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Abstract

Existing error correction mechanisms in lattice-based public key encryp-
tion (PKE) rely on either naive modulation or its concatenation with
error correction codes (ECC). This paper shows that lattice coding,
as a joint ECC and modulation technique, can substitute the naive
modulation in existing lattice-based PKEs to enjoy better correc-
tion performance. We begin by modeling the FrodoPKE protocol as
a noisy point-to-point communication system, where the communica-
tion channel is similar to the additive white Gaussian noise (AWGN)
channel. To employ lattice codes for this special channel that hinges
on hypercube shaping, we propose an efficient labeling function that
converts between binary information bits and lattice codewords. The
parameter sets of FrodoPKE are improved towards either higher secu-
rity levels or smaller ciphertext sizes. For example, the proposed
Frodo-1344-E8 has a 10-bit classical security gain over Frodo-1344.

Keywords: public key encryption (PKE), lattice-based cryptography (LBC),
lattice codes, coded modulation
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1 Introduction

The impending realization of scalable quantum computers has posed a great
challenge for modern public key cryptosystems. As Shor’s quantum algorithm
[1] can solve the prime factorization and discrete logarithm problems in poly-
nomial time, conventional public-key cryptosystems based on these problems
are no longer secure. Although making a prophesy for when we can build a
large quantum computer is hard, we should start preparing the next generation
quantum-safe cryptosystem as soon as possible, because historical experiences
show that deploying modern public key cryptography infrastructures takes a
long time.

Reacting to this urgency, the subject of post-quantum cryptography (PQC)
has been systematically developed in the last decade [2, 3]. PQC aims to
design cryptosystems secure against quantum attacks, while being able to run
on a classic computer. From 2016, the National Institute of Standards and
Technology (NIST) has initiated a process to solicit, evaluate, and standard-
ize one or more quantum-resistant public-key cryptographic algorithms. The
process revolves around public key encryption/key encapsulation mechanism
(PKE/KEM) and digital signature proposals.

Recently NIST has announced four post-quantum cryptography stan-
dardization candidates [4]: CRYSTALS-Kyber for PKE/KEM, CRYSTALS-
Dilithium, FALCON and SPHINCS+ for digital signatures. As the first three
candidates are all based on lattices, it’s a great victory of lattice-based cryp-
tography (LBC), which enjoys the following prominent advantages. First,
LBC enjoys very strong security proofs based on the hardness of worst-case
problems. Second, LBC implementations are notable for their efficiency com-
pared to other post quantum constructions, primarily due to their inherent
linear algebra based matrix or vector operations on integers. Finally, LBC
constructions offer extended functionality for advanced constructions such as
identity-based encryption and fully-homomorphic encryption (FHE).

In lattice-based PKE/KEM, the decrypted messages may not be 100%
correct. As the encryption-decryption process amounts to the transmission of
messages through an additive noise channel, error correction techniques have
been either implicitly or explicitly employed to reduce the decryption failure
rate (DFR). Moreover, since the adversary may extract the secrets by taking
advantages of high DFRs, the DFR of a PKE/KEM scheme has to be extremely
small (e.g., smaller than 2−128 or 2−140) [5, 6]. It is therefore worthwhile to
improve the error correction mechanism in lattice-based PKE/KEM, with the
hope of obtaining better trade-off parameters:

• Security Strength: If the error correction mechanism can increase the noise
variance while maintaining a small DFR, then the PKE/KEM scheme has
a higher security level.

• Communication Bandwidth: If the error correction mechanism can reduce
the modulus while maintaining a small DFR, then the size of the ciphertext
is reduced.
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1.1 Related Works

KEMs can simultaneously output a session key together with a ciphertext that
can be used to recover the session key. Two major approaches to designing
lattice-based KEMs are PKEs (KEMs without reconciliation, see, e.g., [7–10])
and key exchanges (KEMs with reconciliation, see, e.g., [11–13]). As avoiding
the error-reconciliation mechanism brings great simplicity, we focus on PKEs
in this work.

Most lattice-based PKEs have implicitly employed an error correction
mechanism which is referred to as “naive modulation”. It represents a map-
ping from a binary string to different positions in {0, 1, . . . , q − 1}. If the noise
amplitude is smaller than the error correction radius, then the decryption is
correct. Thus a larger q enables higher error correction capability. Specifically,
Regev’s learning with errors (LWE) based PKE scheme [2] modulates 1-bit
information {0, 1} to {0, q/2}. Kawachi et. al. [14] extends the PKE scheme to
multi-bit modulation.

In recent years, researchers have realized that (digital) error correction
codes (ECC) can be concatenated with modulations to obtain better error
correction performance. For instance, the LAC [15] PKE employs BCH codes
for error correction, which helps to reduce the modulo size q from 12289 to
251. The reason behind the small q is that, although the modulation level has
minus error correction capability, the induced ECC helps to achieve a smaller
DFR. Other examples can be found in the repetition codes based NewHope-
Simple [8], XE5 based HILA5 [16], and the Polar codes based NewHope-Simple
[17]. The downside of an extra modern ECC is an increased complexity of the
program code and a higher sensitivity to side-channel attacks [18] (information
is obtained through physical channels such as power measurements, variable
execution time of the decoding algorithm, etc).

More importantly, using ECC and modulation in a concatenated man-
ner confines the overall performance of the system, whose deficiencies include
less flexible number of encoded bits, and the independent decoding nature of
modulation and ECC. Fortunately, the joint design of ECC and modulation
(referred to as “coded modulation”) has been studied in information theory
and wireless communications for a few decades. Ungerboeck’s pioneering work
[19] in the 1980s showed that coded modulation exhibits significant perfor-
mance gains. Then, Forney [20, 21] systematically studied coded modulation
schemes from coset codes/lattice codes. A breakthrough in information the-
ory is that Erez and Zamir [22] show high dimensional random lattice codes
can achieve the capacity of additive white Gaussian noise (AWGN) channels.
Recent years have also witnessed the use of Polar lattices [23] and LDPC lat-
tices [24] in achieving the capacity of AWGN channels. In the language of coset
codes, lattice codes represent an elegant combination of linear codes and mod-
ulation: if points in the constellation are closed, they are protected by ECC;
if points are far away, the information bits are directly mapped to them.

It is noteworthy that deploying lattice codes in lattice-based PKE is not
straightforward, because previous lattice coding literature [25] was considering
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lattice codes for the physical layer (the transmission power of the codes mat-
ters), while the modulo q arithmetic in LBC represents a higher layer. In the
past few years, there have been some works that employ lattice codes in PKEs.
In 2016 van Poppelen designed a Leech lattice based PKE [9], while Saliba
et. al. [10] designed an E8-lattice-based PKE in 2021. The use of E8 and Leech
parallels the celebrated breakthrough in mathematics in recent years: proving
the E8 and Leech lattices offer the best sphere packing density in dimensions
8 and 24 [26, 27]. Unfortunately, the labeling technique is missing in the Leech
lattice based PKE [9], while the labeling technique for E8 in [10] is nonlinear.
In this regard, a general lattice-code based error correction formulation, along
with efficient linear labeling, is needed for lattice-based PKEs.

1.2 Contributions

This paper contributes in the following ways, suggesting the naive modulation
in lattice based PKE should be replaced with coded modulation.

• We consider the plain-LWE scheme Frodo [7] and model it as a com-
munication system, over which the communication channel is akin to the
AWGN channel. We show that the error correction performance can be easily
improved by replacing the naive modulation with lattice-based coded mod-
ulation. In a similar vein, the ring-based or module-based schemes such as
NewHope-Simple [8] and Kyber [28], can also resort to lattice-based coded
modulation.

• We present a universal and efficient labeling technique for cubic-shaping
based lattice codes. Due to the modulo q arithmetic, lattice codes in LBC
have to use hypercube shaping, which means the coarse lattice should be a
simple integer lattice qZn. Although the number of lattice codewords can be
easily identified in hypercube shaping, there seems to be no efficient label-
ing function available in the literature. In response, we propose a labeling
function to establish a one-to-one map between the binary information bits
and the set of lattice vectors. For a fine lattice whose Hermite parameter
is large, we first rewrite its lattice basis to a rectangular form (the product
of a unimodular matrix and a diagonal matrix). The proposed labeling is
feasible for a wide range of lattices, such as D4, E8, BW16, Λ24, etc.

• A unified DFR formula over AWGN channels is derived to analyze the DFR
of lattice-code based FrodoPKE. Only the Hermite parameter and the kiss-
ing number of lattices are needed in the DFR formula. Previously the DFRs
were calculated by a computationally intensive case-by-case analysis. Via
the DFR formula, better parameter sets for FrodoPKE are derived, where
the E8 or BW16 based implementations are particularly attractive: their
encoding and decoding procedures are simple, and the modified PKE enjoys
either higher security levels or smaller ciphertext sizes.

The rest of this paper is organized as follows. Background about lattice
codes and PKE are reviewed in Section II. The proposed labeling is introduced
and analyzed in Section III. Section IV presents a coset-based lattice decoding
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formulation, along with the pseudocode of decoding BW16. Section V presents
the improved parameter sets for FrodoPKE. The last section concludes this
paper.

2 Preliminaries

2.1 Lattice Codes and Hypercube Shaping

Definition 1 (Lattices). A rank n lattice Λ is a discrete additive subgroup of
Rm, m ≥ n. For simplicity, it is assumed that m = n throughout.

Based on n linearly independent vectors b1, . . . ,bn, Λ can be written as

Λ = L(B) = z1b1 + z2b2 + · · ·+ znbn, (1)

where z1, . . . , zn ∈ Z, and B = [b1, . . . ,bn] is referred to as a basis of Λ.

Definition 2 (Closest Vector Problem). Considering a query vector t and a
lattice Λ, the closest vector problem is to find the closest vector to t in Λ.

The nearest neighbor quantizer QΛ(·) denotes a function that solves CVP,
i.e.,

QΛ(t) = arg min
v∈Λ

‖t− v‖. (2)

In case of a tie, (2) outputs the candidate with the smallest Euclidean norm.

Definition 3 (Fundamental region). A fundamental region RΛ of a lattice Λ
includes one and only one point of Λ, and when shifting it to any lattice point,
the whole Rn space is tiled.

The Voronoi region VΛ is a special case of the fundamental region RΛ. It
denotes the set of points in Rn that are closer to the origin than any other
lattice points in Λ, i.e.,

VΛ = {y ∈ Rn | ‖y‖ ≤ ‖y −w‖, ∀w ∈ Λ}. (3)

Definition 4 (Modulo lattice). [x] mod Λ denotes the quantization error of
x with respect to Λ:

[x] mod Λ = x−QΛ(x). (4)

Definition 5 (Nested lattices). Two lattices Λf and Λc are nested if Λc ⊂ Λf .
The denser lattice Λf is called the fine/coding lattice, and Λc is called the
coarse/shaping lattice.

Lattice codes are the Euclidean space counterpart of linear codes, and they
provide a unified framework to describe the coded modulation techniques [20,
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Fig. 1: Demonstration of the lattice code
C(Λf , 7Z2) = {(0, 0), (1, 5), (2, 3), (3, 1), (4, 6), (5, 4), (6, 2)}

cut from hypercube shaping.

21]. The inherent structure is a one-level/multi-level binary encoder and subset
partitioning, which can encode more than n information bits to n symbols.

Definition 6 (Lattice code). A lattice code C(Λf ,Λc) is the finite set of points
in Λf that lie within RΛc :

C(Λf ,Λc) = Λf ∩RΛc
. (5)

If Λc = pZn, then (5) is called hypercube shaping. A 2-dimensional example
is shown in Fig. 1. The purple points denote Λf , and those points enclosed
with black circles denote Λc. The nesting relation is Λc = 7Z2 ⊂ Λf ⊂ Z2.
The fundamental region RΛc

in the example, enclosed by dashed black lines,
is the shifted version of VΛc

, i.e., RΛc
= VΛc

+ (3, 3).
The information rate (averaged number of encoded bits) per dimension is

defined as

B =
1

n
log2

(
Vol(Λc)

Vol(Λf )

)
. (6)

The Hermite parameter of a lattice, also identified as the coding gain, is
defined as

γ(Λ) = λ1(Λ)2/Vol(Λ)2/n (7)

where λ1(Λ) denotes the length of a shortest non-zero vector in Λ, and
Vol(Λ) = |det(B)| denotes the volume of Λ. The coding gain γ(Λ) measures
the increase in density of Λ over the baseline integer lattice Z (or Zn). Note that
the supremum of λ1(Λ)2/Vol(Λ)2/n over all n-dimensional lattices is known as
Hermite’s constant.

2.2 PKE/KEM in LBC

FrodoKEM [7] is a simple and conservative KEM from generic lattices, and
it is one of two post-quantum algorithms recommended by the German Fed-
eral Office for Information Security (BSI) as cryptographically suitable for
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long-term confidentiality [29]. The core of FrodoKEM is a public-key encryp-
tion scheme called FrodoPKE, whose IND-CPA security is tightly related to
the hardness of a corresponding learning with errors problem. Due to the
lack of algebraic structure, the security estimates of FrodoPKE rely on fewer
assumptions than other PKE/KEM schemes based on ring or module LWE.

A public key encryption scheme PKE is a tuple of algorithms (KeyGen, Enc,
Dec) along with a message space M.

In the key generation algorithm, by sampling S,E ∼ χn′×n̄σ , with χσ being
a (truncated) discrete Gaussian distribution with width σ, and sampling A
from a uniform distribution in Zn′×n′q , it computes

B = AS + E ∈ Zn
′×n̄
q . (8)

The public key is pk = (B,A), and the secret key is sk = S.
In the part of public key encryption, it samples S′,E′ ∼ χm̄×n

′

σ , E′′ ∼
χm̄×n̄σ , and computes

C1 = S′A + E′ (9)

V = S′B + E′′. (10)

To encrypt a message µ ∈M = {0, 1}m̄n̄B , the ciphertext is generated by

c = (C1, C2 = V + Frodo.EncodeM(µ)). (11)

The function Frodo.EncodeM represents a matrix encoding function of bit
strings. In an element-wise manner, each B-bit value is transformed into
the B most significant bits of the corresponding entry modulo q. We refer
to Frodo.EncodeM as “naive modulation”, as it amounts to a special case
of the lattice code based encoding that employs hypercube shaping, with
Λf = q/(2B)Z64, Λc = qZ64.

To decrypt, it employs the secret key S and the ciphertext C1,C2 to
compute

µ̂ = Frodo.DecodeM(C2 −C1S), (12)

where Frodo.DecodeM standards for the demodulation function. The
FrodoPKE protocol is summarized in Fig. 2.

When targeting security levels 1, 3 and 5 in the NIST call for proposals
(matching or exceeding the brute-force security of AES-128, AES-192, AES-
256), the recommended parameters are

Frodo-640 : n′ = 640, n̄ = 8, m̄ = 8, q = 215, σ = 2.75,M = {0, 1}128

Frodo-976 : n′ = 976, n̄ = 8, m̄ = 8, q = 216, σ = 2.3,M = {0, 1}192

Frodo-1344 : n′ = 1344, n̄ = 8, m̄ = 8, q = 216, σ = 1.4,M = {0, 1}256
.



Springer Nature 2021 LATEX template

8

Input Parameters: q, n′, n̄, m̄, χσ.
Alice Bob

A←$ Zn′×n′q

S,E←$ χ
n′×n̄
σ S′,E′ ←$ χ

m̄×n′
σ

B = AS + E
A,B−−−→ E′′ ←$ χ

m̄×n̄
σ

C1 = S′A + E′

V = S′B + E′′

µ ∈ {0, 1}m̄n̄B

Y = C2 −C1S
C1,C2←−−−− C2 = V + Frodo.EncodeM(µ)

µ̂ = Frodo.DecodeM(Y)

Fig. 2: The FrodoPKE protocol.

Lattice 
Labeling

CVP 
Quantizer

Real-Valued Channel

Bit
Mapper 

Info
Bits Bit

Demapper

Info
BitsLattice 

Delabeling

Fig. 3: The equivalent communication system model.

3 The Proposed Scheme

3.1 Equivalent Communication Model

Recall that the decryption algorithm of FrodoPKE computes

Y = C2 −C1S

= Frodo.EncodeM(µ) + S′E + E′′ −E′S, (13)

whose addition is over the modulo q domain. From the perspective of commu-
nications, this amounts to transmitting the modulated µ through an additive
noise channel. Specifically, Eq. (13) can be formulated as

y = x + n mod q, (14)

where x = EncodeV(µ) ∈ Rm̄n̄ denotes a general error correction function, and
y, n represent the vector form of Y and S′E + E′′ − E′S, respectively. Since
the element-wise modulo q is equivalent to modulo a lattice qZm̄n̄, EncodeV
can be designed from the perspective of lattice codes.

The flowchart of the communication model is plotted in Fig. 3, which
contains the following operations:
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• Bit Mapper and Demapper : The former maps binary information bits to an
information vector z defined over integers. The later performs the inverse
operation. These operations are straightforward.

• Lattice Labeling and Delabeling : Given a message index z, lattice labeling
finds its corresponding lattice codeword x ∈ C(Λf ,Λc = qZm̄n̄). Delabeling
denotes the inverse of labeling.

• CVP Quantizer : It returns the closet lattice vector to y over Λf . The CVP
algorithm of QΛf

(·) will be examined in Section 3.4.

While the conventional Frodo.EncodeM employs Λf = q/(2B)Zm̄n̄ that
leads to simple labeling functions and CVP quantization, our work seeks to
employ a better Λf for error correction performance. Thus the associated
labeling function and CVP quantization are more involved.

3.2 Lattice Labeling and Delabeling

This section will show that for any fine lattice with a basis in a rectangular
form, a linear labeling from certain index sets to lattice codewords can be
generically defined.

Definition 7 (Rectangular Form). A lattice basis B is in a rectangular form if

B = U · diag(π1, π2, . . . , πn), (15)

where U ∈ GLn(Z) is a unimodular matrix, and π1, π2, . . . , πn ∈ Q+.

For any lattice with a rational basis, it has a rectangular form. Specifically,
consider the Smith Normal Form factorization of a lattice basis B∗ ∈ Qn×n,
then we have

B∗ = U · diag(π1, π2, . . . , πn) ·U′, (16)
where U,U′ ∈ GLn(Z)1. As lattice bases are equivalent up to unimodular
transforms, the term U′ can be canceled out, and the rectangular form is
derived.

For a lattice that features a rectangular form, an efficient labeling scheme
can be constructed. The idea is that the combination of rectangular form and
non-uniform labeling amounts to hypercube shaping. Specifically, let the fine
lattice be

Λf = L(Bf ) = L(U · diag(π1, π2, . . . , πn)). (17)
Let p ∈ Z+ be a common multiplier of π1, π2, . . . , πn, and define

p1 = p/π1, p2 = p/π2, . . . , pn = p/πn. (18)

If Bc = Bfdiag(p1, p2, . . . , pn), we have

Λc = L(U · diag(π1, π2, . . . , πn) · diag(p1, p2, . . . , pn))

1The determinants of U and U′ are 1 or −1 by incorporating the necessarily rational factors
into diag(π1, π2, . . . , πn).
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= L(pU)

= pZn. (19)

The last equality is due to the fact that a unimodular matrix can be regarded
as a lattice basis of Zn. Hence modulo Λc becomes equivalent to modulo p.
Then we arrive at the following theorem.

Theorem 8 (Labeling Function). Let the message space be

I = {0, 1, . . . , p1 − 1} × · · · × {0, 1, . . . , pn − 1} , (20)

and the pair of nested lattices be Λf = L(Bf ) = L(U ·
diag(p/p1, p/p2, . . . , p/pn)), Λc = L(pU) = pZn. With z ∈ I, the function f :
I → C(Λf ,Λc),

f(z) = [Bfz] mod p (21)

is bijective.

Proof It suffices to prove that f is both injective and surjective. “Injective” means
no two elements in the domain of the function gets mapped to the same image, i.e.,
for z1, z2 ∈ I,

z1 6= z2 → f(z1) 6= f(z2). (22)

We prove this by contradiction, showing z1 6= z2 → f(z1) = f(z2) does not hold. If
f(z1) = f(z2), it implies that we can find z1, z2 ∈ I, z3 ∈ Zn such that

Bf (z1 − z2) = Bf · diag(p1, p2, . . . , pn) · z3

→ z1 − z2 = diag(p1, p2, . . . , pn) · z3. (23)

Then (23) has a solution only when z3 = 0, which leads to z1 = z2.
“Surjective” means that any element in the range of the function is hit by the

function. Recall that the number of coset representatives of Λf/Λc is

|det(Bc)|/ | det(Bf ) |= p1p2 · · · pn. (24)

As |I| = p1p2 · · · pn, it follows from the injective property that all the coset repre-
sentatives have been hit distinctively. So the surjection is proved. �

Denote x = f(z). The inverse of f is given by

z = f−1(x) , B−1
f x mod (p1, . . . , pn), (25)

which stands for zi =
(
B−1
f x

)
i

mod pi, i = 1, . . . , n. As the labeling and

delabeling process also encounters an additive noise channel, we examine the
correct recovery condition hereby. Assume that the receiver’s side has the noisy
observation x + n, with x ∈ Λf and n being the additive noise.

Theorem 9 (Correct Decoding). If QΛf
(n) ∈ Λc, then f−1(QΛf

(x + n)) =
f−1(x).
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Proof Notice that

QΛf
(x + n) = x + QΛf

(n), (26)

then we have

f−1(QΛf
(x + n)) = B−1

f x + B−1
f QΛf

(n) mod (p1, . . . , pn) (27)

The condition of QΛf
(n) ∈ Λc implies that this vector of the coarse lattice

can be written as Bfdiag(p1, p2, . . . , pn)k for a k ∈ Zn. This yields QΛf
(n)

mod (p1, . . . , pn) = 0 and the theorem is proved. �

We summarize three cases for the correct recovery of messages. i) Noiseless:
n = 0. ii) Noise is small: QΛf

(n) = 0. iii) Noise is large but still in the coarse
lattice: QΛf

(n) ∈ Λc.
An example of using labeling and delabeling is given below.

Example: Consider the D4 lattice, whose lattice basis and its inverse are
respectively given by

BD4
=


1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1

 · diag(1, 1, 1, 2), (28)

B−1
D4

=


1 0 0 0
0 1 0 0
0 0 1 0
−0.5 −0.5 −0.5 0.5

 . (29)

To encode 7 bits over 4 dimensions, let the pair of nested lattices be (Λf ,Λc) =
(D4, 4Z4), and the message space be

I = {0, 1, 2, 3}3 × {0, 1} . (30)

W.l.o.g, let the input binary string be {0, 1, 1, 0, 1, 1, 1}. Then the “Bit
Mapper” transforms the bits to a vector in I:

z = [1, 2, 3, 1]>.

By using lattice labeling in Eq. (21), we have

x = f(z) = [1, 2, 3, 0]>.

In the noiseless case of n = 0, we have

f−1(x) = f−1([1, 2, 3, 0]>) (31)

= [1, 2, 3,−3]> mod (4, 4, 4, 2) (32)

= [1, 2, 3, 1]>. (33)
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In the noisy case of n = [4, 4, 4, 4]>, we have QΛf
(n) ∈ Λc, and

f−1(QΛf
(x + n)) = f−1([5, 6, 7, 4]>) (34)

= [9, 10, 11,−7]> mod (4, 4, 4, 2) (35)

= [1, 2, 3, 1]>. (36)

Finally, the “Bit Demapper” transforms the information integers to bits, which
equal to the original input.

3.3 Rectangular Forms of Code-Based Lattices

The proposed labeling is feasible for a wide range of lattices, such as low-
dimensional optimal lattices D2, D4, E8, Λ24, and the general Construction-A
and Construction-D lattices. Construction A and Construction D are popular
techniques of lifting linear codes to lattices, based on which many remarkable
lattices with large coding gains have been constructed, such as the Barnes–
Wall lattices [21, 30, 31] and the polar lattices [23, 32]. Let C be a linear binary
code of length n, dimension k and minimum distance d, denoted as (n, k, d).

Definition 10 (Construction A [33]). A vector y is a lattice vector of the
Construction-A lattice over C if and only if y modulo 2 is congruent to a
codeword of C.

Let φ(·) be a natural mapping function from F2 to R with φ(0) = 0, φ(1) = 1
for a scalar input, and φ(·) is applied element-wise for a vector/matrix input.
Let G be the generator matrix of C. By reformulating it as the Hermite normal
form of {I,A}, the Construction-A lattice of C can be written as

ΛA = L
([

φ(I) 0
φ(A) 2I

])
. (37)

The lattice basis of ΛA is therefore of a rectangular form. The volume of ΛA is

V (ΛA) = 2n−k. (38)

Definition 11 (Construction D [33]). Let C0 ⊂ C1 ⊂ · · · ⊂ Ca = Fn2 be a
family of nested binary linear codes, where Ci has parameters (n, ki, di) and Ca
is the trivial (n, n, 1) code. A vector y is a lattice vector of the Construction-D
lattice over (C0, . . . , Ca) if and only if y is congruent (modulo 2a) to a vector
in C0 + 2C1 + · · ·+ 2a−1Ca−1.

Denote the generator matrices of C0, Ci, and Ca as

G0 =

 | | |
g1 g2 · · · gk0
| | |

 (39)
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Gi =

 | | | |
g1 g2 · · · gk0 · · · gki
| | | |

 (40)

Ga =

 | | | | |
g1 g2 · · · gk0 · · · gki · · · gka
| | | | |

 , (41)

where 1 ≤ k0 ≤ k1 ≤ · · · ≤ ka = n. Then the code formula of a Construction-D
lattice is

ΛD =
⋃

ui∈{0,1}ki

(
a−1∑
i=0

2iφ(Gi)ui

)
+ 2aZn (42)

= L(φ(Ga) · diag(201k0 , . . . , 2
a1ka−ka−1

)), (43)

where 1ki denotes an all-one vector of dimension ki, φ(Ga) is a unimodular
matrix. Thus 2aZn ⊂ ΛD and the volume of a Construction-D lattice is

V (ΛD) = 2an−
∑a−1

i=0 ki . (44)

By using Construction D over Reed-Muller codes, the Barnes–Wall lattices can
be obtained [21] 2. Some low-dimensional examples are

BW8 = (8, 4, 4) + 2Z8 u E8 (45)

BW16 = (16, 5, 8) + 2(16, 15, 2) + 4Z16 u Λ16 (46)

BW32 = (32, 6, 16) + 2(36, 26, 4) + 4Z32 (47)

BW64 = (64, 7, 32) + 2(64, 42, 8) + 4(64, 63, 2) + 8Z64, (48)

where u denotes equality up to rotations. The rectangular-form lattice basis in
(43) can be derived by considering the Kronecker product based construction
of Reed-Muller codes [35, Section I-D]. With explicit rectangular forms, the
lattice bases of E8, BW8 and BW16 are shown in Appendix A.

3.4 CVP Decoding

Enumeration and sieving are two popular types of CVP algorithms for decod-
ing random lattices [36, 37]. For the code-based lattices used in error correction,
they feature strong structures, thus algorithms should exploit the structures
to improve the decoding efficiency. While there exist bounded distance decod-
ing (BDD) for the considered Barnes–Wall lattices [34, 38], BDD fails to reach
the DFR of CVP decoding. Exploiting the structure of cosets, efficient CVP
algorithms of E8 and Dn can be found in [39]. In a similar vein, this section
examines the CVP decoding of BW16, BW32 and BW64.

2Barnes–Wall lattices can also be defined recursively [34, Definition 1.1].
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3.4.1 Lattice Partition as Cosets

A natural and efficient way to design CVP algorithms for Construction-D
lattices is to partition the lattice as the union of cosets. If Λ equals to the
union of Λ′ cosets, the CVP of Λ can resort to that of Λ′:

QΛ(t) = QΛ′+g′(t), (49)

g′ = argming∈Λ/Λ′ ‖t−QΛ′+g(t)‖ ,

where QΛ′+g(t) = g + QΛ′(t − g). Denote the number of cosets as |Λ/Λ′|.
Then the computational complexity of QΛ is |Λ/Λ′| times larger than QΛ′ .

All the Construction-D lattices admit a Zn based coset partition, but such
partition has a huge number of cosets in general. Whenever possible, parti-
tioning the lattice as Dn based cosets helps to decode faster. For example, the
magic behind the CVP algorithm of E8 [39] is to treat E8 as two D8 cosets
while D8 amounts to two Z8 cosets.

3.4.2 Decoding BW16

Among BW16, BW32 and BW64, only BW16 and BW64 contain Dn based
cosets:

BW16 = (16, 5, 8) + 2D16, (50)

BW64 = (64, 7, 32) + 2(64, 42, 8) + 4D64. (51)

Their number of cosets are |BW16/2D16| = 25, |BW64/4D64| = 249, contrary
to |BW16/4Z16| = 220, |BW64/8Z64| = 2112. In addition, |BW32/4Z32| = 232.

Summarizing the above, the decoding complexity of BW16 seems more
affordable than those of BW32 and BW64. With reference to Eqs. (49) and
(50), we have

QBW16
(t) = Q2D16+g′(t), (52)

g′ = argming∈(16,5,8) ‖t−Q2D16+g(t)‖ .

The pseudocode of the CVP algorithms QBW16
and QDn

are listed in
Algorithm 1 and Algorithm 2, respectively.

4 Improving FrodoPKE with Lattice Codes

4.1 DFR Analysis in the Worst Case

In FrodoPKE, χσ is chosen from a truncated discrete Gaussian that minimizes
its Rényi divergence from the target “ideal” distribution, as the loss of secu-
rity can be evaluated by computing the Rényi divergence between the two
distributions [40]. To simplify the DFR analysis, χσ is treated as a continuous
Gaussian distribution of N (0, σ2).
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Algorithm 1 The closest vector algorithm QBW16

Input: A query vector y.
Output: The closest vector v̂ of y in BW16.

1: Define the codewords of (16, 5, 8) as d1, . . . ,d32

2: for t = 1, . . . 32 do
3: yt = (y − dt)/2
4: v̂t = 2QDn

(yt) + dt
5: Distt = y − v̄t
6: end for
7: t∗ = mint Distt
8: v̂ = v̂t∗ .

Algorithm 2 The closest vector algorithm QDn
.

Input: A query vector y.
Output: The closest vector v̂ of y in Dn.

1: u = bye
2: δ = |y − u|
3: t∗ = maxt |yt − ut|
4: v = u
5: if yt∗ − ut∗ > 0 then
6: vt∗ ← vt∗ + 1
7: else
8: vt∗ ← vt∗ − 1
9: end if

10: if u1 + · · ·+ un mod 2 = 0 then
11: v̂ = u
12: else
13: v̂ = v
14: end if

Recall that Section 3.1 has formulated an m̄n̄-dimensional modulo lattice
additive noise channel “y = x+n mod q”. The error term n has m̄n̄ entries,
each entry has the form of s′e + e′′ − e′s, and we have

E(s′e + e′′ − e′s) = 0 (53)

E
(
‖s′e + e′′ − e′s‖2

)
= 2n′σ4 + σ2. (54)

Although the entries of n are not independent, we can use information the-
ory to give a worst case analysis. The information entropy of n is no larger
than that of the joint distribution of m̄n̄ i.i.d. N (0, 2n′σ4 + σ2) (also known
as Hadamard’s Inequality [41]). We adopt this “largest entropy” setting to
approximate the DFR, which amounts to the error rate analysis of lattice codes
over an AWGN channel.
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Fig. 4: The DFRs of naive modulation and E8 based coded modulation.

The DFR of the PKE protocol can be estimated by using the decoding
error probability Pe of a lattice codeword. To proceed, we set the coarse lattice
Λc = qZn (n = m̄n̄) as required by the PKE protocol, and identify a general
fine lattice Λf with kissing number τ , length of the shortest non-zero lattice
vector λ1, and volume

Vol(Λf ) =
Vol(Λc)

2nB
. (55)

Based on Theorem 9, the DFR can be evaluated as

Pe , Pr (µ̂ 6= µ) = Pr
(
QΛf

(n) /∈ Λc
)
≤ Pr

(
QΛf

(n) 6= 0
)
. (56)

Assume that n admits an i.i.d. Gaussian noiseN (0, σ̄2) with σ̄ = σ
√

2n′σ2 + 1,
it follows from [33, Chap. 3], [42, Eq. 4] that

Pr
(
QΛf

(n) 6= 0
)
.
τ

2
erfc

(
λ1/2√

2σ̄

)
(57)

=
τ

2
erfc

( √
γq

2B+3/2σ̄

)
, (58)

where the second equality is obtained by substituting λ1 =
√
γ
(
qn/2nB

)1/n
,

which is based on the definition of Hermite parameter γ and Vol(Λc) = qn.
Note that “.” denotes an approximate “≤”, which holds in the high signal to
noise ratio scenario (i.e., λ1 � σ̄) [33, Chap. 3]. In Fig. 4, by using Z8 and
E8 as the fine lattice, respectively, we plot both their theoretical DFR upper
bounds and the actual simulated DFRs, which suggests the upper bound in
(57) is tight.

The DFR formula is determined by a few factors: (i) The Hermite parame-
ter γ, which describes the density of lattice points packed in a unit volume for
a given minimum Euclidean distance. (ii) The kissing number τ that measure
the number of facets in the Voronoi region of a lattice. (iii) The modulus q in
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LBC. (iv) The averaged number of encoded bits B. (v) The standard deviation
σ̄ of the effective noise.

4.2 Flexible Lattice Parameter Settings

Finding the densest lattice structure is a well-studied topic, and the Hermite
parameter γ and kissing number τ of some low-dimensional optimal lattices
can be found in [33]. Therefore, the key challenge is to judiciously design B,
q, σ̄ based on chosen γ and τ .
i) On the kissing number and Hermite parameter. We adopt Barnes–Wall lat-
tices to construct lattice codes. Though being less dense than other known
packings in dimensions 32 and higher, they offer the densest packings in dimen-
sions 2, 4, 8 and 16 [33]. Moreover, many lattice parameters are available [33][P.
151]. In dimension n = 2r with r = 1, 2, 3, . . ., the kissing number is

τ = (2 + 2)(2 + 22) · · · (2 + 2r), (59)

and the Hermite parameter is

γr = 2(r−1)/2, (60)

which increases without limit. If Λ′ is constructed from the k-fold Cartesian
product of Λ ⊂ Rm, i.e, Λ′ = Λ× · · · × Λ ⊂ Rkm, then we have

τ(Λ′) = kτ(Λ) (61)

γr(Λ
′) = γr(Λ). (62)

Table 1 summarizes the parameters of some low-dimensional optimal
lattices and the Barnes–Wall lattices.

Table 1: The properties of some popular lattices.

Z D4 E8 BW16 Λ24 BW32 BW64

Hermite param-
eter γ

1 21/2 2 23/2 4 4 25/2

Kissing number
τ

2 24 240 4320 196560 146880 9694080

Volume Vol(Λt) 1 2 1 212 1 232 280

ii) On the information rate B. Since the coarse lattice in FrodoPKE is Λc =
qZ64, let 2∆ = q/p be a power of 2 with p being a free parameter. By choosing
a small dimensional lattice Λt ∈ Rt, t dividing n = 64, and pZt ⊂ Λt, the fine
lattice is a Cartesian product of Λt:

Λf = 2∆Λt × · · · × Λt. (63)
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Then the number of encoded bits B per dimension is dictated by p:

B =
1

n
log2

(
Vol(Λc)

Vol(Λf )

)
=

1

t
log2

pt

Vol(Λt)
. (64)

For a Construction-A or Construction-D lattice, one always has

pZt ⊂ 2aZt ⊂ Λt. (65)

While the E8 lattice has half integers, it holds that 4Z8 ⊂ 2E8.
Based on different fine lattices, we enumerate some feasible number of

encoded bits in FrodoPKE below, denoted as 64B.

• Λf = 2∆ · Z64, 64B = 64, 128, 192, 256, . . .
• Λf = 2∆ ·D16

4 , 64B = 112, 176, 240, 304, . . .
• Λf = 2∆ · E8

8 , 64B = 64, 128, 192, 256, . . .
• Λf = 2∆ ·BW 8

8 , 64B = 96, 160, 224, 288, . . .
• Λf = 2∆ ·BW 4

16, 64B = 80, 144, 208, 272, . . .
• Λf = 2∆ ·BW 2

32, 64B = 64, 128, 192, 256, . . .
• Λf = 2∆ ·BW64, 64B = 112, 176, 240, 304 . . .

4.3 Improved Frodo Parameters

Frodo-640, Frodo-976 and Frodo-1344 target security levels 1, 3 and 5 in the
NIST PQC Standardization, respectively. To resist the attack exploiting DFRs
[6], the DFRs at levels 1, 3 and 5 should be no larger than 2−128, 2−192 and
2−256, respectively.

Compared to the standard Frodo protocol, our scheme only modifies the
labeling function, the corresponding CVP algorithm, and the choice of param-
eters σ,B, q. The security levels refer to the primal and dual attack via the
FrodoKEM script pqsec.py [43]. The subscripts C, Q and P denote “classi-
cal”, “quantum” and “paranoid” estimates on the concrete bit-security given
by parameters (n′, σ, q). We propose three sets of parameters in Tables 2 and
3: the first aims at improving the security level and the second at reducing
the communication bandwidth. Frodo-640/976/1344 are the original param-
eter sets. The parameters that we have changed are highlighted in bold-face
blue color, and other values that have altered as a consequence of this change
are marked with normal blue color.
Parameter set 1: Improved security strength

We increase σ while keeping n′, q unchanged in Frodo-640/976/1344. As
shown in Table 2, error correction via E8, BW16 and BW32 can improve the
security level of the original Frodo-640/976/1344 by 6 to 16 bits. While Z64,
E8

8 and BW 2
32 can naturally encode 128, 192 and 256 bits per instance, BW 4

16

only supports 144, 208, and 272 bits. The BW32 based parameter set offers the
highest security enhancement in the table, but its CVP decoding complexity
of O(232) makes it less attractive.
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We recommend the E8 and BW16 based parameter sets. The information
rate of Frodo-640/976/1344-E8 matches well with that of the original Frodo-
640/976/1344, and the classical security level has been increased by 7 or 8 bits,
respectively. Frodo-640/976/1344-BW16 maintains basically the same security
level as that of Frodo-640/976/1344-E8, while the information rate is slightly
higher, either B = 2.25, 3.25 or 4.25.
Parameter set 2: Reduced size of ciphertext

Recall that the size of ciphertext is (m̄n′ + m̄n̄) log2(q)/8 bytes, so we
reduce q to achieve higher bandwidth efficiency. To keep the DFR small, we
also reduce σ to various degrees, as long as the security level is no smaller.

As shown in Table 3, by reducing q from 215 to 214, the ciphertext size c can
be reduced from 9720 bytes to 9072 bytes in Frodo-640, from 15744 bytes to
14760 bytes in Frodo-976, and from 21632 bytes to 20280 bytes in Frodo-1344.
Again, the E8 and BW16 based parameter sets are recommended.

It is interesting to note that the lattice-code based FrodoPKE can also be
extended to a KEM for symmetric lightweight cryptography algorithms. For
instance, via setting Λf = 2∆ · BW 4

16,Λc = 2∆ · 4Z64, it is possible to tightly
exchange 80 bits for the PRESENT algorithm [44].

4.4 IND-CCA Security

The lattice codes based PKE/KEM also features chosen ciphertext secure
(IND-CCA) security. Similarly to the argument in [7], the IND-CPA security
of FrodoPKE is upper bounded by the advantage of the decision-LWE prob-
lem for the same parameters and error distribution. To endow an IND-CPA
encryption scheme with IND-CCA security, the post-quantum secure version
of the Fujisaki-Okamoto transform [45, 46] can be applied. When bounding the
probability that an attacker can undermine a given cryptographic scheme in
the quantum random-oracle model, security proofs use the number of decryp-
tion queries submitted by the CCA adversary. [47, Theorem 4.3] shows that
the impact of decryption failure is given by 4qGPe where qG is the number of
quantum oracle queries and Pe is the DFR. Then, using bounds on decryption
failure established above, one can argue that such queries pose no danger.

5 Conclusions

While the cryptography community is more familiar with random lattices for
security, this paper shows that low-dimensional structure lattices can improve
the error correction performance in FrodoPKE. The rationale is that lattice
codes represent coded modulation, the elegant combination of ECC and mod-
ulation. The bridge that connects lattice codes and FrodoPKE (and more
generally lattice-based PKEs) is the modulo q operation, which induces hyper-
cube shaping. By presenting an efficient lattice labeling function, as well
as a general formula to estimate the DFR, lattice based coded modulation
becomes practical in LBC. By using some low-dimensional optimal lattices, a
few improved parameter sets for FrodoPKE have been achieved, with either
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Table 2: The recommended parameter sets with higher security.

Structure of lattice code
n′, n̄, m̄ q σ B DFR

c size Security

Λf Λc (bytes) C Q P
Frodo-640 213 · Z64 215 · Z64 640, 8, 8 215 2.75 2 2−164 9720 149 136 109

Frodo-640-E8 213 · E8
8 215 · Z64 640, 8, 8 215 3.25 2 2−164 9720 156 142 113

Frodo-640-BW16 212 ·BW 4
16 215 · Z64 640, 8, 8 215 3.23 2.25 2−164 9720 155 142 113

Frodo-640-BW32 212 ·BW 2
32 215 · Z64 640, 8, 8 215 3.83 2 2−164 9720 162 148 118

Frodo-976 213 · Z64 216 · Z64 976, 8, 8 216 2.3 3 2−220 15744 216 196 156
Frodo-976-E8 213 · E8

8 216 · Z64 976, 8, 8 216 2.72 3 2−220 15744 224 204 162
Frodo-976-BW16 212 ·BW 4

16 216 · Z64 976, 8, 8 216 2.71 3.25 2−220 15744 224 204 161
Frodo-976-BW32 212 ·BW 2

32 216 · Z64 976, 8, 8 216 3.21 3 2−220 15744 232 211 167
Frodo-1344 212 · Z64 216 · Z64 1344, 8, 8 216 1.4 4 2−290 21632 282 256 203

Frodo-1344-E8 212 · E8
8 216 · Z64 1344, 8, 8 216 1.66 4 2−290 21632 292 265 210

Frodo-1344-BW16 211 ·BW 4
16 216 · Z64 1344, 8, 8 216 1.66 4.25 2−290 21632 292 265 210

Frodo-1344-BW32 211 ·BW 2
32 216 · Z64 1344, 8, 8 216 1.97 4 2−290 21632 302 275 217
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Table 3: The recommended parameter sets with smaller size of ciphertext.

Structure of lattice code
n′, n̄, m̄ q σ B DFR

c size Security

Λf Λc (bytes) C Q P
Frodo-640 213 · Z64 215 · Z64 640, 8, 8 215 2.75 2 2−164 9720 149 136 109

Frodo-640-E8 212 · E8
8 214 · Z64 640, 8, 8 214 2.30 2 2−164 9072 156 143 114

Frodo-640-BW16 211 ·BW 4
16 214 · Z64 640, 8, 8 214 2.29 2.25 2−164 9072 156 143 114

Frodo-640-BW32 211 ·BW 2
32 214 · Z64 640, 8, 8 214 2.71 2 2−164 9072 163 149 118

Frodo-976 213 · Z64 216 · Z64 976, 8, 8 216 2.3 3 2−220 15744 216 196 156
Frodo-976-E8 212 · E8

8 215 · Z64 976, 8, 8 215 1.93 3 2−220 14760 225 205 162
Frodo-976-BW16 211 ·BW 4

16 215 · Z64 976, 8, 8 215 1.92 3.25 2−220 14760 224 204 162
Frodo-976-BW32 211 ·BW 2

32 215 · Z64 976, 8, 8 215 2.27 3 2−220 14760 233 212 168
Frodo-1344 212 · Z64 216 · Z64 1344, 8, 8 216 1.4 4 2−290 21632 282 256 203

Frodo-1344-E8 211 · E8
8 215 · Z64 1344, 8, 8 215 1.18 4 2−290 20280 291 265 210

Frodo-1344-BW16 210 ·BW 4
16 215 · Z64 1344, 8, 8 215 1.17 4.25 2−290 20280 291 265 209

Frodo-1344-BW32 210 ·BW 2
32 215 · Z64 1344, 8, 8 215 1.39 4 2−290 20280 302 275 217
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higher security or smaller ciphertext sizes. The lattice coding techniques in
this work can be similarly applied to Ring/Module LWE-based PKEs.

Appendix A

The lattice bases of E8, BW8 and BW16 can be respectively chosen as

2 −1 0 0 0 0 0 0.5
0 1 −1 0 0 0 0 0.5
0 0 1 −1 0 0 0 0.5
0 0 0 1 −1 0 0 0.5
0 0 0 0 1 −1 0 0.5
0 0 0 0 0 1 −1 0.5
0 0 0 0 0 0 1 0.5
0 0 0 0 0 0 0 0.5


,



1 1 1 1 2 2 2 2
1 1 1 0 2 0 0 0
1 1 0 1 0 2 0 0
1 1 0 0 0 0 0 0
1 0 1 1 0 0 2 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0




1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 4
1 1 1 1 0 2 2 0 2 0 0 2 0 0 0 0
1 1 1 0 1 2 0 2 0 2 0 0 2 0 0 0
1 1 1 0 0 2 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 2 2 0 0 2 0 0 2 0 0
1 1 0 1 0 0 2 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 2 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 2 2 2 0 0 0 2 0
1 0 1 1 0 0 0 0 2 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 2 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 2 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



.

References

[1] Shor, P.W.: Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM J. Comput. 26(5),
1484–1509 (1997)

[2] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Proceedings of the 37th Annual ACM Symposium on
Theory of Computing (STOC), Baltimore, MD, USA, pp. 84–93. ACM,
New York (2005)

[3] Peikert, C.: A decade of lattice cryptography. Found. Trends Theor.
Comput. Sci. 10(4), 283–424 (2016)



Springer Nature 2021 LATEX template

23

[4] Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J.,
Lichtinger, J., Miller, C., Moody, D., Peralta, R., Perlner, R., Robin-
son, A., Smith-Tone, D., (NIST), Y.-K.L.: Status report on the third
round of the nist post-quantum cryptography standardization process. US
Department of Commerce, NIST (2022)

[5] Fritzmann, T., Pöppelmann, T., Sepúlveda, J.: Analysis of error-
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[36] Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and clos-
est lattice vector problems. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F.,
Tang, Y., Wang, H., Xing, C. (eds.) Coding and Cryptology - Third
International Workshop, IWCC 2011, Qingdao, China. Lecture Notes in
Computer Science, vol. 6639, pp. 159–190. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20901-7 10

[37] Voulgaris, P.: Algorithms for the closest and shortest vector problems on
general lattices. PhD thesis, University of California, San Diego, USA
(2011). http://www.escholarship.org/uc/item/4zt7x45z

https://doi.org/10.1109/TIT.2005.856937
https://doi.org/10.1007/s10623-006-9028-3
https://doi.org/10.1007/s10623-006-9028-3
https://doi.org/10.1109/TIT.2021.3097965
https://doi.org/10.1109/TIT.2021.3097965
https://doi.org/10.1007/s00037-016-0151-x
https://doi.org/10.1007/s00037-016-0151-x
https://doi.org/10.1109/TIT.2009.2021379
https://doi.org/10.1109/TIT.2009.2021379
https://doi.org/10.1007/978-3-642-20901-7_10
http://www.escholarship.org/uc/item/4zt7x45z


Springer Nature 2021 LATEX template

26

[38] Micciancio, D., Nicolosi, A.: Efficient bounded distance decoders for
barnes-wall lattices. In: Kschischang, F.R., Yang, E. (eds.) 2008 IEEE
International Symposium on Information Theory, ISIT 2008, Toronto,
ON, Canada, pp. 2484–2488. IEEE, New York (2008). https://doi.org/10.
1109/ISIT.2008.4595438

[39] Conway, J.H., Sloane, N.J.A.: Fast quantizing and decoding and algo-
rithms for lattice quantizers and codes. IEEE Trans. Inf. Theory 28(2),
227–231 (1982)

[40] Prest, T.: Sharper bounds in lattice-based cryptography using the rényi
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