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Abstract

Existing error correction mechanisms in lattice-based public key encryp-
tion (PKE) rely on either trivial modulation or its concatenation with
error correction codes (ECC). This paper demonstrates that lattice
coding, as a combined ECC and modulation technique, can replace triv-
ial modulation in current lattice-based PKEs, resulting in improved
error correction performance. We model the FrodoPKE protocol as a
noisy point-to-point communication system, where the communication
channel resembles an additive white Gaussian noise (AWGN) chan-
nel. To utilize lattice codes for this specific channel with hypercube
shaping, we propose an efficient labeling function that converts binary
information bits to lattice codewords and vice versa. The parame-
ter sets of FrodoPKE are enhanced to achieve higher security levels
or smaller ciphertext sizes. For instance, the proposed Frodo-1344-
E8 offers a 10-bit classical security improvement over Frodo-1344.

Keywords: public key encryption (PKE), lattice-based cryptography (LBC),
lattice codes, coded modulation
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1 Introduction

The impending realization of scalable quantum computers has posed a signifi-
cant challenge for modern public key cryptosystems. Shor’s quantum algorithm
[1] can solve the prime factorization and discrete logarithm problems in poly-
nomial time, rendering conventional public-key cryptosystems based on these
problems insecure. Although it is difficult to predict when large-scale quantum
computers will be built, it is essential to start preparing the next generation
quantum-safe cryptosystem as soon as possible. Historical experiences have
shown that deploying modern public key cryptography infrastructures takes a
considerable amount of time.

Reacting to this urgency, the field of post-quantum cryptography (PQC)
has been systematically developed in the last decade [2, 3]. PQC aims to
design cryptosystems that are secure against quantum attacks while remain-
ing compatible with classical computers. Since 2016, the National Institute
of Standards and Technology (NIST) has initiated a process to solicit, evalu-
ate, and standardize one or more quantum-resistant public-key cryptographic
algorithms. This process primarily revolves around proposals for public key
encryption/key encapsulation mechanism (PKE/KEM) and digital signatures.

Recently, NIST has announced four post-quantum cryptography stan-
dardization candidates [4]: CRYSTALS-Kyber for PKE/KEM, CRYSTALS-
Dilithium, FALCON, and SPHINCS+ for digital signatures. The first three
candidates are all based on lattice-based cryptography (LBC), which repre-
sents a significant victory for lattice-based cryptography due to its prominent
advantages. LBC offers strong security proofs based on the hardness of worst-
case problems, efficient implementations compared to other post-quantum
constructions, and extended functionality for advanced constructions such as
identity-based encryption and fully homomorphic encryption (FHE).

In lattice-based PKE/KEM, the decryption process may not always pro-
duce a 100% correct message. The encryption-decryption process can be seen
as message transmission through an additive noise channel, and error correc-
tion techniques are employed to mitigate decryption failures, either implicitly
or explicitly. Since high decryption failure rates (DFRs) can be exploited by
adversaries to extract secrets, achieving a very small DFR (e.g., smaller than
2−128 or 2−140) [5, 6] is of utmost importance. Hence, there is significant
value in improving the error correction mechanism in lattice-based PKE/KEM
schemes to attain better trade-off parameters:

• Security Strength: If the error correction mechanism can enhance the
noise tolerance while maintaining a low DFR, the PKE/KEM scheme
achieves a higher security level.

• Communication Bandwidth: If the error correction mechanism can
reduce the modulus while ensuring a small DFR, it results in smaller
ciphertext sizes, thereby reducing communication bandwidth requirements.
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By enhancing the error correction mechanism in lattice-based PKE/KEM,
we aim to address these objectives and optimize the trade-off parameters of
security strength and communication bandwidth.

1.1 Related Works

Key encapsulation mechanisms (KEMs) can simultaneously output a session
key along with a ciphertext that can be used to recover the session key. Two
major approaches to designing lattice-based KEMs are PKEs (KEMs without
reconciliation) [7–10], and key exchanges (KEMs with reconciliation) [11–13].
In this work, we focus on PKEs as they offer simplicity by avoiding the error-
reconciliation mechanism.

Most lattice-based Public Key Encryption (PKE) schemes employ an error
correction mechanism known as “trivial modulation.” This technique involves
mapping a binary string to different positions within the set {0, 1, . . . , q − 1}.
If the noise amplitude is smaller than the error correction radius, successful
decryption is achieved. Consequently, a larger value of q enables higher error
correction capabilities. One example is Regev’s Learning with Errors (LWE)
based PKE scheme [2], which modulates a single bit µ to (q/2)µ. Kawachi et
al. [14] extended this scheme to support multi-bit modulation and conducted
an evaluation of the trade-offs between decryption errors and security.

In recent years, researchers have realized that (digital) error correction
codes (ECC) can be concatenated with modulations to obtain better error
correction performance. For instance, the LAC [15] PKE employs BCH codes
for error correction, which helps to reduce the modulo size q from 12289 to
251. The reason behind the small q is that, although the modulation level has
minus error correction capability, the induced ECC helps to achieve a smaller
DFR. Other examples can be found in the repetition codes based NewHope-
Simple [8], XE5 based HILA5 [16], and the Polar codes based NewHope-Simple
[17]. The downside of an extra modern ECC is an increased complexity of the
program code and a higher sensitivity to side-channel attacks [18] (information
is obtained through physical channels such as power measurements, variable
execution time of the decoding algorithm, etc).

Using Error Correcting Codes (ECC) and modulation in a concatenated
manner can limit the overall system performance, leading to issues such as
a less flexible number of encoded bits and the independent decoding nature
of modulation and ECC. However, a solution called ”coded modulation” has
been extensively studied in information theory and wireless communications
for several decades, offering a joint design approach for ECC and modulation.

In the 1980s, Ungerboeck’s pioneering work [19] demonstrated significant
performance gains achieved through coded modulation. Building on that foun-
dation, Forney [20, 21] systematically studied coded modulation schemes using
coset codes and lattice codes. A remarkable breakthrough in information the-
ory was made by Erez and Zamir [22], who showed that high-dimensional
random lattice codes can achieve the capacity of additive white Gaussian noise
(AWGN) channels. Additionally, recent years have witnessed the successful
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utilization of Polar lattices [23] and LDPC lattices [24] to achieve the capacity
of AWGN channels. From the perspective of coset codes, lattice codes repre-
sent an elegant combination of linear codes and modulation. In this approach,
if points in the constellation are closely located, they benefit from ECC pro-
tection, while information bits are directly mapped to points that are farther
away. This blending of concepts allows lattice codes to provide an efficient and
effective solution.

It should be noted that incorporating lattice codes into lattice-based Public
Key Encryption (PKE) systems is not a straightforward task. This is because
the previous literature on lattice coding [25] primarily focused on physical layer
considerations where the transmission power of the codes is a crucial factor. In
contrast, the modulo q arithmetic in lattice-based cryptography (LBC) oper-
ates at a higher layer. Nevertheless, in recent years, there have been notable
efforts to employ lattice codes in PKE schemes. In 2016, van Poppelen intro-
duced a Leech lattice-based PKE [9], and in 2021, Saliba et al. designed an
E8-lattice-based PKE [10]. It is worth mentioning that the choice of using the
E8 and Leech lattices aligns with significant advancements in mathematics:
the proof that these lattices offer the best sphere packing density in dimen-
sions 8 and 24 [26, 27]. However, there are certain limitations in the existing
approaches. The Leech lattice-based PKE [9] suffers from a lack of a labeling
technique, and the labeling technique employed for E8 in [10] is nonlinear and
not homomorphic. As a result, there is a clear demand for a comprehensive
formulation of error correction based on lattice codes, along with the develop-
ment of an efficient linear labeling method, in order to significantly improve
lattice-based PKEs.

1.2 Contributions

This paper makes the following contributions, advocating the replacement of
trivial modulation in lattice-based PKE with coded modulation:

• We analyze the plain-LWE scheme Frodo [7] and treat it as a communication
system, with the communication channel resembling the AWGN channel.
By introducing lattice-based coded modulation, we demonstrate that the
error correction performance can be significantly enhanced compared to the
use of trivial modulation. Additionally, ring-based or module-based schemes
like NewHope-Simple [8] and Kyber [28] can also benefit from lattice-based
coded modulation.

• We introduce a universal and efficient labeling technique for cubic-shaping
based lattice codes. Our proposed linear labeling function maintains the
homomorphic property. In LBC, due to the modulo q arithmetic, hypercube
shaping using a simple integer lattice qZn is employed. While identifying
the number of lattice codewords is straightforward in hypercube shaping,
an efficient labeling function has been lacking in the literature. To address
this, we propose a labeling function that establishes a one-to-one mapping
between the binary information bits and the set of lattice vectors. This



Springer Nature 2021 LATEX template

5

labeling technique is applicable to a wide range of lattices, such as D4, E8,
BW16, Λ24, and more.

• We derive a unified decoding failure rate (DFR) formula for analyzing the
DFR of lattice-code based FrodoPKE over AWGN channels. The DFR for-
mula only requires the Hermite parameter and the kissing number of lattices.
Previously, DFR calculations relied on computationally intensive case-by-
case analyses. With the DFR formula, we obtain better parameter sets for
FrodoPKE. Notably, the implementations based on E8 or BW16 are particu-
larly appealing, as they offer simple encoding and decoding procedures while
achieving higher security levels or smaller ciphertext sizes in the modified
PKE.

The remainder of this paper is organized as follows: Section II provides
background information on lattice codes and PKE. Section III introduces and
analyzes the proposed labeling technique. Section IV presents a coset-based
lattice decoding formulation and the pseudocode for decoding BW16. Section
V presents the improved parameter sets for FrodoPKE. Finally, Section VI
concludes the paper.

2 Preliminaries

2.1 Lattice Codes

Definition 1 (Lattices). A rank n lattice Λ is a discrete additive subgroup of
Rm, m ≥ n. For simplicity, it is assumed that m = n throughout.

Based on n linearly independent vectors b1, . . . ,bn, Λ can be written as

Λ = L(B) = z1b1 + z2b2 + · · ·+ znbn, (1)

where z1, . . . , zn ∈ Z, and B = [b1, . . . ,bn] is referred to as a basis of Λ.

Definition 2 (Basic Cell (Fundamental Region)). A basic cell (or fundamental
region) of the lattice Λ is a bounded set PΛ that satisfies the following proper-
ties: i) Covering Property: ∪v∈Λ(v + PΛ) = Rn. ii) Partitioning Property: for
all v,w ∈ Λ, if {v + PΛ} ∩ {w + PΛ} ≠ ∅, then v = w.

For example, a basic cell in the form of a parallelotope comprises linear
combinations of the basis vectors, where the coefficients range from zero to one:{
x : x =

∑n
i=1 αibi, 0 ≤ αi < 1

}
. Another example of a fundamental region

is the Voronoi cell VΛ. This cell encompasses the set of points in Rn that are
closer to a specific lattice point (known as the generating lattice point) within
Λ than to any other lattice point. Essentially, it defines the region surrounding
each generating lattice point where it is the closest lattice point.

Definition 3 (Closest Vector Problem). Considering a query vector t and a
lattice Λ, the closest vector problem is to find the closest vector to t in Λ.
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The function QΛ(·), which solves the CVP problem, is called a decoder
when used for error correction and a quantizer when employed for vector
quantization.

Definition 4 (Nested lattices). Two lattices Λf and Λc are nested if Λc ⊂ Λf .
The denser lattice Λf is called the fine/coding lattice, and Λc is called the
coarse/shaping lattice.

Lattice codes are the Euclidean space counterpart of linear codes, and they
provide a unified framework to describe the coded modulation techniques [20,
21]. The inherent structure is a one-level/multi-level binary encoder and subset
partitioning, which can encode more than n information bits to n symbols.

Definition 5 (Lattice code). A lattice code C(Λf ,Λc) is the finite set of points
in Λf that lie within a basic cell of Λc:

C(Λf ,Λc) = Λf ∩ PΛc . (2)

If Λc = pZn, then the lattice code C(Λf ,Λc) is said to be generated from
hypercube shaping. We illustrate a 2-dimensional example in Fig. 1, where
the purple points represent Λf . The region enclosed by dashed black lines
corresponds to a basic cell of 7Z2, while the region enclosed by dashed peach
lines represents a basic cell of 14Z2. By adjusting the size of the shaping, we
can obtain two sets of lattice codes: C(Λf , 7Z2) and C(Λf , 14Z2).

The information rate (averaged number of encoded bits) per dimension is
defined as

B =
1

n
log2

(
Vol(Λc)

Vol(Λf )

)
. (3)

The Hermite parameter of a lattice, also identified as the coding gain, is
defined as

γ(Λ) = λ1(Λ)
2/Vol(Λ)2/n (4)

where λ1(Λ) denotes the length of a shortest non-zero vector in Λ, and
Vol(Λ) = |det(B)| denotes the volume of Λ. The coding gain γ(Λ) measures
the increase in density of Λ over the baseline integer lattice Z (or Zn). Note that
the supremum of λ1(Λ)

2/Vol(Λ)2/n over all n-dimensional lattices is known as
Hermite’s constant.

2.2 PKE/KEM in LBC

FrodoKEM [7] is a simple and conservative Key Encapsulation Mechanism
(KEM) based on generic lattices. It is one of the post-quantum algorithms
recommended by the German Federal Office for Information Security (BSI) as
being cryptographically suitable for long-term confidentiality [29]. The under-
lying encryption scheme of FrodoKEM is called FrodoPKE, which achieves
chosen-plaintext security (IND-CPA) and is closely related to the hardness of
a corresponding LWE problem. Compared to other PKE/KEM schemes based
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Fig. 1: Example of hypercube shaping in a 2-dimensional lattice.

on ring or module LWE, FrodoPKE offers security estimates that rely on fewer
assumptions due to the lack of algebraic structure.

A public-key encryption scheme PKE consists of three algorithms: key
generation, encryption and decryption.

In the key generation algorithm, random matrices S and E are sampled
from the discrete Gaussian distribution χn′×n̄

σ with width σ, and a matrix A
is sampled from a uniform distribution in Zn′×n′

q . The algorithm computes

B = AS + E ∈ Zn′×n̄
q as the public key pk = (B,A), and the secret key is

sk = S.
In the encryption algorithm, random matrices S′ and E′ are sampled from

the discrete Gaussian distribution χm̄×n′

σ , and a matrix E′′ is sampled from
χm̄×n̄
σ . The algorithm computes C1 = S′A+E′ and V = S′B+E′′. To encrypt

a message µ ∈M = {0, 1}m̄n̄B
, the ciphertext is generated as

c = (C1,C2 = V + Frodo.EncodeM(µ)). (5)

The function Frodo.EncodeM represents a matrix encoding function of bit
strings. Each B-bit value is transformed into the B most significant bits of the
corresponding entry modulo q. This encoding scheme is referred to as “trivial
modulation,” as it amounts to a special case of lattice code-based encoding
that employs hypercube shaping, with Λf = q

2B
Z64 and Λc = qZ64.

To decrypt, the secret key S and the ciphertext C1,C2 are used to compute

µ̂ = Frodo.DecodeM(C2 −C1S), (6)

where Frodo.DecodeM standards for the demodulation function. The
FrodoPKE protocol is summarized in Fig. 2.

When targeting security levels 1, 3, and 5 in the NIST call for proposals,
which aim to match or exceed the brute-force security of AES-128, AES-192,
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Input Parameters: q, n′, n̄, m̄, χσ.
Alice Bob

A←$ Zn′×n′

q

S,E←$ χn′×n̄
σ S′,E′ ←$ χm̄×n′

σ

B = AS+E
A,B−−−→ E′′ ←$ χm̄×n̄

σ

C1 = S′A+E′

V = S′B+E′′

µ ∈ {0, 1}m̄n̄B

Y = C2 −C1S
C1,C2←−−−− C2 = V + Frodo.EncodeM(µ)

µ̂ = Frodo.DecodeM(Y)

Fig. 2: The FrodoPKE protocol.

Lattice
Labeling

CVP
Decoder

Real-Valued Channel

Bit
Mapper

Info
Bits Bit

Demapper

Info
BitsLattice

Delabeling

Fig. 3: The equivalent communication system model.

and AES-256, the recommended parameters for FrodoPKE are as follows:

Frodo-640 : n′ = 640, n̄ = 8, m̄ = 8, q = 215, σ = 2.75,M = {0, 1}128

Frodo-976 : n′ = 976, n̄ = 8, m̄ = 8, q = 216, σ = 2.3,M = {0, 1}192

Frodo-1344 : n′ = 1344, n̄ = 8, m̄ = 8, q = 216, σ = 1.4,M = {0, 1}256 .

3 The Proposed Scheme

3.1 Equivalent Communication Model

Recall that the decryption algorithm of FrodoPKE computes

Y = C2 −C1S

= Frodo.EncodeM(µ) + S′E+E′′ −E′S, (7)

whose addition is over the modulo q domain. From the perspective of commu-
nications, this amounts to transmitting the modulated µ through an additive
noise channel. Specifically, Eq. (7) can be formulated as

y = x+ n mod q, (8)
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where x = EncodeV(µ) ∈ Rm̄n̄ denotes a general error correction function, and
y, n represent the vector form of Y and S′E + E′′ − E′S, respectively. Since
the element-wise modulo q is equivalent to hypercube shaping via the lattice
qZm̄n̄, EncodeV can be designed from the perspective of lattice codes.

The flowchart of the communication model is plotted in Fig. 3, which
contains the following operations:

• Bit Mapper and Demapper : The former maps binary information bits to
an information vector z defined over integers, while the latter performs the
inverse operation. These operations are straightforward.

• Lattice Labeling and Delabeling : Given a message index z, lattice labeling
finds its corresponding lattice codeword x ∈ C(Λf ,Λc = qZm̄n̄). Delabeling
denotes the inverse of labeling.

• CVP Decoder : It returns the closet lattice vector to y over Λf . The CVP
algorithm of QΛf

(·) will be examined in Section 3.4.

The conventional method Frodo.EncodeM utilizes Λf = q/(2B)Zm̄n̄ for
simpler labeling functions. However, our research aims to improve the error
correction performance by employing a more sophisticated Λf . As a result, the
associated labeling function and CVP decoder become more intricate.

3.2 Lattice Labeling and Delabeling

In this section, we demonstrate that for any fine lattice with a basis in rectan-
gular form, a linear labeling from specific index sets to lattice codewords can
be generically defined.

Definition 6 (Rectangular Form). A lattice basis B is said to be in
rectangular form if it can be expressed as

B = U · diag(π1, π2, . . . , πn), (9)

where U ∈ GLn(Z) is a unimodular matrix, and π1, π2, . . . , πn ∈ Q+.

Any lattice with a rational basis can be put into rectangular form. Specif-
ically, if we consider the Smith Normal Form factorization of a lattice basis
B∗ ∈ Qn×n, we have

B∗ = U · diag(π1, π2, . . . , πn) ·U′, (10)

where U,U′ ∈ GLn(Z)1. Since lattice bases are equivalent up to unimodular
transformations, the term U′ can be canceled out, resulting in the rectangular
form.

For a lattice that possesses a rectangular form, an efficient labeling scheme
can be constructed. The idea is that the combination of rectangular form

1The determinants of U and U′ are 1 or −1 after incorporating the necessary rational factors
into diag(π1, π2, . . . , πn).
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and non-uniform labeling achieves hypercube shaping. Specifically, let the fine
lattice be

Λf = L(Bf ) = L(U · diag(p/p1, p/p2, . . . , p/pn)), (11)

where p ∈ Z+ is a common multiplier of π1, π2, . . . , πn, and p1 = p/π1, p2 =
p/π2, . . . , pn = p/πn. If we set Bc = Bfdiag(p1, p2, . . . , pn), we have

Λc = L(U · diag(π1, π2, . . . , πn) · diag(p1, p2, . . . , pn))
= L(pU)

= pZn. (12)

The last equality holds because a unimodular matrix can be considered as a
lattice basis for Zn. Thus, modulo Λc is equivalent to modulo p. This leads us
to the following theorem.

Theorem 7 (Labeling Function). Let the message space be

I = {0, 1, . . . , p1 − 1} × · · · × {0, 1, . . . , pn − 1} , (13)

and let the pair of nested lattices be Λf = L(Bf ) = L(U ·
diag(p/p1, p/p2, . . . , p/pn)) and Λc = L(pU) = pZn. With z ∈ I, the function
f : I → C(Λf ,Λc),

f(z) = [Bfz] mod p, (14)

is bijective.

Proof We aim to prove that f is both injective and surjective.
“Injective” means that no two elements in the domain of the function are mapped

to the same image. For z1, z2 ∈ I, we want to show that if z1 ̸= z2, then f(z1) ̸=
f(z2). We can prove this by contradiction. Suppose f(z1) = f(z2). It implies that
there exist z1, z2 ∈ I and z3 ∈ Zn such that Bf (z1−z2) = Bf ·diag(p1, p2, . . . , pn) ·
z3, which amounts to

z1 − z2 = diag(p1, p2, . . . , pn) · z3. (15)

However, (15) has a solution only when z3 = 0, which leads to z1 = z2. Therefore,
the injective property holds.

“Surjective” means that every element in the range of the function is mapped to
by the function. Recall that the number of coset representatives of Λf/Λc is given by:

|det(Bc)|∣∣det(Bf )
∣∣ = p1p2 · · · pn. (16)

Since |I| = p1p2 · · · pn, it follows from the injective property that all the coset rep-
resentatives have been uniquely mapped. Hence, the surjection is proved. □

Denote x = f(z). The inverse of f is given by

z = f−1(x) ≜ B−1
f x mod (p1, . . . , pn), (17)
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which stands for zi =
(
B−1

f x
)
i

mod pi, i = 1, . . . , n. As the labeling and

delabeling process also encounters an additive noise channel, we examine the
correct recovery condition hereby. Assume that the receiver’s side has the noisy
observation x+ n, with x ∈ Λf and n being the additive noise.

Theorem 8 (Correct Decoding). If QΛf
(n) ∈ Λc, then f−1(QΛf

(x + n)) =
f−1(x).

Proof Notice that:

QΛf
(x+ n) = x+QΛf

(n), (18)

which implies:

f−1(QΛf
(x+ n)) = B−1

f x+B−1
f QΛf

(n) mod (p1, . . . , pn). (19)

The condition QΛf
(n) ∈ Λc implies that this vector of the coarse lattice can be writ-

ten asBfdiag(p1, p2, . . . , pn)k for k ∈ Zn. Therefore, QΛf
(n) mod (p1, . . . , pn) = 0,

and the theorem is proved. □

Theorem 8 states that if the noise vector n satisfies QΛf
(n) ∈ Λc, then

the inverse function f−1 correctly recovers the original message x from the
received vector x+n. We can summarize two cases for the correct recovery of
messages: i) Small noise: QΛf

(n) = 0. ii) Large noise within the coarse lattice:
QΛf

(n) ̸= 0, QΛf
(n) ∈ Λc.

Example: Consider theD4 lattice, whose lattice basis and its inverse are given
by

BD4 =


1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1

 · diag(1, 1, 1, 2), (20)

B−1
D4

=


1 0 0 0
0 1 0 0
0 0 1 0
−0.5 −0.5 −0.5 0.5

 . (21)

To encode 7 bits over 4 dimensions, let the pair of nested lattices be (Λf ,Λc) =
(D4, 4Z4), and the message space be

I = {0, 1, 2, 3}3 × {0, 1} . (22)

W.l.o.g, let the input binary string be {0, 1, 1, 0, 1, 1, 1}. Then the “Bit
Mapper” transforms the bits to a vector in I:

z = [1, 2, 3, 1]⊤.
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By using lattice labeling in Eq. (14), we have

x = f(z) = [1, 2, 3, 0]⊤.

In the noiseless case where n = 0, we have

f−1(x) = f−1([1, 2, 3, 0]⊤) (23)

= [1, 2, 3,−3]⊤ mod (4, 4, 4, 2) (24)

= [1, 2, 3, 1]⊤. (25)

In the large-noise case where n = [4, 4, 4, 4]⊤, we have QΛf
(n) ∈ Λc, and

f−1(QΛf
(x+ n)) = f−1([5, 6, 7, 4]⊤) (26)

= [9, 10, 11,−7]⊤ mod (4, 4, 4, 2) (27)

= [1, 2, 3, 1]⊤. (28)

Finally, the “Bit Demapper” transforms the information integers back to bits,
resulting in the original input.

3.3 Rectangular Forms of Code-Based Lattices

The proposed labeling is applicable to a wide range of lattices, including low-
dimensional optimal lattices such as D2, D4, E8, Λ24, as well as the general
Construction-A and Construction-D lattices. Construction A and Construction
D are popular techniques for lifting linear codes to lattices. These techniques
have been used to construct remarkable lattices with large coding gains, such
as the Barnes-Wall lattices [21, 30, 31] and the polar lattices [23, 32]. Let C
be a linear binary code of length n, dimension k, and minimum distance d,
denoted as (n, k, d).

Definition 9 (Construction A [33]). A vector y is a lattice vector of the
Construction-A lattice over C if and only if y modulo 2 is congruent to a
codeword of C.

Let ϕ(·) be a natural mapping function from F2 to R with ϕ(0) = 0, ϕ(1) = 1
for a scalar input, and ϕ(·) is applied element-wise for a vector/matrix input.
Let G be the generator matrix of C. By reformulating it as the Hermite normal
form of {I,A}, the Construction-A lattice of C can be written as

ΛA = L
([

ϕ(I) 0
ϕ(A) 2I

])
. (29)

The lattice basis of ΛA is therefore of a rectangular form. The volume of ΛA is

V (ΛA) = 2n−k. (30)
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Definition 10 (Construction D [33]). Let C0 ⊂ C1 ⊂ · · · ⊂ Ca = Fn
2 be a

family of nested binary linear codes, where Ci has parameters (n, ki, di) and Ca

is the trivial (n, n, 1) code. A vector y is a lattice vector of the Construction-D
lattice over (C0, . . . , Ca) if and only if y is congruent (modulo 2a) to a vector
in C0 + 2C1 + · · ·+ 2a−1Ca−1.

Denote the generator matrices of C0, Ci, and Ca as

G0 =

 | | |
g1 g2 · · · gk0

| | |

 (31)

Gi =

 | | | |
g1 g2 · · · gk0 · · · gki

| | | |

 (32)

Ga =

 | | | | |
g1 g2 · · · gk0

· · · gki
· · · gka

| | | | |

 , (33)

where 1 ≤ k0 ≤ k1 ≤ · · · ≤ ka = n. Then the code formula of a Construction-D
lattice is

ΛD =
⋃

ui∈{0,1}ki

(
a−1∑
i=0

2iϕ(Gi)ui

)
+ 2aZn (34)

= L(ϕ(Ga) · diag(201k0
, . . . , 2a1ka−ka−1

)), (35)

where 1ki
denotes an all-one vector of dimension ki, ϕ(Ga) is a unimodular

matrix. Thus 2aZn ⊂ ΛD and the volume of a Construction-D lattice is

V (ΛD) = 2an−
∑a−1

i=0 ki . (36)

By using Construction D over Reed-Muller codes, the Barnes–Wall lattices can
be obtained [21] 2. Some low-dimensional examples are

BW8 = (8, 4, 4) + 2Z8 ≊ E8 (37)

BW16 = (16, 5, 8) + 2(16, 15, 2) + 4Z16 ≊ Λ16 (38)

BW32 = (32, 6, 16) + 2(36, 26, 4) + 4Z32 (39)

BW64 = (64, 7, 32) + 2(64, 42, 8) + 4(64, 63, 2) + 8Z64, (40)

where ≊ denotes equality up to rotations. The rectangular-form lattice basis in
(35) can be derived by considering the Kronecker product based construction
of Reed-Muller codes [35, Section I-D]. The explicit rectangular forms of the
lattice bases for E8, BW8, and BW16 are provided in Appendix A.

2Barnes–Wall lattices can also be defined recursively [34, Definition 1.1].



Springer Nature 2021 LATEX template

14

3.4 CVP Decoding

Enumeration and sieving are two popular types of CVP algorithms for decod-
ing random lattices [36, 37]. However, for code-based lattices used in error
correction, these algorithms can be further optimized by leveraging the strong
structures inherent in these lattices. While bounded distance decoding (BDD)
techniques exist for Barnes–Wall lattices [34, 38], they fail to achieve the DFR
of CVP decoding. Exploiting the structure of cosets, efficient CVP algorithms
have been developed for lattices such as E8 and Dn [39]. In a similar vein, this
section explores the CVP decoding of BW16, BW32, and BW64.

3.4.1 Lattice Partition as Cosets

A natural and efficient approach to designing CVP algorithms for
Construction-D lattices is to partition the lattice as the union of cosets. If Λ
can be expressed as the union of Λ′ cosets, the CVP problem for Λ can be
reduced to the CVP problem for Λ′ as follows:

QΛ(t) = QΛ′+g′(t), (41)

g′ = argming∈Λ/Λ′ ∥t−QΛ′+g(t)∥ ,

where QΛ′+g(t) = g + QΛ′(t − g). The number of cosets in the partition is
denoted as |Λ/Λ′|. Consequently, the computational complexity of QΛ is |Λ/Λ′|
times larger than that of QΛ′ .

While all Construction-D lattices can be partitioned using Zn as the base,
this generally results in a large number of cosets. Whenever possible, parti-
tioning the lattice into Dn cosets can significantly improve decoding efficiency.
For instance, the CVP algorithm for E8 [39] treats E8 as two D8 cosets, and
D8 can be further divided into two Z8 cosets. This clever partitioning strategy
contributes to the faster decoding of E8.

3.4.2 Decoding BW16

Among BW16, BW32, and BW64, only BW16 and BW64 contain Dn-based
cosets:

BW16 = (16, 5, 8) + 2D16, (42)

BW64 = (64, 7, 32) + 2(64, 42, 8) + 4D64. (43)

The number of cosets for BW16 and BW64 are |BW16/2D16| = 25 and
|BW64/4D64| = 249, respectively. In contrast, |BW16/4Z16| = 220 and
|BW64/8Z64| = 2112. Additionally, |BW32/4Z32| = 232.

Based on the above observations, the decoding complexity of BW16 appears
to be more manageable compared to BW32 and BW64. Referring to Eqs. (41)
and (42), we have:

QBW16
(t) = Q2D16+g′(t), (44)
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g′ = argming∈(16,5,8) ∥t−Q2D16+g(t)∥ .

The pseudocode for the CVP algorithms QBW16
and QDn

are presented in
Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 The closest vector algorithm QBW16

Input: A query vector y.
Output: The closest vector v̂ of y in BW16.
1: Define the codewords of (16, 5, 8) as d1, . . . ,d32

2: for t = 1, . . . 32 do
3: yt = (y − dt)/2
4: v̂t = 2QDn

(yt) + dt

5: Distt = y − v̄t

6: end for
7: t∗ = mint Distt
8: v̂ = v̂t∗ .

Algorithm 2 The closest vector algorithm QDn
.

Input: A query vector y.
Output: The closest vector v̂ of y in Dn.
1: u = ⌊y⌉
2: δ = |y − u|
3: t∗ = maxt |yt − ut|
4: v = u
5: if yt∗ − ut∗ > 0 then
6: vt∗ ← vt∗ + 1
7: else
8: vt∗ ← vt∗ − 1
9: end if

10: if u1 + · · ·+ un mod 2 = 0 then
11: v̂ = u
12: else
13: v̂ = v
14: end if

4 Improving FrodoPKE with Lattice Codes

4.1 DFR Analysis in the Worst Case

In FrodoPKE, χσ is chosen from a truncated discrete Gaussian that minimizes
its Rényi divergence from the target “ideal” distribution, as the loss of secu-
rity can be evaluated by computing the Rényi divergence between the two
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distributions [40]. To simplify the DFR analysis, χσ is treated as a continuous
Gaussian distribution of N (0, σ2).

Recall that Section 3.1 has formulated an m̄n̄-dimensional modulo lattice
additive noise channel “y = x+n mod q”. The error term n has m̄n̄ entries,
each entry has the form of s′e+ e′′ − e′s, and we have

E(s′e+ e′′ − e′s) = 0 (45)

E
(
∥s′e+ e′′ − e′s∥2

)
= 2n′σ4 + σ2. (46)

Although the entries of n are not independent, we can use information the-
ory to give a worst case analysis. The information entropy of n is no larger
than that of the joint distribution of m̄n̄ i.i.d. N (0, 2n′σ4 + σ2) (also known
as Hadamard’s Inequality [41]). We adopt this “largest entropy” setting to
approximate the DFR, which amounts to the error rate analysis of lattice codes
over an AWGN channel.

The DFR of the PKE protocol can be estimated by using the decoding
error probability Pe of a lattice codeword. To proceed, we set the coarse lattice
Λc = qZn (n = m̄n̄) as required by the PKE protocol, and identify a general
fine lattice Λf with kissing number τ , length of the shortest non-zero lattice
vector λ1, and volume

Vol(Λf ) =
Vol(Λc)

2nB
. (47)

Based on Theorem 8, the DFR can be evaluated as

Pe ≜ Pr (µ̂ ̸= µ) = Pr
(
QΛf

(n) /∈ Λc

)
≤ Pr

(
QΛf

(n) ̸= 0
)
. (48)

Assume that n admits an i.i.d. Gaussian noiseN (0, σ̄2) with σ̄ = σ
√
2n′σ2 + 1,

it follows from [33, Chap. 3], [42, Eq. 4] that

Pr
(
QΛf

(n) ̸= 0
)
≲

τ

2
erfc

(
λ1/2√
2σ̄

)
(49)

=
τ

2
erfc

( √
γq

2B+3/2σ̄

)
, (50)

where the second equality is obtained by substituting λ1 =
√
γ
(
qn/2nB

)1/n
,

which is based on the definition of Hermite parameter γ and Vol(Λc) = qn.
Note that “≲” denotes an approximate “≤”, which holds in the high signal to
noise ratio scenario (i.e., λ1 ≫ σ̄) [33, Chap. 3]. In Fig. 4, by using Z8 and
E8 as the fine lattice, respectively, we plot both their theoretical DFR upper
bounds and the actual simulated DFRs, which suggests the upper bound in
(49) is tight.

The DFR formula is determined by several factors, including: (i) The Her-
mite parameter γ, which describes the density of lattice points packed in a
unit volume for a given minimum Euclidean distance. (ii) The kissing num-
ber τ , which measures the number of facets in the Voronoi region of a lattice.
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Fig. 4: The DFRs of trivial modulation and E8 based coded modulation.

(iii) The modulus q in LBC. (iv) The averaged number of encoded bits B.
(v) The standard deviation σ̄ of the effective noise. These factors collectively
contribute to determining the value of the DFR.

4.2 Flexible Lattice Parameter Settings

Finding the densest lattice structure is a well-studied topic, and the Hermite
parameter γ and kissing number τ of some low-dimensional optimal lattices
can be found in [33]. Therefore, the key challenge is to judiciously design B,
q, σ̄ based on chosen γ and τ .
i) On the kissing number and Hermite parameter. We adopt Barnes–Wall lat-
tices to construct lattice codes. Though being less dense than other known
packings in dimensions 32 and higher, they offer the densest packings in dimen-
sions 2, 4, 8 and 16 [33]. Moreover, many lattice parameters are available [33][P.
151]. In dimension n = 2r with r = 1, 2, 3, . . ., the kissing number is given by

τ = (2 + 2)(2 + 22) · · · (2 + 2r), (51)

and the Hermite parameter is defined as

γr = 2(r−1)/2, (52)

which increases without limit. If Λ′ is constructed from the k-fold Cartesian
product of Λ ⊂ Rm, i.e, Λ′ = Λ× · · · × Λ ⊂ Rkm, then we have

τ(Λ′) = kτ(Λ) (53)

γr(Λ
′) = γr(Λ). (54)

Table 1 summarizes the parameters of some low-dimensional optimal
lattices and the Barnes–Wall lattices.
ii) On the information rate B. Since the coarse lattice in FrodoPKE is Λc =
qZ64, let 2∆ = q/p be a power of 2 with p being a free parameter. By choosing
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Table 1: Properties of selected lattices.

Lattice Z D4 E8 BW16 Λ24 BW32 BW64

Hermite parameter γ 1 21/2 2 23/2 4 4 25/2

Kissing number τ 2 24 240 4320 196560 146880 9694080
Volume Vol(Λt) 1 2 1 212 1 232 280

a small-dimensional lattice Λt ∈ Rt, where t divides 64, and pZt ⊂ Λt, the fine
lattice is a Cartesian product of Λt:

Λf = 2∆Λt × · · · × Λt. (55)

The number of encoded bits B per dimension is dictated by p:

B =
1

n
log2

(
Vol(Λc)

Vol(Λf )

)
=

1

t
log2

pt

Vol(Λt)
. (56)

For a Construction-A or Construction-D lattice, it always holds that:

pZt ⊂ 2aZt ⊂ Λt. (57)

While the E8 lattice has half integers, it holds that 4Z8 ⊂ 2E8.
Based on different fine lattices, we enumerate some feasible number of

encoded bits in FrodoPKE below, denoted as 64B:

• Λf = 2∆ · Z64, 64B = 64, 128, 192, 256, . . .
• Λf = 2∆ ·D16

4 , 64B = 112, 176, 240, 304, . . .
• Λf = 2∆ · E8

8 , 64B = 64, 128, 192, 256, . . .
• Λf = 2∆ ·BW 8

8 , 64B = 96, 160, 224, 288, . . .
• Λf = 2∆ ·BW 4

16, 64B = 80, 144, 208, 272, . . .
• Λf = 2∆ ·BW 2

32, 64B = 64, 128, 192, 256, . . .
• Λf = 2∆ ·BW64, 64B = 112, 176, 240, 304 . . .

4.3 Improved Frodo Parameters

The Frodo-640, Frodo-976, and Frodo-1344 schemes are designed to target
security levels 1, 3, and 5, respectively, as defined in the NIST PQC Standard-
ization. To provide resistance against attacks exploiting Distinguished Field
Reconstructions (DFRs) [6], the DFR bounds at levels 1, 3, and 5 should not
exceed 2−128, 2−192, and 2−256, respectively.

In our proposed scheme, we focus on modifications to the labeling function,
the corresponding Closest Vector Problem (CVP) algorithm, and the param-
eter choices of σ, B, and q. The security levels refer to the primal and dual
attack via the FrodoKEM script pqsec.py [43]. The subscripts C, Q and P
denote “classical”, “quantum” and “paranoid” estimates on the concrete bit-
security given by parameters (n′, σ, q). We propose three sets of parameters in
Tables 2 and 3: the first aims at improving the security level and the second
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at reducing the communication bandwidth. Frodo-640/976/1344 are the orig-
inal parameter sets. The parameters that we have changed are highlighted in
bold-face blue color, and other values that have altered as a consequence of
this change are marked with normal blue color.
Parameter set 1: Improved security strength

In this parameter set, we aim to enhance the security strength of Frodo-
640/976/1344 by increasing the value of σ while keeping n′ and q unchanged.
The table below (Table 2) shows the results of error correction using different
lattice structures, such as E8, BW16, and BW32, which improve the security
level of the original Frodo-640/976/1344 by 6 to 16 bits. It is worth noting that
while Z64, E8

8 , and BW 2
32 naturally encode 128, 192, and 256 bits per instance,

respectively, BW 4
16 only supports 144, 208, and 272 bits. Among these options,

the parameter set based on BW32 offers the highest security enhancement in
the table. However, its CVP decoding complexity of enumerating 232 cosets
may make it less attractive.

Considering the trade-off between security and complexity, we recommend
the parameter sets based on E8 and BW16. Frodo-640/976/1344-E8 provides a
good balance between information rate and security level, with a classical secu-
rity enhancement of 7 or 8 bits compared to the original Frodo-640/976/1344.
On the other hand, Frodo-640/976/1344-BW16 maintains a similar security
level to Frodo-640/976/1344-E8 while offering a slightly higher information
rate, with B values of 2.25, 3.25, or 4.25.
Parameter set 2: Reduced size of ciphertext

In this parameter set, we aim to reduce the size of the ciphertext by decreas-
ing the value of q while maintaining a small DFR and a comparable security
level. The table below (Table 3) shows the results of reducing q from 215 to
214, which leads to a reduction in the size of the ciphertext, denoted as |c|. For
example, in Frodo-640, the ciphertext size can be reduced from 9720 bytes to
9072 bytes, in Frodo-976 from 15744 bytes to 14760 bytes, and in Frodo-1344
from 21632 bytes to 20280 bytes. Once again, the parameter sets based on E8

and BW16 are recommended.
It is worth mentioning that the lattice-code based FrodoPKE can also be

extended to a KEM for symmetric lightweight cryptography algorithms. By
setting Λf = 2∆ ·BW 4

16 and Λc = 2∆ · 4Z64, it is possible to tightly exchange
80 bits for the PRESENT [44] algorithm. This highlights the versatility and
potential applications of the FrodoPKE scheme.

4.4 IND-CCA Security

Lattice code-based PKE/KEM also provides chosen ciphertext secure (IND-
CCA) security. Similar to the argument presented in [7], the IND-CPA security
of FrodoPKE is upper bounded by the advantage of the decision-LWE problem
with the same parameters and error distribution. This establishes a connection
between the security of FrodoPKE and the hardness of the underlying lattice
problem. To achieve IND-CCA security, the post-quantum secure version of
the Fujisaki-Okamoto transform [45, 46] can be applied. This transform allows
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an IND-CPA encryption scheme to be transformed into an IND-CCA secure
scheme. By incorporating this transformation, the encryption scheme can resist
chosen ciphertext attacks.

In the context of analyzing the security of a cryptographic scheme in the
quantum random-oracle model, security proofs often consider the number of
decryption queries made by the chosen ciphertext adversary. In [47, Theorem
4.3], it is demonstrated that the impact of decryption failure can be quantified
as 4qGPe, where qG represents the number of quantum oracle queries and
Pe denotes the decryption failure rate. Based on the established bounds on
decryption failure, it can be argued that such queries pose no significant danger
to the overall security of the scheme.

5 Conclusions

In this paper, we have demonstrated the potential of low-dimensional struc-
tured lattices in improving the error correction performance of FrodoPKE,
highlighting the benefits of lattice codes as a form of coded modulation. The
connection between lattice codes and FrodoPKE (and lattice-based PKEs
in general) lies in the modulo q operation, which leads to hypercube shap-
ing. By introducing an efficient lattice labeling function and a comprehensive
formula for estimating the DFR, lattice-based coded modulation becomes fea-
sible in LBC. Through the utilization of low-dimensional optimal lattices, we
have obtained several enhanced parameter sets for FrodoPKE, offering either
higher security levels or smaller ciphertext sizes. Furthermore, the lattice cod-
ing techniques presented in this work can be readily applied to Ring/Module
LWE-based PKEs, extending their potential applications beyond FrodoPKE.
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Table 2: The recommended parameter sets with higher security.

Structure of lattice code
n′, n̄, m̄ q σ B DFR

|c| Security

Λf Λc (bytes) C Q P
Frodo-640 213 · Z64 215 · Z64 640, 8, 8 215 2.75 2 2−164 9720 149 136 109

Frodo-640-E8 213 · E8
8 215 · Z64 640, 8, 8 215 3.25 2 2−164 9720 156 142 113

Frodo-640-BW16 212 ·BW 4
16 215 · Z64 640, 8, 8 215 3.23 2.25 2−164 9720 155 142 113

Frodo-640-BW32 212 ·BW 2
32 215 · Z64 640, 8, 8 215 3.83 2 2−164 9720 162 148 118

Frodo-976 213 · Z64 216 · Z64 976, 8, 8 216 2.3 3 2−220 15744 216 196 156
Frodo-976-E8 213 · E8

8 216 · Z64 976, 8, 8 216 2.72 3 2−220 15744 224 204 162
Frodo-976-BW16 212 ·BW 4

16 216 · Z64 976, 8, 8 216 2.71 3.25 2−220 15744 224 204 161
Frodo-976-BW32 212 ·BW 2

32 216 · Z64 976, 8, 8 216 3.21 3 2−220 15744 232 211 167
Frodo-1344 212 · Z64 216 · Z64 1344, 8, 8 216 1.4 4 2−290 21632 282 256 203

Frodo-1344-E8 212 · E8
8 216 · Z64 1344, 8, 8 216 1.66 4 2−290 21632 292 265 210

Frodo-1344-BW16 211 ·BW 4
16 216 · Z64 1344, 8, 8 216 1.66 4.25 2−290 21632 292 265 210

Frodo-1344-BW32 211 ·BW 2
32 216 · Z64 1344, 8, 8 216 1.97 4 2−290 21632 302 275 217
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Table 3: The recommended parameter sets with smaller size of ciphertext.

Structure of lattice code
n′, n̄, m̄ q σ B DFR

|c| Security

Λf Λc (bytes) C Q P
Frodo-640 213 · Z64 215 · Z64 640, 8, 8 215 2.75 2 2−164 9720 149 136 109

Frodo-640-E8 212 · E8
8 214 · Z64 640, 8, 8 214 2.30 2 2−164 9072 156 143 114

Frodo-640-BW16 211 ·BW 4
16 214 · Z64 640, 8, 8 214 2.29 2.25 2−164 9072 156 143 114

Frodo-640-BW32 211 ·BW 2
32 214 · Z64 640, 8, 8 214 2.71 2 2−164 9072 163 149 118

Frodo-976 213 · Z64 216 · Z64 976, 8, 8 216 2.3 3 2−220 15744 216 196 156
Frodo-976-E8 212 · E8

8 215 · Z64 976, 8, 8 215 1.93 3 2−220 14760 225 205 162
Frodo-976-BW16 211 ·BW 4

16 215 · Z64 976, 8, 8 215 1.92 3.25 2−220 14760 224 204 162
Frodo-976-BW32 211 ·BW 2

32 215 · Z64 976, 8, 8 215 2.27 3 2−220 14760 233 212 168
Frodo-1344 212 · Z64 216 · Z64 1344, 8, 8 216 1.4 4 2−290 21632 282 256 203

Frodo-1344-E8 211 · E8
8 215 · Z64 1344, 8, 8 215 1.18 4 2−290 20280 291 265 210

Frodo-1344-BW16 210 ·BW 4
16 215 · Z64 1344, 8, 8 215 1.17 4.25 2−290 20280 291 265 209

Frodo-1344-BW32 210 ·BW 2
32 215 · Z64 1344, 8, 8 215 1.39 4 2−290 20280 302 275 217
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Appendix A

The lattice bases for E8, BW8, and BW16 are as follows:

2 −1 0 0 0 0 0 0.5
0 1 −1 0 0 0 0 0.5
0 0 1 −1 0 0 0 0.5
0 0 0 1 −1 0 0 0.5
0 0 0 0 1 −1 0 0.5
0 0 0 0 0 1 −1 0.5
0 0 0 0 0 0 1 0.5
0 0 0 0 0 0 0 0.5


,



1 1 1 1 2 2 2 2
1 1 1 0 2 0 0 0
1 1 0 1 0 2 0 0
1 1 0 0 0 0 0 0
1 0 1 1 0 0 2 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0




1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 4
1 1 1 1 0 2 2 0 2 0 0 2 0 0 0 0
1 1 1 0 1 2 0 2 0 2 0 0 2 0 0 0
1 1 1 0 0 2 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 2 2 0 0 2 0 0 2 0 0
1 1 0 1 0 0 2 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 2 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 2 2 2 0 0 0 2 0
1 0 1 1 0 0 0 0 2 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 2 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 2 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



.
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