
A Novel High-performance Implementation of
CRYSTALS-Kyber with AI Accelerator

Lipeng Wan1,2,3, Fangyu Zheng1,3,⋆(�), Guang Fan1,2,3, Rong Wei1,2,3, Lili
Gao1,2,3, Yuewu Wang1,2,3, Jingqiang Lin4, and Jiankuo Dong5

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing,
China

3 Data Assurance and Communication Security Research Center, Chinese Academy
of Sciences, Beijing, China

4 School of Cyber Security, University of Science and Technology of China, Hefei,
China

5 School of Computer Science, Nanjing University of Posts and Telecommunications,
Nanjing, China

Abstract. Public-key cryptography, including conventional cryptosys-
tems and post-quantum cryptography, involves computation-intensive
workloads. With noticing the extraordinary computing power of AI ac-
celerators, in this paper, we further explore the feasibility to introduce
AI accelerators into high-performance cryptographic computing. Since
AI accelerators are dedicated to machine learning or neural networks,
the biggest challenge is how to transform cryptographic workloads into
their operations, while ensuring the correctness of the results and bring-
ing convincing performance gains.

After investigating and analysing the workload of NVIDIA AI acceler-
ator, Tensor Core, we choose to utilize it to accelerate the polynomial
multiplication, usually the most time-consuming part in lattice-based
cryptography. We take measures to accommodate the matrix-multiply-
and-add mode of Tensor Core and make a trade-off between precision and
performance, to leverage it as a high-performance NTT box performing
NTT/INTT through CUDA C++ WMMA APIs. Meanwhile, we take
CRYSTALS-Kyber, the candidate to be standardized by NIST, as a case
study on RTX 3080 with the Ampere Tensor Core. The empirical results
show that the customized NTT of polynomial vector (n = 256, k = 4)
with our NTT box obtains a speedup around 6.47x that of the state-of-
the-art implementation on the same GPU platform. Compared with the
AVX2 implementation submitted to NIST, our Kyber-1024 can achieve
a speedup of 26x, 36x, and 35x for each phase.

Keywords: Lattice-Based Cryptography · Polynomial Multiplication
Over Rings · NTT · AI accelerator · Tensor Core · Kyber.

⋆ Fangyu Zheng is the corresponding author (E-mail: zhengfangyu@iie.ac.cn)

2 L. Wan et al.

1 Introduction

Quantum computing and Shor’s algorithm [31] have raised concern about the se-
curity of conventional public-key schemes, such as widely used RSA and ECDSA.
A new class of cryptosystems with anti-quantum property, which is known as
post-quantum cryptography (PQC, sometimes referred to as quantum-proof,
quantum-safe, or quantum-resistant), is in urgent need. To this end, National
Institute of Standards and Technology (NIST) has initiated a process to so-
licit, evaluate, and standardize one or more quantum-resistant public-key cryp-
tographic algorithms in 2017 [24].

The security of quantum-resistant schemes is based on different mathemati-
cal hard problems, while the lattice-based hardness is the most prevailing one.
On the other hand, performance is an important metric in the evaluation, and
thus many research efforts are made to improve the efficiency of lattice-based
cryptography (LBC). Generally speaking, for the cryptographic schemes based
on lattice related problem, such as Ring-LWE [18], Module-LWE [6,16], and
Module-LWR [3], polynomial multiplication (over the ring Rq) and hash func-
tions are the time-consuming parts. The hash functions mainly involve bit oper-
ations, which can be accelerated by the commercial off-the-shelf products with
processor-aided accelerations (e.g., SHA extension in Intel and ARM CPU [28]).
In this way, the principal efforts in LBC acceleration focus on the polynomial
multiplication.

There are many methods to accelerate the polynomial multiplication. Apart
from adopting the Karatsuba [15] and Toom-Cook algorithms [32], the more
prevailing practice is to exploit Number Theoretic Transform (NTT) for the
case n|(q − 1), where q is the modulus and n is the dimension. CRYSTALS-
Kyber [5,29], Kyber for short, the candidate to be standardized by NIST
PQC [22], even integrates a customized NTT into its algorithms to improve
the efficiency.

Meanwhile, many solutions have been proposed for the specific platforms
to make full use of the hardware features and get better achievable perfor-
mance. Taking the advantage of vector instructions, Lyubashevsky et al. [19]
presented an AVX2 optimized NTT and applies it to NTRU. Similarly, Seiler
[30] implemented NewHope with AVX2 optimized NTT. With the help of many-
thread parallelism and high throughput of GPU (precisely, CUDA core), Gupta
et al. [12] implemented three different classes of post-quantum algorithms on
NVIDIA Tesla V100. The main optimized technique of the work [12] is to re-
organize the data storage sequence to facilitate continuous memory access. Gao
et al. [10] also improved the performance of NewHope on NVIDIA MX150 and
GTX1650. As for the resource-constrained devices, the proposed solutions might
be more dedicated. Thanks to the flexibility of FPGA in programming, Xing and
Li [34] presented a compact hardware implementation of Kyber on FPGA with
many customized optimizations from the perspective of hardware. And Greconic
et al. [11] presented implementations of the lattice-based digital signature scheme
Dilithium for ARM Cortex-M3 and ARM Cortex-M4.

An Implementation of CRYSTALS-Kyber with AI Accelerator 3

On the other hand, many manufacturers have designed high-performance
AI (artificial intelligence) accelerators, such as Google TPU [8], Apple M1 [13],
and NVIDIA Tensor Core [14], to meet the needs of AI applications. Com-
pared with other general-purpose processors, AI accelerator generally focuses on
low-precision arithmetic, novel data-flow architectures, or in-memory comput-
ing capability, and often has extremely stronger computing power. For instance,
NVIDIA has claimed that Tesla V100’s Tensor Cores can deliver up to 125 Ten-
sor TFLOPS for training and inference applications. And NVIDIA Jetson Xavier
NX brings supercomputer performance up to 21 TOPS while the power is up
to 15W. However, little research has been proposed on how to apply this kind
of accelerators to other fields such as high-performance cryptographic comput-
ing. Our previous work [33] exploits Volta Tensor Core for byte-level modulus
scheme LAC [17], but it does not involve module-lattice and NTT, which are
more widely used.

The primary motivation of this paper is to bring the extraordinary computing
power of the AI accelerator to the area of cryptographic acceleration. Since AI
accelerators are dedicated to machine learning or neural networks, the biggest
challenge is how to transform cryptographic operations into their workloads,
while ensuring the correctness of the results and bringing convincing performance
gains. The contributions of our work are as follows:

– Firstly, our work forms a framework for an AI accelerator to accelerate
module-lattice based cryptography. Through this framework, we can effi-
ciently convert the workload of cryptographic primitives into the operation
of the AI accelerator.

– Secondly, we present an NTT box based on NVIDIA AI accelerator, Tensor
Core, under the proposed framework. The NTT box is efficient to perform
NTT/INTT, especially when the dimension n is relatively small.

– Finally, we evaluate the novel proposed method for Kyber, a well-known
PQC scheme, as a case study. To the best of our knowledge, it is the first
attempt at implementing Kyber with an AI accelerator. Compared with
the state-of-the-art implementation, our polyvec ntt in Kyber can obtain a
speedup of 6.47x on the same GPU platform.

2 Preliminary

In this section, we give a basic background of Kyber, NTT and Tensor Core.

2.1 Notation & Definition

Notation. For a prime q, Zq = {0, 1, . . . , q−1} is the residue class ring modulo
q. Define the ring Rq = Zq[x]/(x

n + 1), which means the coefficients are from
Zq. Zn

q represents n coefficients from Zq. Regular font letters denote elements in
Rq (which includes elements in Zq) and bold lower-case letters represent vectors
with coefficients in Rq. By default, all vectors will be column vectors. Bold upper-
case letters are matrices. For a vector v (or matrix A), vT (or AT) means its

4 L. Wan et al.

transpose, and v[i] denotes its i-th entry (with indexing starting at zero). For
a matrix A, A[i][j] denotes the entry in row i, column j (again, with indexing
starting from zero). The rank k represents that a polynomial vector contains k
polynomials, and a matrix contains k× k polynomials. For a finite field F = Zq,
the primitive n-th root ω of unity exist whenever n|(q−1), where ωn ≡ 1 mod q.

Module-LWE. A lattice is the set of all integer linear combinations of some lin-
early independent vectors belonging to the euclidean space. Most lattice-based
cryptographic schemes are built upon the assumed hardness of the Short In-
teger Solution (SIS) [1] and Learning With Errors (LWE) [27] problems. The
LWE problem was popularized by Regev [27] who showed that solving a random
LWE instance is as hard as solving certain worst-case instances of certain lat-
tice problems. This assumption states that it is hard to distinguish the uniform
distribution from (A, As+ e), where A is a uniformly-random matrix in Zm×n

q ,
s is a uniformly-random vector in Zn

q , and e is chosen from some distribution.
Later, Lyubashevsky et al. [18] introduced a similar adaptation for LWE, called
Ring-LWE, which showed that it is also hard to distinguish a variant of the LWE
distribution from the uniform one over certain polynomial rings. Combining the
security advantages of LWE and the flexibility of Ring-LWE, Langlois et al. [16]
demonstrated the worst-case to average-case reductions for module lattices. In-
tuitively, the size of matrix A in Module-LWE is k×k, where k is the rank. The
elements in the matrix are vectors selected from Zn

q .

2.2 Description of CRYSTALS-Kyber

Kyber is an IND-CCA2-secure post-quantum key exchange mechanism. The se-
curity of Kyber is based on the hardness of solving the LWE problem in module
lattices.

The submission to NIST PQC [25] lists three different parameter sets, Kyber-
512, Kyber-768, and Kyber-1024, aiming at different security levels roughly
equivalent to AES-128, AES-192, and AES-256, respectively. The parameters
are listed in Table 1, where η1 and η2 are the parameters of centered binomial
distribution (CBD).

Table 1: Parameter sets for Kyber version 3

n k q η1 η2

Kyber-512 256 2 3329 3 2
Kyber-768 256 3 3329 2 2
Kyber-1024 256 4 3329 2 2

The key generation, encryption, and decryption are described in Algo-
rithm 1, 2, and 3. In the KeyGen phase, d is a random number, ρ and σ are
fixed-length intermediate variables generated by d through hash function G. The

An Implementation of CRYSTALS-Kyber with AI Accelerator 5

Algorithm 1 KYBER.CPAPKE.KeyGen(): key generation

Ensure: Secret key sk, Public key pk.
1: d← Random()
2: (ρ, σ) := G(d)
3: Â← Gen matrix Â(ρ), Â ∈ Rk×k

q in NTT domain
4: s← Sample s(σ), s ∈ Rk

q from Bη1

5: e← Sample e(σ), e ∈ Rk
q from Bη1

6: ŝ := NTT (s)
7: ê := NTT (e)
8: t̂ := Â ◦ ŝ+ ê
9: return pk := Encode(t̂||ρ), sk := Encode(ŝ)

parameter Â is a k×k polynomial matrix generated by ρ. The parameters s and
e are polynomial vectors generated through different sample functions but same
distribution Bη1

. The final parameters need to be compressed and encode. In the

Algorithm 2 KYBER.CPAPKE.Enc(): encryption

Require: Public key pk, Message m, Random seed r
Ensure: Ciphertext c
1: (t̂, ρ)← Decode(pk)
2: ÂT ← Gen matrix ÂT (ρ), ÂT ∈ Rk×k

q in NTT domain
3: r← Sample r(r), r ∈ Rk

q from Bη1

4: e1 ← Sample e1(r), e1 ∈ Rk
q from Bη2

5: e2 ← Sample e2(r), e2 ∈ Rq from Bη2

6: r̂ := NTT (r)
7: u := NTT−1(Â ◦ r̂) + e1

8: v := NTT−1(t̂T ◦ r̂) + e2 +Decompress(m)
9: return c1 := Encodeu(u), c2 := Encodev(v)

Enc phase, the public key pk will be decoded first. Here, we need to emphasize
that e2 and v are polynomials rather than vectors. The ciphertext c consists of
two parts: c1 and c2, which are obtained from u and v with different encode.
Correspondingly, in the Dec phase, these two parts need to be decoded with dif-
ferent functions first. Then the NTT and the subsequent INTT are performed.

2.3 Number Theoretic Transform

In general, Number Theoretic Transform (NTT) is one of the most prevailing
approaches to improve polynomial multiplication over the ring. Simplemindedly,
NTT is the finite field form of discrete Fourier transform (DFT), which trans-
forms a sequence of n numbers v := {v0, v1, . . . , vn−1} into another sequence

6 L. Wan et al.

Algorithm 3 KYBER.CPAPKE.Dec(): decryption

Require: Secret key sk, Ciphertext c
Ensure: Message m
1: u := Decodeu(c)
2: v := Decodev(c)
3: ŝ := Decode(sk)
4: return m := Compress(v −NTT−1(ŝ ◦NTT (u)))

numbers X := {X0, X1, . . . , Xn−1}. That can be defined by:

Xk =

n−1∑
j=0

vj · ωjk (1)

where ω is a primitive n-th root of unity, namely, ωn ≡ 1 mod q. The inverse
transform (INTT) is given as:

vj = n−1
n−1∑
k=0

Xk · ω−jk (2)

n−1 denotes the inverse of n, where n · n−1 ≡ 1 mod q.
The fast NTT is based on the idea of divide and conquer, similar to fast

Fourier transform (FFT) [9], and can perform the polynomial multiplication
with the complexity of O(n log n). However, in practice, the usage of fast NTT
can achieve acceleration only when n is relatively large.

NTT-based multiplication. Generally, NTT-based multiplication needs q ≡
1 mod n to ensure the existence of the n-th roots of unity, where n is a power
of 2. In a finite field, the NTT multiplication of two vectors a and b needs to
append n zeros to each vector. Then, the product can be obtained by:

c = INTT (NTT (apadding) ·NTT (bpadding)) (3)

The zero-padding can be avoided to perform NTT-based polynomial multiplica-
tion over the ring Rq = Zq/f(x), with the well-known negative wrapped convo-
lution (NWC). However, the NWC requires the existence of the 2n-th roots of
unity, namely, q ≡ 1 mod 2n.

2.4 Fast Modular Reduction

It is necessary to conduct modular reduction for the product of two coefficients or
the sum of several products. The native module operation ‘%’ is expensive, even
if it might be optimized at the low level of the computer, but that is unspecified.
In practice, fast modular reductions like Montgomery reduction [21], and Barrett
reduction [4] are utilized, sometimes along with a lazy strategy which means that
the reduction is done only before overflow.

An Implementation of CRYSTALS-Kyber with AI Accelerator 7

Montgomery reduction. Montgomery reduction [21] allows modular arith-
metic to be performed efficiently when the modulus is large. Let N be a positive
integer, and let R and T be integers such that R > n, gcd(n,R) = 1, and
0 ≤ T < NR. The Montgomery reduction of T mod q with respect to R is de-
fined as the value TR−1 mod q, where R is a power of 2 and R−1 is the modular
inverse of R. The calculation steps could be as (4).

m := (T mod R)k mod R,

t := (T +mN)/R
(4)

if t ≥ N return t−N else return t.

where k = R(R−1 mod N)−1
N . Note that R is usually a power of 2, and multipli-

cations and integer divides can be realized by shift, which is cheap.
Barrett reduction. Barrett reduction is another reduction algorithm intro-
duced in 1986 by P.D. Barrett [4] to eliminate division operation in computer.

Let s = 1/q be the inverse of q as a floating point number. Then

T mod q = T − ⌊Ts⌋q

where ⌊⌋ denotes the floor function. Barrett reduction approximates 1/q with a
value m/2k where m = 2k/q. Then the reduction can be converted into (5) and
becomes cheap. Since ⌊2k/q⌋ can be pre-computed, and dividing T by 2k is just
a right-shift.

T mod q = T − ⌊T/2k⌋⌊2k/q⌋ · q (5)

2.5 AI Accelerator and Tensor Core

AI accelerator.Due to the explosive growth of AI applications, general-purpose
processors are hard to meet the needs of machine learning. Therefore, a dedi-
cated AI accelerator, an application-specific integrated circuit with a more spe-
cific design, may gain far more efficiency. The well-known AI accelerators include
Google TPU, Apple M1, M1 MAX, M1 Pro, and ARM NPU. These accelera-
tors mainly focus on optimized memory use and lower precision arithmetic to
accelerate calculation and increase the throughput.
Tensor Core. In December 2017, NVIDIA released the 1st generation Tensor
Core (on Volta architecture) which is just for tensor calculations. Tensor Cores
are designed to carry 64 GEMMs (General Matrix Multiplication) per clock cycle
on 4 × 4 matrices, containing FP16 values (16-bit floating-point numbers) or
FP32 (the float format). A year later, NVIDIA launched the Turing architecture
Tensor Core which has been updated to support other data formats, such as INT8
(8-bit integer values). In the latest Ampere architecture, NVIDIA has improved
the performance (256 GEMMs per cycle, up from 64), and added further data
formats, shown in Table 2.

Compared with other AI accelerators, Tensor Core exposes interfaces at dif-
ferent levels and has some flexibility in its programming. CUDA has provided
several tools to leverage Tensor Core, including library cuBLAS and cuDNN,
and CUDA C++ WMMA (Warp Matrix Multiply Accumulate) API.

8 L. Wan et al.

Table 2: Precision Supported by Multiple Generations of Tensor Core

Volta Turing Ampere

Precision FP16
FP16, INT8,
INT4, INT1

FP64, TF32, bfloat16,
FP16, INT8, INT4, INT1

3 Design

In this section, we analyze the workload of Tensor Core at first, then demonstrate
the transformation from cryptographic primitives to operation of Tensor Core.
Finally, we illustrate the trade-off between performance and precision.

3.1 Analysis of Tensor Core Dedicated Workload

Warp level matrix operation. Up to now, Tensor Core can only support op-
erations at the warp level, usually 32 threads. The warp matrix function requires
co-operation from all threads in the warp, and perform D = A×B+C, where
A, B, C, D are matrices with specific size, as shown in Fig. 1.

=  +

n k

m

n

m

n

D A B C

Fig. 1: A warp-level m-n-k matrix operation

It is further complicated by threads holding only a fragment (a type of opaque
architecture-specific ABI data structure) of the overall matrix, with the devel-
oper not allowed to make assumptions on how the individual parameters are
mapped to the registers participating in the matrix multiply-accumulate. There
are also some restrictions on matrix size. Generally, k is fixed to 16, and m can
be 8, 16, or 32 (n corresponds to 32, 16, or 8).

FMA operation. Meanwhile, Tensor Core performs FMA mixed-precision op-
eration, which means low-precision input and high-precision output, described in
Fig. 2. For example, on the Ampere architecture, the input can be INT8 (char)
and the output can be INT32 (int). Table 3 represents the various combinations
of element types of input matrices and input/output accumulators.

An Implementation of CRYSTALS-Kyber with AI Accelerator 9

low-precision
high-precision

high-precision

high-precision +

Input

Product

Accumulator Result

low-precision

Fig. 2: Tensor Core mixed-precision operation

Table 3: Precision combinations supported by Tensor Core

Matrix A FP16 unsigned char signed char bfloat16 TF32 FP64

Matrix B FP16 unsigned char signed char bfloat16 TF32 FP64

Accumulator
C and D

FP32 INT32 INT32 FP32 FP32 FP64

3.2 Transformation from Cryptographic Workload to Tensor Core
Dedicated Operation

NTT in Kyber. Similar to NewHope-Compact [2], Kyber reduces its mod-
ulus from 12289 to 3329, which naturally improves the efficiency. The secu-
rity strength is regulated by the rank k with a fixed dimension n = 256.
However, this means the 2n-th roots do not exist and the negative wrapped
convolution is not appliable. On the contrary, Kyber absorbs the idea like
the Chinese Remainder Theorem (CRT) for the modular polynomial, formally,
Zq/(f(x) · g(x)) ∼= Zq/f(x)×Zq/g(x), and integrates the customized NTT in its
algorithm to reduce conversion between different domains.

The defining polynomial (X256 + 1) factors into 128 polynomials of degree 2
modulo q, and can be written as

X256 + 1 =
127∏
i=0

(X2 − ζ2i+1) =
127∏
i=0

(X2 − ζ2br7(i)+1)

where br7(i) for i = 0, 1, · · · , 127 is the bit reversal of the unsigned 7-bit integer
i. Therefore, the NTT of a polynomial f ∈ Rq is a vector of 128 polynomials of
degree 1, and can be written as

NTT (f) = f̂ = (f̂0 + f̂1X, f̂2 + f̂3X, · · · , f̂254 + f̂255X)

with

f̂2i =

127∑
j=0

f2jζ
(2br7(i)+1)j (6)

f̂2i+1 =

127∑
j=0

f2j+1ζ
(2br7(i)+1)j (7)

10 L. Wan et al.

where ζ is the 256-th root of unity. The powers of ζ are also called twiddle
factors. It is stressed that even though f̂ is written as a polynomial in Rq, it has
no algebraic meaning as such.

Computing NTT with matrix operation. The prevailing strategy of per-
forming polynomial multiplication with NTT is to adopt the divide and conquer
method. However, in practice, this approach has an advantage only when n is
large enough. Moreover, it needs to manipulate each coefficient iteratively, which
conflicts with the matrix operating mode.

As aforementioned, Kyber exploits a customized NTT in its algorithms like
Equation (6) and (7). In fact, only n/2 coefficients of a vector are really in-
volved in an NTT result. In addition, frequent interruptions during in-memory
computing to access external memory will seriously increase the delay of the
program. Based on the above observations, we decide to adopt a straightforward
routine combined with techniques such as pre-computation. We assemble several
polynomials that need to be processed into a matrix (Matrix A) and place the
twiddle factors into another one (Matrix B). The computing mode we adopt is
shown in Fig. 3. In this way, this computing model can make full use of SIMT
(Single Instruction Multiple Threads) to perform NTT on multiple polynomials
at once.

0 ()F x

1()F x

()mF x

0e

1e

me

Matrix A Matrix B Matrix C

Several

polynomials
Twiddle

Factors

Several

optional

polynomials

Fig. 3: The computing mode adopted

3.3 The Multiple Precision Representation

As mentioned in Table 3, Ampere Tensor Core can support several precision
combinations. We test the performance of different precision on NVIDIA RTX
3080 and list the results in Table 4. Generally speaking, lower precision often
corresponds to higher computing speed. The choice of data type in cryptographic
algorithm should be based on its accurate representation range and performance.
For example, the bit length to exactly represent modulus q = 3329 (12289) is
12 (14). Then, only the mantissa of FP64 (double), which is 52 bits, can cover
the case. However, the speed would be particularly slow. To this end, we suggest
exploiting multiple-precision representation to make a trade-off, namely, using
two or more lower-precision elements to represent a coefficient.

In the case study of Kyber, we split a 12-bit coefficient into two 6-bit parts
represented by INT8. Because the performance of INT8 is much higher than
that of other floating-point types on Tensor Core.

An Implementation of CRYSTALS-Kyber with AI Accelerator 11

Table 4: Performance of different precision combinations

bfloat16
FP16
(half)

TF32
FP64

(double)
INT8
(char)

Exponent (bits) 8 5 8 11 -

Mantissa (bits) 7 10 10 52 7

Performance• 25.89× 28.69× 9.93× 1× 60.56×
•
The values are to compensate the performance difference caused by different pre-
cisions of Tensor Core. The evaluation is conducted with CUDA samples (without
shared memory), and the results are scaled on the performance of FP64.

Internal workflow of NTT box. With the multiple-precision representation,
we make Tensor Core play the role of the NTT box as an individual module. The
caller could simply load the sorted data into the box and get results quickly. The
internal workflow of the NTT box is shown in Fig. 4. Several sorted polynomials
are distilled into a matrix, which is then first loaded into the fragment matrix
in the form of tiles.

Meanwhile, the pre-computed table will also be loaded into fragment ma-
trix b. Then, MMA is conducted. The results will be performed modular re-
duction to ensure that the coefficients of the target polynomial are less than q.

fragment:

matrix_a
fragment:

matrix_b

Tensor Core

Polynomials

INPUT

sort load

load

mma

fragment:

accumulator
modular

reduction

store

OUTPUT

Polynomials

in NTT

domain...

Matrix

compose

Table
(high 6 bits)



Table
(low 6 bits)

Point-wise

Multiplication

Resort Encoder/

Compress



Fig. 4: The workflow of NTT box

4 Implementation Details

In this section, we elaborate on the technical details of our implemented proto-
type. First, we show the overall architecture of our system and the collaboration
between the various modules. Next, we introduce two types of NTT: basic-NTT
for smaller modulus with achieving higher performance, and split-NTT for larger
modulus. Then, we explain some non-trivial optimization techniques.

12 L. Wan et al.

4.1 Overview

Our prototype is based on CUDA Toolkit 11.1. CUDA programming can support
a large number of concurrent threads. In our implementation, each thread holds
one instance, and these threads execute in SIMD (SIMT) mode. Although the
specific procedures might be slightly different for different phases, the high-level
overview could be like Fig. 5.

Thread Synchronization Synchronization

...

...

...

Fig. 5: General overview of implemented Kyber

The collaboration between modules. The function of the RNG module is
to extend the random seed and get the required parameters, just like the key
derivation function (KDF). After obtaining the seed from a RNG module or
decoder, Kyber will generate matrix or sample polynomial vectors based on the
seed. On the basis of Equation (6) and (7), for a polynomial, the elements with
even (or odd) terms participate in the same NTT. Therefore, before entering the
NTT box, we sort each polynomial so that even (or odd) entries are continuous in
memory. When the program needs to perform NTT, it will synchronize between
threads in the same thread block, and then input the data into the NTT box.

4.2 The Basic-NTT and Split-NTT

However, we can only load a fixed size tile into a fragment every time, while the
target matrix is much larger. We have made two scanning methods, according to
the raw precision of the data to be processed. For the parameters whose element
value is less than 8 bits (256, or 128 for signed number), such as secret s and
random noise r, e generated from CBD, with at most 3 significant bits, we apply
a basic-NTT method, shown in Fig. 6.

In this method, we only need to split the twiddle factors into Th and Tl, and
directly represent the input data with INT8 type. Both input and output are
sorted according to parity items asMe,Mo,Re andRo, to satisfy the requirement
of contiguous memory access. Note that β in Fig. 6 represents the base of multiple
precision representation, and the multiplication by b can be done by left shifting.

An Implementation of CRYSTALS-Kyber with AI Accelerator 13

Matrix even Matrix odd

Roots table

high 6-bit

Roots table

low 6-bit

n/2 n/2

n/2

n/2 n/2

k
*
 B

lo
ck

_
si

ze

ro
w

s
in

 a
 r

o
u

n
d

Result matrix

n/2 n/2

eM
oM

h
T

l
T

eR
oR

lo ohoR MTM T +=   

e e eh l
R MTM T +=   

Fig. 6: Scanning of basic-NTT

As for the case that the coefficient is larger than 8 bits, such as INTT in
Kyber, we employ a split-NTT scanning method and the details are shown in
Fig 7. The input data is sorted first and then split. The temporary sums, like

Matrix even

high 6-bit

Roots table

high 6-bit

Roots table

low 6-bit

n/2 n/2

n/2

n/2 n/2

k
*

 B
lo

ck
_

si
ze

eR

Result

matrix

oR

n

Matrix odd
high 6-bit

n/2

Matrix odd
low 6-bit

n/2

Matrix even

low 6-bit

k
*

 B
lo

ck
_

si
ze

n/2 n/2

ehM
elM

hT lT

ohM olM

holo lohTmp M T M T += 

2
oh h ol loR MM TmT Tp +=    + 

he eh l elTmp T TM M= + 
2

e eeh h el lR T TM T mp M   ++=  

Fig. 7: Scanning of split-NTT

Tmpe and Tmpo in Fig. 7, can be used to reduce a shift operation.

All data matrices have n columns, while the number of rows can be adjusted
according to the rank k and the number of threads in a block.

14 L. Wan et al.

4.3 Pre-computed Table of Twiddle Factors

Since the powers ζ2br7(i)+1 can be known in advance, then all the twiddle factors
can be pre-computed and stored in the memory before the procedure. When NTT
is executed, these values can be obtained by directly looking up the table instead
of multiplying, like the original implementation.

Additionally, intermediate results need to be performed by Montgomery re-
duction. After that, the result of Equation (4) is in Montgomery format and
needs to be converted into the normal format by multiplying R. Therefore, the
value R can be absorbed as ζ2br7(i)+1 · R mod q to save a multiplication. Ac-
cording to Equation (1) and (2), our pre-computed table of NTT and INTT
could be: 

ζ0×2br7(0)R ζ0×2br7(1)R · · · ζ0×2br7(127)R
ζ1×2br7(0)R ζ1×2br7(1)R · · · ζ1×2br7(127)R

...
...

. . .
...

ζ127×2br7(0)R ζ127×2br7(1)R · · · ζ127×2br7(127)R


128×128

(8)


n−1ζ−0×2br7(0)R n−1ζ−0×2br7(1)R · · · n−1ζ0×2br7(127)R
n−1ζ−1×2br7(0)R n−1ζ−1×2br7(1)R · · · n−1ζ−1×2br7(127)R

...
...

. . .
...

n−1ζ−127×2br7(0)R n−1ζ−127×2br7(1)R · · · n−1ζ−127×2br7(127)R


128×128

(9)

Note that the transpose of the matrix can be determined by the flag param-
eter of the built-in function. In addition, the NTT results are:

f̃2i =

127∑
j=0

f2jζ
(2br7(i)+1)jR

f̃2i+1 =

127∑
j=0

f2j+1ζ
(2br7(i)+1)jR

(10)

4.4 Point-wise Multiplication and Modular Reduction

Point-wise multiplication. In Kyber, the polynomial multiplication h(x) =

f(x) · g(x) has also been redefined. Let ĥ = f̂ ◦ ĝ = NTT (f) ◦ NTT (g) denote
the basecase multiplication consisting of the 128 products written as:

ĥ2i + ĥ2i+1X = (f̂2i + f̂2i+1X)(ĝ2i + ĝ2i+1X) mod (X2 − ζ2br7(i)+1)

Specifically, the product coefficients can be written as:

ĥ2i = f̂2iĝ2i + f̂2i+1ĝ2i+1ζ
2br7(i)+1

ĥ2i+1 = f̂2iĝ2i+1 + f̂2i+1ĝ2i
(11)

An Implementation of CRYSTALS-Kyber with AI Accelerator 15

The point-wise multiplication can be performed with the Karatsuba algo-
rithm [15] to decrease the times of multiplication, and the calculation form of
results are listed in Equation (12).

ĥ2i = f̂2iĝ2i + f̂2i+1ĝ2i+1ζ
2br(i)+1

ĥ2i+1 = (f̂2i + f̂2i+1)(ĝ2i + ĝ2i+1)− (f̂2iĝ2i + f̂2i+1ĝ2i+1)
(12)

One round lazy modular reduction. For CBD generated vectors, the biggest
sum in NTT should be less than n′q · 23 (where n′ = 128), which is 22 bits. As
mentioned earlier, Tensor Core performs FMA operation, then and the accumu-
lator, represented in INT32, can still cover the range intermediate sum. For a
polynomial whose coefficient is up to q − 1, we use two 6-bit elements to repre-
sent the value. Therefore, n′q · 26 (25 bits) will not cause overflow. Then, only a
round fast modular reduction is needed for the final NTT result.

5 Performance Evaluation and Discussion

In this section, we present our evaluation results firstly, including the perfor-
mance of the NTT box, and Kyber-512, Kyber-768, Kyber-1024, and perform a
comparative analysis with related works. Finally, we discuss the scalability and
security of our solution.

5.1 Results of NTT/INTT

Firstly, we test the performance of the two types of NTT. There is no significant
discriminative between NTT and INTT except for the pre-computed twiddle
factor tables. Since INTT does not involve small coefficients in Kyber, we only
evaluate the split-INTT (for INT16). The results are listed in Table 5. For split-
NTT, when the thread block size is 128, the performance can reach 247.2 MOPS.

Table 5: The performance of NTT, Total case=69632,Grid size=136, n = 256

Operation
Input
Type

Block size
Time elapsed

(ms)
Performance

(MOPS)

split-NTT INT16
128 0.281632 247.2
256 0.356992 195.1

basic-NTT INT8
128 0.183296 379.9
256 0.217088 320.8

split-INTT INT16
128 0.277376 251.0
256 0.357376 194.8

16 L. Wan et al.

Related work comparison. We also compare the customized NTT of polyno-
mial vector (poly vec, n = 256, k = 4) with the counterparts on CPU and GPU,
and can obtain a speedup of at least 8.1x. Furthermore, we test the provided
source code on our machine and still get about 6.47x improvement. The results
are shown in Table 6.

Table 6: Comparison of polyvec ntt in kyber, n = 256, k = 4

Device Architecture Time (ns)◦

Ref W2123 Skylake-W 6,464

Gupt et al. [12]

G1060 Pascal 378.1
P6000 Pascal 202.3
V100 Volta 135
R3080 Ampere 107.81 ∗

Ours R3080 Ampere 16.65

◦ The average time cost by each instance.
∗ The code in [12] is downloaded from https://github.com/nainag/PQC and tested
on RTX3080.

In fact, Tensor Core is also supported with V100, but not exploited in [12].
Although the gain mainly comes from AI accelerator hardware, the key lies in
our fine manipulation to adapt the cryptographic workload into its operating
mode. Our Tensor Core based NTT box involves the pre-computed tables of
twiddle factors instead of the idea of divide and conquer. Because the initial
control granularity of butterfly operation is at single element level, which con-
flicts with the matrix mode and might make the control very complicated. More
importantly, interrupting computation frequently to access memory can severely
impact performance when utilizing Tensor Cores.

5.2 Results of Kyber

The security strength recommended by the original author is Kyber-768 (k =
3) [29]. In addition, we also test Kyber-512 (k = 2) and Kyber-1024 (k = 4),
and the results are shown in Fig. 8.

Related work comparison. The previous implementations of Kyber are based
on various platforms, targeting different scenarios and following different design
ideas. The FPGA based implementations such as [34], are mainly committed
to using fewer hardware resources to reach more achievable performance. The
CPU based optimizations such as [5] tend to use vector set instructions for ac-
celeration. Unlike FPGA solutions, in which the improved algorithms are mainly
conducted through hardware programming, the hardware circuit of our proposal
can no longer be changed, and accelerations can only be carried out around the
characteristics it exposes.

https://github.com/nainag/PQC

An Implementation of CRYSTALS-Kyber with AI Accelerator 17

2283

2765

5454

2038

2451

3475

2479

3014

3516

2773

2449

3135

0 1000 2000 3000 4000 5000 6000

KeyGen

Enc

Dec

Throughput (kops)

(136,256) (136,128) (68,256) (68,128)

(a) Kyber-512

1235

1515

3111

1218

1488

2107

1501

1880

2036

1703

1450

2207

0 1000 2000 3000

KeyGen

Enc

Dec

Throughput (kops)

(136,256) (136,128) (68,256) (68,128)

(b) Kyber-768

1037

1292

2370

1045

1080

1627

1250

1236

1680

1204

1233

1686

0 500 1000 1500 2000 2500

KeyGen

Enc

Dec

Throughput (kops)

(136,256) (136,128) (68,256) (68,128)

Fig. 8: The performance of Kyber-512, Kyber-768, Kyber-1024.

Table 7 lists the average time cost on Kyber-1024 of related works. Com-
pared to resource-constrained devices, we can achieve two orders of magnitude
performance improvement. For the optimized AVX2 version Kyber-1024, our
prototype can obtain a speedup of approximately 26x, 36x, and 35x for KeyGen,
Enc, and Dec respectively. Note that we have not optimized the hash algorithm
yet.

5.3 Discussion

Security. The security issue is also an important aspect of cryptographic imple-
mentation. An important countermeasure against side-channel attacks is mask-
ing [7,26]. The core concept of masking it is to split the sensitive variables into
multiple shares. There are two split methods, one is Boolean split, which is
suitable for block ciphers, and the arithmetic split. The PQC scheme can be
combined with either or both. The multi-precision representation used in our
work is actually an arithmetic split, so it can be considered that it can enhance
the protection against side-channel attacks.

18 L. Wan et al.

Table 7: Comparison of average time cost on Kyber-1024 with related works.

Platform
KeyGen

(µs)
Enc
(µs)

Dec
(µs)

KX◦

(k/s)

Pakize Sanal et al. [28]
Apple A12 @2.49 GHz

(AES accelerator)
38.23 37.35 36.55 13.4

PQClean [20]
ARM Cortex-A75

@2.8 GHz
137.54 170.25 195.0 3.0

Xing, Y et al. [34] Xilinx Artix-7 58.2 67.9 86.2 6.93

C-Ref [29]
Intel Core i7-4770K
@3.5 GHz (Haswell)

87.8 99.0 113.3 4.97

AVX2-Ref [29]
Intel Core i7-4770K
@3.5 GHz (Haswell)

21.01 27.81 22.61 22.9

This work
NVIDIA GeForce

RTX 3080
0.80 0.77 0.42 819.7

◦ computed by ab
a+b

, where a, b are the throughput of KeyGen and Dec.

For Tensor Core itself, as far as we know, it can be treated as an atomic
instruction parallel execution unit for calculating with a fixed amount of cycles.
According to [23], it is almost impossible to perform a timing attack on parallel
AI accelerators so far.

Meanwhile, techniques against side-channel timing leakage, such as eliminat-
ing conditional statements in CUDA kernel functions, are also involved in our
work, even though they are not the main focus. Tensor Core operations involve no
secret-related conditional branch, and the related memory access (pre-computed
tables) is secret-irrelevant. In a nutshell, the AI accelerator we introduce will not
bring additional security risks.
Scalability. With the upgrade of hardware products, we believe the restric-
tions would be fewer, and the control interfaces provided could be with finer
granularity, which would make they become much more versatile. Though the
study case in this paper is a PQC scheme, the proposed solution and techniques
might provide reference for other computation-sensitive schemes like homomor-
phic encryption, of which the polynomial multiplication is also a time-consuming
part. Furthermore, in practice, the implementation would be more solid with the
optimizations for CUDA hardware, such as multiple working streams, shared
memory, and multi-threaded cooperation.

6 Conclusion and Future Work

In this paper, we propose an NTT box based on NVIDIA AI accelerator, Tensor
Core. After that, we present a high performance implementation of CRYSTALS-
Kyber with our NTT box and achieve considerable performance improvement.
Our work illustrates the tremendous potential of Tensor Core in LBC acceler-
ation. We believe that AI accelerators will become more versatile, and support
more operations and precisions. In the future, the subsequent work would cover
more lattice-based cryptographic schemes, especially homomorphic encryption
(HE) which urgently requires high efficiency for the wider application.

An Implementation of CRYSTALS-Kyber with AI Accelerator 19

Acknowledgements. We would like to thank the anonymous reviewers for
their careful reading of our manuscript and their many insightful comments and
suggestions. We are grateful to Massimiliano Albanese for helping us to improve
our paper. This work is supported in part by National Key RD Plan of China
under Grant No. 2020YFB1005803, the National Natural Science Foundation of
China No. 61902392, CCF-Tencent Open Fund under Grant No. RAGR20210131
and CCF-Huawei Populus euphratica Fund.

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing. pp. 99–108 (1996)

2. Alkım, E., Bilgin, Y.A., Cenk, M.: Compact and simple RLWE based key encap-
sulation mechanism. In: International Conference on Cryptology and Information
Security in Latin America. pp. 237–256. Springer (2019)

3. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 719–737. Springer (2012)

4. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In: Conference on the Theory and
Application of Cryptographic Techniques. pp. 311–323. Springer (1986)

5. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-Kyber: a CCA-secure module-
lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy
(EuroS&P). pp. 353–367. IEEE (2018)

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (TOCT)
6(3), 1–36 (2014)

7. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Annual International Cryptology Conference. pp.
398–412. Springer (1999)

8. Cloud, G.: Cloud tpu. https://cloud.google.com/tpu/, accessed 19 May 2021
9. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex

fourier series. Mathematics of computation 19(90), 297–301 (1965)
10. Gao, Y., Xu, J., Wang, H.: cuNH: Efficient GPU Implementations of Post-Quantum

KEM NewHope. IEEE Transactions on Parallel and Distributed Systems 33(3),
551–568 (2021)

11. Greconici, D.O., Kannwischer, M.J., Sprenkels, D.: Compact dilithium implemen-
tations on Cortex-M3 and Cortex-M4. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems pp. 1–24 (2021)

12. Gupta, N., Jati, A., Chauhan, A.K., Chattopadhyay, A.: PQC acceleration us-
ing GPUs: FrodoKEM, NewHope, and Kyber. IEEE Transactions on Parallel and
Distributed Systems 32(3), 575–586 (2020)

13. Inc, A.: Apple unleashes M1. https://www.apple.com/newsroom/2020/11/

apple-unleashes-m1/, accessed 19 May 2021
14. Inc, N.: NVIDIA tensor cores–unprecedented acceleration for HPC and AI. https:

//www.nvidia.com/en-us/data-center/tensor-cores/, accessed 19 May 2021
15. Karatsuba, A.: Multiplication of multidigit numbers on automata. In: Soviet

physics doklady. vol. 7, pp. 595–596 (1963)

https://cloud.google.com/tpu/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.nvidia.com/en-us/data-center/tensor-cores/
https://www.nvidia.com/en-us/data-center/tensor-cores/

20 L. Wan et al.

16. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Designs, Codes and Cryptography 75(3), 565–599 (2015)

17. Lu, X., Liu, Y., Zhang, Z., Jia, D., Xue, H., He, J., Li, B., Wang, K.: Lac: Practical
ring-lwe based public-key encryption with byte-level modulus. Cryptology ePrint
Archive (2018)

18. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 1–23. Springer (2010)

19. Lyubashevsky, V., Seiler, G.: NTTRU: truly fast NTRU using NTT. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems pp. 180–201 (2019)

20. M, K., J, R., P, S., D, S., Wiggers: The pqclean project. https://github.com/
PQClean/PQClean, accessed 8 Apr 2022

21. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
computation 44(170), 519–521 (1985)

22. Moody, D.: Status report on the third round of the NIST post-quantum cryptog-
raphy standardization process. Tech. rep., Gaithersburg, MD (2022)

23. Nakai, T., Suzuki, D., Fujino, T.: Timing black-box attacks: Crafting adversarial
examples through timing leaks against DNNs on embedded devices. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems pp. 149–175 (2021)

24. NIST: Post-quantum cryptography, call for proposals.
https://csrc.nist.gov/Projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/Call-for-Proposals, accessed
31 Mar 2022

25. NIST: Post-quantum cryptography, selected algorithms 2022. https://csrc.

nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022,
accessed 22, Apr., 2022

26. Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security
proof. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 142–159. Springer (2013)

27. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM (JACM) 56(6), 1–40 (2009)

28. Sanal, P., Karagoz, E., Seo, H., Azarderakhsh, R., Mozaffari-Kermani, M.: Kyber
on ARM64: Compact implementations of Kyber on 64-bit ARM Cortex-A pro-
cessors. In: International Conference on Security and Privacy in Communication
Systems. pp. 424–440. Springer (2021)

29. Schwabe, P.: Crystals-cryptographic suite for algebraic lattices. https://

pq-crystals.org/kyber/index.shtml, accessed 18 May 2021
30. Seiler, G.: Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryp-

tography. IACR Cryptol. ePrint Arch. 2018, 39 (2018)
31. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer. SIAM review 41(2), 303–332 (1999)
32. Toom, A.L.: The complexity of a scheme of functional elements realizing the mul-

tiplication of integers. In: Soviet Mathematics Doklady. vol. 3, pp. 714–716 (1963)
33. Wan, L., Zheng, F., Lin, J.: TESLAC: Accelerating lattice-based cryptography

with AI accelerator. In: International Conference on Security and Privacy in Com-
munication Systems. pp. 249–269. Springer (2021)

34. Xing, Y., Li, S.: A compact hardware implementation of CCA-secure key exchange
mechanism CRYSTALS-KYBER on FPGA. IACR Transactions on Cryptographic
Hardware and Embedded Systems pp. 328–356 (2021)

https://github.com/PQClean/PQClean
https://github.com/PQClean/PQClean
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/kyber/index.shtml

	A Novel High-performance Implementation of CRYSTALS-Kyber with AI Accelerator

