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Abstract. Public-key cryptography (PKC), including conventional cryp-
tosystems (e.g., RSA, ECC) and post-quantum cryptography, involves
computation-intensive workloads. With noticing the extraordinary com-
puting power of AI accelerators, in this paper, we further explore the fea-
sibility to introduce AI accelerators into high-performance cryptographic
computing. Since AI accelerators are dedicated to machine learning or
neural networks, the biggest challenge is how to transform cryptographic
workloads into their operations, while ensuring the correctness of the re-
sults and bringing convincing performance gains.

After investigating and analysing the workload of the commercial off-
the-shelf AI accelerators, we utilize NVIDIA’s AI accelerator, Tensor
Core, to accelerate the polynomial multiplication, usually the most time-
consuming part in lattice-based cryptography. A series of measures are
taken, such as accommodating the matrix-multiply-and-add mode of
Tensor Core and making a trade-off between precision and performance,
to leverage Tensor Core as a high-performance NTT box performing
NTT/INTT through CUDA C++ WMMA API. Meanwhile, we take
CRYSTALS-Kyber, one of the NIST PQC 3rd round candidates, as a
case study on RTX 3080 with the Ampere Tensor Core. The empirical
results show that the defined NTT of polynomial vector (n = 256, k = 4)
with our NTT box obtains a speedup around 6.47x that of the state-
of-the-art implementation on the same platform. Compared with the
AVX2 implementation submitted to NIST, our Kyber-1024 can achieve
a speedup of 26x, 36x, and 35x for each phase.

Keywords: Lattice-Based Cryptography · Polynomial Multiplication
Over Rings · NTT · AI accelerator · Tensor Core · Kyber.
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1 Introduction

Quantum computing and Shor’s algorithm [30] have raised concern about the se-
curity of conventional public-key schemes, such as widely used RSA and ECDSA.
In this situation, a new class of cryptosystem with anti-quantum properties,
which is known as post-quantum cryptography (PQC, sometimes referred to as
quantum-proof, quantum-safe, or quantum-resistant), is in urgent need. To this
end, NIST has initiated a process to solicit, evaluate, and standardize one or
more quantum-resistant public-key cryptographic algorithms in 2017 [23].

Up to now, many quantum-resistant schemes have been proposed. The secu-
rity is based on different mathematical hard problems, such as the code-based
and the hash-based, among which the lattice-based hardness is the most pre-
vailing one. Performance is an important metric in the evaluation of crypto-
graphic algorithms, and thus many research efforts are made to improve the
performance of lattice-based cryptography (LBC). Generally speaking, for the
cryptographic schemes based on lattice related problem, such as Ring-LWE [17],
Module-LWE [6,15], and Module-LWR [3], polynomial multiplication (over the
ring Rq) and hash functions are the time-consuming parts. The hash functions
mainly involve bit operations, which can be accelerated by the current commer-
cial off-the-shelf products with processor-aided accelerations (e.g., SHA exten-
sion in ARM and Intel CPU). In this way, the principal efforts in LBC acceler-
ation focus on the polynomial multiplication part.

Apart from adopting the Karatsuba multiplication [14] and the Toom-Cook
algorithm [31] to improve polynomial multiplication, the more prevailing practice
is to exploit Number Theoretic Transform (NTT) for the case n|(q−1), where q is
the modulus and n is the dimension. Researchers have carried out many targeted
optimizations. The previous works [26,34] used negative wrapped convolution
(NWC) to avoid the zero-padding and eliminate the pre-processing and post-
processing of NTT. Kyber [5], one of the NIST PQC finalists [21], even integrates
the customized NTT into its algorithms to reduce the number of conversions.
Because 2n ∤ (q−1) in Kyber, where n = 256 and q = 3329 = 256·13+1 in its 3rd
version, it is not possible to conduct NWC. On the contrary, Kyber absorbs the
Chinese Remainder Theorem (CRT) form for its modular polynomial (Xn + 1).

Meanwhile, many solutions have been proposed for the specific platforms to
make full use of the hardware features and get better achievable performance.
Taking the advantage of vector instructions, Lyubashevsky et al. [18] presented
an AVX2 optimized NTT and applies it to NTRU. Similarly, Seiler [29] imple-
mented NewHope with AVX2 optimized NTT. With the help of many-thread
parallelism and high throughput of GPU (precisely, CUDA core), Gupta et al.
[11] implements three different classes of post-quantum algorithms on NVIDIA
Tesla V100. The main optimized technique of the work [11] is to reorganize
the data storage sequence to facilitate continuous memory access. Gao et al. [9]
also improved the performance of NewHope on NVIDIA MX150 and GTX1650.
As for the resource-constrained devices, the proposed solutions might be more
dedicated. Thanks to the flexibility of FPGA in programming, Xing and Li [33]
presented a compact hardware implementation of Kyber on FPGA with many
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customized optimizations from the perspective of hardware. And Greconic et
al. [10] presented implementations of the lattice-based digital signature scheme
Dilithium for ARM Cortex-M3 and ARM Cortex-M4.

On the other hand, many manufacturers have designed high-performance
AI accelerators, such as Google TPU [7], Apple M1 [12], and NVIDIA Ten-
sor Core [13], to meet the needs of artificial intelligence applications. Com-
pared with other general-purpose processors, AI accelerator generally focuses on
low-precision arithmetic, novel data-flow architectures, or in-memory comput-
ing capability, and often has extremely stronger computing power. For instance,
NVIDIA has claimed that Tesla V100’s Tensor Cores can deliver up to 125 Ten-
sor TFLOPS for training and inference applications. And NVIDIA Jetson Xavier
NX brings supercomputer performance up to 21 TOPS while the power is up to
15W. However, little research has been done on how to expand the application to
other fields, especially high-performance cryptographic computing. Our previous
work [32] exploits Volta Tensor Core for byte-level modulus scheme LAC [16],
but it does not involve module-lattice and NTT, which are more widely used.

Contributions. The primary motivation of the paper is to bring the extraordi-
nary computing power of the AI accelerator to the area of cryptographic acceler-
ation. In this paper, we further explore the feasibility of applying AI accelerators
for LBC implementation. Since AI accelerators are dedicated to machine learn-
ing or neural networks, the biggest challenge is how to transform cryptographic
operations into their workloads, while ensuring the correctness of the results
and bringing convincing performance gains. The contributions of our work are
as follows:

– Firstly, we propose a framework for an AI accelerator to accelerate module-
lattice based cryptography. Through this framework, we can efficiently con-
vert the workload of cryptographic primitives into the operation of the AI
accelerator.

– Secondly, we present an NTT box based on NVIDIA AI accelerator, Tensor
Core, under the proposed framework. The NTT box is efficient to perform
NTT/INTT, especially when the dimension n is relatively small.

– Finally, we evaluate the proposed novel method for Kyber, a well-known
PQC scheme, as a case study. To the best of our knowledge, it is the first
attempt at implementing Kyber with an AI accelerator. Compared with
the state-of-the-art implementation, our polyvec ntt in Kyber can obtain a
speedup of 8.1x.

Structure. The rest of this paper is organized as follows: Section 2 introduces
the background knowledge, including NTT in Kyber and Tensor Core. Section 3
demonstrates the design of our NTT box. Section 4 presents some details of
the implementation and case study. Section 5 shows the evaluation results and
discusses the work. Finally, Section 6 concludes our work.
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2 Preliminary

In this section, we give a basic background of Kyber, NTT and Tensor Core.

2.1 Notation & Definition

Notation. For a prime q, Zq = {0, 1, . . . , q−1} is the residue class ring modulo
q. Define the ring of integer polynomials modulo (xn+1) as R = Zq/(x

n+1) for
an integer n ≥ 1, and the ring Rq = Zq[x]/(x

n+1) means the coefficients are from
Zq. Regular font letters denote elements in R or Rq (which includes elements
in Z and Zq) and bold lower-case letters represent vectors with coefficients in
R or Rq. By default, all vectors will be column vectors. Bold upper-case letters
are matrices. For a vector v (or matrix A), vT (or AT ) means its transpose.
For a vector v, v[i] denotes its i-th entry (with indexing starting at zero); for
a matrix A, A[i][j] denotes the entry in row i, column j (again, with indexing
starting from zero). The rank k represents that a polynomial vector contains k
polynomials, and a matrix contains k×k polynomials. For a finite field F = Z/q,
the primitive n-th root ω of unity exist whenever n|(q−1), where ωn ≡ 1 mod q.

Module-LWE. A lattice is the set of all integer linear combinations of some
linearly independent vectors belonging to the euclidean space. Most lattice-based
cryptographic schemes are built upon the assumed hardness of the Short Integer
Solution (SIS) [1] and Learning With Errors (LWE) [25] problems. The LWE
problem was popularized by Regev [25] who showed that solving a random LWE
instance is as hard as solving certain worst-case instances of certain lattice prob-
lems. This assumption states that it is hard to distinguish from the uniform
distribution (A,As+ e), where A is a uniformly-random matrix in Zm×n

q , s is a
uniformly-random vector in Zn

q , and e is chosen from some distribution. Later,
Lyubashevsky et al. [17] introduced a similar adaptation for LWE, called Ring-
LWE, which showed that it is also hard to distinguish a variant of the LWE
distribution from the uniform one over certain polynomial rings. Combining the
security advantages of LWE and the flexibility of Ring-LWE, Langlois et al. [15]
demonstrated the worst-case to average-case reductions for module lattices. In-
tuitively, the size matrix A in Module-LWE is k × k, where k is the rank. The
elements in the matrix are vectors selected from Zn

q .

2.2 Description of CRYSTALS-Kyber

CRYSTALS-Kyber, or Kyber [5,28], whose security is based on the hardness
of solving the LWE problem in module lattices, is an IND-CCA2-secure post-
quantum key exchange mechanism. The submission to NIST PQC [24] lists three
different parameter sets, Kyber-512, Kyber-768, and Kyber-1024, aiming at dif-
ferent security levels roughly equivalent to AES-128, AES-192, and AES-256,
respectively. The parameters are listed in Table 1, where η1 and η2 are the
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Table 1: Parameter sets for Kyber version 3

n k q η1 η2

Kyber-512 256 2 3329 3 2
Kyber-768 256 3 3329 2 2
Kyber-1024 256 4 3329 2 2

Algorithm 1 KYBER.CPAPKE.KeyGen(): key generation

Ensure: Secret key sk, Public key pk.
1: d← Random()
2: (ρ, σ) := G(d)
3: Â← Gen matrix Â(ρ), Â ∈ Rk×k

q in NTT domain
4: s← Sample s(σ), s ∈ Rk

q from Bη1

5: e← Sample e(σ), e ∈ Rk
q from Bη1

6: ŝ := NTT (s)
7: ê := NTT (e)
8: t̂ := Â ◦ ŝ+ ê
9: return pk := Encode(t̂||ρ), sk := Encode(ŝ)

parameters of centered binomial distribution (CBD). The key generation, en-
cryption, and decryption are described in Algorithm 1, 2, and 3.

In the KeyGen phase, d is a random number, ρ and σ are fixed-length inter-
mediate variables generated by d through hash function G. The parameter Â is a
k×k polynomial matrix generated by ρ. The parameters s and e are polynomial
vectors generated through different sample functions but same distribution Bη1 .
The final parameters need to be compressed and encode. In the Enc phase, the

Algorithm 2 KYBER.CPAPKE.Enc(): encryption

Require: Public key pk, Message m, Random seed r
Ensure: Ciphertext c
1: (t̂, ρ)← Decode(pk)
2: ÂT ← Gen matrix ÂT (ρ), ÂT ∈ Rk×k

q in NTT domain
3: r← Sample r(r), r ∈ Rk

q from Bη1

4: e1 ← Sample e1(r), e1 ∈ Rk
q from Bη2

5: e2 ← Sample e2(r), e2 ∈ Rq from Bη2

6: r̂ := NTT (r)
7: u := NTT−1(Â ◦ r̂) + e1

8: v := NTT−1(t̂T ◦ r̂) + e2 +Decompress(m)
9: return c1 := Encodeu(u), c2 := Encodev(v)

public key pk will be decoded first. Here, we need to emphasize that e2 and v are
polynomials rather than vectors. The ciphertext c consists of two parts: c1 and
c2, which are obtained from u and v with different encode. Correspondingly, in



6 L. Wan et al.

the Dec phase, these two parts need to be decoded with different functions first.
Then the NTT and the subsequent INTT are performed.

Algorithm 3 KYBER.CPAPKE.Dec(): decryption

Require: Secret key sk,Ciphertext c
Ensure: Message m
1: u := Decodeu(c)
2: v := Decodev(c)
3: ŝ := Decode(sk)
4: return m := Compress(v −NTT−1(ŝ ◦NTT (u)))

2.3 Number Theoretic Transform

In general, Number Theoretic Transform (NTT) is one of the most prevailing
approaches to improve polynomial multiplication over the ring. Simplemindedly,
NTT is the finite field form of discrete Fourier transform (DFT), which trans-
forms a sequence of n numbers v := {v0, v1, . . . , vn−1} into another sequence
numbers X := {X0, X1, . . . , Xn−1}. That can be defined by:

Xk =

n−1∑
j=0

vj · ωjk (1)

where ω is a primitive n-th root of unity, namely, ωn ≡ 1 mod q. The inverse
transform (INTT) is given as:

vj = n−1
n−1∑
k=0

Xk · ω−jk (2)

n−1 denotes the inverse of n, where n · n−1 ≡ 1 mod q.
The fast NTT is based on the idea of divide and conquer, similar to fast

Fourier transform (FFT) [8], can perform the polynomial multiplication with
the complexity of O(n log n). However, in practice, the usage of fast NTT can
achieve acceleration only when n is relatively large.

NTT-based multiplication. Generally, NTT-based multiplication needs q ≡
1 mod n to ensure the existence of the n-th roots of unity, where n is a power
of 2. In a finite field, the NTT multiplication of two vectors a and b needs to
append n zeros to each vector. Then, the product can be obtained by:

c = INTT (NTT (apadding) ·NTT (bpadding)) (3)

The zero-padding can be avoided to perform NTT-based polynomial multiplica-
tion over the ring Rq = Zq/f(x), with the well-known negative wrapped convo-
lution (NWC). However, the NWC requires the existence of the 2n-th roots of
unity, namely, q ≡ 1 mod 2n.
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2.4 Fast Modular Reduction

It is necessary to conduct modular reduction for the product of two coefficients or
the sum of several products. The native module operation ’%’ is expensive, even
if it might be optimized at the low level of the computer, but that is unspecified.
In practice, fast modular reductions like Montgomery reduction [20], and Barrett
reduction [4] are utilized, sometimes along with a lazy strategy which means that
the reduction is done only before overflow.
Montgomery reduction. Montgomery reduction [20] allows modular arith-
metic to be performed efficiently when the modulus is large. Let N be a positive
integer, and let R and T be integers such that R > n, gcd(n,R) = 1, and
0 ≤ T < NR. The Montgomery reduction of T mod q with respect to R is de-
fined as the value TR−1 mod q, where R is a power of 2 and R−1 is the modular
inverse of R. The calculation steps could be as (4).

m := (T mod R)k mod R,

t := (T +mN)/R
(4)

if t ≥ N return t−N else return t.

where k = R(R−1 mod N)−1
N . Note that R is usually a power of 2, and multipli-

cations and integer divides can be realized by shift, which is cheap.
Barrett reduction. Barrett reduction is another reduction algorithm intro-
duced in 1986 by P.D. Barrett [4] to eliminate division operation in computer.

Let s = 1/q be the inverse of q as a floating point number. Then

T mod q = T − ⌊Ts⌋q

where ⌊⌋ denotes the floor function. Barrett reduction approximates 1/q with a
value m/2k where m = 2k/q. Then the reduction can be converted into (5) and
becomes cheap. Since ⌊2k/q⌋ can be pre-computed, and dividing T by 2k is just
a right-shift.

T mod q = T − ⌊T/2k⌋⌊2k/q⌋ · q (5)

2.5 AI Accelerator and Tensor Core

AI accelerator.Due to the explosive growth of AI applications, general-purpose
CPUs are hard to meet the needs of neural network data processing. Therefore, a
dedicated AI accelerator, an application-specific integrated circuit with a more
specific design, may gain far more efficiency. The well-known AI accelerators
include Google TPU, Apple M1, M1 MAX, M1 Pro, and ARM NPU. These ac-
celerators mainly focus on optimized memory use and lower precision arithmetic
to accelerate calculation and increase the throughput.
Tensor Core. In December 2017, Nvidia released the 1st generation Tensor
Core (on Volta architecture) which is just for tensor calculations. Tensor Cores
are designed to carry 64 GEMMs (General Matrix Multiplication) per clock cycle
on 4×4 matrices, containing FP16 values (floating-point numbers 16 bits in size)
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or FP16 multiplication with FP32 addition. A year later, Nvidia launched the
Turing architecture Tensor Core which has been updated to support other data
formats, such as INT8 (8-bit integer values). In the latest Ampere architecture,
Nvidia has improved the performance (256 GEMMs per cycle, up from 64), and
added further data formats, shown in Table 2.

Table 2: Precision Supported by Multiple Generations of Tensor Core

Volta Turing Ampere

Precision FP16
FP16, INT8,
INT4, INT1

double, TF32, bfloat16,
FP16, INT8, INT4, INT1

Compared with other AI accelerators, Tensor Core exposes interfaces at dif-
ferent levels and has a certain degree of flexibility in its programming. CUDA
has provided several tools to leverage Tensor Core, including library cuBLAS
and cuDNN, and CUDA C++ WMMA (Warp Matrix Multiply Accumulate)
API.

3 Design

As an AI accelerator, Tensor Core is much more powerful than normal CUDA
Core. Almost all new CUDA devices come with this component, which means it
can be easily accessible to the average developer. Additionally, CUDA provides
some relatively low-level programming interfaces to manipulate the component.
To this end, we decided to try to implement LBC using AI accelerators to fully
utilize the computing resources in CUDA devices.

In this section, we explain the design of our proposal. First, we analyze
the workload of Tensor Core. Next, we demonstrate the transformation from
cryptographic primitives to workload of Tensor Core. Then, we illustrate the
trade-off between performance and precision.

3.1 Analysis of Tensor Core Dedicated Workload

Warp level matrix operation. Up to now, Tensor Core can only support
operations at the warp level, usually 32 threads. The warp matrix function re-
quires co-operation from all threads in the warp, and perform the operation
D = A×B+C, where A, B, C, D are matrices with specific size, as shown in
Fig. 1.

It is further complicated by threads holding only a fragment (a type of opaque
architecture-specific ABI data structure) of the overall matrix, with the devel-
oper not allowed to make assumptions on how the individual parameters are
mapped to the registers participating in the matrix multiply-accumulate. There
are also some restrictions on matrix size. Generally, k is fixed to 16, and m can
be 8, 16, or 32 (n corresponds to 32, 16, or 8).
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=  +

n k

m

n

m

n

D A B C

Fig. 1: A warp-level m-n-k matrix operation

FMA operation. Meanwhile, Tensor Core performs FMA mixed-precision op-
eration, which means low-precision input and high-precision output, described
in Fig. 2. For example, the FP16 (half ) multiplication results in a full precision
product that is then accumulated using FP32 (float) accumulation. Correspond-
ingly, on the Ampere architecture, the input can be int8 (char) and the output
can be int. Table 3 represents the various combinations of element types of input

low-precision
high-precision

high-precision

high-precision + 

Input

Product

Accumulator Result

low-precision

Fig. 2: Tensor Core mixed-precision operation

matrices and input/output accumulators.

Table 3: Precision combinations supported by Tensor Core

Matrix A FP16 unsigned char signed char nv bfloat16 precision::tf32 FP64

Matrix B FP16 unsigned char signed char nv bfloat16 precision::tf32 FP64

Accumulator
C and D

FP32 int int FP32 FP32 FP64

3.2 Transformation from Cryptographic Primitive to Tensor Core
Dedicated Workload

NTT in Kyber. Similar to NewHope-Compact [2], Kyber reduces its modulus
from 12289 to 3329, which naturally improves the efficiency of the algorithm.
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In Kyber version 3, the security strength is regulated by the rank k with a
fixed dimension n = 256 and a modulus q = 3329 = 256 · 13 + 1. However,
this means the 2n-th roots do not exist and the negative wrapped convolution
is not appliable. On the contrary, Kyber also absorbs the idea like the Chinese
Remainder Theorem (CRT) for the modular polynomial, formally, Zq/(f(x) ·
g(x)) ∼= Zq/f(x)×Zq/g(x), and integrates the customized NTT in its algorithm
to reduce conversion between different domain.

The defining polynomial (X256 + 1) of R factors into 128 polynomials of
degree 2 modulo q. And it can be written as

X256 + 1 =
127∏
i=0

(X2 − ζ2i+1) =
127∏
i=0

(X2 − ζ2br7(i)+1)

where br7(i) for i = 0, 1, · · · , 127 is the bit reversal of the unsigned 7-bit integer
i. Therefore, the NTT of a polynomial f ∈ Rq is a vector of 128 polynomials of
degree 1, and can be written as

(f mod X2 − ζ2br7(0)+1, · · · , f mod X2 − ζ2br7(127)+1)

Hence,

NTT (f) = f̂ = (f̂0 + f̂1X, f̂2 + f̂3X, · · · , f̂254 + f̂255X)

with

f̂2i =

127∑
j=0

f2jζ
(2br7(i)+1)j (6)

f̂2i+1 =

127∑
j=0

f2j+1ζ
(2br7(i)+1)j (7)

where ζ is the 256-th root of unity. The powers of ζ are also called twiddle
factors. It is stressed that even though f̂ is written as a polynomial in Rq, it has
no algebraic meaning as such.

Computing NTT with matrix operation. The prevailing strategy of per-
forming polynomial multiplication with NTT is to use the divide and conquer
method. However, in practice, this approach has an advantage only when n is
large enough. Moreover, it needs to manipulate each coefficient iteratively, which
conflicts with the matrix operating mode.

As aforementioned, Kyber exploits a customized NTT in its algorithms like
Equation (6) and (7). In fact, only n/2 coefficients of a vector are really involved
in an NTT result. In addition, frequent interruptions during in-memory comput-
ing to access external memory will seriously increase the delay of the program.
Based on the above observations, we decide to adopt a straightforward routine
combined with techniques such as pre-computation. Therefore, we assemble sev-
eral polynomials that need to be processed into a matrix (Matrix A) and place
the twiddle factors into another one (Matrix B). The computing mode we adopt
is shown in Fig. 3. In this way, this computing model can make full use of SIMT
(Single Instruction Multiple Threads) to perform NTT on multiple polynomials
at once.
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Fig. 3: The computing mode adopted

3.3 The Multiple Precision Representation

As mentioned in Table 3, the Ampere Tensor Core can support several precision
combinations. We test the performance of different precision on NVIDIA RTX
3080 and list the results in Table 4. Generally speaking, low precision often
corresponds to high computing speed. The choice of data type in cryptographic
algorithm should be based on its accurate representation range and performance.
For example, the bit length to exactly represent modulus q = 3329 (12289) is
12 (14). Then, only double of which the mantissa is 52 bits, can cover that case.
However, the speed would be particularly slow. To this end, we suggest exploiting
multiple-precision representation to make a trade-off, namely, using two or more
lower-precision type elements to represent a coefficient.

Table 4: Performance of different precision combinations

BFloat16
(or bf16 )

FP16
(or half )

TensorFloat32
(or tf32 )

double int8 t

Exponent (bits) 8 5 8 11 -

Mantissa (bits) 7 10 10 52 7

Performance• 25.89× 28.69× 9.93× 1× 60.56×

The values are to compensate the performance difference caused by different pre-
cisions of Tensor Core. The evaluation is conducted with CUDA samples (without
shared memory), and the results are based on the minimum value (the performance
of double).

In the case study of Kyber, we split a 12-bit coefficient into two 6-bit parts
represented by int8 t. Because the performance of int8 t is much higher than
that of other floating-point types on Tensor Core.

Internal workflow of NTT box. With the multiple-precision representation,
we make Tensor Core play the role of the NTT box as an individual module. The
caller could simply load the sorted data into the box and get results quickly. The
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internal workflow of the NTT box is shown in Fig. 4. Several sorted polynomials
are distilled into a matrix, which is then first loaded into the fragment matrix
in the form of tiles.

Meanwhile, the pre-computed table will also be loaded into fragment ma-
trix b. Then, MMA is conducted. Next, the results are performed modular re-
duction to ensure that the coefficients of the target polynomial are less than q.

fragment: 

matrix_a
fragment: 

matrix_b

Tensor Core

Polynomials

INPUT

sort load

load

mma

fragment: 

accumulator
modular 

reduction

store

OUTPUT

Polynomials 

in NTT 

domain...

Matrix

compose

Table
(high 6 bits) 



Table
(low 6 bits) 

Point-wise 

Multiplication

Resort Encoder/

Compress



Fig. 4: The workflow of NTT box

4 Implementation Details

In this section, we elaborate on the technical details of our prototype implemen-
tation. First, we show the overall architecture of our system and the collaboration
between the various modules. Next, we introduce two types of NTT: basic-NTT
supports smaller modulus but achieves high performance, and split-NTT sup-
ports larger modulus but achieves relatively lower performance. Then, we explain
some non-trivial optimization techniques we employ.

4.1 Overview

Our prototype is based on CUDA Toolkit 11.1. CUDA programming can sup-
port a large number of concurrent threads. In our implementation, each thread
holds one instance, and these threads execute in SIMD mode. Although the spe-
cific procedures might be slightly different for key generation, encryption and
decryption, the high-level overview could be like Fig. 5.
The collaboration between modules. The function of the RNG module is
to extend the random seed to get the required parameters, just like the key
derivation function (KDF). During key generation, Kyber uses SHA3-512 to
extend a random number (usually 32 bytes) to obtain seed, then obtain key
parameters. After obtaining the seed from a RNG module or decoder, Kyber
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Thread Synchronization Synchronization

...

...

... ... ...

Fig. 5: General overview of implemented Kyber

will generate matrix or sample polynomial vectors based on the seed. On the
basis of Equation (6) (7), for a polynomial, the elements with even (or odd)
entries participate in the same NTT. Therefore, before entering the NTT box,
we sort each polynomial so that even (or odd) entries are continuous in memory.
When the program needs to perform NTT, it will synchronize between threads
in the same thread block, and then input the data into the NTT box.

4.2 The Basic-NTT and Split-NTT

However, we can only load a fixed size tile into a fragment every time, while the
target matrix is much larger. Therefore, we have made two scanning methods,
according to the raw precision of the data to be processed. For the parameters
of which the element value is less than 8 bits (256, or 128 for signed number),
such as secret s and random noise r, e generated from CBD (Centered Binomial
Distribution), which have no more than 3 significant bits, we apply a basic-NTT
method, shown in Fig. 6.

In this method, we only need to split the twiddle factors into Th and Tl, and
directly represent the input data with int8 t type. Both input and output are
sorted according to parity items asMe,Mo,Re andRo, to satisfy the requirement
of contiguous memory access. Note that β in Fig. 6 represents the base of multiple
precision representation, and the multiplication by b can be done by left shifting.
As for the case that the coefficient is larger than 8 bits, such as INTT in Kyber,
we employ a split-NTT scanning method and the details are shown in Fig 7.
The input data is sorted first and then split. The temporary sums, like Tmpe
and Tmpo in Fig. 7, can be used to reduce a shift operation.

All data matrices have n columns, while the number of rows can be adjusted
according to the rank k and the configuration of thread block.

4.3 Pre-computed Table of Twiddle Factors

Since the root ζ is deterministic, and the powers ζ2br7(i)+1 can be known in
advance, then all the twiddle factors can be pre-computed and stored in the
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Fig. 7: Scanning of split-NTT

memory before the procedure. When NTT is executed, these values can be ob-
tained by looking up the table instead of directly multiplying. This is also what
the original author did..

In addition, the intermediate products need to be performed Montgomery
reduction. After that, the result of Equation (4) is in Montgomery format and
needs to be converted into the normal format by multiplying by R. Therefore,
the value R can be absorbed as ζ2br7(i)+1 · R mod q to save a multiplication.
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According to Equation (1) and (2), our pre-computed table of NTT and INTT
could be:


ζ0×2br7(0)R ζ0×2br7(1)R · · · ζ0×2br7(127)R
ζ1×2br7(0)R ζ1×2br7(1)R · · · ζ1×2br7(127)R

...
...

. . .
...

ζ127×2br7(0)R ζ127×2br7(1)R · · · ζ127×2br7(127)R


128×128

mod q,


n−1ζ−0×2br7(0)R n−1ζ−0×2br7(1)R · · · n−1ζ0×2br7(127)R
n−1ζ−1×2br7(0)R n−1ζ−1×2br7(1)R · · · n−1ζ−1×2br7(127)R

...
...

. . .
...

n−1ζ−127×2br7(0)R n−1ζ−127×2br7(1)R · · · n−1ζ−127×2br7(127)R


128×128

mod q.

.

Note that the transpose of the matrix can be determined by the flag parameter
of the built-in function. In addition, the NTT results are:

f̃2i =

127∑
j=0

f2jζ
(2br7(i)+1)jR

f̃2i+1 =

127∑
j=0

f2j+1ζ
(2br7(i)+1)jR

(8)

4.4 Point-wise Multiplication and Modular Reduction

Point-wise multiplication. In Kyber, after applying NTT or INTT to a poly-
nomial, the polynomial multiplication h(x) = f(x) ·g(x) has also been redefined.

NTT (f) ◦NTT (g) = f̂ ◦ ĝ = ĥ denotes the basecase multiplication consisting of
the 128 products.

ĥ2i + ĥ2i+1X = (f̂2i + f̂2i+1X)(ĝ2i + ĝ2i+1X) mod (X2 − ζ2br7(i)+1)

Specifically, the product coefficients can be written as:

ĥ2i = f̂2iĝ2i + f̂2i+1ĝ2i+1ζ
2br7(i)+1

ĥ2i+1 = f̂2iĝ2i+1 + f̂2i+1ĝ2i
(9)

Similar to the multiplication of multi-precision representation, point-wise mul-
tiplication can also be combined with the Karatsuba algorithm. Then, we can
utilize Karatsuba algorithm [14] to decrease the times of multiplication, and the
calculation form of results are listed in (10).

ĥ2i = f̂2iĝ2i + f̂2i+1ĝ2i+1ζ
2br(i)+1

ĥ2i+1 = (f̂2i + f̂2i+1)(ĝ2i + ĝ2i+1)− (f̂2iĝ2i + f̂2i+1ĝ2i+1)
(10)
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One round lazy modular reduction. For CBD generated vectors, the biggest
sum in NTT should be less than n′q · 23 (where n′ = 128), which is 22 bits.
As mentioned earlier, Tensor Core performs FMA operation, and the sum of
intermediate products is still in the representation range of accumulator, such
as int (32 bits). For a polynomial whose coefficient can be up to q − 1, we
use two 6-bit data to represent the value. Therefore, n′q · 26 (25 bits) can also
be represented without overflow. Then, only a round fast modular reduction is
needed for the final NTT result.

5 Performance Evaluation and Discussion

In this section, we present our evaluation results and perform a comparative
analysis with related works, including the performance of the NTT box (espe-
cially polyvec ntt), and Kyber-512, Kyber-768, Kyber-1024. Finally, we discuss
the scalability and security of our solution.

5.1 Results of NTT/INTT

Firstly, we test the performance of the two types of NTT. There is no significant
discriminative between NTT and INTT except for the pre-computed twiddle
factor tables. Since INTT does not involve small coefficients in Kyber, we eval-
uate the split-INTT (for int16 t) more. The results are listed in Table 5. For
split-NTT, when the thread block size is 128, the performance can reach 247.2
MOPS.

Table 5: The performance of NTT, Total case=69632,Grid size=136, n = 256

Operation
Input
Type

Block size
Time elapsed

(ms)
Performance

(MOPS)

split-NTT int16 t
128 0.281632 247.2
256 0.356992 195.1

basic-NTT int8 t
128 0.183296 379.9
256 0.217088 320.8

split-INTT int16 t
128 0.277376 251.0
256 0.357376 194.8

Related work comparison. We also compare the defined NTT of polynomial
vector (poly vec, n = 256, k = 4) implemented with our NTT box and the
counterparts on CPU and GPU, and can obtain a speedup of at least 8.1x.
Furthermore, we test the provided source code on our machine and still get about
6.47x improvement. The results are shown in Table 6. In fact, Tensor Core is
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Table 6: Comparison of polyvec ntt in kyber, n = 256, k = 4

Device Architecture Time (ns)◦

Ref W2123 Skylake-W 6,464

Gupt et al. [11]

G1060 Pascal 378.1
P6000 Pascal 202.3
V100 Volta 135
R3080 Ampere 107.81 ∗

Ours R3080 Ampere 16.65 •

◦ The average time spent on each instance obtained by processing a given number of
instances.

∗ The code in [11] is downloaded from https://github.com/nainag/PQC and is tested
on RTX3080.

• The same polyvec ntt in kyber with our NTT box, where the best blockSize is 128.

also supported by V100, but not exploited in [11]. Although the gain mainly
comes from AI accelerator hardware, the key lies in the advantage of relatively
small precision and our fine manipulation to adapt the cryptographic primitives
perfectly into its operating mode. Our Tensor Core based NTT box involves the
pre-computed tables of twiddle factors instead of the idea of divide and conquer.
Because the initial control granularity of butterfly operation is in single element
level, which conflicts with the matrix mode and might make the control very
complicated. More importantly, interrupting computation frequently to access
memory can severely impact performance when utilizing Tensor Cores.

5.2 Results of Kyber

The security strength recommended by the original author is Kyber-768 (k =
3) [28]. In addition, we also test Kyber-512 (k = 2) and Kyber-1024 (k = 4)
for the convenience to compare with other existing solutions, and the results are
shown in Fig. 8.

Related work comparison. The previous implementations of Kyber are based
on various platforms, following different design ideas and targeting different sce-
narios. The FPGA based implementation such as [33] is mainly committed to
using fewer hardware resources to reach more achievable performance. Some
platforms (e.g., Apple A12 [27]) have special instructions for hash functions.
The CPU based optimization [5] uses vector set instructions for acceleration. Un-
like FPGA solutions, in which the improved algorithms are mainly conducted
through hardware programming, the hardware circuit of our proposal can no
longer be changed, and accelerations can only be carried out around the char-
acteristics it exposes.

Table 7 lists the average time cost on Kyber-1024 of related works. Com-
pared to resource-constrained devices, we can achieve two orders of magnitude

https://github.com/nainag/PQC
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Fig. 8: The performance results of our prototype.

Table 7: Comparison of average time cost on Kyber-1024 with related works.

Platform
KeyGen

(µs)
Enc
(µs)

Dec
(µs)

KX (k/s)◦

Pakize Sanal et al. [27]
Apple A12 @2.49 GHz

(AES accelerator)
38.23 37.35 36.55 13.4

PQClean [19]
ARM Cortex-A75

@2.8 GHz
137.54 170.25 195.0 3.0

Xing, Y et al. [33] Xilinx Artix-7 58.2 67.9 86.2 6.93

C-Ref [28]
Intel Core i7-4770K
@3.5 GHz (Haswell)

87.8 99.0 113.3 4.97

AVX2-Ref [28]
Intel Core i7-4770K
@3.5 GHz (Haswell)

21.01 27.81 22.61 22.9

This work
NVIDIA GeForce

RTX 3080
0.80 0.77 0.42 819.7

◦ computed by ab
a+b

, where a, b are the throughput of KeyGen and Dec.

performance improvement. When compared with the optimized AVX2 version
Kyber-1024, our prototype can obtain a speedup of approximately 26x, 36x, and
35x for KeyGen, Enc, and Dec respectively. Note that we have not optimized the
hash algorithm yet.

5.3 Discussion

Scalability. Our proposal also illustrates the tremendous potential of Tensor
Core in future LBC acceleration. With the upgrade of hardware products, we
believe the restrictions would be fewer, and the control interfaces provided could
be with finer granularity, which means that they would become more versatile.
Although the study case in this paper is the PQC scheme, the proposed solu-
tion and techniques can also be applied for other computation-sensitive schemes
like homomorphic encryption, or of which the polynomial multiplication is a
time-consuming part. Furthermore, in practice, the implementation would be
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more solid with the optimizations for CUDA hardware, such as multiple work-
ing streams, shared memory, and multi-threaded cooperation. Cloud computing
service providers, data centers, etc., all require high-performance cryptographic
computing. We think that such AI accelerator-based cryptographic optimization
solution would appear in their business shortly.

Security. The security issue is also an important aspect of cryptographic im-
plementation. For Tensor Core itself, as far as we know, it can be treated as an
atomic instruction parallel execution unit for calculating with a fixed amount
of cycles. According to [22], it is almost impossible to perform a timing attack
on parallel AI accelerators so far. For example, suppose that the attacker can
construct any attack vector for the responder to execute, and knows the time
cost (tv). In general, the execution time t1 for vectors containing large values
is more than the execution time t2 for vectors with small values. Now that the
attacker knows the time ts for the execution of the secret vector s. The attacker
can exploit the information, numerical difference between tv and ts, to construct
a new attack vector closer to s. However, in our prototype, multiple parameters
are executed simultaneously due to the parallel feature of Tensor Core. Only the
time t⋆s cost by the same group as the secret s can be measured, which makes
it difficult for the attacker to guess the real ts. Meanwhile, our implementations
contain no conditional statements. Tensor Core related operations involve no
secret-related conditional branch, and the related memory access (pre-computed
tables) is secret-irrelevant. Techniques against side-channel timing leakage, such
as eliminating conditional statements in CUDA kernel functions, are also in-
volved in our work, even though they are not the main focus. In a nutshell, the
AI accelerator we introduce will not bring additional security risks.

6 Conclusion and Future Work

In this paper, we propose an NTT box based on NVIDIA AI accelerator, Tensor
Core. After that, we present a high performance implementation of CRYSTALS-
Kyber with our NTT box and achieve considerable performance improvement.
Our work further explores the practicality of applying AI accelerator to LBC.
We believe that AI accelerators will become more versatile, and support more
operations and precisions. In the future, the subsequent work would cover more
lattice-based cryptographic schemes, especially homomorphic encryption (HE)
which urgently requires high efficiency for the wider application.
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