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Abstract. The current state of the art in watermarked public-key en-
cryption schemes under standard cryptographic assumptions suggests
that extracting the embedded message requires either linear time in the
number of marked keys or the a-priori knowledge of the marked key
employed in the decoder.
We present the first scheme that obviates these restrictions in the secret-
key marking model, i.e., the setting where extraction is performed using
a private extraction key. Our construction offers constant time extrac-
tion complexity with constant size keys and ciphertexts and is secure
under standard assumptions, namely the Decisional Composite Resid-
uosity Assumption [Eurocrypt’99] and the Decisional Diffie Hellman in
prime order subgroups of square higher order residues.
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1 Introduction

Watermarking is a mechanism used to secure copyrighted material and counter
the unauthorized distribution of digital content. In a high level, a watermarking
scheme embeds a “mark” into a digital object and ensures that (a) the wa-
termarked object is functionally equivalent to the original object (functionality
preserving), and (b) it is difficult for an adversary to remove the mark without
damaging the object (unremovability).

Recently, there has been an extensive line of research focusing in the special
case of software watermarking with software being modeled as a Boolean circuit
C. A software watermarking schemes consists of two main algorithms: the Mark
algorithm that takes as input a circuit C and optionally a mark τ (for the case

of message embedding watermarking) and outputs C̃, and an Extract algorithm
that takes as input a circuit C and outputs marked or not alongside with the
mark τ if relevant.



The first rigorous study and formal definitions of software watermarking
dates back to 2001 when Barak et al. [BGI+01, BGI+12] explored the relation be-
tween software watermarking and indistinguishability obfuscation (iO) and pro-
vided an impossibility result. In particular, they showed that if a marked circuit
C̃ has exactly the same functionality as the original, unmarked circuit C, then
under the assumption that iO exists, watermarking is impossible. To overcome
this impossibility result, a first line of work proposed schemes that are secure in
restricted models where the allowed strategies for the unremovability adversary
were limited [YF11, Nis13]. Later, [CHN+16, CHN+18] considered a more re-
laxed, in the statistical sense, variation of the functionality preserving property
and propose a watermarking scheme for any family of puncturable pseudoran-
dom functions (PRFs). Following the work of Cohen et al. [CHN+16], a long line
of work has appeared in the literature focusing on watermarking PRFs under
different models and assumptions ([KW17, BLW17, QWZ18, KW19, YAYX20]).
Beyond watermarking schemes for PRFs, a number of works have focused on
watermarking primitives such as encryption and signatures ([CHN+16, BKS17,
GKM+19, YAL+19, Nis20]). This entails the topic of the present work.

Watermarking public key primitives. Cohen et al. [CHN+16, CHN+18],
were the first to consider the notion of watermarking for the case of public-key
cryptographic primitives. In particular, they define the notions of “Watermark-
able Public-key Encryption” and “Watermarkable Signatures” making the im-
portant observation that the marking and key generation algorithms can be fused
into one. Such primitives —watermarkable public-key encryption in particular—
can be very useful to the enterprise setting, where multiple users belonging to
the same organization use personal enterprise keys to access various services,
such as a VPN. In such a setting, an organization may want to embed marks
on the cryptographic algorithms used by employees and ensure that such marks
can be extracted given any functioning decoder of one of the users. Cohen et
al. [CHN+16, CHN+18], proceeded to describe how watermarkable schemes can
be constructed by taking advantage of the work of Sahai and Waters [SW14],
where public key encryption schemes and digital signature schemes are con-
structed based on iO. In the aforementioned constructions, a decryption or a
signing algorithm is essentially an evaluation of a puncturable PRF. The idea of
relying to the work of Sahai and Waters [SW14] for constructing watermarkable
primitives has subsequently been utilized in [YAL+19]. Yang et al. [YAL+19]
introduce the notion of collusion-resistant watermarking, meaning that an ad-
versary is capable of receiving multiple watermarked copies of the same initial
circuit embedded with different messages. The authors provide a watermark-
ing scheme for PRFs and based on that and the constructions in [SW14] pro-
pose constructions for primitives like public key encryption, digital signatures,
symmetric-key encryption and message-authentication codes.

The crucial question of whether watermarkable public key primitives can
be constructed from standard assumptions was subsequently addressed by the
works [BKS17], [GKM+19] and [Nis20] where different watermarking models
are considered. Baldimtsi et al. [BKS17] mainly focus on watermarking existing
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public key encryption schemes under minimal hardness assumptions and they
achieve this for a more relaxed watermarking framework where a small public
shared state is maintained between the marking and extraction algorithms. In
their definitions, they follow a general approach in defining watermarking for
public key primitives by distinguishing between the notions of watermarking of
a given scheme (watermarking the implementation) versus constructing water-
markable instances of a public key primitive in the sense of [CHN+16, CHN+18].

Goyal et al. [GKM+19], revisit the notion of watermarkable public key prim-
itives by considering stronger properties such as public marking, meaning that
one can mark circuits as a public procedure, and collusion-resistance. They pro-
vide a construction for watermarkable signatures, as well as watermarkable con-
structions for more generalized notions for encryption, such as Attribute-based
encryption (ABE) and Predicate Encryption (PE), by relying on standard as-
sumptions. Regarding their watermarkable constructions for encryption primi-
tives, even for the case of public key encryption, although they rely on the LWE
assumption, they require heavy tools like Mixed Functional Encryption [GKW18]
and Hierarhical Functional Encryption [BCG+17].

Nishimaki [Nis20] showed how to watermark existing public key crypto-
graphic primitives under the condition that they have a canonical all-but-one
(ABO) reduction, which is a standard technique usually employed for proving
selective security. Nishimaki presents a general framework which shows how to
transform a public key scheme with the above feature to a watermarked public
key primitive by utilizing the simulation algorithms that appear in the proofs as
the watermarked versions of the algorithms. Based on this novel idea, they pro-
vide watermarking constructions for IBE, IPE, ABE which are secure under the
same assumptions as the underlying primitives. We note that a selective secure
variant for watermarking definitions is employed in [Nis20].

One of the key issues in terms of the efficiency of watermarkable primitives
is the complexity of the extraction algorithm, i.e., the steps required to extract
(or detect) the embedded mark from a circuit. Ideally, the process of extraction
should be independent (or at least polylogarithmic) in the number of marked
programs. This is particularly crucial when in the underlying application extrac-
tion is time sensitive. For instance, for the application of tracing unauthorized
distribution of digital content there is often the need to immediately identify
(and potentially revoke) malicious users. Thus, if one assumes that the mark is
some identifiable user information, it is important to be able to extract efficiently.

Unfortunately, all previous approaches that provided constructions under
standard assumptions require a linear running time for this step. The linear over-
head either comes directly, e.g., in [BKS17] where the extraction algorithm has
to re-generate one-by-one all the marked public keys in order to decide whether a
circuit is marked or not, or indirectly by requiring the marked public-key as sepa-
rate input to the extraction algorithm (an approach followed by [GKM+19], [Nis20]).
In the latter case, this is due to the fact that the extraction algorithm needs to
traverse all marked public keys in order to determine whose associated decryp-
tion circuit is being detected (we discuss this in more details in Section 1.3).
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Relying on non-standard assumptions, such as iO, is the only known approach
so far to allow for efficient extraction [CHN+16] without knowledge of the marked
public-key.

Motivated by the above, in this work, we study the following question:

Can we build efficient watermarkable public key encryption schemes under
standard assumptions where the extraction algorithm is sublinear or even

constant in the number of marked programs, without relying on the knowledge
of the key in the given decoder?

We answer this question in the affirmative.

1.1 Our Contribution

We present a concrete watermarkable PKE scheme with the following features:
(1) The running time of the extraction algorithm is independent of the number
of generated marked circuits (decryption circuits in the case of PKE) and does
not require knowledge of the marked key, (2) the ciphertexts, the public and
secret keys have all constant size in all salient parameters exhibiting only a
linear dependency in the security parameter.

Our construction is an El-Gamal like scheme that shares features with Paillier
encryption and whose security relies on the Decisional Composite Residuosity
DCR assumption [Pai99] as well the DDHSQNR assumption [KTY07]. The latter
assumption is simply the Decisional Diffie Hellman assumption over prime order
subgroups of the group of n-th residues modulo n2, where n is an RSA modulus
as in Paillier encryption. We note that residuosity and discrete-logarithm related
assumptions over modular arithmetic groups have been studied extensively and
are considered standard assumptions compared to more recent cryptographic
assumptions such as those needed to obtain iO. We provide a technical overview
of our construction in Section 1.2 .

Our scheme is proven secure in the secret-marking model, under the defini-
tional framework of [CHN+16, BKS17] where there exists a single marking algo-
rithm responsible for both key-generation of the public-key encryption scheme
and marking at the same time (i.e., a mark is embedded into a circuit when gen-
erating public and secret encryption keys). We provide a more detailed discussion
of our model and how it compares to related work in Section 1.3.

1.2 Technical Overview of our Construction

Our main goal is to construct a watermarkable PKE scheme with an extraction
algorithm that is independent of the number of previously marked decryption
circuits. In a typical watermarked PKE scheme, the marked object is a decryp-
tion circuit C. As noted above, in all previous works in order to detect whether
C is marked or not, the extraction algorithm had to either re-generate and test
all marked public keys [BKS17] or require the marked public-key as separate
input to the extraction algorithm [GKM+19, Nis20]).
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To avoid this linear dependency to the number of public keys, we need to
take a very different extraction approach. Our starting point is a PKE with the
following property: it should be possible to generate a probability distribution
in the ciphertext space in a manner independent of the public-key. At the same
time, when such ciphertexts are sampled and given as input to a decryption
circuit C, it should be possible to extract information about the decryption key
hidden inside the decoder. Assume for example that by giving such a ciphertext
as input to C, one can reconstruct a public key indicating that the corresponding
secret key was used to decrypt the ciphertext. However, deciding whether C is
marked or not would still require to check whether the reconstructed public key
is one of the keys that had been previously marked by the marking service. Thus,
we additionally require the PKE to allow the embedding of some authenticated
information as part of the secret and public keys, which can only be recovered
by using the private extraction key.

Consider the El-Gamal PKE scheme with public parameters (G, q, g) where
G is a cyclic group of prime order q and g is a generator of that group. Assume

a public-secret key pair (gx, x) where x
$← Zq. An encrypted plaintext m is of

the form (gr, grx · m), where r
$← Zq, is indistinguishable from a random pair

(gr, gr
′
), where r, r′

$← Zq. If (gr, gr
′
) is fed to a decryption algorithm under

the secret key sk = x the result would be Dec(x, ((gr, gr
′
)) = gr

′−rx. Given
we have chosen r, r′, it is possible to apply a simple calculation over gr

′−rx to
extract the public key gx. Therefore, assuming a circuit C as black-box, if one
runs it on input the pair (gr, gr

′
) and then performs the computation described

above, one can deduce the public key (if the circuit indeed uses a single public
key). With respect to our objective however this approach is still too weak: since
we bound the extraction algorithm to be independent of the number of marked
circuits, having recovered the public-key cannot help us detect whether the key
was indeed marked or not. Here comes our second technical observation: we can
take advantage of the partial discrete logarithm trapdoor of Paillier’s encryption
scheme to turn the public-key of a marked scheme to something that the marking
algorithm can “decrypt” and identify some internal property of it to assist the
extraction algorithm.

To accomplish this plan, the first cryptographic design challenge is to create
this hybrid encryption scheme, that behaves like ElGamal from the perspective
of the user, while its public-key is akin to ciphertext for a Paillier-like encryption
whose secret-key is used during the extraction process. This means that the El-
Gamal variant has to operate within Z∗n2 and specifically within a suitable order
subgroup 〈g1〉 where DDH is expected to hold, while the public-key will belong
to a suitable coset 〈g1〉·(1+n)v with v containing the salient features the extrac-
tion algorithm can recover via Paillier decryption. The second design challenge,
is that the extraction algorithm needs to check the integrity of the recovered
public-key; this is done by incorporating into v a message authentication code
(actually a PRF) that tags the ElGamal component of the public-key. The third
design challenge is to be able to embed robustly an arbitrary mark within the
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public-key without disturbing the functional properties of the public-key itself.
To achieve that we utilize an authenticated symmetric encryption that extends
the value v with a ciphertext that contains the mark.

The final challenge is to ensure that decryption from the user side works
similarly to ElGamal and all the attributes that were inserted by the above
requirements into the public-key do not disturb the decryption operation of the
PKE.

1.3 Relations to Prior Work

In the first part of the introduction we covered related work in watermarkable
cryptographic primitives as well as watermarking in general. In this section we
provide a more extensive discussion on how our work differs from related work
in terms of definitional model, security properties and efficiency. We focus our
attention on related work for watermarkable public key primitives. Finally, we
also discuss the relation to traitor tracing.

Definitional Model. In this work, we adopt a model that is based on the def-
initional framework proposed by Cohen et al. [CHN+16]. Namely, we define a
watermarkable PKE scheme where the Mark algorithm is responsible for both
generating a key pair instance (pk, sk) for the encryption scheme, as well as
marking it at the same time.

Other works [YAL+19, GKM+19, Nis20] impose a stronger requirement where
the key generation and marking algorithms are decoupled: (unmarked) keys can
be independently generated and, subsequently, marked. For completeness, we
point out some differences between the models considered in the aforementioned
works. First of all, in contrast to all other works, the model of Goyal et al.
[GKM+19] considers both public marking and public extraction. These proper-
ties are satisfied by the watermarkable predicate encryption scheme presented
in the same paper. The model of [Nis20] considers secret marking and secret
extraction while [YAL+19] considers public extraction and secret marking.

We note that the model of coupling key generation and marking is natu-
ral in certain applications (i.e. watermarking a VPN client). Most importantly
though, coupling key generation and marking does not trivialize the problem:
If one considered a trivial watermarking scheme where the marking authority
simply associates every secret key with the identity of the owner, it will have to
store one associated key with each identity. This is completely inefficient, since
it results in a stateful watermarkable encryption scheme with both linear state
and linear extraction time.

Security Properties. We require watermarkable PKE schemes to preserve IND-
CPA security and also support unremovability and unforgeability. In our un-
removability definition we consider adversaries that have access to Challenge,
Corrupt and Extract oracles. This is a stronger definition than the one con-
sidered in [CHN+16]. An important point when defining unremovability is in
respect to when we consider that the adversary successfully removed the mark.
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Cohen et al. required the adversarial circuit to agree with a decryption circuit on
a fraction of inputs. However, as pointed in [GKM+19], this can lead to trivial
attacks. We follow the definitional approach of [GKM+19] who in order to ad-
dress this issue, they require that an adversary should output a “useful” circuit
which is at the same time unmarked (or marked with a different than the original
message). We capture the notion of “useful” by defining closeness and farness
relations to capture the adversarys ability to create circuits that are close or far
to marked ones.

Since we focus on the secret-marking setting we also consider unforgeabil-
ity which guarantees that an adversary cannot create a marked circuit with
sufficiently different functionality from that of given marked circuits without
access to a marking key. Similar to unremovability, we define unforgeability for
adversaries that have access to Challenge, Corrupt and Extract oracles. The
constructions of [CHN+18] do not support unforgeability. The more recent work
of [Nis20] describes a possible direction to achieve unforgeability. Unforgeability
does not make sense as a property in the public marking setting of [GKM+19].

In addition, [YAL+19, GKM+19] consider the notion of collusion-resistance,
or else Collusion-resistance w.r.t. watermarking (as coined in [Nis20]). A water-
marking scheme is collusion-resistant w.r.t. watermarking if it is unremovable
even if adversaries are given many watermarked keys for the same original key.
We note that the collusion-resistance property cannot be inherently considered
in our model since the user does not choose the initial key and request marked
versions embedded with different messages. Also, as noted in [Nis20], this prop-
erty is not crucial for classic applications of watermarking such as ownership
identification.

Efficiency. In this paragraph, we present several efficiency parameters of pre-
vious watermarkable public key encryption schemes, in particular [Nis20] and
[GKM+19], and provide a comparison with the construction presented in this
work. Starting with [GKM+19], a watermarkable predicate encryption scheme
can be instantiated from hierarchical functional encryption scheme, which, in
turn, according to [AV19] can be constructed from any PKE scheme. In such a
construction, the size of ciphertexts is linear in the number of colluding users.
In [Nis20],the efficiency parameters of the initial public key encryption scheme
are almost preserved. Specifically, the ciphertext size does not change, while the
public and secret keys have also a linear dependence on the size of the embedded
message and the security parameter. Regarding the complexity of the extraction
algorithm, in both [GKM+19, Nis20] we note that the master public key (which
is the public key of a user in the case of Watermarkable PKE) is part of the input
of the extraction algorithm. This is particularly limiting in applications where
one might detect the use of marked circuit in the wild (i.e. a stolen decryption
circuit). Excluding the public key from the input of the Extract algorithm, as
in our model, implies that Extract would have to search over all the public keys
generated so far. The construction presented in this work (cf. Section 4) achieves
constant size ciphertexts, constant size public-secret keys and the extraction time
is independent of the number of generated marked keys.
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Relation to Traitor-Tracing. Watermarkable PKE is also related to the notion
of traitor tracing, which was put forth by Chor et al. [CFN94] and studied
extensively (see e.g. [KY02, DFKY03, BW06, BSW06, BZ14] and references
therein). Briefly speaking, in traitor tracing, an authority delivers keys to a set
of users and encrypts content which is intended to be decrypted by all users, or a
subset of them in cases where an authority is capable of revoking decryption keys
(i.e. trace and revoke schemes). In the occasion where a number of users collude
by constructing an even partially working implementation of the decryption
function, the authority can identify at least one of the colluding users.

Previous works ([GKM+19, YAL+19, Nis20]), point to the relation between
traitor tracing and watermarkable encryption. In particular, Goyal et al. [GKM+19]
present a generic construction which shows how to obtain a watermarkable PKE
scheme (in the sense of Cohen et al. definition [CHN+16]) from a traitor tracing
scheme with embedded identities and a regular public-key encryption. We note
that a traitor tracing scheme with embedded identities (cf. [GKW19, NWZ16])
is an extension of the standard traitor tracing where not only the index of a col-
luding user is traced, but a whole string is extracted, i.e. the identity. Based on
this, [GKM+19] argue that “in the particular case where we allow a single algo-
rithm that both generates the public/secret keys together with the watermark”
the notion of watermarkable PKE would be entirely subsumed by traitor tracing.
While valid, this observation sidesteps the serious disadvantage that the generic
construction blows up the complexity of the watermarkable PKE to be at least
as much as underlying traitor tracing. As a result, the state of the art in traitor
tracing cannot yield efficient watermarkable PKE under standard assumptions,
to the best of our knowledge (even the most efficient construction in terms of
keys and ciphertexts from [GKW19], which is provable under LWE, will require
an extraction algorithm linear in the number of users). Moreover, watermarking
seems a simpler primitive than traitor tracing since in the latter, users should
share the decryption functionality and apply it to the same ciphertext, while in
watermarking users functionalities are entirely decoupled. In our view, this is
the key issue in the design of watermarking PKE schemes and we demonstrate
that we can obtain constructions where the size of ciphertexts, the size of keys,
as well as the extraction complexity is independent of the number of users.

2 Preliminaries

Notation. By λ we denote the security parameter and by negl(λ) we denote a
negligible function in λ. By x||y, we denote the concatenation of the bitstrings

x, y. By x
$← S we denote that x is sampled uniformly at random from S. By

poly(λ) we denote a polynomial in λ. In addition, we write D1
c
≈ D2 to denote

that the distributions D1, D2 are computationally indistinguishable.

Assumptions. We first introduce the assumptions which will be necessary for
proving the properties of our watermarkable PKE scheme.
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Definition 1 (DCR assumption [Pai99]). No PPT adversary can distin-
guish between: (i) tuples of the form (n, un mod n2), where n is a composite

RSA modulus and u
$← Z∗n2 and (ii) tuples on the form (n, v), where v

$← Z∗n2 .

Definition 2 (DDH for square n-th residues [KTY07]). Let n be a com-
posite RSA modulus, i.e. n = pq, where p = 2p′ + 1, q = 2q′ + 1 and p′, q′ are
also primes. By Xn2 we denote the subgroup of Zn2 that contains all square n-
th residues. The Decisional Diffie Hellman assumption for square n-th residues
(DDHSQNR) is defined as follows: The distribution 〈n, g1, y, gr1, yr〉, where g1 gen-

erates Xn2 , y
$← Xn2 and r

$← [p′q′], is computationally indistinguishable from

the distribution 〈n, g1, y, gr1, yr
′〉, where g1, y, r defined as above and r′

$← [p′q′].

In our construction we use a seemingly stronger variant of the above assump-
tion where the factorization of n is also provided as part of the tuples. While this
appears to provide more power to the adversary, it is straightforward to see that
it reduces, via the Chinese remainder theorem, to the two DDH assumptions

for the underlying subgroups 〈gq
′

1 〉 and 〈gp
′

1 〉 of prime order p′, q′ respectively.4

For simplicity and due to its relation to the DDH assumptions in the underlying
groups, we will use the same notation DDHSQNR to denote this variant.

Cryptographic Primitives. For completeness we recall the definitions of some
cryptographic primitives to be used below.

Definition 3 (Pseudorandom function). Let F : K × X → Y be a keyed
function with key space K, input space X and output space Y. We say that F is
a pseudorandom function (PRF) if for any PPT distinguisher D it holds that∣∣∣Pr

k
$←K

[DF (k,·)(1n) = 1]− Pr
f

$←F
[Df(·)(1n) = 1]

∣∣∣ ≤ negl(λ),

where F is the set of all functions with input space X and output space Y and
X = {0, 1}n.

We consider an authenticated symmetric encryption scheme that satisfies the
notion of integrity of ciphertexts as defined in [BN00], i.e. an adversary that only
has access to a signing oracle, cannot produce any fresh valid ciphertext.

4 To see this, consider A DDH challenge for the two underlying groups 〈gq
′

1 , yl, Gl, Yl〉
〈gp
′

1 , yr, Gr, Yr〉, we can combine them to 〈g1, yl · yr, Gl · Gr, Y
q′

l · Y
p′
r 〉. Observe that

if the challenge pair is DDH distributed then Gl · Gr = g
q′rl+p

′rr
1 and Y q

′

l · Y
p′
r =

y
q′rl
l yp

′rr
r = g

(q′)2tlrl+(p′)2trrr
1 . Now observe that (q′tl + p′tr)(q

′rl + p′rr) = (q′)2tlrl +

(p′)2trrr mod p′q′. Given that yl · yr = g
q′tl+p

′tr
1 , this establishes that the combined

challenge is DDH distributed. For the other case, when the challenge pair follows

the random distribution, then Y q
′

l · Y
p′
r = y

q′r′l
l y

p′r′r
r = g

(q′)2tlr
′
l +(p′)2trr

′
r

1 that can
be easily seen to be uniformly distributed over Xn2 and as a result the combined
challenge is randomly distributed.
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Definition 4. A symmetric encryption scheme (S.Gen,S.Enc,S.Dec) satisfies
integrity of ciphertexts if for any PPT adversary A it holds that

Pr[G int−ctxtA (1λ) = 1] = negl(λ).

G int−ctxt
A (1λ) :

1. The Challenger C generates a key ke ← S.Gen(1λ). Then initializes the set
S ← ∅, which will include the ciphertexts that will be returned as answers to
A’s queries.

2. A is allowed to issue a number of queries to the encryption oracle S.Enc(ke, ·).
Upon receiving a message m from A, C computes c← S.Enc(ke,m), returns c
to A and sets S ← S ∪ {c}.

3. A wins, if there is c′ issued as a query to the decryption oracle S.Dec(ke, ·) s.t.
c′ /∈ S and m′ 6= ⊥ where m′ ← S.Dec(ke, c

′). Then the game returns 1.

Fig. 1: The integrity of ciphertexts game.

Next, we state the definition of real-or-random CPA security for symmet-
ric encryption [BDJR97]. In a high level, an adversary should not be able to
distinguish a ciphertext from a random string from the ciphertext space.

Definition 5. A symmetric encryption scheme (S.Gen,S.Enc,S.Dec) with plain-
text space {0, 1}ν and ciphertext space {0, 1}µ satisfies real-or-random security
against chosen plaintext attacks if for any PPT adversary A,

Pr[Gror−cpaA (1λ) = 1] = negl(λ).

Gror−cpa
A (1λ) :

1. The Challenger C generates a key ke ← S.Gen(1λ).
2. A is allowed to issue queries to the encryption oracle, i.e. A issues a query m

to C, and C responds to A with c s.t. c← S.Enc(ke,m).
3. Challenge phase: A sends a message m to the challenger. Then C chooses

b
$← {0, 1}. If b = 0 it computes c∗ ← S.Enc(ke,m), otherwise it chooses

c∗
$← {0, 1}µ. C returns c∗ to A.

4. A outputs b∗. If b = b∗ then A wins and the game returns 1.

Fig. 2: Real or Random CPA Security.
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3 Watermarkable Public Key Encryption

We start by introducing the definition for a watermarkable public-key encryption
scheme. Our definition follows the framework of [CHN+16, BKS17] by consid-
ering a single algorithm, PKE.Mark responsible for both key-generation of the
public-key encryption scheme and marking at the same time (i.e., a mark is
embedded into a circuit when generating public and secret encryption keys).

Definition 6 (Watermarkable PKE). A watermarkable public key encryp-
tion scheme with message space M, tag space T and ciphertext space CT is
a tuple of algorithms (WM.Gen,PKE.Mark,Enc, Dec,Extract) with the following
syntax:

– WM.Gen(1λ) → (params,mk, xk): On input the security parameter λ, it
outputs the public parameters params, a marking key mk, and an extraction
key xk. The marking key is private and it is kept by an authority, while
the extraction key may be either public or private depending on whether the
scheme allows public or private extraction.

– PKE.Mark(params,mk, τ)→ (pk, sk): On input the marking key mk, params,
and a tag τ ∈ T , it outputs a public-secret key pair (pk, sk).

– Enc(pk,m)→ c: On input a public key pk and a plaintext m ∈M, it outputs
a ciphertext c.

– Dec(sk, c) → m: On input a secret key sk and ciphertext c, it outputs a
plaintext m.

– Extract(params, xk,C)→ τ/⊥: On input xk, params and a circuit C which
maps CT to M, it outputs a tag τ ′ ∈ T or returns a special symbol ⊥,
indicating that the circuit is unmarked.

Remark 1. We say that a watermarkable PKE scheme supports public marking
if the marking key is equal to the public watermarking parameters are params =
mk. Otherwise we say that it only supports private marking. Similarly, we say
that a scheme supports public extraction if params = xk and private extraction
otherwise. In this work we focus in the private setting.

We now define correctness. In the definitions below, Decsk denotes a decryption
circuit with secret key sk embedded.

Definition 7 (Extraction correctness). We say that a watermarkable PKE
scheme satisfies extraction correctness if for any tag τ ∈ T , it holds that:

Pr

[
Extract(xk,Decsk) 6= τ (params,mk, xk)←WM.Gen(1λ)

(pk, sk)← PKE.Mark(params,mk, τ)

]
= negl(λ),

A watermarkable PKE scheme should be functionality-preserving, i.e. maintain
encryption correctness and IND-CPA security. We first define encryption cor-
rectness:

11



Definition 8 (Encryption Correctness). We say that a watermarkable PKE
scheme satisfies encryption correctness if for any tag τ ∈ T and any plaintext
m ∈M, it holds that:

Pr

 (params,mk, xk)←WM.Gen(1λ);
Dec(sk, c) 6= m (pk, sk)← PKE.Mark(params,mk, τ);

c← Enc(pk,m)

 = negl(λ)

We now define IND-CPA security for watermarked PKE. We require that IND-
CPA should hold even if the adversary gets to see the marking and extraction
keys mk, xk.

Definition 9 (IND-CPA security). We say that a watermarkable PKE scheme
satisfies IND-CPA security if for any tag τ ∈ T and for any PPT adversary A,

Pr


(params,mk, xk)←WM.Gen(1λ);

(pk, sk)← PKE.Mark(params,mk, τ);
A(cb) = b (m0,m1)← A(1λ, params,mk, xk, pk);

b
$← {0, 1}; cb ← Enc(pk,mb);

 =
1

2
+ negl(λ)

Before defining unremovability and unforgeability, we first define a number
of oracles, namely the Challenge, Corrupt and Extract oracles, which are crucial
part of the definitions of the security games of unremovability and unforgeability.

The Challenge, Corrupt and Extract oracles. The Challenge oracle, on in-
put a tag τ calls the PKE.Mark algorithm and returns only the (marked) public
key as output, along with an index i which shows how many times PKE.Mark
has been invoked so far. We note that in the definitions of unremovability and
unforgeability security games the index i will be initialized to 0. The Corrupt or-
acle, receives an index i as input and outputs the key pair (pki, ski) generated in
the i-th Challenge oracle query by the PKE.Mark algorithm. Finally, the Extract
oracle, receives as input a circuit, simply runs Extract algorithm on that input
and returns the corresponding output of the algorithm. The formal description
of the oracles is given below in Figure 3.

Furthemore, we define the notions of closeness and farness (cf. Definitions 10, 11)
which are crucial for correctly capturing the unremovability and unforgeability
notions respectively since those notions capture the notion of “useful” circuits as
discussed in Section 1.3. Specifically, in the simpler case of watermarking where
circuits are either marked or unmarked, when defining unremovability we have
to make sure that an adversary cannot create a circuit which is “close” to a
marked circuit but it is unmarked, while, unforgeability requires that it should
be difficult for an adversary to come up with a circuit which is “far” from a
marked circuit but it remains marked.

Definition 10. We say that a circuit C is ρ-close to a circuit Decsk, and we
denote C ∼ρ Decsk, if Pr

m
$←M

[C(Encpk(m)) = m] ≥ ρ.

12



ChallengeOracle(τ, ·): ExtractOracle(C):

1. i← i+ 1; 1. τ/⊥ ← Extract(xk, params,C);
2. (pki, ski)← PKE.Mark(params,mk, τ); 2. Return τ or ⊥ ;
3. Marked← Marked ∪ {

(
i, pki, ski, τi

)
};

5. Return (i, pki);

CorruptOracle(i):

1. Retrieve (i, pki, ski, τi) from Marked;
2. Corrupted← Corrupted ∪ {(i, pki, ski, τi)};
3. Return (i, pki, ski, τi);

Fig. 3: The Challenge, Corrupt and Extract oracles.

Definition 11. We say that a circuit C is γ-far from a circuit Decsk, and we
denote C �γ Decsk, if Pr

m
$←M

[C(Encpk(m)) 6= m] ≥ γ.

We now proceed by defining ρ-unremovability. In plain words, an adversary
should not be able to create a circuit which is ρ-close to a marked circuit gen-
erated by the Challenge oracle and at the same time the extraction algorithm
returns a different tag or unmarked. As discussed in Section 1.3, our unremov-
ability definition is stronger than that of [CHN+16] as it gives oracle access to
the adversary.

Definition 12 (ρ-unremovability). We say that a watermarking scheme sat-
isfies ρ-unremovability if for any PPT adversary A participating in the game
defined in Fig. 4 it holds that:

Pr[Gunrmv
ρ,A (1λ) = 1] = negl(λ).

Gunrmv
ρ,A (1λ):

1. The Challenger C runs WM.Gen(1λ) and outputs (params,mk, xk). It gives
params to the adversary A. Then, C sets Marked ← {}, Corrupted ← {} and
i← 0.

2. A issues queries to the ChallengeOracle, CorruptOracle, ExtractOracle.
3. A outputs a circuit C∗.
4. A wins the game iff

(a) there exists
(
j, pki, ski, τj) ∈ Marked such that C∗ ∼ρ Decskj , and

(b) Extract(xk, params,C∗) 6= τj .

Fig. 4: The ρ-unremovability game.
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Finally, we consider the notion of γ-unforgeability. At a high level, this prop-
erty requires that an adversary cannot create a marked circuit that is γ-far with
respect to any of the given marked circuits and at the same is marked.

Definition 13 (γ-unforgeability). We say that a watermarking scheme satis-
fies γ-unforgeability if for any PPT adversary A participating in the game defined
in Fig. 5, it holds that:

Pr[Gunforgeγ,A (1λ) = 1] = negl(λ).

Gunforgeγ,A (1λ):

1. The Challenger C runs WM.Gen(1λ) and outputs (params,mk, xk). It gives
params to the adversary A.Then, C sets Marked ← {}, Corrupted ← {} and
i← 0.

2. A issues queries to ExtractOracle, ChallengeOracle and CorruptOracle.
3. A outputs a circuit C∗.
4. A wins the game iff

(a) For all j s.t.
(
j, pkj , skj , τj

)
∈ Corrupted it holds that C∗ �γ Decskj , and

(b) Extract
(
params, xk, C∗

)
6= ⊥.

Fig. 5: The γ-unforgeability game.

4 Our Watermarkable PKE Scheme

As discussed in the introduction, our construction is based on a hybrid en-
cryption scheme for which the public-key has a similar structure to a Pailler
ciphertext, while the rest of the scheme (from the point of view of the user) be-
haves like an ElGamal encryption scheme. We exploit the structure of Z∗n2 , where
n = pq and p, q are primes. In our construction, p, q are safe primes, meaning
that they are of the form p = 2p′+1, q = 2q′+1 where p′, q′ are also primes. Wen
also require a pseudorandom function F , an authenticated symmetric encryption
scheme (S.Gen,S.Enc,S.Dec), and a collision resistant hash function H.

The tuple of (WM.Gen,PKE.Mark,Enc,Dec,Extract) algorithms that com-
prise our waterkable PKE scheme is presented below.

WM.Gen : On input 1λ,

– Run Param(1λ): Choose safe primes p = 2p′ + 1 and q = 2q′ + 1, where

p, q are of size at least bλ/2c + 1. Sample g
$← Z∗n2 and compute g1 = g2n

mod n2. Return params = (n, g1).
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We denote as Xn2 = 〈g1〉, the subgroup that contains all square n-th residues
modulo n2. Observe that the order of Xn2 is p′q′. Note that all elements in
Zn2 can be written in a unique way as gr1(1 + n)v(−1)α(p2p− q2q)β , where
r ∈ [p′q′], v ∈ [n], α, β ∈ {0, 1} and p1p

2 ≡ 1 mod q2 and q2q
2 ≡ 1 mod p2.

With Qn2 we denote the subgroup of quadratic residues modulo n2 which
can be seen that they contain all elements of the form gr1(1 + n)v, where
r ∈ [p′q′] and v ∈ Zn. The order of Qn2 is np′q′, one fourth of the order of
Z∗n2 . Recall that the order of Z∗n2 is nφ(n) = 4p′q′n.

– Let F : K × Y → {0, 1}λ/2 be a PRF and a key kp
$← K.

– Let (S.Gen,S.Enc,S.Dec) be an authenticated symmetric encryption scheme
with security parameter κ1 and message space T = {0, 1}κ2 and ciphertext
space {0, 1}λ/2. Run ke ← S.Gen(1κ1).

– Let H : {0, 1}∗ → {0, 1}κ3 be a hash function.
– Set the marking key asmk = (kp, ke), the extraction key as xk = (kp, ke, p

′, q′)
and the public parameters params = (n, g1).

– Choose δ ≥ 1/poly(λ).

We assume that the parameters κ1, κ2, κ3 and λ are compatible.

PKE.Mark: On input mk = (kp, ke), and a tag τ ∈ T ,

– Choose x
$← [n/4].

– Compute gx1 mod n2 and v1 = F (kp, (g
x
1 , τ)).

– Compute v2 = S.Enc(ke, H(v1)||τ).
– Concatenate v1 and v2, i.e. compute v = v1||v2. Compute h = gx1 (1 + n)v.
– Return pk = h = gx1 (1 + n)v, sk = (x, v).

Enc: On input m ∈ M and pk = (n, g1, h), choose r
$← [n2/4] and compute a

ciphertext ψ = 〈gr1 mod n2, (1 + n)r mod n2, hr ·m mod n2〉.

Dec: On input ψ = 〈a, b, c〉 and sk = (x, v), compute m̂ = (axbv)−1c.

Extract: On input xk = (kp, ke, p
′, q′) and a (decryption) circuit C,

(D1). Count← [ ]
(D2). Set ` = λ

δ2 and `∗ = λ
2δ2 .

(D3). For i = 1 to `:

(a) Choose r
$← [n/4], r′

$← [n/4], s, s′
$← Zn.

Compute ψi = 〈gr1, (1 + n)s, gr
′

1 (1 + n)s
′〉.

(b) Run the algorithm Gext of Figure 6 with inputs C and ψi.
(c) If Gext(C,ψi) returns

(
(yi, τi), vi,1

)
– if there is record

(
(yi, τi), vi,1, counti

)
in Count, set counti ← counti+

1. If no such record exists initialize counti = 1 and insert to the table
Count a record

(
(yi, τi), vi,1, counti

)
.

(D4). If there is a record
(
(yi, τi), vi,1, counti

)
in Count s.t. counti ≥ `∗ then return

τi, else, return unmarked.
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Gext: On input xk, C, ψi.

1. Run C(ψi). On output m̂i s.t. (m̂i 6= ⊥ ∧ m̂i ∈ Qn2) compute ĉ = m̂i
φ(n)

mod n2.
2. ẑ = (ĉ− 1)/n.
3. z = ẑ · φ(n)−1 mod n.
4. vi = −s−1(z − s′) mod n.

5. f = g−nr
′

1 m̂n
i mod n2.

6. yi =
(
f [n−1 mod p′q′][r−1 mod p′q′]

)−1
mod n2.

7. Split the bit representation of v into two parts of λ/2 bits each, i.e. vi =
vi,1||vi,2. Run hi||τi ← S.Dec(ke, vi,2)

8. If
(
hi||τi 6= ⊥ ∧ H(vi,1) = hi ∧ F (kp, (yi, τi)) = vi,1

)
return

(
(yi, τi), vi,1

)
.

Otherwise return ⊥.

Fig. 6: The Gext algorithm.

5 Security Analysis

In this section, we prove that the scheme (WM.Gen,PKE.Mark,Enc,Dec,Extract)
presented in Section 4 is a watermarkable PKE scheme according to the model
presented in Section 3.

Theorem 1. The scheme (WM.Gen,PKE.Mark,Enc,Dec,Extract) of Section 4
is a watermarkable PKE scheme assuming (1) that the DCR assumption holds,
(2) the DDHSQNR assumption holds, (3) F is a PRF, (4) (S.Gen,S.Enc,S.Dec)
is an authenticated encryption scheme that additionally satisfies indistinguisha-
bility between real and random ciphertexts and the hash function H is collision
resistant.

Proving Theorem 1 requires to prove that the properties defined in Section 3
are satisfied. We start in subsection 5.1 by proving that the watermarkable PKE
scheme satisfies encryption correctness and IND-CPA security. Then, we pro-
ceed in Sections 5.2 by proving extraction correctness property, and finally,
in Section 5.3 we prove that ρ-unremovability and γ-unforgeability properties
are satisfied, where ρ ≥ 1/2 + 1/poly(λ) and γ ≤ 1/2 − 1/poly(λ). Regard-
ing the ρ-unremovability notion, we note that the lower bound of Cohen et
al. [CHN+16] applies to our message-embedding construction. In particular, Co-
hen et al. [CHN+16] showed that message-embedding watermarking schemes
satisfy ρ-unremovability only if ρ ≥ 1/2 + 1/poly(λ).

Before proceeding to the detailed proofs, we present the following well-known
propositions which will be required for our analysis, i.e. Propositions 1, 2.

Proposition 1. Let Xn2 = 〈g1〉, the subgroup that contains all square n-th
residues modulo n2, with order p′q′. Let D1,D2 the following distributions.D1 :
(n, gr1) where r ← [p′q′], D2 : (n, gr1), where r ← [n/4]. D1,D2 are statistically
indistinguishable.
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Proposition 2. Let Xn2 = 〈g1〉, the subgroup that contains all square n-th
residues modulo n2, with order p′q′. Let D3,D4 the following distributions. D3 :
(n, gr1) where r ← [np′q′], D4 : (n, gr1), where r ← [n2/4]. D3,D4 are statistically
indistinguishable.

5.1 Encryption Correctness and IND-CPA security

Lemma 1 (Encryption Correctness). The Watermarkable PKE scheme pre-
sented in Section 4 satisfies the encryption correctness property.

Proof. We prove that for any m ∈ Xn2 , and any (pk, sk) generated by the
PKE.Mark algorithm, it holds that Dec(sk,Enc(pk,m)) = m. It can be easily
seen that (grx1 (1 + n)rv)−1grx1 (1 + n)rvm = m. ut

Lemma 2 (IND-CPA security). The Watermarkable PKE scheme of Sec-
tion 4 is IND-CPA secure under the DDHSQNR assumption.

Proof. We will prove this lemma by defining a sequence of games. By G0 we
denote the IND-CPA security game for the watermarkable PKE scheme.

Game G0: On input 1λ,

1. (n, g1)← Param(1λ); kp
$← K; ke

$← S.Gen(1κ1);mk = (kp, ke);xk = (p′, q′, kp, ke);

2. x
$← [n/4] ; v1 = F (kp, (g

x
1 , τ)); v2 = S.Enc(ke, H(v1)||τ);v = v1||v2; h =

gx1 (1 + n)v; pk = (n, g1, h); sk = (x, v);
3. (m0,m1)← A(pk,mk, xk);

4. b
$← {0, 1}; r $←

[
n2/4

]
; c = 〈gr1, (1 + n)r, hr ·mb〉;

5. b∗ ← A(c);

In the game G0, c = 〈gr1, (1 + n)r, grx1 (1 + n)rv ·mb〉.

Game G1: G1 is the same as G0, except the following: At Step 4 of the game,

the Challenger samples r1
$← [n/4], s1

$← [n] and computes c = 〈gr11 , (1 +
n)s1 , gr1x1 (1 + n)s1vmb〉.

Game G2: The game G2 is the same as G1 except the following: At Step 4

of game G2, the Challenger chooses r∗
$← [n/4] and computes c = 〈gr11 , (1 +

n)s1 , gr
∗

1 (1 + n)s1v〉.

Analysis.
• G1 is indistinguishable from G0 due to Propositions 1, 2: By Proposition 2, re-

call that sampling r uniformly from [n2/4] is indistinguishable from sampling r
uniformly from [np′q′]. If r is sampled from [np′q′] and r1 = r mod p′q′, s1 = r
mod n, then r1 is uniformly distributed [p′q′] and s1 is uniformly distributed
in [n]. When r appears over g1 which is of order p′q′, it can be substituted
by r1. Similarly, when r appears over an element of order n, it can be substi-
tuted with s1. By Proposition 1, sampling r1 uniformly from [p′q′] is statistically
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indistinguishable from sampling r1 from [n/4]. Therefore, G1 is statistically in-
distinguishable from G0, which means that∣∣Pr[G1 = 1]− Pr[G0 = 1]

∣∣ = negl(λ). (1)

• G1 and G2 are computationally indistinguishable under the DDHSQNR assumption:
Assuming that there is a PPT adversary A which distinguishes between the
games G1 and G2 with non-negligible probability α, we construct a PPT adver-
sary B which breaks the DDHSQNR assumption as follows.

B: On input 〈n, p′, q′, g1, y, gr1, v∗〉,

(a) Run the Steps 1,2 as in the games G1,G2.

(b) Upon receiving m0,m1 from A, choose b
$← {0, 1} and s

$← Zn. Compute
c = 〈gr1, (1 +n)s, v∗(1 +n)sv ·mb〉 and give c and the factorization of n to A.

(c) A outputs b∗ and then B outputs b∗ as well.

First, we note that since y
$← Xn2 , y = gx1 , for some x ∈ [p′q′]. We consider the

following cases regarding the value of v∗:

- v∗ = yr where r
$← [p′q′]: In this case, the ciphertext c which is provided to

A is of the form c = 〈gr1, (1 + n)s, gxr1 (1 + n)sv · mb〉. By proposition 1,
〈gr1, (1 + n)s, gxr1 (1 + n)sv ·mb〉 statistically indistinguishable from 〈gr1, (1 +

n)s, gxr1 (1 + n)sv ·mb〉 where r
$← [n/4]. Therefore, in this case, B interacts

with A as in the game G1 and thus

Pr[B(n, g1, y, g
r
1, y

r) = 1] = Pr[G1 = 1].

- v∗ = yr
′
: In this case, c is of the form 〈gr1, (1 + n)s, yr

′
(1 + n)sv · mb〉, i.e.

c = 〈gr1, (1+n)s, gxr
′+m′

1 (1+n)sv〉, wheremb = gm
′

1 for somem′ ∈ [p′q′]. Since
r′ is uniformly chosen and it is independent from the view of the adversary,
we have that xr′ + m′ is uniformly distributed in [p′q′]. This means that
B interacts with A as in the game G2. Thus, Pr[B(n, g1, y, g

r
1, y

r′) = 1] =
Pr[G2 = 1].

By the DDHSQNR assumption, we have that for any PPT adversary A,∣∣Pr[G2 = 1]− Pr[G1 = 1]
∣∣ ≤ negl(λ). (2)

• For any PPT adversary A, it holds that Pr[G2 = 1] = 1/2: This holds because
the ciphertext c in game G2 is independent of the messages m0,m1 chosen by
the adversary.

Therefore, it holds that for any PPT adversary A,
∣∣Pr[G0 = 1] − 1/2

∣∣ ≤
negl(λ). This completes our proof. ut
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5.2 Extraction Correctness

Lemma 3 (Extraction correctness). The Watermarkable PKE scheme of
Section 4 satisfies extraction correctness, under the following assumptions: (1)
correctness is satisfied (cf. Lemma 1), (2) F is a pseudorandom function and
(3) the symmetric encryption scheme (S.Gen,S.Enc,S.Dec) is correct.

Proof. Consider a pair (pk, sk)← PKE.Mark(params,mk, τ), where sk = (x, v)
with v = v1||v2 s.t. v1 = F (kp, (g

x
1 , τ)) and pk = (n, g1, h) with h = gx1 (1 + n)v.

We will prove that if Extract receives as input Decsk, it always returns τ . Let ψi =
〈gr1, (1+n)s, gr

′

1 (1+n)s
′〉 be a ciphertext generated as described at Step (D3)a of

the Extract algorithm. Following the steps 1-8 of the Gext algorithm of Figure 6,
we prove that Extract on input Decsk and ψi returns ((gx1 , τ), v1).

Step 1: Decsk(ψi) = gr
′−xr

1 (1+n)s
′−sv. Since m̂i = gr

′−xr
1 (1+n)s

′−sv ∈ Qn2 ,

we compute ĉ = m̂
φ(n)
i = g

φ(n)(r′−xr)
1 (1 + n)φ(n)(s

′−sv) = (1 + n)φ(n)(s
′−sv) =

1 + n[φ(n)(s′ − sv) mod n].
Step 2: ẑ = ĉ−1

n = φ(n)(s′ − sv) mod n.

Step 3: z = φ(n)−1ẑ mod n = φ(n)−1φ(n)(s′ − sv) = (s′ − sv) mod n.

Step 4: −s−1(z − s′) mod n = −s−1(s′ − sv − s′) mod n = v.

Step 5: f = g−nr
′

1 m̂n
i mod n2 = g−nr

′

1 g
n(r′−xr)
1 (1+n)n(s

′−sv) = g−nr
′

1 g
n(r′−xr)
1 =

g−nxr1 .

Step 6:
(
f [n
−1 mod p′q′][r−1 mod p′q′]

)−1
mod n2 =

(
g
−nxr[n−1 mod p′q′][r−1 mod p′q′]
1

)−1
=

gx1 .
Step 7: Split the bit representation of v into two parts of λ/2 bits each, i.e.

v = v1||v2. Due to the correctness property of the symmetric encryption scheme,
it holds that H(v1)||τ ← S.Dec(ke, v2).

Step 8: It holds that v1 = F (kp, (g
x
1 , τ)) and thereforeGext returns ((gx1 , τ), v1).

Since Gext returns ((gx1 , τ), v1) for any of the ciphertexts ψ1, . . . , ψ`, which are
generated by Extract at Step (D3)a, then Extract returns the message τ .

5.3 Proving unremovability and unforgeability properties

As it will become clear in the proofs of unremovability and unforgeability prop-
erties in this section, it is crucial that our watermarkable PKE scheme satisfies a
property called ciphertext indistinguishability. At a high-level, no PPT adversary
should be able to distinguish between the ciphertexts constructed as described
at Step (D3)a of the Extract algorithm and standard encrypted plaintexts, under
any public key pk. For the simplicity, we will refer to the ciphertexts computed
at Step (D3)a as “extraction ciphertexts”. We intuitively explain why this prop-
erty is essential in proving unremovability and unforgeability by presenting below
some simple scenarios where it is assumed that a potential attacker could dis-
tinguish between standard ciphertexts and extraction ciphertexts. The examples
below refer to the simpler case of watermarking where circuits are either marked
or unmarked.
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– Assume an attackerA against the ρ-unremovability game which has obtained
a pair (pki, ski) by issuing a CorruptOracle query. If A could distinguish “ex-
traction ciphertexts” from valid ciphertexts under pki, then it could con-
struct a circuit C∗ which runs Decski when receving as input an encrypted
plaintext under the key pki and returns ⊥ when receiving as input a “ex-
traction ciphertext”. Therefore, A wins the ρ-unremovability game since C∗

is “close” (specifically 1-close) to Decski and Extract on input C∗ returns ⊥,
i.e. unmarked.

– Assume an attacker A′ against the γ-unforgeability game which has obtained
a pair (pki, ski) through a query to the CorruptOracle. If A′ could distinguish
“extraction ciphertexts” from valid ciphertexts under pki, then it could con-
struct a circuit C∗ which returns ⊥ when receiving as input a valid ciphertext
under pki and runs Decski when receiving as input a “extraction ciphertext”.
In that case, A′ the attacker managed to break γ-unforgeability since C∗

which is “far” (specifically 1-far) from Decski but Extract would decide that
C∗ is marked the decryption circuit under the key sk which is at the same
time marked.

Before proving unremovability and unforgeability, we present some interme-
diate lemmas which will be necessary in our proofs. First,we show that for any
public key pk, even if the adversary is given the corresponding secret key sk,
the adversary is not able to distinguish between ciphertexts encrypted under pk
from ciphertexts prepared under Extract algorithm.

Lemma 4. Let τ ∈ T and pk = (n, g1, h), sk = (x, v) returned by PKE.Mark(mk, τ),

where x
$← [n/4], v = v1||v2, v1 = F (K, (gx1 , τ)), v2 = S.Enc(ke, H(v1)||τ) and

h = gx1 (1 + n)v. Assuming that the DCR assumption holds, F is a PRF and the
symmetric encryption scheme (S.Gen,S.Enc,Dec) satisfies real-or-random secu-
rity against chosen plaintext attacks (cf. Definition 5), it holds that

〈n, g1, x, v, gr1, (1+n)r, gxr1 (1+n)rv ·m〉
c
≈ 〈n, g1, x, v, gr11 , (1+n)s1 , gr21 (1+n)s2〉,

where r
$← [n2/4], r1, r2, x

$← [n/4], s1, s2
$← Zn and m

$← Xn2 .

The proof of the above is included in Appendix A.
Next, we proceed with the proof of Lemma 5, which shows that if Gext on

input dk, C∗ and “extraction ciphertext” ψ, at Step 4 outputs a value v ∈ Zn
and at Step 6 it outputs y = gx1 mod n2, then this implies that C∗ has run
Decsk(ψ), where sk = (x, v).

Lemma 5. Let ψ = 〈gr1, (1 + n)s, gr
′

1 (1 + n)s
′〉 where r

$← [n/4], r′
$← [n/4],

s, s′
$← Zn and let C∗ be a circuit which on input ψ returns m̂ s.t. (1) Gext at

Step 4 outputs v, and (2) Gext and Step 6 outputs gx. Then, m̂ = gr
′−xr

1 (1 +

n)s
′−sv mod n2.

The proof of the above Lemma is included in Appendix A.
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Test algorithm
Input: Two circuits C∗ and Decsk and M the input space of Encpk(·).
Parameters: δ ≥ 1/poly(λ), ρ ≥ 1/2 + δ.

1. Set cnt = 0 and ` = λ/δ2.
2. Sample m1, . . . ,m` independently and uniformly at random from M.
3. For j = 1, . . . , `, compute cj = Encpk(mj).
4. For j = 1, . . . , `, do

(a) Compute C∗(cj) = mj set cnt = cnt + 1.
5. If cnt ≥ λ

2δ2
return 1, otherwise return 0.

Fig. 7: Test algorithm.

Testing closeness between circuits. Below, we include standard bounds which
are utilized for testing closeness and farness between circuits.

Proposition 3. Let δ ≥ 1
poly(λ) , ρ > 1

2 + δ and γ ≤ 1
2 − δ.

– For any δ ≥ 1/poly(λ), if C∗ ∼ρ Decsk, then Pr[cnt < λ
2δ2 ] = negl(λ).

– For any δ ≥ 1/poly(λ), if C∗ �γ Decsk, then Pr[cnt < λ
2δ2 ] = 1− negl(λ).

Proposition 3 holds by Chernoff bounds.

Lemma 6 (ρ-Unremovability). The watermarkable PKE scheme (WM.Gen,
PKE.Mark,Enc,Dec,Extract) satisfies ρ-Unremovability under the following as-
sumptions: (1) correctness property is satisfied (cf. Lemma 1), (2) F is a pseu-
dorandom function and (3) ciphertext indisinguishability holds (cf. Lemma 4),
(4) the symmetric encryption scheme (S.Gen,S.Enc,S.Dec) satisfied integrity of
ciphertexts and (5) the hash function H is collision resistant.

Proof idea. We now provide the general idea behind our unremovability proof
and give the full proof in Appendix B.

Recall by the definition of the ρ-unremovability game that an adversary is
allowed to obtain a number of (watermarked) public-secret key pairs as well as
a number of public keys by issuing queries to the Corrupt and Challenge oracles
respectively. Given that, our first goal is to prove that an adversary is not able to
create a new valid watermarked secret key, e.g. possibly by combining the secret
keys that he possesses. In more detail, we prove that if an adversary issues a
circuit C as a query to the Extract oracle (or outputs C in the end of the game)
and the Extract oracle returns a tag τ , then this means that C implements the
decryption algorithm under one of the secret keys generated previously by the
challenger. We prove this via a sequence of hybrid games in the detailed proof.

In each of the hybrid games the algorithm Gext is gradually altered so that in
the game G4, the modified Gext (renamed as G4

ext) performs as follows: On input
a circuit C and a extraction ciphertext ψ, if a value y = gx1 is computed at Step 6
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and a value v is computed at Step 4 it simply checks whether there is a secret
key (x, v) generated previously by the Challenge oracle. Recall by the definition
of the ρ-unremovability game that the challenger stores every public-secret key
pair which is generated together with the corresponding tag (such information
is stored at a table called Marked). Therefore, if such secret key sk = (x, v)
exists, the tag τ associated with the secret key sk would be returned as the
output of the Extract algorithm (assuming that for the majority of extraction
ciphertexts given as input to Gext, the same (x, v) will be computed). Based on
Lemma 5, this implies that the decryption algorithm under the key sk = (x, v)
has been run by the circuit C for the majority of ciphertexts. Given that, in the
hybrid game G5 the computation of the (modified) Gext algorithm, i.e. Steps 1-6,
are replaced by an algorithm which pre-computes how the extraction ciphertext
which is received as input is decrypted by each secret key that has been generated
so far. Then, by running the circuit with input the extraction ciphertext, and
matching the output with the previous results, the algorithm infers which secret
key has been used for the decryption (assuming there is one).

Then, since the first winning condition of the ρ-unremovability game is that
the circuit C∗ output by the adversary should be ρ-close to a marked decryption
circuit, the challenger can guess such a circuit (cf. hybrid game G6). Based on
that and the ciphertext indistinguishability property of the watermarkable PKE
scheme (cf. Lemma 4) the challenger can gradually substitute extraction cipher-
texts sampled in the Step (D3)a with encrypted plaintexts under the marked
public key guessed by the challenger. We note that the plaintexts which are en-
crypted at this stage are chosen uniformly at random from the plaintext space.
The above change is performed in the hybrid games G7,1- G7,` and in the game
G7,` the adversarial circuit C∗ in run on input ` encrypted plaintexts under the
aforementioned public key and it is checked how which portion of such cipher-
texts is decrypted correctly by C∗ in order to decide whether C∗ is marked or
not. Last, by utilizing a Chernoff bound, we prove that if C∗ is ρ-close to a
decryption circuit then it cannot decrypt correctly less than ` ciphertexts except
with negligible probability. To put it differently, C∗ will be detected as marked
with the tag τ which was initially related with this specific public-secret key pair
(i.e. was given as input to the Mark algorithm).

Lemma 7 (γ-Unforgeability). The watermarkable PKE scheme (WM.Gen,
PKE.Mark,Enc,Dec,Extract) satisfies γ-unforgeability under the following as-
sumptions: (1)ciphertext indistinguishability holds (cf. Lemma 4), (2) IND-CPA
security holds , (3) F is a pseudorandom function.

Proof sketch. Without loss of generality, we assume that an adversary A in-
teracting with a Challenger in the unforgeability game Gunforgeγ,A issues q1 queries
to the ChallengeOracle, q2 queries to the CorruptOracle and q3 queries to the
ExtractOracle. This means that q1 public-secret key pairs have been generated
by PKE.Mark, i.e. (pk1, sk1), . . . , (pkq1 , skq1), the adversary has obtained all the
public keys, but also A has obtained q2 public-secret key pairs, i.e. (pkj1 , skj1)
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. . . , (pkjq2 , skjq2 ). Recall that A wins if (1) for any Decski ∈ Corrupted, C∗ is
γ-far from Decski , and (2) Extract(params, xk,C∗) = τ 6= ⊥.

This proof is similar to the unremovability proof. Let us first provide some
intuition on a potential scenario where unforgeability is broken. Assume an ad-
versary which holds at least two secret keys could combine their components
(i.e. the values vi,1, vi,2 of the component v = vi,1||vi,2) and obtain a new valid
“watermarked” secret key, then the decryption algorithm would be far from any
decryption algorithm in the set Corrupted and Extract would return would ex-
tract a tag indicating that the circuit is marked. Intuitively, this is prevented
due to the fact that the components vi,1, vi,2 are related between each other as
vi,2 encrypts H(vi,1)||τ . In addition, by requiring that the symmetric encryption
scheme is authenticated, an adversary cannot create new valid ciphertexts on
its own. This combination essentially ensures that new valid watermarked secret
keys cannot be easily created. We follow the same sequence of games as described
in the unremovability game.

In particular, in the sequence of games G0-G5 it has been proved that if an
adversary issues a circuit C as a query to the Extract oracle (or outputs C in the
end of the game) that is marked with a tag τ , then this means that C implements
the decryption algorithm under one of the secret keys generated previously by
the challenger. Due to Lemma 5, in the hybrid game G5 the computation of the
(modified) Gext algorithm, i.e. Steps 1-6, are replaced by an algorithm which pre-
computes how the extraction ciphertext which is received as input is decrypted
by each secret key that has been generated so far. Then, due to ciphertext indis-
tinguishability “extraction ciphertexts” can be replaced by standard ciphertexts
under a chosen public key (chosen uniformly at random by the challenger). Since
for any Decski ∈ Corrupted, C∗ should be γ-far from Decski , by Proposition 3, C∗

decrypts correctly `∗ out of ` ciphertexts only with negligible probability. There-
fore, the only chance that an adversary wins the unforgeability game is breaking
the IND-CPA security of the watermarkable PKE scheme (cf. Lemma 2), as the
adversary should decrypt correctly at least `∗ out of ` ciphertexts under a secret
key that it does possess, i.e. it does not belong to the set Corrupted.
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Supplementary Material

A Proof of Lemmas 4 and 5

Proof of Lemma 4. Due to the fact that F is a PRF, and (S.Gen,S.Enc,Dec)
satisfies real-or-random security against chosen plaintext attacks , the distribu-
tion 〈n, g1, x, v, gr1, (1+n)r, gxr1 (1+n)rv ·m〉 is computationally indistinguishable
from the following distribution D1. We denote as D1 the distribution:

〈n, g1, x, v, gr1, (1+n)r, gxr1 (1+n)rv·m〉, g1
$← Xn2 , x

$← [n/4], v
$← [n], r

$← [n2/4],m
$← Xn2 .

By Proposition 2, we have that D1 is statistically indistinguishable from D2,
where D2 is the following distribution:

〈n, g1, x, v, gr1, (1+n)r, gxr1 (1+n)rv·m〉, g1
$← Xn2 , x

$← [n/4], v
$← [n], r

$← [np′q′],m
$← Xn2 .

Based on the Chinese Remainder Theorem, D2 can be rewritten as follows. We
denote as D3 the following distribution:

〈n, g1, x, v, gr11 , (1+n)s1 , gxr11 (1+n)s1v·m〉, g1
$← Xn2 , x

$← [n/4], s1, v
$← [n], r1

$← [p′q′],m
$← Xn2 .

DCR assumption implies that no PPT adversary can distinguish between a ran-
dom quadratic residue and a random square n-th residue. Therefore, by DCR as-
sumption, we have that D3 is computationally indistinguishable from D4, where
D4 is defined as follows:

〈n, g1, x, v, gr11 , (1+n)s1 , gxr11 (1+n)s1v·m〉, g1
$← Xn2 , x

$← [n/4], s1, v
$← [n], r1

$← [p′q′],m
$← Qn2 .

Since m ∈ Qn2 , it can be written as m = gr
∗
(1 + n)s

∗
for some r∗ ∈ [p′q′] and

s∗ ∈ [n]. Based on that, D4 can be rewritten as D5:

〈n, g1, x, v, gr11 , (1+n)s1 , gxr1+r
∗

1 (1+n)s1v+s
∗
〉, g1

$← Xn2 , x
$← [n/4], s∗, s1, v

$← [n], r∗, r1
$← [p′q′].

Since r∗, s∗ are independent of the view of the adversary and are uniformly
distributed in [p′q′] and in [n] respectively, D5 is statistically indistinguishable
from D6:

〈n, g1, x, v, gr11 , (1+n)s1 , gr21 (1+n)s2〉, g1
$← Xn2 , x

$← [n/4], s1, s2, v
$← [n], r1, r2

$← [p′q′].

By Proposition 1, it holds that D6 is statistically indistinguishable from D7:

〈n, g1, x, v, gr11 , (1+n)s1 , gr21 (1+n)s2〉, g1
$← Xn2 , x

$← [n/4], s1, s2, v
$← [n], r1, r2

$← [n/4].

This completes our proof. ut
Next, we proceed with the proof of Lemma 5, which is utilized in the unre-

movability and unforgeability proofs.

26



Proof of Lemma 5. First, we follow Steps 1-4 in reverse order to see what it
means m̂ that Extract extracts v at Step 4.

Step 4: v = −s−1(z− s′) mod n. Note that s, s′ are chosen by Extract to create
ψi. Since s−1 is unique, z = s′ − svi.
Step 3: z = ẑφ(n)−1 mod n. This implies that ẑ = zφ(n) = (s′ − sv)φ(n)
mod n.
Step 2: ẑ = (ĉ− 1)/n. Thus, ĉ = 1 + [φ(n)(s′ − sv) mod n] · n.
Step 1: m̂φ(n) = 1+[φ(n)(s′−sv) mod n]·n mod n2 = (1+n)[φ(n)(s

′−sv) mod n]

mod n2.

Next, we follow Steps 5-6 in reverse order:

Step 6: gx =
(
f [n
−1 mod p′q′][r−1 mod p′q′]

)−1
mod n2. This means that f =

g−nxr1 .

Step 5: f = g−nr
′

1 m̂n mod n2. Thus, g−nxr1 = g−nr
′

1 m̂n mod n2, and m̂n =

gnr
′−nxr

1 .
Therefore, regarding m̂, we conclude that

(1) m̂n = gnr
′−nxr

1 and (2) m̂φ(n) = 1 + [φ(n)(s′ − sv) mod n] · n mod n2.

Since at Step 1, Gext checks whether m̂ ∈ Qn2 , we have that m̂ = gr
∗
(1 + n)s

∗
,

for some r∗ ∈ [p′q′] and s∗ ∈ [n]. Therefore, m̂n = gnr
∗

1 . By condition (1) , we
have that

gnr
∗

1 = gnr
′−nxr

1 .

Therefore, nr∗ = n(r′ − xr) mod p′q′. Since gcd(n, φ(n)) = 1, we have that
r∗ = (r′ − xr) mod p′q′. Next, m̂φ(n) = (1 + n)s

∗φ(n) mod n2. By (2), we have
that

(1 + n)s
∗φ(n) mod n2 = (1 + n)[φ(n)(s

′−sv) mod n] mod n2.

Therefore, s∗φ(n) = φ(n)(s′ − sv) mod n. Since gcd(n, φ(n)) = 1, this holds
only if s∗ = s′ − sv mod n. ut

B Proof of Lemma 6

Proof. We structure our proof by using a sequence of games. Without loss of
generality, we assume that A makes q1 queries to the ChallengeOracle, q2 ≤ q1
queries to the CorruptOracle and q3 queries to the ExtractOracle.

Game G0: G0 is the game Gunrmv
ρ,A (1λ).

Game G1: G1 is the same as G0 except the following: After the adversary
outputs a circuit C∗ at Step 3 of the unremovability game, G0 the challenger
runs as follows: (a) For j ∈ {1, . . . , q1}, the challenger runs the Test algorithm
of Fig. 7 on inputs C∗ and Decskj and checks if there is j s.t. Test algorithm
returns 1. (b) Checks whether Extract(xk,C∗) 6= τj . If both conditions (a), (b),
are satisfied then the adversary wins.

27



Game G2: G2 is the same as G1 except that the PRF function F is substi-
tuted by a random function in the following way: Whenever v1 = F (kp, (g

x
1 , τ))

is computed for the first time in G0, the Challenger chooses v1
$← Zn and stores(

(gx1 , τ), v1
)
, so that in any subsequent call of F (kp, (g

x
1 , τ)) the only correct an-

swer is v1. In addition to the table Marked which stores the public-secret key pairs
generated through ChallengeOracle queries, WM.Gen initializes a table Marked′

as empty. Below we describe how the simulation of the adversary’s queries is
modified.

– ChallengeOracle queries: On the t-th query to the ChallengeOracle,for a tag

τt ∈ T , the Challenger chooses xt
$← [n/4], vt,1

$← {0, 1}λ/2 and computes
vt,2 = S.Enc(ke, H(vt,1)||τt). Then, the Challenger computes vt = vt,1||vt,2
and pkt = gxt1 (1 +n)vt . It stores (pkt, skt) in the t-entry of the table Marked
and also it stores

(
(yt, τt), vt,1, vt,2

)
in the table Marked′, where yt = gxt1 . It

returns pkt to A.
– CorruptOracle queries: On the t-th query to the CorruptOracle, the Challenger

retrieves the t-th entry of the table Marked and returns (pkt, skt, τt) to A.
Then, it stores

(
(yt, τt), vt,1, vt,2

)
to the table Corrupted′.

– ExtractOracle queries: On input a circuit C, instead of running Extract(xk,C),
it runs Extract1(xk,C) which works in the same way as Extract except that
Gext is substituted by a modified algorithm G1

ext which performs as Gext ex-
cept for the Step 8:
Step 8 of G2

ext: If
(
hi||τi 6= ⊥ ∧ H(vi,1) = hi ∧ ∃

(
(yi, τi), vi,1

)
∈ Marked′

)
return

(
(yi, τi), vi,1

)
, otherwise return ⊥.

Game G3: G3 is the same as G2 except the following. First, in the beginning
a set S is initialized as empty. For any query τt to the ChallengeOracle, the
value vt,2 generated by the Challenger is added to the set S. Second, Extract2 is
substituted by Extract3 with the the following modifications. Step 8 of the G2

ext

algorithm (which is now renamed as G3
ext) is split into two steps as follows:

Step 8 of G3
ext:

(8a) If
(
hi||τi 6= ⊥ ∧ vi,2 /∈ S) return ⊥.

(8b) If
(
H(vi,1) = hi ∧∃

(
(yi, τi), vi,1

)
∈ Marked′

)
return

(
(yi, τi), vi,1

)
. Otherwise

return ⊥.

Game G4: Game G4 performs exactly as G3 except that Extract3 algorithm is
substituted by the Extract4 algorithm where a modified algorithm G4

ext is run. In
plain words, Step 8 of G4

ext(xk,C, ψ) is omitted and at Step 7, decryption of the
value vi,2 is not performed. Instead, it is simply checked whether the extracted
record exists in the table Marked′, i.e. whether it corresponds to one of the issued
secret keys. Step 7 is described below:
Step 7 of G4

ext: Split the bit representation of vi into two parts of λ/2 bits each,

i.e. vi = vi,1||vi,2. If there is a record
(
(yi, τi), vi,1, vi,2

)
in Marked′, return(

(yi, τi), vi,1
)
.

Game G5: Game G5 is the same as G4 except the following: Any call to
Extract4 algorithm is substituted by a call to an algorithm Extract5, where G4

ext
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is substituted by an algorithm G5
ext described in Figure 8. Recall that q1 de-

notes the number of queries issued to the ChallengeOracle and that each public-
secret key pair (pki, ski), where i ∈ {1, . . . , q1}, which is generated through a
ChallengeOracle query is stored in the table Marked. The algorithm G5

ext, on in-
put a circuit C and a “extraction ciphertext” ψi, computes in advance how ψi is
decrypted by each secret key and then checks if the output C(ψi) matches any
of the decrypted values.

G5
ext: On input C and ψi,

(1) Temp← [ ].
(2) For j ∈ {1, . . . , q1}

– Compute Decskj (ψi) = m̂i,j and set Temp[j] = m̂i,j .

(3) Run C(ψi) = m∗. If there is j ∈ {1, . . . , q1} s.t. m∗ = m̂i,j return (g
xj
1 , vj).

Fig. 8: The modified algorithm G5
ext.

Game G6: G6 is the same as G5 except the following. After the completion
of the query phase where the Challenger responds to the queries of the ad-

versary, the Challenger chooses j∗
$← {1, . . . , q1}, where q1 is the number of

ChallengeOracle queries. The winning conditions are modified as follows. An ad-
versary A wins if it outputs C∗ s.t.
– C∗ is ρ-close to Decskj∗ and
– Extract6(xk,C∗) 6= τj∗.

We note that Extract6 algorithm is the same as Extract5, however we change the
notation for consistency in the description of the hybrid games.

Game G7: The game G7 is the same as G6 except the following. Upon re-
ceiving C∗ from an adversary after the query phase, the Challenger instead of
running Extract6 on input C∗, it runs Extract7 which first, instead of sampling
` extraction ciphertexts, it samples 2` extraction ciphertexts. For the first ` ex-
traction ciphertexts it checks if there is skj 6= skj∗ that decrypts correctly at
least `∗ ciphertexts of those ciphertexts. For the remaining ` extraction cipher-
texts, it checks if at least `∗ ciphertexts are correctly decrypted under the key
skj∗. Extract7 is defined below.
Extract7: On input a circuit C,

(D1). Count← [ ].
(D2). Set ` = λ

δ2 and `∗ = λ
2δ2 .

(D3). For i = 1 to `:

i. Choose r, r′
$← [n/4], s, s′

$← Zn. Compute ψi = 〈gr1, (1+n)s, gr
′

1 (1+n)s
′〉.

ii. Choose r1, r
′
1

$← [n/4], s1, s
′
1

$← Zn. Compute ψ′i = 〈gr11 , (1+n)s1 , g
r′1
1 (1+

n)s
′
1〉.

iii. Run G7
ext of Figure 9 on inputs C,ψi, ψ

′
i.
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iv. If G7
ext returns (yi, vi)

– If there is a record
(
(yi, vi), counti

)
in the table Count, set counti ←

counti+1, otherwise insert a record
(
(ŷi, v̂i), counti

)
with counti = 1.

(D4). If there is a record
(
vi, yi), counti

)
in Count s.t. counti ≥ `∗, then return

marked, else, return unmarked.

G7
ext: On input C and ψi,

(a) Temp← [ ].
(b) For j ∈ {1, . . . , q1} \ {j∗}

– Compute Decskj (ψi) = m̂i,j and set Temp[j] = m̂i,j .
(c) Compute Decskj∗ (ψ′i) = m̂i,j∗ .
(d) Run C(ψi) = m∗. If m∗ 6= ⊥ and there is j ∈ {1, . . . , q1} \ {j∗} s.t. m∗ = m̂i,j

return (g
xj
1 , vj). Otherwise, run C(ψ′i) = m′. If m′ = m̂i,j∗ return (g

xj∗
1 , vj∗).

Fig. 9: The modified algorithm G7
ext.

Next, we define a sequence of ` games. For any i ∈ {1, . . . , `}, G7,i is defined as
follows. By G7,1 we denote the game G7 described above.

Game G7,i: G7,i differs with G7,i−1 only in the way the ciphertext at i-th

ciphertext of Step 7((D3))ii is selected. In the game G7,i, the i-th ciphertext is
an encryption of a random plaintext under the key pkj while in the game G7,i−1
it is an “extraction ciphertext”.

Security Analysis.

Claim 7.1: If there is a PPT adversary breaking the game G0 with non-negligible
probability, then there is a PPT adversary breaking the game G1 with non-
negligible probability.

Proof of Claim 7.1: Assuming that an adversary A wins the game G0 with non-
negligible probability α, then A′ breaks the game G1 with probability α−negl(λ),
based on Proposition 3. This is straightforward since the Test algorithm of Fig.
7 will return 1 if cnt ≥ λ

2δ2 and based on Proposition 3, if C∗ ∼ρ Decsk (which

was the original winning condition of G0), then Pr[cnt < λ
2δ2 ] = negl(λ).
(End of Claim 7.1) a

Claim 7.2: If there is a PPT adversary breaking the game G1 with non-negligible
probability, then there is a PPT adversary breaking the game G2 with non-
negligible probability.

Proof of Claim 7.2:
We will prove that if there is a PPT adversary A winning the game G1,

with non-negligible probability then there is an adversary that wins G2 with
non-negligible probability unless the PRF assumption is violated. Then, we con-
struct a PPT distinguisher D which distinguishes between a PRF and a random
function, thus breaking Definition 3 as follows.
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Distinguisher D with oracle access to an oracle O : X → {0, 1}λ/2:

– D runs an adversary A playing the role of the challenger in the game G1:
When simulating a query to the ChallengeOracle, e.g. the t-th query, D

chooses a value xt
$← [n/4], computes gx1 mod n2 and issues a query (gxt1 , τt)

to the oracle O. Upon receiving a value vt,1, D proceeds as described in
the game G1. When D simulates a query to the ExtractOracle for a circuit
C, it runs Extract(params, xk, C) with the following difference: At Step 8
of the Gext(params, xk, C, ψi) algorithm, where i ∈ {1, . . . , `}, if a record(
(gxi1 , τi), vi,1) has been extracted and

(
(gxi1 , τi), vi,1) /∈ Marked′, then D is-

sues a query O(gxi1 , τi) which returns v∗i,1. If v∗i,1 = vi,1, it sets counti = 1

and inserts
(
(gxi1 , τi), vi,1, counti

)
to the table Count. Otherwise Gext returns

⊥.
– A outputs C∗.
– It runs Steps (a),(b) of the algorithm G′0 If both conditions are satisfies then
D outputs 1, else it outputs 0.

Now, assume that D has access to the PRF oracle F (kp, ·), where kp
$← K.

Then it is easy to see that D interacts with A exactly as in the game G1.

Pr
kp

$←K
[DF (kp,·)(1λ) = 1] = Pr[G1 = 1]. (3)

If D has oracle access to a random function, this means that in each run of
Gext algorithm, the adversary can only guess the same vi,1 value sampled by
the oracle O with probability 1/2λ/2. Since q3 + 1 queries are issued to the

ExtractOracle, the probability that a “valid” vi,1 is guessed by A equals (q3+1)`
2λ/2

,
which is negligible in λ. This means that

Pr
kp

$←K
[Df(·)(1λ) = 1] = Pr[G2 = 1] +

(q3 + 1)`

2λ/2
. (4)

By the Definition of a PRF, we have that for any PPT adversary A it holds
that

∣∣Pr[G1 = 1]− Pr[G2 = 1]
∣∣ ≤ negl(λ). (End of Claim 7.2) a

Claim 7.3: The games G2, G3 are computationally indistinguishable if the sym-
metric encryption scheme (S.Gen,S.Enc,S.Dec) satisfies integrity of ciphertexts
(cf. Definition 4).

Proof of Claim 7.3: Due to the structure of the games G2, G3, the only way that
a PPT adversary A distinguishes between G2 and G3 is if the following event
takes place:

Bad = “A issues a circuit C s.t. Extract2(xk,C) = τi but Extract3(xk,C) = ⊥.”

Recall (1) that τi is one of the tags issued previously as input for a ChallengeOracle
query and (2) that we have assumed that A issues q3 queries to the ExtractOracle
and in the end of the (modified) unremovability games it outputs a circuit C∗.
We will prove that Pr[Bad] = negl(λ). Let A be a PPT adversary against game
G2, we will construct a PPT adversary B against the G int−ctxtB game (cf. Figure 1)
as follows:
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1. B generates all the parameters of the watermarking scheme by running the

WM.Gen(1λ) excluding the symmetric key ke. B chooses i∗
$← {1, . . . , q3 +1}

and provides to A the public parameters params = (n, g1).
2. When A queries the ChallengeOracle on input a tag τi, B runs the PKE.Mark

algorithm with the difference that it computes the value vi,2 by issuing a
query to the Challenger of the integrity of ciphertexts game with input
H(vi,1)||τi. B. Upon receiving a ciphertext vi,2 from the Challenger, it stores
vi,2 to a set S′, computes the public key pki returns it to A.

3. Regarding the queries of A to the ExtractOracle, they are answered as follows:
On input C, B runs the algorithm Extract2 with the following differences:
For any ψj sampled at Step (D3)a, B runs Gext(xk,C, ψj) and at Step 7, B
checks:
(a) if vi,2 ∈ S′ then returns to A the corresponding plaintext, previously

issued as a query the integrity of ciphertexts game.
(b) if vi,2 /∈ S′ and this is not the i∗-th query to the ExtractOracle stop the

game.
(c) if vi,2 /∈ S′ and this is the i∗-th query to the ExtractOracle then B returns

vi,2 as the ciphertext/output of the integrity of ciphertexts game.

We denote as Bad′ the event that vi,2 /∈ S is extracted by theGext algorithm in
some of the (q3+1)` runs. It is easy to see that only if the event Bad′ takes place,
the event Bad can happen. Based on the above, Pr[B wins] ≥ Pr[Bad′]/(q3 + 1).
Based on that, Pr[Bad′] ≤ negl(λ). (End of Claim 7.3) a
Claim 7.4: The games G3, G4 are computationally indistinguishable assuming
that the hash function H is modeled as a random oracle.

Proof of Claim 7.4: An adversary could distinguish between the games G3, G4
two queries on input the same tag τ , are issued to the challenge oracle, e.g. the
i-th and the j-th query, and at the same time H(vi,1) = H(vj,1). Due to the fact
that H is collision resistant, this probability equals 1/2κ3 .

(End of Claim 7.4) a
Claim 7.5: The games G4, G5 are indistinguishable due to Lemma 5.
Proof of Claim 7.5: Recall that if Gext (and consequently G4

ext) on input a cir-
cuit C and a extraction ciphertext ψi returns a pair (g

xj
1 , vj), this means that

(g
xj
1 , vj) ∈ Marked∗ and therefore skj = (xj , vj) has been previously generated

through a query to the ChallengeOracle. Lemma 5 shows that if C on input ψi
returns a pair (g

xj
1 , vj), then it holds that C(ψi) = Decskj (ψi). Based on that,

instead of applying Steps 1-7 of G4
ext, it is equivalent to check whether there

is skj that has been previously generated s.t. C(ψi) = Decski(ψi). This is the
check that is performed by G5

ext algorithm (cf. Figure 8) which is run by Extract5
algorithm in the game G5. (End of Claim 7.5) a
Claim 7.6: If there is a PPT adversary breaking the game G5 with non-negligible
probability, then there is a PPT adversary breaking the game G6 with non-
negligible probability.
Proof of Claim 7.6: Since the index j∗ is chosen uniformly at random, C guesses
the correct index j targeted by the adversary for the “unremovability attack”
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with probability 1/q1 where q1 is the number of queries to the ChallengeOracle.
(End of Claim 7.6) a

Given Claim 7.6, it suffices to prove that for any PPT adversary A, Pr[G6 =
1] = negl(λ). We will prove this by the following claims. First, note that the
games G6, G7,0 are indistinguishable since we assume that every circuit is reset
after producing an output on a particular input. Therefore, since the inputs
sampled by Extract7,0 follow the same distribution with the inputs sampled by
Extract6, an adversary is not able to distinguish between the games G4 and G7,0.

Claim 7.7: For any i ∈ {1, . . . , `}, the games G7,i, G7,i−1 are computationally
indistinguishable due to ciphertext indistinguishability (i.e. Lemma 4).
Proof of Claim 7.7: We will show that if G7,i, G7,i−1 were not computationally
indistinguishable, then Lemma 4 does not hold. Specifically, we will construct a
PPT distinguisher B which distinguishes the tuples 〈n, g1, x, v, gr1, (1+n)r, hr ·m〉,
〈n, g1, x, v, gr11 , (1 + n)s1 , gr21 (1 + n)s2〉.
B : On input 〈n, g1, x, v, a, b, c〉,

1. Compute pk = gx1 (1 + n)v and set sk = (x, v).

2. B chooses j
$← {1, . . . , q1} and set pkj = pk and skj = sk.

3. B interacts with a PPT adversary A by playing the role of the Challenger
as in the modified unremovability game G7,i. B responds to the queries of A
in by performing the same computations as the Challenger in the game G7,i,
except that in j-th query to the ChallengeOracle, B stores the pair (pkj , skj)
to the table Marked and returns pkj to A.

4. Upon receiving C∗ from A, B runs Extract7,i in input C∗ but with the follow-
ing difference: At the i-th iteration of the Step 7((D3))ii B sets ψ′i = 〈a, b, c〉
and provides ψ′i as input to C∗. If the above algorithm returns marked, then
B returns 1, otherwise B returns 0.

Analysis of the reduction. Assume that B receives an input of the form
〈n, g1, xj , vj , gr1, (1 + n)r, hrj · m〉. This implies that B simulates perfectly the
game G7,i in the eyes of A. Hence,

Pr[B(n, g1, xj , vj , g
r
1, (1 + n)r, hrj ·m) = 1] = Pr[G7,i = 1]. (5)

If B receives an input of the form 〈n, g1, xj , vj , gr
′

1 , (1 + n)s, gr
′′

1 (1 + n)s
′′〉, this

means that B simulates the game G7,i−1 in the eyes of A. Therefore,

Pr[B(n, g1, xj , vj , g
r′

1 , (1 + n)s, gr
′′

1 (1 + n)s
′′
) = 1] = Pr[G7,i−1 = 1]. (6)

By (5), (6), it follows that |Pr[G7,i = 1]− Pr[G7,i−1 = 1]| ≤ negl(λ).
(End of Claim 7.7) a

Claim 7.8: For any PPT adversary A, it holds that Pr[G7,` = 1] = negl(λ).
Proof of Claim 7.8: This claim holds due to Proposition 3. (End of Claim 7.8)
a
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