
Post-quantum hash functions using SLn(Fp)

Corentin Le Coz*, Christopher Battarbee, Ramón Flores�,
Thomas Koberda�, and Delaram Kahrobaei§

Faculty of Mathematics, Technion, Israel,
lecoz@campus.technion.ac.il

Department of Computer Science, University of York, UK,
cb2036@york.ac.uk

Department of Geometry and Topology, University of Seville,
Spain, ramonjflores@us.es

Department of Mathematics, University of Virginia,
thomas.koberda@gmail.com

Computer Science and Mathematics Departments, Queens College
CUNY, Department of Computer Science, University of York, UK,

dkahrobaei@gc.cuny.edu

July 8, 2022

Abstract

We define new families of Tillich-Zémor hash functions, using higher
dimensional special linear groups over finite fields as platforms. The Cay-
ley graphs of these groups combine fast mixing properties and high girth,
which together give rise to good preimage and collision resistance of the
corresponding hash functions. We justify the claim that the resulting hash
functions are post-quantum secure.

1 Introduction

Hash functions obtained from families of expander graphs were intro-
duced by Charles-Lauter-Goren in [CLG08], where they were in turn
inspired by a scheme of Tillich-Zémor [TZ94a]. Charles-Lauter-Goren

*Supported by the Israel Science Foundation (grant no. 2919/19)
�Partially supported by grant PID2020-117971GB-C21 of the Spanish Ministry of Science

and Innovation, and grant FQM-213 of the Junta de Andalućıa.
�Partially supported by NSF grant DMS-2002596
§Partially supported by a Canada’s New Frontiers in Research Fund, under the Exploration

grant entitled “Algebraic Techniques for Quantum Security” as well as a grant from CUNY.

1

considered specific families of expander graphs discovered by Lubotzky-
Phillips-Sarnak [LPS88] and Pizer [Piz90]. The Charles-Lauter-Goren
construction is quite general, and can be applied to any expander family
in which finding cycles is hard, and thereby furnishes collision resistant
hash functions. Similar schemes have been proposed by several authors;
see [SS16,BSV17,GM18], and [Sos18] for a survey on this topic.

Interest in hash functions based on novel platforms fits into the context
of recent efforts to modernize existing hash functions, and to adapt them
to the design and security of hash-based consensus mechanisms, most
notably with respect to blockchains [Bor20], and especially in light of
the recently proved practicality of finding collisions in the SHA-1 hashing
algorithm [SBK+17].

The general idea behind Tillich-Zémor hash functions is the following.
Fixing a base vertex, the input of the hash function is interpreted as
a sequence of instructions, resulting in a non-backtracking path in a d-
regular graph. The output of the hash function is the endpoint vertex of
the path. More precisely, the input is a string of numbers in

[d− 1] := {1, 2, . . . , d− 1}

of arbitrary length, and the output is the vertex obtained by performing
a simple walk starting at a base vertex, using the elements of [d − 1] as
transition data for subsequent steps in the walk. See Definition 2.3 below
for details.

A well-constructed hash function is an efficiently computable function
which enjoys two main features. The first is preimage resistance, which
means that given a point in the hash value, it is computationally hard
to find an input that maps to that hash value. The second, is collision
resistance, which requires the problem of finding distinct inputs with the
same output to be computationally difficult.

The main goal of this paper is to propose a new Goren-Lauter-Charles–
type scheme, where the hash functions use Cayley graphs of the special
linear groups SLn(Fp) as platforms, where here p is prime and n ≥ 3. A
crucial observation is that, in schemes using these groups as a platform,
the problem of finding a preimage or a collision corresponds to finding fac-
torizations of the identity matrix with prescribed factors. With this obser-
vation in hand, and by taking into account recent work of Arzhantsheva-
Biswas [AB18] concerning the expanding properties of the Cayley graphs
of these groups, we offer a detailed study of the security of our protocol.
In particular, we have the following:

� Preimage resistance. In Proposition 2.5, we collect the expansion
properties the family of Cayley graphs {Gn,p}p of the groups SLn(Fp),
where n ≥ 3 is fixed and where p tends to infinity. Expansion in this
family of graphs guarantees good mixing properties, because under
these conditions the random walk gives a good approximation to the
uniform distribution after O(log p) steps. In particular, the likeli-
hood of success of an indistinguishability attack is strictly bounded,
and tends to 1/2 as the order of the group tends to infinity; see
Proposition 3.3.

2

� Collision resistance. The strength of our hash function with respect
to collision resistance is mainly based on the absence of small cycles
in the Cayley graphs of the underlying groups. In fact, Proposition
3.1 provides a lower bound on the girth of the graphs {Gn,p}p on
the order of log p. It follows that a factorization of the identity,
which is easily seen to be equivalent to finding a collision for the
hash function, is in turn equivalent to solving over the a system of
n2 equations in a number of variables that is O(log p), over the field
Fp. In full generality, solving such systems of equations is NP-hard.

Replacing the problem of factoring the identity with the problem
of factoring an arbitrary group element yields a similar system of
equations, lending further evidence of resistance of the hash function
to finding preimages; see Section 3.2.

For n = 2, certain Cayley graphs of the groups PSL2(Fp) give rise to
the celebrated Lubotzky–Phillips–Sarnak expander graphs [LPS88], which
were then used to build hash functions in [CLG08]. A successful collision
attack (i.e. an efficient computation of a collision) was found in [TZ08],
by taking coefficients in Z[i] and then reducing to a system of equations
of degree two. The essentially different nature of higher dimensional spe-
cial linear groups gives evidence of additional security, and makes it likely
that these attacks are far more difficult to execute for the hash functions
proposed here.

Considering symmetric generating sets enables us to employ results
from the theory of simple random walks in simplicial graphs. Neverthe-
less, the fact that we restrict ourselves to non backtracking random walks
precludes the use of multiplicativity of the has function, and thus compli-
cates parallel computation. We discuss these issues in Section 3.4.

Structure of the paper: In Section 2 we give the relevant group theo-
retic background, define the hash functions, prove the expansion property
of the Cayley graphs, and exhibit concrete examples. In Section 3, we
describe the various properties of our scheme: namely, we relate free gen-
eration with a lower bound on the girth; we then describe the role of
polynomial equations in preimage finding and in collision resistance, as
well as the role of mixing in indistinguishability attacks. Finally, we dis-
cuss multiplicativity and parallel computing, showing that the collision
attack from Grassl et. al. [GIMS11] using palindromes does not break the
scheme presented here. Section 4 concludes the paper.

Acknowledgments: The authors would like to thank Ludovic Perret,
Hadi Salmasian, Vladimir Shpilrain, and Bianca Sosnovski for helpful
comments and discussions.

2 Definition of the hash functions

This section defines our hash functions and exhibits concrete instances.
We start by recalling some relevant background material which will be

3

essential in our construction and in the sequel.

2.1 Background about special linear groups

For general results about special linear groups over finite fields, we refer
the reader to Hall’s book [Hal15]. In this section we concentrate on a
number of properties established by Arzhantseva-Biswas in their article
[AB18]. We summarize their results in the following proposition:

Proposition 2.1. Let n ≥ 2 and let p a prime. Write πp : SLn(Z) →
SLn(Fp) for the canonical projection given by reduction modulo p. There
exist matrices Ã, B̃ ∈ SLn(Z) such that:

(i) There exists a prime p0 such that for all p ≥ p0, the matrices Ãp :=
πp(Ã) and B̃p := πp(B̃) generate SLn(Fp).

(ii) If 〈Ã, B̃〉 is the subgroup generated by Ã and B̃ inside of SLn(Z),
then 〈Ã, B̃〉 is isomorphic to F2, the free group of rank two.

(iii) The diameter of the Cayley graph Gn,p of SLn(Fp) with respect to
{Ã±1

p , B̃±1
p } is O(log p).

Observe that for n ≥ 3, items (i) and (ii) reflect the fact that the
subgroup of SLn(Z) generated by Ã and B̃ is usually a thin subgroup of
SLn(R). The fact that Ãp and B̃p generated the corresponding finite quo-
tients for all but finitely many values of p is a reflection of strong/superstrong
approximation. In turn, item (iii) implies that the girth of Gn,p is opti-
mal, subject to the condition that the graphs {Gn,p}p form a family of
expander graphs (which will indeed be the case for us; see Proposition 2.5
below).

Remark 2.2. When using the Cayley graphs Gn,p as a platform, we
think of n as being fixed and p as modulating the level of security, with the
trade-off being that the hash functions functions become more expensive
to compute for large p.

Possible choices for Ã and B̃ are given by:

Ã =



1 a 0 0 . . . 0
0 1 a 0 . . . 0
0 0 1 a . . . 0
...

...
. . . a

0 0 0 0 . . . 1


, B̃ =



1 0 0 . . . 0
b 1 0 . . . 0
0 b 1 . . . 0
0 0 b . . . 0
...

...
...

0 0 0 . . . b 1


∈ SLn(Fp),

with a, b ≥ 2. These matrices will be crucial in the description of our hash
function.

2.2 The general construction

We now use matrices given in [AB18] to define an explicit family of hash
functions.

Definition 2.3 (Special linear group based hash functions). Let n ≥ 3
and let p be a prime number. Let a, b, ` ≥ 2 that satisfy:

4

� If n = 3, a ≡ 1(mod 3), b ≡ −1(mod 3) and ` = 4k for some posi-
tive integer k.

� If n ≥ 4, there exists a prime q such that n ≡ a ≡ b ≡ 1(mod q) and
` is at least 3(n− 1) and is of the form qk+1 + 1 for some integer k.

Consider the matrices Ã and B̃ from the previous section. In the
following we will denote A ≡ Ã` and B ≡ B̃`.

We use the notation [k] to denote the set of integers in [k], and [k]∗ to
denote the set of finite strings of integers in [k]. We now define the hash
function ϕ : [3]∗ → SLn(Fp). We start by choosing bijections

s : [4]→ {A±1, B±1}, sλ : [3]→ {A±1, B±1} \ s(λ)

for each λ ∈ [4].
Then, given

x = (xi)1≤i≤k ∈ [3]k,

we have the following inductive definition:

� B1 = s(x1),

� Bi = sλ(xi) with λ = s−1(B−1
i−1), for 2 ≤ i ≤ k.

Finally, we set ϕ(x) := B1 · · ·Bk ∈ SLn(Fp).

Remark 2.4. Note that Gn,p is 4–regular, so that after the first bit
x1 of the input x, there are exactly three non-backtracking edges in the
graph by which to proceed. The input x can thus be viewed as encoding
a reduced word in the free group F2. The lack of backtracking in the
resulting walk on Gn,p is crucial for the avoidance of collisions, as well as
for the reduction of mixing time.

As stated in [AB18], the elements {A±1, B±1} generate a free subgroup
of SLn(Z) and generate SLn(Fp) for all but finitely many values of p, and
these facts give rise to strong preimage and collision resistance of the
resulting hash functions.

2.3 Expansion

For us to implement the Charles-Lauter-Goren approach, we must take
advantage of the good mixing properties of the expander graphs.

Proposition 2.5. For n ≥ 3 fixed and p → ∞, the sequence {Gn,p}p is
a family of expander graphs.

Sketch of proof. By item (i) of Proposition 2.1, there exists a prime p0
such that for all p ≥ p0, the matrices Ãp := πp(Ã) and B̃p := πp(B̃) gen-
erate SLn(Fp). Now, since SLn(Z) has property (T) for n ≥ 3 [BdlHV08],
we have that SL2(Z) has property (τ) with respect to the family of con-
gruence subgroups; see [Lub05] for more details.

An immediate consequence of this proposition is that the random walk
approximates the uniform distribution after O(log p) steps in the corre-
sponding graph Gn,p. As we will elaborate in Section 3.3, this result

5

is relevant for the purpose of analyzing preimage resistance to indistin-
guishability attacks; see Proposition 3.3, in particular. We note that
in [BSV17], random walks are conducted on Cayley graphs with respect
to non-symmetric generating sets, and thus their asymptotic behavior is
less clear. Similar issues arise in [TNS20], since then hash values could be
restricted to a proper subgroup. As stated in [AB18], we note that one
can effectively compute the bound lower p0. No explicit bound on p0 has
been given, though by combining existing results one can probably prove
that p need not be very large, likely on the order of magnitude of n; see
for instance [GV12, Appendix] and [Gur99, Theorem D]. Note that the
larger the value of the prime p, the more secure the hash function.

2.4 A concrete example

We finish this section by describing a family of concrete examples of hash
functions, which are constructed for the specific values a = 4, b = 2 and
` = 4. We do not know what minimal value of n would ensure security.

Definition 2.6. Let p be a prime, and let

A =



1 4 0 0 . . . 0
0 1 4 0 . . . 0
0 0 1 4 . . . 0
...

...
. . . 4

0 0 0 0 . . . 1



4

, B =



1 0 0 . . . 0
2 1 0 . . . 0
0 2 1 . . . 0
0 0 2 . . . 0
...

...
...

0 0 0 . . . 2 1



4

∈ SLn(Fp),

Let s(1) = A, s(2) = B, s(3) = A−1, s(4) = B−1. We define the
functions {sλ}λ∈[4] as follows:

� s1(1) = B, s1(2) = A−1, s1(3) = B−1,

� s2(1) = A, s2(2) = A−1, s2(3) = B−1,

� s3(1) = A, s3(2) = B−1, s3(3) = B,

� s4(1) = A, s4(2) = A−1, s4(3) = B,

Given an input sequence x = {xi}i∈[1,k] ∈ [3]k, we inductively define:

� B1 = s1(x1)

� Bi = sλ(xi), with λ = s−1(B−1
i−1), for each k ∈ [2, k].

Then, the sequence x is hashed to the matrix:

ϕ(x) = B1 · · ·Bk.
Thus, we obtain a hash function for every n ≥ 3.

3 Properties of the constructed hash func-
tions

In this section we use graph and group-theoretic machinery to describe the
security of the hash functions defined above. We center our analysis on

6

resistance to preimage and collision breaking. The exposition is divided
into three parts: first, we establish a lower bound in the girth of the
Cayley graphs of the group SLn(Fp) with respect to the generating system
{A±1

p , B±1
p }; second, we describe the consequences of girth bounds for

collision resistance; third, we investigate resistance of the protocol against
an indistinguishability attack.

3.1 Free groups and girth

The following proposition is in the spirit of [BSV17].

Proposition 3.1. Let A,B ∈ SLn(Z) such that the entries of A±1 and
B±1 are bounded in absolute value by a positive constant c. If A and B
generate a free subgroup of SLn(Z), then the girth of the Cayley graph of
〈Ap, Bp〉 ≤ SLn(Fp), with respect to {A±1

p , B±1
p } is at least⌊

log(p− 1)

lognc

⌋
.

Proof. For any reduced word w in A±1 and B±1, we write wZ (resp.
wFp)) for the projection of w to SLn(Z) (resp. SLn(Fp)). It follows by a
straightforward induction on k that, if w has length k, then the entries
of wZ cannot exceed (nc)k in absolute value. Now, let ` be the girth of
the corresponding Cayley graph. Then, there exists a non trivial reduced
word w of length ` such that wFp = 1. It follows that wZ is of the form
1 + pM , where M is an integer matrix. Since w is non trivial and since
{A,B} generate a rank two free subgroup of SLn(Z), the matrix M is
nonzero. We conclude that wZ has an entry of absolute value at least
p − 1. Since the entries of wZ cannot exceed (nc)k in absolute value, we

have that the length ` of w is bounded below by b log(p−1)
lognc

c, the desired
conclusion.

3.2 Preimage and collision resistance, and post-
quantum heuristics

We now analyze the resistance of our model to finding preimages and
to collisions. Observe that finding a preimage of a particular hash value
(resp. finding a collision of hash values) is equivalent to finding a factor-
ization of a given group element (resp. of the identity) in SLn(Fp) with
respect to the generating set.

The matrices Ap, Bp involved have order p, so a factorization can be
seen as a family of equations {(Em)}m≥0 with variables

k1, . . . , km, `1, . . . , `m ∈ Fp

satisfying:

(Em) Ak1B`1 . . . AkmB`m = M,

for a given challenge M ∈ SLn(Fp). Note that there are trivial solutions to
preimage and collision breaking of the hash function, since App is the iden-
tity. Since the girth of Gn,p is O(log p), we consider nontrivial solutions

7

to preimage or collision breaking to be ones where

C1 log p ≤
m∑
i=1

(ki + `i) ≤ C2 log p,

where C1 and C2 are positive constants depending on n but not on p. Note
that estimates for C1 and C2 can be produced, and that Proposition 3.1
furnishes an estimate for C1, for instance. Sharp values for C1 and C2 are
of relatively minor consequence for us.

Each entry of the left-hand side matrix in equation (Em) is polyno-
mial in k1, . . . , km, `1, . . . , `m. Thus, the equation (Em) corresponds to a
system of n2 multivariate polynomial equations over Fp.

Solving multivariate polynomial equations over a finite field is known
to be NP-hard [GJ79], which suggests a good level of security. More-
over, the reduction to solving multivariate polynomials, a class of hard-
ness problems considered for standardization by NIST, provides a certain
degree of confidence that the hash function is post-quantum. We contrast
this approach with schemes based on isogeny graphs, which reduce to a
more well-defined problem, albeit one not know to be NP-hard.

NP-hardness of a class of problems is a worst case complexity property,
and for certain NP-hard classes of problems, relatively simple and efficient
algorithms can find solutions in the vast majority of cases. Thus, NP-
hardness of the underlying problem is not a guarantee of post-quantum
behavior of the hash function.

A more compelling case for the hash function to be post-quantum
arises from empirical difficulty of factoring in special linear groups over
finite fields. For instance, in [FPPR11], subexponential factorization al-
gorithms were found for SL2(F2k), and these were only found in 2011.
These algorithms rely essentially on the fact that the matrices are 2× 2,
and on the fact that the underlying field has characteristic two. Thus,
the methods do not generalize in any straightforward way to larger di-
mensional special linear groups nor to fields with odd characteristic. In
practice, factoring matrices over finite fields is quite difficult, and imple-
mented algorithms are inefficient. Hardness appears to be optimized when
the system of equations resulting from (Em) is neither underdetermined
nor overdetermined, i.e. when the number of equations and variables is
comparable. Thus, the larger the value of p the more secure the hash
function, at the expense of computational time and space, and the bal-
ance of degrees of freedom and constraints occurs when n2 ∼ log p, or in
other words when n is approximately the square root of the logarithm of
p. We may then expect the factorization problem to take exponential time
in the number of variables in this case, and by resistant to the speedup
resulting from quantum attacks.

3.3 The mixing property and indistinguishability
attacks

In this section we study how to formalize the relationship between mix-
ing properties and indistinguishability, and how expansion weakens indis-

8

tinguishability attacks and thus gives heuristic confidence in pre-image
breaking resistance.

3.3.1 The mixing property

By the mixing property, we mean that the output vertex of a random in-
put — in our case a random walk — approaches the uniform distribution
on the hash space. When the random walk approaches the uniform distri-
bution quickly, mixing is observed even when the input messages have rel-
atively small length, say polynomial in log p. More precisely, we have the
following corollary of result of Alon-Benjamini-Lubetzky-Sodin [ABLS07],
which characterizes the rate at which a random walk on a graph converges
to the uniform distribution in terms of the spectral properties of its adja-
cency matrix:

Theorem 3.2. [ABLS07, Theorem 1.1, cf. proof of Theorem 1.3] Sup-
pose d > 2. Let X0, X1, . . . , X` be a non backtracking random walk on a
d–regular connected graph G with N vertices. There is a constant C > 0
such that whenever ` ≥ C · logN we have

|Pr(X` = v)− 1/N | ≤ 1/N2,

for every vertex v of G.

Examining the proof given in [ABLS07], one finds that the rate of
mixing depends not so much on the graph G, as much as on eigenvalues
of the adjacency matrix of G. Thus, if G is a member of a sequence
{Gi}i∈N of expander graphs, we may take the constant C in Theorem 3.2
to depend only on the expansion constant of the family.

It is well-known that mixing properties are desirable in Tillich-Zémor
hashing schemes; see [CLG08, TZ08]. As explained in [TZ08], mixing is
particularly relevant when the hash functions are used in protocols whose
security relies on the random oracle model; see [BR93] for example of such
protocols. The relevance of this approach depends on the distribution of
possible messages and in particular on how they are encoded, a question
we do not address in the present paper.

Surprisingly few mathematical statements addressing the relationship
between mixing and attacks are present in the literature; an example can
be found in [Ste21, Theorem 3], in the context of commitment schemes.
The following proposition, which is the main goal of this section, fits in
this context. We will give precise definitions of all the terms involved
below.

Proposition 3.3. Let ϕ : [3]k → SLn(Fp) the hash function of Definition
2.3, and let N = | SLn(Fp)|. There is a positive constant C such that if k ≥
C · logN , then a generic indistinguishability attack wins with probability
at most 1/2 + 1/N .

In particular we have the following immediate consequence. Note that
probability 1/2 is the best we can hope for if an adversary is asked to
distinguish between two situations, because such an adversary can always
choose at random with success probability 1/2.

9

Corollary 3.4. In the previous notation, when p tends to infinity, the
probability of winning for a generic indistinguishability attack tends to
1/2.

The complexity of the so-called generic indistinguishability attack men-
tioned here is linear in the number of vertices of the graph involved. Thus,
in the specific case of Proposition 3.3 it has exponential complexity, since
the size of SLn(Fp) is polynomial in p, and our reference is log p. Thus, we
obtain a more general notion of indistinguishability than in [KL21, §6.8],
restricted to polynomial-time algorithms.

The proof of Proposition 3.3 will be obtained as a corollary of the more
general Proposition 3.5, and of the mixing properties of the random walk
on SL3(Fp). We elaborate on these ideas presently.

3.3.2 Generic attack of indistinguishability challenge

The goal of this subsection is to define indistinguishability challenges, in-
vestigate possible attacks, and to justify to what extent the hash functions
defined in this paper are resistant to these attacks.

Indistinguishability challenge. Let H be a finite set. The chal-
lenger C has access to two public probability distributions µX and µY ,
which take values in H. These distributions are a priori distinct, and we
think of them as being “close”. C picks X ∈ H (resp. Y ∈ H) at random,
according to the distribution µX (resp. µY). C then flips a balanced coin
P ∈ {0, 1} and sends to their adversary A the element Z ∈ H, which
satisfies:

� Z = X if P = 0,

� Z = Y if P = 1.

Given Z, the goal of A is to guess P . In other words, A needs to
decide if C sent an element of H according to the distribution of µX or of
µY .

Generic indistinguishability attack. The adversary A knows the
public distributions µX and µY . For each binary relation

∗ ∈ {<,=, >},

we denote by H∗ the set of h ∈ H such that Pr(Y = h) ∗Pr(X = h). The
best strategy available to A is the following:

� If Z ∈ H>, then A guesses P = 1,

� If Z ∈ H=, then A guesses a random P ∈ {0, 1},
� If Z ∈ H<, then A guesses P = 0.

In the following proposition, we relate the `∞-distance between the
distributions µX and µY on one hand, and the chances of success of A
following the strategy above on the other hand.

10

Proposition 3.5. Let ε > 0 be such that

|Pr(X = h)− Pr(Y = h)| ≤ ε,

for every h ∈ H. Then, A guesses the correct P with probability at most

1

2
+ ε

#H

4
.

Remark 3.6. The probability that A guesses correctly is 1/2 when the
strategy is to guess a random P ∈ {0, 1}, so Proposition 3.5 above essen-
tially says that A cannot do much better, provided the distributions are
sufficiently close.

Proof of Proposition 3.5. Let PA := Pr(A is right). We have

PA =
∑
h∈H

Pr(A is right | Z = h) Pr(Z = h)

For each binary relation ∗ ∈ {<,=, >} let

P∗ =
∑
h∈H∗

Pr(A is right | Z = h) Pr(Z = h).

Then, we have PA = P< + P= + P>. We analyze each of these terms
independently.

� If Z ∈ H=, then A guesses a random P ∈ {0, 1}. Thus,

P= =
∑
h∈H=

Pr(Z = h)

2

=
Pr(X = h) + Pr(Y = h)

4
.

� If Z ∈ H<, then A guesses P = 0. Thus,

P< =
∑
h∈H<

Pr(P = 0 | Z = h) Pr(Z = h)

=
∑
h∈H<

Pr(Z = h | P = 0) Pr(P = 0)

=
∑
h∈H<

Pr(X = h)

2
.

� If Z ∈ H>, then A guesses P = 1. Thus,

P> =
∑
h∈H>

Pr(P = 1 | Z = h) Pr(Z = h)

=
∑
h∈H>

Pr(Z = h | P = 1) Pr(P = 1)

=
∑
h∈H>

Pr(Y = h)

2
.

11

So, we obtain

PA =
1

2

∑
h∈H

max{Pr(X = h),Pr(Y = h)}.

We can now give an upper bound on PA. We can assume without any
loss of generality that #H< ≤ #H

2
. Then,

PA =
1

2

∑
h/∈H<

Pr(Y = h) +
1

2

∑
h∈H<

Pr(X = h)

≤ 1

2

∑
h/∈H<

Pr(Y = h) +
1

2

∑
h∈H<

(Pr(Y = h) + ε)

≤ 1

2

∑
h∈H

Pr(Y = h) + ε
#H<

2

≤ 1

2
+ ε

#H

4
.

Generic indistinguishability attack in our framework. In
the framework of hash functions, we consider a function ϕ : S → H,
where S and H are finite sets. The challenger C has two variables in
hand, namely X ′ ∈ S and Y ∈ H, both chosen uniformly at random.
The indistinguishablility challenge is now adapted to the two variables
X := ϕ(X ′) and Y . We can now prove Proposition 3.3.

Proof of Proposition 3.3. From Theorem 3.2, there are constants C,C′ >
0 such that after C logN = C′ log p steps, the non backtracking random
walk on SLn(Fp) is at `∞-distance at most 1/N2 from the uniform distri-
bution. From Proposition 3.5, the generic indistinguishability attack wins
with probability at most 1/2 + 1/4N .

3.4 Multiplicativity and parallel computing

The hash functions considered in this article take as input a string of inte-
gers in [3], converting each integer into a matrix of the form {A±1, B±1},
and finally outputs the product of these matrices.

The fact that we require the underlying walk to be non-backtracking
implies that this attribution is not locally determined: a given bit in the
string is mapped to a matrix that depends on the previous bits. This
dependency can be dramatic: for example, according to Definition 2.6 a
sequence of the form 133 · · · 3 will be mapped to the product B ·B ·B · · ·B,
while a sequence of the form 333 . . . 3 will be mapped to the product
B−1 ·B−1 ·B−1 · · ·B−1. In particular, the last bit 3 of these two strings
can be mapped to different matrices, depending on the first bit in the
string. The endpoints of the corresponding walk in in the Cayley graph
may be arbitrarily far away from each other.

As a consequence, the function ϕ need not be multiplicative under
concatenation of strings. This lack of multiplicativity makes it difficult to
perform parallel computations with the given hash functions, as we now
investigate in more detail.

12

3.4.1 Good and bad tails

Recall that for a finite set X, the notation X∗ is used for the set of finite
length strings of elements of X. As before, the notation [3] denotes the
set {1, 2, 3}.
Definition 3.7. Let G be a finite group, generated by two elements A
and B. Let ϕ̃ : [3]∗ → {A±1, B±1}∗.

A string s ∈ [3]∗ is called a good tail with respect to ϕ̃ if there exists
S ∈ {A±1, B±1} such that for every s′ ∈ [3]∗, the last letter of ϕ̃(s′s) is
S, where here s′s is the string obtained from the concatenation of s′ and
s. A string which is not a good tail is called a bad tail.

Local constraints in Definition 2.6, can be obtained by the following
fact:

Fact 3.8. The function

ϕ̃ : {xi} ∈ [3]∗ 7→ {Bi} ∈ {A±1, B±1}∗

constructed in Definition 2.6 has the following good tails: 11, 31, 22, 32,
13 and 23.

Proof. It is straightforward to check that:

� any string ending in 11 or 31 outputs a string ending in A;

� any string ending in 22 or 32 outputs a string ending in A−1;

� any string ending in 13 outputs a string ending in B;

� any string ending in 23 outputs a string ending in B−1.

The following proposition shows that the attribution above is optimal.

Proposition 3.9. Special linear group based hash functions (Definition
2.3) admit at most six good tails of length two.

The bound in Proposition 3.9 is sharp, as shown via the attributions of
Definition 2.6. The proof of Proposition 3.9 will follow from the following
lemma:

Lemma 3.10. Let

ϕ̃ : {xi} ∈ [3]∗ 7→ {Bi} ∈ {A±1, B±1}∗

be a special linear group based hash function (Definition 2.3), and let b ∈
[3]. There exists b′ ∈ [3] such that b′b is a bad tail with respect to ϕ̃.

Proof. The only freedom that we have in the construction of Definition
2.3 is how we define the maps si. We call elements of {A±1, B±1} step
matrices. Using ϕ̃, we say that the elements of [3] are encoded by step
matrices. We summarize the definitions of the maps si in a table, with
one row for each step matrix, and one column for each element of [3].
Each cell from this tabular contains a step matrix.

To use this table, start from a string {xi} ∈ [3]∗. Say that for some
i > 1, we want to find the step matrix associated with xi. Let S be the
step matrix encoding xi−1. Then, the step matrix encoding xi is the step
matrix in the cell located in the row labelled by S and in the column
labelled by xi.

13

Figure 1: Description of the maps si in Definition 2.6

last step matrix 1 2 3
A−1 B A−1 B−1

B−1 A A−1 B−1

A A B−1 B
B A A−1 B

It follows from the definition of the maps si that for each step matrix
S, the row labelled by S contains exactly the three matrices in the set
{A±1, B±1} \ S−1. The attributions of Definition 2.6 can be described as
in Figure 1.

Moreover, since each matrix can actually be the last step matrix used,
every cell of the table can potentially be used. Fix an element b ∈ [3],
and assume for a contradiction that every integer b′ ∈ [3] has the property
that b′b is a good tail. The column corresponding to each b′ has to contain
at least two different step matrices. This implies that, in the row labelled
by b, at least two cells contain the same step matrix. Since this is true for
each b′ ∈ [3], this implies in particular that there is a step matrix S that
is contained three times in the column labelled by b. The fourth cell of
this column cannot be part of the row labelled by S since this would give
rise to another S in a different column. This implies that the label S′ of
this row appears in a cell of another column. Additionally, this column
contains a cell with step matrix not equal to S′. Then, the label b′ ∈ [3]
of this column gives us an integer having the property that inputs ending
by b′b can have either S or another matrix as a final matrix. This is a
contradiction and concludes the proof of the lemma.

Proof of Proposition 3.9. From Lemma 3.10, to each integer of [3] corre-
sponds at least on bad tail, giving three different bad tails.

As remarked previously, Definition 2.6 shows that the estimate in
Proposition 3.9 is sharp, and so that in some sense, we have found an
optimal way of defining the maps si.

3.4.2 Multiplicativity

It follows from the discussion of good and bad tails above that multiplica-
tivity of the hash function can be obtained by restricting to sequences
whose product ends with the matrix s(1).

Fact 3.11. In Definition 2.6, we have ϕ(s1 ∗ s2) = ϕ(s1) ·ϕ(s2), provided
s1 ends with 11 or 31.

3.4.3 Parallel computing

Multiplicativity of the hash function under suitable conditions can be
leveraged to compute its values by parallel computation. First, look for

14

good tail substrings, namely: 11, 31, 22, 32, 13 or 23. For generic mes-
sages, one would expect such substrings to be quite common. Next, split
the input immediately following one of these strings, and apply a slightly
modified hash function (i.e. using the relevant si instead of s1 in the first
matrix attribution). Finally, compute the product of the hash outputs.

Example 3.12. Say we want to hash the string 1321321323. Observe
that: 1321321323. We thus compute: M1 = ϕ(13213) andM2 = ϕ′(21323),
where ϕ′ is defined analogously to ϕ in Definition 2.6, apart from the fact
that B1 is set to be s4(x1) instead of s1(x1), since ϕ(13213) is a product
ending by B. Finally, ϕ(1321221323) = M1 ·M2.

3.5 Palindromic attacks

One of several proposals of hashing by walks on Cayley graphs can be
found in [TZ94b], wherein the Cayley graph is that of SL2(F2n). A
method for finding collisions for this hash function is presented in [GIMS11]
(cf. [FPPR11]); we argue that the attack does not apply in our case,
though our evidence for this claim is primarily empirical.

The idea of [GIMS11] is to find collisions on palindromes; that is, bit-
string entries that are invariant under reversing the order. To begin, one
conjugates generators of SL2(F2n) to obtain new generators which give
rise to an isomorphic graph, but which are symmetric matrices. That is,
if the original generators are {A±1, B±1}, one finds a matrix C such that
Â = CAC−1 and B̂ = CBC−1 are both symmetric matrices.

We first note that in our case, finding C is not easy; for SL3(5) and
SL3(7), about 0.02% of the elements satisfy this criterion. Moreover, there
is no obvious way to compute C; attempts to calculate the entries of such
a matrix directly have proved resistant to equation solving methods in
standard computer algebra systems - indeed, this approach is actually
less efficient than just checking all possible matrices. Therefore, we do
not have much data for larger primes, since the naive method used to find
a suitable matrix C quickly becomes computationally infeasible.

Provided one can find a matrix C, it follows that collisions in the
hash function with respect to Â, B̂ as generators are exactly the collisions
with A,B as generators; one can therefore rename the matrices Â, B̂ as
A,B. One then proceeds according [GIMS11, Lemma 1]: upon input of a
palindromic string v, the output of the product of conjugated generators
in SL2(F2n) will always be a symmetric matrix.

Since our hash function requires avoidance of backtracking in the walk,
we are not guaranteed a palindromic matrix product from a palindromic
input string; however, since one could reverse-engineer the necessary input
to obtain a palindromic matrix product, we proceed to discuss palindromic
matrix products without reference to hash function.

It turns out, as one may check easily by induction, that a palindromic
product in symmetric generators will itself be symmetric. The ultimate
goal of [GIMS11] is to use this fact to demonstrate that the function

ρ : M 7→ AMA+BMB,

where M is a palindromic product, outputs a matrix populated with either
zeroes or the square of a field element appearing as an entry in M . One

15

then employs number theoretic tricks to force the nonzero elements to 0
in M and thus to obtain ρ(M) = 0. One thus builds distinct but equal
palindromic matrix products.

Consider the generators from Definition 2.6 over SL3(F11). Transform-
ing these generators with respect to the matrix

C =

2 6 10
5 3 10
2 3 3

 ,

one checks that the palindrome M = ABABA is such that

M =

7 4 2
4 0 6
2 6 6

 , ρ(M) =

2 1 5
1 1 7
5 7 7

 .

In particular, for each i ∈ [10], the matrix ρ(M) contains an entry
that is not the ith power of any entry of M . This furnishes evidence that
for p = 11, there is little hope of extending [GIMS11, Corollary 1] to our
context; we argue that the lack of closed form of transformed generators
in general, the difficulty of finding them for larger parameters, and this
example with a small value of p, conspire to provide strong evidence that
the approach will fail in general.

4 Conclusions

We have presented new Tillich-Zémor hash functions, with platforms Cay-
ley graphs of SLn(Fp) for n ≥ 3. We show that choosing appropriate
generating matrices produces graphs without small cycles, and having a
quick mixing property, both of which are highly desirable for preimage and
collision resistance. Moreover, flexibility of choice of generating matrices
and of the dimension n gives the option of increasing the complexity of
attacks. Future work includes the exact computation of the spectral gap
and the prime p0 (cf. item (i) of Proposition 2.1). Moreover, simulations
should be carried out in order to compare with other existing schemes and
determine the optimal values of p and n to be taken in implementations.

References

[AB18] Goulnara Arzhantseva and Arindam Biswas. Large girth
graphs with bounded diameter-by-girth ratio. arXiv, 03 2018.

[ABLS07] Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin.
Non-backtracking random walks mix faster. Commun. Con-
temp. Math., 9(4):585–603, 2007.

[BdlHV08] Bachir Bekka, Pierre de la Harpe, and Alain Valette. Kazh-
dan’s Property (T). New Mathematical Monographs. Cam-
bridge University Press, 2008.

[Bor20] Tom Borthwick. Applications of homomorphic cryptographic
primitives in blockchain and the internet of things, Under-
graduate Thesis, University of York, 2020.

16

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are prac-
tical: A paradigm for designing efficient protocols. In Proceed-
ings of the 1st ACM Conference on Computer and Communi-
cations Security, CCS ’93, page 62–73, New York, NY, USA,
1993. Association for Computing Machinery.

[BSV17] Lisa Bromberg, Vladimir Shpilrain, and Alina Vdovina. Nav-
igating in the Cayley graph of SL2(Fp) and applications to
hashing. Semigroup Forum, 94(2):314–324, 2017.

[CLG08] Denis Charles, Kristin Lauter, and Eyal Goren. Cryptographic
hash functions from expander graphs. Journal of Cryptology,
22:93–113, 12 2008.

[FPPR11] Jean-Charles Faugère, Ludovic Perret, Christophe Petit, and
Guénaël Renault. New subexponential algorithms for factor-
ing in SL2(f2n). IACR Cryptol. ePrint Arch., page 598, 2011.

[GIMS11] Markus Grassl, Ivana Ilić, Spyros Magliveras, and Rainer
Steinwandt. Cryptanalysis of the tillich–zémor hash function.
Journal of cryptology, 24(1):148–156, 2011.

[GJ79] Michael R. Garey and David S. Johnson. Computers and in-
tractability. A Series of Books in the Mathematical Sciences.
W. H. Freeman and Co., San Francisco, Calif., 1979. A guide
to the theory of NP-completeness.

[GM18] Mohammad Hossein Ghaffari and Zohreh Mostaghim. More
secure version of a Cayley hash function. Groups Complex.
Cryptol., 10(1):29–32, 2018.

[Gur99] Robert M. Guralnick. Small representations are completely
reducible. J. Algebra, 220(2):531–541, 1999.

[GV12] A. Salehi Golsefidy and Péter P. Varjú. Expansion in perfect
groups. Geom. Funct. Anal., 22(6):1832–1891, 2012.

[Hal15] Brian Hall. Lie groups, Lie algebras, and representations, vol-
ume 222 of Graduate Texts in Mathematics. Springer, Cham,
second edition, 2015. An elementary introduction.

[KL21] Jonathan Katz and Yehuda Lindell. Introduction to modern
cryptography. Chapman & Hall/CRC Cryptography and Net-
work Security. CRC Press, Boca Raton, FL, 2021. Third edi-
tion [of 2371431].

[LPS88] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs.
Combinatorica, 8(3):261–277, 1988.

[Lub05] Alex Lubotzky. What is. . .property (τ)? Notices Amer. Math.
Soc., 52(6):626–627, 2005.

[Piz90] Arnold K. Pizer. Ramanujan graphs and Hecke operators.
Bull. Amer. Math. Soc. (N.S.), 23(1):127–137, 1990.

[SBK+17] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Alber-
tini, and Yarik Markov. The first collision for full SHA-
1. In Advances in cryptology—CRYPTO 2017. Part I, vol-
ume 10401 of Lecture Notes in Comput. Sci., pages 570–596.
Springer, Cham, 2017.

17

[Sos18] Bianca Sosnovski. Recent developments in Cayley hash func-
tions. In Mathematical software—ICMS 2018, volume 10931
of Lecture Notes in Comput. Sci., pages 438–447. Springer,
Cham, 2018.

[SS16] Vladimir Shpilrain and Bianca Sosnovski. Compositions of
linear functions and applications to hashing. Groups Complex.
Cryptol., 8(2):155–161, 2016.

[Ste21] Bruno Sterner. Commitment schemes from supersingular el-
liptic curve isogeny graphs. Cryptology ePrint Archive, Re-
port 2021/1031, 2021. https://ia.cr/2021/1031.

[TNS20] Hayley Tomkins, Monica Nevins, and Hadi Salmasian. New
Zémor-Tillich type hash functions over GL2(Fpn). J. Math.
Cryptol., 14(1):236–253, 2020.

[TZ94a] Jean-Pierre Tillich and Gilles Zémor. Group-theoretic hash
functions. In Algebraic coding (Paris, 1993), volume 781 of
Lecture Notes in Comput. Sci., pages 90–110. Springer, Berlin,
1994.

[TZ94b] Jean-Pierre Tillich and Gilles Zémor. Hashing with sl 2.
In Annual International Cryptology Conference, pages 40–49.
Springer, 1994.

[TZ08] Jean-Pierre Tillich and Gilles Zémor. Collisions for the LPS
expander graph hash function. In Proceedings of the Theory
and Applications of Cryptographic Techniques 27th Annual In-
ternational Conference on Advances in Cryptology, EURO-
CRYPT’08, page 254–269, Berlin, Heidelberg, 2008. Springer-
Verlag.

18

https://ia.cr/2021/1031

	Introduction
	Definition of the hash functions
	Background about special linear groups
	The general construction
	Expansion
	A concrete example

	Properties of the constructed hash functions
	Free groups and girth
	Preimage and collision resistance, and post-quantum heuristics
	The mixing property and indistinguishability attacks
	The mixing property
	Generic attack of indistinguishability challenge

	Multiplicativity and parallel computing
	Good and bad tails
	Multiplicativity
	Parallel computing

	Palindromic attacks

	Conclusions

