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Lattice Codes for Lattice-Based PKE
Shanxiang Lyu, Ling Liu, Junzuo Lai, Cong Ling, Hao Chen

Abstract—The public key encryption (PKE) protocol in lattice-based cryptography (LBC) can be modeled as a noisy point-to-point
communication system, where the communication channel is similar to the additive white Gaussian noise (AWGN) channel. To improve
the error correction performance, this paper investigates lattice-based PKE from the perspective of lattice codes. We propose an
efficient labeling function that converts between binary information bits and lattice codewords. The proposed labeling is feasible for a
wide range of lattices, including Construction-A and Construction-D lattices. Based on Barnes-Wall lattices, a few improved parameter
sets with either higher security or smaller ciphertext size are proposed for FrodoPKE.

Index Terms—public key encryption (PKE), lattice-based cryptography (LBC), lattice codes.
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1 INTRODUCTION

THE impending realization of scalable quantum comput-
ers has posed a great challenge for modern public key

cryptosystems. As Shor’s quantum algorithm [1] can solve
the prime factorization and discrete logarithm problems
in polynomial time, conventional public-key cryptosystems
based on these problems are no longer secure. Although
making a prophesy for when we can build a large quan-
tum computer is hard, we should start preparing the next
generation quantum-safe cryptosystem as soon as possible,
because historical experiences show that deploying modern
public key cryptography infrastructures takes a long time.

Reacting to this urgency, the subject of post-quantum
cryptography (PQC) has been systematically developed in
the last decade [2], [3]. PQC aims to design secure cryptosys-
tems against quantum attacks, while being compatible to
run on a classic computer. From 2016, the National Institute
of Standards and Technology (NIST) has initiated a process
to solicit, evaluate, and standardize one or more quantum-
resistant public-key cryptographic algorithms. The process
evolves around public key encryption/key encapsulation
mechanism (PKE/KEM) and digital signature proposals.

Recently NIST has announced four post-quantum
cryptography standardization candidates [4]: CRYSTALS-
Kyber for PKE/KEM, CRYSTALS-Dilithium, FALCON and
SPHINCS+ for digital signatures. As the former three candi-
dates are all based on lattices, it’s a great victory of lattice-
based cryptography (LBC), which enjoys the following
prominent advantages. First, the LBC implementations offer
security proofs based on NP-hard problems with worst-
case to average-case reduction. Second, in addition to being
quantum-age secure, they are notable for their efficiency,
primarily due to their inherent linear algebra based matrix
or vector operations on integers. Finally, LBC constructions
offer extended functionality for advanced security services
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such as identity-based encryption and fully-homomorphic
encryption (FHE).

Considering lattice-based PKE/KEM, error correction
techniques have been either implicitly or explicitly em-
ployed to achieve a small decryption failure rate (DFR).
The encryption-decryption process of messages amounts
to the transmission of messages through an additive noise
channel. Since the decrypted messages cannot be 100%
correct, the receiver can correct the errors by using error
correction codes. Moreover, since the adversary may extract
the secrets by taking advantages of high DFRs [5], [6], the
DFR of a PKE/KEM scheme has to be extremely small (e.g.,
smaller than 2−128). It is therefore promising to improve the
error correction mechanism in lattice-based PKE/KEM, with
the hope of obtaining better trade-off parameters:

• Security Strength: If the error correction mechanism
allows to increase the noise variance while maintain-
ing a small DFR, then the PKE/KEM scheme has a
higher security level.

• Communication Bandwidth: If the error correction
mechanism allows to reduce the modulo number
while maintaining a small DFR, then the size of the
ciphertext is reduced.

1.1 Related Works

KEMs can simultaneously output a session key together
with a ciphertext that can be used to recover the session
key. Two major approaches to design lattice-based KEMs are
PKEs (KEMs without reconciliation, see, e.g. [7]–[10]) and
key exchanges (KEMs with reconciliation, see, e.g. [11]–[13]).
Since avoiding the error-reconciliation mechanism brings
great simplicity, we focus on PKEs in this work.

Most lattice-based PKEs have implicitly employed an
error correction mechanism which is referred to as “mod-
ulation” in communication theory. It represents a mapping
from a binary string to different positions in {0, 1, ..., q − 1}.
If the noise amplitude is smaller than the error correction
radius, then the decryption is correct. Thus a larger q enables
higher error correction capability. Specifically, Regev’s learn-
ing with errors (LWE) based PKE scheme [2] modulates 1-bit
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information {0, 1} to {0, q/2}. Kawachi et.al. [14] extends
the PKE scheme to multi-bit modulation.

In recent years, researchers have realized that (digital)
error correction codes (ECC) can be concatenated with
modulations to obtain better error correction performance.
For instance, the LAC [15] PKE employs BCH codes for
error correction, which helps to reduce the modulo size q
from 12289 to 251. The reason behind the small q is that,
although the modulation level has minus error correction
capability, the induced ECC helps to achieve a smaller DFR.
Other examples can be found in the repetition codes based
NewHope-Simple [8], and the Polar codes based NewHope-
Simple [16]. The downside of an extra modern ECC is an
increased complexity of the program code and a higher sen-
sitivity to side-channel attacks [17] (information is obtained
through physical channels such as power measurements,
variable execution time of the decoding algorithm, etc).

More importantly, using ECC and modulation in a con-
catenated manner confines the overall performance of the
system, whose deficiencies include less flexible parameter
sets, and the independent decoding nature of modulation
and ECC. Fortunately, the joint design of ECC and modu-
lation (referred to as coded modulation) has been studied
in information theory and wireless communications for a
few decades. Ungerboeck’s pioneering work [18] in the
1980s showed that coded modulation exhibits significant
performance gains. Then, Forney [19] systematically studied
the coded modulation from coset codes/lattice codes. In the
language of coset codes, Ungerboeck’s trellis coded mod-
ulation is the combination of trellis codes and modulation,
while lattice codes represent the combination of linear codes
and modulation [20]. A major breakthrough in information
theory is that Erez and Zamir [21] shows high dimensional
random lattice codes can achieve the capacity of additive
white Gaussian noise (AWGN) channels. Recent years have
also witnessed the use of Polar lattices [22] and LDPC
lattices [23] in achieving the capacity of AWGN channels.

It is noteworthy that applying lattice codes in LBC is not
straightforward, because previous lattice coding literature
[20] was considering lattice codes for the physical layer
(the transmission power of the codes matters), while the
modulo q arithmetic in LBC represents a higher layer. In the
past few years, there have been some works that employ
lattice codes in PKEs. VanPoppelen designed a Leech lattice
based PKE in 2016 [9], while Saliba et.al. [10] design an
E8-lattice-based PKE in 2021. The use of E8 and Leech
parallels the celebrated breakthrough in mathematics in
recent years: proving the E8 and Leech lattices offer the best
sphere packing density in dimensions 8 and 24 [24], [25]. To
actually deploy lattice codes, one may notice that a labeling
technique from the input binary information bits to the set
of lattice codewords is needed. For instance, with 232 lattice
codewords, defining the labeling through an exhaustive
lookup table is too complicated, and the better solution
should resort to a linear labeling function. Unfortunately, the
labeling technique is missing in the Leech lattice based PKE
[9], while the labeling technique for E8 in [10] is nonlinear.

1.2 Contributions
To fully unleash the power of lattice codes in LBC, this paper
contributes in the following aspects.

• We consider the plain-LWE scheme Frodo [7] and
model it as a communication system, over which the
communication channel is akin to the AWGN chan-
nel. Frodo was selected as an alternate candidate for
the NIST PQC standardization Round 3, which may
provide longer-term security guarantees since it is
less susceptible to algebraic attacks. Unlike the ring-
based or module-based schemes such as NewHope-
Simple [8] and Kyber [26], conventional ECC cannot
be easily applied to Frodo, as the number of symbols
that the message bits are mapped to is very small
(i.e., 64 symbols versus 256 or 1024 symbols). To
fit into the FrodoPKE channel, optimal short lattice
codes are needed.

• We present a universal and efficient labeling tech-
nique for cubic-shaping based lattice codes. Due to
the modulo q arithmetic, lattice codes in LBC have to
use hypercube shaping, which means the coarse lat-
tice should be a simple integer lattice qZn. Although
the number of lattice codewords can be easily identi-
fied in hypercube shaping, there seems to no efficient
labeling function available in the literature. In this
regard, a labeling function is proposed to establish a
one-to-one map between the binary information bits
and the set of lattice vectors. For a fine lattice with
large coding gains, we first rewrite its lattice basis
to a rectangular form (the product of a unimodu-
lar matrix and a diagonal matrix). Then by further
developing a non-uniform labeling function for the
rectangular forms, the shaping lattice becomes an
integer lattice. The proposed labeling is feasible for
a wide range of lattices, such as D4, E8, BW16,
Λ24, etc. In addition, we present a constant-time fast
decoding algorithm for BW16.

• Thanks to Hadamard’s inequality, a unified DFR
formula over AWGN channels is derived to serve
the worst-case DFR analysis. Only the coding gain
and the kissing number of lattices are needed in
the DFR formula. Previously the DFR in lattice-code
based PKE error correction were calculated by means
of a computationally case-by-case intensive analysis.
Subsequently better parameter sets for the FrodoPKE
are provided, with either higher security levels or
smaller ciphertext sizes. The recommended BW16-
based implementation has the following advantages:
it has larger coding gain thanE8, while its dimension
is also compatible with the 64-dimension require-
ment in FrodoPKE.

The rest of this paper is organized as follows. Back-
grounds about lattice codes and PKE are reviewed in Section
II. The proposed labeling is introduced and analyzed in
Section III. Section IV presents a coset-based lattice decoding
formulation, with a particular emphasize on BW16. Section
V presents the improved parameter sets for FrodoPKE. The
last section concludes this paper.

2 PRELIMINARIES

2.1 Lattice Codes and Hypercube Shaping
Definition 1 (Lattices). An n-dimensional lattice Λ is a
discrete additive subgroup of Rm, m ≥ n. Based on n
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linearly independent vectors b1, . . . ,bn in Rm, Λ can be
written as

Λ = L(B) = z1b1 + z2b2 + · · ·+ znbn, (1)

where z1, ..., zn ∈ Z, and B = [b1, . . . ,bn] is referred to as
a generator matrix of Λ.

Definition 2 (Closest Vector Problem). Considering a target
t ∈ Rn and an n-dimensional lattice Λ, the closest vector
problem asks to find the closest point p ∈ Λ to t.

The nearest neighbor quantizer QΛ(·) denotes a function
that solves CVP, i.e.,

QΛ(x) = arg min
v∈Λ

‖x− v‖. (2)

The Voronoi region VΛ denotes set of query points that
are closer to the origin than any other lattice points in Λ, i.e.,

VΛ = {y | ‖y‖2 ≤ ‖y −w‖2, ∀w ∈ Λ}.

Definition 3 (Modulo lattice). [x] mod Λ denotes the
quantization error of x with respect to Λ:

[x] mod Λ = x−QΛ(x) ∈ VΛ. (3)

Definition 4 (Nested lattices). Two lattices Λf and Λc are
nested if Λc ⊂ Λf . The denser lattice Λf is called the
fine/coding lattice, and Λc is called the coarse/shaping lattice.

A typical and efficient method to build a set of points for
data transmission is through lattice codes. A lattice code C
can be designed by properly chosen coset leaders of Λf/Λc:

C(Λf ,Λc) = Λf ∩ VΛc = {[w] mod Λc | w ∈ Λf} . (4)

If Λc = pZn, then (4) is called hypercube shaping, and the
modulo lattice in (4) becomes modulo an integer number.
The hypercube shaping in a 2-dimensional space is shown
in Fig. 1. The purple points denote Λf , and those points
enclosed with black circles denote Λc. The nesting relation
is Λc = 7Z2 ⊂ Λf ⊂ Z2.

The coding gain of a lattice is defined as

γ(Λ) = λ1(Λ)2/Vol(Λ)2/n (5)

where λ1(Λ) denotes the length of the shortest non-zero
vector in Λ, and Vol(Λ) = |VΛ| denotes the volume of Λ.

2.2 PKE/KEM in LBC
FrodoKEM [7] is among the second round candidates of
NIST standardization. The core of FrodoKEM is a public-
key encryption scheme called FrodoPKE, whose IND-CPA
security is tightly related to the hardness of a corresponding
learning with errors problem. Without using algebraic struc-
tures, the security level of FrodoKEM is higher than other
PKE/KEM schemes based on ring or module LWE.

A public key encryption scheme PKE is a tuple of
algorithms (KeyGen , Enc , Dec) along with a message space
M.

In the key generation algorithm, by setting S,E ∼
χn
′×n̄
σ , with χσ being a discrete Gaussian distribution with

width σ, and A admits a uniform distribution in Zn
′×n′
q , it

computes
B = AS + E ∈ Zn

′×n̄
q . (6)

Fig. 1: Demonstration of the lattice code
C(Λf , 7Z2) = {(0, 0), (1, 5), (2, 3), (3, 1), (4, 6), (5, 4), (6, 2)}

built from hypercube shaping (inside the black square).

The public key is pk = (B,A), and the secret key is sk = S.
In the part of public key encryption, it samples S′,E′ ∼

χm̄×n
′

σ , E′′ ∼ χm̄×n̄σ , and computes

C1 = S′A + E′ (7)
V = S′B + E′′. (8)

To encrypt µ ∈ M = {0, 1}m̄n̄B , the ciphertext is
generated by

c = (C1, C2 = V + Frodo.EncodeM(µ)) (9)

The function Frodo.EncodeM represents a matrix encoding
function of bit strings. In an element-wise manner, each B-
bit value is transformed into the B most significant bits of
the corresponding entry modulo q.

To decrypt, it employs the secret key S and the ciphertext
C1,C2 to compute

µ̂ = Frodo.DecodeM(C2 −C1S), (10)

where Frodo.DecodeM standards for the demodulation
function. At the security level of 145 bits and 210 bits, the
recommended parameters are

Frodo640 :

n′ = 640, n̄ = 8, m̄ = 8, q = 215, σ = 2.75,M = {0, 1}128

Frodo976 :

n′ = 976, n̄ = 8, m̄ = 8, q = 216, σ = 2.3,M = {0, 1}192.

These levels correspond to the brute-force security of AES-
128 and AES-192, respectively. The FrodoPKE algorithm is
summarized in Fig. 2.

3 THE PROPOSED SCHEME

3.1 The Communication Model

Recall that the decryption algorithm of FrodoPKE computes

Y = C2 −C1S

= Frodo.EncodeM(µ) + S′E + E′′ −E′S, (11)



4

Input Parameters: q, n′, n̄, m̄, χσ .

Alice Bob

A←$Zn
′×n′
q

S,E←$χn
′×n̄
σ S′,E′ ←$χm̄×n

′
σ

B = AS+E A,B E′′ ←$χm̄×n̄σ

C1 = S′A+E′

V = S′B+E′′

µ←$ {0, 1}m̄n̄B

Y = C2 −C1S C1,C2 C2 = V+

Frodo.EncodeM(µ)

µ̂ = Frodo.DecodeM(Y)

Fig. 2: FrodoPKE

whose addition is over the modulo q domain. From the
perspective of communications, this amounts to transmit-
ting the modulated µ through an additive noise channel.
Specifically, Eq. (11) can be formulated as

y = x + n mod q, (12)

where x = EncodeV(µ) ∈ Rm̄n̄ denotes a general error
correction function, and y, n represent the vector form of
Y and S′E+E′′−E′S, respectively. Since the element-wise
modulo q is equivalent to modulo a lattice qZm̄n̄, EncodeV
can be designed from the perspective of lattice codes. As
plotted in Fig. 3, the transmission system model consists of
the following steps:

• Bit Mapper and Demapper. The former maps binary
information bits to an information vector z defined
over integers. The later performs the inverse opera-
tion. These operations are straightforward.

• Lattice Labeling and Delabeling: Given a message
index z, lattice labeling finds its corresponding lat-
tice codeword x ∈ C(Λf ,Λc = qZm̄n̄). Delabel-
ing denotes the inverse of labeling. Lattice label-
ing&delabeling will be examined in this section.

• CVP Algorithm: Find the closet lattice vector of y
over Λf . The CVP algorithm of the employed fine
lattice Λf will be designed in Section 4.

3.2 Lattice Labeling and Delabeling
Definition 5 (Rectangular Form). A lattice basis B is in a
rectangular form if

B = U · diag(π1, π2, ..., πn), (13)

where U ∈ GLn(Z) is a unimodular matrix, and
π1, π2, ..., πn ∈ Q+.

For any lattice with a rational basis, it has a rectangular
form. Specifically, consider the Smith Normal Form factor-
ization of a lattice basis B∗ ∈ Qn×n, then we have

B∗ = U · diag(π1, π2, ..., πn) ·U′, (14)

where U,U′ ∈ GLn(Z). As lattice bases are equivalent up
to unimodular transforms, the term U′ can be canceled out,
and the rectangular form is derived.

For a lattice that features a rectangular form, we can
design an efficient labeling scheme. The idea is that the
combination of rectangular form and non-uniform labeling
amounts to hypercube shaping. Specifically, let the fine
lattice be

Λf = L(Bf ) = L(U · diag(π1, π2, ..., πn)). (15)

Let p ∈ Z+ be a common multiplier of π1, π2, ..., πn, and
define

p1 = p/π1, p2 = p/π2, ..., pn = p/πn. (16)

If Bc = Bfdiag(p1, p2, ..., pn), we have

Λc = L(U · diag(π1, π2, ..., πn) · diag(p1, p2, ..., pn))

= L(pU)

= pZn. (17)

The last equality is due to the fact that a unimodular matrix
can be regarded as a lattice basis of Zn. Hence modulo Λc
becomes equivalent to modulo p. Then we arrive at the
following theorem.

Theorem 6 (Labeling Function). Let the message space be

I = {0, 1, ..., p1 − 1} × · · · × {0, 1, ..., pn − 1} , (18)

and define Λf ,Λc as in (15) and (17). With z ∈ I , then the
function f : I → C(Λf ,Λc),

f(z) = [Bfz] mod p (19)

is bijective.

Proof. It suffices to prove that f is both injective and surjec-
tive. “Injective” means no two elements in the domain of the
function gets mapped to the same image, i.e., for z1, z2 ∈ I ,

z1 6= z2 → f(z1) 6= f(z2). (20)

We prove this by using contradiction. If f(z1) = f(z2), it
implies that we can find z1, z2 ∈ I , z3 ∈ Zn such that

Bf (z1 − z2) = Bf · diag(p1, p2, ..., pn) · z3

→ z1 − z2 = diag(p1, p2, ..., pn) · z3. (21)

Then (21) has a solution only when z3 = 0, which leads to
z1 = z2.

“Surjective” means that any element in the range of the
function is hit by the function. Recall that the number of
coset leaders is

|det(Bc)|/|det(Bf )| = p1p2 · · · pn. (22)

As |I| = p1p2 · · · pn, it follows from the injective property
that all the coset leaders have been hit distinctively. So the
surjection is proved.

The inverse of f is given by ẑ = f−1(x̂), where

ẑi =
(
B−1
f x̂

)
i

mod pi, i = 1, ..., n. (23)

In the transmission system model of Fig. 3, if the noise
term n satisfies f−1

(
QΛf

(n)
)

= 0, then the estimated
information integers ẑ are correct. A sufficient condition is
to have QΛf

(n) = 0.
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Fig. 3: The transmission system model.

Example: Consider the D4 lattice, whose lattice basis can be
represented as

BD4
=


1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1

 · diag(1, 1, 1, 2). (24)

To encode 7 bits over 4 dimensions, let the pair of nested
lattices be (Λf ,Λc) = (D4, 4Z4), and the message space be

I = {0, 1, 2, 3}3 × {0, 1} . (25)

Concrete steps over Fig. 3 are explained as follows. W.l.o.g,
let the input binary string be {0, 1, 1, 0, 1, 1, 1}. Then the
binary-to-integer transform Bin2Int yields

z = [1, 2, 3, 1]>.

By using lattice labeling in Eq. (19), we have

f(z) = [1, 2, 3, 8]> mod 4 = [1, 2, 3, 0]>.

If the additive noise is small enough, then at the receiver’s
side, we may assume that the quantization function QΛf

outputs the same f(z). With reference to delabeling in (23),
the estimated integers are

ẑ = [1 mod 4, 2 mod 4, 3 mod 4, −3 mod 2]>

= [1, 2, 3, 1]>.

Finally, the integer-to-binary transform Int2Bin yields the
same binary string of the input.

3.3 Rectangular Forms of Code-Based Lattices

The proposed labeling is feasible for a wide range of lat-
tices, such as low-dimensional optimal lattices D2, D4, E8,
Λ24, and the general Construction-A and Construction-D
lattices. Construction A and Construction D are popular
techniques of lifting linear codes to lattices, based on which
many remarkable lattices with large coding gains have been
constructed (Barnes-Wall lattices and polar lattices).

Definition 7 (Construction A). Let C be a (n, k, d) linear bi-
nary code. A vector y is a lattice vector of the Construction-
A lattice over C if and only if y modulo 2 (modulo a prime
number in general) is congruent to a codeword of C .

Let φ(·) be a natural mapping function from F2 to {0, 1},
and G be the generator matrix of a linear code C . By

reformulating G as a Hermite normal form {I,A}, the
Construction-A lattice of C can be written as

ΛA = L
([

φ(I) 0
φ(A) 2I

])
. (26)

The lattice basis of ΛA is therefore a rectangular form. The
volume of ΛA is

V (ΛA) = 2n−k. (27)

Definition 8 (Construction D). Let C0 ⊂ C1 ⊂ · · · ⊂ Ca =
Fn2 be a family of nested binary linear codes, where Ci has
parameters (n, ki, di) and Ca is the trivial (n, n, 1) code. A
vector y is a lattice vector of the Construction-D lattice over
C0, ..., Ca if and only if y is congruent (modulo 2a) to a
vector in C0 +2C1 + · · ·+2a−1Ca−1, when the nested codes
are closed under the Schur product operation [27] 1.

Denote the generator matrices of C0, Ci, and Ca as

G0 =

 | | |
g1 g2 · · · gk0
| | |

 (28)

Gi =

 | | | |
g1 g2 · · · gk0 · · · gki
| | | |

 (29)

Ga =

 | | | | |
g1 g2 · · · gk0 · · · gki · · · gka
| | | | |

 , (30)

where 1 ≤ k0 ≤ k1 ≤ · · · ≤ ka = n. Then the point vector
of a Construction-D lattice is given by

ΛD =
⋃

ui∈{0,1}ki

(
a−1∑
i=0

2iφ(Gi)ui

)
+ 2aφ(Ga)Zn (31)

= L(φ(Ga) · diag(201k0 , ..., 2
a1ka−ka−1

)), (32)

where 1ki denotes an all-one vector of dimension ki. Since
Ga spans Fn2 , Ga can be chosen as the column-wise permu-
tation of a Hermite normal form to make φ(Ga) a unimod-
ular matrix. Thus Construction-D lattices have rectangular
forms. Moreover, the volume of a Construction-D lattice is
simply

V (ΛD) = 2an−
∑a−1

i=0 ki . (33)

Reed-Muller codes are a class of linear block codes
over Fn2 . With Construction D over Reed-Muller codes, the

1. It means that if c1, c2 ∈ Ci, then c1 ∗ c2 ∈ Ci+1 for all i =
0, ..., a − 1, where the Schur product operation ∗ is defined as x ∗ y ,
(x1y1, ..., xnyn) for x = (x1, ..., xn) and y = (y1, ..., yn).



6

Barnes-Wall lattices can be obtained [19]. The rectangular
forms of Barnes-Wall lattices can be found by using Plotkin
constructions:

Ga =

[
1 1
0 1

]⊗r
·P, (34)

φ(Ga) = φ

([
1 1
0 1

]⊗r)
·P ∈ GLn(Z), (35)

where P is a column permutation matrix to meet the nested
relation of G0, ..., Ga.

4 CVP DECODING USING UNIONS OF COSETS

To resist timing attacks against lattice-based PKE/KEM, the
decoding algorithms of lattice codes should not only feature
low computational complexity, but also a constant-time
property, namely the implementation time is independent
of the positions of the query vector in CVP. A natural and
efficient way to design such decoding is to partition the
lattices as unions of cosets.

4.1 Lattice Partition as Cosets

A closest lattice vector algorithm for Λ′ can easily be applied
to a coset g+Λ′. If QΛ′(t) is the closest point of Λ′ to t, then

QΛ′+g(t) = g +QΛ′(t− g). (36)

If Λ′ ⊂ Λ, decoding t over Λ amounts to computing the
closest vector in each coset using a decoding for Λ′, and
applying the union identity, i.e.,

QΛ(t) = QΛ′+g′(t), (37)

g′ = argming∈Λ/Λ′ ‖t−QΛ′+g(t)‖2 .

Thus for a lattice Λ with the sublattice Λ′ of index
|Λ/Λ′|, the computational complexity Comp(Λ) of calculat-
ing QΛ(t) is bounded by |Λ/Λ′|(1 + Comp(Λ′)).

This strategy is frequently combined with the method
of decoding direct-sum lattices, in which the sublattice in
question is a direct sum of component lattices.

4.2 Decoding BW16

Some low-dimensional Barnes-Wall lattices are

BW8 = (8, 4, 4) + 2Z8 u E8 (38)

BW16 = (16, 5, 8) + 2(16, 15, 2) + 4Z16 u Λ16 (39)

BW32 = (32, 6, 16) + 2(36, 26, 4) + 4Z32 (40)

BW64 = (64, 7, 32) + 2(64, 42, 8) + 4(64, 63, 2) + 8Z64,
(41)

where u denotes equality up to rotations. All these lattices
admit a Zn based coset partition, but such partition has
a huge number of cosets in general. Whenever possible,
partitioning the lattice as Dn based cosets helps to decode

Algorithm 1: The closest vector algorithm QBW16 .
Input: A query vector y.
Output: The closest vector v̂ of y in BW16.

1 Define the codewords of (16, 5, 8) as d1, . . . ,d32;
2 for t = 1, . . . 32 do
3 yt = (y − dt)/2 ;
4 v̂t = 2QDn

(yt) + dt . Employ the CVP
sub-routine of Dn;

5 Distt = ||y − v̄t||;
6 t∗ = mint Distt ;
7 v̂ = v̂t∗ .

faster. We are particularly interested in the decoding of
BW16, whose lattice basis is

1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 4
1 1 1 1 0 2 2 0 2 0 0 2 0 0 0 0
1 1 1 0 1 2 0 2 0 2 0 0 2 0 0 0
1 1 1 0 0 2 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 2 2 0 0 2 0 0 2 0 0
1 1 0 1 0 0 2 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 2 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 2 2 2 0 0 0 2 0
1 0 1 1 0 0 0 0 2 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 2 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 2 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


BW16 has a relatively large coding gain, while the dimen-
sion 16 is compatible to most PKE protocols. Moreover, a
fast constant-time closest vector algorithm can be designed.
To see this, we formulate BW16 as

BW16 = (16, 5, 8) + 2D16, (42)

It becomes evident that BW16 has a sublattice 2D16 of index
32, with coset representatives being the codewords of the
(16, 5, 8) first-order Reed-Muller code. With reference to Eq.
(37), we have

QBW16
(t) = Q2D16+g′(t), (43)

g′ = argming∈(16,5,8) ‖t−Q2D16+g(t)‖2 .

Thus by running the Dn lattice decoding algorithm for 32
times, the closest lattice vector of BW16 to a query vector
can be found. The algorithms QBW16

and QDn
are listed as

Algorithm 1 and Algorithm 2, respectively.

5 IMPROVING FRODOPKE WITH BARNES-WALL
LATTICES

5.1 DFR Analysis in the Worst Case
In FrodoPKE and most lattice-based PKE schemes, the
discrete Gaussian distribution χσ is chosen to closely ap-
proximates the continuous Gaussian distribution. The Rényi
divergence between this distribution and the continuous
Gaussian is used in the security reduction. For simplicity,
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Algorithm 2: The closest vector algorithm QDn .
Input: A query vector y.
Output: The closest vector v̂ of y in Dn.

1 u = bye ;
2 δ = |y − u|;
3 t∗ = maxt |yt − ut|;
4 v = u ;
5 if yt∗ − ut∗ > 0 then
6 vt∗ ← vt∗ + 1

7 else
8 vt∗ ← vt∗ − 1

9 if u1 + · · ·+ un mod 2 = 0 then
10 v̂ = u

11 else
12 v̂ = v

we will calculate the DFR (Pr (µ̂ 6= µ)) by modeling χσ as a
continuous Gaussian distribution N (0, σ2).

Recall that the error term n has m̄× n̄ entries, each entry
has the form of se + e′′ − e′s. Thus we have

E(se + e′′ − e′s) = 0 (44)

E
(
‖se + e′′ − e′s‖2

)
= 2n′σ4 + σ2. (45)

Although the entries of n are not independent (only the
diagonal entries of S′E + E′′ − E′S are independent), we
can use information theory to give a worst case analysis. The
information entropy of n is no larger than that of the joint
distribution of m̄ × n̄ i.i.d. N (0, 2n′σ4 + σ2) (also known
as Hadamard’s Inequality [28]). We adopt this “largest en-
tropy” setting to analyze the DFR, which denotes an AWGN
channel.

For a transmitted lattice vector x that has the same
dimension as the channel, the DFR of the PKE protocol can
be estimated by using the decoding error probability Pe of
a lattice codeword. Let λ1 and τ be the minimum Euclidean
distance and the kissing number of Λf , respectively. With
reference to [29], we have

Pe , Pr
(
QΛf

(n) 6= 0
)
≤

∑
u6=x,u∈Λf

P (x→ u), (46)

where P (x → u) is the pairwise error probability. By
considering i.i.d. Gaussian noise N (0, σ̄2) with σ̄ =
σ
√

2n′σ2 + 1, Eq. (46) becomes

Pe .
τ

2
erfc

(
λ1

2
√

2σ̄

)
(47)

=
τ

2
erfc

( √
γq

2B+3/2σ̄

)
, (48)

where the second equality is obtained by substituting λ1 =
√
γ
(
qn/2Bn

)1/n
, and B denotes the averaged number of

bits encoded in each matrix entry. According to (48), the
DFR is determined by a few factors: (i) The coding gain
γ, which describes the density of lattice points packed in a
unit volume for a given minimum Euclidean distance. (ii)
The kissing number τ that measure the number of facets in
the Voronoi region of a lattice. (iii) The modulo number q in

LBC. (iv) The averaged number of encoded bits B. (v) The
standard variance σ̄ of the effective noise.

Finding the densest lattice structure is a well-studied
topic, and the coding gain γ and kissing number τ of
some low-dimensional optimal lattices can be found in [29].
Therefore, the key challenge is to appropriately design B, q,
σ̄ based on chosen γ and τ .

5.2 Lattice Parameter Settings

We adopt Barnes-Wall lattices to construct lattice codes.
Though being less dense than other known packings in
dimensions 32 and higher, they offer the densest packings
in dimensions 2, 4, 8 and 16 [29]. Moreover, many lattice
parameters are available [29][P. 151]. In dimension n = 2r

with r = 1, 2, 3, ..., the kissing number is

τ = (2 + 2)(2 + 22) · · · (2 + 2r), (49)

and the coding gain is

γr = 2(r−1)/2, (50)

which increases without limit.
Regarding the number of encoded bits B per dimension,

by setting (Λf ,Λc) = (∆Λ, p∆Zn), where ∆ denotes a
scaling factor to enlarge the fine lattice, we have

B =
1

n
log2 |∆Λ/p∆Zn| = 1

n
log2

pn

V (Λ)
. (51)

In addition, the fine lattice can be rotated to support more
flexible rate control. Define the n-dimensional rotation ma-
trix as

Rn = In/2 ⊗R2, (52)

where

R2 =

[
1 −1
1 1

]
. (53)

Then the following lattice partition chain can be obtained:

Λ/RnΛ/2Λ/2RnΛ/4Λ/ · · · /pZn. (54)

By setting the pair of nested lattices as (Λf ,Λc) =
(∆RnΛ, p∆Zn), then

B =
1

n
log2 |∆RnΛ/p∆Zn| = 1

n
log2

pn

2n/2V (Λ)
. (55)

Table 1 summarizes the parameters of some low-
dimensional optimal lattices and the Barnes-Wall lattices. To
concatenate low dimensional lattices, the Cartesian product
is needed.

Definition 9 (Cartesian product). The Cartesian product of
two lattices Λ1 and Λ2 of dimensions n is an 2n dimensional
lattice: Λ1 × Λ2 = {(x,y) : x ∈ Λ1,y ∈ Λ2} .

The following lemma is immediate.

Lemma 10. If Λ′ is constructed from the k-fold Cartesian product
of Λ ⊂ Rn, i.e, Λ′ = Λ× · · · × Λ ⊂ Rkn, then we have

τ(Λ′) = kτ(Λ) (56)
γr(Λ

′) = γr(Λ). (57)
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TABLE 1: The properties of some popular lattices.

Z D4 E8 BW16 Λ24 BW32 BW64

Coding gain γ 1 21/2 2 23/2 4 4 25/2

Kissing number τ 2 24 240 4320 196560 146880 9694080
Volume V (Λ) 1 2 1 210 · 4 1 220 · 46 235 · 421 · 8

Constant-time CVP decoding X X [30] X [30] X [This work] X [9] × ×

5.3 Improved Frodo Parameters
Frodo-640 and Frodo-976 satisfy Categories 1 and 3 for
security levels in the NIST PQC Standardization, respec-
tively. To satisfy Categories 1 and 3 for security levels, it is
recommended to set the security level higher than 128 and
192 bits, respectively. In addition, because there is an attack
method by using decryption failure [6], the DFR should be
low. Therefore, it is desirable that the DFRs be less than
2−128 and 2−192 for Categories 1 or 3 for security levels,
respectively.

Compared to the standard Frodo protocol, our scheme
only modifies the labeling function, the corresponding CVP
algorithm, and the choice of parameters σ,B, q. The security
levels refer to the primal and dual attack via the FrodoKEM
script pqsec.py [31]. The subscripts C, Q and P denote “clas-
sical”, “quantum” and “paranoid” estimates on the concrete
bit-security given by parameters (n′, σ, q). We propose two
sets of parameters: the first aims at improving the security
level and the second at reducing the communication band-
width.

5.3.1 Parameter set 1: Improved security strength
We increase σ while keeping n, q unchanged in Frodo-
640 and Frodo-976. As shown in Table 2, error correction
via E8, BW16 and BW64 can improve the security level
of the original Frodo-640 and Frodo-976 by 6 to 16 bits.
Although the BW64 based parameter set offers the highest
security enhancement, it only serves as the performance
upper bound, as no efficient maximum likelihood decoding
algorithm is available.

We recommend the BW16 based parameter set. It has
about 6 to 8 bits of security advantage to the original Frodo.
Moreover, Frodo-640-BW16 and Frodo-976-BW16 can reli-
ably transmit 144 and 208 bits of information, respectively,
outperforming the 128 and 192 bits of Z and E8 based
implementation [10], [13].

5.3.2 Parameter set 2: Reduced size of ciphertext
Recall that the size of ciphertext is (m̄n′ + m̄n̄) log2(q)/8
bytes, so we can reduce q to achieve higher bandwidth
efficiency. To keep the DFR small, we also reduce σ to
various degrees, as long as the security level is no smaller.

As shown in Table 3, by reducing q from 215 to 214,
the ciphertext size |c| can be reduced from 9720 bytes to
9072 bytes in Frodo-640, and from 15744 bytes to 14760
bytes in Frodo-976. Again, the BW16 based parameter set is
recommended.

5.4 IND-CCA Security
The lattice codes based PKE/KEM also features chosen
ciphertext secure (IND-CCA) security. Similarly to the ar-
gument in [7], the IND-CPA security of FrodoPKE is upper

bounded by the advantage of the decision-LWE problem
for the same parameters and error distribution. To endow
an IND-CPA encryption scheme with IND-CCA security,
the post-quantum secure version of the Fujisaki-Okamoto
transform [32], [33] can be applied.

6 CONCLUSIONS

Lattice codes can be viewed as analog ECCs, using the
Euclidean metric rather than the Hamming metric. At a high
level, structured codes are used for error correction, while
random codes are used for security. For LBC the two tasks
are mixed as both are needed. Since LBC and code-based
cryptography have been separate, it becomes more tempting
to use lattice codes for error correction in LBC, so as to make
the scheme fully “lattice-based”.

The bridge that connects lattice codes and LBC is the
simple modulo q operation, which induces hypercube shap-
ing. By presenting an efficient lattice labeling function, as
well as a general formula to estimate the DFR, lattice codes
based error correction becomes practical in LBC. By using
some low-dimensional optimal lattices, a few improved pa-
rameter sets for FrodoPKE have been achieved, with either
higher security or smaller ciphertext sizes. We would also
like to remind that the lattice coding techniques in this work
can also be applied to Ring/Module LWE-based encryption
in a straightforward manner.
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