2 samples

given by the leakage function applied to xlog,(q) bit-values.

Definition 3 (Ring learning with Physical rounding). Let ¢,2,n € N, ¢
prime, for a secret s € R,. The RLWPR{:Z (s) sample distribution is given as:

Druweryz (s) = (7‘7 (Lg (B 5))0§u<5) ;

where Lg is the physical rounding function and the (By) are submatrices made
of elements of r as defined above. Given query access to Druwprr= (s) for a
g,

uniformly random s, the RLWPRrL:Iq (s) problem is (x,T,u,€)-hard to solve if
after the observation of x RLWPR samples, no adversary can recover the key s
with time complexity T, memory complexity p and probability higher than e.

Note that an implementer can also split each (2 x n) submatrice into % pieces
(e.g., to further trade circuit size for cycles in hardware) but this has no impact
on the security of the RLWPR assumption, since the internal computations are
assumed to be secure thanks to masking, as per Footnote 8. By contrast, more
parallel implementations (reflected by a large y) may increase the level of noise
in the measurements and therefore the security of the masked computations [36].
So overall, the security of the above RLWPR problem only depends on n and =z.
For a similar reason, the polynomial multiplication can be implemented naively
or in the NTT domain, as long as the inverse NTT is applied on every share
before recombination. A more efficient solution for the NTT case would be to
recombine the shares in the NTT domain (so that the inverse NTT is computed
only once). This would provide the adversary with leakages having a slightly
different structure than in the above RLWPR problem. We leave the security
analysis of this variant as an interesting scope for further research.

C. Choice of parameters and cryptanalysis challenges. Applying the
security analysis of LWPR described in Part A of this subsection to RLWPR,
we could choose instances based on the main security parameter n using the
parallelism parameter z to obtain security margins (a necessary condition to
reach \ bits of security is that (n+1) log, g+31og, n > ). However, as mentioned
in Part B of this subsection, the RLWPR problem is not exactly the same as
the LWPR one. Negatively, the (z x n) submatrices are Toeplitz and they are
not independent. While using structured matrices is not unusual in the context
of hard learning problems (see for example [58] for RLWE or [14, 53] for LPN
variants) and we could not identify parts of the analyses in [38] that become
significantly easier in this case, the corresponding problems are less studied.
It is therefore natural to consider additional security margins. As for the non-
independence issue, considering that the security of the full RLWPR is at least
as strong as the security of one of its subproducts, we can conservatively assume
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that one RLWPR sample will generate at most ** leakages about this subsecret. So
parameters’ choices covering that the data complexity of attacks against RLWPR
is reduced by this factor compared to attacks against LWPR should be safe.
Positively, the secret s in the leveled implementation of POLKA is not multiplied
with a public r since this r value is dummied. So concretely, the side-channel
adversary will only be provided with the leakage of this ephemeral value.

Putting things together, and considering the instances proposed in subsec-
tion 4.3, we propose the following sets of parameters as interesting targets for
cryptanalysis with a time complexity of less than 2'2® and at most 2% queries
to a RLWPR—bﬁ{,g\C,’g‘I{q (s), assuming a Hamming weight leakage function.

logy(q) | n

Set 1] 31 [1024
Set 2| 31 [1024
Set 3] 16 | 1024

| =] 00| &

We leave the investigation of more aggressive parameters (especially reducing
the level of parallelism ) as interesting directions for further research.

5.3 Hardware Performance Evaluation

We finally complete our results with an FPGA prototype for the masked com-
putation of ¢ (i.e., step 2 in Figure 1), which is the most sensitive operation in
POLKA. As a first proof-of-concept, we consider a naive implementation of the
multiplication for this purpose (i.e., without NTT), which is easier to design in
hardware. As mentioned in Section 5.2, the computation of ¢ is decomposed in
the different subproducts (B, - s). To perform them, the hardware module dy-
namically generates submatrices of coefficients together with their corresponding
signs, computes the modular multiplications and accumulates the intermediate
results. Leveraging on the key-homomorphism of the operations, masking the
complete computation boils down to operating with a shared representation of
s (with d shares) and to sequentially process each share s* with the same vector
r. In order to avoid excessive circuit size, each submatrix B, as well as the long

term key shares (sz) are split in % smaller pieces, respectively denoted as

0<i<d
(Buv”)0§v<% and (Si)ogv<§’ that are then processed sequentially.

The global architecture of our hardware module is shown in Figure 2. It takes
as input the vector 7 (circled in blue), the subvector share s (circled in red) and
control signals (circled in green), and it outputs the value of u (circled in black).
The blocks B, , are generated by the BlockGenerator module. To avoid relying
on costly large MUXes, they are generated iteratively using a shift register. The
shift register holds P, ., = [P}, Py ,,...,Pr,'], a permuted version of the vec-
tor r in such a way that the first row of a given B, , is obtained by keeping the
first y coefficients stored in the registers (i.e., (Bg:{) = Pg’v)0<j<y). The z — 1
remaining rows of the block are similarly generated in parallel by keeping the
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first y coefficients of a rotated version of P,,. Such a rotation operation has
the advantage of being easily and virtually freely implemented in hardware by
applying appropriate wiring to the rotated state. To perform a full computa-
tion over a share, the different B,, , are sequentially generated by updating the
value of P, ,. In practice, when v only is incremented, the P, , is rotated by y
coefficients to the left (i.e., Péyv 41 = Pyi_ v) mod ™). When iterating over u only,
it is rotated by x coefficients to the right (i.e., P, , = (e imodny YWhen
both w and v are iterated (which occurs when v = n/y — 1), the direction and
the amount of the rotation depends on the instance parameters and are trivially
derived by combining rotations occurring when only u or v are incremented.

'iterate_u —
IR B
' iterate_v —> Block “
___________ Generator
T B
s%, Dot product
------- Unit
Ty — > , signs
v Signs 81%up
i Generator
LU
Acc.|> t |

Fig. 2: Global architecture of our RLWPR prototype.

The signs of the submatrix coefficients signsi’fv are generated independently
by the SignsGenerator module. The latter is a simple combinatorial logic block
that naively computes each sign based on the indices u and v. These are con-
trol signals that are forwarded together with B, , to the computation core
DotProductUnit. The latter is the main computation core of the design and
computes the subproduct between B, ,, and s¢ in 1 clock cycle (hence matching
the RLWPR assumption). Fully implemented with combinatorial logie, it is com-
posed of x x y parallel multiplication cores followed by adder trees used to sum
up the y multiplication results computed for a single row. IIn practice, the design
relies on the Digital Signal Processors (DSPs) resources, nowadays embedded in
FPGAs to reduce the area cost of the multiplication circuitry. Finally, the x in-
termediate results obtained are used to update the corresponding accumulators.
A MUX is used to select the values of the accumulators that need to be updated
(denoted t2=¢<*~1 in Figure 3). These are then routed back to be added modulo
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q with the values outputted by the adder trees. Overall, the processing of a share
is performed in n?/zy clock cycles, leading to dn?/xy cycles of latency for the
computation part when all the shares are considered.

signatd | u
P00 5| Sign
B”“ Format % % >
sl : td A
""""" ' ions¥-1 ! :
. ;_S_l_g_lfslf{’___: Modular N
. i Reduction
i- é(;,;-—-l_ : Sign :
LW Format ! — t > >
% A
oyl o
. signsﬁ;jl’o . :
Bz—lO Sign .
LT Format . —>tﬁ_1
e % P '
e a1yl :
: S80Sy " Modular | ||
. l Reduction
i;,';ii,'yl'{: Sign :
wr Format ' —tn 1
e % A
St
<«— Dot product unit >« -Accumulator >

Fig. 3: Subproduct computation core and accumulator mechanism.

As depicted in Figure 4, the long-term secret shares s are stored in inde-
pendent memory elements. A MUX is used in order to properly route the value
st from the different memory blocks’ instances. Overall, d memory blocks with
a capacity of nlog,(g) bits are required to store the sharing of s. In practice,
these RAMs are implemented with BRAM block resources, which are dedicated
memory blocks embedded on nowadays FPGA. In order to reduce the risk of
transition-based shares recombinations, the output of each RAM is forced to
zero when no valid read operation has been issued. Besides, a dead cycle (i.e.,
a cycle without any read operation) occurs when switching from one share to
another. Combined together, these mechanisms ensure that no physical recom-
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bination of the share can occur when transiting from one share to another at
the cost of limited area overhead and d additional clock cycles.

| reng : r_en v
{weng ——>{w_en v
e ' do rnd_a;
v
_________________ BRAM
\ n_s .
________ di
data wb :
:d ' '
. . > data_wb
s
Tend-1 - r_en
weng—1 ——»{w_en
--------- ! do

Fig. 4: Memory organization for the s storage.

After each utilization, the key shares have to be refreshed. This is done in
parallel to the other computations by a dedicated module that implements the
same linear refresh mechanism as the one used in [24] and [38]. Considering such
a refresh mechanism, a total of dn?/x fresh random elements over IF,, are required
when a single computation of u is considered. In the context of this work, we
assumed that the 2y random elements required to refresh s¢ in 1 clock cycle are
provided to the core by external means through the two y elements wide buses
rnd_al and rnd_b:. The refreshed data (denoted data_wb in Figure 4) are then
routed back to the BRAMSs to be written back to the memory. Properly setting
the enable signal of each share BRAM write interface (denoted wen;) ensures
that only the memory block that has just been read is updated.

The FPGA implementation results of our architecture are shown in Table 1
for the parameters sets of Section 5.2. They were obtained with the Vivado
v2020.1 toolset for a Xilinx Kintex7 FPGA and confirmed overheads that are
linear in the number of shares d. Since based on similar or larger levels of par-
allelism as [38], these implementations are expected to provide similar or larger
levels of security against higher-order DPA (and the security of the re-combined
shares should hold for up to 254 queries, as mentioned in Part C of Section 5.2).
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Instance y d LUTs Regs B36 B18 DSPs Latency Freq.
[kLUTs] [kRegs] [keycles]  [MHz]

Set 1 2 57.18 63.74 4 0 128 65.538 27.4
Set 1 4 3 5733 63.75 6 0 128 98.307 26.7
Set 1 4  57.60 63.76 8 0 128 131.076 26.5
Set 2 2 55.21 63.86 6 2 128 65.538 25.1
Set 2 8 3 55.60 63.87 9 3 128 98.307 25.1
Set 2 4 56.00 63.98 12 4 128 131.076 25.1
Set 3 2 2790 33.05 4 0 64 49.154 34.23
Set 3 8 3 28.05 33.06 6 0 64 73.731 32.29
Set 3 4 2819 33.07 8 0 64 98.308 28.47

Table 1: XC7K410T FPGA implementation results of the masked u computation.
B36, B18 and DSPs correspond to physical resources RAMB36E1, RAMBI18E1
and DSP48E1 that are embedded on Xilinx Serie7 FPGAs.

6 Conclusions

The uniform protection of all the operations in recent post-quantum CCA-secure
public key encryption schemes against side-channel attacks is known to be very
expensive. To the best of our knowledge, POLKA is the first scheme for which a
protected implementation can be leveled, mixing operations that only require
SPA security with a few operations that require DPA security but can be effi-
ciently masked. We reach this goal by mixing various ideas which we believe of
independent interest.” We also believe these techniques are generic and could
be exploited for other schemes. For example, a leakage-resistant variant of the
NTRU cryptosystem is discussed in Supplementary Material A.

Our results also lead to a number of interesting open problems. First, the
RLWPR assumption on which a part of POLKA’s physical security relies is an ad-
mittedly recent one. So further cryptanalysis (e.g., generalized to wide classes
of realistic leakage functions) is an important scope for further research. The
investigation of such hard physical learning problems in increasingly serial im-
plementations is another promising direction, as it could lead to their exploita-
tion in a software context. The same holds for a NTT-LWPR variant of RLWPR
that would allow re-combining shares in the NTT domain, therefore leading to
more efficient multiplications and, in general, for efforts towards a more unified
/ less specialized view of hard physical learning problems. More related to the
high-level design of POLKA, it would be interesting to study options to further im-
prove its potential for leveling (e.g., by removing the possibility of DPA against
the hash function of step 5). From a theoretical viewpoint, evaluating whether

9 For example, even a POLKA design that does not rely on the RLWPR assumption to
unmask some computations would remain interesting compared to the NIST post-
quantum finalists, thanks to the significant reduction of masked symmetric crypto-
graphic primitives that dominate their performance figures [23].
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post-quantum and leakage-resistant schemes could take advantage of ciphertext
compression would be relevant as well. Eventually, the first leakage analysis we
provide in this work is based on the heuristic (attack-based) approach of [15]. So
formalizing and proving the leakage security of POLKA with an appropriate set
of physical assumptions is a necessary long-term goal.
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A LR-NTRU: a Leakage-Resistant NTRU Variant

With slight changes, the re-encryption-free hybrid encryption scheme of [27,
Section 2.3] can be made side-channel-resistant in the same way as our scheme
of Section 4. However, if we set the parameters to rely on the standard RLWE
assumption (and avoid the stronger Decision Small Polynomial Ratio assumption
[56]) by applying the result of [75], it turns out to be significantly less efficient.

A.1 The Scheme With an Additive Mask

Keygen(1*): Given a security parameter \ € N,

1.

Choose a dimension n € N, which is a power of 2, and a prime modulus
q such that ¢ = 1 mod 2n, which define the rings R = Z[z]/(z™ + 1) and
Ry = R/(qR). We denote by R the set of units in R,.

. Choose a standard deviation ¢ € R such that ¢ > 2n/In(8nq)q'/?*% a

noise parameter o € (0,1), and a modulus p € N such that p > 4dag\/n
and ¢ > 8p(agn + 1). Let a norm bound B = ag+/n.

Sample g < D%%?fg. If (g mod q) € R, restart step 3.

Sample f/ < D%‘Efﬁ; and compute f = pf'+1.If (f mod q) & R, restart
step 4.

. Choose an authenticated symmetric encryption scheme IT°¥™ = (K, E, D)

with key length x € poly()\) and message space {0, 1}*.
Let a domain Dg := {(s,e) € R? : |s||,|le| < B}. Choose a hash
function H : D — {0,1}" that will be modeled a a random oracle.

Return the key pair (PK, SK) where

PK := (TL, q, p, &, h:pg/feR;, Hsym7 H, B)

and SK := f € R*.
Encrypt(PK, M): Given a public key PK and a message M € {0,1}*", do the
following:

1.
2.
3.

Sample s, e D%‘?ﬁfg .
Compute ¢co =h-s+e € Ry and K = H(s,e) € {0,1}".

Compute ¢; = Ex(M).

Output the ciphertext C' = (co, ¢1).
Decrypt(SK,C): Given SK = f € R* and C = (cp, ¢1), do the following.

1.

b

Choose §',¢' <> DS —and compute dy = h - s’ + ¢ € R,. Compute

W= (co+do)-fe Rﬁq; If ||s'|| > B or ||| > B, return L.

. Compute € = ¢/ mod p and e = & — €’. Then, return L if ||e]] > 2B or

lle|| > B.
Compute s = (co —e) - h™* € R, and return L if ||s|| > B.
Compute K = H(s,e) € {0,1}*.

. Compute and output M = Dg(c;) € {0,1}~ U {L}.
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CORRECTNESS. In honestly generated ciphertexts, we have co = hs+e € R, for
some s, e ~ D%’"ﬁfgq. At step 1, the decryptor computes dy = hs’ + ¢’ € R, and
obtains

W=pgls+s)+e+e)f=p-(9(s+s)+(e+e)f)+(e+¢)

where the two equalities hold over R since, with probability 1 — 2~ over the
randomness of Keygen, Encrypt and Decrypt,

Ip-(g(s+5)+ (e+€)f) + (e+ €)oo < dpagon + 2aqv/n (4)
< 4dpaon + g <dp(agon+1) < q/2

Hence, step 2 recovers e with overwhelming probability since p/2 > 2aq\/n >
lle + €' ||oo- If o is well-formed, Decrypt obtains s at step 3.

PARAMETERS. For correctness, we need to choose o € (0,1), ¢ and p such that
p/2 > 2aq/n and q > 8p(agon—+1). In order to only rely on RLWE, we also need
o > 2n./In(8nq)q"/**% with ¢ > 4/logq (in order to make the statistical dis-
tance (5) exponentially small). If we choose aig > /n, we can set ¢ = O(n” logn),
a~! =6(n%logn) and o = O(n??logn).

DiscussioN ON OTHER NTRU-BASED SCHEMES. Fouque et al. [10] recently
suggested a CCA-secure KEM based on a randomness-recovering variant of
NTRU where (analogously to the NTRU-CCA encryption scheme [76]) the use
of a trapdoor basis allows getting rid of the masking modulus p, which in turn
allows for a smaller q. While their construction can be made rigid and thus
avoid the re-encryption step upon decapsulation, it would still remain less effi-
cient than POLKA in a parameter regime allowing to rely on the standard RLWE
assumption only. If we were to use a trapdoor basis to “invert” the NTRU func-
tion and recover (s,e) € R? from c¢o = (g/f) - s + e, applying the result of
Stehlé and Steinfeld [75] would still require a modulus ¢ = O(n%). Moreover,
it requires significantly larger secret keys consisting of a full matrix over R?*2.
Their decryption algorithm also seems harder to protect against key-leakage as
the secret matrix trapdoor is used on multiple occasions in the decryption algo-
rithm [10, Section 3.2].

A.2 Security

In order to prove security under the standard RLWE assumption, we rely on the
following lemma.

Lemma 9 ( [75, Theorem 3] ). Let n > 8 a power of 2 and a prime q¢ > 5
such that (X)) = X™ +1 splits into n linear factors over R,. Let 0 < e < 1. Let
yi € Ry, zi = —y;p~ ' mod q fori € {1,2}. If ¢ > 2n/In(8nq) - ¢/>7%, then

A (yl - P '—D;<721

o p Dy, moda U(R?)) < 2% gl (5)
0,22
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The security proof is essentially identical to the proof of [73, Theorem 4.2],
but we need to introduce slight changes since the underlying KEM uses explicit
rejection in its decapsulation algorithm. Hence, we have to analyze the security
of the hybrid PKE system as a whole (instead of focusing on the CCA security
of the KEM) and first move to a game where the decryption algorithm proceeds
with implicit rejection.

Theorem 2. If [T°Y™ is a symmetric authenticated encryption scheme, the above
construction provides IND-CCA security in the QROM under the RLWE assump-
tion.

Proof. The proof considers a sequence of games. In each game, we call W; the
event that b’ = b. We also denote by Encaps(PK, (s,e)) the deterministic algo-
rithm that inputs PK and (s,e) € R?, and outputs ¢co = h - s +e.

Gamej: This is the real IND-CCA experiment. All decryption queries are an-
swered by running the real decryption algorithm. Note that a decryption
query triggers a random oracle query at step 4 of Decrypt. In the challenge
phase, the adversary A outputs two message My, M; and obtains a chal-
lenge ciphertext C* = (c§, ¢t), where ¢ = h-s* +e*, where s*, e* + D%%e’fgq,
and ¢f = Ex+(My) for some b <= U({0,1}). At the end of the game, the
adversary A outputs ' € {0,1}. The adversary’s advantage is defined as
Adv(A) := |Pr[Wy] — 1/2].

Game;: In this game, the challenger aborts and replaces A’s output by a random
bit in the event that | f|| > ov/n or ||g|| > ov/n at step 4 of Keygen. By
Lemma 1, we have | Pr[W;] — Pr[Wg]| < 22,

Games: In this game, we modify the decryption algorithm and use an implicit
rejection mechanism in the KEM component. To this end, the challenger uses
an independent random oracle Hg : R, — {0,1}" that is only accessible to
A via decryption queries (i.e., no direct access to Hg is given to .A). This
additional random oracle is used to run the following decryption algorithm.

Decrypty: Given SK = f and C = (cop,c1), initialize a Boolean variable
flag = 0. Then, do the following.

1. Choose &', ¢ <= D@ If ||s'|| > B or [|¢/|| > B, then set flag = 1
and return L. Otherwise, compute dg = h- s’ + ¢’ € R,.

2. Compute ' = (co +do) - [ € Ry.

3. Compute € = ¢/ mod p and e = é—¢’. Then, set flag = 1 if ||&|| > 2B
or |le]| > B.

4. Compute s = (cog —e) - h™' € R, and set flag = 1 if ||s|| > B.

5. If flag = 1, compute K = Hg(cp). Otherwise (i.e., if flag = 0),
compute K = H(s,e) € {0,1}*.

6. Compute and output M = Dx(c;) € {0, 1} U {1}.

Lemma 10 shows that, if the adversary can distinguish Games from Game,
we can turn it into an adversary against the ciphertext integrity of IT°Y™.
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Gamejz: We now simulate H : D — {0,1}" as
H(s,e) = Hy)(Encaps(PK, (s, €))),

where Hc/g : Ry — {0,1}" is yet another random oracle that is not directly
accessible to A. In the computation of C* = (c§,c}), the symmetric key
K* is similarly obtained as K* = H{,(cf), where ¢§ = Encaps(PK, (s*, e*)).
Lemma 11 shows that, from A’s view, Games is identical to Games, so that
we have Pr[W3] = Pr[Wa].

Game,: This game is identical to Games except that the random oracle H :
Dg — {0,1}* is now simulated as H(s,e) = Hg (Encaps(PK, (s, €))), where
Hg : R, — {0,1}" is the random oracle introduced in Games. In the
challenge ciphertext C* = (cf,¢}), the symmetric key K* is derived as
K* = Hq(c}), where ¢ = Encaps(PK, (s*,e*)). Lemma 12 shows that the
two games are perfectly indistinguishable and Pr[W,]| = Pr[W3].

Game;: This game is identical to Game, except that we modify the decryption
oracle. At each query C' = (cg,c1), the oracle computes K = Hg(cp) and
returns M = Dg/(cy) € {0,1}*= U {L} (i.e., it ignores steps 2-4 of Decrypt,
and jumps from step 1 to step 5 after having set flag = 1). Lemma 13 shows
that Pr[W;] = Pr[W,].

Gameg: This game is like Games but we remove the change introduced in Game; .
That is, we do not replace A’s output by a random bit if ||f|| > ov/n or
llgll > o/n in Keygen. By Lemma 1, | Pr[Ws] — Pr[Ws]| < 272,

Game;: We change the generation of PK. In Gameg, the decryption oracle does
not use the secret f at any time. We thus replace h = pg/f by a uniformly
random h < U(qu) at the beginning of the game. By Lemma 9, the dis-
tribution of h is statistically close to that of Gameg. We have the inequality
| Pr[Wy] — Pr[Wg]| < 272

Gameg: We change the generation of the challenge ciphertext C* = (cf,ct)
and sample ¢ <= U(R,) uniformly instead of computing ¢ = hs* + e*.
It is straightforward that Gameg is indistinguishable from Game; under the
RLWE™ assumption.'©

Gameg: We modify the decryption oracle that now rejects all ciphertexts of
the form C' = (c¢f,c1) with ¢; # ¢f after the challenge phase. Gameg is
identical to Gameg until the event Ey that A queries the decryption of a
ciphertext C' = (¢, ¢1) that would not have been rejected in Games. Since
¢1 = Eg+(My) is encrypted under a random key K* = Hg(c) that is
independent of A’s view (unless the random ¢ ~ U(R,) is accidentally of
the form ¢§ = hs + e for small s,e € R), event Ey would imply an attack

10 This assumption says that, for a fixed secret s <= x sampled from a distribution
x = D, the distribution of (a, a-s+e) is indistinguishable from U (R x Ry) when
a is sampled from U(R;) (instead of U(Ry)) and e <= x. Since a random element
of R, is invertible with non-negligible probability 1 — n/q when ¢ = 1 mod 2n, this
assumption is equivalent to the standard RLWE where a ~ U(Ry).
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against the ciphertext integrity of IT°¥™. We have |Pr[Wy] — Pr[Ws]| <
Pr[Ey) < 279 4 Q- AdvAE"NT(/\), where () is the number of decryption
queries.

In Gameg, the challenge C* = (cf,c}) is obtained by encrypting ¢ under a
random key K which is never used anywhere, except in the computation of
¢t = Ex+(My). At this point, the adversary is essentially an adversary against
the indistinguishability (under passive attacks) of the authenticated encryption
scheme IT%¥™. We have | Pr[Wy] — 1/2] < Adv*ENP()). O

Lemma 10. Games is indistinguishable from Gamey if ITSY™ is a secure authen-
ticated encryption scheme. We have | Pr[Wa]—Pr[W;]| < W AdvAENT ().

Proof. The distinguishing advantage of .4 between the two games can be bounded
by the difference between the probabilities that a ciphertext gets rejected in
Game, and Game;.

The difference between the two decryption oracles is that, when an invalid
pair ¢g is detected at steps 3-4, Decrypt, sets flag = 1 and proceeds until step 5
whereas the decryption oracle of Game; would directly return L.

In Gamesy, let us assume that A queries a ciphertext (co, ¢1) for which Decrypt,
significantly deviates from the decryption oracle of Game; in its probability to
reject. This means that, in Gamey, we have flag = 1 at step 5, so that Decrypt,
computes K = Hg(cp). Since A has no direct access to Hg, K is independent
of A’s view and uniformly distributed over {0, 1}*. If Decrypt, does not return
L at step 6, we have Dg(c;) #L, which means that .4 was able to forge a
valid ciphertext for a random key K independent of its view. Then, the distance

| Pr[W3] — Pr[W1]] can be bounded by M - Adv*ENT()), where Q is the

number of decryption queries and AdvAE"NT(/\) is the reduction’s advantage

against the ciphertext integrity of I7°¥™. The reduction BAF is identical to that
of Lemma 3. a

Lemma 11. If p > 4daq\/n and q¢ > 8p(aon + 1), Games is perfectly indistin-
guishable from Games.

Proof. We show that, from the adversary’s view, the random oracle H of Gameg
behaves identically to that of Games.

Indeed, the function Encaps : D — R, : (s,e) — Encaps(PK, (s,e)) is
injective over D := {(s,e) € R? : ||s||, le|| < B} as there cannot exist colliding
pairs (so, €9), (s1,€1) € Dg. The equality hsg + eg = hs1 + e1 over R, implies

p- (980+60f/)+602p' (931+61f') + eq,

which holds over R since both members are polynomials with coefficients smaller
than ¢/2 in magnitude. This yields eg = e; (and thus so = s; since h € R)
after reduction modulo p since p/2 > 2B and |leg]co, ||€1]]c0 < B.

Since Encaps is injective over Dg and H is a random function, the composed
function HQ(Encaps(PK, (- ))) is itself random over Dg. The two games are
thus identical from A’s view. O
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Lemma 12. Gamey is perfectly indistinguishable from Games.

Proof. We assume that the event introduced in Game; does not occur (and thus
llgll; [ f]] < o+/n) since both games have identical output distributions otherwise.

We call a ciphertext (co,c1) good if co = h-s+ e € R, for some (s,e) € R3
such that ||s||, |le]| < B. For a good ciphertext, if the decryption oracle of Games
sets flag = 1 at all, the ciphertext is rejected at step 1 of Decrypty: Indeed, if
(co,c1) is good, Decrypt, cannot set flag = 1 for the first time at step 3, nor at
step 4. Hence, if a ciphertext is good and ||s + §'|| > 2B or |le + €| > 2B, it
gets rejected as step 1. This implies that, if a good ciphertext is not rejected
at step 1, we have flag = 0 at step 5 because inequalities (4) hold whenever
1£1. lgll < oy/m and |1l 1¢] < 2B.

As a result, in Games, Hg is never evaluated on a good ciphertext. Also, if
flag = 0 at step 5, we are guaranteed that (cg, ¢1) is good (by the rigidity of the
scheme), meaning that H, /Q is only evaluated on good ciphertexts. Since Hg and
H’Q are evaluated on disjoint sub-domains in Games, A’s view is the same as in
Gamey, where they were simulated using a single random oracle. a

Lemma 13. We have Pr[W5] = Pr[Wy] as Games is perfectly indistinguishable
from Gamey.

Proof. The two games are identical from A’s view until the decryption oracle of
Gamej deviates from its counterpart in Gamey.

For any decryption query C = (cg,c1) such that the decryption oracle of
Gamey sets flag = 1, it always computes K = Hg(co) at step 5 of Decrypt,.

For ciphertexts C' = (co, ¢1) such that flag = 0 at the end of step 4 in Gamey,
the rigidity of the encapsulation mechanism ensures that Decrypt, computes
(s,e) € D satisfying ¢o = h - s + e, meaning that ¢ = Encaps(PK, (s, e)).
In this case, at step 5 of Decrypt,, the decryption oracle of Gamey computes
K = H(s,e) = Hg(cp), which would also be the output of the decryption oracle
in Games.

In both cases flag € {0,1}, the two decryption oracles always output the
same result. a

B Authenticated Symmetric Encryption

A symmetric encryption scheme is specified by a pair (K, E,D), where E is the
encryption algorithm; D is the decryption procedure; and K is the key genera-
tion algorithm. The security of authenticated symmetric encryption is defined
by means of two games that capture the ciphertext indistinguishability and ci-
phertext (one-time) integrity properties.

Definition 4. A symmetric encryption scheme is secure in the sense of authen-
ticated encryption if it provides both indistinguishability and ciphertext integrity,
as defined hereunder.
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1. Indistinguishability. No PPT adversary A has non-negligible advantage
in the following game, where A € N is a security parameter:

Game\FNP())

K« K(1Y)

(mo, my, st) < A(find, 1*)

d*«+~ U({0,1})

c¢* + Ex(max)

d < A(guess, st, c*)

return 1 if d = d* and 0 otherwise.

A’s advantage is Advy""P()\) = | Pr[Game)F P = 1] — 1/2|.

2. Ciphertext integrity. No PPT adversary A has non-negligible advantage
in the following game:

Game 5N ())

K+ K(17%)

(m, st) < A(find, 1*)

¢« Ex(m)

¢ <« AP (create, st, c)

return 1 if ¢ # ¢ and Dk (¢') #L
0 otherwise.

Here, D(K, -) is a decryption oracle that takes as input a candidate ciphertext
c and returns D (c) € {0,1}%m U {1}.

A’s advantage is now defined as Advﬁ‘E'lNT()\) = Pr[Gameﬁ‘E’lNT =1].

We note that the above definition captures one-time flavors of indistinguisha-
bility and ciphertext integrity as the adversary is given a single ciphertext in both
cases. Both security notions can thus be achieved efficiently from a pseudoran-
dom generator.

The ciphertext integrity property can even be achieved without any assump-
tion if IT°¥™ is instantiated using an information-theoretically secure one-time
MAC via the encrypt-then-MAC technique, as suggested in Section 4.3.

C Adapting the Scheme to Binomial Errors

In this section, we consider an optimized instantiation of the scheme where
the discrete Gaussian distribution is replaced by an easier-to-sample binomial
distribution, as suggested in [4, 21, 37]. Namely, let ¢} the distribution over
Z" defined as {Zle(ai —b;) | a;,b; > U({0,1}™)}. Let 4% the distribution
obtained by reducing 13 mod 3, where 1} is defined over Z™ as the distribution

{38 (ai = bi) | ai, by > U({0,1}™)}.
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C.1 Description

Keygen(1*): Given a security parameter A € N,

1. Choose a dimension n € N, a prime modulus ¢ = 1 mod 2n. Let the rings
R =1Z[X]/(X™+1) and R; = R/(¢R) such that $(X) = X" + 1 splits
into linear factors over R;. Let R} the set of units in Ry.

2. Choose an integer p € N such that 4 < p < ¢/8(n + 1).

3. Sample a « U(R,) and s,e <> ¥4 and compute b = p- (a-s +e). If
b¢ Ry, restart step 3.

4. Choose an authenticated symmetric encryption scheme I7°¥™ = (K, E, D)
with key length € poly(\) and message space {0,1}¢m.

5. Let a domain Dg := {(r,e1,e2) € R3 : ||7]loo, |l€1]loos [l€2]lc0 < 1}
Choose a hash function H : Dy — {0,1}".

Return the key pair (PK, SK) where
PK = (n, q, p, a € Ry, bERqX7 svm, H)

and SK :=s € R.
Encrypt(PK, M): Given a public key PK and a message M € {0,1}/m:

1. Sample 7, ey, es < Y% and compute
co=a-r+e € Ry, co=b-r+ey€ Ry

together with K = H(r,eq,e2) € {0,1}".
2. Compute ¢y = Ex(M).

Output the ciphertext C' = (¢o, 1, ¢2).
Decrypt(SK,C): Given SK =s € R and C = (cp, ¢1,¢2), do the following.

Sample 7', e}, €} <= 5. Compute ¢j = a-1' + ¢} and ch =b -1’ + €.
Compute ¢ = ¢; + ¢} and ¢ = ¢2 + .

Compute fi = ¢ —p- €1 - s over Ry.

Compute é2 = i mod p. If ||é3]|ec > 2, return L.

Compute 7 = (¢2 — €2) - b~ € Ry. If ||F||oc > 2, return L.

Compute €; =¢; —a-T € Ry. If ||€1]|oc > 2, return L.

Compute r = 7 — 1/, ey = €1 — e} and ex = & —eh. If ||r]|c > 1, or
llerlloo > 1, or |le2]|oo > 1, then return L.

8. Compute K = H(r,ey,ez) € {0,1}" and return

OOt W=

M = Dg(co) € {0,1} U {L}.

As a side effect of the noise distributions x = 9%, we do not have decryption
failures anymore.
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CORRECTNESS. Let 7 = r + 1/, &1 = e; + €} and é; = ez + €, over R. At
step 2, Decrypt computes ¢, = a -7 + €1, ¢ = b-T + & over Ry, where
17l cos l|€1]lcos [|E2]|co < 2. At step 3, the receiver obtains

ji=C —p-¢1-s modgq

=0b-F+é)—p-(a-7+e1) s modg

p-(as+e)-T+eé —p-arfs—p-ers mod q

es+p-er—p-es

where the last equality holds over R with probability 1. Indeed, ||s|, |le]] < v/n
with probability 1. We also have ||7|, ||e1], ||e2]] < 2v/n. Then, the Cauchy-
Schwartz inequality implies

léa+p-ef —p-e15lloo <2+ 4np < q/2

Since p > 4, step 4 recovers é; with overwhelming probability. Since b € R,
Decrypt obtains 7 at step 5 and €; at step 6. Therefore, it also recovers (r, e1, e2)
at step 7 and the correct symmetric key K = H(r, eq, e2) at step 8. Correctness
thus follows from the correctness of IT°Y"™.

CONCRETE INSTANTIATIONS. To ensure correctness and satisfy the conditions
of Lemma 14 and Lemma 17, we need p > 4, ¢ > max(8p(n + 1),n%/?).

As a concrete instantiation validated by the LWE estimator [3], we may choose
n = 1024, p =5 and ¢ = 59393, so that the size of (1, ¢3) amounts to 4Kb.

Using the rings suggested in [37], we can relax the constraint of n being
a power of 2. If we consider R = Z[X]/(®3,) for the cyclotomic polynomial
@i, = X" — X™/2 11 with g = 1 mod 3n and n = 2'37, &3, fully splits over
R, = R/(qR). Then, if we set n = 768, p = 5 (so that 2-|le2|lcc < (p—1)/2), and
q = 28-3n+1 = 64513, correctness (perfectly) holds since ||éz+p-(e:T—€1$) |00 <
(p—1)/2+8-p-B2% < (q—1)/2. The size of (c1,c2) then drops to 3Kb.

C.2 Security Proof

The security proof is slightly shorter than the proof of Theorem 1 since we do
not have to take imperfect correctness into account.

Theorem 3. If IT°Y™ is a symmetric authenticated encryption scheme, the above
construction provides IND-CCA security in the QROM under the RLWEL,;S as-
sumption.

Proof. The proof is very close to the proof of Theorem 1 and we only highlight
the changes.

Game(: This is the real game at the end of which the adversary A ouputs
d' € {0,1} and wins if d’ = d. We call W, this event, so that the adversary
has advantage Adv(A) := | Pr[Wy] —1/2|.
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Game;: We modify the decryption algorithm. Throughout the game, the chal-
lenger uses an independent random oracle Hg : Rg — {0,1}" that is only
accessible to A via decryption queries (i.e., A has no direct access to Hp).
This random oracle is used to run the following decryption algorithm.

Decrypty: Given SK = s and C' = (cg, ¢1, ¢2), initialize a Boolean variable
flag = 0. Then, do the following.

1. Sample 1, e}, e} «= 5. Compute ¢j = a-r' + e} and ch =b- 7' + €.

Compute ¢ = ¢; + ¢} and & = ¢o + .

Compute fi = ¢ —p- €1 - s over R,.

Compute éz = i mod p. If ||€2||cc > 2, set flag = 1.

Compute 7 = (¢2 — €2) - b~ € Ry. If ||| 00 > 2, set flag = 1.

Compute €1 = ¢ —a -7 € Ry. If ||€1]|oc > 2, set flag=1.

Compute r =7 —1', e =& — e} and ez = &2 — €. If ||r]|c > 1, O

llerlloo > 1, or |le2|loo > 1, then set flag = 1.

8. If flag = 0, compute K = H(r,eq,ez) € {0,1}*. Otherwise, compute
K= HQ(01702).

9. Compute and return M = Dx(co) € {0, 1} U {L}.

N Ot W

By repeating exactly the same proof as in Lemma 3, we can show that, if the
adversary can distinguish Game; from Gamey, we can turn it into an adver-
sary against the ciphertext integrity of IT*¥™ (as defined in Supplementary
Material B).

Game,: We now simulate the random oracle!! H : Dg — {0,1}* as
H(r,e1,e2) = H{(Encaps(PK, (r,e1,€2))) (6)

where Hy, : R2 — {0,1}" is an independent random oracle to which A is not
given access. At each decryption query, Decrypt, computes K as per (6) when
flag = 0. In the generation of C* = (c§, ¢}, c5), K* is similarly obtained as
K* = H{)(ct,¢5), where (cf, ¢5) = Encaps(PK, (r*, e}, €3)). Lemma 14 shows
that, from A’s view, Gameg is identical to Games, so that Pr[Ws] = Pr[Ws].

Games: This game is like Game; but the random oralce H is now simulated
as H(r,e1,es) = Hg(Encaps(PK, (r,e1,e2))), where Hg : R2 — {0,1}" is
the random oracle introduced in Game;. In the computation of the challenge
C* = (c§,ct,¢5), the key K* is now obtained as K* = Hg(cf,c3), where
(c7,¢5) = Encaps(PK, (r*,et,e3)), and K is computed in the same way when
flag = 0 at step 8 of Decrypt,. In short, Games is identical to Games except
that H(, has been replaced by Hg in the simulation of H. Lemma 15 shows
that PI'[Wg] = PI‘[WQ}

Gamey: This game is like Games except that we modify the decryption oracle.
At each query C = (cg,c1,c2), if flag = 0 at the end of step 1, then the
decryption oracle computes K = Hg(cq,c2) and returns M = Dg(cg) €
{0,1}*= U {L} (i.e., it ignores steps 2-7 of Decrypt, and directly moves to
step 8). Lemma 16 shows that Pr[W,] = Pr[Ws].

1 We may assume that H outputs L on input of a triple (r,e1,es) € Dg.
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In Gameg, we note that the decryption oracle does not use the secret s anymore.

Game;: We modify the generation of PK. The challenger initially samples
a1y ar <> U(Ry), €1,... e, <> %, where k = [A/logn], and computes
bi = a; - 5+ e; for each i € [k]. If none of the obtained {b;}}_, is in R), the
challenger aborts and replaces B’s output by a random bit. Otherwise, it de-
termines the first index 7 € [k] such that b; € R and defines PK by setting
a = a; and b = p-b;. Lemma 17 shows that, under the RLWE assumption, this
change does not affect A’s view and | Pr[W5] —Pr[W,]| < AdvRWE(X) 4272

Gameg: We change again the generation of the public key. We replace the pseu-
dorandom ring elements {b; = a; - s + ei}éc:l of Games by truly random
bi,...,b, <= U(R,) at the beginning of the game. Under the RLWE assump-
tion, this change goes unnoticed and a straightforward reduction shows that
| Pr[Ws] —Pr[Ws]] < AdvRYE()). As a result, since ged(p, ¢) = 1, the public
key is now distributed so that a ~ U(R,) and b ~ U(R).

Game;: We change the challenge ciphertext C* = (¢, ¢}, ¢5). Instead of com-
puting ¢f = a-r* +e}, c5 = b-r* + e with r*, e}, e5 <> Y%, we now sample
ct,¢5 < U(R,) uniformly. Then, ¢ is computed as a symmetric encryp-
tion of My under the key K* = Hg(c}, ¢5). Lemma 18 shows that Gamey is
indistinguishable from Gameg under the RLWE assumption.

In Gamez, A can no longer query H on short (r*, e}, e}) that underlie (¢}, c3).
With probability 1 — 272" there exist no r*,e%,e5 € R of infinity norm < 1
such that ¢ = a-r* +e7 and ¢5 = b-r* + e5. Since A has no direct access to
Hq(+), Hg(cr, c3) is henceforth independent of A’s view.

Gameg: The decryption oracle now rejects all post-callenge queries of the form
C = (co,c7,¢5) with ¢y # ¢§. Gameg is identical to Game; until the event
Eg that A queries the decryption of a ciphertext C' = (cg, ¢7, ¢5) that would
not have been rejected in Gamer. Since ¢ = Ex+(My) is encrypted under
a random key K* = Hg(c},¢5) independent of A’s view, Eg would break
the ciphertext integrity of IT*¥™. We have | Pr[Wg] — Pr[W7]| < Pr[Eg] <
2—92(n) 4 AdvAE"NT(/\), where @ is the number of decryption queries.

In Gameg, the challenge C* = (¢}, ¢}, ¢5) is obtained by encrypting ¢f under a
random key K* which never shows up anywhere, except in the computation of
¢ = Ex+(My). At this point, the adversary is essentially an adversary against
the indistinguishability (under passive attacks) of the authenticated encryption
scheme IT%¥™. We have | Pr[Ws] — 1/2] < Adv*ENP()).

By collecting probabilities, we can bound the adversary’s advantage as

cca 3 s -
AQV(A) € T - AdVITIN 1 0n V) +QQ+ D) - AVENTR) ()
1
AE-IND
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Lemma 14. If g > 8p(n+ 1) and p > 4, Games is perfectly indistinguishable
from Game;.

Proof. We show that, from A’s view, the random oracle H of Game, is identical
to that of Game;. This follows from the injecivity of Encaps : Dg — R2 :
(r,e1,e2) — Encaps(PK, (r,e1,e3)) over the domain Dg := {(r,e1,e3) € R% :
I7lloo, lle1]loos lle2]loc < 1}. Indeed, suppose that (r,e1,es) # (7,€1,62) € Dg

collide. The equality b-7 + ez = b- 7 + €3 over R, would imply
p-(a-s+e)(r—7)modq=_eé — es.

Combining this with a - r + e; = aF + &; (over R,) would yield the equality
p(s-(é1—e1)+e(r—7)) =éx—eq,

which would hold over R since [[p(s- (€1 —e1) +e(r—7)) ]l < 4dpn < gq/2.
However, this impossible if é5 # es because p > 4 > ||é2 — €3]|0o- If €2 = €2, then
it implies 7 = r (since b € R;) and é; = e;.

Since Encaps is injective over Dy and Hg is a random function, so is the
composed function Hg (Encaps(PK, (-, -,-))). O

Lemma 15. Games is perfectly indistinguishable from Games.
Proof. We call a ciphertext (¢, ¢1,c2) good if (c1,ca) satisfy
co=a-r+e € Ry, co=b-r+e€ Ry

for some triple (r,e1,e2) € R3 such that |7 s, |l€1]lco, l€2]lec < 1. For a good
ciphertext, the decryption oracle of Games never sets flag = 1. Indeed, if |jeg +
ehlleo > 2 at step 4 of Decrypt, and (c1,c2) is good, we must have |€}]o > 1,
which is impossible.

Consequently, in Gamey, the random oracle Hg is never evaluated on a good
ciphertext. At the same time, if we have flag = 0 at step 8, we know that the
ciphertext is good by the rigidity property. Hence, H, é? is only evaluated (either
via a query to H(-,-,-) or a decryption query) on good ciphertexts in Gamey.
Since Hg and Hy, are evaluated on disjoint sub-domains in Gamez, A’s view
remains the same if we simulate them as in Games, using a single random oracle.

O

Lemma 16. Gamey is perfectly indistinguishable from Games.

Proof. Gamey and Games are identical from A’s view until the two decryption
oracles give different outputs for some decryption query (co, c1, ¢2).

We note that, for any decryption query C' = (¢, ¢1, ¢2) such that the decryp-
tion oracle of Gamey sets flag = 1, it always computes K = Hg(c1,c2) at step 8
of Decrypt,. So, we focus on decryption queries for which the decryption oracle
of Games never sets flag to 1.

For such ciphertexts C' = (¢g, ¢1, ¢2), the rigidity of the encapsulation mech-
anism ensures that step 7 computes (r,e1,e3) € Dg such that ¢; = a -1 + ey,

51



ca = b-r+ ey, meaning that (c1,c2) = Encaps(PK, (r,e1,e2)). Then, at step
8 of Decrypt,, the decryption oracle of Games computes K = H(r,ej,es) =
Hg(c1,c2), just like the decryption oracle of Gamey.

In both cases flag € {0,1}, Gamey is perfectly indistinguishable from Games
as the two decryption oracles never disagree. a

Lemma 17. If ¢ > n%/2, then Games 15 indistinguishable from Gamey under
the RA(WE,, k.q,x assumption where x = ¢y and k = 2[\/logn]. There is a PPT
algorithm B such that | Pr[Ws] — Pr[W,]| < Advf;,’i‘:}\{\g{E(A) +27A,

Proof. The proof is identical to that of Lemma 7, except that we set k =
2[\/logn] to make sure that (n/q)¥ < 27*. O

Lemma 18. Under the RIWE,, i 4., assumption with x = Yy, Gamey is indis-
tinguishable from Gameg. Namely, | Pr[W7]—Pr[Wg]| < (172*>‘)’1~Adv57’,§3’7\f()\),
where k = 4[\/logn].

Proof. The proof and the reduction are identical to those of Lemma 8 a
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