
Round-Optimal Black-Box Protocol Compilers∗

Yuval Ishai† Dakshita Khurana‡ Amit Sahai§ Akshayaram Srinivasan¶

July 7, 2022

Abstract

We give black-box, round-optimal protocol compilers from semi-honest security to malicious
security in the Random Oracle Model (ROM) and in the 1-out-of-2 oblivious transfer (OT)
correlations model. We use our compilers to obtain the following black-box constructions of
general-purpose protocols for secure computation tolerating static, malicious corruptions of all-
but-one participants:

• A two-round, two-party protocol in the random oracle model, making black-box use of a
two-round semi-honest secure protocol. Prior to our work, such a result was not known
even for special functionalities such as OT. As an application, we get efficient constructions
of two-round malicious OT/OLE in the random oracle model based on a black-box use of
two-round semi-honest OT/OLE.

• A three-round multiparty protocol in the random oracle model, making a black-box use of
two-round semi-honest OT. This protocol matches a known round complexity lower bound
due to Applebaum et al. (ITCS 2020) and is based on a minimal cryptographic primitive.

• A two-round multiparty protocol in the OT correlations model, making a black-box use of a
semi-malicious protocol. This improves over a similar protocol of the authors (Crypto 2021)
by eliminating an adaptive security requirement and replacing nonstandard multiparty OT
correlations by standard ones. As an application, we get 2-round protocols for arithmetic
branching programs that make a black-box use of the underlying field.

As a contribution of independent interest, we provide a new variant of the IPS compiler (Ishai,
Prabhakaran and Sahai, Crypto 2008) in the two-round setting, where we relax requirements
on the IPS “inner protocol” by strengthening the “outer protocol”.

1 Introduction

Minimizing the round complexity of cryptographic protocols in the presence of malicious parties
has been a major theme of research in recent years. While most feasibility questions have been
answered, there are still big efficiency gaps between known round-optimal protocols and their best
counterparts with security against semi-honest parties.

This line of research produced many innovative ideas for bridging the efficiency gap in spe-
cial cases of interest. For instance, Peikert et al. [PVW08] proposed concretely efficient 2-round

∗This is a full version of [IKSS22].
†Technion.
‡UIUC.
§UCLA.
¶Tata Institute of Fundamental Research.

1



oblivious transfer (OT) protocols under several standard assumptions. Other concretely efficient
2-round OT protocols were proposed in [MR19, MRR20]. Chase et al. [CDI+19] and Branco et
al. [BDM22] designed such protocols for oblivious linear evaluation (OLE), a natural arithmetic
extension of OT. Recent techniques improve the efficiency of 2-round protocols in the batch setting,
where multiple instances of OT or OLE are generated together [BCG+19b, BCG+19a]. In all these
cases, efficiently obtaining security against malicious parties (without resorting to general-purpose
NIZK) requires ingenious ideas that are carefully tailored to the structure of the underlying primi-
tives. In some cases, this requires using more aggressive (and sometimes nonstandard) flavors of the
assumptions that underlie the semi-honest protocols. For instance, Boyle et al. [BCG+19a] present
a communication-efficient 2-round “batch-OT” protocol, realizing polynomially many instances of
OT, with semi-honest security based on the Learning Parity with Noise (LPN) assumption. In the
case of malicious security, they present a similar protocol in the random oracle model, but require
a stronger leakage-resilient variant of LPN.

The goal of this work is to propose new general techniques for bridging the “semi-honest vs.
malicious” gap (1) without increasing round complexity, (2) without strengthening the underlying
assumptions, and (3) without significantly hurting concrete efficiency. A clean theoretical model for
capturing the last requirement is a black-box construction. Such a construction builds a malicious-
secure protocol by using an underlying semi-honest protocol as an oracle. This restriction ensures
that the efficiency gap does not depend on the complexity or structure of the semi-honest proto-
col. This paradigm has been successfully applied not only in the context of theoretical feasibility
results, but also in the context of concretely efficient protocols. Indeed, black-box constructions
can typically be optimized to have a very low overhead, at least in an amortized sense.

There is a large body of research on such black-box constructions, including a black-box con-
struction of constant-round honest-majority secure computation from one-way functions [DI05] (re-
placing an earlier non-black-box construction from [BMR90]), a black-box construction of malicious-
secure OT from semi-honest OT [HIK+11] or trapdoor permutations [ORS15] (replacing a non-
black-box construction of [GMW87]), and a black-box construction for OT extension [IKNP03]
(replacing the earlier non-black-box protocol [Bea96]).

One major shortcoming of most previous black-box constructions is that they inherently increase
the round complexity. In particular, they cannot be used to obtain 2-round protocols. Thus, the
main question we ask is:

Can we construct round-optimal black-box transformations from semi-honest secure protocols to
malicious secure variants?

The recent work of [IKSS21], building upon the IPS compiler of [IPS08], made partial progress
towards settling the question. In particular, it gave a round-preserving black-box compiler that
relies on a random OT correlation setup in the 2-party case, or a more complex correlated OT setup
in the multiparty case. Two significant caveats are that the underlying semi-honest protocol should
satisfy: (i) semi-malicious security;1 and (ii) adaptive security with erasures, a limitation inherited
from [IPS08]. This latter property is typically easy to achieve by increasing round complexity.
However, it poses a major challenge in the 2-round setting. While natural two-round protocols in

1Semi-malicious security is a strengthening of semi-honest security where the adversary is allowed to choose the
random tape of the corrupted parties in an arbitrary manner before the protocol begins. In the context of 2-round
protocols, most (but not all) natural semi-honest protocols also satisfy this stronger security property.

2



the OT-hybrid model already satisfy the adaptive security requirement, standard 2-round protocols
in the plain model, including semi-honest OLE or batch-OT protocols, do not.

The above state of affairs raises the following natural questions: Can we eliminate the adaptive
security requirement? Can we eliminate the setup completely, or replace it by a standard OT setup
in the multiparty case?

Since we are targeting 2-round protocols with security against malicious adversaries, we cannot
hope to obtain results in the plain model. But since the aim of achieving black-box protocols is
efficiency, this raises the natural question: can we build such round-preserving black-box protocol
compilers in the random oracle model?

2 Our Results

In this work, we tackle both kinds questions: eliminating the adaptive security requirement and
eliminating the need for correlated randomness completely in the random oracle model. In the
multiparty case, we also address the goal of replacing the complex correlation setup from [IKSS21]
by standard OT correlations.

In the following, when referring to 2-round two-party protocols, we distinguish between two
types of protocols. A non-interactive secure computation (NISC) protocol [IKO+11] is a protocol
for “sender-receiver” functionalities where both parties have an input but only the receiver obtains
an output. Such a NISC protocol consists of a message from the receiver to the sender, followed by
a message from the sender to the receiver. A two-sided NISC protocol is a 2-round secure protocol
for general two-party functionalities, where both parties obtain an output. In such a protocol, each
party sends a message in each of the two rounds, similarly to the general multiparty case.2

We now give a more detailed account of our results.

2.1 Round-Preserving Compilers in the OT Correlations Model

Assuming a random oblivious transfer (OT) correlations setup, we obtain the following results.

Informal Theorem 1 (Two-party protocols with OT correlations setup). There exists a black-box
compiler from any two-round semi-malicious (standard or two-sided) NISC protocol to a two-round
malicious (standard or two-sided) NISC protocol given a setup that consists of random 1-out-of-2
OT correlations (alternatively, Rabin-OT correlations) between the two parties.

See Theorem 6.6 for a formal statement in the standard NISC setting and see Section 6.3 for
extension to the two-sided case.

As in the case of the IPS compiler [IPS08], the functionality f ′ realized by the semi-malicious
protocol may depend on the target functionality f we want the malicious protocol to realize. From
a feasibility point of view, it suffices to consider a semi-malicious protocol for OT (which can be
used in parallel to realize f ′ via Yao’s protocol [Yao86]). But when f is a “simple” functionality
such as batch-OT3 or batch-OLE, we can in fact use f ′ that consists of only a constant number of
instances of f .

2While general two-sided NISC trivially implies standard NISC, the converse direction is more challenging. In
particular, running two NISC instances in parallel does not yield a two-sided NISC, since a malicious party may use
different inputs in the two instances.

3Batch-OT is not trivialized in the OT correlations model because the number of OTs in the OT correlations
setup is a fixed polynomial in the security parameter.

3



We note that the required OT setup in the above theorem is minimal in the sense that both
the number of random OT correlations and their size only depend on the security parameter
and not on the circuit being computed. Moreover, recent techniques for efficient “silent” OT
extension [BCG+19b] can make the setup reusable without additional interaction.

As a corollary of Informal Theorem 1, we can show that:

Informal Corollary 1 (Simple functionalities with OT-correlations setup). Given a setup con-
sisting of fixed polynomial (in λ) number of random OT correlations, there exist a two-round batch
OT/OLE protocol (respectively) with malicious security that makes black-box use of a two-round
OT/OLE protocol (respectively) with semi-malicious security. Further, for the case of OLE, if
the semi-malicious protocol makes black-box use of the underlying field, then so does the malicious
protocol. Finally, the construction can be implemented with constant rate, namely with amor-
tized communication cost of O(1) instances of semi-malicious OT/OLE per instance of malicious
OT/OLE.

Theorem 1 improves over a similar result from [IKSS21] in that the semi-malicious protocol is
not required to be adaptively secure. This enables the use of standard 2-round OLE protocols based
on additively homomorphic encryption, which do not satisfy the adaptive security requirement. As
an application, we get (in the OT correlations model) 2-round protocols for arithmetic formulas
or branching programs over a field that make a black-box use of any 2-round semi-malicious OLE
protocol over the same field. The latter, in turn, can be based (in a black-box way) on additively
homomorphic encryption. This is contrasted with a generic non-arithmetic approach (e.g., via a
black-box protocol for Boolean circuits [IKO+11]) that makes a non-black-box use of the field.

Theorem 1 is based on a new version of the black-box protocol compiler of [IPS08], where
we replace the outer protocol with one that can be simpler and more efficient than the state-of-
the-art [IKP10] protocol previously used in this setting. Besides eliminating the need for adaptive
security from the semi-malicious MPC protocol, the improved outer protocol may be of independent
interest.

The Multiparty Setting. In the multiparty setting, we show how to remove the complex multi-
party watchlist correlations setup from the work of [IKSS21] and replace it with a simple 1-out-of-2
random OT correlations setup. Specifically,

Informal Theorem 2 (Multiparty protocols with OT-correlations setup). There exists a black-
box compiler from any two-round multiparty protocol with semi-malicious security to a two-round
multiparty protocol with malicious security given a setup that consists of random 1-out-of-2 OT
correlations (alternatively, Rabin-OT correlations) between each ordered pair of parties.

The formal statement appears in Theorem 7.7. As a corollary, building on [LLW20], this
gives the first construction of a statistically secure 2-round protocol, with malicious security, for
computing arithmetic branching programs while making a black-box use of the underlying field.
The protocol relies on both an OT and OLE correlations setup.

2.2 Round-Preserving Compilers in the Random Oracle Model

Our primary contribution, which builds on the techniques developed above, is the construction of
round-optimal compilers in the random oracle model.

4



The semi-malicious to malicious protocol compilers, described above, rely on OT correlations to
perform cut-and-choose (using the watchlists mechanism introduced in [IPS08]). Our key contribu-
tion in this work is to remove the need for watchlists/OT correlations, and to instead give a novel
adaptation of the Fiat-Shamir paradigm in the random oracle model to function as a watchlist.
This gives rise to new round-optimal malicious secure protocols in the random oracle model from
black-box use of semi-honest secure protocols.4

The Two-Party Setting. We obtain the following results in the two-party setting in the random
oracle model.

Informal Theorem 3 (Two-party protocols in the ROM). There exists a black-box compiler from
any (standard or two-sided) NISC protocol with semi-honest security to a (standard or two-sided)
NISC protocol with malicious security in the random oracle model.

As before, the functionality computed by the semi-honest protocol may depend on the target
functionality computed by the malicious protocol. The formal statement of the transformation in
the random oracle model can be found in Theorem 6.1 and its extension to the two-sided setting
appears in Section 6.3.

We note that [MR17] also used the Fiat-Shamir transform to collapse the number of rounds of
a sender-receiver protocol but their final protocol was not two-round and their assumptions were
stronger than semi-honest two-round, two-party computation (specifically, they needed homomor-
phic commitments and two-round malicious secure OT protocol). Finally, NISC with semi-honest
security can be obtained based on the black-box use of any two-round semi-honest oblivious transfer
(OT) protocol, by relying on Yao’s garbled circuits [Yao86]. This implies the following corollaries
of Informal Theorem 3:

Informal Corollary 2 (Two-round OT in the ROM). There exists a construction of two-round
OT with malicious security in the random oracle model that makes black-box use of two-round OT
with semi-honest security.

Informal Corollary 3 (Simple functionalities in the ROM). There exists a construction of two-
round OT/OLE respectively with malicious security in the random oracle model that makes black-box
use of of two-round OT/OLE respectively with semi-honest security. Further, for the case of OLE,
if the semi-honest protocol makes black-box use of the underlying field, then so does the malicious
protocol. Finally, the construction can be implemented with constant rate, namely with amortized
communication cost of O(1) instances of semi-honest OT/OLE per instance of malicious OT/OLE.

Prior to our work, the only known constructions of two-round malicious OLE either made use
of generic non-interactive zero knowledge, or relied on specific assumptions such as N th residuos-
ity [CDI+19] or LWE [BDM22]. The black-box constructions of two-round malicious OT required
assumptions stronger than semi-honest security in the random oracle model [MR19, MRR20], or
in the plain model [FMV19] (such as strongly uniform key agreement).

The Multiparty Setting. In the multiparty setting, we give a construction of a three round
protocol in the random oracle model that makes black-box use of a minimal cryptographic primitive,
namely a two-round semi-honest OT protocol.

4In the random oracle model, we additionally remove the need for semi-malicious security.

5



Informal Theorem 4 (Multiparty protocols in the ROM). There exists a construction of three-
round MPC with malicious security in the random oracle model that makes black-box use of two-
round OT with semi-honest security.

The formal statement can be found in Theorem 7.1. Applebaum et al. [ABG+20] showed that
even considering only semi-honest security such a protocol is round-optimal (in the random oracle
model). A recent work of Patra and Srinivasan [PS21] gave a construction of a three-round malicious
secure protocol in the CRS model from any two-round malicious OT protocol in the CRS model
that satisfied a certain form of adaptive security on the receiver side. In this work, we construct a
black-box malicious secure protocol (in the random oracle model) by relying only on a two-round
semi-honest OT.

3 Technical Overview

In this section, we describe the key ideas and techniques used in the construction of our protocol
compilers.

3.1 IPS Compiler

The starting point of our work is the black-box compiler given by Ishai, Prabhakaran, and Sa-
hai [IPS08] (henceforth, referred to as the IPS compiler). This compiler transforms a semi-honest
secure protocol (with certain special properties) into a malicious secure protocol. The (simplified
version of the) IPS compiler for computing a function f in the two-party setting consists of the
following components:

• A client-server MPC protocol for computing f that is secure against any malicious adversary
corrupting an arbitrary subset of the clients and a constant fraction of the servers. Such a
protocol, requiring only two rounds, was constructed by Ishai, Kushilevitz, and Paskin [IKP10]
(see also [Pas12]) making black-box use of a PRG. This protocol is referred to as the outer
protocol.

• A semi-honest secure5 protocol where the functionality computed by this protocol is the
computation done by the servers in the outer protocol. This is referred to as the inner
protocol.

In the IPS compiler, each party takes the role of a client in the outer MPC protocol and generates
the first-round messages to be sent to the servers. The computation performed by the servers in
the outer protocol is emulated by the inner protocol. Specifically, we run m instances of the inner
protocol (where m is the number of servers) in parallel. In the i-th instance, the parties use as input
the messages to be sent to the i-th server and use the inner protocol to compute the functionality
of the i-th server. At the end of this emulation, the parties can obtain the second-round message
generated by each server from the inner protocol and finally, compute the output of f using the
output decoder of the outer protocol.

If the adversary cheats in an instance of the inner protocol, then this cheating translates to a
corruption of the corresponding server in the outer protocol. In general, a malicious adversary may
cheat in all the inner protocol instances, thereby breaking the security of each one of the virtual
servers. However, note that the outer protocol is only guaranteed to be secure as long as a constant

5The IPS compiler required this semi-honest protocol to satisfy a variant of adaptive security with erasures. We
will come back to this point soon.

6



fraction of the servers are corrupted. Thus, our compiler must ensure that any adversary that
cheats in too many inner protocol instances gets caught. To ensure this, the IPS compiler uses a
special “cut-and-choose” mechanism referred to as watchlists.

The simplest version of the watchlist mechanism involves a Rabin-OT channel with a carefully
chosen erasure probability. For each of the m executions of the inner protocol, each party sends
its input, randomness pair used in that particular execution to the other party via the Rabin OT
channel. The other party then checks if the input, randomness pair for the executions it received
via the channel is consistent with the transcript seen so far and aborts the execution if it detects
any inconsistency. The erasure probability of the Rabin-OT channel is chosen in such a way that:

• The adversary cannot learn the private inputs of the honest parties from the information it
receives via the Rabin-OT channel.

• If the adversary cheats in more than a constant fraction of the inner protocol instances, then
with overwhelming probability this cheating is detected via an inconsistency by the honest
party.

Thus, the watchlist mechanism ensures that a malicious adversary that cheats in more than a
constant fraction of the inner protocol executions is caught and this allows us to argue the security
of the compiled protocol against malicious adversaries.

Need for Adaptive Security of the Inner Protocol. As mentioned earlier, in the IPS com-
piler, it is not sufficient for the inner protocol to satisfy standard semi-honest security. We actually
need the inner protocol to satisfy so-called “semi-malicious” security with a certain variant of adap-
tive security with erasures. As already noted in [IPS08], it is possible to replace semi-malicious
security with standard semi-honest security using additional rounds. However, the need for adaptive
security with erasure seems somewhat inherent in the proof of security. In the two-round setting,
which is the primary focus of this work, this security requirement translates to a natural property
of the receiver called equivocal receiver security [GS18]. Specifically, we require the existence of an
equivocal simulator that can equivocate the first-round message of the receiver to any input. Before
proceeding further, let us give some more details on why this equivocality property is needed in
the security proof.

Consider an adversary that corrupts the sender and cheats in a small number of inner protocol
instances. The number of such cheating executions is small enough so that it goes undetected by the
watchlist mechanism. At the point of generating the first-round message from the receiver, we do
not know in which executions the adversary is planning to cheat, as the receiver sends its message
before the sender. Only after receiving the message from the adversarial sender, we realize that
in some executions the adversary has cheated, thereby breaking the security of the inner protocol.
Hence, we need to equivocate the first-round receiver message in these cheating executions to the
actual receiver input so that we can derive the same output that an honest receiver obtains.

We note that this property could be added generically to certain types of protocols such as two-
round semi-honest oblivious transfer. However, it is not known how to add this property to general
protocols by making black-box use of cryptography. Even for special cases such as Oblivious Linear
Evaluation (OLE), we do not know of any method to add this property to natural semi-honest OLE
instantiations.

7



3.2 A New Compiler: Removing Equivocality

In this work, we give a new IPS-style compiler in the two-round setting where the inner protocol
need not satisfy the equivocal receiver message property.

Strengthening the Outer Protocol. Our main idea to achieve this is to strengthen the re-
quirements from the outer MPC protocol. Namely, we show that if the outer protocol satisfies a
certain output error-correction property, then we do not need equivocal receiver security from the
inner protocol. Our output error-correction property requires that for all choices of second-round
messages from the (few) corrupted servers, the output of the honest receiver remains the same.
Indeed, we can substitute the outputs of those cheating executions with any default value and
still we are guaranteed to obtain the same output as that of an honest receiver. This removes the
need to equivocate the first-round message of the receiver for the executions where the adversary
is cheating and instead, we can rely on any semi-malicious inner protocol. The main question we
are now tasked with solving is to construct an outer protocol in the client-server setting that runs
in two rounds and satisfies the output error-correction property.

Barriers. We first observe that if the outer protocol satisfies guaranteed output delivery, then it
satisfies the error correction property as well. Unfortunately, Gennaro et al. [GIKR02] showed that
in the two-round setting, if more than one party is corrupted, then it is impossible to construct
protocols that have guaranteed output delivery. Indeed, we do not know of any ways to bypass this
impossibility result even to achieve the weaker goal of error correction.

Pairwise Verifiable Adversaries. To overcome this barrier, we show that it is sufficient to
achieve error correction against a restricted class of adversaries, that we call pairwise verifiable. In
this model, the adversary that is corrupting either one of the two clients and a constant fraction of
the servers is forced to send a first-round message from the corrupted client to the honest servers
such that these messages pass a specified pairwise predicate check. Namely, there is a predicate
that takes the first-round messages sent to any two servers and outputs either accept or reject. We
require the first-round messages sent by the adversary to each pair of honest servers to pass this
predicate check. However, the first-round messages sent between corrupted servers or between an
honest server and a corrupted server need not satisfy the pairwise verification check. Additionally,
second-round messages from corrupted servers can be generated arbitrarily. We show that once we
restrict the adversary to be pairwise verifiable, we can construct simple and efficient outer protocols
that also satisfy output error correction. In particular, we show that the semi-honest secure protocol
from [IK00] is secure against pairwise verifiable adversaries if we replace the plain Shamir secret
sharing with a bi-variate Shamir secret sharing [BGW88]. The error correction property of this
construction can be shown by viewing Shamir secret sharing as an instance of the Reed-Solomon
error correcting codes.

Why is security against Pairwise Verifiable Adversaries sufficient? We now explain why
this weaker security notion is sufficient to instantiate the IPS compiler for two-round protocols. To
see why this is the case, we modify the watchlist mechanism so that it not only checks if the pair
of input and randomness it received via the Rabin-OT channel is consistent with the transcript,
but also checks if the inputs (a.k.a. the first-round messages sent to the servers) pass the pairwise

8



verification check. Using standard statistical arguments, we show that if all the inputs received
via the Rabin-OT channel pass the pairwise verification check, then a large fraction of the other
messages also pass the pairwise verification checks. This translates to the adversary only corrupting
a small fraction of the servers and we can rely on the security of the outer protocol against pairwise
verifiable adversaries.

Here, we point out that while restricting the adversary to be pairwise verifiable is sufficient
for our purposes, our techniques suggest that security requirements from the outer protocol could
potentially be further weakened to (say) only require security against adversaries that pass more
general multi-server consistency checks, for example, those that are three-wise (as opposed to
pairwise) verifiable.

Instantiating the Rabin-OT Channel. We now explain how to instantiate a Rabin-OT chan-
nel if we have access to 1-out-of-2 OT correlations:

1. We first transform the 1-out-2 OT correlations non-interactively to 1-out-of-p correlations.
Such a transformation is implicit in the work of [BCR86].

2. We then use the transformation described in [IPS08, Section 2] to convert 1-out-of-p random
OT correlations into a single-round Rabin OT protocol with erasure probability 1− 1/p.

We show that such a rational erasure probability is sufficient to instantiate the IPS compiler.

3.3 Protocol Compiler in the Random Oracle Model

To give a compiler in the random oracle model, we first observe that the Rabin OT channel can be
replaced with a k-out-of-m OT channel (for an appropriate choice of k) and the same arguments
go through. Our key idea here is to replace the k-out-of-m OT channel with the Fiat-Shamir
transformation [FS87] applied using a random oracle. Specifically, we require both parties to
additionally send a non-interactive and extractable commitment to their input and randomness
used in each of the inner protocol instances.6 In each round, we require the party sending the
message to hash the transcript seen so far along with the messages generated in this round to
obtain a set of executions (called the opened executions) of size k. The party, in addition to
sending the messages of the inner protocol instances in that particular round, must also reveal the
input–randomness pair (via an opening of the commitments) for the opened executions. The other
party checks that the openings are correct, the random oracle output is correctly computed, the
input–randomness pair in the opened executions are consistent with the transcript seen so far, and
all pairwise consistency checks pass.

In the security proof, we rely on the correlation-intractability of the random oracle [CGH04]
to show that if the adversary cheats in more than a constant fraction of the inner protocol in-
stances, then with overwhelming probability the opened executions will intersect with the cheating
executions. This will therefore be detected by the honest party forcing it to abort. In our proof
of security, we also rely on the programmability of the random oracle to pre-determine the set of
opened executions of the honest parties.

6Such a commitment can be constructed unconditionally in the random oracle model [Pas03].

9



Relying on a Semi-Honest Secure Protocol. We observe that in the random oracle model, it
is sufficient for the inner protocol to satisfy semi-honest security rather than semi-malicious security.
Specifically, the random tape used by each party in an instance of the inner protocol is set to be
the output of the random oracle on the party index, the instance number, and a randomly chosen
salt. This ensures that even if the salt is not uniformly random, the adversarial parties will query
the random oracle on different inputs which implies that the outputs obtained from the oracle will
be uniform and uncorrelated.

3.4 Two-Sided NISC

In the protocol compiler described earlier, at the end of the second round, the receiver obtains
the output of the two-party functionality whereas the sender does not obtain any output. To ex-
tend this protocol to the setting where both parties get the output (called the two-sided NISC
setting [IKSS21]), we cannot use the näıve idea of running the one-sided protocol in parallel but
in opposite directions. Specifically, nothing prevents a cheating adversary from using inconsistent
inputs in both these executions, thereby, breaking the security of the overall protocol. To prevent
this attack, we further refine the IPS compiler methodology. We modify the first round commit-
ments/message sent via the Rabin-OT channel to include the inputs and the randomness used on
both sides of the inner protocols. In the opened/non-erased executions, in addition to the checks
that are already performed, each party checks if the inputs used on both sides are the same and if it
is not the case, then the honest parties abort. This prevents the adversary from using inconsistent
inputs in “many” instances of the inner protocol, and if that is the case, we can rely on the security
of the outer protocol to show that this adversary does not learn any additional information about
the honest party inputs.

3.5 The Multiparty Setting

In extending the above ideas to the multiparty setting, we face two main challenges:

1. First, we do not know of any two-round black-box inner protocol in the semi-honest set-
ting (and indeed [ABG+20] gave some barriers). Moreover, in existing three-round proto-
cols [PS21], if the adversary cheats in generating the first-round message, then the adversary
can recover the private inputs of the honest parties. Thus, we need the first message in the
(3-round) inner protocol to satisfy a certain form of adaptive security with erasures even if
the outer protocol has the output error correction property.

2. Recall that to use the security of the semi-honest inner protocol, we need to additionally
give the simulator the power to program the random tape of the corrupted parties in some
intermediate hybrids. Note that in our compiler we rely on the random oracle to perform this
programming. However, a cheating adversary on behalf of a corrupted party i could query the
random oracle on many different salts where the first two parts of the query are fixed to the
same i and instance number j. It could then use the output of any one of these queries as the
random tape in the j-th inner protocol instance. A natural idea to deal with this is to choose
one of these queries uniformly at random and “embed” the programmed random tape as the
output of the chosen query. The hope is that the adversary chooses this particular query
with non-negligible probability and we can use this to come up with a reduction that breaks
the security of the inner protocol. But this idea quickly runs into trouble in the multiparty

10



setting as the adversary could potentially corrupt an arbitrary subset of the parties, and we
require the adversary on behalf of each malicious party to correctly choose this embedded
query. This only happens with probability that is exponential in n (where n is the number
of parties) and is not sufficient to break the security of the inner protocol.

To solve the first issue, we show how to add the required equivocal properties to the protocol
of [PS21] in a black-box manner relying only on two-round semi-honest OT. This allows us to use
it as the inner protocol and instantiate the IPS compiler.

To solve the second issue, we rely on the fact that the semi-honest secure protocol in [PS21]
has a special structure. Namely, it is a parallel composition of a sub-protocol that computes a
special functionality called 3MULTPlus. Importantly, for this discussion it is sufficient to note that
3MULTPlus is a three-party functionality. The security of the composed protocol is argued via a
hybrid argument where we switch each one of these sub-protocols for computing the 3MULTPlus
functionality to the ideal world. Now, relying on this special structure, we show that in the
intermediate hybrids, it is sufficient to program the random tapes of the corrupted parties that
participate in a single instance of the sub-protocol. Since the number of such parties is only a
constant, we can show that the adversary chooses the “correct” random oracle outputs with non-
negligible probability and this allows us to provide a reduction that breaks the security of the
sub-protocol.

4 Preliminaries

Let λ denote the cryptographic security parameter. We assume that all cryptographic algorithms
implicitly take 1λ as input. A function µ(·) : N→ R+ is said to be negligible if for any polynomial
poly(·), there exists λ0 such that for all λ > λ0, we have µ(λ) < 1

poly(λ) . We will use negl(·) to

denote an unspecified negligible function and poly(·) to denote an unspecified polynomial function.
We say that two distribution ensembles {Xλ}λ∈N and {Yλ}λ∈N are computationally indistin-

guishable if for every non-uniform PPT distinguisher D there exists a negligible function negl(·)
such that |Pr[D(1λ, Xλ) = 1]| − Pr[D(1λ, Yλ) = 1]| ≤ negl(λ).

4.1 Semi-Honest Two-Round Two-Party Computation

We now give the syntax and definition for a two-round semi-honest two-party computation protocol.

Syntax. Consider two parties, a sender with input y and a receiver with input x. Let f be an
arbitrary two-party functionality. A two-party protocol Π for computing f is given by a tuple of
algorithms (Π1,Π2, outΠ). Π1 is run by the receiver and takes as input 1λ and the receiver input
x and outputs (π1, sk). The receiver sends π1 to the sender in the first round. Π2 is run by the
sender and it takes as input 1λ, π1, and the sender input y and outputs π2. The sender sends π2

to the receiver in the second round. The receiver then runs outΠ on inputs π2 and sk and obtains
the output z. Let ViewR(〈R(1λ, x), S(1λ, y)〉) and ViewS(〈R(1λ, x), S(1λ, y)〉) be the views of the
receiver and the sender during the protocol interaction with inputs x and y respectively. Here,
View of a party (either the sender or the receiver) includes its private input, its random tape, and
the transcript of the protocol. The protocol Π satisfies the definition given below.

Definition 4.1 (Semi-Honest Security). A two-round, two-party protocol Π = (Π1,Π2, outΠ) is
said to securely compute f against semi-honest adversaries if it satisfies the following properties:

11



• Correctness: For every receiver’s input x and for every sender input y, we have:

Pr[outΠ(π2, sk) = f(x, y)] = 1

where (π1, sk)← Π1(1λ, x) and π2 ← Π2(1λ, π1, y).
• Security: There exists a simulator SimΠ such that for any receiver’s input x and sender’s

input y, we have:

ViewS(〈R(1λ, x), S(1λ, y)〉) ≈c (y, r,SimΠ(1λ, R, y))

ViewR(〈R(1λ, x), S(1λ, y)〉) ≈c (x, r,SimΠ(1λ, S, (x, r), f(x, y)))

where the random tape r of the sender/receiver in the second distribution is uniformly chosen.

Remark 4.2. In the standard definition of semi-honest security, SimΠ is allowed to additionally
set the random tape of the corrupted receiver. Here, we consider a slightly stronger definition where
the random tape of the corrupted receiver is chosen uniformly and this is provided as input to SimΠ

and SimΠ is required to produce the transcript of the protocol. We note that this definition is implied
by the standard definition whenever f is reverse sampleable. Specifically, given (x, f(x, y)), if there
is an efficient algorithm I that outputs some y′ s.t. f(x, y) = f(x′, y′) then the weaker definition
implies the stronger definition described above. Indeed, for most natural functionalities, such as
Oblivious Transfer (OT), Oblivious Linear Evaluation (OLE), their batched versions, batch-OT
and batch-OLE, there exists such a reverse sampler, and the above definition is satisfied by all
semi-honest secure protocols.

4.2 Semi-Malicious Two-Round Two-Party Computation

Semi-Malicious security [AJL+12] is a strengthening of the semi-honest security definition where
we additionally allow the adversary to choose the random tape of the corrupted party arbitrarily.
However, the adversary is restricted to follow the protocol specification. Such an adversary is called
as a semi-malicious adversary. A two-round semi-malicious secure two-party protocol has the same
syntax of a semi-honest protocol and satisfies the definition given below.

Definition 4.3 (Semi-Malicious Security). A two-round, two-party protocol Π = (Π1,Π2, outΠ) is
said to securely compute f against semi-malicious adversaries if it satisfies the following properties:

• Correctness: For every receiver’s input x and for every sender input y, we have:

Pr[outΠ(π2, sk) = f(x, y)] = 1

where (π1, sk)← Π1(1λ, x) and π2 ← Π2(1λ, π1, y).
• Security: There exists a simulator SimΠ such that for any receiver’s input x, sender’s input
y and for any receiver’s random tape r, we have:

ViewS(〈R(1λ, x), S(1λ, y)〉) ≈c ViewS(〈R(1λ,0), S(1λ, y)〉)

ViewR(〈R(1λ, x, r), S(1λ, y)〉) ≈c (x, r,SimΠ(1λ, S, (x, r), f(x, y)))

where 0 is a default input.

12



4.3 Extractable Commitments in ROM

In our protocol compilers, we make use of non-interactive, straight-line extractable commitments
in the random oracle model. Namely, the commitments are computationally hiding and straight-
line extractable by observing the queries that the adversary makes to the random oracle. Such
commitments were constructed in [Pas03].

4.4 Pairwise Verifiable Secret Sharing

Consider a linear t-out-of-m threshold secret sharing scheme where the secrets are over a finite
field F and the shares are over another finite field F′. We use + and · to denote the addition and
multiplication operations over both the fields.

Definition 4.4 (Pairwise Verifiable Predicate). A predicate P is a pairwise verifiable predicate
if it takes a threshold t, two indices j, k ∈ [m] and the purported j-th and k-th shares xj and xk
and outputs 1/0. Further, if P (t, j, k, (xj , xk)) = 1 and P (t, j, k, (x′j , x

′
k)) = 1, then P (t, j, k, (xj +

x′j , xk + x′k)) = 1 and P (2t, j, k, (xj · x′j , xk · x′k)) = 1.

In the main body, we also extend the definition of the pairwise verifiable predicate P to take in
a vector of pair of shares and apply the above pairwise check for each pair.

Definition 4.5 (Pairwise Verifiable and Error Correctable Secret Sharing). A t-out-of-m thresh-
old linear secret sharing scheme (Share(t,m),Rec(t,m)) is said to be k-multiplicative and `-error-
correctable w.r.t. pairwise predicate P if:

1. k-Multiplicative: Given m shares of elements x1, . . . , xk arranged as a matrix M of k rows
and m columns, the row vector obtained by computing the product of each column of M is a
kt-out-of-m secret sharing of x1 · x2 . . . · xk.

2. Pairwise Verifiable Error Correction: Let T be a subset of [m] of size at most `.
Let (x1, . . . , xm) be arbitrary elements such that for any threshold t′ ≤ kt and for any
j, k ∈ [m] \ T , P (t′, j, k, xj , xk) = 1. Then, for any {xi}i∈T , Rec(t′,m)({xi}i∈T , {xi}i 6∈T ) =
Rec(t′,m)({xi}i∈T , {xi}i 6∈T ) = x. Furthermore, there exists an efficient procedure Extrapolate
that on input t′, {xi}i 6∈T outputs {x′i}i∈T such that ({xi}i 6∈T , {x′i}i∈T ) ∈ supp(Share(t′,m)(x)).

The above definition of pairwise verifiable secret sharing is the same as the one given in [IKP10]
except that we additionally need error correction property as well. We note that bivariate Shamir
secret sharing is a t-out-of-m secret sharing scheme that is k-multiplicative and `-error correctable
as long as m ≥ kt+ 2`+ 1. The pairwise predicate corresponds to equality checking of polynomial
evaluations.

5 Two-Round Client-Server Protocol with Pairwise Verifiability

In this section, we give a construction of a two-round, pairwise verifiable MPC protocol in the
client-server model. We start with the Definition of this protocol in Section 5.1.

13



5.1 Definition

Syntax. Let f be an arbitrary n-party functionality. Consider the standard client-server MPC
setting [DI05] with n clients and m servers. A two-round protocol Φ = (Share,Eval,Dec) for
computing a function f in this model has the following syntax:

• Share(1λ, i, xi) : It outputs a set of shares (xi1, . . . , x
i
m) along with a verification key vki.

• Eval(j, (x1
j , . . . , x

n
j )) : It outputs a string φj .

• Dec(i, vki, (φ1, . . . , φm)) : It outputs a string z or the special symbol ⊥.
In the first round of the protocol, each client i ∈ [n] runs the algorithm Share on its private

input xi and obtains a set of shares (xi1, . . . , x
i
m) and a verification key vki. It then sends xij as the

first round message to the j-th server for each j ∈ [m]. In the second round, each server j ∈ [m]
runs the Eval algorithm on the first round messages received from each client and obtains the string
φj . A subset of the clients are designated as output clients in the protocol. The j-th server sends
φj to each of the output clients in the second round. To obtain the output, each output client i
runs Dec on its verification key vki and the second round messages received from all the servers to
obtain the output z.

Security Definition. Below we provide the security definition of a client-server MPC protocol
that is pairwise verifiable w.r.t. predicate P .

Definition 5.1 (Admissible Adversary). Let P be a pairwise predicate that takes a client index
i ∈ [n], two server indices j, k ∈ [m], the first round message (xij , x

i
k) sent by the i-th client to the

servers j and k and outputs 1/0. An adversary A corrupting a subset of the clients and up to t
servers is said to be admissible w.r.t. pairwise predicate P if for every honest pair of servers j, k
and every corrupted client i, the output of the predicate P on input (i, j, k, (xij , x

i
k)) is 1.

Definition 5.2 (Pairwise Verifiable MPC). Let f be a n-party functionality. A protocol Φ =
(Share,Eval,Dec) is a two-round, n-client, m-server pairwise verifiable MPC protocol for computing
f against t server corruptions if there exists a pairwise predicate P such that:

1. Error Correction: If A is any admissible adversary (see Definition 5.1) w.r.t. P corrupt-
ing a subset T (where |T | ≤ t) of the servers and for any two sets of second round mes-
sages {φj}j∈T and {φj}j∈T and for any honest client i ∈ [n], Dec(i, vki, {φj}j 6∈T , {φj}j∈T ) =

Dec(i, vki, {φj}j 6∈T , {φj}j∈T ) where {φj}j 6∈T are the second round messages generated by the
honest servers in the interaction with A and vki is the verification key output by Share algo-
rithm.

2. Security: For any admissible adversary A (see Definition 5.1) w.r.t. P corrupting a subset
of the clients and (adaptively) corrupting upto t servers, there exists an ideal world simulator
SimΦ such that for any choice of inputs of the honest clients, the following two distributions
are computationally indistinguishable:

• Real Execution. The admissible adversary A interacts with the honest parties who
follow the protocol specification. The output of the real execution consists of the output
of the admissible adversary A and the output of the honest output clients.

• Ideal Execution. This corresponds to the ideal world interaction where SimΦ and the
honest client have access to the trusted party implementing f . Each honest client sends
its input to f and each honest output client outputs whatever the trusted functionality

14



sends back. For every honest output client, SimΦ sends a special instruction to the trusted
functionality to either give the output of f to the output client or the special symbol ⊥.
The output of the ideal execution corresponds to the output of SimΦ and the output of
all the honest outputs clients.

5.2 Construction

In this section, we give a construction of pairwise verifiable MPC protocol based on a 4-multiplicative
t-out-of-m secret sharing scheme that is t-error-correctible w.r.t. pairwise predicate P .

5.2.1 Protocol for SREN

Recall that the complexity class SREN consists of the set of all functions that have a degree-3
randomized encoding [IK00, AIK04]. These include log-depth arithmetic circuits and arithmetic
branching programs.

Theorem 5.3. Let (Share(t,m),Rec(t,m)) be a t-out-of-m, 4-multiplicative, t-error-correctable secret
sharing secret sharing scheme w.r.t. pairwise predicate P (see Definition 4.5). Let f be an arbitrary
n-party functionality in the complexity class SREN . Then, there exists a construction of an n-
client, m-server pairwise verifiable MPC protocol for computing f against t server corruptions (see
Definition 5.2). The computational cost of the protocol is polynomial in n and the size of the
branching program for computing f .

Notation. We give a protocol to compute a collection of degree-3 polynomials p1, . . . , pr over
a finite field F on the private inputs of the clients. The construction for any function in SREN
follows via standard reduction using randomized encoding [IK00, AIK04].7 Let MAC be a strongly
unforgeable one-time MAC scheme where the tag generation algorithm is computing a degree-1
function over F. For instance, MACa,b(x) = xa + b satisfies this property. Let g be an aug-
mented functionality that takes xi and a collection of r one-time MAC keys denoted by ki =
{ki,j}j∈[r] from the i-th client and outputs (p1(x1, . . . , xn), . . . , pr(x1, . . . , xn)) along with {σi =
{MACki,j (pj(x1, . . . , xn))}j∈[r]}i∈[n]. Note that g is a degree-4 function in the inputs {(xi, ki)}i∈[n]

of the clients.

Description of the Protocol.
• Share(i, xi) : It samples uniform one-time MAC keys ki = {ki,j}j∈[r] and generates a secret

share of each element in (xi, ki) using Share(t,m). In addition to this, for each output element
of g, the i-th client generates the shares of 0 using Share(4t,m). The shares sent to the j-th
server are the j-th share of (xi, ki) and the j-th shares of 0 corresponding to each output
element of g. The verification key vki = ki.

• Eval(j, x1
j , . . . , x

n
j ) : For each output element of g, the j-th server computes the j-th share of a

4t-out-of-m secret sharing of this element using the 4-multiplicative property of the underlying
secret sharing scheme. It then adds the corresponding j-th secret share of 0 received from
each client to this share and refreshes it. φj comprises of the refreshed j-th share for each
output element of g as computed above.

7The complexity class SREN consists of the class of circuits that takes inputs in {0, 1}. To convert into functions
that takes elements from a finite field F (of size p = poly(n)), we take each field element a and compute ap−1 mod p.
This gives a 0/1 value and it can be computed by a branching program of length polynomial in p.

15



• Dec(i, vki, φ1, . . . , φm) : To compute the output, Dec first reconstructs the output of g by
running on Rec(4t,m) on φ1, . . . , φm. It parses this as (z, σ1, . . . , σn). It then uses the verifica-
tion key vki to check if σi is a valid tag on the message z. If it is the case, it outputs z and
otherwise, it outputs ⊥.

Predicate P ′. The predicate P ′ in the definition of admissible adversary corresponds to the
pairwise verification of each share obtained from the client. This includes the t-out-of-m secret
sharing of the private inputs (xi, ki) as well as each of the 4t-out-of-m secret sharing of 0.

Error Correction. Let A be any admissible adversary corrupting a subset T of the servers of
size at most t. This implies that each of the input shares sent by A to every pair of honest servers
pass the pairwise verifiability check. Since the refreshed output shares in φj for each j ∈ [m]
are computed as a degree-4 polynomial, it follows from Definition 4.4 that for each pair of honest
servers j, k, these refreshed shares in φj and φk pass the pairwise verifiability check. Thus, the error
correction property of the protocol Φ directly follows from the pairwise verifiable error correction
property of the underlying secret sharing scheme.

Security. Let A be an admissible adversary corrupting a subset of the clients denoted by M and
upto t servers denoted by S.

1. For each of the corrupted servers, SimΦ sends the corresponding secret secret share of a default
value to A on behalf of each of the honest clients.

2. SimΦ receives the first round messages sent to the honest servers from A. Since these messages
are guaranteed to be pairwise verifiable, SimΦ extracts the input {(xi, ki)}i∈M (using Rec(t,m))
from these messages. It sends xi to the ideal functionality.

3. Based on the shares received from the malicious clients, SimΦ also computes the sum of the
vector of values denoted by ∆ sent by the malicious clients as the purported sharing of vector
of 0 (one entry corresponding to each output element of g). If this vector is not all zeroes in
the positions corresponding to the output z and the MAC of some honest output client, then
SimΦ instructs the ideal functionality to output ⊥ to this honest output client.

4. If some output client is corrupted, then SimΦ obtains the output z of the function f from the
ideal functionality. It computes σi as described in g for each i ∈ M and samples {σi}i∈[n]\M
uniformly. It computes the purported shares of the malicious client inputs sent to the cor-
rupted servers using the shares received by the honest servers (by making use of the Extrapolate
algorithm). Using these input shares, it computes the shares of the output computed by the
corrupted servers if they follow the protocol. Conditioned on fixing these shares, it generates
a uniform 4t-out-of-m secret sharing of (z, σ1, . . . , σn) + ∆ and sends the shares of the honest
servers to the adversary.

5. SimΦ outputs whatever the adversary outputs.

We now argue that the real execution and the ideal execution are statistically close by a hybrid
argument.

• Hyb0 : This corresponds to the output of the real execution.

16



• Hyb1 : In this hybrid, we do the following:
– Based on the shares sent to the honest servers, we extract {(xi, ki)}i∈M and also compute

∆ as described in the simulation.
– We compute the output (z, {σi}i∈[n]) + ∆.
– We compute the purported shares of the malicious client inputs sent to the corrupted

servers based on the shares received by the honest servers (using the Extrapolate algo-
rithm). Using these input shares, we compute the shares of the output obtained by the
corrupted servers if they followed the protocol.

– Conditioned on the fixing the above computed output shares, we sample the second
round message from the honest servers as fresh shares of 4t-out-of-m secret sharing of
(z, {σi}i∈[n]) + ∆.

This hybrid is identical to the previous hybrid since the adversary A is admissible and the
honest client sends a 4t-out-of-m secret sharing of vector of zeroes.

• Hyb2 : In this hybrid, for every honest client, we replace the output shares from the corrupted
servers to be some arbitrary values. It follows from the error correction property that Hyb1

and Hyb2 are identical.
• Hyb3 : In this hybrid, if ∆ is not all zeroes string in the positions corresponding to the output
z or the MAC of some honest output client, we instruct that honest output client to output
⊥. This hybrid is statistically close to Hyb2 from the strong unforgeabilty of the one-time
MAC scheme.

• Hyb4 : In this hybrid, we sample {σi}i∈[n]\M uniformly. This hybrid is identical to the previous
hybrid from the uniformity of the MACs of a one-time MAC scheme.

• Hyb5 : In this hybrid, we replace the shares of the honest clients sent to the corrupted servers
to be shares of default value. This hybrid is identically distributed to the previous one from
the perfect privacy of the underlying secret sharing scheme. This hybrid is identical to the
output of the ideal execution.

This completes the proof of the theorem.

5.2.2 Protocol for Arbitrary Circuits

Theorem 5.4. Let (Share(t,m),Rec(t,m)) be a t-out-of-m, 4-multiplicative, t-error-correctable secret
sharing scheme w.r.t. pairwise predicate P (see Definition 4.5). Let f be an arbitrary n-party
functionality. Then, there exists a construction of an n-client, m-server pairwise verifiable MPC
protocol for computing f against t server corruptions (see Definition 5.2) that makes black-box
use of a PRF. Furthermore, Eval algorithm does not perform any cryptographic operations. The
computational cost of the protocol is polynomial in the circuit size of f , the security parameter 1λ,
and the number of parties.

Notation. We recall the BMR garbled circuit [BMR90] construction. Let f be computed by
a Boolean circuit C that comprises entirely of fan-in 2 NAND gates. The BMR garbling gadget
comprises of the following components:

1. For each wire w in C, each party i ∈ [n], chooses a uniform mask bit biw and two random
PRF keys kiw,0, k

i
w,1 ← {0, 1}λ. If w is the input wire of some party Pj , then biw = 0 and

kiw,0 = 0λ and kiw,1 = 0λ for each i 6= j. If w is the output wire, then biw = 0 and kiw,0 = 0λ

and kiw,1 = 0λ for each i ∈ [n]. We use bw to denote
⊕n

i=1 b
i
w.

17



2. For each NAND gate g whose input wires are x and y and the output wire is z, the garbled
gate is given by {G̃r1,r2}r1,r2∈{0,1} where:

G̃r1,r2 =
( n⊕
i=1

Fkix,r1
(g, r1, r2)⊕

n⊕
i=1

Fkiy,r2
(g, r1, r2)

)
⊕
(
{kiz,χg,r1,r2}i∈[n], χg,r1,r2

)
where χg,r1,r2 = bz ⊕ g(r1 ⊕ bx, r2 ⊕ by).

3. The parties broadcast kiw,xw⊕bw and xw ⊕ bw to every other party and the parties use this to
evaluate the BMR garbled gadget just like Yao’s garbled evaluation procedure and obtain the
output.

We note that ({kiz,χg,r1,r2}i∈[n], χg,r1,r2) in the above garbled gate gadget for each gate g and

r1, r2 ∈ {0, 1} and (kiw,xw⊕bw , xw ⊕ bw) for each input wire w is a vector of degree-3 polynomials in
the inputs of the parties. Let g′ be the sequence of all such degree-3 polynomials in the computation
of the BMR garbling gadget and g be the augmented functionality (that includes the tags computed
on each output of g′) defined in the previous section.

Description of the Protocol. We give a protocol for computing the BMR garbled circuit.
• Share(1λ, i, xi) : The i-th client uses the sharing procedure from Section 5.2.1 to securely evalu-

ate g on its private inputs. In addition, i-th client evaluates Fkix,r1
(g, r1, r2) and Fkiy,r2

(g, r1, r2)

for each gate g, r1, r2 ∈ {0, 1} and generates a 4t-out-of-m secret sharing of these values using
Share(4t,m). The verification key corresponds to the verification key output by the sharing
procedure from the previous section.

• Eval(1λ, j, x1
j , . . . , x

n
j ) : Each server computes the 4t-out-of-m refreshed shares of each output

of g as in the previous protocol. It then adds the shares of Fkix,r1
(g, r1, r2) and Fkiy,r2

(g, r1, r2)

from each i ∈ [n] to the refreshed share of ({kiz,χg,r1,r2}i∈[n], χg,r1,r2) for each gate g and

r1, r2 ∈ {0, 1}.
• Dec(1λ, i, vki, φ1, . . . , φj): The output client reconstructs the BMR garbled gadget from the

output shares using Rec(4t,m). It then starts evaluating the BMR garbled gadget, and for
every gate once it recovers ({kiz,χg,r1,r2}i∈[n], χg,r1,r2) (for some r1, r2), Dec checks using the
verification key vki whether the recovered value passes the verification check from the previous
section. If yes, it proceeds with the evaluation and otherwise, it aborts.

Predicate P ′. The predicate P ′ in the definition of admissible adversary corresponds to the
predicate defined in the previous section and the pairwise checks for the shares of Fkix,r1

(g, r1, r2)

and Fkiy,r2
(g, r1, r2) sent by the client for each gate g and r1, r2 ∈ {0, 1}.

Sketch of Proof of Security. The error correction property is argued in an identical fashion to
the error correction in the previous section. To show security, we consider a sequence of hybrids
starting from the real execution and ending with the ideal execution that defines our simulator
SimΦ. Consider an admissible adversary A corrupting a subset M of the clients.

• Hyb0 : This corresponds to the view of the adversary and the outputs of the honest output
clients in the real execution of the protocol.

• Hyb1 : In this hybrid, we use the simulator for computing g from the previous section to
simulate the view of A and generate the outputs of all the honest output clients. This hybrid

18



is indistinguishable to the previous one from the security of protocol for computing g described
in the previous section.

• Hyb2 : In this hybrid, we replace each garbled gate gadget {G̃r1,r2}r1,r2∈{0,1} in the BMR
garbled circuit with the simulated one. This hybrid is computationally indistinguishable
from the previous hybrid from the security of the PRF.

• Hyb3 : In this hybrid, we extract the “purported” Fkix,r1
(g, r1, r2) and Fkiy,r2

(g, r1, r2) sent by

the adversary on behalf of some malicious client i. Let δix,r1 and δix,r2 be the actual values that
are being secret shared. We also extract kix,r1 and kix,r2 using the simulator for computing
g. For the particular garbled gate entry r1, r2 that is being decrypted in the evaluation, we
compute ∆r1,r2 =

⊕
i∈M (Fkix,r1

(g, r1, r2)⊕ δix,r1)
⊕

i∈M (Fkiy,r2
(g, r1, r2)⊕ δiy,r2). If ∆r1,r2 is

not all zeroes in the positions containing the output and the MAC of a honest output client,
then we instruct this honest output client to output ⊥. This hybrid is statistically close to
the previous hybrid from the security of MAC used in computing g from the previous section.
Hyb3 is identically distributed to the ideal world execution.

Remark 5.5. Since the PRF used in the above construction is invoked an apriori bounded number
of times, it can be replaced with a PRG that has a sufficiently large stretch.

6 Black-Box Protocol Compilers in the Two-Party Setting

In this section, we give our black-box protocol compilers to construct round-optimal malicious-
secure protocols in the two-party setting. In Section 6.1, we give our compiler in the random oracle
model. In Section 6.2, we give our compiler in the OT correlations model. Finally, in Section 6.3, we
show how to extend these compilers to give a round-optimal, malicious-secure, two-party protocol
in the two-sided setting.

6.1 Protocol Compiler in the Random Oracle Model

In this subsection, we give a black-box compiler that transforms from any two-round semi-honest
two-party protocol to a two-round malicious secure protocol in the random oracle model. We state
the formal theorem statement below.

Theorem 6.1. Let f be an arbitrary two-party functionality. Assume the existence of:
• A two-round, 2-client, m-server pairwise verifiable MPC protocol Φ = (Share,Eval,Dec) for

computing f against t server corruptions (see Definition 5.2).
• A two-round semi-honest protocol Πi = (Πi,1,Πi,2, outΠi) for each i ∈ [m] (see Definition 4.1)

where Πi computes the function Eval(i, ·).
Then, there exists a NISC protocol Γ for computing f that makes black-box use of {Πi}i∈[n] and is
secure against static, malicious adversaries in the random oracle model. The communication and
computation costs of the protocol are poly(λ, |f |), where |f | denotes the size of the circuit computing
f .

Instantiating the pairwise verifiable MPC protocol from Theorem 5.4, we get the following
corollary.

Corollary 6.2. Let f be an arbitrary two-party functionality. There exists a two-round protocol
Γ for computing f that makes black-box use of {Πi}i∈[n] and is secure against static, malicious

19



adversaries in the random oracle model. The communication and computation costs of the protocol
are poly(λ, |f |), where |f | denotes the size of the circuit computing f .

In Section 6.1.1, we describe the construction of the above malicious-secure protocol and in
section 6.1.2, we give the proof of security.

6.1.1 Construction

We start with the description of the building blocks used in the construction.

Building Blocks. The construction makes use of the following building blocks.

1. A protocol Φ = (Share,Eval,Dec) that is a two-round, 2-client, m-server pairwise verifiable
MPC protocol w.r.t. predicate P for computing the function f against t server corruptions
(see Definition 5.2). We set t = 4λ and m = 6t+ 1.

2. An two-round semi-honest inner protocol Πi = (Πi,1,Πi,2, outΠi) for each i ∈ [m] (see Defini-
tion 4.1) where Πi computes the function Eval(i, ·) (i.e., the function computed by the i-th
server).

3. A non-interactive, straight-line extractable commitment (Com,Open). Such a commitment
scheme can be constructed unconditionally in the random oracle model (see Section 4.3).

4. Two hash functions H1 : {0, 1}∗ → {0, 1}λ and H2 : {0, 1}∗ → Sm,λ that are modelled as
random oracles where Sm,λ is the set of all subsets of [m] of size λ.

Description of the Protocol. Let P0 be the receiver that has private input x0 and P1 be the
sender that has private input x1. The common input to both parties is a description of a two-party
function f . We give the formal description of a two-round, malicious-secure protocol for computing
f in Figure 1.

6.1.2 Proof of Security

Let A be the malicious adversary that is corrupting either P0 or P1. We start with the description
of the simulator Sim. Let Pi be the honest client.

Description of Sim.

1. Interaction with the Environment. For every input value corresponding to the corrupted
P1−i that Sim receives from the environment, it writes these values to the input tape of the
adversary A. Similarly, the contents of the output tape of A is written to Sim’s output tape.

2. Sim chooses uniform subset Ki of size λ and programs the random oracle H2 to output this
set when queried on the message generated by Pi.

3. Sim starts interacting with the simulator SimΦ for the outer protocol by corrupting the client
P1−i and the set of servers indexed by Ki. It obtains the first round messages {xij}j∈Ki sent
by the honest client Pi to the corrupted servers.

20



• Round 1: The receiver P0 does the following:

1. It computes (x0
1, . . . , x

0
m, vk0)← Share(1λ, 0, x0).

2. For each j ∈ [m],

(a) It computes r0
j := H1(0, j, x0

j , s
0
j ) for uniformly chosen s0

j ← {0, 1}λ.

(b) It computes com0
j ← Com((x0

j , s
0
j )).

(c) It computes (πj,1, skj)← Πj,1(1λ, x0
j ; r

0
j ).

3. It computes K0 = H2(0, {com0
j , πj,1}j∈[m], tag0) where tag0 ← {0, 1}λ.

4. It sends {com0
j , πj,1}j∈[m], tag0, and {(x0

j , s
0
j ),Open(com0

j )}j∈K0 .

• Round-2: The sender does the following:

1. It runs chkConsistency(0,T) where chkConsistency is described in Figure 2 and T is the transcript in
the first round. If chkConsistency outputs 0, then it aborts.

2. Else, it computes (x1
1, . . . , x

1
m, vk1)← Share(1λ, 1, x1).

1. For each j ∈ [m],

(a) It computes r1
j := H1(1, j, x1

j , s
1
j ) for uniformly chosen s1

j ← {0, 1}λ.

(b) It computes com1
j ← Com((x1

j , s
1
j )).

(c) It computes πj,2 ← Πj,2(1λ, x1
j , πj,1; r1

j ).

2. It computes K1 = H2(1, {com1
j , πj,2}j∈[m], tag1) where tag1 ← {0, 1}λ.

3. It sends {com1
j , πj,2}j∈[m], tag1, and {(x1

j , s
1
j ),Open(com1

j )}j∈K1 .

• Output: To compute the output, the receiver does the following:

1. It runs chkConsistency(1,T) where T is the transcript in the first two rounds. If chkConsistency
outputs 0, then it aborts and outputs ⊥.

2. For each j ∈ [m],

(a) It runs outΠj (πj,2, skj) to obtain φj .

3. It runs Dec(0, vk0, φ1, . . . , φm) and outputs whatever Dec outputs.

Figure 1: Description of Two-round Malicious 2PC

4. For each j ∈ Ki, it uses the the input xij and uniformly chosen sij to generate the messages
in the protocol Πj as described in Figure 1. For each j 6∈ Ki, it runs the simulator for the
inner protocol Πj to generate the messages on behalf of Pi. To generate the commitments,
for each j ∈ Ki, it uses (xij , s

i
j) to compute comi

j . However, for each j 6∈ Ki, it commits to
some dummy values.

5. For each of the unique random oracle queries made by A, Sim samples a uniform element in
the range of the oracle and outputs it as the response. Each time Sim generates query to the
random oracle on behalf of honest Pi, Sim checks if adversary has already made that query.
If that is the case, then it aborts the execution and outputs a special symbol abort.

6. On obtaining the protocol message from A, Sim uses the straight-line extractor for the ex-
tractable commitment Com and obtains (x1−i

1 , s1−i
1 ), . . . , (x1−i

m , s1−i
m ) from com1−i

1 , . . . , com1−i
m

respectively.

7. It initializes two empty sets I1 and I2.

21



Input: A party index i ∈ {0, 1} and the transcript T.

1. Compute Ki from the transcript T and the hash function H2.

2. For each j ∈ Ki,

(a) It obtains {(xij , sij),Open(comi
j)} from T.

(b) It checks if Open(comi
j) is valid.

(c) It then checks if (xij , H1(i, j, xij , s
i
j)) is a valid (input,randomness) pair for the protocol Πj consistent

with the transcript T.

(d) For each j′ ∈ Ki, it checks if P (i, j, j′, xij , x
i
j′) = 1.

3. If any of the checks fail, it outputs 0. Else, if all the checks pass, it outputs 1.

Figure 2: Description of chkConsistency

8. For each j ∈ [m], if (x1−i
j , H1(1− i, j, x1−i

j , s1−i
j )) is not a valid (input,randomness) pair for

the protocol Πj w.r.t. the messages sent by A, then it adds j to the set I1. It adaptively
corrupts the server j in the outer protocol and obtains xij . It uses this as the input to compute
the second round message of the protocol Πj when i = 1.

9. It constructs an inconsistency graph G where the vertices correspond to [m] and it adds an
edge between j and k if P (1− i, j, k, x1−i

j , x1−i
k ) = 0. It then computes a 2-approximation for

the minimum vertex cover in this graph and calls this vertex cover as I2. For each j ∈ I2,
it adaptively corrupts the server j in the outer protocol and obtains xij . It uses this as the
input to generate the second round message of the protocol Πj when i = 1.

10. If |I1| ≥ λ or if |I2| ≥ λ, then it sends ⊥ to its ideal functionality.

11. It completes the interaction with A and if at any point of time, A’s messages do not pass
chkConsistency then Sim sends ⊥ to the trusted functionality.

12. It provides {x1−i
j }j 6∈I1∪I2∪Ki to SimΦ as the messages sent by the adversary to the honest

servers. SimΦ queries the ideal functionality on an input x1−i and Sim forwards this to its
trusted functionality.

13. If i = 0, then if SimΦ instructs the ideal functionality to deliver the output to honest P0, then
Sim forwards this message. Otherwise, if SimΦ instructs the ideal functionality to deliver ⊥,
Sim sends ⊥ to the ideal functionality.

14. If i = 1, then Sim obtains z = f(x0, x1) from the ideal functionality and forwards this to SimΦ.
SimΦ sends the second round protocol messages {φj}j 6∈I1∪I2∪K1 from the honest servers. For
each j 6∈ I1∪ I2∪K1, Sim uses φj as the output of Πj and gives this as input to the simulator
for Πj along with (x0

j , H1(0, j, x0
j , s

0
j )) as the (input, randomness) pair. We get the final round

message for Πj for each j 6∈ I1 ∪ I2 ∪K1 from the inner protocol simulators and we use this
to generate the final round message in the protocol.

Proof of Indistinguishability. We now argue that the real execution and the ideal execution
are computationally indistinguishable via a hybrid argument.

22



• Real : This corresponds to the output of the real execution of the protocol.
• Hyb0 : This hybrid corresponds to the distribution where the random oracle queries of the

adversary are answered with a uniformly chosen random element from the image of the oracle.
Further, if the adversary makes any queries to the hash functions H1, H2 before the exact
same query was made by the honest party, we abort. We note that since each query made
to the hash functions H1, H2 has a component which is a uniformly chosen random string of
length λ, the probability that an adversary is able to make a query that exactly matches this
string queried by an honest party is q · 2−λ (where q is the total number of queries made by
the adversary to the random oracles). Hence, this hybrid is statistically close to the previous
one.

• Hyb1 : In this hybrid, we make the following changes:

1. We use the extractor for the extractable commitment Com to obtain (x1−i
1 , s1−i

1 ), . . . ,
(x1−i
m , s1−i

m ) from com1−i
1 , . . . , com1−i

m respectively.

2. We construct the sets I1 and I2 as described in the simulation.

3. If |I1| ≥ λ or |I2| ≥ λ, we abort the execution and instruct the honest party to output
⊥.

4. If i = 0 and if |I1| < λ and |I2| < λ, then for each j ∈ I1 ∪ I2 ∪Ki, we set φj to be some
default value and compute the output of honest P0.

In Lemma 6.3, we show that Hyb0 and Hyb1 are statistically indistinguishable from the error
correction properties of Φ (see Definition 5.1).

• Hyb2 : In this hybrid, we make the following changes:

1. We sample a uniform subset Ki (of size λ) and program the random oracle H2 to output
this set when queried on the messages generated by Pi.

2. For each j 6∈ Ki, we change the commitments comi
j to be commitments to some dummy

values instead of (xij , s
i
j).

This hybrid is computationally indistinguishable to the previous hybrid from the hiding prop-
erty of the non-interactive commitment scheme.

• Hyb3 : In this hybrid, we do the following:

1. We choose uniform subset Ki of [m] of size λ and program the random oracle H2 to
output this set when queried on the messages generated by Pi.

2. For each j 6∈ Ki, we run the simulator for the inner protocol and generate the messages
from Pi for the protocol Πj using this simulator.

3. We compute the sets I1 and I2 as before.

4. If some j 6∈ Ki is added to I1 or I2 and if i = 1, we use xij to compute the second round
sender message.

5. If |I1| ≥ λ or if |I2| ≥ λ, we abort as in the previous hybrid.

6. For j 6∈ Ki ∪ I1 ∪ I2, we use the input x1−i
j extracted from the extractable commitment

to compute φj = Eval(1λ, j, x0
j , x

1
j ).

7. If i = 0, for each j ∈ Ki ∪ I1 ∪ I2, we set φj to be a default value and use these values
instead to compute the output of the receiver P0.

23



8. If i = 1, then for each j 6∈ K1 ∪ I1 ∪ I2, we send the input x0
j , randomness H1(0, j, x0

j , s
0
j )

and the output φj to the simulator for Πj and obtain the final round message in Πj . We
use this to generate the final round message in the overall protocol.

In Lemma 6.4, we show that Hyb2 ≈c Hyb3 from the semi-honest sender security of the inner
protocol.

• Hyb4 : In this hybrid, we make the following changes:

1. We (adaptively) corrupt the set of servers corresponding to the indices Ki ∪ I1 ∪ I2 and
the client P1−i. We run the simulator SimΦ for the outer protocol and obtain the first
round messages sent by the honest client to these corrupted servers. We use this to
complete the execution with A.

2. We provide {x1−i
j }j 6∈Ki∪I1∪I2 (extracted from the extractable commitment) to SimΦ as

the messages sent by the adversary to the honest servers. SimΦ queries the ideal func-
tionality on an input x1−i.

3. If i = 0 then if SimΦ instructs the ideal functionality to deliver the output to honest
P0, then we instruct P0 to output f(x0, x1). Otherwise, if SimΦ instructs the ideal
functionality to deliver ⊥, we instruct P0 to output ⊥.

4. If i = 1, we compute z = f(x0, x1) and send this to SimΦ as the output from the ideal
functionality. SimΦ sends the second round protocol messages {φj}j 6∈Ki∪I1∪I2 from the
honest servers. We use this to generate the final round message of the protocol as in the
previous hybrid.

In Lemma 6.5, we show that Hyb3 ≈c Hyb4 from the security of the outer protocol. We note
that output of Hyb4 is identically distributed to the output of the ideal execution with Sim.

Lemma 6.3. Assuming the error correction properties of Φ, we have Hyb0 ≈s Hyb1.

Proof. We show that if |I1| ≥ λ or if |I2| ≥ λ then the honest client in Hyb0 also aborts with
overwhelming probability.

• Case-1: |I1| ≥ λ: Note that K1−i is chosen by the random oracle after the adversary
generates the message on behalf of the corrupted party in the protocol. We show that since
K1−i is uniformly chosen random subset of [m] of size λ, the probability that |I1 ∩K1−i| = 0
is 2−O(λ). Note that if this event doesn’t happen, then the honest client Pi aborts in Hyb0.

Pr[|K1−i ∩ I1| = 0] ≤
(
m−λ
λ

)(
m
λ

)
=

(
1− λ

m

)(
1− λ

(m− 1)

)
. . .

(
1− λ

(m− (λ− 1))

)
<

(
1− λ

m

)λ
< e−O(λ) .

where the last inequality follows since m = O(λ). By an union bound over the set of all the
q queries that adversary makes to the random oracle H2, the probability that there exists
some K1−i which is the response of the RO such that |K1−i ∩ I1| = 0 is upper bounded by
q · e−O(λ).

• Case-2: |I2| ≥ λ: Since |I2| ≥ λ, the size of the minimum vertex cover is at least λ/2. This
means that in the inconsistency graph, there exists a maximum matching of size at least λ/4.

24



Let M be the set of vertices for this matching. Note that K1−i is uniformly chosen random
subset of [m] of size λ. If any edge of this matching is present in K1−i, then the honest
client Pi aborts in Hyb0. [IKOS07, Theorem 4.1] shows that probability that no edge of this
matching is present in K1−i is 2−O(λ). Again, by an union bound over the set of all the q
queries that adversary makes to the random oracle H2, the probability that there exists some
K1−i which is the response of the RO such that no edge in M is in K1−i is upper bounded
by q · 2−O(λ).

In the case, where |I1| ≤ λ and |I2| ≤ λ, consider an admissible adversary A′ against the protocol Φ
that corrupts the set of servers indexed by I1∪I2∪Ki. By definition for every server j, k 6∈ I1∪I2∪Ki,
it follows that P (1 − i, j, k, x1−i

j , x1−i
k ) = 1. Thus, it follows from the error correction property of

Φ that Hyb2 ≈s Hyb3.

Lemma 6.4. Assuming the semi-honest security of the inner protocol, we have that Hyb2 ≈c Hyb3.

Proof. We sample a uniform subset Ki of [m] of size λ and program the random oracle H2 to output
this set when queried on the messages generated by Pi.

Let I = [m]\Ki. We consider a sequence of |I| hybrids between Hyb2 and Hyb3 where we change
from real to simulated executions of the inner protocol for each j ∈ I one by one. If Hyb2 and
Hyb3 are computationally distinguishable, then by a standard hybrid argument, there exists two
sub-hybrids Hyb2,j−1 and Hyb2,j which differ only in the j-th execution and are computationally
distinguishable. Specifically, in Hyb2,j , the messages in the protocol Πj is generated as in the ideal
execution and in the Hyb2,j−1 it is generated as in the real execution. We now show that this
contradicts the semi-honest security of the inner protocol.

We begin interacting with external challenger and provide xij as the input used by Pi in Πj .
Amongst all the queries made by A to the random oracle H1 where the first two inputs are (1−i, j),
we choose one of these queries (1 − i, j, x1−i

j , s1−i
j ) at random and give x1−i

j as the input of the

corrupted party. The challenger provides with a random tape r1−i
j to be used by P1−i. We provide

r1−i
j as the response from the random oracle. On receiving the protocol message from A, we run

the extractor for the extractable commitment Com on com1−i
j and obtain (x1−i

j , s1−i
j ). We consider

the following cases.

1. If j is added to I1 or I2 then:

• If i = 1, we use xij to generate the second round sender message. We generate the view
of the adversary and run the distinguisher between Hyb2,j and Hyb2,j−1 on this view and
output whatever it outputs.

• If i = 0, we set φj to be an arbitrary value and generate the view of the adversary and
the output of the honest party as before. We run the distinguisher between Hyb2,j and
Hyb2,j−1 on these values and output whatever it outputs.

2. If j is not added to I1 or I2 but (x1−i
j , s1−i

j ) 6= (x1−i
j , s1−i

j ), then we output a random bit to
the external challenger.

3. If j is not added to I1 or I2 and (x1−i
j , s1−i

j ) = (x1−i
j , s1−i

j ), then we continue with the rest of
the execution using the messages from the challenger (i = 1) or the output from the challenger
(i = 0) to compute the view of the adversary and output of the honest party. We run the
distinguisher between Hyb2,j and Hyb2,j−1 and output whatever it outputs.

25



We note that if j is not added to I1 or I2 and (x1−i
j , s1−i

j ) = (x1−i
j , s1−i

j ), then the input to the
distinguisher is identical to Hyb2,j−1 if the challenger generated the messages of Πj as in the real
execution and otherwise, it is identical to Hyb2,j . Similarly, if j is added to I1 or I2, then the input
to the distinguisher is identical to Hyb2,j−1 if the challenger generated the messages of Πj as in the
real execution and otherwise, it is identical to Hyb2,j .

Finally, conditioning on j not added to I1 or I2, the probability that (x1−i
j , s1−i

j ) 6= (x1−i
j , s1−i

j ) is
at least 1−1/q−negl(λ) (and at most 1−1/q+negl(λ)) where q is the total number of queries made
by the adversary to the random oracle H1. Let us assume that the probability that the distinguisher
correctly predicts whether it is given a sample from Hyb2,j and Hyb2,j−1 to be 1/2 +µ(λ) (for some
non-negligible µ(λ)). Let ε be the probability that j is added to I1 or I2. Let p be the probability
that the above reduction correctly predicts whether it is interacting with the real execution or the
ideal execution. Then,

p ≥ (1/2 + µ(λ))ε+ (1− ε)((1− 1/q − negl(λ))(1/2) + (1/q − negl(λ))(1/2 + µ(λ)))

≥ (1/2 + µ(λ))ε+ (1− ε)(1/2 + µ(λ)/q)− negl(λ)

≥ 1/2 + µ(λ)/q + ε(µ(λ)− µ(λ)/q)− negl(λ)

≥ 1/2 + µ(λ)/q − negl(λ)

and this contradicts the semi-honest security of the inner protocol.

Lemma 6.5. Assuming the security of the outer protocol Φ, we have Hyb3 ≈c Hyb4.

Proof. Assume for the sake of contradiction that Hyb3 and Hyb4 are computationally distinguish-
able. We give a reduction to breaking the security of the outer protocol.

We begin interacting with the external challenger by providing the input xi of the honest client
Pi. We then corrupt the other client P1−i and the set of servers indexed by Ki. We obtain the first
round messages sent from the honest client Pi to the corrupted servers and we begin interacting
with A using these messages. For each server that is added to I1 or I2, we adaptively corrupt
that server and obtain the first round message sent from the honest client to this server. We use
this message to continue with the rest of the execution as in Hyb3. At the end of the protocol
execution, we send {x1−i

j }j 6∈Ki∪I1∪I2 as the first round messages sent by the corrupted client P1−i
to the honest servers. If P0 is uncorrupted, we send {φj}j∈Ki∪I1∪I2 (set to be arbitrary values as in
Hyb3) to the challenger and it provides the output of P0 and we instruct P0 to output the same. If
P0 is corrupted, we obtain {φj}j 6∈Ki∪I1∪I2 from the external challenger and we use this to generate
the final round message in the protocol. We finally run the distinguisher between Hyb3 and Hyb4

on the view of A and the output of P0 (if it is uncorrupted) and output whatever the distinguisher
outputs.

The above reduction emulates an admissible adversary as by definition the first round message
sent to the honest servers pass the pairwise verification w.r.t. predicate P . Since |Ki ∪ I1 ∪ I2| ≤
|Ki|+ |I1|+ |I2| = 3λ = t, the reduction emulates an admissible adversary that corrupts at most t
servers. Thus, if the messages generated by the external challenger are done as in the real execution
then input to the distinguisher is identical to Hyb3. Else, it is identically distributed to Hyb4. This
implies that the reduction breaks the security of the protocol Φ and this is a contradiction.

Protocols for (Batch) OT and OLE. To construct OT or OLE protocols with malicious
security, we instantiate the outer protocol with a simplified variant of the pairwise verifiable protocol

26



from Section 5.2.1. We instantiate the inner protocol with a 2-round semi-honest protocol emulating
the server computations in the outer protocol by making parallel calls to OT/OLE. The latter can be
obtained using information-theoretic Boolean/arithmetic variants of Yao’s protocol that efficiently
apply to “simple” (e.g., log-depth) functionalities. This gives us the black-box feasibility result of
constructing 2-round malicious OT/OLE from 2-round semi-honest OT/OLE.

We now sketch the details of a “constant-rate” variant of the above blueprint. We follow the
high level approach of the constant-rate (multi-round) protocols from [IPS08, IPS09], except for
using a 2-round outer protocol based on bivariate polynomials (or tensored AG codes) instead of
an outer protocol based on univariate polynomials (or AG codes).

In more detail, we instantiate the above compiler with the following building blocks. Consider
first the case of batch-OLE over a big field F (|F| ≥ 2λ). Here we use a pairwise verifiable outer
protocol computing Ω(n2) instances of OLE using packed bivariate Shamir secret sharing over
F, namely where a single bivariate polynomial encodes an ` × ` matrix of secrets for ` = Ω(n).
The local computations done by the n servers in the outer protocol consist of just O(n2) parallel
computations of the form yi = aixi + bi, or a constant number of such computations per OLE
instance. These computations require the inner protocol to make O(1) semi-honest OLE calls per
malicious OLE instance. The authentication of the outputs of the outer protocol can be achieved
with a constant overhead by either appending a simple arithmetic MAC to the yi, as in the protocol
from Section 5.2.1, or by using the error-correcting property of the outer protocol (which enables
detection of tampering with the output shares of corrupted servers).

For the case of OT, one can use an analogous protocol based on tensored algebraic geometric
codes, in which the field size does not grow with the number of servers n. Here the computation of
yi = aixi + bi has a constant-size circuit, and hence requires the inner protocol to use a constant
number of OTs. The output authentication can be achieved with a constant overhead via the
error-correction of the outer protocol.

6.2 Protocol Compiler in the OT Correlations Model

In this section, we describe a protocol compiler that transforms two-round semi-malicious two-
party protocol to a two-round malicious-secure protocol. This transformation is in the standard
1-out-of-2 OT correlations model. We state the formal theorem below.

Theorem 6.6. Let f be an arbitrary two-party functionality. Assume the existence of:
• A two-round, 2-client, m-server pairwise verifiable MPC protocol Φ = (Share,Eval,Dec) for

computing f against t server corruptions (see Definition 5.2).
• A two-round semi-malicious protocol Πi = (Πi,1,Πi,2, outΠi) for each i ∈ [m] (see Defini-

tion 4.3) where Πi computes the function Eval(i, ·).
Then, there exists a NISC protocol Γ for computing f that makes black-box use of {Πi}i∈[n] and is
secure against static, malicious adversaries in the 1-out-of-2 OT correlations model. The communi-
cation and computation costs of the protocol are poly(λ, |f |), where |f | denotes the size of the circuit
computing f and the size of the OT correlations shared between the parties is a fixed polynomial in
the security parameter and is independent of the size of the function f .

Instantiating the pairwise verifiable MPC protocol from Theorem 5.4, we get the following
corollary.

Corollary 6.7. Let f be an arbitrary two-party functionality. There exists a two-round protocol
Γ for computing f that makes black-box use of {Πi}i∈[n] and is secure against static, malicious

27



adversaries in the 1-out-of-2 OT correlations model. The communication and computation costs of
the protocol are poly(λ, |f |), where |f | denotes the size of the circuit computing f and the size of
the OT correlations shared between the parties is a fixed polynomial in the security parameter and
is independent of the size of the function f .

6.2.1 Construction

Our construction makes use of a single round Rabin OT protocol which we describe how to construct
in the presence of 1-out-of-2 OT correlations. Here we consider the case of standard (1-sided) NISC
for simplicity. An extension to the two-sided case will be discussed in Section 6.3.

Constructing Single Round Rabin OT protocol in OT Correlations Model. To construct
a Rabin OT protocol with erasure probability 1− 1/p for some integer p, we do as follows:

1. We first transform the 1-out-2 OT correlations non-interactively to 1-out-of-p correlations.
Such a transformation was described in [NP99].

2. We then use the transformation described in [IPS08, Section 2] to convert 1-out-of-p random
OT correlations into a single round Rabin OT protocol with erasure probability 1− 1/p.

Building Blocks. We start with the description of the building blocks:

1. A protocol Φ = (Share,Eval,Dec) which is a two-round, 2-client, m-server pairwise verifiable
protocol w.r.t. predicate P for computing the function f against t server corruptions (see
Definition 5.2). We set t = 4λ and m = 7t.

2. An two-round semi-malicious inner protocol (see Definition 4.3) Πi = (Πi,1,Πi,2, outΠ) for
each i ∈ [m] where Πi computes the function Eval(1λ, i, ·) (i.e., the function computed by the
i-th server).

3. A single round Rabin OT protocol RabinOT with erasure probability 1 − λ/m. We extend
the syntax of the Rabin OT protocol to take in m strings and each of these strings are
independently erased with probability 1− λ/m.

Description of the Protocol. Let P0 be the receiver with private input x0 and P1 be the sender
with private input x1. The common input to both parties is a description of a function f . The
formal description of the protocol appears in Figure 3.

6.2.2 Proof of Security

We start with the description of the simulator.

Description of Sim. Let A be an adversary that corrupts either P0 or P1. We assume that Pi is
the honest client.

1. Interaction with the Environment. For every input value corresponding to the corrupted
P1−i that Sim receives from the environment, it writes these values to the input tape of the
adversary A. Similarly, the contents of the output tape of A is written to Sim’s output tape.

28



• Round-1: In the first round, the party P0 with input x0 does the following:

1. It computes (x0
1, . . . , x

0
m, vk0)← Share(1λ, 0, x0).

2. It chooses a random string r0
h ← {0, 1}λ for every h ∈ [m] and sets y0

h = (r0
h, x

0
h).

3. It computes msg0 ← RabinOT(y0
1 , . . . , y

0
m).

4. For each h ∈ [m], it computes (πh,1, skh) := Πh,1(1λ, x0
h; r0

h).

5. It sends ({πh,1}h∈[m],msg0).

• Round-2: In the second round, P1, with input x1 does the following:

1. It computes (x1
1, . . . , x

1
m, vk1)← Share(1λ, 1, x1).

2. It chooses a random string r1
h ← {0, 1}λ for every h ∈ [m] and sets y1

h = (r1
h, x

1
h).

3. It computes msg1 ← RabinOT(y1
1 , . . . , y

1
m).

4. It decrypts msg0 to obtain {r0
h, x

0
h}h∈K0 for some subset K0 (the rest of the positions are erased).

5. For each h ∈ K0, it checks:

(a) If πh,1 := Πh,1(1λ, x0
h; r0

h).

(b) For each h′ ∈ K0, if P (0, h, h′, x0
h, x

0
h′) = 1.

6. If any of the above checks fail, it aborts.

7. Else, for each h ∈ [m], it computes πh,2 := Πh,2(1λ, x1
h, πh,1; r1

h).

8. It sends {πh,2}h∈[m] and msg1 to P0.

• Output Computation. To compute the output, Pi does the following:

1. It decrypts msg1 to obtain {r1
h, x

1
h}h∈K1 for some subset K1 (the rest of the positions are erased).

2. For each h ∈ K1, it checks:

(a) If πh,2 := Πh,2(1λ, x1
h, πh,1; r1

h).

(b) For each h′ ∈ K1, if P (1, h, h′, x1
h, x

1
h′) = 1.

3. If any of the above checks fail, it aborts.

4. Else, for every h ∈ [m], it computes φh := outΠh(πh,2, skh).

5. It computes z ← Dec(0, vk0, φ1, . . . , φm) and outputs z.

Figure 3: Description of the Two-Round 2PC Protocol in the OT Correlations Model

2. Sim samples a subset Ki where each element of [m] is added independently to Ki with prob-
ability λ/m. If |Ki| ≥ 2λ, then Sim aborts. Looking ahead, Ki chosen above will be the set
of strings that are not erased in msgi. It sets {yij}j 6∈Ki to be dummy values.

3. Sim starts interacting with the simulator SimΦ for the outer protocol by corrupting the client
P1−i and the set of servers indexed by Ki. It obtains the first round messages {xij}j∈Ki sent
by the honest client to the corrupted servers.

4. For each j ∈ Ki, it uses the the input xij and uniformly chosen rij to generate the messages

in the protocol Πj as described in Figure 3. It computes yij = (rij , x
i
j) for each j ∈ Ki and

computes msgi. For each j 6∈ Ki, it runs the simulator for the inner protocol Πj to generate
the messages on behalf of Pi.

5. On obtaining the first round message from A, Sim uses the Rabin OT extractor on msg1−i

29



and obtains (r1−i
1 , x1−i

1 ), . . . , (r1−i
m , x1−i

m ). It also samples a subset K1−i where each element
from [m] is independently added to K1−i with probability λ/m. It then uses K1−i to perform
the same checks done by honest Pi in the protocol.

6. It initializes two empty sets I1 and I2.

7. For each j ∈ [m], if (x1−i
j , r1−i

j ) is not a valid (input,randomness) pair for the protocol Πj

w.r.t. the messages received then it adds j to the set I1. It adaptively corrupts the server j
in the outer protocol and obtains xij . It uses this to send the second round message of the
protocol Πj in the case where i = 1.

8. It constructs an inconsistency graph G where the vertices correspond to [m] and it adds an
edge between j and k if P (1− i, j, k, x1−i

j , x1−i
k ) = 0. It then computes a 2-approximation for

the minimum vertex cover in this graph and calls this vertex cover as I2. For each j ∈ I2, it
adaptively corrupts the server j in the outer protocol and obtains xij . It uses this to send the
second round message of the protocol Πj in the case where i = 1.

9. If |I1| ≥ λ or if |I2| ≥ λ, then it sends ⊥ to its ideal functionality.

10. It completes the interaction with A and if at any point of time, A’s messages does not pass
the checks described in the protocol then Sim sends ⊥ to the trusted functionality.

11. It provides {x1−i
j }j 6∈I1∪I2∪Ki to SimΦ as the messages sent by the adversary to the honest

servers. SimΦ queries the ideal functionality on an input x1−i and Sim forwards this to its
trusted functionality.

12. If i = 0, then if SimΦ instructs the ideal functionality to deliver the output to honest P0, then
Sim forwards this message. Otherwise, if SimΦ instructs the ideal functionality to deliver ⊥,
Sim sends ⊥ to the ideal functionality.

13. If i = 1, then Sim obtains z = f(x0, x1) from the ideal functionality and forwards this to SimΦ.
SimΦ sends the second round protocol messages {φj}j 6∈I1∪I2∪K1 from the honest servers. For
each j 6∈ I1∪ I2∪K1, Sim uses φj as the output of Πj and gives this as input to the simulator
for Πj along with (x0

j , r
0
j ) as the (input, randomness) pair. We get the final round message

for Πj for each j 6∈ I1∪I2∪K1 from the inner protocol simulators and we use this to generate
the final round message in the protocol.

Proof of Indistinguishability. We now argue that the real execution and the ideal execution
are computationally indistinguishable via a hybrid argument.

• Hyb0 : This corresponds to the output of the real execution of the protocol.
• Hyb1 : In this hybrid, we make the following changes:

1. We sample a subset Ki where each element in [m] is independently added to Ki with
probability λ/m. If |Ki| ≥ 2λ, we abort.

2. We use the Rabin OT extractor on msg1−i to obtain (r1−i
1 , x1−i

1 ), . . . , (r1−i
m , x1−i

m )

3. We construct the sets I1 and I2 as described in the simulation.

4. If |I1| ≥ λ or |I2| ≥ λ, we abort the execution and instruct the honest party to abort the
execution.

30



5. If i = 0 and if |I1| < λ and |I2| < λ, then for each j ∈ I1 ∪ I2 ∪Ki, we set φj to be a
default value and compute the output of honest P0.

We show in Lemma 6.8 that Hyb0 and Hyb1 are statistically indistinguishable from the error
correction properties of Φ.

• Hyb2 : In this hybrid, we make the following changes:

1. We choose a subset Ki as described in the simulation.

2. For each j 6∈ Ki, we set yij to be dummy values.

This hybrid is computationally indistinguishable to the previous hybrid from the security of
the Rabin-OT protocol.

• Hyb3 : In this hybrid, we do the following:

1. We choose the set Ki as specified before.

2. For each j 6∈ Ki, we run the simulator for the inner protocol and generate the messages
from Pi for the protocol Πj using this simulator.

3. We compute the sets I1 and I2 as before.

4. If some j 6∈ Ki is added to I1 or I2 and if i = 1, we use xij to compute the second round
sender message.

5. If |I1| ≥ λ or if |I2| ≥ λ, we abort as in the previous hybrid.

6. For j 6∈ Ki ∪ I1 ∪ I2, we use the input x1−i
j extracted from the Rabin OT protocol to

compute φj = Eval(1λ, j, x0
j , x

1
j ).

7. If i = 0, for each j ∈ Ki ∪ I1 ∪ I2, we set φj to be a default value and use these values
instead to compute the output of the receiver P0.

8. If i = 1, then for each j 6∈ K1 ∪ I1 ∪ I2, we send the input x0
j , randomness r0

j and the
output φj to the simulator for Πj and obtain the final round message in Πj . We use this
to generate the final round message in the overall protocol.

In Lemma 6.9, we show that Hyb2 ≈c Hyb3 from the semi-malicious security of the inner
protocol.

• Hyb4 : In this hybrid, we make the following changes:

1. We (adaptively) corrupt the set of servers corresponding to the indices Ki ∪ I1 ∪ I2 and
the client P1−i. We run the simulator SimΦ for the outer protocol and obtain the first
round messages sent by the honest client to these corrupted servers. We use this to
complete the execution with A.

2. We provide {x1−i
j }j 6∈Ki∪I1∪I2 (extracted from the extractable commitment) to SimΦ as

the messages sent by the adversary to the honest servers. SimΦ queries the ideal func-
tionality on an input x1−i.

3. If i = 0 then Sim if SimΦ instructs the ideal functionality to deliver the output to honest
P0, then we instruct P0 to output f(x0, x1). Otherwise, if SimΦ instructs the ideal
functionality to deliver ⊥, we instruct P0 to output ⊥.

4. If i = 1, we compute z = f(x0, x1) and send this to SimΦ as the output from the ideal
functionality. SimΦ sends the second round protocol messages {φj}j 6∈Ki∪I1∪I2 from the
honest servers. We use this to generate the final round message of the protocol as in the
previous hybrid.

31



Via a similar proof in Lemma 6.5, we can show that Hyb3 ≈c Hyb4 from the security of the
outer protocol. We note that output of Hyb4 is identically distributed to the output of the
ideal execution with Sim.

Lemma 6.8. Assuming the error correction property of Φ, we have Hyb0 ≈s Hyb1.

Proof. It follows from standard Chernoff bounds that only with probability 2−O(λ) that |Ki| ≥ 2λ.
We now argue that if |I1| ≥ λ or if |I2| ≥ λ then with probability at least 1 − 2−O(λ), the honest
client in Hyb0 aborts.

• Case-1: |I1| ≥ λ. Note that if |K1−i∩I1| 6= 0 then the honest client Pi aborts. Note that each
element in [m] is added to K1−i independently with probability λ/m. Thus, the probability
that no element in I1 is added to K1−i is at most (1− λ

m)λ ≤ 2−O(λ) (since m = O(λ)).
• Case-2: |I2| ≥ λ: Since |I2| ≥ λ, the size of the minimum vertex cover is at least λ/2. This

means that in the inconsistency graph there exists a maximum matching of size at least λ/4
edges. Let M be the set of vertices for this matching. If there exists at least one edge of this
matching in K1−i then the honest client aborts in Hyb0. The probability that no edge of this

matching is in K1−i is (1− λ2

m2 )λ/4 ≤ 2−O(λ) (since m = O(λ)).

In the case, where |I1| ≤ λ and |I2| ≤ λ, consider an admissible adversary A′ against the
protocol Φ that corrupts the set of servers indexed by I1 ∪ I2 ∪Ki. By definition for every servers
j, k 6∈ I1 ∪ I2 ∪ Ki, it follows that P (1 − i, j, k, x1−i

j , x1−i
k ) = 1. Thus, it follows from the error

correction property of Φ that Hyb2 ≈s Hyb3.

Lemma 6.9. Assuming the semi-malicious security of the inner protocol, we have Hyb2 ≈c Hyb3.

Proof. We sample the subset Ki as before.

Let I = [m]\Ki. We consider a sequence of |I| hybrids between Hyb2 and Hyb3 where we change
from real to simulated executions of the inner protocol for each j ∈ I one by one. If Hyb2 and
Hyb3 are computationally distinguishable, then by a standard hybrid argument, there exists two
sub-hybrids Hyb2,j−1 and Hyb2,j which differ only in the j-th execution and are computationally
distinguishable. Specifically, in Hyb2,j , the messages in the protocol Πj is generated as in the ideal
execution and in the Hyb2,j−1 it is generated as in the real execution. We now show that this
contradicts the weak adaptive semi-honest security of the inner protocol.

We begin interacting with external challenger and provide xij as the input used by Pi in Πj

and use the messages received from the challenger to generate the messages in the protocol. On
receiving the first round message from A, we run the extractor for the Rabin OT protocol and
obtain (x1−i

j , r1−i
j ). We compute the sets I1 and I2 as before. If j 6∈ I1 ∪ I2, we send (x1−i

j , r1−i
j ) to

the challenger and obtain the second round message in case i = 1, and otherwise obtain the output
φj in case i = 0. If j is added to I1 ∪ I2, then we use x1

j to generate the second round message in
case i = 1 and set φj to be an arbitrary value in case i = 0. We then proceed to compute the view
of A and the output of P0 (in case i = 0) as in Hyb2,j−1 and run the distinguisher between Hyb2,j−1

and Hyb2,j on this and output whatever it outputs.

We note that the input to the distinguisher is identical to Hyb2,j−1 if the challenger generated
the messages of Πj as in the real execution and otherwise, it is identical to Hyb2,j . Since the
distinguisher is assumed to distinguish between Hyb2,j−1 and Hyb2,j with non-negligible advantage,
it contradicts the semi-malicious security of the inner protocol.

32



6.3 Extension to the Two-Sided Setting

In this subsection, we explain how to extend the protocol described in Section 6.1 to the bidirectional
communication model. Specifically, we want to construct an two-sided NISC protocol where in each
round, both parties can send a message and we require both parties get the output at the end of
the second round. The extension for the protocol in the OT correlations model is similar.

Construction. The construction is very similar to the one described in Figure 1 except that we
run two instances of the inner protocol for each j ∈ [m], namely, Π0

j and Π1
j where the parties use

the same input in both the executions (but use independently chosen randomness). Here, Π0
j is the

protocol that delivers output to P0 and Π1
j is the protocol that delivers output to P1. Additionally,

for each j ∈ [m], the parties send an extractable commitment to the input and the random strings
used in Π0

j and Π1
j respectively. In each round u ∈ [2], the parties use the random oracle H2 to

derive a set Ku
0 ,K

u
1 respectively as in the previous protocol description. The party Pi (for each

i ∈ {1, 2}) then opens the above generated extractable commitment for those executions indexed
by Ku

i . The chkConsistency run by Pi is modified so that it checks if the input, randomness pair
is consistent in Π0

j and Π1
j for each j ∈ Ku

1−i. The output computation by both parties is done
exactly as described in Figure 1.

Proof of Indistinguishability. Since the protocol is symmetric, we assume without loss of
generality that P0 is the honest client. We now argue that the real execution and the ideal execution
are computationally indistinguishable.

• Real : This corresponds to the output of the real execution of the protocol.
• Hyb0 : This hybrid corresponds to the distribution where the adversaries random oracle queries

are answered with uniformly chosen random elements from the image of the oracle. Further,
if the adversary makes any queries to the hash functions H1, H2 before the exact same query
was made by the honest party, we abort. Via an identical argument made in Section 6.1.2,
we note that this hybrid is statistically close to the previous hybrid.

• Hyb1 : In this hybrid, we make the following changes:

1. Let K0 be the union of K1
0 and K2

0 .

2. We use the extractor for the extractable commitment Com to obtain (x1
1, s

1,0
1 , s1,1

1 ), . . . ,

(x1
m, s

1,0
m , s1,1

m ) from com1
1, . . . , com

1
m.

3. We construct the sets I1 as described in the simulation and I2 exactly as before.

4. If |I1| ≥ λ or |I2| ≥ λ, we abort the execution and instruct the honest party to abort the
execution.

5. If |I1| < λ and |I2| < λ, then for each j ∈ I1 ∪ I2 ∪K0, we set φj to be a default value
and compute the output of honest P0.

Again, via an identical argument to Lemma 6.3, we can show that Hyb0 and Hyb1 are statis-
tically close from the error correction properties of Φ.

• Hyb2 : In this hybrid, we make the following changes:

1. We choose uniform subsets K1
0 and K2

0 (of size λ) and set K0 to be the union of these
sets. We program the random oracle H2 to output the appropriate set when queried on
the messages generated by P0.

33



2. For each j 6∈ K0, we change the commitments com0
j to be commitments to some dummy

values.

This hybrid is computationally indistinguishable to the previous hybrid from the hiding prop-
erty of the non-interactive commitment scheme.

• Hyb3 : In this hybrid, we make the following changes:

1. For each round u ∈ [2], we choose uniform subsets Ku
0 (of size λ) and set K0 to be the

union of all these sets. We program the random oracle H2 to output the appropriate set
when queried on the messages generated by P0.

2. For each j 6∈ K0, we run the simulator for the inner protocols for both Π0
j and Π1

j to
generate the messages from P0.

3. If some j 6∈ K0 is added to I1 or I2, then we use x0
j as the private input to generate the

second round message in Π1
j .

4. In any round, if |I1| ≥ λ or |I2| ≥ λ, we abort as in the previous hybrid.

5. For j 6∈ I1 ∪ I2 ∪K0, we use the input x1
j extracted from the extractable commitment

to compute φj = Eval(1λ, j, x0
j , x

1
j ). We send the input x1

j , randomness H1(1, j, x1
j , s

1,1
j )

and the output φj to the simulator for Π1
j and obtain the final round message in Π1

j . We

use this to generate the final round message to be sent by P0 in the protocol Π1
j .

6. To compute the output, we do the following. For j 6∈ I1 ∪ I2 ∪ K0, we use the input
x1
j extracted from the extractable commitment to compute φj = Eval(1λ, j, x0

j , x
1
j ). For

each j ∈ I1∪I2∪K0, we set φj to be a default value. We use this to compute the output
as in the previous hybrid.

We can use the argument described in Lemma 6.4 for the case where P0 is uncorrupted, to
replace all {Π0

j}j 6∈K0 to the simulated distribution. We then use a similar argument described

in Lemma 6.4 for the case where P0 is corrupted to replace all {Π1
j}j 6∈K1 to the simulated

distribution.
• Hyb4 : In this hybrid, we make the following changes:

1. We (adaptively) corrupt the set of servers corresponding to the indices I1 ∪ I2 ∪K0 and
the client P1. We run the simulator SimΦ for the outer protocol and obtain the first
round messages sent by the honest client to these corrupted servers. We use this to
complete the execution with A.

2. We provide {x1
j}j 6∈I1∪I2∪K0 (extracted from the extractable commitment) to SimΦ as the

messages sent by the adversary to the honest servers. SimΦ queries the ideal functionality
on an input x1 and we forward this to the ideal functionality.

3. The ideal functionality outputs z = f(x0, x1) and we send this to SimΦ. SimΦ sends the
second round protocol messages {φj}j 6∈I1∪I2∪K0 from the honest servers. We use this
to generate the final round message of the protocol {Π1

j}j 6∈I1∪I2∪K0 as in the previous
hybrid.

4. On obtaining the final round message from the adversary, we update the set I1 and
adaptively corrupt those servers to obtain the first round message from P0 to those
servers. If SimΦ instructs the ideal functionality to deliver the output then we instruct
P0 to output f(x0, x1). Otherwise, we instruct it to output ⊥.

34



In Lemma 6.10, we show that Hyb3 ≈c Hyb4 from the security of the outer protocol. We note
that output of Hyb4 is identically distributed to the output of the ideal execution with the
simulator.

Lemma 6.10. Assuming the security of the outer protocol Φ, we have Hyb3 ≈c Hyb4.

Proof. Assume for the sake of contradiction that Hyb3 and Hyb4 are computationally distinguish-
able. We give a reduction to breaking the security of the outer protocol.

We begin interacting with the external challenger by providing the input x0 of the honest client
P0. We then corrupt the other client P1 and the set of servers indexed by K0. We obtain the first
round messages sent from the honest client Pi to the corrupted servers and we begin interacting
with A using these messages. For each server that is added to I1 or I2, we adaptively corrupt that
server and obtain the first round message sent from the honest client to this server. We use this
message to continue with the rest of the execution as described in Hyb3. Before sending the final
round message on behalf of P0, we send {x1

j}j 6∈I1∪I2∪K0 as the first round messages sent by the
corrupted client P1 to the honest servers.

The challenger replies with {φj}j 6∈I1∪I2∪K0 as the final round message from the honest servers
sent to the corrupt client. We use this as the protocol output to run the inner protocol simulator for
{Π1

j}j 6∈I1∪I2∪K0 (along with the consistent input and randomness used by adversary) to generate the
final round messages from P0. On receiving the final round message from the adversary, we update
the set I1 as described in the simulation and adaptively corrupt the newly added servers to I1. We
obtain the first round message sent by the honest client P0 to these servers. The challenger provides
the output of P0 and we instruct P0 to output the same. We finally run the distinguisher between
Hyb3 and Hyb4 on the view of A and the output of P0 and output whatever the distinguisher
outputs.

We observe that the reduction emulates an admissible adversary as the first round messages sent
to any pair of honest servers pass the pairwise verification checks. Since, |I1∪I2∪K0| ≤ 4λ = t, the
reduction emulates an adversary that corrupts at most t servers. Thus, if the messages generated by
the external challenger are done as in the real execution then input to the distinguisher is identical
to Hyb3. Else, it is identically distributed to Hyb4. This implies that the reduction breaks the
security of the outer protocol and this is a contradiction.

7 Black-Box Protocol Compilers in the Multiparty Setting

We state our main theorems about our protocol compiler in the multiparty case. The proof of these
theorems are given in the Appendix.

7.1 Protocol Compiler in the Random Oracle Model

In this subsection, we give a construction of a three-round malicious-secure MPC protocol in the
random oracle model that makes black-box use of a two-round semi-honest OT. It was shown in
[ABG+20] that even considering only semi-honest security in the random oracle model, such a black-
box protocol for the case of three parties is round-optimal. Recently, [PS21] gave a malicious-secure
construction in the CRS model assuming a two-round malicious secure oblivious transfer protocol
that additionally satisfies equivocal receiver security [GS18].

We give the formal statement of our theorem below.

35



Theorem 7.1. Let f be an arbitrary n-party functionality. Assuming the existence of:

• A two-round, 2-client, m-server pairwise verifiable MPC protocol Φ = (Share,Eval,Dec) for
computing f against t server corruptions (see Definition 5.2).

• A two-round semi-honest oblivious transfer protocol OT = (OT1,OT2, outOT).

Then, there exits a three-round protocol Γ for computing f over point-to-point channels that makes
black-box use OT and satisfies security with selective abort against static, malicious adversaries in
the random oracle model. The communication and computation costs of the protocol are poly(λ, n, |f |),
where |f | denotes the size of the circuit computing f .

Instantiating the pairwise verifiable MPC protocol from Theorem 5.4, we get the following
corollary.

Corollary 7.2. Let f be an arbitrary n-party functionality. There exits a three-round protocol Γ for
computing f over point-to-point channels that makes black-box use OT and satisfies security with
selective abort against static, malicious adversaries in the random oracle model. The communication
and computation costs of the protocol are poly(λ, n, |f |), where |f | denotes the size of the circuit
computing f .

For simplicity, we give our construction over broadcast channels and note that we can use similar
techniques as in [IKSS21] to transform this protocol to the point-to-point channels.

In Section 7.1.1, we describe the construction of the above malicious-secure protocol over broad-
cast channels and in Section 7.1.2, we give the proof of security.

7.1.1 Construction

Building Blocks. The construction makes use of the following building blocks.

1. A two-round n-client, m-sever protocol Φ = (Share,Eval,Dec) that is pairwise verifiable pro-
tocol w.r.t. predicate P for computing f against t server corruptions. We set t = 5λn3 and
m = 6t+ 1.

2. A three-round inner protocol Πj = (Πj,1,Πj,2,Πj,3, outΠ) for each j ∈ [m] where Πj computes
the function Eval(j, ·) (i.e., the function computed by the j-th server). For each j ∈ [m], we
require protocol Πj to satisfy the following properties:

(a) It has publicly decodable transcript [ABG+20]. This means that outΠ only takes the
transcript of the protocol as input and computes the output (without making use of any
secret information).

(b) Πj is a parallel composition of α sub-protocols where each sub-protocol is computing a
special functionality called 3MULTPlus [BGI+18, GIS18, ABG+20].8 The sub-protocol
has publicly decodable transcript and the number of parties involved in each of the
sub-protocols is constant.

8The 3MULTPlus functionality is a three-party functionality where the i-th party’s input for i ∈ [3] is given by
(xi, yi) ∈ {0, 1}×{0, 1}. The functionality outputs x1 ·x2 ·x3⊕y1⊕y2⊕y3. It was shown in [BGI+18, GIS18, ABG+20]
that a protocol for 3MULTPlus functionality that has publicly decodable transcript can be bootstrapped to a protocol
for arbitrary functions making black-box use of a PRG.

36



(c) The sub-protocol satisfies the standard correctness and the following weak-adaptive semi-
honest security definition: for any adversary A corrupting a subset of the parties M (and
let H denote the set of uncorrupted parties) in the sub-protocol, there exists a stateful
simulator Sim such that for every input of the honest parties {xi}i∈H , we have:

{Real(1λ,A, {xi}i∈H)}λ ≈c {Ideal(1λ,A,Sim, {xi}i∈H)}λ

where the experiments Real and Ideal are described in Figure 4.

(d) Πj also satisfies weak-adaptive semi-honest security property and this is proved via an
hybrid argument where we change each of the α sub-protocols to the Ideal experiment
described in Figure 4.

We provide a construction of such a sub-protocol for computing the 3MULTPlus functionality
in Appendix B and the construction of Πj (specifically, property (2d)) follows via standard
completeness results of 3MULTPlus functionality [BGI+18, GIS18, ABG+20].

Real(1λ,A, {xi}i∈H)

(a) Sample uniform random tape ri for each i ∈ [n].

(b) Send {ri}i∈M to A.

(c) Generate the first round message from the honest
parties using input {xi}i∈H and the random tape
{ri}i∈H and send them to A.

(d) A sends the first round message along with the
input {xi}i∈M .

(e) For the second and third rounds,

i. Generate the messages from the honest par-
ties using the input {xi}i∈H and the ran-
dom tape {ri}i∈H and send it to A.

ii. Receive the messages for this round from A
on behalf of the malicious parties.

(f) Compute the output of the protocol using the
public decoder.

(g) Output the view ofA and the output of the honest
parties.

Ideal(1λ,A, Sim, {xi}i∈H)

(a) Sample uniform random tape ri for each i ∈M .

(b) Send {ri}i∈M to A.

(c) Generate the first round message from the honest
parties in the protocol using Sim(1λ) and send it
to A.

(d) Receive the first round message fromA along with
the inputs {xi}i∈M .

(e) For the second and third rounds,

i. Provide Sim with {xi, ri}i∈M .

ii. If the messages received in the previous
rounds from the adversarial parties are in-
consistent with the random tape {ri}i∈M
and input {xi}i∈M or if A issues a corrupt
command, then provide the honest parties
inputs {xi}i∈H to Sim.

iii. If it is the final round message, then provide
Sim with output of the functionality being
computed.

iv. Generate the messages from the honest par-
ties in this round using Sim and send them
to A.

v. Receive the messages from A on behalf of
the malicious parties.

(f) Compute the output of the protocol using the
public decoder

(g) Output the view ofA and the output of the honest
parties.

Figure 4: Description of the Real and Ideal experiments.

37



• Round-1: Each party Pi does the following:

1. It computes (xi1, . . . , x
i
m, vki)← Share(1λ, i, xi).

2. It sets T = φ and for each j ∈ [m], sets Tj = φ. Here, T denotes the transcript of the entire protocol
seen so far and Tj refers to the messages corresponding to Πj in the transcript T.

3. For each j ∈ [m],

(a) It computes rij := H1(i, j, xij , s
i
j) for uniformly chosen sij ← {0, 1}λ.

(b) It computes comi
j ← Com((xij , s

i
j)).

(c) It computes πij,1 ← Πj,1(i, xij ,Tj ; rij).
4. It computes Ki

1 = H2(i,T‖{comi
j , π

i
j,1}j∈[m], tag

i
1) where tagi1 ← {0, 1}λ.

5. It broadcasts {comi
j , π

i
j,1}j∈[m], tag

i
1, and {(xij , sij),Open(comi

j)}j∈Ki
1
.

6. At the end of the round, Pi appends the messages sent and received in this round to T and the
corresponding messages sent and received in the protocol Πj to Tj for each j ∈ [m].

• Rounds-2&3: In round u ∈ [2, 3], each Pi does the following:

1. It runs checkConstMPC(u,T) where checkConstMPC is described in Figure 6. If checkConstMPC
outputs 0, then it aborts.

2. Else, for each j ∈ [m],

(a) It computes πij,u ← Πj,u(i, xij ,Tj ; rij).
3. It computes Ki

u = H2(i,T‖{πij,u}j∈[m], tag
i
u) where tagiu ← {0, 1}λ.

4. It broadcasts {πij,u}j∈[m], tag
i
u, and {(xij , sij),Open(comi

j)}j∈Ki
u

.

5. At the end of the round, Pi appends the messages sent and received in this round to T and the
corresponding messages sent and received in the protocol Πj to Tj for each j ∈ [m].

• Output: To compute the output, Pi does the following:

1. It runs checkConstMPC(4,T) where chkConsistency is described in Figure 6. If checkConstMPC
outputs 0, then it aborts and outputs ⊥.

2. For each j ∈ [m],

(a) It runs outΠj (Tj) to obtain φj .

3. It runs Dec on i, vki, (φ1, . . . , φm) and outputs whatever it outputs.

Figure 5: Description of the Black-Box Three-Round MPC Protocol

3. A non-interactive, straight-line extractable commitment (Com,Open). Such a commitment
scheme can be constructed unconditionally in the random oracle model [Pas03] (refer Sec-
tion 4.3).

4. Two hash functions H1 : {0, 1}∗ → {0, 1}∗ and H2 : {0, 1}∗ → ({0, 1}k)m that are modelled
as random oracles where k is the number of random bits needed to toss a biased coin that
outputs 1 with probability λn2/2m. We interpret the output of H2 as a subset K of [m]
where each element of [m] is included in K independently with probability λn2/2m.

Description of the Protocol. We give the formal description of the construction in Figure 5.

38



Input: A round number j ∈ [2, 4] and the transcript T.

1. For each i ∈ [n]:

(a) It computes the sets {Ki
1, . . . ,K

i
j−1}i∈[n] from the transcript T and the hash function H2.

(b) Let Ki be the union of the sets Ki
1, . . . ,K

i
j−1.

(c) For each j ∈ Ki,

i. It obtains {(xij , sij),Open(comi
j)} from T.

ii. It checks if Open(comi
j) is valid.

iii. It then checks if (xij , H(i, j, xij , s
i
j)) is a valid (input,randomness) pair for the protocol Πj

consistent with the transcript Tj .
iv. For each j′ ∈ Ki, it checks if P (i, j, j′, xij , x

i
j′) = 1.

2. If any of the checks fail, it outputs 0. Else, if all the checks pass, it outputs 1.

Figure 6: Description of checkConstMPC

7.1.2 Proof of Security

Let A be the malicious adversary that is corrupting a subset M of the parties. Let H be the set of
honest parties. We start with the description of the simulator Sim.

Description of Sim.

1. Interaction with the Environment. For every input value corresponding to the corrupted
parties that Sim receives from the environment, it writes these values to the input tape of the
adversary A. Similarly, the contents of the output tape of A is written to Sim’s output tape.
To simulate the interaction with A, Sim does the following.

2. For each round u ∈ [3], Sim chooses uniform subsets Ki
u of [m] where each element is included

with probability λn2/2m for each i ∈ H and it sets I2 to be the union of all these sets. If for
any i ∈ H and u ∈ [3], if |Ki

u| ≥ λn2, then Sim aborts. Note that |I2| ≤ 3λn3. It programs
the random oracle H2 to output the appropriate set when queried on the messages generated
by Pi.

3. Sim starts interacting with the simulator SimΦ for the outer protocol by corrupting the set of
clients indexed by M and the set of servers indexed by I2. It obtains the first round messages
{xij}j∈I2 sent by the honest client to the corrupted servers.

4. Round-1 Message from Sim. For each j ∈ I2, it uses the messages {xij}j∈I2 and uniformly

chosen {sij}j∈I2 to generate the messages in the protocol Πj as described in Figure 1. For each
j 6∈ I2, it runs the simulator for the inner protocol Πj to generate the first round messages
on behalf of Pi for each i ∈ H. To generate the first round commitments for each j ∈ I2,
Sim uses (xij , s

i
j) to honestly generate comi

j . For each j 6∈ I2, Sim generates a commitment to
dummy values.

5. Round-1 Message from A.

39



(a) For each of the unique random oracle queries made by A, Sim samples a uniform element
in the range of the oracle and outputs it as the response. Each time Sim generates query
to the random oracle on behalf of honest Pi, Sim checks if adversary has already made
that query. If that is the case, then it aborts the execution and outputs a special symbol
abort.

(b) On obtaining the first round message from A, Sim uses the straight-line extractor for the
extractable commitment Com and obtains {(xi1, si1), . . . , (xim, s

i
m)}i∈M from {comi

1, . . . , com
i
m}i∈M .

6. Checks done by Sim.

(a) Sim initializes an empty set I1.

(b) For each j 6∈ I2, Sim provides {(xij , H1(i, j, xij , s
i
j))}i∈M as the input and the randomness

pair used by the adversarial parties to the corresponding simulator for Πj .

(c) In every round, for each j ∈ [m], it checks if for each i ∈ M that (xij , H(i, j, xij , s
i
j))

is a valid (input,randomness) pair for the protocol Πj w.r.t. the Tj or if the PRG
computations done in xij are correct. If not, it adds j to the set I1. It adaptively

corrupts the server j in the outer protocol and obtains {xij}i∈H . It then adaptively

corrupts the honest clients in the inner protocol Πj by providing {xij}i∈H as the honest
party inputs to SimΠj . It uses the messages received from this simulator on behalf of
the honest parties {Pi}i∈H to execute the rest of the protocol Πj .

(d) For each i ∈ M , it constructs an inconsistency graph Gi on vertices from [m] where it
adds an edge between j, j′ if P (i, j, j′, xij , x

i
j′) = 0. It then computes a 2-approximation

for the min-vertex cover on this graph and sets this to be Ii3. It sets I3 = ∪i∈MIi3.
For each j ∈ I3, it adaptively corrupts the server j in the outer protocol and obtains
{xij}i∈H . It then adaptively corrupts the honest clients in the inner protocol Πj by

providing {xij}i∈H as the honest party inputs to SimΠj . It uses the messages received
from this simulator on behalf of the honest parties {Pi}i∈H to execute the rest of the
protocol Πj .

(e) If |I1| ≥ λn3 or |I3| ≥ λn3, then it sends ⊥ to its ideal functionality.

(f) At the end of each round if A’s messages does not pass checkConstMPC then Sim sends
⊥ to the trusted functionality.

7. Second Round Message from Sim and A.

(a) Sim sends the second round message for the executions j 6∈ I1∪I2∪I3 using the simulator
for Πj . For each j ∈ I1 ∪ I2 ∪ I3, Sim generates the messages on behalf of the honest
parties as explained before.

8. Second Round Message from A to Sim.

(a) Sim receives the second round messages from A.

(b) Sim updates the set I1 as and performs the same checks as before.

9. Final Round Message from Sim.

40



(a) Before sending the final round message, Sim provides {xij}i∈M,j 6∈I1∪I2∪I3 to SimΦ as the
messages sent by the adversary to the honest servers. SimΦ queries the ideal functionality
on an input {xi}i∈M and Sim forwards this to its trusted functionality.

(b) Sim obtains f(x1, . . . , xn) from the ideal functionality and forwards this to SimΦ. SimΦ

sends the second round protocol messages {φj}j 6∈I1∪I2∪I3 from the honest servers. For
each j 6∈ I1 ∪ I2 ∪ I3, Sim uses φj as the output of Πj and runs the simulator for Πj on
this output to generate the final round message.

10. Output Computation. To compute the output, Sim updates the set I1 and performs the
same checks as described before. It adaptively corrupts the newly added servers to I1. If SimΦ

instructs the honest party Pi for some i ∈ H to output ⊥, then Sim forwards this instruction
to this honest party. Otherwise, it instructs the ideal functionality to output f(x1, . . . , xn) to
the other uncorrupted parties.

Proof of Indistinguishability. We now argue that the real execution and the ideal execution
are computationally indistinguishable via a hybrid argument.

• Real : This corresponds to the output of the real execution of the protocol.
• Hyb0 : This hybrid corresponds to the distribution where the adversaries random oracle

queries are answered with an uniformly chosen random element from the image of the oracle.
Further, if the adversary makes any queries to the hash functions H1, H2 before the exact
same query was made by the honest party, we abort. We note that since each query made
to the hash functions H1, H2 has a component which is uniformly chosen random string of
length λ, the probability that an adversary is able to make a query that exactly matches this
string queried by an honest party is q · 2−λ where q is the number of queries that A makes to
the random oracle. Hence, this hybrid is statistically close to the previous one.

• Hyb1 : In this hybrid, we make the following changes:

1. We use the straight-line extractor for the extractable commitment Com to obtain {(xi1, si1),
. . . , (xim, s

i
m)}i∈M from {comi

1, . . . , com
i
m}i∈M .

2. We construct the set I1 and I3 as described in the simulation.

3. If |I1| ≥ λn3 or |I3| ≥ λn3, we abort the execution and instruct all the honest parties to
abort the execution.

In Lemma 7.3, we show that Hyb0 and Hyb1 are statistically indistinguishable.
• Hyb2 : In this hybrid, we make the following changes:

1. For each round u ∈ [3], we choose a subset Ki
u of [m] for each i ∈ H where each element

in [m] is independently included with probability λn2/2m. If for any i ∈ H, u ∈ [3],
if |Ki

u| ≥ λn2, we abort. We set I2 to be the union of all these sets. We program the
random oracle H2 to output the appropriate set when queried on the messages generated
by Pi.

2. For each j 6∈ I2, we change the commitments comi
j to be commitments to some dummy

values instead of (xij , s
i
j).

Note that via standard Chernoff bound, the probability that for any i ∈ H and u ∈ [3], the
probability that |Ki

u| ≥ λn2 is 2−O(λn). Therefore, the probability that the simulation aborts

41



is negligible. Further, we observe that this hybrid is computationally indistinguishable to the
previous hybrid from the hiding property of the non-interactive commitment scheme.

• Hyb3 : In this hybrid, we make the following changes:

1. For each round u ∈ [3] and for each i ∈ H, we choose uniform subsets Ki
u (of size λ · n)

and set I2 to be the union of all these sets. We program the random oracle H2 to output
the appropriate set when queried on the messages generated by Pi.

2. For each j 6∈ I2, we run the simulator for the inner protocol and generate the messages
from Pi for each i ∈ H for the protocol Πj using this simulator.

3. We send {xij , H1(i, j, xij , s
i
j)}i∈M,j 6∈I2 to the simulator for Πj .

4. If some j 6∈ I2 is added to I1 or I3 before it sends its final round message in the protocol,
we send the honest party inputs {xij}i∈H to the simulator. We use the messages received
from the simulator on behalf of the honest parties to complete the rest of the execution
Πj .

5. If |I1| ≥ λn3 in any round or if |I3| ≥ λn3, then we abort as in the previous hybrid.

6. For j 6∈ I1 ∪ I2, we use the input {xij}i∈M extracted from the extractable commitment

to compute φj as Eval(j, x1
j , . . . , x

n
j ).

7. For each j 6∈ I1 ∪ I2 ∪ I3, we send this output φj to the simulator for Πj and obtain
the final round message in Πj . We use this to generate the final round message in the
overall protocol.

8. We then compute the output of the protocol as in the previous hybrid.

In Lemma 7.4, we show that Hyb2 ≈c Hyb3 from the weak-adaptive semi-honest security of
the inner protocol and the specific properties it satisfies (see the paragraph Building Blocks
in Section 7.1.1).

• Hyb4 : In this hybrid, we make the following changes:

1. We (adaptively) corrupt the set of servers corresponding to the indices I1 ∪ I2 ∪ I3 and
the clients {Pi}i∈M . We run the simulator SimΦ for the outer protocol and obtain the
first round messages sent by the honest clients to these corrupted servers. We use this
to complete the execution with A.

2. We provide {xij}i∈M,j 6∈I1∪I2∪I3 (extracted from the extractable commitment) to SimΦ

as the messages sent by the adversary to the honest servers. SimΦ queries the ideal
functionality on an input {xi}i∈M .

3. We compute z = f(x1, . . . , xn) and send this to SimΦ as the output from the ideal
functionality. SimΦ sends the second round protocol messages {φj}j 6∈I1∪I2∪I3 from the
honest servers. We use this to generate the final round message of the protocol as in the
previous hybrid.

4. To compute the output, if SimΦ instructs the honest party Pi for some i ∈ H to output
⊥, then Sim forwards this instruction to this honest party. It then instructs the other
honest parties to output z.

In Lemma 7.5, we show that Hyb3 ≈c Hyb4 from the security of the outer protocol. We note
that output of Hyb4 is identically distributed to the output of the ideal execution with Sim.

Lemma 7.3. Hyb0 ≈s Hyb1

42



Proof. We show that if |I1| ≥ λn3 or |I3| ≥ λn3, then each honest client in Hyb0 also aborts with
overwhelming probability.

1. If |I1| ≥ λn3: Let u be the first round when |I1| ≥ λn2. By a standard averaging argument,
there exists at least one party i ∈ M , that has cheated in over λ · n2 executions. Let Ii1 be
the set of executions where this party has cheated. Note that Ki

u is chosen as the response of
the random oracle after the adversary generates the u-th round message in the protocol on
behalf of the party Pi. We show that since Ki

u is sampled such that each element in [m] is
independently included with probability λn2/2m, the probability that |Ii1∩Ki

u| = 0 is 2−O(λ).
Note that if this event doesn’t happen, then every honest client aborts in Hyb0.

Pr[|Ki
u ∩ Ii1| = 0] ≤

(
1− λ · n2

2m

)λ·n2

< e−O(λ) .

where the last inequality follows since m = O(λn3). By an union bound over the set of all
the q queries that adversary makes to the random oracle H2, the probability that there exists
some Ki

u which is a response of the RO such that |Ki
u∩Ii1| = 0 is upper bounded by q ·e−O(λ).

2. If |I3| ≥ λn3: By a standard averaging argument, there exists at least one i ∈ M such that
|Ii3| ≥ λn2. Since |Ii3| ≥ λn2, the size of the minimum vertex cover is at least λn2/2. This
means that in the inconsistency graph there exists a maximum matching of size at least λn2/4
edges. Let M be the set of vertices for this matching. If there exists at least one edge of this
matching in Ki

u then all the honest parties abort in Hyb0. Fix some edge in the matching.
The probability this edge is not included in Ki

u is at most (1−(λn2/2m)2) = 1−O(1/n2). The
probability that no edge of the matching is present in Ki

u is at most (1 − O(1/n2))λn
2/4 =

e−O(λ). By an union bound over the set of all the q queries that adversary makes to the
random oracle H2, the probability that there exists some Ki

u which is a response of the RO
such that |Ki

u ∩ Ii3| = 0 is upper bounded by q · e−O(λ).

Lemma 7.4. Assuming the weak-adaptive semi-honest security of the inner protocol and the specific
properties it satisfies (see Building Blocks in Section 7.1.1), we have that Hyb2 ≈c Hyb3.

Proof. For every round u and for every Pi such that i ∈ H, we sample a uniform set Ki
u of size

λ · n and we fix I2 to be the union of all these sets. We program the random oracle H2 to output
the appropriate set when queried on the messages generated by Pi.

Let I = [m] \ I2. Let α be the number of executions of the 3MULTPlus protocol in the inner
protocol Πj for each j ∈ [m]. We consider a sequence of α|I| hybrids between Hyb2 and Hyb3

(see Property (2d)) where we change from real to simulated executions of each of the α executions
of the 3MULTPlus protocol for each j ∈ I one by one. If Hyb2 and Hyb3 are computationally
distinguishable, then by a standard hybrid argument, there exists two sub-hybrids Hyb′2 and Hyb′3
which differ only in one execution of 3MULTPlus protocol. Specifically, in Hyb′3, the messages in the
β-th execution (for some β ∈ [α]) of 3MULTPlus protocol in Πj is generated as in the ideal execution
and in the Hyb′2 it is generated as in the real execution. We now show that this contradicts the
weak-adaptive semi-honest security of the sub-protocol.

Let us denote the subset of honest parties that interact in the β-th execution of 3MULTPlus
in Πj as Hj,β and the set of corrupted parties as Mj,β. We note that Mj,β is a constant sized

43



set (see Property (2b)). We begin interacting with external challenger and provide {xij,β}i∈Hj,β
as the input used by the honest clients in the particular execution of the 3MULTPlus protocol.
The challenger provides with a random tape {rij,β}i∈Mj,β

to be used by the adversarial parties.
Amongst all the queries made by A to the random oracle H1 where the first two inputs are (i, j)
for each i ∈ Mj,β, we choose one of these queries (i, j, xij , s

i
j) at random and we embed rij,β as the

randomness to be used in the β-th execution of 3MULTPlus in the response from the random oracle.
On receiving the first round message from A, we run the extractor for the extractable commitment
Com on {comi

j}i∈Mj,β
and obtain {(xij , sij)}i∈Mj,β

. We extract the input xij,β that is used in the β-th

execution of 3MULTPlus in Πj . We provide {xij,β}i∈Mj,β
as the input used by the corrupt clients to

the external challenger along with the appropriate first round messages in this sub-protocol. We
consider the following cases.

1. We check if j is added to I1 or I3 at the end of the first round. If that is the case, then we
issue the corrupt command to the challenger. We continue with the rest of the execution by
using the messages sent by the challenger and compute the output as before. We finally run
the distinguisher between Hyb′2 and Hyb′3 on the view of the adversary and the output of the
honest parties and output whatever the distinguisher outputs.

2. If j is not added to I1 or I3 at the end of the first round, but (xij , s
i
j) 6= (xij , s

i
j) for some

i ∈Mj,β, then we output a random bit to the external challenger.

3. If j is not added to I1 or I3 at the end of the first round and (xij , s
i
j) = (xij , s

i
j) for every

i ∈Mj,β, then we continue the interaction with the external challenger and use these messages
to generate the messages in the β-th 3MULTPlus execution in Πj . We compute the output of
the protocol as before. We finally run the distinguisher between Hyb′2 and Hyb′3 on the view
of the adversary and the output of the honest parties and output whatever the distinguisher
outputs.

We note that in Cases-1 and 3, the input to the distinguisher is identically distributed to
Hyb′2 if the messages generated by the challenger are as per the real execution and otherwise,
it is identically distributed to Hyb′3. Finally, conditioning on j not added to I1 or I3 after the
first round, the probability that there exists an i ∈ Mj,β such that (xij , s

i
j) = (xij , s

i
j) is at least

1−(1/q)|Mj,β |−negl(λ) (and is bounded above by 1−(1/q)|Mj,β |+negl(λ)) where q is the total number
of queries made by the adversary to the random oracle H1. Let us assume that the probability
that the distinguisher correctly predicts whether it is given a sample from Hyb′2 and Hyb′3 to be
1/2 + µ(λ) (for some non-negligible µ(λ)). Let ε be the probability that j is added to I1 or I3 at
the end of the first round. Let p be the probability that the above reduction correctly predicts
whether it is interacting with the real execution or the ideal execution. Then,

p ≥ (1/2 + µ(λ))ε+ (1− ε)((1− (1/q)|Mj,β | − negl(λ))(1/2) + ((1/q)|Mj,β | − negl(λ))(1/2 + µ(λ)))

≥ (1/2 + µ(λ))ε+ (1− ε)(1/2 + µ(λ)/q|Mj,β |)− negl(λ)

≥ 1/2 + µ(λ)/q|Mj,β | + ε(µ(λ)− µ(λ)/q|Mj,β |)− negl(λ)

≥ 1/2 + µ(λ)/q|Mj,β | − negl(λ)

and this contradicts the weak-adaptive semi-honest security of the inner protocol as |Mj,β| is a
constant.

44



Lemma 7.5. Assuming the security of the outer protocol Φ, we have Hyb3 ≈c Hyb4.

Proof. Assume for the sake of contradiction that Hyb3 and Hyb4 are computationally distinguish-
able. We give a reduction to breaking the security of the outer protocol.

We begin interacting with the external challenger by providing the inputs {xi}i∈H as the honest
client’s inputs. We then corrupt the clients indexed by M and the set of servers indexed by I2. We
obtain the first round messages sent from the honest client Pi to the corrupted servers and we begin
interacting with A using these messages. For each server that is added to I1 or I3, we adaptively
corrupt that server and obtain the first round message sent from the honest clients to this server.
We use these messages to adaptively corrupt the clients {Pi}i∈H of the inner protocol. We use the
messages generated by the simulator to continue with the rest of the execution. Before sending the
final round message on behalf of the honest clients, we send {xij}i∈M,j 6∈I1∪I2∪I3 as the first round
messages sent by the corrupted clients to the honest servers.

The challenger replies with {φj}j 6∈I1∪I2∪I3 as the final round message from the honest servers
sent to the corrupt client. We use this as the input to the inner protocol simulator to generate the
final round messages from {Pi}i∈H . On receiving the final round message from the adversary, we
update the set I1 and adaptively corrupt the newly added servers to I1. The challenger provides the
output of {Pi}i∈H and we instruct the parties to output the same. We finally run the distinguisher
between Hyb3 and Hyb4 on the view of A and the output of {Pi}i∈H and output whatever the
distinguisher outputs.

Note that |I2| ≤ 3λn3, |I1| ≤ λn3 and |I3| ≤ λn3. Further, the reduction emulates an admissible
adversary. Hence, |I1 ∪ I2 ∪ I3| ≤ t. Thus, the reduction emulates an adversary that corrupts at
most t servers. Thus, if the messages generated by the external challenger are done as in the real
execution then input to the distinguisher is identical to Hyb3. Else, it is identically distributed
to Hyb4. This implies that the reduction breaks the security of the outer protocol and this is a
contradiction.

7.2 Protocol Compiler in the OT Correlations Model

In this subsection, we improve the result from [IKSS21] and give a construction of a two-round black-
box protocol for computing multiparty functionalities with security against malicious adversaries in
the OT correlations model. This compiler makes black-box use of a two-round semi-malicious secure
inner protocol that has first message equivocality (defined in [IKSS21] and recalled in Definition 7.6).

Building Blocks. The construction makes use of the following building blocks.

1. A two-round n-client, m-sever protocol Φ = (Φ1,Φ2, outΦ) satisfying privacy with knowledge
of outputs9 for computing the function g((x1, k1), . . . , (xn, kn)) = (y = f(x1, . . . , xn), {MAC(ki, y)}i∈[n])
where MAC is a strongly unforgeable one-time MAC scheme. This protocol is secure against
t server corruptions and has publicly decodable transcript. We set t = (m − 1)/3 and
m = 16λn3. Such a protocol was constructed in [IKP10, Pas12] by making black-box use

9Privacy with knowledge of outputs is a weaker notion than security with selective abort and allows the adversary
to select the output given by the trusted functionality to the honest parties. We refer the reader to [IKP10] for the
formal definition.

45



of a PRG. As noted in [IKSS21], we can delegate the PRG computations made by the servers
to the client and ensure that the computation done by the servers do not involve any crypto-
graphic operations.

2. A two-round inner protocol Πj = (Πj,1,Πj,2, outΠ) with publicly decodable transcript for
each j ∈ [m] where Πj computes the function Φ2(j, ·) (i.e., the function computed by the j-th
server). For each j ∈ [m], we require protocol Πj to satisfy the following definition.

Definition 7.6 ([IKSS21]). We say that (Π1,Π2, outΠ) is a two-round, inner protocol for
computing a function f with publicly decodable transcript if it satisfies the following properties:

• Correctness: We say that the protocol Π correctly computes a function f if for every
choice of inputs xi for party Pi and for any choice of random tape ri, we require that for
every i ∈ [n],

Pr[outΠ(i, π(2)) = f(x1, . . . , xn)] = 1

where π(2) denotes the transcript of the protocol Π when the input of Pi is xi with random
tape ri and ski is the output key generated by Π1.

• Security. Let A be an adversary corrupting a subset of the parties indexed by the set
M and let H be the set of indices denoting the honest parties. We require the existence
of a simulator SimΠ such that for any choice of honest parties inputs {xi}i∈H , we have:

Real(A, {xi, ri}i∈H) ≈c Ideal(A,SimΠ, {xi}i∈H)

where the real and ideal experiments are described in Figure 7 and for each i ∈ H, ri is
uniformly chosen.

[IKSS21] showed that the protocol from [GIS18] in the OT correlations model and [LLW20]
in the OLE correlations model satisfy the above definition.

3. A single round Rabin OT protocol RabinOT with erasure probability 1− λ ·n/m. We extend
the syntax of the Rabin OT protocol to take in m strings and each of these strings are
independently erased with probability 1− λ · n/m.

Theorem 7.7. Let f be an arbitrary n-party functionality. Assume the existence of:
• A two-round n-client, m-sever protocol Φ = (Φ1,Φ2, outΦ) satisfying privacy with knowledge

of outputs against t server corruptions for computing the function g defined above.
• A two-round inner protocol Πj = (Πj,1,Πj,2, outΠ) with publicly decodable transcript for each
j ∈ [m] where Πj computes the function Φ2(j, ·) (i.e., the function computed by the j-th
server) satisfying Definition 7.6.

Then, there exists a two-round protocol Γ that makes black box use of {Πj}j∈[m] and computes f
against static, malicious adversaries satisfying security with selective abort in the 1-out-of-2 OT
correlations model and access to point-to-point channels. Further, if only (Φ1, outΦ) makes black-
box use of a PRF and Φ2 does not perform any cryptographic operations, then Γ is fully black-box.
The communication and computation costs of the protocol are poly(λ, n, |f |), where |f | denotes the
size of the circuit computing f and the size of the OT correlations shared between the parties is a
fixed polynomial in the security parameter and number of parties and is independent of the size of
the function f .

As in the previous section, we give the description of protocol over broadcast channels and we
can use the same techniques outlined in [IKSS21] to transform it to the point-to-point channel.

46



Real(A, {xi, ri}i∈H)

(a) For each i ∈ H, compute πi1 := Π1(1λ, i, xi; ri).

(b) Send {πi1}i∈H to A.

(c) Receive {πi1, (xi, ri)}i∈M from A.

(d) Check if the messages sent by corrupt parties in
π(1) are consistent with {xi, ri}i∈M .

(e) Semi-Malicious Security: If they are consis-
tent:

i. For each i ∈ H, compute πi2 :=
Π2(1λ, i, xi, π(1); ri).

(f) Equivocality: If they are not consistent:

i. For each i ∈ H, compute πi2 :=
Π2(1λ, i, xi, π(1); ri).

(g) Send {πi2}i∈H to A.

(h) Receive {πi2}i∈M from A.

(i) Output the view of A and {outΠ(i, π(2))}i∈H .

Ideal(A, SimΠ, {xi}i∈H)

(a) For each i ∈ H, compute πi1 := SimΠ(1λ, i).

(b) Send {πi1}i∈H to A.

(c) Receive {πi1, (xi, ri)}i∈M from A.

(d) Check if the messages sent by corrupt parties in
π(1) are consistent with {xi, ri}i∈M .

(e) Semi-Malicious Security: If they are consis-
tent:

i. For each i ∈ H, compute πi2 ← SimΠ(1λ,
i, f(x1, . . . , xn), {xj , rj}j∈M , π(1)).

(f) Equivocality: If they are not consistent:

i. For each i ∈ H, compute πi2 ←
SimΠ(1λ, i, {xi}i∈H , π(1)).

(g) Send {πi2}i∈H to A.

(h) Receive {πi2}i∈M from A.

(i) Output the view of A and {outΠ(i, π(2))}i∈H .

Figure 7: Security Game for the Two-Round Inner Protocol

Description of the Protocol. We give the formal description of the protocol in Figure 8.

7.2.1 Proof of Security

Let A be an adversary that corrupts the set of parties indexed by M and let H := [n] \M .

Description of Sim. The simulator Sim is given below:

1. Interaction with Environment. For every input value corresponding to the corrupted
parties that Sim receives from the environment, it writes these values to the input tape of the
adversary A. Similarly, the contents of the output tape of A is written to Sim’s output tape.
To simulate the interaction with A, Sim does the following.

2. Rabin-OT Setup:

• For every i ∈ M and j ∈ H, Sim samples a subset Ki,j of [m] where each element is
added to Ki,j independently with probability λ · n/m. If for any j ∈ H, |Ki,j | ≥ 2λn, it
aborts.

3. Let C = ∪i∈M,j∈HKi,j . Sim invokes SimΦ by corrupting the set of clients indexed by M and
corrupting the set of servers indexed by C. SimΦ provides {xij}i∈H,j∈C .

4. For each h ∈ C, Sim chooses an uniform random tape {rih}i∈H . For every i ∈ H and h ∈ C,
Sim uses xih as the input and rih as the random tape of Pi to generate the first round message
in the protocol Πh.

47



• Round-1: In the first round, the party Pi with input xi does the following:

1. It chooses a random MAC key ki ← {0, 1}∗ and sets zi := (xi, ki).

2. It computes (xi1, . . . , x
i
m)← Φ1(1λ, i, zi).

3. It chooses a random string rih ← {0, 1}∗ for every h ∈ [m] and sets yih = {rih, xih}.
4. For each j ∈ [n] \ {i}, it computes msgj,i ← RabinOT(yi1, . . . , y

i
m).

5. For each h ∈ [m], it computes πih,1 := Πh,1(1λ, i, xih; rih).

6. It broadcasts {πih,1}h∈[m], {msgj,i}j∈[n]\{i}.

• Round-2: In the second round, Pi does the following:

1. It decrypts {msgi,j}j∈[n]\{i} to obtain {rjh, x
j
h}j∈[n]\{i},h∈Ki,j

for some set Ki,j (the other positions
are erased).

2. For each j ∈ [n] \ {i} and h ∈ Ki,j , it checks:

(a) If the PRG computations in xjh are correct.

(b) If πjh,1 := Πh,1(1λ, j, xjh; rjh).

3. If any of the above checks fail, it aborts.

4. Else, for each h ∈ [m], it computes πih,2 := Πh,2(1λ, i, xih, πh(1); rih) (where πh(1) denotes the
transcript in the first round of Πh).

5. It broadcasts {πih,2}h∈[m] to every party.

• Output Computation. To compute the output, Pi does the following:

1. If any party has aborted, then abort.

2. Else, for every h ∈ [m], it computes φh := outΠh(i, πh(2)) (where πh(2) denotes the transcript in
the first two rounds of Πh).

3. It runs outΦ on {φh}h∈[m] to obtain (y, σ1, . . . , σm).

4. It checks if σi is a valid tag on y using the key ki. If yes, it outputs y and otherwise, it aborts.

Figure 8: Description of the Two-Round Black-Box Malicious MPC protocol in the OT Correlations Model

5. For each i ∈ H and j ∈ M , Sim computes msgj,i by setting {yih}h6∈C to be junk values. For
each h ∈ C, it sets yih = (rih, x

i
h). For each i ∈ H and j ∈ H, Sim computes msgj,i using junk

values as inputs.

6. For each h 6∈ C, Sim invokes SimΠh to generate the first round message {πih}i∈H . It sends

{πih,1, {ct
j,i
h }j∈[n]\{i}}h∈[m] on behalf of each i ∈ H. It receives the first round message from

A.

7. It uses the Rabin-OT extractor to decode {msgj,i}j∈H,i∈M .

8. For each h ∈ [m], Sim checks if for every i ∈ M there exists some j ∈ H, yih (obtained from
msgj,i) contains the input and randomness that explains the messages sent by corrupt parties
in Πh as well as contains the correct PRG computations. If not, it adds h to a set C ′ (which
is initially empty). If such a j exists, then for every i ∈M , Sim uses (xih, r

i
h) present in yih as

the consistent input and randomness used by corrupt party Pi in the protocol Πh.

9. If |C ′| > λn3, then Sim instructs the ideal functionality to send abort to all the honest parties
and outputs the view of the adversary.

48



10. If |C ′| ≤ λn3, then Sim instructs SimΦ to adaptively corrupt the servers indexed by C ′ and
obtains {xih}i∈H,h∈C′ . For each i ∈ H and j ∈ M , Sim chooses a random subset Ki,j where
each element of [m] is independently added with probability λ · n/m. If for any i ∈ H and
h ∈ Ki,j , {yjh}j∈M (derived from msgi,j) contains inconsistent input and randomness or if the
PRG computations are incorrect, then Sim instructs the ideal functionality to send abort to
i. Let H ′ be the subset of honest parties that have not aborted.

11. For every h ∈ [m]\{C∪C ′}, Sim sends {xih}i∈M to SimΦ. SimΦ queries the ideal functionality
{(xi, ki)}i∈M and Sim forwards {xi}i∈M to its own ideal functionality. It It obtains y from
the trusted functionality. For each i ∈ M , it computes σi := MAC(ki, y) and for each i ∈ H,
it chooses σi uniformly at random. It forwards (y, σ1, . . . , σn) as the response to SimΦ. SimΦ

replies with {φh}h∈[m]\{C∪C′}.

12. To generate the final round message,

• For each h ∈ [m]\{C∪C ′}, Sim sends {(xih, rih)}i∈M as the input and the randomness of
corrupt parties and φh as the output of the function computed by Πh to SimΠh . SimΠh

generates the last round message on behalf of the parties in H ′ in Πh.
• For each h ∈ C ′, Sim sends {xih}i∈H as the inputs of the honest parties to SimΠh and

obtains the last round message on behalf of H ′.
• For each h ∈ C, Sim uses {rih, xih}i∈H to generate the final round message on behalf of
H ′ ⊆ H.

13. To compute the output for each Pi where i ∈ H
• If H ′ 6= H, then Sim instructs the ideal functionality to output abort to all the honest

parties.
• For each h ∈ C ′ ∪ C, Sim derives φh using outΠh .
• It then computes (y′, σ′1, . . . , σ

′
n) := outΦ({φh}h∈[m]).

• Sim checks if y′ = y and for each i ∈ H, that σ′i = σi. For every i ∈ H, such that above
check passes, Sim instructs the ideal functionality to deliver the outputs to Pi. For all
other parties, Sim instructs them to abort.

Proof of Indistinguishability. We now argue that the real and the ideal executions are com-
putationally indistinguishable by a hybrid argument.

• Hyb0 : This corresponds to the view of the adversary and the outputs of the honest parties
in the real execution of the protocol.

• Hyb1 : In this hybrid, we make the following changes to the first round message generated by
the honest parties. Specifically, for every i ∈ H,

– If j ∈M and h 6∈ C, we set yih used in generating in msgj,i as junk values.
– If j ∈ H, then for each h ∈ [m], we set yih used in generating msgj,i as junk values.

The computational indistinguishability between Hyb0 and Hyb1 follows immediately from the
security of the Rabin OT protocol.

• Hyb2 : In this hybrid, we define the set C as in the simulation. For every h 6∈ C, we generate
the protocol messages in Πh using the simulator SimΠh . Specifically,

– For every h 6∈ C, to generate the first round message on behalf of the honest parties, we
run SimΠh and obtain {πih}i∈H .

– We then use the Rabin OT extractor to extract from {msgj,i}j∈H,i∈M .

49



– For each h ∈ [m], we check if for every i ∈ M , there exists some j ∈ H such that yih
(derived from msgj,i) contains the input and randomness that explains the messages sent
by corrupt parties in Πh as well as contains the correct PRG computations. If not, we
add h to a set C ′ (which is initially empty). If such a j exists, then for every i ∈M , we
use (xih, r

i
h) present in yih as the consistent input and randomness used by corrupt party

Pi in the protocol Πh.
– For each i ∈ H and j ∈ M , we choose a random subset Ki,j of [m] where each element

is added independently to [m] with probability λ · n/m. If for any h ∈ K ′i,j , y
j
h (derived

from cti,jh ) contains inconsistent input and randomness or if the PRG computations are
incorrect, then we instruct the honest Pi to abort. Let H ′ be the subset of honest parties
that have not aborted.

– For each h ∈ [m] \ {C ∪ C ′}, we send {(xih, rih}i∈M as the input and the randomness of
corrupt parties and φh (computed honestly using {xih}i∈H) as the output of the function
computed by Πh to SimΠh . SimΠh generates the last round message on behalf of the
parties in H ′ in Πh.

– For each h ∈ C ′, we send {xih}i∈H as the inputs of the honest parties to SimΠh and
obtain the last round message on behalf of H ′.

– For each h ∈ C, we uses {rih, xih}i∈H to generate the final round message on behalf of
H ′ ⊆ H.

– To compute the output, we do the same steps as described in the protocol.
We show in Lemma 7.8 that Hyb2 is computationally indistinguishable to Hyb1 from the
security of the inner protocol.

• Hyb3 : In this hybrid, we define the set C ′ as in the simulation and if |C ′| > λn3 at the end of
the first or the second round, then we abort. Also, if for any i ∈M and j ∈ H, the sampled
Ki,j is such that |Ki,j | ≥ 2λn, it aborts.
We show in Lemma 7.9 that Hyb2 ≈s Hyb3.

• Hyb4 : In this hybrid, we use the simulator SimΦ to generate the protocol messages for the
outer protocol, instead of running honest party strategy.
We argue in Claim 7.10 that Hyb3 is computationally indistinguishable to Hyb4.
Hyb5 : In this hybrid, we make the following two changes:

– When SimΦ queries the ideal functionality g on {xi, ki}i∈M , we query f on {xi}i∈M and
obtain the output y. For each i ∈M , we compute σi := MAC(ki, y) and for each i ∈ H,
we choose σi uniformly at random.

– In the output phase, we recover (y′, σ′1, . . . , σ
′
n) as in the previous hybrid and then check

if y′ = y and if for each i ∈ H, if σ′i = σi. For every i ∈ H, such that above check passes,
we instruct the ideal functionality to deliver the outputs to Pi. For all other parties, we
instruct them to abort.

This hybrid is statistically close to Hyb4 from the strong unforgeability of one-time MACs
and the uniformity of Tags under a randomly chosen key. We note that Hyb5 is identically
distributed to the ideal world using Sim.

Lemma 7.8. Assuming the security of the inner MPC protocol, we have Hyb2 ≈c Hyb3.

Proof. Most parts of this proof are taken verbatim from [IKSS21]. Assume for the sake of contra-
diction that there exists a distinguisher D that can distinguish Hyb1 from Hyb2 with non-negligible
advantage. By a standard averaging argument, this implies that there exists h ∈ [m] \ C and two

50



distributions (described below) Hyb1,h and Hyb1,h−1 (where Hyb1,0 ≡ Hyb1) such that D can dis-
tinguish between Hyb1,h and Hyb1,h−1 with non-negligible advantage. In both these distributions,
for every k < h such that k ∈ [m] \ C, the messages in the protocol Πk are generated using the
simulator SimΠk and for every k > h and k ∈ [m]\C, the messages in the protocol Πk are generated
using the real algorithms. The only difference between these two distributions is how the messages
in protocol Πh are generated. In Hyb1,h, they are generated using SimΠh and in Hyb1,h−1, they are
generated using the real algorithms. Note that Hyb1,|[m]\C| is distributed identically to Hyb2. We
now construct an adversary B that uses D and breaks security of the inner protocol.

B interacts with the external challenger and sends {xih}i∈H as the inputs of the honest parties.
It obtains the first round message {πih,1} from the external challenger and it generates the rest of
the components in the first round message on behalf of each honest party as in Hyb1,h−1. It sends
the first round message on behalf of each honest party to A and receives the first round message
sent by A on behalf of the malicious parties. B then uses the sampled keys {kj,ih }j∈H,i∈M,h∈[m] in

the OT correlations setup phase to decrypt the ciphertexts {ctj,ih }j∈H,i∈M,h∈[m] received from A.

B checks if for every i ∈ M there exists some j ∈ H such that yih (derived from ctj,ih ) contains
the input and randomness that explains the messages sent by corrupt parties in Πh as well as
contains the correct PRG computations. If yes, for every i ∈ M , B uses (xih, r

i
h) present in yih as

the consistent input and randomness used by corrupt party Pi in the protocol Πh. It sends this
to the external challenger. Otherwise, B sends some dummy input and the randomness on behalf
of each malicious party to the external challenger. B receives the final round message {πih,2}i∈H
and uses this to generate the final round message of the overall protocol exactly as in Hyb1,h−1. To
compute the output, B performs the same steps as in the protocol. Finally, B runs D on the view
of the adversary and the outputs of the honest parties and outputs whatever D outputs.

Note that if the protocol messages in Πh were generated by the external challenger using the real
algorithms, then the input to D is distributed identically to Hyb1,h−1. Otherwise, it is distributed
identically to Hyb1,h. Since D can distinguish Hyb1,h−1 and Hyb1,h with non-negligible advantage,
B can break the security of the inner protocol which is a contradiction.

Lemma 7.9. Hyb2 ≈s Hyb3.

Proof. Note that for any i ∈ M and j ∈ H, the probability that sampled |Ki,j | ≥ 2λn is 2−O(λ)

(by standard Chernoff bounds). Thus, by standard union bound, the probability that there exists
an i ∈M and j ∈ H such that |Ki,j | ≥ 2λn is 2−O(λ).

If |C ′| > λn3 then by a standard averaging argument, there exists some j ∈ M that cheats in
more than λn2 executions. Let us call these executions as C ′j . Fix some honest party i ∈ H. We

show that probability that |Ki,j ∩ C ′j | = 0 is 2−O(λ).

Since each element in C ′j is added independently to Ki,j with probability λ·n/m, the probability

that no element of C ′j is added to Ki,j is at most (1− λ·n
m )λn

2 ≤ 2−O(λ) (since m = 16λn3).

The above argument proves that party i ∈ H aborts with probability at least 1− 2−O(λ) in the
case where |C ′| > λn3. To complete the proof of the claim, we observe via a union bound that the
probability that there exists at least one honest party that does not abort is at most n · 2−O(λ).

Lemma 7.10. Assuming the security of the outer MPC protocol, we have Hyb3 ≈c Hyb4.

Proof. Most parts of this proof are taken verbatim from [IKSS21]. Assume for the sake of con-
tradiction that there exists a distinguisher D that can distinguish between Hyb3 and Hyb4 with

51



non-negligible advantage. We now use D to construct an adversary B that can break the security
of the outer MPC protocol.
B {xi}i∈H as the inputs of the honest clients in the outer MPC protocol to the external chal-

lenger.
During the Rabin-OT setup phase B uses the sampled {Ki,j}i∈M,j∈H and sets C := {Ki,j}i∈M,j∈H .

B instructs the external challenger to corrupt the set of clients given by M and the set of servers
given by C.

The challenger provides {xij}i∈H,j∈C . B uses this to generate the messages in the protocol

{Πh}h∈C . At the end of the first round, B constructs the set C ′ as in Hyb3. If |C ′| ≤ λn3, then
B instructs the external challenger to corrupt the servers indexed by C ′ and obtains {xih}i∈H,h∈C′ .
For every h ∈ [m] \ {C ∪C ′}, B sends {xih}i∈M as the first round messages generated by corrupted
client to the honest server indexed by h. B obtains {φh}h∈[m]\{C∪C′}. B uses this to generate the
final round message of the protocol as in Hyb3.

On receiving the final round message from A, B computes {φh}h∈[m] using the public decoder
for Πh and runs outΦ on (φ1, . . . , φm) to obtain (y, σ1, . . . , σm). It then performs the same MAC
checks as in Hyb3 to compute the output. B runs D on the view of the adversary and the outputs
of the honest parties and outputs whatever D outputs.

Since |C| < 2λn3 and |C ′| ≤ λn3, the size of |C ∪ C ′| < 3λn3 < (m − 1)/3. Note that if
the messages of the outer protocol are generated by the real algorithms, then the inputs to D are
distributed identically to Hyb3. Else, they are identically distributed to Hyb4. Thus, if D can
distinguish between Hyb3 and Hyb4 with non-negligible advantage then B breaks the security of the
outer MPC protocol, which is a contradiction.

Acknowledgments. Y. Ishai was supported in part by ERC Project NTSC (742754), BSF grant
2018393, and ISF grant 2774/20. D. Khurana was supported in part by DARPA SIEVE award, a
gift from Visa Research, and a C3AI DTI award. A. Sahai was supported in part from a Simons
Investigator Award, DARPA SIEVE award, NTT Research, NSF Frontier Award 1413955, BSF
grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, and an Okawa
Foundation Research Grant. This material is based upon work supported by the Defense Advanced
Research Projects Agency through Award HR00112020024. A. Srinivasan was supported in part
by a SERB startup grant.

References

[ABG+20] Benny Applebaum, Zvika Brakerski, Sanjam Garg, Yuval Ishai, and Akshayaram Srini-
vasan. Separating two-round secure computation from oblivious transfer. In ITCS
2020, volume 151 of LIPIcs, pages 71:1–71:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In 45th
FOCS, pages 166–175, Rome, Italy, October 17–19, 2004. IEEE Computer Society
Press.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold FHE. In David Pointcheval and Thomas Johans-

52



son, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 483–501, Cambridge,
UK, April 15–19, 2012. Springer, Heidelberg, Germany.

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. Efficient two-round OT extension and silent non-interactive secure
computation. In CCS 2019, pages 291–308. ACM, 2019.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Efficient pseudorandom correlation generators: Silent OT extension and more. LNCS,
pages 489–518, Santa Barbara, CA, USA, 2019. Springer, Heidelberg, Germany.

[BCR86] Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. Information theoretic re-
ductions among disclosure problems. In 27th FOCS, pages 168–173, Toronto, Ontario,
Canada, October 27–29, 1986. IEEE Computer Society Press.

[BDM22] Pedro Branco, Nico Döttling, and Paulo Mateus. Two-round oblivious linear evaluation
from learning with errors. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe,
editors, PKC 2022, Part I, pages 379–408, 2022.

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private compu-
tations. In Gary L. Miller, editor, STOC 96, pages 479–488. ACM, 1996.

[BGI+18] Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro. Foundations
of homomorphic secret sharing. In ITCS 2018, pages 21:1–21:21, January 2018.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In
Janos Simon, editor, STOC 1988, pages 1–10, 1988.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In 22nd ACM STOC, pages 503–513, Baltimore, MD,
USA, May 14–16, 1990. ACM Press.

[CDI+19] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tianren Liu, Rafail
Ostrovsky, and Vinod Vaikuntanathan. Reusable non-interactive secure computation.
LNCS, pages 462–488, Santa Barbara, CA, USA, 2019. Springer, Heidelberg, Germany.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, 2004.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a black-
box pseudorandom generator. In Victor Shoup, editor, CRYPTO 2005, volume 3621
of LNCS, pages 378–394, Santa Barbara, CA, USA, August 14–18, 2005. Springer,
Heidelberg, Germany.

[FMV19] Daniele Friolo, Daniel Masny, and Daniele Venturi. A black-box construction of fully-
simulatable, round-optimal oblivious transfer from strongly uniform key agreement.
In Dennis Hofheinz and Alon Rosen, editors, TCC, volume 11891 of Lecture Notes in
Computer Science, pages 111–130. Springer, 2019.

53



[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194, Santa Barbara, CA, USA, August 1987. Springer, Heidelberg,
Germany.

[GIKR02] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-round secure
multiparty computation. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS,
pages 178–193, Santa Barbara, CA, USA, August 18–22, 2002. Springer, Heidelberg,
Germany.

[GIS18] Sanjam Garg, Yuval Ishai, and Akshayaram Srinivasan. Two-round MPC: Information-
theoretic and black-box. In TCC 2018, Part I, LNCS, pages 123–151. Springer, Hei-
delberg, Germany, March 2018.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229, New York City, NY, USA, May 25–27, 1987. ACM Press.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. LNCS, pages 468–499. Springer, Heidelberg, Germany,
2018.

[HIK+11] Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-
box constructions of protocols for secure computation. SIAM J. Comput., 40(2):225–
266, 2011.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st FOCS, pages 294–304,
Redondo Beach, CA, USA, November 12–14, 2000. IEEE Computer Society Press.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–
161, Santa Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai.
Efficient non-interactive secure computation. In EUROCRYPT, 2011.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from
secure multiparty computation. In David S. Johnson and Uriel Feige, editors, 39th
ACM STOC, pages 21–30, San Diego, CA, USA, June 11–13, 2007. ACM Press.

[IKP10] Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty computation with
minimal interaction. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS,
pages 577–594, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg,
Germany.

[IKSS21] Yuval Ishai, Dakshita Khurana, Amit Sahai, and Akshayaram Srinivasan. On the
round complexity of black-box secure MPC. In CRYPTO 2021, volume 12826 of
Lecture Notes in Computer Science, pages 214–243. Springer, 2021.

54



[IKSS22] Yuval Ishai, Dakshita Khurana, Amit Sahai, and Akshayaram Srinivasan. Round-
optimal black-box protocol compilers. In Eurocrypt 2022, 2022.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 572–591, Santa Barbara, CA, USA, August 17–21, 2008. Springer, Heidelberg,
Germany.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation
with no honest majority. In TCC 2009, pages 294–314, 2009.

[LLW20] Huijia Lin, Tianren Liu, and Hoeteck Wee. Information-theoretic 2-round MPC with-
out round collapsing: Adaptive security, and more. In TCC 2020, volume 12551 of
Lecture Notes in Computer Science, pages 502–531. Springer, 2020.

[MR17] Payman Mohassel and Mike Rosulek. Non-interactive secure 2pc in the offline/online
and batch settings. In Eurocrypt 2017, volume 10212 of Lecture Notes in Computer
Science, pages 425–455, 2017.

[MR19] Daniel Masny and Peter Rindal. Endemic oblivious transfer. In CCS 2019, pages
309–326. ACM, 2019.

[MRR20] Ian McQuoid, Mike Rosulek, and Lawrence Roy. Minimal symmetric PAKE and 1-
out-of-n OT from programmable-once public functions. In CCS 2020, pages 425–442.
ACM, 2020.

[NP99] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In 31st
ACM STOC, pages 245–254, Atlanta, GA, USA, May 1–4, 1999. ACM Press.

[ORS15] Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Round-optimal black-box
two-party computation. In CRYPTO 2015, Part II, pages 339–358, 2015.

[Pas03] Rafael Pass. On deniability in the common reference string and random oracle model.
In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 316–337, Santa
Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.

[Pas12] Anat Paskin-Cherniavsky. Secure Computation with Minimal Interaction. PhD thesis,
Technion, 2012. Available at http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.
cgi/2012/PHD/PHD-2012-16.pdf.

[PS21] Arpita Patra and Akshayaram Srinivasan. Three-round secure multiparty computation
from black-box two-round oblivious transfer. In CRYPTO 2021, volume 12826 of
Lecture Notes in Computer Science, pages 185–213. Springer, 2021.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume
5157 of LNCS, pages 554–571, Santa Barbara, CA, USA, August 17–21, 2008. Springer,
Heidelberg, Germany.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada,
27-29 October 1986, pages 162–167. IEEE Computer Society, 1986.

55

http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2012/PHD/PHD-2012-16.pdf 
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2012/PHD/PHD-2012-16.pdf 


A Semi-Honest Oblivious Transfer with Weak Adaptive Security

In this section, we give a construction of a semi-honest secure oblivious transfer (OT) that satisfies
certain restricted forms of adaptive security (which we call as weak adaptive security). We give the
formal description of the security properties in Section A.1. In Section A.2, we give a construction
that satisfies this definition based on any semi-honest oblivious transfer. In Section A.3, we give
the proof of security.

A.1 Definition

Syntax. Consider two parties, a sender with input (m0,m1) ∈ {0, 1}∗ × {0, 1}∗ (where |m0| =
|m1|) and a receiver with an input bit b. A r-round oblivious transfer protocol between a sender
and a receiver is given by a set of algorithms (OT1, . . . ,OTr) and the output decoder outOT. Here,
OTi denotes the algorithm that computes the message to be sent in the i-th round of the protocol.
This algorithm takes as input the security parameter 1λ, the transcript in the first (i− 1) rounds,
the input and the internal randomness of the party speaking in the i-th round and outputs the i-th
round message to be sent by this party. When i = (r − 1), this algorithm additionally outputs a
secret key sk. outOT is run by the receiver and takes as input the r-round transcript of the protocol
and the secret key sk and generates the output of the receiver.

We give the security definition below.

Security Definition. We give the formal security definition below.

Definition A.1. An r-round oblivious transfer protocol (OT1, . . . ,OTr, outOT) between a sender
and a receiver is said to satisfy weak adaptive semi-honest security if the following properties hold:

• Correctness: For every input b ∈ {0, 1} of the receiver and the inputs (m0,m1) ∈ {0, 1}∗ of
the sender (where |m0| = |m1|), we have:

Pr[outOT((msg1, . . . ,msgr), sk) = mb] = 1

where (msg1,msg1, . . . ,msgr) denotes the r-round transcript generated by the algorithms (OT1,
. . . ,OTr) using inputs b of the receiver and (m0,m1) of the sender and sk is the secret key
output by OTr−1.

• Weak Adaptive Semi-Honest Sender Security. There exists a (stateful) simulator SimS

such that for every (stateful) adversary A corrupting the receiver and any sender inputs
(m0,m1) (such that |m0| = |m1|), we have:

{RealS(1λ,A, (m0,m1))}λ ≈c {IdealS(1λ,A,SimS , (m0,m1))}λ

where the distributions RealS and IdealS are described in Figure 9.
• Weak Adaptive Semi-Honest Receiver Security. There exists a (stateful) simulator
SimR such that for every (stateful) adversary A corrupting the sender and any receiver input
b, we have:

{RealR(1λ,A, b)}λ ≈c {IdealR(1λ,A,SimR, b)}λ
where the distributions RealR and IdealR are described in Figure 10.

56



RealS(1λ,A, (m0,m1))

1. Sample uniform random tapes r for the receiver
and s for sender.

2. Send r to A.

3. A outputs the receiver input b.

4. For each i ∈ [r − 1],

(a) Generate the message msgi to be sent in
the i-th round of the protocol using the in-
put, the random tape sampled above and
the previous round messages.

(b) Run A(msg1, . . . ,msgi).

(c) If A outputs a special symbol corrupt, then
send the random tape of the sender to A
and output the view of A. Otherwise, in-
crement i.

5. Generate the last round message msgr from
sender and send this to A.

6. Output the view of A.

IdealS(1λ,A, SimS , (m0,m1))

1. Sample a uniform random tape of the receiver r.

2. Send r to A.

3. A outputs the receiver input b.

4. For each i ∈ [r − 1],

(a) If the i-th message is sent by the receiver,
then use the random tape r and the input b
to generate msgi. If the i-th message is sent
by the sender, then use the simulator SimS

to generate the i-th round message msgi.

(b) Run A(msg1, . . . ,msgi).

(c) If A outputs a special symbol corrupt, then
run the simulator on (m0,m1) to obtain the
random tape of the sender. Send this to A
and output its view. Otherwise, increment
i.

5. Generate the last round message msgr using
SimS(b, r,mb) and send this to A.

6. Output the view of A.

Figure 9: Descriptions of RealS and IdealS .

A.2 Construction

In this subsection, we give a black-box transformation from any r-round, semi-honest secure OT
protocol to a r-round OT protocol satisfying Definition A.1.

A.2.1 Description of the Protocol

We give the description of the protocol below.

Construction. We run two instances of the semi-honest OT protocol on random inputs c0, c1 for
the receiver and (s0

0, s
1
0) and (s0

1, s
1
1) for the sender respectively. In the pre-final round, the receiver

additionally sends d0 = b ⊕ c0 and d1 = b ⊕ c1 to the sender. The secret key output by OTr−1

corresponds to one of the randomly chosen executions β ∈ {0, 1}, cβ, the secret key of the β-th
instance of the semi-honest protocol along with b. In the final round, the sender additionally sends
(x0

0 = m0⊕ sd0
0 , x

1
0 = m1⊕ s1⊕d0

0 ) and (x0
1 = m0⊕ sd1

1 , x
1
1 = m1⊕ s1⊕d1

1 ). To retrieve the output, we
use the secret key of the β-th semi-honest OT protocol to obtain s

cβ
β and then, retrieve mb from

xbβ.

57



RealR(1λ,A, b)

1. Sample uniform random tape r for the receiver
and s for sender.

2. Send s to A.

3. A outputs (m0,m1) where |m0| = |m1|.
4. For each i ∈ [r − 2],

(a) Generate the message msgi to be sent in
the i-th round of the protocol using the in-
put, the random tape sampled above and
the previous round messages.

(b) Run A(msg1, . . . ,msgi).

(c) If A outputs a special symbol corrupt, then
send the random tape of the receiver to A
and output view of A. Otherwise, incre-
ment i.

5. Generate the pre-final round message msgr−1

from the receiver and send this to A.

6. If the adversary outputs a special symbol corrupt,
then send sk (which is output by OTr−1) to A.

7. Output the view of A.

IdealR(1λ,A, SimR, b)

1. Sample uniform random tape s for the sender.

2. Send s to A.

3. A outputs (m0,m1) where |m0| = |m1|.
4. For each i ∈ [r − 2],

(a) If the i-th message is sent by the sender,
then use s and the inputs (m0,m1) to gen-
erate the i-th round message msgi. If the
i-th message is sent by the receiver, then
use the simulator SimR to generate the i-th
round message msgi.

(b) Run A(msg1, . . . ,msgi).

(c) If A outputs a special symbol corrupt, then
run the simulator on b to obtain the random
tape of the receiver. Send this and to A and
output its view. Otherwise, increment i.

5. Generate the pre-final round message msgr−1 us-
ing SimR and send this to A.

6. If the adversary outputs a special symbol corrupt,
then run SimR on b to obtain sk and send this to
A.

7. Output the view of A.

Figure 10: Descriptions of RealR and IdealR.

A.3 Proof of Security

Correctness follows directly from the correctness of the semi-honest secure OT protocol and the
information-theoretic reduction from random OT to specific input OT.

A.3.1 Weak Adaptive Semi-Honest Sender Security.

We start with the description of SimS .

Description of SimS. SimS chooses two pairs of random strings (s0
0, s

1
0) and (s0

1, s
1
1). It generates

all the sender messages in the first (r− 1) rounds of the protocol honestly using the above sampled
strings as the inputs. If the adversary issues a corrupt command in any of these rounds, then it
reveals the random tape used to generate the sender messages. To generate the final round message,
it obtains (b, r,mb) where r is the random tape of the receiver. It obtains the choice bits c0, c1 that
the adversary used in the two OT executions from the random tape r. It sets xb0 = mb ⊕ sc00

and xb1 = mb ⊕ sc11 . It then chooses x1−b
0 and x1−b

1 uniformly at random. It generates the final
round message of the two instances of the semi-honest OT protocol honestly and sends this to the
adversary along with (x0

0, x
1
0) and (x0

1, x
1
1).

58



Proof of Indistinguishability. We show that the output of RealS is computationally indistin-
guishable to the output of IdealS via a hybrid argument.

• Hyb0 : This corresponds to the output of the experiment RealS .
• Hyb1 : In this hybrid, if the adversary does not issue a corrupt command, then in the final

round message, we sample x1−b
0 and x1−b

1 uniformly at random.
In Lemma A.2, we show that Hyb0 and Hyb1 are computationally indistinguishable.
We note that Hyb1 is identical to IdealS .

Lemma A.2. Assuming the semi-honest sender security of the OT protocol, we have Hyb0 ≈c Hyb1.

Proof. Assume for the sake of contradiction that Hyb0 and Hyb1 are computationally distinguish-
able. We give a reduction that breaks the semi-honest sender security of the underlying OT
protocol.

The reduction interacts with an external challenger that generates the messages for two in-
stances of the semi-honest OT protocol. The reduction chooses random bits c0, c1 uniformly and
a random string sc00 , s

c1
1 uniformly. It provides c0, c1 as the challenge receiver inputs and sc00 , s

c1
1 as

the challenge receiver outputs to the external challenger. It chooses two pairs of random strings
(s1−c0

0 , s1−c0
0 ) and (s1−c1

1 , s1−c1
1 ) uniformly and gives them as the challenge sender input strings

to the external challenger. It obtains the random tapes r0, r1 of the receiver from the external
challenger for the two OT executions. It sends (r0, c0, r1, c1) as the random tape to the adversary.
The adversary outputs the receiver input b. The reduction then chooses a uniform bit χ (as the
guess of whether the adversary will issue the corrupt command or not). If χ = 0 (denoting the
guess that adversary issues the corrupt command), then it generates the messages to be sent to
the adversary honestly using (s0

0, s
1
0) and (s0

1, s
1
1) as the input strings in the two OT executions

respectively. If χ = 1, then it forwards the messages received from the external challenger in both
the OT executions to the adversary. Before sending the final round message, if the adversary issues
a corrupt command but χ = 1, or if adversary does not issue the corrupt command but χ = 0, then
the reduction outputs a random bit to the external challenger and aborts the interaction with the
adversary. On the other hand, if adversary issues a corrupt command and χ = 0, then it provides
the adversary with random tape (which includes the strings (s0

0, s
1
0) and (s0

1, s
1
1)) used to generate

the messages in the protocol. If adversary does not issue the corrupt command and χ = 1, then it
uses the final round message from the external challenger for the semi-honest protocol and gener-
ates xb0 = mb ⊕ sc00 , xb1 = mb ⊕ sc11 , x1−b

0 = m1−b ⊕ s1−c0
0 , and x1−b

1 = m1−b ⊕ s1−c1
1 . It generates

the view of the adversary in either case and runs the distinguisher between Hyb0 and Hyb1 on this
view. The reduction outputs whatever the distinguisher outputs.

We now analyse the success probability of the reduction in breaking the semi-honest sender
security of the OT protocol. We first observe that the view of the adversary in the first r − 1
rounds is independent of the choice of χ. This is because irrespective of the challenge string
that is chosen by the challenger, the view of the adversary in both the cases are identical. Thus,
the probability that χ incorrectly predicts whether the adversary outputs the corrupt command
is 1/2. If χ correctly predicts whether the adversary issues the corrupt command or not, then
the view of the adversary is identical to Hyb1 if the challenger chose (s1−c0

0 , s1−c1
1 ) and otherwise,

it is identical to Hyb0. Thus, if the distinguisher between Hyb0 and Hyb1 correctly predicts the
challenge distribution with probability at least 1/2 + µ(λ) (where µ(λ) is non-negligible), then the
probability that the reduction correctly predicts the challenge sender input in the OT protocol is
at least 1/2× 1/2 + 1/2× (1/2 + µ(λ)) = 1/2 + µ(λ)/2. This is a contradiction to the semi-honest
sender security of the OT protocol.

59



A.3.2 Weak Adaptive Semi-Honest Receiver Security

We start with the description of SimR.

Description of SimR. SimR chooses two uniform random bits c0, c1. It begins interacting with
the adversary by honestly generating the receiver messages in two OT protocol instances using the
choice bits c0 and c1 respectively. If the adversary issues a corrupt command in the first r−2 rounds,
then the simulator reveals the random tape (which includes the random choice bits c0, c1) in the
OT protocol to A. To generate the pre-final round message, SimR generates the pre-final round
message of the two OT protocol instances, it chooses a random bit b′ and then sends d0 = b′ ⊕ c0

and d1 = 1⊕ b′ ⊕ c1 to the adversary. If the adversary issues the corrupt command after receiving
this message, then SimR obtains the actual receiver input b. It sets β = b⊕ b′. It outputs the secret
key which comprises of β, cβ, the secret key of the β-th execution and the bit b.

Proof of Indistinguishability. We show that the outputs of RealR and IdealR are computation-
ally indistinguishable via a hybrid argument.

• Hyb0 : This corresponds to the output of RealR.
• Hyb1 : In this hybrid, we make a syntactic change where we choose β (used in the secret key
sk) uniformly at random before the protocol execution begins rather than choosing it when
the pre-final message is generated. This hybrid is identical to the previous hybrid.

• Hyb2 : In this hybrid, we make the following changes.

1. We choose a random bit β ∈ {0, 1}.
2. If the adversary does not issue the corrupt command in the first r − 2 rounds, then we

generate the (r− 1)-th round message by choosing d1−β uniformly instead of computing
it as b⊕ c1−β.

3. If the adversary issues a corrupt command after sending the (r − 1)-th round message,
we output the secret key to be β, cβ and the secret key of the β-th OT execution along
with b.

We argue in Lemma A.3 that Hyb1 ≈c Hyb2 based on the semi-honest receiver security of the
OT protocol.

• Hyb3 : In this hybrid, instead of choosing d1−β uniformly, we set it to be 1 ⊕ b ⊕ c1−β
(where c1−β is the choice bit of the (1− β)-th OT execution). Via an identical argument to
Lemma A.3, we can show that Hyb2 ≈c Hyb3 based on the semi-honest receiver security of
the OT protocol.
We now note that via a renaming of variables, Hyb3 is identically distributed to IdealR.

Lemma A.3. Assuming the semi-honest receiver security of the OT protocol, we have Hyb1 ≈c
Hyb2.

Proof. Assume for the sake of contradiction that Hyb2 and Hyb1 are computationally distinguish-
able. We give a reduction to the semi-honest receiver security of the underlying OT protocol.

The reduction chooses a random bit β. It then interacts with an external challenger that
generates the messages in a single OT execution (specifically, the interaction corresponding to
(1−β)). It chooses random strings (s0

β, s
1
β). It chooses random strings (s0

1−β, s
1
1−β) as the challenge

sender inputs and sends them to the external challenger. It chooses a random bit cβ. It chooses

60



two random bits (c1−β, c
′
1−β) and provides them as the challenge receiver inputs to the external

challenger. It obtains the random tape s1−β of the sender for the (1 − β)-th OT execution. It
chooses a uniform random tape sβ for the β-th OT execution. It sends ((s0, s

0
0, s

1
0), (s1, s

0
1, s

1
1))

as the sender random tape to the adversary. The adversary outputs the sender inputs (m0,m1).
The reduction then chooses a uniform bit χ (as the guess of whether the adversary will issue the
corrupt command or not). If χ = 0 (indicating that the adversary issues the corrupt command),
then it generates the messages to be sent to the adversary honestly using c0, c1 as the receiver
inputs in the two OT executions. If χ = 1, then it uses cβ as the receiver input in the β-th OT
execution and generates these messages honestly but for the (1− β)-th OT execution, it forwards
the messages received from the external challenger to the adversary. Before sending the pre-final
round message, if the adversary issues a corrupt command but χ = 1, or if adversary does not issue
the corrupt command but χ = 0, then the reduction outputs a random bit to the external challenger
and aborts the interaction with the adversary. On the other hand, if adversary issues a corrupt
command and χ = 0, then it provides the adversary with random tape (which includes the choice
bits c0, c1) used to generate the receiver OT messages in the protocol. If adversary does not issue
the corrupt command and χ = 1, then it computes (d0, d1) where dβ = cβ ⊕ b and d1−β = c1−β ⊕ b.
It sends these two bits along with the pre-final round message of the two OT protocol executions. If
the adversary issues a corrupt command after receiving the pre-final round message, the reduction
outputs β, cβ and the secret key of the β-th OT execution along with b. It generates the view of
the adversary in either case and runs the distinguisher between Hyb1 and Hyb2 on this view. The
reduction outputs whatever the distinguisher outputs.

We now analyse the success probability of the reduction in breaking the semi-honest receiver
security of the OT protocol. We first observe that the view of the adversary in the first r − 2
rounds is independent of the choice of χ. This is because c1−β and c′1−β are uniformly chosen
(and hence, identically distributed) and thus, whatever bit is chosen by the challenger, the view
of the adversary in both the cases are identical. Thus, the probability that χ incorrectly predicts
whether the adversary outputs the corrupt command or not is 1/2. If χ correctly predicts whether
the adversary issues the corrupt command, then the adversary’s view is identical to Hyb2 if the
challenger chose c′1−β and otherwise, it is identical to Hyb1. Thus, if the distinguisher between
Hyb2 and Hyb1 correctly predicts the challenge distribution with probability 1/2 + µ(λ) (where
µ(λ) is non-negligible), then the probability that the reduction correctly predicts the challenge
receiver input is 1/2 × 1/2 + 1/2 × (1/2 + µ(λ)) = 1/2 + µ(λ)/2. This is a contradiction to the
semi-honest receiver security of the OT protocol.

B Three-Round Robust Semi-Honest Protocol for 3MULTPlus

In this section, we give a three-round robust semi-honest protocol (for the definition, refer to
Property (2c) in Building Blocks in Section 7.1.1 and to Figure 4) for computing the 3MULTPlus
functionality. We note that this protocol is same as the one given in [PS21] except that we make
use of a two-round oblivious transfer with equivocal receiver security given in [IKSS21]. In subsec-
tion B.1, we give the formal definition of the two-round oblivious transfer protocol with equivocal
receiver security and in subsection B.2, we give the construction, and in the next subsection we
give the proof of security.

61



B.1 Two-Round Oblivious Transfer Protocol with Equivocal Receiver Security

Syntax. Let OT = (OT1,OT2, outOT) be a two-round oblivious transfer protocol. The OT1

algorithm takes in the security parameter 1λ and the receiver’s choice bit b and outputs the first
round message otr along with a secret key sk. The OT2 algorithm takes in the first round message
otr, the sender inputs m0,m1 and outputs the sender message ots. The outOT algorithm takes in
the sender message ots and the secret key sk and outputs the message mb. We say that the OT
protocol is a two-round oblivious transfer with equivocal receiver security [GS18, IKSS21, PS21] if
it satisfies the following properties:

• Correctness: For every input b of the receiver and m0,m1 of the sender:

Pr[outOT(ots, (b, sk)) = mb] = 1

where (otr, sk)← OT1(1λ, b) and ots← OT2(otr,m0,m1).
• Equivocal Receiver Security. There exists a special algorithm SimEq

OT that on input 1λ

outputs (otr, sk0, sk1) such that for any b ∈ {0, 1},

{(otr, skb) : (otr, sk0, sk1)← SimEq
OT(1λ)} ≈c {(otr, sk) : (otr, sk)← OT1(1λ, b)}

• Weak Adaptive Semi-Honest Sender Security: We require the OT protocol to satisfy
weak adaptive semi-honest sender security (described in Definition A.1).

We note that any two-round weak adaptive semi-honest oblivious transfer (see Section A.1) is a
two-round oblivious transfer with equivocal receiver security. Hence, we get the following corollary.

Corollary B.1. Assuming the existence of a two-round semi-honest oblivious transfer protocol.
Then, there exists a fully black-box construction of two-round special oblivious transfer protocol.

B.2 Construction

3MULTPlus Functionality. This is a three-party functionality which takes in (x1, y1) from party
P1, (x2, y2) from party P2, (x3, y3) from party P3 where for each i ∈ [3], xi and yi are bits. The
functionality outputs (x1 · x2 · x3 ⊕ y1 ⊕ y2 ⊕ y3). We want to design a protocol for the 3MULTPlus
functionality that has publicly decodable transcript so that each party that obtains the transcript
can learn the output of this functionality.

Description of the Protocol. We give the formal description of the construction in Figure 11.
This protocol is exactly the same as the one given in [PS21] except that we use a two-round special
oblivious transfer instead of any two-round semi-honest secure OT protocol.

B.3 Proof of Security

The correctness of the protocol was shown in [PS21]. We now give the proof of security starting
with the description of simulator.

Description of Simulator. We give the formal description of the simulator Sim below. Here,
let H be the set of honest parties and let M be the set of corrupted parties.

1. Round-1 Message from Sim. To generate the round-1 message from honest parties, Sim
does the following:

62



Round-1: In the first round,

• P1 computes (otr, sk) := OT1(1λ, x1).
• P2 chooses random bits x2,0, x2,1 ← {0, 1} subject to x2 = x2,1 + x2,0. It computes (otr0, sk0) :=

OT1(1λ, x2,0) and (otr1, sk1) := OT1(1λ, x2,1).
• P3 computes (otr3, sk3) := OT1(1λ, x3).
• P1 broadcasts otr, P2 broadcasts (otr0, otr1), and P3 broadcasts otr3.
• For every i ∈ [3], Pi chooses a random additive secret sharing of 0 given by (δi1, δ

i
2, δ

i
3) and sends

the share δij to party Pj for j ∈ [3] \ {i} via private channels. We note that we can simulate a single
round of private channel messages in two-rounds over public channels by making use of a two-round
oblivious transfer.

Round-2: In the second round,

• P2 computes ots ← OT2(otr, (x2,0, sk0), (x2,1, sk1)). It then chooses random bits x2,0,0, x2,0,1 ←
{0, 1} subject to x2,0 = x2,0,0 + x2,0,1. It computes ots3 ← OT2(otr3, x2,0,0, x2,0,1).

• P3 chooses random bits x3,0, x3,1 ← {0, 1} subject to x3 = x3,0 + x3,1. For each b ∈ {0, 1}, it first
computes otsb ← OT2(otrb, x3,0, x3,1). It then computes ots← OT2(otr, ots0, ots1).

• P2 sends ots to P1 via private channel and ots3 to P3 via private channel. P3 sends ots to P1 via
private channel.

Round-3: In the last round,

• For each i ∈ [3], Pi computes δi = δ1
i + δ2

i + δ3
i .

• P2 sets z2 := x2,0,0 + y2 + δ2.
• P3 computes x2,0,x3 := outOT(ots3, (x3, sk3)) and sets z3 = x2,0,x3 + x3,0 + y3 + δ3.
• P1 computes (x2,x1 , skx1) := outOT(ots, (x1, sk)) and otsx1 := outOT(ots, (x1, sk)). It then computes
x3,x2,x1

:= outOT(otsx1 , (x2,x1 , skx1)). It then sets z1 := x3,x2,x1
+ y1 + δ1.

• P1 broadcasts z1, P2 broadcasts z2 and P3 broadcasts z3.

Output: Every party outputs z1 + z2 + z3.

Figure 11: Description of the three-round inner protocol taken verbatim from [PS21]

(a) If P1 ∈ H, then Sim computes (otr, sk′0, sk
′
1)← SimEq

OT(1λ).

(b) If P2 ∈ H, then for each b ∈ {0, 1}, Sim computes (otrb, sk
′
b,0, sk

′
b,1)← SimEq

OT(1λ).

(c) If P3 ∈ H, then Sim computes (otr3, sk
′′
0 , sk

′′
1)← SimEq

OT(1λ).

(d) It sends the above computed messages on behalf of the honest parties to the adversary.

2. Round-1 Message from A. The adversary generates the round-1 message on behalf of the
corrupted parties and sends their inputs.

3. Round-2 Message from Sim. Sim receives the adversarial parties inputs and their random
tapes. If the first round message from A is inconsistent or if A issues the corrupt command,
then Sim receives the inputs of the honest parties, and computes the appropriate secret keys
for the first round OT message using these inputs and then completes the rest of the protocol
as described in Figure 11. On the other hand, if the first round message from A is consistent
and no corrupt command was issued, then Sim does the following:

(a) If P2 ∈ H and if P1 ∈ M , it sets ots← OT2(otr, (x2,x1 , skx1), (x2,x1 , skx1)). Similarly, it
sets ots3 to be equal to OT2(otr3, x2,0,x3 , x2,0,x3) if P3 ∈ M where x2,x1 and x2,0,x3 are
uniformly chosen random bits.

63



(b) If P3 ∈ H and if P1 ∈ M , then it computes otsx1 ← OT2(otrx1 , x3,x2,x1
, x3,x2,x1

) where
x3,x2,x1

is uniformly chosen. It then sets ots← OT2(otr, otsx1 , otsx1).

4. Round-3 Message from Sim. On receiving the round-2 message from A, if the messages are
inconsistent or a corrupt command was issued, then Sim obtains the inputs of all the honest
parties. It chooses the appropriate secret keys and then computes the last round messages
exactly as described in the protocol. If the adversarial protocol message is consistent and no
corrupt command was issued, then Sim obtains the output z of the 3MULTPlus functionality.
It computes {zi}i∈M using the transcript and the random tape of the adversary and chooses
{zi}i∈H uniformly such that ⊕i∈Hzi = z ⊕⊕i∈Mzi. It then sends {zi}i∈H to A.

Proof of Indistinguishability. We now show that the simulated interaction is indistinguishable
to the real world interaction via a hybrid argument. This proof is mostly taken verbatim from
[PS21].

• Hyb0 : This corresponds to the view of the adversary and the outputs of the honest parties
in the real world execution of the protocol.

• Hyb1 : Skip this hybrid if P2 6∈ H. In this hybrid, we make the following changes:

1. We receive the first round messages along with the input and the randomness pair from
the corrupted parties.

2. If the first round messages are consistent with the adversarial inputs and the pro-
vided random tapes and if no corrupt command was issued, if P1 ∈ M , we set
ots ← OT2(otr, (x2,x1 , skx1), (x2,x1 , skx1)) instead of OT2(otr, (x2,0, sk0), (x2,1, sk1)).
Similarly, if P3 ∈ M , we set ots3 to be equal to OT2(otr3, x2,0,x3 , x2,0,x3) instead of
OT2(otr3, x2,0,0, x2,0,1).

This hybrid is computationally indistinguishable to the previous hybrid from the weak adap-
tive sender security of the special OT protocol.

• Hyb2 : Skip this hybrid if P3 6∈ H. In this hybrid, if the first round messages from A
are consistent and if no corrupt command was issued, then for each b ∈ {0, 1}, we set
otsb ← OT2(otrb, x3,x2,b

, x3,x2,b
) instead of OT2(otrb, x3,0, x3,1). If P1 ∈ M , we then set

ots ← OT2(otr, otsx1 , otsx1). This hybrid is again computationally indistinguishable to the
previous hybrid from the weak-adaptive sender security of the special OT protocol.

• Hyb3 : Skip this hybrid change if P1 6∈ H. In this hybrid, we compute (otr, sk′0, sk
′
1) ←

SimEq
OT(1λ) and set sk = sk′x1

. We continue with the rest of the execution as before. This
hybrid is computationally indistinguishable to Hyb0 from the equivocal receiver security of
the OT protocol.

• Hyb4 : Skip this hybrid if P3 6∈ H. In this hybrid, we compute (otr3, sk
′
0, sk

′
1) ← SimEq

OT(1λ)
and set sk3 = sk′x3

. This hybrid is computationally indistinguishable to the previous hybrid
from the equivocal receiver security of the OT protocol.

• Hyb5 : Skip this hybrid if P2 6∈ H. In this hybrid, for each b ∈ {0, 1}, we compute (otrb, sk
′
b,0, sk

′
b,1)←

SimEq
OT(1λ). We then set sk0 = sk′0,x2,0

and sk1 = sk′1,x2,1
. This hybrid is again computation-

ally indistinguishable to the previous hybrid from the equivocal receiver security of the OT
protocol.

• Hyb6 : Let i∗ be the smallest integer such that Pi∗ ∈ H ∩ {P1, P2, P3}. In this hybrid, if
the messages received from adversary in the first two rounds are consistent and if no corrupt

64



command was issued, then we set zi∗ = z −
∑

j∈[3]\{i∗} zj instead of computing it as in the
previous hybrid. Here, z is the output of the ideal functionality. This change is again syntactic
and hence, this hybrid is identical to the previous one.

• Hyb7 : If the messages received from adversary in the first two rounds are consistent and if
no corrupt command was issued, then for every i ∈ H ∩ {P1, P2, P3} and i 6= i∗, we choose zi
uniformly at random. This hybrid is identically distributed to the previous one since δ1, δ2, δ3

form an additive secret sharing of 0. Note that Hyb7 is identical to the simulated distribution.

65


	Introduction
	Our Results
	Round-Preserving Compilers in the OT Correlations Model
	Round-Preserving Compilers in the Random Oracle Model

	Technical Overview
	IPS Compiler
	A New Compiler: Removing Equivocality
	Protocol Compiler in the Random Oracle Model
	Two-Sided NISC
	The Multiparty Setting

	Preliminaries
	Semi-Honest Two-Round Two-Party Computation
	Semi-Malicious Two-Round Two-Party Computation
	Extractable Commitments in ROM
	Pairwise Verifiable Secret Sharing

	Two-Round Client-Server Protocol with Pairwise Verifiability
	Definition
	Construction
	Protocol for SREN
	Protocol for Arbitrary Circuits


	Black-Box Protocol Compilers in the Two-Party Setting
	Protocol Compiler in the Random Oracle Model
	Construction
	Proof of Security

	Protocol Compiler in the OT Correlations Model
	Construction
	Proof of Security

	Extension to the Two-Sided Setting

	Black-Box Protocol Compilers in the Multiparty Setting
	Protocol Compiler in the Random Oracle Model
	Construction
	Proof of Security

	Protocol Compiler in the OT Correlations Model
	Proof of Security


	Semi-Honest Oblivious Transfer with Weak Adaptive Security
	Definition
	Construction
	Description of the Protocol

	Proof of Security
	Weak Adaptive Semi-Honest Sender Security.
	Weak Adaptive Semi-Honest Receiver Security


	Three-Round Robust Semi-Honest Protocol for 3MULTPlus
	 Two-Round Oblivious Transfer Protocol with Equivocal Receiver Security
	Construction
	Proof of Security


