
Garbled-Circuits from an SCA Perspective
Free XOR can be Quite Expensive. . .

Itamar Levi1 and Carmit Hazay1

Bar-Ilan University, Ramat-Gan, Israel
(e-mail: {first.last}@biu.ac.il)

Abstract. Garbling schemes, invented in the 80’s by Yao (FOCS’86), have been a
versatile and fundamental tool in modern cryptography. A prominent application of
garbled circuits is constant round secure two-party computation, led to a long line
of study of this object, where one of the most influential optimizations is Free-XOR
(Kolesnikov and Schneider ICALP’08), introducing a global offset ∆ for all garbled
wire values where XOR gates are computed directly without garbling them.
To date, garbling sachems were not studied per their side-channel attacks (SCA)
security characteristics, even though SCA pose a significant security threat to crypto-
graphic devices. In this research we demonstrate that adversaries utilizing advanced
SCA tools such as horizontal attacks, mixed with advanced hypothesis building and
standard (vertical) SCA tools, can jeopardize garbling implementations.
Our main observation is that garbling schemes utilizing a global secret ∆ open a
door to quite trivial side-channel attacks. We model our side-channel attacks on the
garbler’s device and discuss the asymmetric setting where various computations are
not performed on the evaluator side. This enables dangerous leakage extraction on
the garbler and renders our attack impossible on the evaluator’s side.
Theoretically, we first demonstrate on a simulated environment, that such attacks
are quite devastating. Concretely, our attack is capable of extracting ∆ when the
circuit embeds only 8 input non-linear gates with fifth/first-order attack Success-
Rates of 0.65/0.7. With as little as 3 such gates, our attack reduces the first-order
Guessing Entropy of ∆ from 128 to ∼ 48-bits. We further demonstrate our attack via
an implementation and measurements data over an STM 32-bit processor software
implementing circuit garbling, and discuss their limitations and mitigation tactics on
logical, protocol and implementation layers.
Keywords: Secure Computation · Garbled Circuits · Free-XOR · Side-channel
analysis · Horizontal Attacks · Single Trace

1 Introduction
Background. Secure multi-party computation (MPC) allows a set of n parties Pi to
jointly compute a function f on their inputs such that nothing beyond the output of
that function is revealed. Privacy of the inputs and correctness of the outputs need to
be guaranteed even if some subset of the parties is corrupted by an adversary. Such an
adversary (either passive or active), is assumed to break into the devices of a subset of
parties, learning their entire state which includes the their secret inputs to the computation
and their internal randomness. Efficient and privacy-preserving multi-party computation
is an important goal of modern society, organizations and computational platforms as a
whole. Vast research effort was spent to provide protocols which are concretely efficient
and practical; see [BCS19, HIMV19, YWZ20, BCO+21] for recent implementation efforts.

Garbled circuits, invented in the 80’s by Yao [Yao86], have been a versatile and
fundamental tool in modern cryptography with a large body of work building up on Yao’s
construction, providing optimizations, abstractions, variations, and indeed several new

2 Garbled-Circuits from an SCA Perspective

applications of garbled circuits. One of the prominent applications of garbled circuits is
constant round secure two-party computation protocols (2PC) [LP09]. Such a protocol
proceeds by designating one party as a garbler and the other as the evaluator. The garbler
generates an encoded version of the computed function (viewed as a Boolean circuit), using
its private randomness. This is referred to as a garbled circuit (GC). The GC is then sent
to the evaluator along with input labels corresponding to the garbler’s input bits. Next,
the garbler and evaluator engage in an oblivious transfer (OT) protocol, through which
the evaluator receives the input labels corresponding to its own input to the function.
Finally, the evaluator uses all the input labels and the GC to compute the function’s
output which it can share with the garbler. Garbled circuits have found many additional
applications both in theory and in practice such as one-time programs [GKR08], KDM-
security [BHHI10], verifiable computation [GGP10], multi-hop homomorphic computations
[GHV10], zero-knowledge argument systems [JKO13] and more.

Secure garbling of circuits and corresponding ways of reducing the garbling size has
been the aim of a long line of research, e.g., [BMR90, NPS99, KS08, LP09]. The most
common paradigm for garbling a circuit operates at the gate level where for each gate in the
circuit, each line in the truth table of the gate functionality is encrypted separately (this
is also known as the ‘gate-by-gate paradigm’). The garbling procedure follows by choosing
a pair of labels for each wire in the circuit corresponding to the values 0 and 1. Then for
each gate and each row of the truth table, two labels, one for each input wire, are used
as the joint key for masking the output label. The underlying primitive for realizing this
mask is a symmetric-key algorithm (e.g., a pseudorandom function (PRF) or a correlation
robust hash function) which yields extremely fast algorithms. This paradigm led to a long
sequence of successful optimizations in computation and communication, that established
garbled circuits as a practical tool for achieving 2PC; see e.g., [PSSW09, KMR14, ZRE15].

As it stands today, all garbling implementations have found expression in MPC en-
vironments, where both the garbler and the evaluator are part of a distributed compu-
tation that is typically carried out on powerful devices (such as cloud servers). How-
ever, with the technology outbreak, platforms such as advanced Systems-On-a Chip
(SoCs), smartphones, Automotive, IoTs and standard desktops are powerful enough to
execute efficiently such schemes. Specifically, with the growing popularity of applications
that require dedicated hardware or use such platforms, which can benefit from garbling
schemes and secure computation, designing and executing special purpose GC-hardware
is inevitable [JKSS10, HJP13]. For some examples we can consider one-time programs
and obfuscation [GKR08, JKSS10, KSNO17, ZCD+19], post-quantum signature schemes
[JKO13, AHIV17, CDG+17, KKW18] and verifiable computation [GGP10, LMR22]. Nev-
ertheless, such hardware devices are susceptible to side-channels attacks (SCA).

Note that it is always possible to evaluate leakage resiliency on the primitive level
(such as permutation, encryption, hashing) with the assumption that if we protect these
lower levels primitives, higher abstractions such as GCs, which are instantiated with such
secure primitives, will be protected as well. Nevertheless, protection against side-channels
attacks induces significant costs with respect to latency, energy etc. E.g., the masking
countermeasure may introduce an overhead between 2x − 10x [GMK17, CGLS20, GM18]
(as a function of the the security level required). Therefore adding such protections should
be well justified. The folklore, which is further supported by our paper, is that the
evaluator’s algorithm is relatively protected against side-channel attacks [GKR08]. The
garbler’s algorithm, on the other hand, has not discussed to date as sensitive to side-channel
attacks. In this paper we push forward on these aspects and show cases in which special
care should be given to SCA and additional countermeasures should be considered.

To be concrete, side channel attacks enable distinguishing internal secret values manip-
ulated by the hardware, exploiting the dependencies of secret-key dependent computations
and some physically measurable quantities. This is natural as any computation requires

Itamar Levi and Carmit Hazay 3

some form of energy, like switching (dynamic) currents of transistors and devices. This
energy is then manifested in various noisy measurable quantities. In this work, we con-
sider a setting where garbling schemes are embedded within a small chip that realizes
the garbler’s role. With our attacker model we assume it got hold of some side-channel
access to the garber’s device. We further assume that the adversary can eavesdrop public
communication channels, such as the ones used for sending the circuit description, if not
agreed upon, and public garbled values.

1.1 Our Contribution
One of the most influential optimization introduced for garbling schemes is the Free-XOR

technique proposed by Kolesnikov and Schneider [KS08], which reduces the computation
and communication resources. Namely, it allows XOR gates to be evaluated directly by the
Boolean XOR of their input labels/keys. Consequentially, a considerable effort is put in
order to decompose the circuit computation efficiently to a network with minimal non-linear
operations (in GF(2)) on account of more linear ones [BCCM20, TSR+20, SZ13]1. As it
stands today, this optimization is embedded within all garbled circuits implementations.
In their construction, Kolesnikov and Schneider proposed to choose only one label/key
associated with each wire independently at random. Namely, if wire numbers i and j
are the input wires to an XOR gate and k is the output wire number, then the keys
for the input wires are set by the pair {Wp0

. , Wp0
. ⊕ ∆} where ∆ is a global offset used

across all wire labels in the circuit. Following this approach, the output label is the
XOR result of the two input labels implying that it will be set either to {Wp0

i ⊕ Wp0
j}

or {Wp0
i ⊕ Wp0

j ⊕ ∆}. For non-linear operations, e.g., ANDs as illustrate in Fig. 1b it is
understood that ∆ appears both within the input keys and plantexts (which correspond
to the output keys). Security of Free-XOR follows due to a non-standard assumption of
circular security [CKKZ12].

The Free-XOR optimization is our starting point, introducing the correlation we take
advantage of in our side-channel attacks. More concretely, in this work we show that SCA
attacks on the garbler’s device are viable and devastating.

1.2 Technical Overview
In more details, the garbler generates the garbled circuit from the Boolean representation

of a λ-gates circuit C, typically represented by AND and XOR gates. This is defined by the
process where each wire wi for i < λ + m (where m is the input length), which can take up
a Boolean value in {0, 1}, is labeled by two randomly generated n-bit values corresponding
to the logical ‘0’ and ‘1’ values (where n typically serves as the security parameter). These
are denoted by W j

i for j ∈ {0, 1}. Assuming that all gates have fan-in 2, then their truth
table includes 4 entries while enabling the recovery of one of the two possible garbled
output labels without learning its semantic Boolean value. Naively, each gate is associated
with 4 entries (or ciphertexts) [LP07] where each entry requires a symmetric-key operation
denoted by E

W j
i

,W j′
k

(W j′′

l) where j′′ = j ∧ j′ for an AND gate. Followup optimizations
(see Section 2.1), further reduce the number of sent ciphertexts.

Our technical contribution relates to building an attack which is based on the observation
that garbling schemes utilizing a global secret ∆ generate side-channel attacks sensitivity.
Our attacks merge information from multiple time samples within a leakage trace and
from multiple non-linear input-layer garbled gates, utilize public known labels and other
publicly available information provided by the protocol. We demonstrate that such attacks
are quite devastating; technically, capable of extracting ∆ when the circuit embeds only
8 input non-linear gates with fifth/first-order attack Success-Rates of 0.65/0.7. With as
little as 3 such gates, our attack reduces the first-order Guessing Entropy of ∆ from 128 to

1interestingly, it is similar to the masked SCA context [BDMD+20]

4 Garbled-Circuits from an SCA Perspective

∼ 48-bits. We further demonstrate our attack via an implementation and measurements
data over an STM 32-bit processor software implementing circuit garbling. We discuss
their limitations in terms of miss-classification of leakages, needed in our attack procedure,
and various other parameters of the attack, such as the enumeration complexity of the
adversary. Lastly, we list a spectrum of possible countermeasures.

2 Technical Background
This section discusses garbled circuits and some recent advances. We further introduce

necessary SCA attacks related information and highlight some advances we make use of in
this work, namely Horizontal or single-trace attacks.

2.1 Garbling Schemes
We recall the abstraction of a garbling scheme from [BHR12]. That is, a garbling

scheme is a tuple of algorithms GS = (Gb, En, Ev) where the probabilistic garbling algorithm
Gb takes the function description f and outputs an encoded representation F and an
input encoding function e. The deterministic input encoding algorithm En gets e and the
function input x and returns an encoded input representation X. Finally, the deterministic
evaluation algorithm Ev takes F and X and outputs f(x) by evaluating the encoding. The
classic Yao’s garbled circuits construction follows by choosing two secret keys (also denoted
as labels) for each circuit wire, each is associated with a single bit 0/1. The garbling is a
process for which the Boolean truth table of each gate is “encrypted”. In practice, this
process is instantiated with symmetric-key cryptography e.g., pseudorandom functions
(PRFs), double key PRFs or correlation robust hash functions.

The input to the circuit is obfuscated similarly. Finally, the evaluation process maintains
the invariant that a single key per wire is obtained during the evaluation. This abstraction
captures [LP09] and all its subsequent optimizations and is essential for proving security
which follows by two properties of correctness and privacy, where the later ensures that
the evaluator cannot learn anything but the output.

More concretely, to avoid revealing any information about the internal wire values, the
table rows are typically permuted in a way which enables the recovery of the output labels
without capturing their semantic values corresponding with ‘0’/‘1’. The most practiced
approach is the point-and-permute (PPR) technique [BMR90]. To achieve this, one more
random bit is required for each wire label, i.e., each wire label is composed of n + 1-
bits, denoted here by: Wpj

i = {W j
i ∥pj

i }, j ∈ {0, 1}, where ∥ denotes concatenation and
pj

i ∈ {0, 1} is a random permutation bit. Applying the PPR optimization, the evaluator
only needs to access one table entry per gate (rather than all 4 as illustrated in Fig. 1a).
The garbled-row-reduction (GRR) [NPS99] is another optimization that enables to reduce
the number of sent garbled values (ciphertexts) per gate from the 4 truth table entries
outputs to three, improving on communication and computation costs.

Introducing the Free-XOR optimization, Kolesnikov and Schneider proved its security in
the random oracle model [KS08] but also claimed that some form of correlation robustness
would suffice. Following their work, Choi et al. [CKKZ12] have explored the security of
garbled circuits with Free-XOR based on a stronger notion of circular correlation robustness
and demonstrated that correlation robustness is insufficient as Free-XOR gives rise to
related-key attacks which are not captured by correlation robustness.

With the aim of proving privacy under standard assumptions, Kolesnikov et al. proposed
FleXOR gates [KMR14] (or flexible XOR) in which inputs can be adjusted to target specific
∆ values. In cases input wires ∆s’ match with the output wire one, there is no need in
such an adjustment, whereas in case only one of them matches, adjustment is required
only on the corresponding input. The FleXOR optimization is also compatible with the
advanced row-reduction technique by Pinkas et al. [PSSW09] (denoted here by GRR2)

Itamar Levi and Carmit Hazay 5

(a) (b)
Figure 1: Garbled gates look-up table: (a) w/o Free XOR (b) w Free XOR optimization.

which utilizes polynomial interpolation techniques to reduce the number of communicated
ciphertexts per garbled gate. Nevertheless, the GRR2 technique is not-compliant as is
with the Free-XOR technique as the labels offsets are the result of interpolation and thus
unpredictable. Choosing a specific tactic, i.e., Free-XOR or FleXOR based implementation
is not always straightforward and highly depends on the circuit to be implemented.

Half-Gates were introduced by Zahur et al. [ZRE15], considerably improving com-
munication cost of GCs. Their methodology eliminated the need of the polynomial
interpolation of the GRR2 optimization while proposing means to evaluate AND gates
with two ciphertexts (like GRR2) while being compliant with the Free-XOR optimization.

In what follow, we specifically discuss side-channels leakage in garbling schemes that
share a global secret (i.e., ∆). In that spirit, the alarming aspect is precisely that the most
prominent GC optimization is what, in essence, makes GC SCA sensitive.

2.2 Side Channel Attacks (SCA)
Side channel attacks have repeatedly demonstrated the sensitivity of implemented cryp-

tographic schemes. As such, current National Institute of Standardization and Technology
(NIST) competitions for future symmetric-key, e.g., Authenticated-Encryption [TMC+21]
and public-key Post-Quantum schemes [AASA+20], are considering SCA security and its
associated electronic cost factors as very important aspects. Successful single leakage-trace
SCA attacks were shown possible for public-key encryption/ digital signatures schemes,
both on hardware and software implementations [PPM17, PKH+21, KAA21]. Furthermore,
lately remote/network SCA were demonstrated to be very threatening in: (1) embedded IoT
devices, e.g., through radio channels from a far [GS15, SGMT18, CPM+18, CFS20], and
(2) utilizing network-/device-reliability and monitoring infrastructure, such as temperature
or voltage sensing [RPD+18, TBP20, MTH+21] e.g., on server cores.

In this section we briefly recall some of the necessary SCA basics and details needed for
this manuscript on SCA security evaluation-metrics and horizontal/single-trace attacks.

In more details, side channel attacks enable the extraction of secret values manipulated
by the hardware by exploiting the dependencies of secret-key dependent computations
and some physically measurable quantity. Most reports focus on side-channel leakage
measured through power or electromagnetic radiation channels, owing to their ease of
access and rather high signal to noise ratio. These leakage samples originate mainly as
physical outcomes of dynamic (switching) current dissipation of microelectronic devices.
Correlation or Differential power analysis (C/DPA) [KJJ99, BCO04] are powerful side-
channel attacks that follow a divide-and-conquer approach: an estimation on distinct parts
of the key (denoted by sub-keys) takes place, called hypothesis, and these hypotheses are
checked for correlations with the measured leakage from the device through multiple tests.
Typically, various pre-processing techniques and tests are required to average out the noise
and reveal underlying correlations between the hypothesized sub-key dependent internal

6 Garbled-Circuits from an SCA Perspective

secret-value and the leakage measurement. Once a specific sub-key is extracted, the next
sub-key can be extracted by the adversary utilising the same leakage measurements set,
underpinning the strength of SCA attacks.

In simulated environments we typically estimate a leakage model for some intermediate
values manipulated by the device. A leakage model is aimed at representing to some extent
the actual physical behaviour measured in the SCA paradigm; i.e., the leakage owing to
internal values manipulation. For a commonly practiced leakage model, which typically
nicely represents software implementations leakage, we can consider the Hamming Weight
(HW) leakage model by which an intermediate variable y of n-bits leaks: α · HW(y) + β +
N (µ, σ). Where, the α factor may represent some scaling owing to (e.g.,) current dividers
on the main power supply path originating from Maxwell and Kirchhoff’s Current Law
(KCL). The β factor may represent some DC offset owing to some noisy element in the
electronic system or current consuming elements which are data-independent. These factors
highly vary between different implementations. N (µ, σ) is the modeled noise distribution
owing to internal factors within the device and external parameters such as environmental
influences. The noise can generally be of various distributions, may be additive or not and
independently and identically distributed (IID) per time sample or not. Within simple
first-order estimation models, we typically assume a Gaussian additive and IID noise.

The SCA adversary is modeled as one which can thus get access or perform such
measurements. Clearly, it does not necessarily imply physical proximity to the device,
as measurements can be broadcast through networks, extracted from near or far-field
electromagnetic emanation channels, and can be completely passive [GS15, SGMT18,
CPM+18, CFS20]. Similarly to traditional cryptographic models, we assume one end
of the communication is exposed to an adversary: decryption-leakage measurements
are associated with some known ciphertexts (or encryption-leakage samples with their
associated plaintexts). SCA attacks, are typically not sensitive to the forward or backward
direction of the attack, i.e., through plaintexts or ciphertexts. This excludes structurally
asymmetric constructions such as authenticated encryption and tag-verification procedures.

Along the last few decades, the most powerful SCA attacks were statistical, meaning
many such (plaintext / encryption-leakage) pairs were retrieved by the adversary prior to
the attack procedure. Then, the adversary follows a modeling phase of a key-dependent
internal computation in the algorithm, and further models the effect this value has on the
encryption-leakage. Then, a statistical distinguisher is used, with the goal of eliminating
the large measurements noise to extract the hypothetical key from the leakage samples
(relaying on statistics and the laws of large numbers). In the following, we recall the
necessary background on model-based and profiled attacks used in this paper.
2.2.1 Model-Based Attacks

In the next two subsections we do not yet relate to the garbled-circuits in the attack
context. Specifically, let’s assume a device that performs encryption and that any ran-
domness used by the protocol is public (e.g., AES-CTR mode). Therefore, the following
discussion starts with a simplified view without a garbler or an evaluator, i.e. a standard
SCA attack. With conventional CPA [BCO04], we assume multiple measurements are
available to the adversary under the same secret-key, e.g., considering a symmetric-key
block-cipher instantiation. Then an attack works as follows:

Let lx,k be a leakage trace measurement under a plaintext/key x = {x0||x1||...x15}/
k = {k0||k1||...k15} of n-bits where for example each xi or ki represents one byte of
say n =128 bits. To perform a CPA attack, one should choose a target computation
to hypothesize (in the case of an AES, typically the first round Sbox output). That
is, some logical manipulation of the known plaintext (byte) by a deterministic function
and the secret-key (byte) (in the case of an AES, the target intermediate value yi =
Sbox(xi ⊕ ki)). Once a specific intermediate value is chosen for an attack, the adversary
builds an hypothesis table per each hypothesized secret-key ki ∈ {0, 1}8 and all xi related

Itamar Levi and Carmit Hazay 7

possible measurements of size Ntr as abstractly illustrated in Fig. 2a. The leakage model
for example can follow directly the HW of the intermediate hypothesized yi value as
discussed above. Next, a distinguisher can be used to find the hypothesized model which
depends on the secret-key which most correlates with the measured leakage, e.g., a simple
and commonly used distinguisher is the Pearson Correlation Coefficient:

ρkh = ρ(ykh

i , lx,k) = cov(ykh

i , lx,k)
σ(ykh

i) · σ(lx,k)
(1)

where cov and σ are the covariance and standard deviation, respectively, and ykh

i is yi

computed under an hypothetical key kh, i.e., ykh

i =Sbox(xi ⊕ kh).
Eventually, the secret-key (byte) k∗ that maximizes the correlation is chosen, namely

k∗ = argmaxkh ρkh . In practice, each leakage trace is a vector over time lt
xi,ki

where
t ∈ {0, . . . , #Samples} and the correlation in Eq. 1 takes per hypothesized key the maximum
value found over time, estimated in a point-of-interest (POI) in time where the secret value
yi is being manipulated by the device [SMY09, LPB+15].
2.2.2 Template Attacks

An alternative approach for trying to model the leakage function of a device by apriori
or a simple mathematical model, are template attacks [CRR02]. These are performed
in two consequent (or interleaved) phases of profiling and attack. It is assumed that the
adversary got hold of one device for which it can program (or control) the secret-key
and therefore profile the leakage and another target device from which it tries to extract
additional information on the underlying key.

Similarly to model-based attacks, to perform a template attack, one chooses a target
intermediate variable to template the probability density function (PDF), f(xi, ki), as-
sociated with a known/chosen plaintext chunk xi and the secret-key subset ki at some
POI. A set of Lp profiling traces of size Np is first used in order to estimate the leakage
distribution parameters for each intermediate value of yi, denoted as M̂yi

. For the attack
(online) phase, a fresh set of new traces from possibly a different device Latt of size
Natt are used. In most cases in the literature (and in practice) the PDF is assumed to
follow a Gaussian distribution, f (lyi

| yi) = N
(
µ̂lyi

, σ̂lyi

)
, i.e., in this case the statistical

estimated model M̂yi
contains a tuple {µ̂lyi

, σ̂lyi
}. In practice, distributions can follow

more complex structures, especially if countermeasures are embedded within the device.
However, the simplicity of such a model, manifested by only two parameters per internal
variable value, induces low model storage requirements, low computational effort and thus
efficient, making it a very popular de-facto tool. Finally, the secret-key (byte/chunk) k∗ is
estimated to be the one which maximizes the uni-variate Maximum Likelihood (denoted
by ML): k∗

i = argmax
ki

ML(ki) = argmax
ki

∏Natt

i=1 (f (li | yi)).

Due to practical computational reasons and numerical errors, the log-likelihood (LLH)
is typically used [FDLZ14] k∗

i = argmax
ki

LLH(ki) = argmax
ki

∑Natt
i=1 log (f (li | yi)).

It is noteworthy that many other (distinguisher,model)-pairs can be used instead of
the ML distinguisher and the a-priori Gaussian modeled probabilities, e.g. a correlation
distinguisher with a Hamming-Distance distinguisher, mutual-information based [GBTP08,
PR10] or Moments-Correlating Profiled DPA (MCP-DPA) distinguishers [MS16]2.
2.2.3 Success Rate and Guessing Entropy

An evaluator typically uses a set of attack traces of size Ntr or Natt in the modeled or
profiled settings, respectively, and computes a score vector per key based on the number
of actual traces utilized out of the entire set. Based on the scores of the correct key and

2Which are very useful when masked implementations are considered with leakages manifested in higher
statistical moments.

8 Garbled-Circuits from an SCA Perspective

number of repetitions of the experiment, a Success-Rate and Guessing-Entropy can be
computed. I.e., following an attack, the adversary obtains Nsk lists of sub-key rankings,
where Nsk is the number of the sub-keys following the divide-and-conquer approach; 16
subkeys in the AES example above with an 8-bit length. In the case of profiled template
attacks the adversary directly captures rankings in terms of probabilities (likelihoods).
In the case of model-based correlation attacks, correlation values can be easily converted
to probabilities, i.e., utilizing Base formulae or conversion formulae, for some examples
see [SLP05, SMY09]. That is, each of the Nsk lists of size |K| (e.g., 28) contains a value,
Pr[ki|xi, lx,k]. The rank R of the correct key is defined as its position in the ordered list of
probabilities. The Success-Rate of order Ord, denoted by SROrd, being computed over
Ntr leakage measurements per single experiment, is defined as [SMY09]:

SROrd(Ntr) = Pr[R < Ord]. (2)

Simply put, SROrd is the probability that the correct key is ranked among the Ord first
most probable keys. The Guessing Entropy (GE) can also be defined as the expected rank
of the correct key directly linking the average enumeration effort of the adversary [SMY09].

2.3 Horizontal and Combined SCA Attacks
Horizontal attacks make use of hypotheses on variety of intermediate values within

a single execution, i.e., multiple hypotheses of various intermediate variables which re-
late to the same secret value being hypothesized. Such attacks combine the collective
informativeness/ correlations with multiple leakage samples to extract secrets.

Fig. 2a illustrates the classic CPA procedure where leakages from the same time-sample
are jointly grouped (vertically) to a vector which is then correlated with the leakage-model

(a)

(b)
Figure 2: Conventional SCA apparatus: (a) CPA attack (b) Horizontal attack.

Itamar Levi and Carmit Hazay 9

vector, denoted on the figure by m(·). This context is regarded here as vertical SCA
(V-SCA). In this scenario, the adversary collects multiple measurements, each with possibly
a different input indexed with a superscript xi, and performs a single test on the power
trace to extract sub-key correlations and filter out the noise as abstractly illustrated. A
targeted intermediate variable yi is one which its value depends on a public input (xi) and
an unknown sub-key.

In contrast, in horizontal SCA attacks, H-SCA [BJPW13, BCPZ16, PPM17, PZS17,
KAA21, PKH+21], as illustrated in Fig. 2b, the adversary targets various computations
under the same xi and thus builds a model for multiple samples from the same leakage
trace. Then these collective hypothesis are combined with the goal of extracting the
sub-key from (e.g.) a single measurement as illustrated on the figure. Horizontal SCAs’
focuses on multiple intermediate computations, int ∈ {1, . . . , Nint} that all depend on the
public input and the same sub-key. The main challenge of applying horizontal SCA is in
grouping multiple internal computations within a single computation, that leak over the
same sub-key in a meaningful way (information sense), and to be able to nicely allocate the
POIs each is associated with. Even though this attack is more complex, as an adversary
needs to compute possibly more hypotheses over more internal variables and also needs to
characterize their associated sets of POIs, it is more powerful and can theoretically extract
more information or alternatively jeopardize the secret-key with far less measurements.
In the context of asymmetric setting, randomized algorithms, re-keying methods and
countermeasures, clearly such attacks are dangerous and thus important.
Combined Attacks. V-SCA and H-SCA can be combined. That is, multiple horizontal
hypothesis can be utilized over multiple (vertical) traces collected while processing different
data. In what follows below, our discussed attack merges V-SCA and H-SCA over the
leakage extracted from gates garbling.

3 Attacking the Garbler and the Evaluator
In this section we detail on topological aspects which make the proposed attack viable.

We assume that the adversary can monitor the communication channel and get a hold
of the garbler associated labels (Aj

i s’), and introduce the notion of leakage-blocking
layer and leakage exploitation layer in garbled circuits as illustrated in Fig. 3. In this
figure we consider a general garbled circuit which is comprised of multiple input-layer

Figure 3: Garbled Circuit illustration (a) a leakage blocking layer and (b) a leakage
exploitation layer.

10 Garbled-Circuits from an SCA Perspective

gates and ‘deeper’ gates fanning-out from the input layer. Considering Fig. 3(a) which
schematically illustrates some GC instantiation, one can identify the layer of input gates
size λin. In this example all input gates are XOR gates; thus, considering a globally shared
∆. Nevertheless, as the XOR operation is locally computed not by cryptographic means
and without communication, extracting some information from the leakage would be hard
as the unknown B labels serve as a one-time-pad and the leakage is anyway very short in
time (only one XOR operation) limiting the amount of information which can be extracted.
Namely, the output labels are masked in the sense that an adversary cannot utilize them
to further build a leakage model for subsequent gates. Thus, such a linear (XOR) input
layer is considered here as a leakage blocking layer.

Considering Fig. 3(b) which schematically illustrates another GC instantiation, in this
example a subset of the input gates are non-linear (e.g., ANDs) and are therefore being
implemented based on a cryptographic object. Let the effective number of such gates in
the input layer be denoted by λeff

in . As illustrated by prior work, the implementation
of these non-linear gates by cryptographic means can often be partitioned into public
and private parts where the former are known to the adversary (such as in computations
that are based on the garbler’s input labels set {Aj

i }). These can be processed and
attacked separately (blue highlight), e.g., as in PRFA∗

1
(∗) ⊕ PRFB∗

1
(∗) ⊕ C1 [NPS99] or

PRFA∗
1 ||B∗

1
(∗) ⊕ C1 [KSS12], where A1 and B1 are the input labels, and C1 is the output

label. Namely, one part of the leakage will only depend on (blue) public labels and public
data, and the rest of the leakage (black) depends on secret labels or a mixture. These are
the main openings which empower the discussed attack: (1) incorporating a globally shared
secret ∆ as specified by Free-XOR and, (2) the fact that it is possible to partition the
computation’s leakage to several parts which are associated with public information only
(public labels) and a shared secret (∆), enabling building statistical model. This is why
such a non-linear (AND) input layer is considered here as a leakage exploitation layer.

Before introducing our attack we recall that the adversary does not know the labels
association and whether it knows A or A ⊕ ∆. This information is not needed in order to
build the leakage profile as we build an hypothesis for it (see Section 2.2 for hypothesis
definition in the SCA context); we refer to this specific point below.

3.1 Running Example, Observations and Further Notations
In this subsection we discuss our running example and further highlight some observa-

tions relating to the type of primitive used to implement the garbled gates output/truth-
table. We consider Fig. 4 and refer to the discussion in the previous subsection on leakage
exploitation layer. We assume that the adversary got hold of a (long) leakage trace taken
from the garbling device, as illustrated on the top-left part of the figure where the public
known values are highlighted in blue. Assuming that the circuit is known to the attacker,
it can then follow with partitioning the (long) leakage to shorter snapshots, each associated
with a non-linear input gate. Following this partition, the leakages are abstractly stacked
one above the other3, so as to be utilized in a conventional SCA attack, as illustrated in
the lower-left part of the figure.

The literature proposes several different primitives to implement the cryptographic
garbled-gate operation such as PRFs, double key PRFs and correlation robust hash
functions. As different options are sensitive to the proposed attack, we do not wish to
limit the discussion at this stage and therefore several such primitives are listed in the
upper-right part of the figure. Our only restriction is that the underlying primitive follows
the popular confusion and diffusion paradigm, where iterations of smaller permutations
are used to construct the larger permutations. In this case, even if public and private
information are bind by concatenation (A∗

1||B∗
1), it will still be trivially sensitive to SCA

divide-and-conquer paradigm due to the parallel confusion layer.
3Or placed in an array, where each gate is associated with the leakage in a different row.

Itamar Levi and Carmit Hazay 11

Keccak SBOX…

𝑥𝑜𝑟

𝐴 , 𝐴 ⊕ Δ

𝐵 , 𝐵 ⊕ Δ
𝑊𝑝 , 𝑊𝑝 ⊕ Δ

𝑎𝑛𝑑

𝑃𝑅𝐹 ∗ (∗) ⊕ 𝑃𝑅𝐹 ∗ (∗) ⊕ 𝐶

𝐻(𝐴∗ ||𝐵∗|| ∗) ⊕ 𝐶

𝑃𝑅𝐹 ∗ || ∗ ∗ ⊕ 𝐶

𝑒𝑥𝑝𝑙𝑜𝑖𝑡 𝑢𝑛 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑

𝑥𝑜𝑟𝑎𝑛𝑑
…

𝑥𝑜𝑟𝑎𝑛𝑑

Single trace:

𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑙𝑒 𝑔𝑎𝑡𝑒𝑠, λ

∆→ ∆𝟏, … ∆𝟏𝟔

𝐾𝑛𝑜𝑤𝑛, 𝑒𝑖𝑡ℎ𝑒𝑟:

 𝐴 𝑜𝑟 𝐴 ⊕ Δ

 𝐴 𝑜𝑟 𝐴 ⊕ Δ

 𝐴 𝑜𝑟 𝐴 ⊕ Δ

…

 𝐴 𝑜𝑟 𝐴 ⊕ Δ

Partition to multiple traces

AES
SBOX

Sbox(𝐴𝑖⨁∆ ⨁𝐺𝑎𝑡𝑒𝐼𝐷)

𝐴𝑖⨁∆ ⨁𝐺𝑎𝑡𝑒𝐼𝐷

𝐴𝑖⨁∆1

2

13

1 2 3 4 5 6 7 8 …

KECCAK Perm.

Sbox(𝐴𝑖⨁∆ ⨁𝐺𝑎𝑡𝑒𝐼𝐷)

𝐴𝑖⨁∆ ⨁𝐺𝑎𝑡𝑒𝐼𝐷

𝐴𝑖⨁∆1 13

3

5 6

4 8

7 9

10

11

12

1 2 3 4 5 6 7 8 …

Exploit numerous (𝑁) leakages per-trace

Different GC primitives:

λ traces x 𝑁 = λ 𝑥𝑁

3

5 6

4 8

7 9

10

11

12

1 2 3 4 X

2

𝛿

𝑥 𝑣

⊕ 𝑥

⊕ 𝑥

𝑥

𝑥

𝛿

𝑆𝑅 𝑀𝐶𝑆𝑏 𝜌 𝜋𝜃 𝜒

Figure 4: Attack illustration and internal leakages per trace, viable for advanced leakage
model building (hypothesis). Where GateID denotes a public tweak known to the attacker.

Next we consider the popular and widely studied garbled-gate instantiation based on
AES, which is a widely accepted symmetric encryption algorithm in modern IT, owing
to its proven high security level, performance and support on virtually all platforms.
We discuss an attack by a weak divide-and-conquer adversary targeting only an 8-bit
enumeration complexity, namely growing with 28, and claim that even such a weak
adversary is empowered by a large amount of information from the leakage traces. In our
example, Fig. 4, and relating to the H-SCA discussion in subsection 2.3, an adversary
can choose to exploit several internal computations within an AES. From the algorithmic
perspective only two intermediate variables with 8-bit complexity exist in the first AES
round before the code diffuses and is manipulated by other sub-keys, these are the XOR
and the Sbox operations. Each of these variables depends on parts of the secret ∆ and
the garbler transmitted labels {Aj

i }. Our attack relies on the following fact: numerous
leakage samples in various POIs can be extracted from correlations with these two internal
variables alone. We next discuss the mechanisms which enable this property:

• Algorithmic access - many parts of the first-round computations are highly
correlated with a selected Sbox output in various time-samples: a memory access
to a lookup table it is stored in, its further manipulation in the shift-rows and mix
columns stages of the algorithm being read from the register-file (RF), and small
values manipulations such as shift which exist in mix-columns. These allow for
multiple leakage samples with an independent noise.

• Adversary’s abilities - when the sample-rate of the measurement equipment is
high, many proximate points in time can leak significantly on the same variable.

In the H-SCA context, all the above mentioned leakages, associated with different time
samples on the same internal variables, are profiled and used in the attack procedure.
Below, in the experimental part of the paper, we show that by only targeting these two
intermediate variables, each with associated sets of as little as 5 POIs (and up to 100), ∆
can be easily recovered. Moreover, we point that other internal variables can be used to
extract additional information. For example, taking the efficient and popular, tower-field
GF(((22)2)2) AES-Sbox implementation, which does not utilize a memory look-up table for

12 Garbled-Circuits from an SCA Perspective

the Sbox, but implements it by a sequence of Boolean operations: an adversary can make
use of multiple internal computations which manipulate both the global secret ∆ and the
known garbler labels as illustrated in the bottom part of Fig. 4. In this case, it is easy to
find at least 13 such 8-bit variables. It is worth noting that there are multiple other internal
computations within the internal blocks of this Sbox such as the GF multiplier, inverter
and squarer, which potentially leak. In that sense, each gate contributes multiple leakages
which eventually aids the SCA adversary to average out the measurement noise, increase
the SNR etc. Moreover, instead of targeting only 8-bits sub-keys in the divide-and-conquer
approach, larger subkeys can be hypothesized leading to a larger set of internal variables
independent in other subkeys, extracting more information per trace.

The above example is not only restricted to PRF-based constructions. The garbling
instantiaion HA∗

1 ||B∗
1 ||∗(∗) ⊕ C1 [LPS08] that utilizes a hash function also suffers from a

similar sensitivity. Considering the SHA-3 construction based on the KECCAK permuta-
tion, it is still trivial to identify the same scenario and leak numerous intermediate values
in various POIs in the same fashion as illustrated on the bottom right part of the figure.

3.2 Attacking the Garbler
In the general case, the adversary captures the leakage from the garbler’s hardware.

This leakage is associated with a permuted garbled table EAj
i
,Bj

k
(W j

l), EAj
i
⊕∆,Bj

k
(W j

l),
EAj

i
,Bj

k
⊕∆(W j

l) and EAj
i
⊕∆,Bj

k
⊕∆(W j

l), where the permutation is unknown to the adversary.
Nevertheless, in the SCA context, only two specific leakages out of the four mentioned
above are more natural to exploit in order to extract information from. In more details,
the SCA hypothesis, namely the internal values computed while hypothesizing ∆i, are
computed as follows. The adversary receives either Aj

i or Aj
i ⊕ ∆ without knowing which

of which and aims at associating this value with a leakage, viable to extract ∆. Therefore,
in the case the received garbled value is Aj

i there would exist two options of correctly
associating their leakage, namely, EAj

i
⊕∆,Bj

k
(W j

l) and EAj
i
⊕∆,Bj

k
⊕∆(W j

l). Whereas, if the
received garbled value is Aj

i ⊕ ∆, the two other garbled-table options would correctly
associate leakages which are viable for information extraction. The hypothesized value
would anyway be the exclusive or of the received label with an hypothetical ∆.

Therefore, an easy technique can be to exhaust all four options to correctly select these
associated leakages. The success probability of doing that per gate is half and therefore
the complexity for correctly associating the leakages of all λeff

in gates is 2−λeff
in in total in

the worst case4. The adversary utilizes each associated garbled label per non-linear gate
to build a hypothesis. Generally, the attack is a conventional ‘vertical’ CPA augmented
with multiple internal variables per-trace (horizontal attack components, of size Nint).
Thus, the internal variables hypothesis (of the underlying cryptographic algorithm) can be
kept of ultra low complexity depending on a sub-key of size |∆i|. For example, the attacks
in Section 5 below consider values of 8 and 16 bit-lengths. In this spirit, we denote our
attack by a V/H-prefix for vertical/horizontal e.g., for a model-based CPA or Template
based log-likelihood distinguisher we note V/H-CPA, V/H-TA.

The pseudo-algorithm of such an attack is listed in Alg. 15. In the algorithm, first the
long leakage trace associated with the entire computation the garbler performs is being
measured. Then, this leakage trace is partitioned into smaller leakages associated with
the particular gates in accordance with the topology of the circuit, where the adversary
discards all but the leakages associated with the non-linear input gates. The global secret
∆ is then partitioned into sub-keys (∆is’). In the next step, the adversary chooses one out
of four leakages per each of the λeff

in gates, and runs the attack over each such selection
and for all gates jointly. Assuming the adversary knows Aj

i , one of these choices must
4Where small λeff

in values are needed for a successful attack as demonstrated below, with λeff
in >3.

5The comparison Step 8 in Alg. 1 can be implemented by either LLH, correlation etc.

Itamar Levi and Carmit Hazay 13

contain only leakages associated with computations of the form: EAj
i
⊕∆,Bj

k
(W j

l) for all j,
this is the easiest attack scenario. Notably, the attack will also work if the leakage that is
associated with the computation that is defined by EAj

i
⊕∆,Bj

k
⊕,∆(W j

l) is chosen instead,
owing to the leakage part associated with the sensitive joint computation highlighted in
light blue as discussed above. An important aspect is that even if some percentage of the
gates associated with the leakage samples are ‘wrong’, it does not imply that the attack
fails. Therefore, the attack complexity in practice can be considerably reduced below
the complexity described above. In the implementation and evaluation section below, we
explore the success-rate (SR) of our attack as a function of the number of gates wrongly
associated with leakages out of λeff

in ; denoted by “Error in leakage selection” in percentage.

Algorithm 1 Attacking the Garbler
1: Capture a leakage trace from the garbler’s device.
2: Partition leakage trace to garbling leakages associated with each gate.
3: Pre-processing: keep leakage traces associated only with non-linear input gates,

there exist four such encryption-leakage traces per λeff
in gates.

4: Pre-processing: partition ∆ to Nsk sub-keys (∆i, i ∈ {1..Nsk}).
5: Loop: over ∆i.
6: Loop: over a selection which comprises one leakage out of four leakages associated

with each gate, 4λeff
in such options.

7: Model: build a leakage model of all internal computations used to extract information
by using all of the garbler labels sent via communication and gateID. In the model,
hypothesize all possible ∆i values of all sub-keys.

8: Compare the hypothesized leakage model vector (size λeff
in · Nint) with the set of

selected leakages.
9: Store comparison results per ∆i and chosen leakages.

10: Find: per ∆i search for best comparison amongst the possible chosen leakages.

3.3 The Conceptual Hardness of Attacking the Evaluator
Admittedly, by using similar tactics, attacking the evaluator via leakage is impossible.

The reasons for that are:
1. First on a general note, less computation takes place on the evaluator’s side, thus

there exists less leakage and less information to extract and accumulate.
2. On the evaluator’s side, not all the garbled gates associated computations from

the gates truth-table are leaking. Generally, only one value, associated with one
of the table entries, leaks. Moreover, differently from the garbler attack scenario,
here the computation is directly performed on the “known” garbled values. Namely,
the adversary does not have access to any leakage computed over the known labels
masked with ∆ for which building a hypothesis is possible.

4 Modeling and Simulated Attacks
This section deals with simulating, modeling and evaluating our attack’s Success-Rate

before we follow with the actual measurements and experimentation in Section 5. Our
starting point is simulating the leakage. Our goal is to simulate a rather general setting,
and for that purpose we set some assumptions:

• As discussed in Section 3 and illustrated in Fig. 3b we do not restrict the structure
of the garbled circuit and we set the leakage exploitation layer size λeff

in to 8. This
parameter setting implies that only 8 · 4 AES leakage traces are captured by the
adversary, thus highlighting the strength of our attack. In the experimental section,

14 Garbled-Circuits from an SCA Perspective

we show that this value can be much smaller for the attack to succeed in practice.
• We assume the garbled gate scheme utilizes PRF which is instantiated by AES. In

particular, we follow the garbling construction PRFA∗
1
(∗) ⊕ PRFB∗

1
(∗) ⊕ C1 [NPS99].

Nevertheless, as discussed above we believe that the same results and conclusions
hold for other the constructions based PRFA∗

1 ||B∗
1
(∗)⊕C1 [KSS12], or HA∗

1 ||B∗
1 ||∗(∗)⊕

C1 [LPS08], where (*) denotes a public knowledge.
• We assume that the garbler’s device is under an attack and that the leakage samples

are captured by monitoring it as well as exploiting the communicated garbler labels.
In simulating the leakages, we have used standard AES software packages to generate AES
internal computation and exported internal states and various internal variables computed
within the algorithm. The 8 AES-based garbled gates were asserted by randomly chosen
labels and one joint ∆. As conventional with the side-channel divide-and-conquer approach,
we partition ∆ into Nsk sub-keys (∆i, i ∈ {1..Nsk}). Per computed intermediate variable,
we have computed its Hamming Weight (HW) as the noiseless leakage model and added a
Gaussian noise with an SNR parameter [Man04] to represent the leakage as discussed in
Section 2.2. The number of internal-variables used in the attack per each of the above
mentioned 8 gates is denoted by Nint as defined above. We have experimented with various
scenarios and different Nint values, some examples are listed below:

1. With Nsk=16 we build a hypothesis over 8-bit secret ∆ chunks. Therefore, the
natural approach would be to take Nint=2 modeling the first AES round XOR and
Sbox output. Nevertheless, as discussed in Section 3.1 and shown in Section 5, in
practice there exist numerous leakage points associated with either of these internal
values, and each internal variable correlates greatly with various time samples in a
leakage trace. For example, in case of a memory-based look-up table implementation
of an Sbox, many time samples can all be used to extract information and effectively
filter out the noise, handling values in RF and utilizing them in the shift-rows or
mix-columns stages. All these steps, occur in different clock cycles many times.

2. With Nsk=8 we build a hypothesis over 16-bit secret ∆ chunks. Therefore, we
can build various hypotheses of several 8-bit XORs’, Sbox outputs and various
internal processing in the shift-rows and mix-columns stages in the first round which
combine these values. Practically, allowing Nint value between 1 to 10 as listed in
the experimental section below.

We next discuss the results from a synthetic example which remarkably agree with
the experimental section below. Our goal here is to provide a general discussion of our
simulation. In our example, for simplicity, we have assumed scenario (1) from the list
above. This scenario ideally implies Nint=2. However, to comply with real-life scenarios,
where leakage samples from multiple time instances correlate with internal variables, we
have duplicated each of these two internal variables (per trace) several times, and added a
fresh noise per each of these duplicated variables. E.g., instead of modeling some leakage
of an internal value y by HW (y) + n, we have repeated the leakage from the same internal
value with fresh randomness, HW (y) + n1, . . . , HW (y) + nr. In the figures below, Nint or
verbally, the #leakage samples in a single encryption trace, encompass these samples as
well.

We have utilized the following two discussed distinguishers over the simulated traces:
• Model-based H/V-CPA attack with HW leakage model as discussed in Section 2.2.

This attack is augmented with modeling Horizontal leakages with various Nint values,
as explained in Section 2.3. Our λeff

in parameter implies that the number of attack
traces used in our setting is Natt=8 and no profiling traces were used.

• Profiled Gaussian Template attacks with a modeled mean and standard-deviation as
discussed in Section 2.2. This attack is augmented with profiled horizontal leakages
as explained in Section 2.3. In this case, the number of attack traces is also Natt=8.
However, relating to the profiled attack apparatus discussed in Section 2.2.2, we now

Itamar Levi and Carmit Hazay 15

(a) (b)
Figure 5: Simulated attacks: (a) H/V-CPA with SNR=1 (b) H/V-CPA with SNR=10−2.

(a) (b)
Figure 6: Simulated attacks: (a) Log-likelihood Profiled Template attack with SNR=1 (b)
Log-likelihood Profiled Template attack with SNR=10−2.

assume that the adversary can profile a similar device to model the leakage samples
and find POIs. The number of profiling traces was in the range 100-1000, all showing
successful results. Here we show results with Np=500.

Fig 5 shows the advanced H/V-CPA attack results of a single 8-bit ∆i. Fig 5a shows the
correlation peak with the hypothetical correct ∆i with high SNR level of 1, approaching
ρ=1, whereas Fig 5b shows still the correlation peak with the hypothetical correct ∆i with
a low SNR level of 10−2, reducing ρ’s peak of the correct value. Fig 6 demonstrates the
advanced log-likelihood based distinguisher Gaussian template attack results of a single
8-bit ∆i. That is augmented with many horizontal modeled leakages. Fig 6a shows the
correct ∆i peak with high SNR level of 1 and Fig 6b shows still the correct ∆i peak with a
low SNR level of 10−2. In both examples, Nint was chosen to be 18. Nevertheless, as shown
below, in software scenarios this value can be far higher6, making the attack much easier.
In particular, the interesting question we were facing was “what is the bare-minimum
number of leaking time-points per internal variable modeled, required for a successful
attack?” That is, how many internal horizontal leakage samples suffice?

To answer this question we have repeated our modeled-attacks with a varying Nint and
a varying SNR level. Each experiment was repeated 200 times with random garbler labels
and a random ∆, where the attack Success-Rate of order Ord (SROrd) was computed for
different orders. Fig. 7a shows the success rates of the V/H-CPA attack. It is possible to
capture from the figure that first, with as little as 10 effective leakage samples per trace
all attacks succeed, i.e., 5 leakage samples were correlated with each of the 8-bit XOR and
Sbox for each of the 8 garbled gates. That is, totaling to 80 leakage samples, all attacks

6We evaluated the SR of the same attack with up to 100 internal leakages per internal variable in a
measured trace.

16 Garbled-Circuits from an SCA Perspective

(a) (b)
Figure 7: Success Rate of order o (SRo) with varying Horizontal information per encryption
(Nint ∈ {1, . . . , 18}): (a) Model-based V/H-CPA (b) Profiled Gaussian Template.

are successful with probability of 1. With only two samples, i.e., one of the XOR and one
of the Sbox, the attack effectively reduces the entropy of the ∆i to 3 bits out of 8. Clearly
progressively smaller orders, SROrd, converge with more samples.

Fig. 7b shows our results from the same experiment over the profiled template attacks,
showing similar trends. Nevertheless, it is possible to see that with a smaller number
of samples (horizontal leakage points in the x axis), the attack achieves higher success
rates owing to the better (profiled) leakage model. Clearly, we can expect that in the
experimental part of the paper the profiled setting will be much more powerful as compared
to the model-based CPA attack, as actual leakage functions of devices do not completely
follow the HW leakage model.

5 Implementation and Attacks
In this section we follow with concrete measurements data and remove synthetic

modeling assumptions from our attacks. We utilize measurements from an STM 32-bit
software implementation of Tiny-AES while garbling the circuit. We follow with the same
example of an exploitable leakage layer of eight non-linear gates. Our measurements-related
assumptions are as follows:

• Synchronization - Following a circuit garbling we assume the adversary can perfectly
“cut” independent leakages in a synchronized fashion. That is, we eliminate jitter and
provide a clean and aligned traces scenario. The motivation to evaluate this scenario
corresponds with the high-SNR typically perceived in software leakages. This makes
(unprotected) leakages rather easy to decently align, i.e., with techniques like elastic
alignment [vWWB11] and cross-correlation [LCWY09]. We further discuss below
cases of clock jitter/drifts, software-interrupts or deliberate shuffling countermeasures.

• Permutations - In the first part below we assume the adversarial best case, namely,
it specifically associates the correct exploitable leakages out of each possible 4-tuple
leakages per gate. Later, we further evaluate error-rates regarding this assumption.

• Sniffed labels - We assume the adversary got hold of the needed associated labels.
Random labels and random ∆s’ (but fixed per attack instantiation) were generated

in our attack using measurements from a Tiny-AES software implementation over the
New-AE Chipwesperer Pro with an STM32F target device taken from [B+19]. Before
discussing the results, we first illustrate the mean leakage of 200 traces as shown in Fig. 8.
Clearly, AES rounds are visible within the leakage.

In this experimental part of the paper we have evaluated two attack scenarios (1)
Nsk=16 with an 8-bit attack and (2) Nsk=8 with a 16-bit attack. We start with discussing
the first case. We have performed both modeled and profiled attacks. For both the profiled

Itamar Levi and Carmit Hazay 17

0 10000 20000 30000 40000 50000 60000 70000
time samples

0.6

0.4

0.2

0.0

0.2

m
ea

n
tra

ce
s

Figure 8: Mean leakage of a Tiny-AES, software STM 32-bit processor.

0 2000 4000 6000 8000 10000
time samples

10 2

10 1

100

101

SN
R

di
st

. (
HW

 c
la

ss
ifi

ca
tio

n)

Memory Access Leak

Processor Inst. Leak

#Samples associated with
a Subkey - tens to hundreds

b0 = p0 ^ k0
s0 = Sbox(b0)
b5 = p5 ^ k5
s5 = Sbox(b5)
X05 = s0 ^ s5
ShL = X05<<1
ShR = X05>>7
SHR = ShR*0x1B
Xtime = SHR ^ ShL
Xtime ^ s0

(a)

0 2000 4000 6000 8000 10000
time samples

10 2

10 1

100

Co
rr.

 d
ist

. (
HW

 m
od

el
)

Memory Address/Fatch Leak

Processor Instr. Leak

#Samples associated with
a Subkey - tens to hundreds

b0 = p0 ^ k0
s0 = Sbox(b0}
b5 = p5 ^ k5
s5 = Sbox(b5)
X05 = s0 ^ s5
ShL = X05<<1
ShR = X05>>7
SHR = ShR*0x1B
Xtime = SHR ^ ShL
Xtime ^ s0

(b)
Figure 9: Zoomed-in 1st AES round of a Tiny-AES software running over an STM 32-bit
processor. Leakages feature numerous samples associated with internal variables depending
on a single key-byte: (a) SNR with HW classification (b) Correlation distinguisher.

and non-profiled attacks the adversary needs to find sets of POIs per internal variable.
To get these, we used up to 1000 traces with random input data and compute both the
SNR [Man04] and the univariate correlation [BCO04], to be used as distinguishers to
identify these POIs’ sets per internal variable. Fig. 9a and 9b shows the resulting SNR and
correlation, respectively over a zoom-in to the first AES round leakage. In this illustration,
for exposition purposes, we show SNR and correlation trends for various internal-variables
as listed below for the more comprehensive 16-bit attack case.
Modeled (hypothesized) internal variables in the 16-bit |∆i| case are:

1. x0 = A∗
0 ⊕ ∆0 ⊕ (∗) equivalent in the AES to the computation: p0 ⊕ k0.

2. s0 = Sbox(A∗
0 ⊕ ∆0 ⊕ (∗)) equivalent in the AES to the computation: Sbox(p0 ⊕ k0).

3. x4 = A∗
4 ⊕ ∆4 ⊕ (∗) equivalent in the AES to the computation: p4 ⊕ k4.

4. s4 = Sbox(A∗
4 ⊕ ∆4 ⊕ (∗)) equivalent in the AES to the computation: Sbox(s4 ⊕ s4).

5. xs0_4 = (s4 ⊕ s0) equivalent AES computation.
6. SL = 2 · xs0_4 mod 28 representing the modulus shift left in the Tiny AES.
7. SR = ⌊xs0_4/28⌋ representing the shift right in the Tiny AES.
8. V al1 = SR · 27 representing the conditional primitive polynomial reduction.
9. V al2 = SL ⊕ V al1 representing the mix columns internal computation.

10. V al3 = V al2 ⊕ s4 representing the mix columns internal computation.
Where, as discussed above (*) represents public information, A∗ represents one of the
gates’ labels and A∗

0 indicates the zero byte chunk of this label, and p0 represents the

18 Garbled-Circuits from an SCA Perspective

(a) (b) (c)
Figure 10: Attacks results over a Tiny-AES SW implementation running on an STM 32-bit
processor, examples: (a) H/V-CPA vs. ∆ guess (b) H/V-CPA vs. the number of samples
used by the attack (c) Log-likelihood Profiled Template attack vs. ∆ guess.

plaintext chunk. Per each of these internal values 100 POIs’ were evaluated, this step can
be easily profiled with as little as a few hundreds of traces with the SNR or correlation
distinguishers and with other simple and univariate dimensionallity reduction tools.

From Fig. 9 it is easily captured that numerous leakage samples correlate with the
modeled internal-values pinpointing and highlighting the power of horizontal-attacks. For
example, in the Tiny-AES implementation, as AES Sbox is stored in memory, leakages
associated with memory access are clearly much leakier showing far higher SNR/Correlation
levels. However, numerous other leakage samples associated with the same internal-variables
leak in a round associated with Register-File access and ALU computations on these values
(for example mix-columns operations). Though we have experimented with up to 100
samples per internal variable, a higher number of samples may exist. Furthermore, if
one further zooms-in to each of these peaks in the plot, it is possible to see that it is
actually smeared over time (depending on the sample-rate of the oscilloscope and the
adversaries capabilities). This means that every single operation/computation leaks in
many proximate samples which can enable repeated sampling and averaging. The sets of
POIs ware stored and utilized in the attack procedure.

Fig. 11 shows results from a single attack. That is, Figures 11a and 11c show the
results from an 8-bit H/V-CPA and log-likelihood template attack, respectively. As shown
∆is’ are correctly identified. In these cases we took Nint=100 just for illustration (i.e.
maximum). The success-rates while varying Nint are discussed below. Fig. 11b shows
an interesting illustration of the H/V-CPA attack while varying Nint. That is, the figure
shows the correlations of all hypothetical ∆is’ and from the left with no horizontal leakages,
to the right with maximum number of leakage samples: # horizontal leakages (80 in this
case) · # of Gates (8) · # of internal variables (2, XOR and Sbox). The figure highlights
the reduction in guessing entropy of the key as more and more information is extracted
from the leakage in our H/V apparatus. We have followed with computing the success
rates of these attacks of both the modeled and profiled attacks and for both the 8-bit and
16-bit attack scenarios. Figures 11 and 12 show the 8-bit and 16-bit scenarios, respectively.
Each of these figures shows the model-based V/H-CPA case to the left (i.e. (a)) and the
log-likelihood profiled Gaussian-Template attack case to the right (i.e. (b)). Quite different
from the results of the modeling section, here we capture a rather poor behaviour of the
model-less attacks which only provides significant ∆i entropy reduction with maximum
number of horizontal leakages (Nint) or alternatively while hypothesizing 16-bits internal
variables which enable hypothesis building of more internal variables in the algorithm.

The profiled Gaussian-Template attack shows a remarkable difference illustrating very
high success rates with as little as 4-6 horizontal leakages per internal variable even for

Itamar Levi and Carmit Hazay 19

0 5 10 15 20
#samples used associated with int. variable in a garbled gate Enc. leakage x5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
R

 (
h

 r
an

k(
1:

O
rd

))

SR of different orders (SRi) vs. #Horizontal-leakage samples used

SR1

SR5

SR10

SR15

SR20

SR25

SR30

SR35

SR40

SR45

SR50

SR55

V/H- non-profiled CPA Attack with HW classification.
Measured Traces over STM32-bit processor implementing
Tiny-AES in SW.

8 input non-linear Garbled-gates, i.e., 8 traces

(a)

0 2 4 6 8 10 12 14 16 18 20

#samples used associated with int. variable in a garbled gate Enc. leakage x5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
R

 (
h

 r
an

k(
1:

O
rd

))

SR of different orders (SRi) vs. #Horizontal-leakage samples used

SR1

SR5

SR10

SR15

SR20

SR25

SR30

SR35

SR40

SR45

SR50

SR55

V/H- Gaussian Template Attack with Log-Likelihood dist.
Measured Traces over STM32-bit processor implementing
Tiny-AES in SW.

8 input non-linear Garbled-gates, i.e., 8 traces

(b)
Figure 11: Attack Success Rate of various orders Ord (SROrd) with varying Horizontal
information per encryption (Nint ∈ {1, . . . , 100}), Profiled Gaussian Template based
attacks. Attack over |∆j | = 8 bits: (a) V/H-CPA (b) Log-likelihood Gaussian Template.

(a) (b)
Figure 12: Attack Success Rate of various orders Ord (SROrd) with varying Horizontal
information per encryption (Nint ∈ {1, . . . , 100}), Profiled Gaussian Template based
attacks. Attack over |∆j | = 16 bits: (a) V/H-CPA (b) Log-likelihood Gaussian Template.

very low orders indicating the efficiency and viability of the garbler attack.
An interesting question we were facing was “what is the size of the minimal leakage

exploitation layer?” Namely, what is the minimum number of non-linear input gates λeff
in ,

enabling an attack. We have implemented such an attack varying λeff
in from 1 to 10 gates.

Fig. 13b shows the guessing-entropy (GE) of ∆i versus λeff
in (y axis) and the number

of horizontal leakage samples utilized in the attack. The GE value is contoured with a
color-map showing that with as little as 5 horizontal samples per intermediate variable and
even with three input gates, concrete reduction in entropy of ∆i is achieved with 4-bits,
as compared to the lower-left corner (i.e., full 8-bit entropy). Therefore, even a very low
number of non-linear input garbled gates can be quite dangerous.

Finally, in this experimental part of the manuscript we were interested to evaluate the
success-rate (or guessing-entropy) reduction owing to the fact that the adversary does not
know whether the garbler’s associated labels, captured via the communication interface,
reflect A or A ⊕ ∆. That is, we were interested to understand the influence of ‘wrong’
gate’s associated leakages. The specific question we were interested to answer was “weather

20 Garbled-Circuits from an SCA Perspective

(a) (b)
Figure 13: Order-1 Guessing Entropy (GE1): (a) vs. the number of the non-linear garbled
gates (i.e., the size of the leakage sensitive input layer, λeff

in) (b) vs. the Error in correctly
selecting Ai

j ⊕ ∆ associated leakages out of λeff
in .

it implies an unsuccessful attack and at what stage?” If it does not considerably lower the
attack success-rate, the attack complexity in practice can clearly be considerably lower
than the complexity described in Section 3.2. In Fig. 13b we explore the guessing-entropy
as a function of the number of wrongly associated gates out of λeff

in ; denoted by “Error in
leakage selection”, in %. It is possible to see that even with 16%/32% erroneous gates,
significant entropy reduction is still achieved, i.e. 4-/5-bits, respectively.

6 Future Research and Countermeasures
In this paper we have substantiated that if one aims to consider the attractive Free-

XOR optimization for garbled circuits, SCAs are trivially viable and countermeasures are
required. Below, we list potential future-research directions and various countermeasures,
at the construction and protocol levels and the hardware/software implementation level:

• Binding: bind both garbler’s and evaluator’s garbled keys. One such approach was
demonstrated by Bellare et al. in [BHKR13] by proposing the garbled gate operation
as EAj

i
,Bj

k
(W j

l) = PRF (const, 2Aj
i ⊕ 4Bj

k ⊕ gateID) ⊕ 2Aj
i ⊕ 4Bj

k ⊕ gateID ⊕ W j
l .

• Protocol: adding a leakage blocking layer as discussed in Section 3 by (e.g.)
introducing XOR gates at all input ports leading to non-linear gates. Either by
manipulating the logic or by tying one of the inputs of the inserted XOR gates to a
logical garbled ‘0’. This tied input should be associated with the evaluator’s input as
well, thus preventing the adversary from propagating known inputs labels.

• Re-keying: amongst different gates, some form of a “re-keying” mechanism may be
embedded in the sense that it should be hard to combine information from leakage
samples associated with multiple gates. This could be achieved by: (1) rekeying
using a Nonce-based mode (2) adding some random tweak-bits. Such solutions would
clearly come at a cost, as this randomness should be obliviously communicated.

• Implementation countermeasures: clearly, embedding Hardware/Software Mask-
ing [ISW03, DCEM18, GMK18, BDMD+20, CGLS20] may make the already huge
relative cost of GCs far larger. However, low-order masking approaches with or with-
out other simple countermeasures such as instruction-shuffling [VCMKS12, LBS20]
or amplitude-randomization techniques [LBBS20] would render attacks impractical,
due to the relatively low number of observations captured by the adversary.

• Protocol level shuffling: another approach we identify as interesting would be to

Itamar Levi and Carmit Hazay 21

randomly shuffle the gabled gates execution at the protocol level while keeping the
shuffling key a secret. The goal would be to increase the attack complexity and the
error-rate for incorrectly associating leakage, potentially exponentially with |C| = λ.

References
[AASA+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh

Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, et al.
Status report on the second round of the nist post-quantum cryptography
standardization process. US Department of Commerce, NIST, 2020.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkita-
subramaniam. Ligero: Lightweight sublinear arguments without a trusted
setup. In CCS, pages 2087–2104, 2017.

[B+19] Elie Bursztein et al. Scaaml: Side channel attacks assisted with machine
learning, 2019.

[BCCM20] Anna Bernasconi, Stelvio Cimato, Valentina Ciriani, and Maria Chiara
Molteni. Multiplicative complexity of autosymmetric functions: Theory
and applications to security. In 2020 57th ACM/IEEE Design Automation
Conference (DAC), pages 1–6. IEEE, 2020.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In International workshop on cryptographic hardware
and embedded systems, pages 16–29. Springer, 2004.

[BCO+21] Aner Ben-Efraim, Kelong Cong, Eran Omri, Emmanuela Orsini, Nigel P.
Smart, and Eduardo Soria-Vazquez. Large scale, actively secure computation
from LPN and free-xor garbled circuits. In EUROCRYPT, pages 33–63, 2021.

[BCPZ16] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina
Zeitoun. Horizontal side-channel attacks and countermeasures on the isw
masking scheme. In International Conference on Cryptographic Hardware
and Embedded Systems, pages 23–39. Springer, 2016.

[BCS19] Carsten Baum, Daniele Cozzo, and Nigel P. Smart. Using topgear in overdrive:
A more efficient zkpok for SPDZ. In SAC, pages 274–302, 2019.

[BDMD+20] Begül Bilgin, Lauren De Meyer, Sébastien Duval, Itamar Levi, and François-
Xavier Standaert. Low and depth and efficient inverses: a guide on s-boxes
for low-latency masking. IACR Transactions on Symmetric Cryptology,
2020(1):144–184, 2020.

[BHHI10] Boaz Barak, Iftach Haitner, Dennis Hofheinz, and Yuval Ishai. Bounded
key-dependent message security. In EUROCRYPT, pages 423–444, 2010.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway.
Efficient garbling from a fixed-key blockcipher. In 2013 IEEE Symposium on
Security and Privacy, pages 478–492. IEEE, 2013.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled
circuits. In CCS, pages 784–796, 2012.

[BJPW13] Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, and Justine Wild. Hori-
zontal and vertical side-channel attacks against secure rsa implementations.
In Cryptographers’ Track at the RSA Conference, pages 1–17. Springer, 2013.

22 Garbled-Circuits from an SCA Perspective

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of
secure protocols (extended abstract). In STOC, pages 503–513, 1990.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.
Post-quantum zero-knowledge and signatures from symmetric-key primitives.
In CCS, pages 1825–1842, 2017.

[CFS20] Giovanni Camurati, Aurélien Francillon, and François-Xavier Standaert.
Understanding screaming channels: From a detailed analysis to improved
attacks. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 358–401, 2020.

[CGLS20] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Stan-
daert. Hardware private circuits: From trivial composition to full verification.
IEEE Transactions on Computers, 2020.

[CKKZ12] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou.
On the security of the "free-xor" technique. In TCC, pages 39–53, 2012.

[CPM+18] Giovanni Camurati, Sebastian Poeplau, Marius Muench, Tom Hayes, and
Aurélien Francillon. Screaming channels: When electromagnetic side channels
meet radio transceivers. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 163–177, 2018.

[CRR02] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. Template attacks. In
International Workshop on Cryptographic Hardware and Embedded Systems,
pages 13–28. Springer, 2002.

[DCEM18] Thomas De Cnudde, Maik Ender, and Amir Moradi. Hardware masking,
revisited. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 123–148, 2018.

[FDLZ14] Yunsi Fei, A Adam Ding, Jian Lao, and Liwei Zhang. A statistics-based fun-
damental model for side-channel attack analysis. Cryptology ePrint Archive,
2014.

[GBTP08] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual
information analysis. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 426–442. Springer, 2008.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. In CRYPTO,
pages 465–482, 2010.

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-hop homomorphic
encryption and rerandomizable yao circuits. In CRYPTO, pages 155–172,
2010.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time
programs. In CRYPTO, pages 39–56, 2008.

[GM18] Hannes Gross and Stefan Mangard. A unified masking approach. Journal of
cryptographic engineering, 8(2):109–124, 2018.

Itamar Levi and Carmit Hazay 23

[GMK17] Hannes Groß, Stefan Mangard, and Thomas Korak. An efficient side-channel
protected AES implementation with arbitrary protection order. In Topics in
Cryptology - CT-RSA 2017 - The Cryptographers’ Track at the RSA Con-
ference 2017, San Francisco, CA, USA, February 14-17, 2017, Proceedings,
pages 95–112, 2017.

[GMK18] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-Oriented
Masking–. PhD thesis, Graz University of Technology, Austria, 2018.

[GS15] Gabriel Goller and Georg Sigl. Side channel attacks on smartphones and
embedded devices using standard radio equipment. In International Workshop
on Constructive Side-Channel Analysis and Secure Design, pages 255–270.
Springer, 2015.

[HIMV19] Carmit Hazay, Yuval Ishai, Antonio Marcedone, and Muthuramakrishnan
Venkitasubramaniam. Leviosa: Lightweight secure arithmetic computation.
In CCS, pages 327–344, 2019.

[HJP13] Simon Hoerder, Kimmo Järvinen, and Daniel Page. On secure embedded
token design. In IFIP, pages 112–128, 2013.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-
ware against probing attacks. In Annual International Cryptology Conference,
pages 463–481. Springer, 2003.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge
using garbled circuits: how to prove non-algebraic statements efficiently. In
CCS, pages 955–966, 2013.

[JKSS10] Kimmo Järvinen, Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas
Schneider. Garbled circuits for leakage-resilience: Hardware implementation
and evaluation of one-time programs - (full version). In CHES, pages 383–397,
2010.

[KAA21] Emre Karabulut, Erdem Alkim, and Aydin Aysu. Single-trace side-channel
attacks on ω-small polynomial sampling: With applications to ntru, ntru
prime, and crystals-dilithium. In 2021 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pages 35–45. IEEE, 2021.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Annual international cryptology conference, pages 388–397. Springer, 1999.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-
interactive zero knowledge with applications to post-quantum signatures. In
CCS, pages 525–537, 2018.

[KMR14] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. Flexor: Flexible
garbling for XOR gates that beats free-xor. In CRYPTO, pages 440–457,
2014.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free
XOR gates and applications. In ICALP, pages 486–498, 2008.

[KSNO17] Takuya Kitamura, Kazumasa Shinagawa, Takashi Nishide, and Eiji Okamoto.
One-time programs with cloud storage and its application to electronic money.
In ASIACCS, pages 25–30, 2017.

24 Garbled-Circuits from an SCA Perspective

[KSS12] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure
computation with malicious adversaries. In USENIX, pages 285–300, 2012.

[LBBS20] Itamar Levi, Davide Bellizia, David Bol, and François-Xavier Standaert. Ask
less, get more: Side-channel signal hiding, revisited. IEEE Transactions on
Circuits and Systems I: Regular Papers, 2020.

[LBS20] Itamar Levi, Davide Bellizia, and François-Xavier Standaert. Beyond al-
gorithmic noise or how to shuffle parallel implementations? International
Journal of Circuit Theory and Applications, 48(5):674–695, 2020.

[LCWY09] Huiyun Li, Tingding Chen, Keke Wu, and Fengqi Yu. Quantitative evaluation
of side-channel security. In 2009 Asia-Pacific Conference on Information
Processing, volume 2, pages 456–460. IEEE, 2009.

[LMR22] Pascal Lafourcade, Gael Marcadet, and Léo Robert. Faster non-interactive
verifiable computing. IACR Cryptol. ePrint Arch., page 646, 2022.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party
computation in the presence of malicious adversaries. In EUROCRYPT,
pages 52–78, 2007.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for
two-party computation. J. Cryptology, 22(2):161–188, 2009.

[LPB+15] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier Markowitch, and
François-Xavier Standaert. Template attacks vs. machine learning revisited
(and the curse of dimensionality in side-channel analysis). In International
Workshop on Constructive Side-Channel Analysis and Secure Design, pages
20–33. Springer, 2015.

[LPS08] Yehuda Lindell, Benny Pinkas, and Nigel P Smart. Implementing two-
party computation efficiently with security against malicious adversaries. In
International Conference on Security and Cryptography for Networks, pages
2–20. Springer, 2008.

[Man04] Stefan Mangard. Hardware countermeasures against dpa–a statistical analysis
of their effectiveness. In Cryptographers’ Track at the RSA Conference, pages
222–235. Springer, 2004.

[MS16] Amir Moradi and François-Xavier Standaert. Moments-correlating dpa.
In Proceedings of the 2016 ACM Workshop on Theory of Implementation
Security, pages 5–15, 2016.

[MTH+21] Shayan Moini, Shanquan Tian, Daniel Holcomb, Jakub Szefer, and Russell
Tessier. Power side-channel attacks on bnn accelerators in remote fpgas.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
11(2):357–370, 2021.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions
and mechanism design. In EC, pages 129–139, 1999.

[PKH+21] Dongjun Park, GyuSang Kim, Donghoe Heo, Suhri Kim, HeeSeok Kim,
and Seokhie Hong. Single trace side-channel attack on key reconciliation
in quantum key distribution system and its efficient countermeasures. ICT
Express, 7(1):36–40, 2021.

Itamar Levi and Carmit Hazay 25

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In International Conference on
Cryptographic Hardware and Embedded Systems, pages 513–533. Springer,
2017.

[PR10] Emmanuel Prouff and Matthieu Rivain. Theoretical and practical aspects
of mutual information-based side channel analysis. International Journal of
Applied Cryptography, 2(2):121–138, 2010.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams.
Secure two-party computation is practical. In ASIACRYPT, pages 250–267,
2009.

[PZS17] Romain Poussier, Yuanyuan Zhou, and François-Xavier Standaert. A sys-
tematic approach to the side-channel analysis of ecc implementations with
worst-case horizontal attacks. In International Conference on Cryptographic
Hardware and Embedded Systems, pages 534–554. Springer, 2017.

[RPD+18] Chethan Ramesh, Shivukumar B Patil, Siva Nishok Dhanuskodi, George
Provelengios, Sébastien Pillement, Daniel Holcomb, and Russell Tessier.
Fpga side channel attacks without physical access. In 2018 IEEE 26th
Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 45–52. IEEE, 2018.

[SGMT18] Falk Schellenberg, Dennis RE Gnad, Amir Moradi, and Mehdi B Tahoori.
Remote inter-chip power analysis side-channel attacks at board-level. In 2018
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 1–7. IEEE, 2018.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model
for differential side channel cryptanalysis. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 30–46. Springer, 2005.

[SMY09] François-Xavier Standaert, Tal G Malkin, and Moti Yung. A unified frame-
work for the analysis of side-channel key recovery attacks. In Annual interna-
tional conference on the theory and applications of cryptographic techniques,
pages 443–461. Springer, 2009.

[SZ13] Thomas Schneider and Michael Zohner. Gmw vs. yao? efficient secure two-
party computation with low depth circuits. In International Conference on
Financial Cryptography and Data Security, pages 275–292. Springer, 2013.

[TBP20] Florian Tramèr, Dan Boneh, and Kenny Paterson. Remote {Side-Channel}
attacks on anonymous transactions. In 29th USENIX security symposium
(USENIX security 20), pages 2739–2756, 2020.

[TMC+21] Meltem Sönmez Turan, Kerry McKay, Donghoon Chang, Cagdas Calik,
Lawrence Bassham, Jinkeon Kang, John Kelsey, et al. Status report on the sec-
ond round of the nist lightweight cryptography standardization process. Na-
tional Institute of Standards and Technology Internal Report, 8369(10.6028),
2021.

[TSR+20] Eleonora Testa, Mathias Soeken, Heinz Riener, Luca Amaru, and Giovanni
De Micheli. A logic synthesis toolbox for reducing the multiplicative com-
plexity in logic networks. In 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 568–573. IEEE, 2020.

26 Garbled-Circuits from an SCA Perspective

[VCMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and
François-Xavier Standaert. Shuffling against side-channel attacks: A com-
prehensive study with cautionary note. In International Conference on
the Theory and Application of Cryptology and Information Security, pages
740–757. Springer, 2012.

[vWWB11] Jasper GJ van Woudenberg, Marc F Witteman, and Bram Bakker. Improving
differential power analysis by elastic alignment. In Cryptographers’ Track at
the RSA Conference, pages 104–119. Springer, 2011.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In FOCS, pages 162–167, 1986.

[YWZ20] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC from improved
triple generation and authenticated garbling. In CCS, pages 1627–1646, 2020.

[ZCD+19] Lianying Zhao, Joseph I. Choi, Didem Demirag, Kevin R. B. Butler, Moham-
mad Mannan, Erman Ayday, and Jeremy Clark. One-time programs made
practical. In FC, pages 646–666, 2019.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole -
reducing data transfer in garbled circuits using half gates. In EUROCRYPT,
pages 220–250, 2015.

