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Abstract

In the current digital world, large organizations (sometimes referred to as tech giants) provide
service to extremely large numbers of users. The service provider is often interested in computing
various data analyses over the private data of its users, which in turn have their incentives to
cooperate, but do not necessarily trust the service provider.

In this work, we introduce the Gulliver multi-party computation model (GMPC) to realisti-
cally capture the above scenario. The GMPC model considers a single highly powerful party,
called the server or Gulliver, that is connected to n users over a star topology network (alter-
natively formulated as a full network, where the server can block any message). The users are
significantly less powerful than the server, and, in particular, should have both computation
and communication complexities that are polylogarithmic in n. Protocols in the GMPC model
should be secure against malicious adversaries that may corrupt a subset of the users and/or
the server.

Designing protocols in the GMPC model is a delicate task, since users can only hold infor-
mation about polylog(n) other users (and, in particular, can only communicate with polylog(n)
other users). In addition, the server can block any message between any pair of honest par-
ties. Thus, reaching an agreement becomes a challenging task. Nevertheless, we design generic
protocols in the GMPC model, assuming that at most α < 1/8 fraction of the users may be
corrupted (in addition to the server). Our main contribution is a variant of Feige’s committee
election protocol [FOCS 1999] that is secure in the GMPC model. Given this tool we show:

1. Assuming fully homomorphic encryption (FHE), any computationally efficient function
with O (n · polylog(n))-size output can be securely computed in the GMPC model.

2. Any function that can be computed by a circuit of O(polylog(n)) depth, O (n · polylog(n))
size, and bounded fan-in and fan-out can be securely computed in the GMPC model
without assuming FHE.

3. In particular, sorting can be securely computed in the GMPC model without assuming
FHE. This has important applications for the shuffle model of differential privacy, and
resolves an open question of Bell et al. [CCS 2020].
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1 Introduction

Consider a large organization (such as Apple or Google; henceforth the server or Gulliver) that is
interested in executing a secure computation over its users’ data (we call the users Lilliputians).
As the server is way more powerful than the average user, we would like it to do most of the
heavy-lifting in the computation, thereby allowing the users to do only lightweight computations.
In addition, it is reasonable to assume that users can communicate only via the server (i.e., a
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star communication model). This is beneficial both for the server (who can better monitor and
enforce the progress of the computation) and for the users (who only need to communicate with
a supposedly reliable server). For example, in a protocol between Apple and its users, such a
restricted communication model makes more sense than having 100M iPhone users communicate
arbitrarily.

This suggests a computation model with a powerful server that on the one hand is supposed
to do most of the computation work, and on the other hand, if corrupted, might tamper with the
communication of the other users (because of the star topology). This combination poses several
challenges (to be surveyed next), and indeed all prior works in this vein only presented constructions
for specific functionalities such as addition; see the related works section. In this work, we set out
to explore secure multiparty computation under these (and similar) conditions and present the first
general MPC construction in this setting.

1.1 The Gulliver MPC (GMPC) Model

We consider a protocol involving a single server and n users. We think of n as being too big to
allow users more than polylog(n) computational time and communication complexities. On the
other hand, we assume that poly(n) time and communication bandwidth are within the server’s
reach.1 We assume that a subset of at most αn < n/8 of the users (fixed in advance), as well as
the server, might be controlled by a malicious adversary. In particular, controlled users might halt
prematurely and become unresponsive throughout the execution (e.g., iPhone users going off-line).

Utility wise, we want to ensure that if the server is honest, then it gets a correct outcome for
the computation, even if αn users are corrupted. In other words, if the server is honest (and if
at most αn users are corrupted), then output delivery is guaranteed. The privacy requirement is
that an adversary controlling the server, as well as αn users, cannot learn anything more than the
prescribed outcome. That is, even if the server is corrupted (as well as at most αn users), the only
information that should be learned about users’ inputs is what can be derived from the outcome
itself.2

The mindset is that all of the communication goes through the server. However, one issue we
must address is that the server should not have the ability to “invent” new users, or to replace
too many honest users with malicious ones. This restriction is challenging to enforce in a star
topology, and hence, as in all previous works in this vein, we assume a trusted PKI setup for this
model [14, 60, 9]. As we mentioned, these previous works only presented constructions for specific
functionalities such as addition. Our main result is to present the first general MPC construction
under these conditions.

Towards achieving this, we introduce a slightly different computation model, which we call the
GMPC model. Instead of assuming a star topology with a trusted PKI setup, in the GMPC model
we assume a complete communication graph (secure point-to-point channels) where the server (or
an adversary controlling it) sees all of the communication patterns and can block messages at will.
That is, the server knows who is sending a message to whom, and can block any message before
it reaches its destination. The server does not get to see the content of the messages, and cannot
modify messages. This still allows the server to tamper with the communication. In particular, if

1For example, the server might be running on a computer cluster, and the users might be running on iPhones.
2Technically, as we consider a model that allows a malicious server to block a small fraction of honest users, the

privacy requirement states that it does not obtain more information than what can be derived from the output over
the remaining users.
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an honest user i wants to broadcast (via the server) a message to all of the users, then the server
might block this message, or it can forward the message only to a subset of the users.

Throughout most of the paper, we focus on the above-mentioned communication model (point-
to-point channels with server blocking, without assuming PKI). In Section 7 we show that protocols
in the GMPC model can be compiled to operate in a star network with a PKI setup, and hence,
working in the GMPC is without loss of generality.3

The GMPC model allows for smoother use of composition theorems. We believe that
operating in the GMPC model is a better design choice, as it is both a clean abstraction and can
help in simplifying the analysis. That is, we believe that the GMPC model is interesting both on
its own and as a stepping stone toward constructing protocols in a star network with a PKI setup.
In more detail, in our protocol we need to execute many (poly(n)) computations in parallel, and to
argue about the security of the resulting overall protocol using composition. Our GMPC setting
allows us to isolate key components of our protocol which are information-theoretic, and as a result,
argue about their concurrent composition in a smooth way. In contrast, with a general PKI setup,
this becomes more challenging.4 Once we know that our protocol is secure in the GMPC model
(after composition has been done under the GMPC umbrella), then we can easily compile it as a
single protocol to operate in a star network with a trusted PKI setup. See Section 7.

1.2 Our Results

Our main contribution is showing a generic construction in the GMPC model for any functionality
where the users’ inputs are short, of size polylog(n), and where only the server gets an outcome,
of size Õ(n), assuming less than 1/8 of the users are corrupted (and possibly also the server).

Theorem 1.1 (Informal version of Theorem 6.1). Let f : ({0, 1}polylog(n))n+1 7→ {0, 1}n·polylog(n)

be a computationally efficient functionality, and let α < 1/8 be a constant. Then, f can be securely
computed in the GMPC model, assuming at most αn users are corrupted, and where the server is
possibly corrupted as well. Furthermore, the number of rounds in the protocol is at most polylog(n),
the communication and computational complexity of each user is polylog(n), and the communication
and computational complexity of the server is poly(n). Our construction assumes the existence of
signature schemes, vector commitment schemes, pseudorandom generators, and fully homomorphic
encryption schemes.

Remark 1.2. Two remarks are in order:

1. Our construction can also be used to compute functionalities with a long (polynomial) output,
say of length T , at the cost of having users’ complexities grow with Õ(T/n). We chose to focus
on functionalities with output length Õ(n) in order to keep users’ complexities polylogarithmic
in n.

2. We are not restricted to solitary-output functionalities. We can securely compute multi-output
asymmetric functionalities (where every party gets an output), at the price of having security

3We use a specific form of PKI suitable for the GMPC model, which we call GPKI.
4Arguing about composability when there is a general PKI setup is subtle. Basically, the difficulty is that the

distinguisher is non-uniform. Thus, if the PKI is common to all sessions, then the distinguisher may know the secret
key (as its auxiliary input). Now it can distinguish a true encryption of an honest party’s input from a simulated
encryption (as the simulator does not know the honest party’s input).
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with abort: If the server is honest then output delivery is guaranteed, and otherwise some
parties may fail to receive their output.

Following [18, 20, 16], the main tool we use towards proving Theorem 1.1 is a committee elec-
tion protocol. We construct a protocol in the GMPC model that allows all parties to agree on a
polylog(n)-sized committee, which will contain an honest majority except with negligible probabil-
ity.

Theorem 1.3 (Committee election, informal version of Theorem 4.1). Let α < 1/8 be a constant.
There exists a protocol in the GMPC model such that the following holds, even if αn of the users
and possibly the server are corrupted. Either all honest users abort, or at least (1 − 2α)n honest
users output the same committee C satisfying

1. |C| = polylog(n).

2. C contains a vast honest majority, except with negligible probability.

Furthermore, the communication and computational complexity of each user is polylog(n), while the
communication and computational complexity of the server is poly(n). Our construction assumes
the existence of vector commitment schemes.

1.3 Challenges of the Gulliver MPC Model

Before presenting our constructions, we highlight a few of the challenges that arise when con-
structing protocols in the GMPC model. We explain how we address some of these challenges in
Section 1.4.

Challenge 1: Blocks vs. aborts. The first challenge we need to address is that a corrupted
server can block user messages at will. In particular, if an honest user catches the server cheating,
and tries to advertise this fact to the other users, then the server can simply block this user from
the rest of the computation. Furthermore, the other users would not be able to distinguish between
whether this user was blocked (meaning that the server is corrupted) and whether this user simply
aborted the computation.

To better illustrate this issue, let us first explain why a natural variant of Feige’s committee
election protocol [35] does not work. Recall that in Feige’s protocol, in order to agree on a committee
of size ≈ k, every party i ∈ [n] samples a bin bi ∈ [n/k] (and broadcasts its choice), and then all
parties agree on the lightest bin as the committee. We cannot implement this protocol directly in
the GMPC model since (i) there is no broadcast channel, and (ii) users’ complexities are bounded by
polylog(n) so a user cannot send/receive messages to/from all other users directly. As an attempt
to overcome these issues, consider implementing Feige’s protocol in the GMPC model via the server.
That is, every user sends to the server its choice of the bin, and the server then (supposedly) sends
to all users the committee, defined as the users in the lightest bin, alongside the index of the bin.
Each user then verifies that it is in the committee if it chose this bin, and not in the committee
otherwise. The problem here is that a corrupted server can simply block all of the users who chose
the lightest bin, and place corrupted users at that bin instead of the blocked users. The blocked
users will have no way of “screaming for help”, and the remaining users will not know that the
server is cheating. We will overcome this challenge by designing a more complex committee election
protocol, based on Feige’s protocol, tailored to the GMPC model.
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Challenge 2: DDoS attacks. Although all parties are connected to each other, the protocols
we present have the property that the communication and computational complexity of each user
is polylogarithmic in n. In particular, the number of messages each user sends and receives is poly-
logarithmic. However, note that an adversary can always blow up the communication complexity
of a protocol by flooding honest parties with many garbage messages (even if the server is honest).
Boyle et al. [18, 20] handled this by counting only messages that are actually processed by honest
parties.5

Since we also require the computational complexity of the users to be polylogarithmic in n, the
solution of [18, 20] is insufficient for our case. We propose two solutions for this issue. The first
solution is purely combinatorial, however, it will allow the adversary to cause a few honest users to
abort even if the server is honest. The second solution will prevent that, however, it is somewhat
more involved. We refer the reader to Section 2.2 for more details.

Challenge 3: Concurrent composition. In our protocol, we need each user to run a secure two-
party computation with the server for coin tossing. These protocols must be executed in parallel,
as otherwise, the number of total rounds in our construction would be too large. There are two
standard approaches for arguing about the composition of these parallel executions: Either using
the universal composition (UC) paradigm of Canetti [23] or using bounded concurrent composition
[54]. However, these techniques are not directly applicable in our setting:

1. Existing UC-secure protocols for coin-tossing require additional assumptions which we do not
have [24, 57]. Importantly, we do not assume a common random string. Indeed, agreeing on
a random string in the GMPC model is one of our main technical contributions.

2. With bounded concurrent composition, the complexity of each user depends polynomially on
the number of concurrent executions [53]. In our case, the number of concurrent executions
is n, i.e., the number of users, and hence we cannot use bounded concurrent composition (as
we aim for polylog(n) user complexities).

To overcome this challenge, we deviate from the standard real vs. ideal paradigm, and provide
an alternative security proof for our coin-tossing protocols (we do not simulate them). Instead,
we identify “good events” and claim that they hold with overwhelming probability. (See, for
example, Theorem 1.3 above, where we claim that a “good” committee is elected with overwhelming
probability.) We stress that the security of our full construction is proven using the real vs. ideal
paradigm (assuming that our predefined “good event” has occurred).

Challenge 4: Verifying long statements. We do not assume any specific bound on the runtime
needed to evaluate the functionality we compute, only that it can be evaluated in polynomial time.
For example, it can require time n5. As users’ runtime is restricted to polylog(n) this means that
we must delegate essentially all of the work to the server. This must be done carefully, as the
server might be corrupted. In particular, we will need the server to prove to the users that it did
the computation correctly. However, as each user is only polylogarithmic in n, any one of them

5This is formalized by splitting the “receive phase” into two phases. The first being the filtering phase, where each
party inspects its incoming messages according to some filtering rules specified by the protocol, and discards some of
the messages. This phase is followed by a processing phase, where the parties compute their next-message functions
based on the non-filtered messages.
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cannot even read the entire statement (this is going to be a statement about a computation with
n inputs). To tackle this, we let the users work together as one verifying unit when verifying long
statements.

Remark 1.4. Except for Challenge 2 (DDoS), these challenges are also present when working di-
rectly in a star network with PKI. That is, they are not a byproduct of the GMPC model. Moreover,
Challenge 3 (composition) becomes even more severe in a star network with PKI, as we explained
in Section 1.1.

1.4 Our Techniques

We now provide an overview of our techniques. We start by addressing the following two challenges
that arise from the server’s ability to block users:

1. A malicious server can fail-stop honest users and lie about it. That is, it can block an honest
user i and tell another user j that i aborted, even though it did not.

2. If an honest user catches the server cheating, then the server can block this user and prevent
it from “screaming for help”.

In order to deal with these two issues, we construct two tools.

Tool 1: Personal committees. To solve the first issue, each user and the server will replace the
user with a personal committee (PC) of size polylog(n) chosen uniformly at random. Now, instead
of interacting directly with the users, the server will henceforth interact with each PC (as if it is the
single party it represents). If the server is honest, then this ensures that all personal committees,
including those of malicious users, will have an honest majority, and thus they effectively become
honest parties and will not abort. Therefore, if the server is malicious and is lying to some PC P
about another PC aborting, then P knows that the server is cheating and therefore it will abort.

That is, once we know that a user i is represented by a PC P, which was agreed upon by
both the server and the user, then this PC should never abort, and the server cannot claim that
it aborted. The question is how do we advertise the set of PCs (one for each user), in a way that
remains secure even if the server is malicious. In other words, we need to figure out how can the
users agree on the set of PCs.

Agreeing on the set of PCs. The idea is as follows. The server will commit (for every user
separately) on an array of length n whose ith entry is the ith PC (set to ⊥ if user i was caught
cheating during the sampling of the PC). Each user i then verifies that its PC appears in this array.
Then, the user chooses a random set of polylog(n) other users to compare the information with
them. Specifically, it sends them the commitment it got from the server for the array (as well as
the needed public parameters) and its PC. These users respond with the commitments that they
got from the server and their PCs. User i then verifies with the server that the information it got
from these other users is valid. Note that some users might not respond, or provide information
on which the server will not agree (either malicious or blocked), but not too many of them, as
otherwise user i learns that the server is cheating, and aborts.

If user i did not abort until now, then in particular, its PC appears correctly in all of the
(validated) commitments it collected from the other users. Since these users were chosen at random,
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by the Chernoff bound (Fact 2.2), this means that user i’s PC is stated correctly in the vast majority
of the commitments given to the users in the protocol (even ones which user i did not sample).
Also, by this point, every user j possesses polylog(n) randomly sampled commitments. Hence,
again by the Chernoff bound, with overwhelming probability, for every user j (even one who did
not communicate with user i), it must hold that the PC of user i is stated correctly in the vast
majority of the commitments possessed by user j. That is, by this point the (remaining) users have
reached an agreement on the array of PCs in the following sense: Every user holds a collection of
commitments (validated by the server) such that for every user who did not abort the computation
till now, its PC is stated correctly in the majority of these commitments.

Finally, to ensure that most honest users remain active, each of them samples polylog(n) random
users, notifies them it is alive, and requests a feedback. If more than 1/8 of them did not respond,
then the user aborts. If a user i did not abort till now, it can trust that at least 7/8 of the users are
active, and furthermore, the PC of every active (honest) user is correctly stated and is consistent
in the commitments given by the server to active honest users. From this point on, instead of
interacting directly with the users, the server and the remaining users interact with the PCs (as
if they are the single party they represent). By the above discussion, if the server is honest then
all of the PCs are honest, and if the server is corrupted then at least 3/4 fraction of the PCs are
honest.6 As we mentioned, the benefit here is that now the server cannot lie about a PC aborting,
because no PC should ever abort.

Tool 2: Sampling a communication graph. For the second issue, we let the parties sample
an undirected communication graph where each vertex represents a PC and the diameter of the
graph is at most O(log n). Once this is done, after every message sent from the server, the PCs
can simply check if their neighbors are still active for log n steps, and abort if they are not. Recall
that (assuming the server is honest) each PC should contain an honest majority and should never
abort the execution unless it catches the server cheating. Therefore, such a communication graph
allows users (or PCs) to “scream for help” in the sense that if they abort the computation, then in
the following log(n) rounds we will have that all of the users abort the computation.

We sample this graph by having every PC sample polylog(n) other PCs as their neighbors in the
graph. To see why the graph has a small diameter, consider any two vertices u and v, and suppose
that we start from the vertex u and sample polylog(n) neighbors. Then, each of its neighbors
samples polylog(n) more vertices, and so on. Observe that as long as less than half of the vertices
corresponding to honest PCs were sampled, on expectation, at least half of the vertices sampled
at each iteration are new. Therefore, by Hoeffding’s inequality it follows that with overwhelming
probability at least a quarter of them are new. Since this corresponds to an exponential growth,
with overwhelming probability the number of iterations before covering half of the honest vertices
is logarithmic. Finally, once the process covers half of the honest vertices, then one of these honest
vertices samples the vertex v with overwhelming probability.7

1.4.1 Committee Election Protocol

We now turn to describe the ideas behind the proof of Theorem 1.3. Armed with the above two
tools, sampling a committee of size n′ = polylog(n) can be done using the following variant of

6If the server is corrupted, then it can get away with blocking 1/8 fraction of the users and replacing their PCs
with malicious PCs. Overall, there could be at most 2/8=1/4 malicious PCs.

7This is similar to arguments on the distances in small world graphs [48, 55].
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Feige’s committee election protocol [35]. Let k denote the number of PCs that remain after the
sampling of the communication graph. Each PC Pi sends to the server a randomly chosen bin
bi ∈ [k/n′], and the server replies with the set of users C who chose the lightest bin alongside the
index i of this bin. Each PC then verifies the following:

1. It is indeed in C if it chose the bin i, and not in C otherwise.

2. C is not larger than the largest size the minimal bin can have, i.e., the PC verifies that
|C| ≤ n′.

3. Its neighbors in the graph received the same messages from the server.

4. Finally, each PC asks if its neighbors are still active for log n steps.

We next claim that if no PC aborts, then they all agree on a small committee C that contains
an honest majority, except with negligible probability. First, observe that if the server is honest
then no PC aborts (even those that were sampled for malicious users). Next, consider the case
where the server is malicious. By the properties of the graph, if any PC aborts then all PCs abort.
Thus, we may assume that no PC aborted the execution. This implies that the server sent to all
PC’s of honest parties the same “small” committee C and the same bin-index b ∈ [k/n′]. Moreover,
it must be the case that for all PC’s of honest users, they are in C if and only if they sampled b.

Finally, to show that C contains an honest majority with overwhelming probability, we use the
same analysis as Feige’s original protocol. First, as we explained above, the fraction of PC’s of
malicious users is less than 1/4, and there is a strong majority of PC’s of honest users. Now, by
Chernoff’s bound, for any bin, the probability that the fraction of honest users is less than 3/4
is negligible. Then by the union bound, the probability that there exists such a bin is negligible.
Thus, except with negligible probability, the fraction of honest users in the lightest bin (which is
of size at most k) must be at least 3/4. Note that even if the server blocks another 1/8-fraction of
the users in the elected committee, then the fraction of honest active users among the users of the
elected committee is still more than 1/2. This allows the elected committee to securely compute
any efficient functionality.8 We refer the reader to Section 6.1 for further details. We stress that as
the size of the committee is only polylogarithmic in n, then it can run computations of polynomial
complexities in the number of participants.

1.4.2 Secure Computation in the GMPC Model

We proceed with outlining the proof of Theorem 1.1. Since we want low communication and
computation load on the users while keeping their inputs hidden, we employ a fully homomorphic
encryption (FHE) scheme. The pattern we would like to follow is that the users choose collectively
a key to such an FHE scheme, encrypt their private inputs with the key, and send the result to
the server. The server in turn computes the desired function on the encrypted input. The users
then collectively decrypt the result. With a trusted (or semi-honest) server, this would have been a
reasonable protocol, where the server does not learn about the users’ inputs. But with a malicious
server, how can the users know that the value they are decrypting is indeed the correct one and
not some other function of the inputs that the server computed?

8Specifically, if the server is honest then output delivery is guaranteed, and if the server is corrupted then we get
security with abort.
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To resolve this, first, the users agree on a committee C using our committee election protocol.
Once the users agreed on a committee C, this committee samples keys for a fully-homomorphic
encryption scheme (where the secret key is shared among the members of the committee). Then,
similarly to [18, 20, 16], there is a “tree process” in which using log n rounds every committee
spawns two committees (both with the state of holding the secret key). After this process, we
have n+ 1 elected committees that everybody “knows” (actually, the users cannot really know all
the n + 1 committees since we aim for polylog(n) complexity for the users). With overwhelming
probability, all committees will contain a vast honest majority. Thus we can effectively view them
as honest parties.

Next, we let the committees hold the users inputs. To do so efficiently, the ith committee will
request the ith user for its input. To prove that the committee is honest and was sampled by the
original elected committee (and not by a malicious server), we let the original committee generate
signature keys and provide the committees it spawns with the secret key. Thus it can sign a message
for the user to verify. (For this we need to advertise the public signature key that the original
committee sampled. Advertising this public key can be done efficiently via our communication
graph.) Next, every committee encrypts its input using a fully homomorphic encryption, and sends
the encrypted input to the server. The server then homomorphically computes the function over
the encrypted inputs.

Now we want each of the n+ 1 committees to decrypt for the server one chunk of the encrypted
result. However, before they decrypt, they need to be convinced that the server did the computation
correctly. Thus, the next step in our protocol is to let the server prove to the committees the
following statement: “Here is a list of all the encrypted inputs I got, and here is the encrypted
result of applying the desired function to these encrypted inputs”.

The issue now is that the users (and each committee) are too weak to read even the statement
itself (even without the proof). To overcome this challenge, we want the server to encode this
statement using a (linear) error-correcting code such that afterwards the users would only need to
verify that the encoding was done (roughly) correctly and they would not need to read all of the
statement. So the server commits to the statement, its encoding, and the proof. Then, the n + 1
committees together verify polylog(n) random positions of the encoding (they can do it efficiently
since verifying a single position is like computing a summation, which the n+ 1 committees can do
using a “tree process”). After the proof verification is over, the committees decrypt the result for
the server.

1.5 Motivation from Differential Privacy: the Shuffle Model

Differential privacy [33] is a mathematical definition for privacy that aims to enable statistical
analyses of datasets while ensuring that individual-level information does not leak. Traditionally,
differentially private algorithms work in two main modalities: curator (centralized) and local. The
curator model assumes a trusted centralized curator that collects all the personal information and
then analyzes it and publishes the results. The local model, on the other hand, does not involve
a central repository. Instead, each piece of personal information is randomized by its provider to
protect privacy before submitting it to an (untrusted) server, who aggregates all the noisy messages
it receives.

While the local model provides a preferable trust model, it involves a significant amount of noise
(as noise is added to every piece of the data) which results in degraded performances compared to
the curator model. In theory, existing MPC constructions can be used to implement any curator
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model computation without the need for a central repository (thereby essentially matching the
trust assumptions of the local model). However, these constructions are still not practical enough
to be implemented at the scale at which differentially private algorithms are executed, say when
Apple is interacting with 100M iPhone users.

As a result, new models for differential privacy have emerged to alleviate the (inevitable) low
accuracy of the local model, while hopefully maintaining its trust guarantees. This includes signif-
icant amount of work on the shuffle model [44, 13, 34, 29, 4, 5, 7, 28, 39, 62] as well as the hybrid
model [2, 3, 8, 49]. We view our work as providing another piece of the puzzle, taking an important
step towards bridging between MPC and the conditions at which differential privacy is currently
being deployed.

Application for the shuffle model. The shuffle model augments the local model of differential
privacy with a shuffle functionality, that takes inputs from all the users and delivers them to the
server in a random order. The line of work on the shuffle model shows that this assumption allows
for significant utility improvements over the (plain) local model. However, it is not clear how
one should implement such a shuffle functionality securely and efficiently. We provide a possible
answer to this question in the GMPC model. Although our main result (Theorem 1.1) requires the
use of heavy cryptographic machinery (e.g., fully homomorphic encryption), we stress that various
simple yet important functionalities can be computed more efficiently and without relying on the
more exotic types of cryptographic primitives once the parties elect a committee. In particular,
aggregation and shuffling can be securely computed without assuming FHE. We elaborate on this
in Sections 6.2 and 6.2.1.

1.6 Related Work

We are not the first to study a model where a strong server interacts with many “weak” users using
a star topology, and similar models were considered by [14, 60, 9]. However, to the best of our
knowledge, we are the first to present a general MPC construction in this setting. For example, Bell
et al. [9] presented a constant-round secure-protocol for summation in finite groups, in which each
user has only polylog(n) time and communication complexities, but extending their construction
to other functionalities is not clear. In particular, it is not clear if their protocol can be used for
bit summation.9 Reyzin et al. [60] presented a protocol for a somewhat more general family of
functionalities (functionalities requiring limited homomorphism), but their protocol only works in
the semi-honest setting and it requires users’ runtime to be polynomial in n.

Also very related to our work is the line of work on communication locality, initiated by Boyle,
Goldwasser, and Tessaro [16]. Similarly to our work, in this model, the parties are connected via a
complete graph, but each party communicates only with polylog(n) other parties. Assuming PKI,
Boyle et al. [16] constructed a protocol computing any efficient functionality, tolerating at most αn
corruptions, for some constant α < 1/3. Chandran, Chongchitmate, Garay, Goldwasser, Ostrovsky,
and Zikas [27] later showed how to handle adaptive adversaries that can corrupt at most αn parties,
for some constant α < 1/2, assuming the parties are given a symmetric-key infrastructure. Boyle,
Cohen, Data, and Hubáček [18] considered the communication graph induced by the interaction
in communication-locality protocols. Assuming the parties are given a PKI, they presented a

9For bit summation one needs to work in a finite group of size at least n, in order to avoid summation overflows,
but then a single malicious user can modify the result almost arbitrarily by choosing its input to be a random number
in this group. That is, a single malicious user can affect the sum by a factor of n.
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protocol with low locality tolerating αn corruptions, where α < 1/4 is a constant, such that with
overwhelming probability the resulting communication graph is not an expander. Boyle, Cohen,
and Goel [20] showed communication-locality protocols with the additional property of low average
communication complexity. That is, not only does each party communicate with only polylog(n)
other parties, but also the total communication in the protocol is at most n · polylog(n) bits. We
stress that these works on communication locality are fundamentally different than ours: These
works do not involve a server that does all the heavy lifting and can block messages at will, which
is the main challenge we address in our work. As these works on communication locality do not
involve a server, the computational complexity of the parties in all these works is polynomial in n
(unlike polylogarithmic in n in our work).

The idea of using small committees to gain efficiency dates back at least to Bracha [21] in 1985.
Since then it has been employed by several papers in several settings. In particular, this was used by
Boyle et al. [16] in their communication-locality MPC protocol, and was used by Cohen et al. [30]
to obtain efficient security uplifting reductions.

Lower bounds for the bottleneck communication complexity were investigated by Boyle et al. [19].
They showed that there exists a function such that for any protocol computing it correctly, i.e.,
without requiring security, there exists a party whose communication complexity is Ω(n). However,
this does not say much about the GMPC model, as the communication complexity of the server is
large “by design”.

The issue of a server who talks with weaker processors who only communicate locally and
only have local information has also been investigated in the context of interactive proofs. Naor
et al. [56] showed how to adapt various techniques in proof complexity in order to achieve low
communication protocols for proving the correctness of many functions (essentially all NC or even
P if one is satisfied with arguments) where the data is distributed among many verifiers. Boneh
et al. [15] showed how to use linear PCPs is order to get zero-knowledge proofs when the input
statement is not fully available to any single verifier, but can still be efficiently accessed via linear
queries.

Another direction to achieve security with many different users is to employ the paradigm of
serverless computing where the participants are stateless. In particular, Gentry et al. [38] have
suggested the “You Only Speak Once” secure MPC. One important difference with this work is
that there are no inputs to the parties that are being aggregated and computed.

2 Preliminaries

2.1 Notation

We use calligraphic letters to denote sets, uppercase for random variables and distributions, low-
ercase for values, and we use bold characters to denote vectors. For n ∈ N we let [n] = {1, 2 . . . n}.
For a set S we write s ← S to indicate that s is selected uniformly at random from S. Given a
random variable (or a distribution) X, we write x← X to indicate that x is selected according to
X. For a set S ⊆ N and a natural number n ∈ N, we denote S + n = {s+ n : s ∈ S}. For a vector
v of dimension n and for i ∈ [n], we write vi or v(i) for its ith entry. For a set I ⊆ [n] we denote
by either vI or v(I) the vector (vi)i∈I . A ppt is probabilistic polynomial time, and a pptm is a
ppt (interactive) Turing machine.

Given a graph G = (V,E) and a vertex v ∈ V , we let NG(v) = {u ∈ V : {u, v} ∈ E} be the set

12



of neighbors of v in the graph G. For two vertices u, v ∈ V , we denote by distG(u, v) the distance
between u and v, defined as the length of the shortest path between them (set to ∞ if there is no
such path). Finally, we let diam(G) = maxu,v∈V distG(u, v) denote the diameter of G.

A function µ(·) is negligible if for every positive polynomial q(·) and all sufficiently large κ it
holds that µ(κ) < 1/q(κ). We write negl(·), poly(·), and polylog(·) for an unspecified negligible,
polynomial, and polylogarithmic function, respectively.

A distribution ensemble X = {Xa,n}a∈Dn,n∈N is an infinite sequence of random variables in-
dexed by a ∈ Dn and n ∈ N, where Dn is a domain that might depend on n. Computational
indistinguishability is defined as follows.

Definition 2.1. Let X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N be two ensembles. We say that

X and Y are computationally indistinguishable, denoted X
C≡ Y , if for every non-uniform ppt

distinguisher D, there exists a negligible function µ(·), such that for all n and a ∈ Dn, it holds that

|Pr [D(Xa,n) = 1]− Pr [D(Ya,n) = 1]| ≤ µ(n).

Fact 2.2 (Chernoff’s bound). Let X1, . . . , Xn be i.i.d random variables over {0, 1}, and let µ =
n · E [X1]. Then for every t > 0 it holds that

Pr

[
n∑
i=1

Xi > (t+ 1)µ

]
< e−min{t2/4,t/2}·µ.

Fact 2.3 (One-sided Hoeffding’s inequality for random subsets). Let m,n ∈ N, where n < m, and
let S ⊆ [m] be some set. Suppose a set T ⊆ [m] of size n is sampled uniformly at random. Then
for all t > 0 it holds that

Pr [|T ∩ S| − n · |S|/m ≥ t] ≤ e−2t2/n,

and that
Pr [|T ∩ S| − n · |S|/m ≤ −t] ≤ e−2t2/n,

2.2 Secure Computation and the Model of Computation

The security of multiparty computation protocols is defined via the real vs. ideal paradigm [40, 22].
According to this paradigm, a protocol in the real-world model, i.e., where actual protocols are
executed, is deemed secure if it “emulates” the formulated ideal-model for executing the task. This
ideal-model involves a trusted party whose functionality captures the security requirements of the
task, specifically, an adversary in this model is very limited in what it can do. To show that the
real-world protocol emulates the ideal-world protocol, it is required to show that for any real-life
adversary A, there exists an ideal-model adversary Sim (called simulator) such that the global
output of an execution of the protocol with A in the real-world model is distributed similarly to
the global output of running Sim in the ideal model.

The Real Model

A multiparty protocol with n parties is defined by n interactive probabilistic polynomial-time
Turing machines P1, . . . ,Pn. Each Turing machine (party) holds at the beginning of the execution
the common security parameter 1κ, a private input, and random coins. The adversary A is a non-
uniform interactive Turing machine, receiving an auxiliary information aux ∈ {0, 1}∗, describing
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the behavior of the corrupted parties. It starts the execution with input that contains the identity
of the corrupted parties, their inputs, and an additional auxiliary input aux.

The parties execute the protocol over a synchronous network. That is, the execution proceeds
in rounds: each round consists of a send phase (where parties send their messages for this round)
followed by a receive phase (where they receive messages from other parties).

Throughout the execution of the protocol, all the honest parties follow the instructions of the
prescribed protocol, whereas the corrupted parties receive their instructions from the adversary.
The adversary is considered to be malicious, meaning that it can instruct the corrupted parties to
deviate from the protocol in any arbitrary way. Additionally, the adversary has full-access to the
view of the corrupted parties, which consists of their inputs, their random coins, and the messages
they see throughout this execution. At the conclusion of the execution, the honest parties output
their prescribed output from the protocol, the corrupted parties output nothing, and the adversary
outputs a function of its view (containing the views of the corrupted party).

The GMPC Model and GMPC Functionalities

In the GMPC model, we consider n + 1 parties, P0, . . . ,Pn. We refer to P0 as the server and the
other parties as users. The mindset is that there is a huge number of users, all of which are much
less computationally powerful than the server. Formally, although all parties are polynomial in the
security parameter κ, we assume the users P1, . . . ,Pn to be polylogarithmic in n, and the server
to be polynomial in n. Furthermore, since we require the server to be computationally bounded,
we assume that n is subexponential in κ, i.e., n = 2o(κ), or equivalently, κ = ω(log n). Finally, we
let n be held in binary by the users, and in unary by the server. Additionally, when we say the
adversary is ppt, it means that it is polynomial in both κ and n. Similarly, when we say a function
is negligible, it is shorthand to saying it is negligible in both κ and n.

We consider a complete point-to-point network. Here, every pair of parties is connected via
a secure and authenticated channel, and thus the adversary cannot read or modify messages sent
between two honest parties. We assume the parties do not have access to a broadcast channel. We
assume that the server, once corrupted, can disconnect any pair of parties. In more details, before
the “send phase” of any round, the server receives the list of pairs of users (Pi,Pj), where Pi is
going to send a message to Pj in the next round, together with the length of the message. Based on
this information, a corrupted server can decide which of the messages it blocks (without obtaining
the contents of the messages at any point). Additionally, users may abort, however, whenever this
occurs we assume that this information is given only to server, and to users that try to interact
with the aborting users.

Remark 2.4. In Section 7 we consider a star network, where the users are connected only to the
server. Additionally, in Section 7 (and only there) we assume PKI of a specific form, suitable for
the GMPC model, which we call GPKI. Intuitively, GPKI is a PKI where Gulliver cannot invent
names/public-keys or hide existing ones. We stress that, with the exception of Section 7, we do not
assume PKI in any of the other parts of this work.

Distributed denial of service attacks. As mentioned in the introduction, an adversary can
flood the network with garbage messages, even if the server is honest. We propose two solutions in
order to prevent this. Let us start with the first solution. We define a global value ∆ = poly(log n, κ)
that bounds the number of users that any other user can send a message to in any given round.
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Moreover, we require the protocols to be such that in an honest execution, the probability that
there exists a user receiving more than, say 100∆, messages from different users is negligible (in
both κ and n). Now, whenever some user i receives messages from more than, say, ∆3 different
users, then the honest server (who knows which parties interacted at any given round) blocks all
users that interacted with user i. Note that this includes blocking honest users, but not too many of
them since for every honest user that is being blocked there are many malicious users that are being
blocked. For our purposes, this solution suffices since this implies that the fraction of malicious
users is getting smaller by performing this attack. Note that this will affect the definition of the
ideal world.

Let us now present the second solution. The protocol we construct has the property that for
every round, either all users interact with a random subset of the users, or they interact with users
that the server can infer from its view. In the latter set of rounds, if a malicious user tries to send
a message to a user outside of the set held by the server, then the server simply blocks the user and
labels it malicious. In the former case, we let each user and the server interact via a coin-tossing
into to well (two-party) protocol where at the end of its execution, the user holds a random subset
of the users, and the server holds a commitment to this set. When the users are required to sample
a set of users to interact with, they simply open the commitment to the server, and use the subset
to which they are committed to. If a malicious user tries to send a message to a user outside of its
committed set, the server will catch it with overwhelming probability, and, similarly to the previous
case, the server will block the user before it sends the messages.

To simplify the presentation, in all of our protocols and proofs, we assume that the adversary
does not perform a DDoS attack in case the server is honest.

GMPC protocol and functionalities. We call a protocol in the above model an n-user GMPC
protocol. We next define GMPC functionality. Roughly, these are solitary-output functionalities,
where the server alone obtain the output. Furthermore, the length of the inputs and the output is
Õ(n).

Definition 2.5 (GMPC functionality). An n-ary functionality f = {fκ}κ∈N is a sequence of
polynomial-time computable, randomized mappings fκ : (Xκ)n → (Yκ)n.10 To alleviate notations,
we sometimes omit κ from functions of κ, e.g., we write X instead of Xκ. We call an (n+ 1)-ary
functionality f GMPC functionality if log |Y| = n · poly(κ, log n) and only the first party (i.e., the
server) obtains an output.

For a protocol Π and an adversary A, we denote by REALΠ,A(aux)(x, κ, n) the joint output of
the adversary A and the server (assuming it is honest), in a random execution of Π on security
parameter κ ∈ N, inputs x = (x0, . . . , xn) ∈ {0, 1}∗, the number of users n ∈ N, and an auxiliary
input aux ∈ {0, 1}∗.

The Ideal Model

We consider an ideal computation with guaranteed output delivery (also referred to as full security),
where a trusted party performs the computation on behalf of the parties, and the ideal-world
adversary cannot abort the computation. There is one subtlety in the definition. Observe that

10The typical convention is to have Xκ = Yκ = {0, 1}∗. However, in this work, we deal with functionalities over a
domain that is polylogarithmic in n, which is why we introduce this notation.
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in the real world, a corrupted server can block some of the users, claiming them to be malicious.
Thus, we have to allow a corrupted server to do same in the ideal world.

We next present an ideal execution for the computing a GMPC functionality f assuming a
corrupted server. The case where the server is honest is presented in Appendix A (where we define
security assuming the adversary cannot perform the DDoS attack described in the previous section).

Ideal world for full security with blocking assuming a corrupted server. We next de-
scribe the interaction in the ideal world assuming the server is corrupted. Let A be an adversary
corrupting a subset I ⊆ [n] of the users, which also corrupts the server. In the following, we let α
denote an upper bound on the fraction of users that can be corrupted by an adversary (which is
known to all parties).

Inputs: Each party holds the security parameter 1κ and the number of users n (held in binary by
the users and in unary by the server). Additionally, the server holds input x0, user Pi holds
xi, and the adversary is given auxiliary input aux ∈ {0, 1}∗.

Parties send inputs to trusted party: The honest parties send their inputs to the trusted
party. For each corrupted party, the adversary A sends to the trusted party some value
from their domain as input. Additionally, the adversary sends a set B ⊆ [n] of users of size
at most αn. For every user i ∈ B the trusted party replaces xi with a default input from the
same domain. Denote by (x′1, . . . , x

′
n) the tuple of inputs received (and possibly modified) by

the trusted party.

Trusted party sends output to the server: The trusted party computes y ← f(x′1, . . . , x
′
n)

with uniformly random coins and sends the output y to the server.

Outputs: An honest server outputs the value sent by the trusted party, and a corrupted server
outputs nothing. Additionally, all users output nothing and A outputs a function of its view
(its inputs, the output, and the auxiliary input aux).

Let IDEALf,A(aux)(x, κ, n) be the random variable consisting of the output of the adversary A in
this ideal world execution and the output of the honest parties in the execution.

We next define secure computation. For an elaborate discussion on this notion, see [40].

Definition 2.6 (malicious security). Let n = n(κ) denote the number of users, let m = m(κ, n) =
n · poly(κ, log n) denote the length of each input and the output, let t = t(κ, n) be such that t < n
denote a bound on the number of corrupted users, and let f : ({0, 1}m)n+1 7→ {0, 1}m be a GMPC
functionality. An n-party GMPC protocol Π computing f is said to be t-secure, if for every non-
uniform probabilistic polynomial-time adversary A in the real model, controlling at most t user and
which possibly also corrupts the server, there exists a non-uniform probabilistic polynomial-time
adversary Sim in the ideal model, controlling the same parties as A, such that the following holds{

IDEALf,Sim(aux)(x, κ, n)
}
aux∈{0,1}∗,x∈Xn,κ∈N

C≡
{
REALΠ,A(aux)(x, κ, n)

}
aux∈{0,1}∗,x∈Xn,κ∈N .

The Hybrid Model

The hybrid model is a model that extends the real model with a trusted party that provides ideal
computation for specific functionalities. The parties communicate with this trusted party in exactly
the same way as in the ideal models described above.
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Let f be a functionality. Then, an execution of a protocol Π computing a functionality g in the
f -hybrid model involves the parties sending normal messages to each other (as in the real model)
and in addition, having access to a trusted party computing f . We consider the setting where
the parties may invoke several functionalities concurrently, and where the parties can invoke one
functionality during the call to another.

Security Under Composition of Protocols

The security notion defined above is known as stand-alone security, as it deals with an execution
of single protocol, executed in isolation. Generalized security notions take into consideration pos-
sible executions of other protocols that run concurrently over the same communication network.
Most notable are security under general concurrent composition and universal composition [23].
These definitions deal with a more realistic setting where protocols are executed in an unknown
environment, and the protocol may be liable to attacks that are not possible in the stand alone
setting. Furthermore, and more relevant to this work, it is often useful to construct protocols as a
composition of several sub-protocols that are executed concurrently.

The composition theorem of Canetti [23] states the following. Let ρ be a protocol that securely
computes f . Then, if a protocol π computes g in the f -hybrid model, then the protocol πρ, that is
obtained from π by replacing all ideal calls to the trusted party computing f with the protocol ρ,
securely computes g in the real model.

Theorem 2.7 ([23]). Let n = n(κ) denote the number of users, let m = m(κ, n) = n ·poly(κ, log n)
denote the length of each input and the output, let t = t(κ, n) be such that t < n denote a bound
on the number of corrupted users, and let f : ({0, 1}m)n+1 7→ {0, 1}m be a GMPC functionality.
Suppose we are given a protocol ρ computing f with t security. Further suppose that there exists a
protocol π computing g with t-security in the f -hybrid model. Then protocol πρ computes g with t
security in the real model.

2.3 Cryptographic Tools

we use fairly standard cryptographic tools, such as secret sharing, signatures and fully homomorphic
encryption (the latter being the most “exotic” one).

2.3.1 Secret Sharing

A (threshold) secret-sharing scheme [61] is a method in which a dealer distributes shares of some
secret to n parties such that t colluding parties do not learn anything about the secret, and any
subset of t+ 1 parties can fully reconstruct the secret.

Definition 2.8 (secret sharing). A (t+ 1)-out-of-n secret-sharing scheme over a message space M
consists of a pair of algorithms (Share,Recon) satisfying the following properties:

1. t-privacy: For every secret m ∈M, and every subset I ⊆ [n] of size |I| ≤ t, the distribution
of the shares {si}i∈I is independent of m, where (s1, . . . , sn)← Share(m).

2. (t+1)-reconstructability: For every secret m ∈M, every subset I ⊆ [n] of size t+1, every
set of shares s = (s1, . . . , sn) s.t. PrS←Share(m) [S = s] > 0 and every vector s′ = (s′1, . . . , s

′
n)

s.t. sI = s′I and s′Ī = ⊥|Ī| it holds that m = Recon(s′).
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An error-correcting secret-sharing (ECSS) scheme is a secret-sharing schemes, in which the
reconstruction is guaranteed to succeed even if up to t shares are faulty. This primitive has also
been referred to as robust secret sharing or as honest-dealer VSS [59, 26, 31].

Definition 2.9 (error-correcting secret sharing). A (t+ 1)-out-of-n error-correcting secret-sharing
scheme (ECSS) over a message space M consists of a pair of algorithms (Share,Recon) satisfying
the following properties:

1. t-privacy: As in 2.8.

2. Reconstruction from up to t erroneous shares: For every secret m ∈ M, every shares
s = (s1, . . . , sn), and every s′ = (s′1, . . . , s

′
n) such that PrS←Share(m) [S = s] > 0 and |{i | si =

s′i}| ≥ n− t, it holds that m = Recon(s′) (except for a negligible probability).

ECSS can be constructed with perfect correctness when t < n/3 using Reed-Solomon decod-
ing [10] and with a negligible error probability when t < n/2 by authenticating the shares using
one-time MAC [59]. In case t ≥ n/2 it is impossible to construct a (t+ 1)-out-of-n ECSS scheme,
or even a secret-sharing scheme that identifies cheaters [45].

2.3.2 Vector Commitments

Our discussion follows the treatment of Fisch [36]. A vector commitment (VC) [25, 52] is a crypto-
graphic commitment to an ordered sequence of m values (x1, . . . , xm) that admits succinct openings
at specific positions (e.g., prove that xi is the ith committed message). For security, VCs are re-
quired to satisfy position binding, which states that an adversary should not be able to open a
commitment to two different values at the same position. Moreover, VCs are required to be con-
cise, i.e. the size of the commitment string and of its openings is independent of the vector length.
Usually VCs are also required to be hiding, meaning that opening at several positions does not leak
any information about the committed values at other positions. A Merkle tree is an example of a
simple vector commitment that is binding and concise but not hiding.

Vector commitment syntax. We provide a redacted syntax for vector commitments, taken
from [36]. A vector commitment scheme VC = (VC.Setup,VC.Com,VC.Open,VC.Verify) is a 4-tuple
of ppt algorithms described as follows.

1. Setup: The setup algorithm pp ← VC.Setup(1κ,m,M) is given the security parameter κ,
length m of the vector, and message space of vector components M. It outputs the public
parameters pp, which are implicit inputs to all the following algorithms.

2. Commit: The commitment algorithm (τ, c) ← VC.Compp(v) takes an input vector v =
(v1, . . . , vm) and outputs a commitment c and an advice τ .

3. Open: The opening algorithm ΛS ← VC.Openpp(v, c,S, τ) opens the commitment c of the
message v at locations S ⊆ [m]. It is given the advice τ generated by the commit algorithm.
The output ΛS proves that vi is the ith committed element of c for all S(i) (where S(i)
denoted the ith element of S).
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4. Verify: The verification algorithm b ← VC.Verifypp(c, v′1, . . . , v
′
q,S,ΛS) takes as input the

commitment c, a vector S ⊆ [m] of indices, and an opening proof ΛS . It outputs a bit
b ∈ {0, 1} such that b = 1 (accept) if and only if ΛS is a valid proof that c is a commitment
to a vector v, i.e., vS(i) = v′i for all i ∈ [q]. If S = ∅ then Λ∅ should be a normal opening,
i.e., a proof that c is a commitment to v, namely vi = v′i for all i ∈ [m].

Binding commitments. The main security property of vector commitments (of interest in the
present work) is position binding. The security game augments the standard binding commitment
game. Roughly, the security guarantees that no ppt adversary can generate a commitment that
can be decommitted to two different vectors.

Definition 2.10. A vector commitment scheme VC is said to be position binding if for all poly(κ,m)-
time adversaries A and for all S ′,S ⊆ [m] with |S| = q and |S ′| = q′, and for all i ∈ [q] and j ∈ [q′],
the following probability is at most negligible in κ:

Pr
pp←VC.Setup(1κ,m,M)

(c,v,v′,Λ,Λ′)←A(pp)

[
VC.Verify(c,v,S,Λ) = 1 ∧ VC.Verify(c,v′,S ′,Λ′) = 1

∧ S(i) = S ′(j) ∧ vi 6= v′j

]

2.3.3 Digital Signatures

A digital signature is a scheme for presenting the authenticity of digital messages or documents.
We follow the presentation in [47].

Definition 2.11. A signature scheme Sig = (Sig.Gen, Sig.Sign, Sig.Verify) is a 3-tuple of ppt algo-
rithms described as follows.

1. Key generation: The key generation algorithm (pk, sk) ← Sig.Gen(1κ) takes as input a
security parameter 1κ and outputs a pair of keys (pk, sk), called the public key and private
key, respectively. We assume for convenience that pk and sk each have length at least κ, and
that κ can be determined from pk and sk.

2. Sign: The signing algorithm σ ← Sig.Signsk(m) takes as input the private-key sk and a
message m ∈ {0, 1}∗, and outputs a signature σ.

3. Verify: The deterministic verification algorithm b ← Sig.Verifypk(m,σ) takes as input the
public-key pk, a message m, and a signature σ. It outputs a bit b ∈ {0, 1} such that b = 1
(accept) if and only if σ is a valid signature of m.

It is required that for every κ ∈ N, every (pk, sk) output by Sig.Gen(1κ), and every message m ∈
{0, 1}∗, it holds that Sig.Verifypk(m,Sig.Signsk(m)) = 1.

Security of signature schemes. We next define security of signature schemes. We call σ a
valid signature on a message m (with respect to some public key pk) if Sig.Verifypk(m,σ) = 1. We
say that an adversary forges a signature if it outputs a message m along with a valid signature σ
on m, and furthermore m was not previously signed using the secret key.

Let Sig = (Sig.Gen,Sig.Sign,Sig.Verify) be a signature scheme, and consider the following ex-
periment for an adversary A and security parameter κ, denoted as Sig-forgeA,Sig(κ):
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1. Sig.Gen(1κ) is run to obtain keys (pk, sk)

2. Adversary A is given pk and oracle access to Sig.Signsk(·) (this oracle returns a signature
Sig.Signsk(m) for any message m of the adversary’s choice). The adversary then outputs
a message-signature pair (m,σ). Let Q denote the set of messages whose signatures were
requested by A during its execution.

3. The output of the experiment is 1 if Sig.Verifypk(m,σ) = 1 and m /∈ Q, and is defined to be
0 otherwise.

The following defines the unforgeability property required from signature schemes. We also
consider security against adversaries that can run in polynomial time in a possibly larger parameter
n(κ).

Definition 2.12. A signature scheme Sig is existentially unforgeable under an adaptively chosen
message attack if for all ppt adversaries A, there exists a negligible function negl such that:

Pr
[
Sig-forgeA,Sig(κ) = 1

]
≤ negl(κ).

For any function n = n(κ), the signature scheme is said to be n-secure if the above holds with
respect to any adversary that runs in poly(κ, n) time.

2.3.4 Fully Homomorphic Encryption

We next define fully homomorphic encryption (FHE) schemes [37].

Definition 2.13. A fully homomorphic encryption scheme over a circuit family C, is a 4-tuple of
ppt algorithms FHE = (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval):

1. Key generation: The key generation algorithm (pk, sk) ← FHE.Gen(1κ) takes as input a
security parameter 1κ and outputs a pair of keys (pk, sk), called the public key and private
key, respectively.

2. Encrypt: The encryption algorithm c← FHE.Encpk(m) takes as input the public-key pk and
a plaintext m ∈ {0, 1}∗, and outputs a ciphertext c.

3. Decrypt: The deterministic decryption algorithm m∗ = FHE.Decsk(c) takes as input the
private-key pk and a ciphertext c. It outputs m∗ ∈ {0, 1}∗ ∪ {⊥} which is either a valid
plaintext or a special ⊥ symbol denoting failure.

4. Evaluate: The evaluation algorithm c′ ← FHE.Evalpk(C, c) takes as input the public key pk,
a circuit C ∈ C, and a ciphertext c. It outputs a new ciphertext c′,

The following are required:

1. Correctness: For every κ ∈ N, every (pk, sk) output by FHE.Gen(1κ), every circuit C ∈ C,
and every message m ∈ {0, 1}∗, it holds that for a corresponding ciphertext c = FHE.Encpk(m),

FHE.Decsk (FHE.Evalevk(C, c)) = C(m).

2. Compactness: There exists a polynomial p such that for every κ ∈ N, the decryption algo-
rithm FHE.Dec can be expressed as a circuit of size at most p(κ).
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Security against chosen-plaintext attacks. To define chosen-plaintext attack (CPA) security
of FHE schemes, let FHE = (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval) be an FHE scheme. Consider
the following experiment for an adversary A and security parameter κ, denoted FHE-CPAA,FHE(κ):

1. FHE.Gen(1κ) is run to obtain keys (pk, sk).

2. Adversary A is given pk and oracle access to FHE.Encpk(·). The adversary outputs a pair of
messages m0 and m1 of equal length.

3. A bit b← {0, 1} is sampled uniformly at random, and then the ciphertext c← FHE.Encpk(mb).

4. The adversary (still having oracle access to FHE.Encpk(·)) outputs a bit b′.

5. The output of the experiment is defined to be 1 if b′ = b, and is defined to be 0 otherwise.

The following defines CPA security as we require from FHE schemes. Similarly to signature
schemes, we also consider security against adversaries that can run in polynomial times in a possibly
larger parameter n(κ).

Definition 2.14. An FHE scheme is said to be CPA-secure if for all ppt adversaries A, there
exists a negligible function negl such that

Pr [FHE-CPAA,FHE(κ) = 1] ≤ 1

2
+ negl(κ).

For any function n = n(κ), the scheme is said to be n-secure if the above holds with respect to any
adversary that runs in poly(κ, n) time.

2.4 Probabilistically Checkable Proofs of Proximity

A probabilistically checkable proof of proximity (PCPP) [11, 32] is proof system, which allows a
verifier to be convinced that the input is close to being in a language L. In more details, the verifier
has an explicit input x and an implicit input y given as an oracle. The verifier accepts with high
probability if y is close to some y′ such that (x, y′) ∈ L. We next formalize the notion of PCPP.
The definitions below are taken almost verbatim from [12]. We start with defining the Hamming
distance.

Definition 2.15 (Hamming distance). Let n ∈ N. The Hamming distance between two strings
x, x′ ∈ {0, 1}n is defined as ∆(x, x′) := |{i ∈ [n] : xi 6= x′i}|. For a string x ∈ {0, 1}n and a set
S ⊆ {0, 1}n we let ∆(x,S) = minx′∈S δ(x, x

′). Finally, a string x ∈ {0, 1}n is said to be δ-far from
a set S ⊆ {0, 1}n if ∆(x,S) > δ.

Definition 2.16 (Restricted verifier). Let r, q : N 7→ N and t : N × N 7→ N. An (r, q, t)-restricted
verifier is a probabilistic oracle Turing machine V, that is given a string x number k ∈ N (in binary),
an oracle access to an input y ∈ {0, 1}k and a proof π ∈ {0, 1}∗, tosses r(|x|+ k) coins, queries the
oracle (y, π) at most q(|x|+ k) times, runs in time t(|x|, k), and outputs either 0 or 1.

For a pair language L ⊆ {0, 1}∗ × {0, 1}∗ and a string x ∈ {0, 1}∗, we let Lx = {y ∈ {0, 1}∗ :
(x, y) ∈ L}.
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Definition 2.17 (PCPP for pair languages). For functions r, q : N 7→ N, t : N × N 7→ N, and
s, δ : N 7→ [0, 1], a pair language L ⊆ {0, 1}∗ × {0, 1}∗ is said to be in PCPPs,δ[r, q, t] if there exists
an (r, q, t)-restricted verifier V such that the following holds.

Completeness: If (x, y) ∈ L then there exists a proof π ∈ {0, 1}∗ such that

Pr [Vy,π (x, |y|) = 1] = 1,

where the probability is taken over the random coin tosses of V.

Soundness: If (x, y) is such that y is δ(|x| + |y|)-far from Lx ∩ {0, 1}|y|, then for every proof
π ∈ {0, 1}∗ it holds that

Pr [Vy,π (x, |y|) = 1] ≤ s (|x|+ |y|) ,

where the probability is taken over the random coin tosses of V.

Theorem 2.18 (Efficient PCPPs for pair languages [12]). For every pair language L ∈ NP and
every constant s > 0, it holds that L ∈ PCPPs,δ[r, q, t] where

• δ(m) = m/polylog(m),

• r(m) = O(log(m)),

• q(m) = polylog(m),

• t(n, k) = poly(n, log(n+ k)).

Moreover, it is implicitly stated that for every (x, y) ∈ L a correct proof can be generated in
polynomial time in |x|+ |y| (given a witness).

Repeating the proof a polylogarithmic number of times results in a negligible soundness error.

Corollary 2.19. For every pair language L ∈ NP it holds that L ∈ PCPPs,δ[r, q, t] where

• s(m) = e− log2m.

• δ(m) = m/polylog(m),

• r(m) = polylog(m),

• q(m) = polylog(m),

• t(n, k) = poly(n, log(n+ k)).

Moreover, it is implicitly stated that for every (x, y) ∈ L a correct proof can be generated in
polynomial time in |x|+ |y|.
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2.5 Committee Election

Feige’s lightest-bin protocol [35] is an elegant n-party, public-coin protocol, consisting of a single
broadcast round, for electing a committee of size n′ < n, in the information-theoretic setting. Each
party uniformly selects one of dn/n′e bins and broadcasts it choice. The parties that selected the
lightest bin are elected to participate in the committee. The protocol ensures that the ratio of
corrupted parties in the elected committee is similar to their ratio in the population. The original
protocol in [35] considered committees of size log(n), however, this results with a non-negligible
failure probability. [17, Lem. 2.6] analyzed Feige’s protocol for arbitrary committee sizes and
proved the following lemma.

Lemma 2.20 ([17]). For integers n′ < n and constants 0 < α < α′ < 1 define

err
(
n, n′, α, α′

)
=
n

n′
· e−

(α′−α)2n′
2(1−α) .

Feige’s lightest-bin protocol is a 1-round, n-party protocol for electing a committee C, such that for
any set of corrupted parties I ⊆ [n] of size t ≤ αn the following holds.

1. |C| ≤ n′.

2. Pr [|C \ I| ≤ (1− α′) · n′] < err(n, n′, α, α′).

3. Pr [|C ∩ I| ≥ α′ · |C|] < err(n, n′, α, α′).

Towards proving Lemma 2.20, using Chernoff’s inequality and the union bound [17] showed the
following.

Lemma 2.21 (Implicit in [17]). Fix integers n′ < n, constants 0 < α < α′ < 1, and a set I ⊆ [n]
of corrupted parties. For every bin b ∈ [dn/n′e] we let Xb denote the number of honest parties that
sampled b in Feige’s protocol. Then

Pr
[
∃b ∈ [dn/n′e] : Xb < (1− α′) · n′

]
< err

(
n, n′, α, α′

)
.

3 Preventing Blocking of Honest Users

Towards constructing our secure protocols, we first develop two tools. The goal of these two tools is
to prevent a malicious server from blocking honest users. The first tool is the sampling of personal
committees (PC) that are chosen uniformly at random and will replace each user. The idea is that
with high probability every PC of an honest party (hereinafter, honest PC) will contain an honest
majority. Furthermore, if the server is honest, then the same holds for malicious users. Thus,
if a PC aborts after all of them were sampled, then this constitutes a proof of the server being
malicious. The second tool is locally sampling a communication graph (i.e., each PC samples a
small number of neighbors) with a small diameter that the parties will use to essentially allow any
single PC to raise a flag indicating to all other PCs that the server is malicious. If the server is
honest, then since all PCs contain an honest majority, no PC would ever raise such a flag.

We stress that the security properties of the construction are not defined via the real vs. ideal
paradigm. Instead we define a “good” event and show that it occurs except with negligible prob-
ability (in both the security parameter κ and the number of users n). In Section 3.1 we present
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a protocol for sampling personal committees. Afterwards, in Section 3.2 we present the formal
definition of the graph distribution we use, and prove that with high probability it has a small
diameter. Then, in Section 3.3 we combine the two results, and present the final setup protocol for
sampling the PCs and graph with the desired security properties.

3.1 Personal Committee Protocol

We present a protocol for sampling the personal committees. Recall that the goal of the PCs is
to replace each user, thus any malicious behaviour of the committee as a whole implies that the
server is malicious. Before formally describing the protocol, we first give a short overview of the
construction.

First, each user samples together with the server a PC using a coin-tossing protocol. From
here, the goal of the honest users and the (honest) server, is to provide a proof for other users that
the PC was sampled by them. However, as the users are assumed to be polylogarithmic in n, they
cannot actually hold the entire proof. Instead, we let each user verify consistency of information
with κ = ω(log n) randomly sampled other users. If not too many users aborted, then except with
negligible probability, the server must have played honestly.

The idea is as follows. The server will commit to an array of length n whose ith entry is the
PC of user i (set to ⊥ if the user aborted early). Each user then verifies that it appears in this
array, and in addition, samples κ other users uniformly at random. These κ users will be used for
consistency checks.

The neighboring users compare their information, and further verify it with the server (by
requesting to open the commitment at the correct positions). Observe that it could be the case
that some of the users are blocked by a malicious server, and the user cannot distinguish this from
the case of a malicious user. However, if the server is honest then, with overwhelming probability,
at least ≈ (1 − α)κ users will respond with information that is consistent with the information
provided by the server. Thus, we let each user verify that this is indeed the case.

We then let each user notify the users in its PC that they belong to its personal committee.
These users then verify this with the server, and ignores the message (without aborting) from the
user in case the server’s answer is inconsistent. We then let the users in each PC broadcast to all
other users in the same PC that they participate in the PC,11 and verify that at least 1−α fraction
of them sent a message. To implement the broadcast channel, the users will use a variant of the
broadcast protocol due to [58, 51] that is secure against at most α < 1/8 corruptions. We refer the
reader to Section 6.1 for a detailed description of the broadcast protocol. Note that if the server is
honest, then each PC will contain more than roughly (1 − α)κ honest users. Therefore, the users
can safely abort if less than (1−α)κ users are active in the PC. Finally, to ensure that most honest
users remain, each of them samples κ random users, notifies them they are alive, and requests a
feedback. If less than roughly ακ of them did not respond, then the user aborts.

We now present the personal committee protocol. In the following we let

VC = (VC.Setup,VC.Com,VC.Open,VC.Verify)

be a vector commitment scheme, let C be a perfectly hiding commitment scheme12, and let ε =
1/8− α be a positive constant.

11Formally speaking, the parties compute the multicast functionality, where only a subset of the users obtain the
output.

12Using a perfectly hiding commitment scheme is done only for convenience.
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Protocol 1: PersonalCommittee

Common inputs: All parties hold the security parameter 1κ and the number of users n (held in
binary by the users, and in unary by the server).

1. The server and each user i interact as follows.

(a) Let k = κ · log n be the length of the representation of each PC. User i samples a random
string ri ← {0, 1}k, computes a commitment ĉi ← C.Com(ri), and sends ĉi to the server.

(b) The server responds with a random string si ← {0, 1}k.
(c) Upon receiving si from the server, user i computes Pi := ri ⊕ si and sends to the server

a decommitment to ĉi. In case the server does not send si to user i, the user outputs ⊥.

(d) If the decommitment of user i is invalid, the server labels i as inactive.

2. Each remaining user i computes the public parameters ppi ← VC.Setup(1κ, n, [n] ×
(

[n]
κ

)
) for

the commitment, and sends ppi to the server.

3. The server does the following:

(a) Set v to be the vector of length n whose ith entry is Pi in case i is active, and is set to
⊥ otherwise.

(b) For each remaining user i do the following:

i. Compute the commitment (τi, ci)← VC.Comppi(v) of the vector v.

ii. Open the commitment at position i to obtain Λi ← VC.Openppi
(v, ci, i, τi).

iii. Send ci and Λi to user i.

4. User i aborts if the server did not decommit properly, i.e., VC.Verifyppi (ci,Pi, i,Λi) = 0.

5. Each user i does the following:

(a) Sample a set of users Sout
i ⊆ [n] of size κ uniformly at random and notify each of them

and the server13 that they were sampled by it.

(b) Set Sin
i to be the set of users that sampled it. It aborts if it was sampled by too many

users, i.e., , |Sin
i | > 3κ.

(c) Otherwise, send (ppi, ci) to all of users in Sin
i .

(d) Let Si ⊆ Sout
i be the set of users j that responded with a message (ppj , cj).

(e) For each j ∈ Si, compare the information with the server: The server decommits to cj
at location i by sending Λi,j ← VC.Openppj

(v, cj , i, τj) to user i.

(f) Check that at least (1 − 2α − ε/2)κ of the users in Si sent a message that is consistent
with the server, namely, VC.Verifyppj (ci,Pi, i,Λi,j) = 1 for all j ∈ Si. If this is not the
case, then abort.

13Note that by the assumption on the network, the server can obtain Sout
i by simply observing which parties

interact. We decided to explicitly have the user notify the server for the sake of presentation.
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Protocol 1: PersonalCommittee (Continued)

6. The server and each user i interact as follows:

(a) The user samples a query set Qi ⊆ [n] and sends it to the server.

(b) The server opens each of the commitments cj , where j ∈ Si∪{i} and locations Qi. That
is, it sends v(Qi) and ΛQi,j ← VC.Openppj

(v, cj ,Qi, τj) for every j ∈ Si ∪ {i}.

(c) Let ui be the purported value of v(Qi) sent by the server. The user verifies all decom-
mitments, i.e., it checks that VC.Verifyppj (cj ,ui,Qi,Λ

Q
i,j) = 1 for all j ∈ Si ∪ {i}. If this

is not the case then the user aborts.

7. Each remaining user i sends the set Pi to all users in Pi.

8. If some user j received more than 3κ messages, then it aborts.

9. Otherwise, for every Pi 3 j received, user j compares this information with the server: the
server decommits to cj at location i by sending Λ′i,j ← VC.Openppj

(v, cj , i, τj) to user j.

10. If VC.Verifyppj (cj ,Pi, i,Λ
′
i,j) = 0, then the user ignores the message without aborting.

11. For each personal committee Pi, all users in it broadcast alive to all other users in Pi (see
Section 6.1 for a secure implementation).

12. The personal committee Pi is labeled inactive and does not participate in subsequent inter-
action, if more than α+ ε/2 of its users did not send alive, in which case user i aborts.

13. Each remaining user i samples κ users and sends them the message alive. It then replies with
alive for every alive received.

14. User i aborts if it received less than (1− 2α− ε/2)κ replies.

Output phase: Each user i outputs {(j,Pj)}j:i∈Pj , ppi, and ci. An honest server outputs the
list L = {(i,Pi)}i of alive users and their corresponding PC, and (ppi, ci, τi)i∈L.

The security properties of the protocol (stated as an event occurring with overwhelming prob-
ability) appears in Section 3.3, as part of the security properties of the setup protocol presented in
the same section.

We next claim that all users are polylogarithmic in n. By construction, this boils down to
showing that no user will be sampled by too many users (in any of the sets sampled throughout
the protocol). Observe that this directly follows from Chernoff’s inequality (Fact 2.2) since every
user is sampled by at most κ user on expectation.

3.2 A Locally Sampled Communication Graph With a Small Diameter

In this section we discuss the distribution on graphs that we use for sampling the communication
graph. Recall that the goal of the graph is to allow the users to quickly notify each other if any
of them caught the server cheating. The distribution over the graphs that we use is the union of
stars, each of a fixed size d, sampled uniformly at random. We next formalize the definition of this
distribution.

Definition 3.1. Let n, d ∈ N where 1 ≤ d ≤ n and let Bad ⊆ [n]. We define the distribution
G(n, d,Bad) over directed graphs G = ([n], E) with n vertices as follows. For each vertex i ∈ [n]\Bad
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sample a subset N out
i ⊆ [n] of size d and set (i, j) ∈ E (i.e., there is an edge from i to j) if and

only if j ∈ N out
i .

The following lemma asserts that with overwhelming probability, for a graph sampled according
to the distribution G(n, d,S) any induced subgraph over a sufficiently large constant fraction of the
vertices of [n] \ Bad, will have a small diameter with high probability.

Looking ahead, each vertex in the graph will represent a personal committee of some user.
Therefore, the lemma can be used to show that the induced subgraph over the set of honest PCs
will have a small diameter with overwhelming probability. However, recall that a malicious server
might abort some honest users. Thus, the set of “bad” users, which the induced subgraph ignores,
is of size 2αn, and not αn. In the following, we let β = 2α < 1/4 denote an upper bound on the
fraction of malicious and blocked users.

Lemma 3.2. Let n, d ∈ N such that 4 ≤ d ≤ n, let β < 1/4, let ` = logd/4(n/3), and let Bad ⊆ [n]
be of size |Bad| ≤ βn. Consider the following distribution over graphs with n vertices: sample
G← G(n, d,Bad) and let G′ denote the induced subgraph of G over the vertices [n] \ Bad. Then

Pr
[
diam

(
G′
)
> `+ 1

]
< n2 · (`+ 1) · e−4d/9,

where the probability is taken over the sampling of G′.

Proof. Let u, v ∈ [n] \ Bad be two distinct vertices in G′. We show that

Pr [distG′ (u, v) > `+ 1] < (`+ 1) · e−4d/9. (1)

The proof then follows from the union bound.
We define the following sequence of random variables. For i ∈ {0, . . . , `} let

Si = {w ∈ [n] \ Bad : dist (u,w) = i}

be the set of vertices of distance exactly i from u in the graph G′, and let S∗i := ∪ij=0Sj denote the
set of distance at most i from u in the graph G′. It suffices to show that except with probability
at most ` · e−4d/9, it holds that |S∗` | ≥ n/3. Indeed, let N in

v = {i ∈ [n] : v ∈ N out
i } denote the set

of vertices that sampled v. Then

Pr
[
N in
v ∩ S∗` = ∅ | |S∗` | ≥ n/3

]
≤
(

1− d

(1− β)n

)|S`|
< e
− d

3(1−β) < e−4d/9.

Toward proving that |S∗` | ≥ n/3 holds with high probability, we prove the following claim.
Roughly, the claim asserts that for every i ≤ `, if |S∗` | < n/3 and Si−1 is somewhat large, then Si
is somewhat large as well with high probability.

Claim 3.3. For every i ∈ {0, . . . , `} it holds that

Pr
[
|Si| < (d/4)i

∣∣∣ |S∗` | < n/3 ∧ ∀j ∈ [i− 1] : |Sj | ≥ (d/4)j
]
≤ e−d/8,

if i > 0, and that

Pr
[
|Si| < (d/4)i

∣∣∣ |S∗` | < n/3
]

= 0,

if i = 0.
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The claim is proven below. We first show that it indeed implies that |S∗` | ≥ n/3 with high
probability. Since the Si’s are pairwise disjoint and ` satisfies

∑̀
i=0

(d/4)i = (d/4)`+1−1
d/4−1 ≥ (d/4)` = n/3,

it follows that if |S∗` | < n/3 then there exists i ∈ {0, . . . , `} such that |Si| < (d/4)i. Thus

Pr [|S∗` | < n/3] = Pr
[
|S∗` | < n/3 ∧ ∃i ∈ [`] : |Si| < (d/4)i

]
≤ Pr

[
∃i ∈ [`] : |Si| < (d/4)i

∣∣∣ |S∗` | < n/3
]

≤
∑̀
i=1

Pr
[
|Si| < (d/4)i

∣∣∣ |S∗` | < n/3 ∧ ∀j ∈ [i− 1] : |Sj | ≥ (d/4)j
]

≤ ` · e−d/8

where the second inequality follows from the union bound. It remains to prove Claim 3.3.

Proof of Claim 3.3. The proof is by induction on i. Clearly, the claim holds for i = 0. Assume that
the claim holds for i ≤ `−1. We next prove it for i+1. First, observe that if |S∗` | < n/3 < (1−β)

2 ·n,
then half of the vertices in G′ are not in Si+1. Thus, for any fixation Si of Si, the (conditional)
expected size of Si+1 is at least

E
[
|Si+1|

∣∣∣ |S∗` | < n/3 ∧ Si = Si
]
≥ d · |Si|/2.

Therefore,

E
[
|Si+1|

∣∣∣ |S∗` | < n/3 ∧ |Si| ≥ (d/4)i
]
≥ (d/2) · (d/4)i.

In particular, it holds that

µ := E
[
|Si+1|

∣∣∣ |S∗` | < n/3 ∧ ∀j ∈ [i] : |Sj | ≥ (d/4)j
]
≥ (d/2) · (d/4)i.

Thus, by Fact 2.3, it follows that

Pr
[
|Si+1| < (d/4)i+1

∣∣∣ |S∗` | < n/3 ∧ ∀j ∈ [i] : |Sj | ≥ (d/4)j
]

≤ Pr
[
|Si+1| − µ < − (d/4)i+1

∣∣∣ |S∗` | < n/3 ∧ ∀j ∈ [i] : |Sj | ≥ (d/4)j
]

≤ e−
2(d/4)2

d

= e−d/8.
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3.3 Preparing For Computation in the GMPC Model: The Setup Protocol

In this section, we combine Protocol 1 for sampling PCs and the result from Section 3.2 for sampling
a graph, and construct our setup protocol. Roughly, the protocol proceeds by first executing
Protocol 1, which samples the PCs and forms some sort of agreement (see Theorem 3.5 below the
protocol’s description). Then, each PC samples its neighbors uniformly at random. To ensure that
the graph is undirected, the user requests a receipt from each of the users it sampled, which in turn
add the requesting users to their set of neighbors.

We abuse notions and describe the protocol as if each PC is a single party. Formally, whenever
we say that the server sends a message to Pi, it means that it (supposedly) shares it among the
users of Pi. Similarly, when we say that Pi sends a message to the server, it means that every user
in Pi sends its share of the message to the server. Finally, whenever a PC Pi sends a message msg
to another PC Pj , it means that each user in Pi shares its share of msg among the users in Pj .

Formally, we describe the protocol in a hybrid world, where the hybrid functionalities compute
the “next-message” function of each PC.14 Let NxtMsgi denote the next-message function of Pi.
The inputs of the users to each call of NxtMsgi are a (1−α−ε/2)κ-out-of-κ Shamir’s secret sharing
scheme of the view of Pi. If the server or i are honest and at least (1−α−ε/2)κ inputs are provided
to the functionality, then it proceeds to compute the next-message as specified by the protocol, and
sharing the output among the users in Pi. If less then (1 − α − ε/2)κ inputs are provided, the
functionality sends ⊥ to all of its users. If both the server and i are corrupted, then the adversary
chooses the output the users receive from the functionality. In all cases, if a user obtain ⊥ as the
output from some NxtMsgi, then it aborts. In Section 6.1 we present a protocol for implementing
each call.

We further describe the output with respect to the PC rather than the users. The output of
each user is then defined as the set of PCs containing it, and a share of the output of each such
PC, in a (1− α− ε/2)κ-out-of-κ Shamir’s secret sharing scheme.

14Although the PCs are sampled during the execution of the protocol, the next-message they compute are func-
tionalities that are known in advance. Therefore, the hybrid functionality is well-defined.
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Protocol 2: CommitteeSetup

Common inputs: All parties hold the security parameter 1κ and the number of users n (held in
binary by the users, and in unary by the server).

1. The parties execute protocol PersonalCommittee. Recall that each user i obtains a set
{(j,Pj)}j:i∈Pj of size at most 3κ, and the server holds the set L = {(i,Pi)}i where each Pi is
active. Additionally, the server is committed (via a vector commitment scheme) to a vector
v whose ith entry is (i,Pi).

2. Each PC Pi samples a set of neighbors N out
i ⊆ [n] of size κ uniformly at random, and sends

it to server.

3. For each remaining Pi, the server opens the commitment to every user in Pi at position j. A
user aborts from Pi if the verification of the decommitment fails.

4. The PC Pi then notifies each PC Pj , where j ∈ N out
i .

5. Pi sets N in
i to be the set of PCs that sampled it. It aborts if it was sampled by too many

users, i.e., , |N in
i | > 3κ.

6. Let Ni = N out
i ∪ N in

i be the total set of neighbors of PC Pi (known to both the PC and the
server).

7. Send Pi to each PC Pj , where j ∈ Ni.

8. For d log(n/4)
log(κ/4)e+ 1 iterations, each personal committee Pi sends alive to every Pj where j ∈ Ni.

At any iteration, if Pi did not receive the message alive from any of its neighbors, it aborts.

9. Each honest Pi outputs the set of neighbors Ni, and an honest server outputs the list L =
{(i,Pi)}i of alive users and their corresponding PC., and the (undirected) graph G = (L, E),
where {(i,Pi), (j,Pj)} ∈ E if and only if i ∈ Nj .

We next state the security properties of Protocol 2. Instead of describing it using the standard
real vs. ideal paradigm, we formalize the security notion by describing an event, which captures
the desired properties. We then show that the event occurs with overwhelming probability.

Definition 3.4 (Personal committees and small graph event). We define the personal committees
and small graph event, denoted PCSG, as PCSGhon if the server is honest, and define it as PCSGmal

if the server is malicious, where PCSGhon and PCSGmal are defined as follows. PCSGhon is the
conjunction of the following events.

• All honest users are alive, and all their PCs are labeled active.

• Each alive user i (whether it is honest or malicious) holds a personal committee Pi of size κ
and a set of neighbors Ni of size at most 4κ, where both are known to the server.

• For every alive user i (whether it is honest or malicious), its PC Pi contains at least (1−α−
ε/2)κ > 7κ/8 honest users.

• For every alive i, all of its neighbors in Ni hold (i,Pi).

• For every alive i and every alive j ∈ Ni, all users in Pi hold (j,Pj).
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• The graph over the PCs of alive users induced by the set of neighbors {Ni}i, has diameter at

most d log(n/4)
log(κ/4)e+ 1.

PCSGmal is the conjunction of the following events.

• At least (1− 2α− ε)n = (7/8− α)n honest users are alive, and their PCs are labeled active.

• Each alive user i (whether it is honest or malicious), holds a personal committee Pi of size κ
and a set of neighbors Ni of size at most 4κ, where both are known to the server.

• For every alive and honest i, its PC Pi contains at least (1−α− ε/2)κ > 7κ/8 honest users.

• For every alive i, all of its neighbors in Ni hold (i,Pi).

• For every alive i and every alive j ∈ Ni, all users in Pi hold (j,Pj).

• The graph over the PCs of alive honest users induced by the set of neighbors {Ni}i, has

diameter at most d log(n/4)
log(κ/4)e+ 1.

The next theorem asserts that at the end of Protocol 2, the event PCSG holds except with
negligible probability.

Theorem 3.5. Let α < 1/8 be a constant (i.e., it does not depend on κ or the number of users
n). Assume the existence of position binding vector commitment schemes. Let A be a ppt for
Protocol 2 corrupting at most αn users, and which possibly corrupts the server as well. Then the
event PCSG occurs except with negligible probability.

Observe that by construction, if a PC contains at most (α + ε/2)κ corrupted users and it is
labeled active at the end of the execution, then all of its users hold the neighbors of the user
corresponding to the PC, and PCs of the neighbors. Thus, Theorem 3.5 directly follows from the
next two lemmata, which split (and simplify) the statement depending on whether the server is
honest or corrupted.

Lemma 3.6. Let α < 1/8 be a constant and assume the existence of position binding vector
commitment schemes. Let A be a ppt adversary for Protocol 2, corrupting a set I ⊆ [n] of at most
αn users and which does not corrupt the server. Then the following hold.

1. Every personal committee (including those of malicious users that did not abort) will contain
less than κ/8 corrupted users with overwhelming probability. That is, let I ′ ⊆ I denote the set
of malicious users that are labeled active by the server by the end of the protocol’s execution.
Then

Pr
[
∃i ∈ H ∪ I ′ : |Pi ∩ I| ≥

(
α+

ε

2

)
· κ
]
≤ n · e−

ε2

2
·κ.

2. All honest users remain alive at the end of the execution, except with negligible probability.

Lemma 3.7. Let α < 1/8 be a constant and assume the existence of position binding vector
commitment schemes. Let A be a ppt adversary for Protocol 2, corrupting a set I ⊆ [n] of at most
αn users and which also corrupts the server. Let L ⊆ H denote the set of honest users that did not
abort the execution of the protocol. Assume that L 6= ∅. Then the following hold.

1. |L| ≥ (1− 2α− ε)n = (7/8− α)n except with negligible probability.
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2. Every personal committee of an alive honest user in will contain less than κ/8 malicious
users, except with negligible probability. Formally,

Pr
[
∃i ∈ L : |Pi ∩ I| ≥

(
α+

ε

2

)
· κ
]
≤ n · e−

ε2

2
·κ.

In particular, the PCs of alive honest users are active at the end of the execution.

3. The graph over the active honest PCs induced by the sets {Ni}i (i.e., {Pi,Pj} is an edge if

and only if i ∈ Nj or j ∈ Ni), has diameter at most d log(n/4)
log(κ/4)e + 1, except with negligible

probability. Moreover, each user has at most 4κ neighbors.

4. For every alive honest user i ∈ L, all its neighbors j ∈ Ni and the users in Pj, hold Pi (as it
was sent to them at Step 5c).

We first prove Lemma 3.6, where the server is assumed to be honest.

Proof of Lemma 3.6. We first prove Item 1. First, by the binding property of the commitment
scheme, any malicious user will decommit properly, except with negligible probability. Therefore,
Pi will be uniformly random for all i ∈ I ′ except with negligible probability. Now, observe that for
every i ∈ H ∪ I ′ it holds that

E
[∣∣Pi ∩ I ′∣∣] ≤ |I| · κ

n
≤ ακ.

By Hoeffding’s inequality (Fact 2.3), for every user i ∈ H ∪ I, it holds that

Pr
[
|Pi ∩ I| ≥

(
α+

ε

2

)
· κ
]
≤ Pr

[
|Pi ∩ I| − E [|Pi ∩ I|] ≥

ε

2
· κ
]
≤ e−

ε2

2
·κ.

The claim now follows from the union bound.
We now show Item 2. Since the server is honest, all users will obtain a commitment to the

same vector. Thus, all users remain if and only if no user will be sampled by too many other users
(in Steps 5b and 8) and if no personal committee will be labeled inactive. The former holds with
negligible probability and it directly follows from Chernoff’s inequality (Fact 2.2) and the union
bound. Then latter follows from Item 1 and the security of the broadcast protocol.

We now prove Lemma 3.7, where the server is assumed to be malicious.

Proof of Lemma 3.7. For simplicity, throughout the entire proof we assume the malicious server
always opened the commitments properly. Furthermore, for an alive honest user i ∈ L we let vi
denote the vector to which the (malicious) server send a commitment to user i.15

Proof of Item 1. Assume that less than (1− 2α− ε)n honest users are alive, and let Ti denote
the set of users sampled by user i at Step 13. Then E [|Ti ∩ L|] < (1 − 2α − ε)κ. Therefore, by
Hoeffding’s inequality (Fact 2.3) user i aborts at Step 13 except with probability at most

Pr
[
|Ti ∩ L| ≥

(
1− 2α− ε

2

)
· κ
]
≤ Pr

[
|Ti ∩ L| − E [|Ti ∩ L|] ≥

ε

2
· κ
]
≤ e−

ε2

2
·κ.

Item 1 now follows from the union bound.
15Note that the existence of vi is only guaranteed from a computational perspective, namely, the computationally

bounded malicious server cannot decommit to any other value. To formalize this argument, observe that if there
exists another vector v′i to which the server is able to decommit without user i aborting, then this directly translate
to an attacker breaking the binding assumption of the vector commitment scheme.
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Proof of Item 2. Assume towards contradiction that the inequality is false for some adversary
A corrupting the server. Then there exists an honest user i ∈ L whose PC does not contain at
least (α + ε/2)κ honest users, with probability at least e−ε

2·κ/2. Consider the following thought
experiment, where two parties, a user u and a server, interact. At the beginning of the interaction,
the (malicious) server chooses two subsets I and L, where |I| ≤ αn. The server and user u agree on
a random subset P ⊆ [n] of size κ, using the same interaction as in Step 1 of the protocol. We say
that the server wins if it succeeds in forcing the output P to admit |P ∩ I| ≥ (α+ ε/2)κ. Similarly
to the case where the server is honest (see Item 1 of Lemma 3.6), by Fact 2.3, for every malicious
server (that decommits properly) it holds that the probability that the adversary wins is

Pr
[
|P ∩ I| ≥

(
α+

ε

2

)
· κ
]
≤ e−

ε2

2
·κ.

We now show that using the above adversary A for the multiparty protocol, the server in the
two-party experiment can achieve its goal with probability higher than the above quantity. The
server (in the two-party setting) sets I to be the set of users corrupted by A, and interacts with
the user u the same as A interacts with user i, emulating in its head the entire multiparty protocol
(except the interaction with i). Clearly, the server in the two-party protocol succeeds with too high
probability, resulting in a contradiction.

Proof of Item 3. Consider the directed graph G over the users (and not the PCs), where the
edges between honest alive users are defined via the sets {N out

i }i (i.e., there is an edge from i to j
if and only if j ∈ N out

i ). Then at least (1− 2α− ε/2)n > 3n/4 of its vertices are users in L. Now,
by Item 2 there exists at least one alive honest PC. Therefore, by Lemma 3.2 applied for the graph
G with Bad := [n] \ L, it follows that if one PC of an alive honest user aborted, then all such PCs
would have aborted at Step 8, except with negligible probability. Thus, the PCs are all active, and
the corresponding graph has diameter d log(n/4)

log(κ/4)e+ 1, except with negligible probability.
To see the “moreover” part, observe that if a user has more than 4κ neighbors, then more than

3κ sampled it. Thus, it must have aborted at Step 5b.

Proof of Item 4. Fix i ∈ L. We prove the stronger statement asserting that for every alive
honest user j ∈ L, the proper decommitment to cj at position i returns Pi. We show this in two
steps. First, we show that for all i ∈ L, it holds that the majority (rather than all) of alive honest
users j are such that the proper decommitment of cj at position i results in Pi. In the second step,
we conclude that the above statement holds for all users j ∈ L.

Before presenting the formal proof, let us first provide an intuitive explanation. For the first
step, assume towards contradiction that the majority of alive honest users j disagree with user
i at position i in their committed vector. Then the set of users Si to which user i received the
commitments at Step 5d, on expectation will contain a majority of users j that disagree at position
i, thus user i will sample many disagreeing users with overwhelming probability, causing it to
abort. For the second step of the proof, if most users agree at position i, then the query set Q of
any user that disagrees with the majority, will contain at least one of those in the majority with
overwhelming probability, thus causing the user in the minority to abort.

We now formalize the above intuition. Let Li := {j ∈ L : vj(i) = Pi} denote the set of all
alive honest users j that agree with i at position i. We first show that |Li| ≥ (1/2 + ε/2)n =
(9/16 − α/2)n > n/2. Assuming otherwise, it holds that E [Si ∩ Li] < (1/2 + ε/2)κ, hence by
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Fact 2.3 it follows that

Pr

[
|Si ∩ Li| ≥

(
1

2
+ ε

)
· κ
]
≤ Pr

[
|Si ∩ Li| − E [|Si ∩ Li|] ≥

ε

2
· κ
]
≤ e−

ε2

2
·κ.

Thus, except with negligible probability, user i sampled less than(
1

2
+ ε

)
κ =

(
5

8
− α

)
κ <

(
15

16
− 3α

2

)
=
(

1− 2α− ε

2

)
κ

users with consistent information. However, since we assume i did not abort, it follows that
all honest users it sampled must be from Li, resulting in a contradiction. Therefore, the event
|Li| < (1/2 + ε/2)n occurs with negligible probability.

To conclude the proof of Item 4, we next show that any user j /∈ Li aborts Step 6c, except with
negligible probability. Indeed, the probability that j does not abort is at most

Pr [Qj ∩ Li = ∅] ≤ Pr [|Li| < (1/2 + ε/2)n] + Pr [Qj ∩ Li = ∅ | |Li| ≥ (1/2 + ε/2)n] .

The above quantity is negligible since

Pr [Qj ∩ Li = ∅ | |Li| ≥ (1/2 + ε/2)n] ≤
(

1− (1/2 + ε/2)n

n

)κ
< e−

1+ε
2
·κ.

4 Towards Reducing User Complexities: Committee Election

Similarly to [18, 20, 16], a key component of our construction is a committee election protocol.
Our protocol follows ideas similar to Feige’s lightest-bin protocol [35], but is adjusted to the special
GMPC setting, where the users are polylogarithmic (in the number of users n) and communication
be blocked by the server. These requirements make the process of jointly agreeing on a single
committee quite challenging.

We show how the parties can perform this task assuming the PCSG event occurred, namely, the
parties are replaced with personal committees and they hold together a graph with small diameter.
Specifically, even if the server is malicious, then with overwhelming probability more than 7/8 of
users in the elected committee are honest (note that this guarantee is not the same as in Feige’s
protocol). In addition, the committee will be of size Θ(κ) = ω(log n).

We next formally define the committee election functionality felect. To simplify the presentation,
we split the description into two cases, depending on whether the server is honest or malicious.
Note that unlike in Feige’s protocols, here a malicious server can abort some honest users, hence
the users do not know the number of remaining users.

Ideal world for electing a committee assuming an honest server. We next describe the
interaction in the ideal world of felect assuming the server is honest. Let A be an adversary
corrupting a subset I ⊆ [n] of the users, and which does not corrupt the server.

Inputs: All parties hold the security parameter 1κ and the number of users (held in unary by the
server and in binary by the users). The adversary is given auxiliary input aux ∈ {0, 1}∗.
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Adversary aborts some malicious users: The adversary sends to T a set L ⊆ [n] of alive users,
where H ⊆ L.

Trusted party chooses a committee: The trusted party does the following.

1. Set b = d|L|/κe to be the number of bins.

2. For every alive (possibly malicious) user i ∈ L, sample a bin xi ∈ [b] independently and
uniformly at random.

3. Set C to be the lightest bin and send it to all parties (note that |C| ≤ κ by the pigeonhole
principle).

Output: Each honest user and the server output whatever it received from the trusted party, the
corrupted parties output nothing, and the adversary outputs some function of its view.

Ideal world for electing a committee assuming a malicious server. We next describe the
interaction in the ideal world of felect assuming the server is corrupted. Let A be an adversary
corrupting a subset I ⊆ [n] of the users, which also corrupts the server.

Inputs: All parties hold the security parameter 1κ and the number of users (held in unary by the
server and in binary by the users). The adversary is given auxiliary input aux ∈ {0, 1}∗.

Adversary aborts some users and choose number of bins: The adversary either sends abort
to T or sends it a set L ⊆ [n] of alive (possibly malicious) users of size at least |L| ≥ 7n/8,
and the number of bins b, where b ≥ d7n/8κe.

Trusted party splits users into bins: If T received abort, then it sends ⊥ to all parties and
halts. Otherwise, for every alive honest user i ∈ L∩H, the trusted party samples a bin xi ∈ [b]
independently and uniformly at random. It then sends {(i, xi)}i∈L∩H to the adversary.

The adversary chooses a bin and adds corrupted users: For every j ∈ [b], let Bj = {i ∈
L∩H : xi = j} denote the set of honest users that sampled the jth bin. The adversary sends
back either abort or a set C of size at most κ, such that there exists j ∈ [b] for which it holds
that Bj ⊆ C and C \ Bj ⊆ I (note that such a j always exists if the server is honest, hence,
when such a j does not exist then it implies the server must behaved maliciously).

The trusted party sends outputs: If T received abort it sends ⊥ to all parties and halts. Oth-
erwise, it sends C to all users in L and sends ⊥ to all other users.

Output: Each honest user outputs whatever it received from the trusted party, the corrupted
parties output nothing, and the adversary outputs some function of its view.

We prove that conditioned on the event PCSG, the parties can compute felect securely. Formally,
we prove the following.

Theorem 4.1. Let α < 1/8 be a constant (i.e., it does not depend on κ or the number of users n).
Then there exists an n-user GMPC protocol computing felect, such that conditioned on the event
PCSG, the protocol is αn-secure.
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The proof of Theorem 4.1 is presented in Section 4.1. Then, in Section 4.2 we present a
protocol for electing many committees, such that each committee will be assigned to one user. This
will later be used in Sections 5 and 6 for the construction of secure protocols for general GMPC
functionalities. Before proving the theorem, we first show that it contains a vast majority of honest
users. In fact, we take into account the number of users stated to be alive by the adversary. This
will later allow us to claim that users in the committee can securely compute any functionality (see
Section 6.1). Recall that we let ε = 1/8− α > 0.

Lemma 4.2. Let α < 1/8, let A be an adversary corrupting αn of the users (which possibly corrupts
the server), and let β = |([n] \ L) ∪ I|/n denote the fraction of users that are either malicious or
not alive, among the set of all users. Then in an execution of felect holds that if the parties output
a committee C, then

Pr [|C \ I| < (1− β − ε/2) · κ] < n · e−
ε2

8
·κ.

In particular, C contains strictly more than 3/4 fraction of honest users, except with negligible
probability. Moreover, if the server is honest then all honest users always output C.

The proof follows from an immediate application of Lemma 2.21. To see why the fraction of
honest users in C is more than 3/4, observe that

β =
|([n] \ L) ∪ I|

n
≤ 1

8
+ α <

1

4
.

4.1 Committee Election Protocol

We are now ready to introduce our protocol for electing a committee of size κ. Given the event
PCSG, the protocol for electing a committee proceeds as follows. First, the server will send to all
personal committees the number of remaining users. Each PC then checks with its neighbors if
they received the same number. For O(log n/ log κ), each PC notify its neighbors that it did not
abort.

The PCs then execute the following variant of Feige’s protocol: each PC randomly choose a bin
and send it to the server. The server will send back the set of users C who chose the lightest bin
alongside the index of this bin. Each PC Pi then verifies that i ∈ C if Pi chose the bin, and i /∈ C
otherwise. Additionally, the PCs will check that C is not larger than κ. Finally, each PC will ask
if its neighbors on the graph are still active for O(log n/ log κ) steps.

Similarly to Protocol 2, we describe the protocol in a hybrid world, where the hybrid function-
alities compute the “next-message” function of each PC.We also abuse notions and describe the
protocol as if each PC is a single party. Formally, whenever we say that the server sends a message
to Pi, it means that it (supposedly) shares it among the users of Pi. Similarly, when we say that Pi
sends a message to the server, it means that every user in Pi sends its share of the message to the
server. Finally, whenever a PC Pi sends a message msg to another PC Pj , it means that each user
in Pi shares its share of msg among the users in Pj . We let NxtMsg = {NxtMsgi}ni=1 and describe
the protocol in the NxtMsg-hybrid model. To obtain a protocol in the real world (i.e., without
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access to NxtMsg), the parties will implement each call via the protocol from Section 6.1.

Protocol 3: Committee

Common inputs: All parties hold the security parameter 1κ and the number of users n (held in
binary by the users, and in unary by the server).
Event assumption: We assume that the event PCSG occurred. Recall that an honest server holds
the list L = {(i,Pi)}i of all alive users and their PCs. Additionally, it holds the graph G = (L, E)
induced by the neighbors of each alive user. The neighbors Ni of users i is held by user i and all
users in its personal committee Pi.
The users agree on the number of alive users:

1. The server sends to all PCs the number of alive users. Let n′ denote this value.

2. Each PC Pi sends n′ to all of its neighbors, i.e., to all Pj where j ∈ Ni.

3. A PC aborts if it received a value from one of its neighbors that differs from the value it
received from the server.

4. For d log(n/4)
log(κ/4)e+1 iterations, each personal committee Pi sends alive to every Pj where j ∈ Ni.

At any iteration, if Pi did not receive the message alive from any of its neighbors, it aborts.

The parties run a variant of Feige’s protocol:
1. Let b = dn′/κe denote the number of bins. Each PC Pi samples a bin xi ∈ [b] uniformly at

random and sends it to the server.

2. The server:

(a) Let x = minority(x1, . . . , x|V|).

(b) Let C = {i ∈ V : xi = x}.
(c) Send C and x to all personal committees.

3. Each personal committee Pi sends C and x to each of its neighbors, i.e., to every Pj where
j ∈ Ni.

4. A personal committee Pi sends ⊥ to every neighbor Pj where j ∈ Ni and aborts if one of the
following holds.

• It received different C or x from one of its neighbors, or

• |C| > κ, or

• xi = x and i /∈ C, or

• xi 6= x and i ∈ C.

5. For d log(n/4)
log(κ/4)e+1 iterations, each personal committee Pi sends alive to every Pj where j ∈ Ni.

At any iteration, if Pi did not receive the message alive from any of its neighbors, it aborts.

6. Each user outputs C.

Clearly, since we assume PCSG to occur, no user is in more than 3κ PCs, thus the running time
of all users is polylogarithmic in n. The next lemma states that the protocol securely computes
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felect. In Section 6.1, we show how implement the NxtMsg hybrid functionalities, with security
under parallel composition. Together with the composition theorem, this proves Theorem 4.1.

Lemma 4.3. Let α < 1/8 be a constant. Then protocol Committee computes felect with αn-security
in the NxtMsg-hybrid model, conditioned on the event PCSG.

Proof. Fix an adversary A corrupting a subset I ⊆ [n] of the users, of size at most |I| ≤ αn. We
separate the proof into two cases, depending on whether the server is honest or corrupted.

Honest server. Since PCSG is assumed to have occurred, it follows that all PCs honest users are
active, and all PCs (whether of malicious or honest users) contain at least (1− α − ε/2)κ > 7κ/8
honest users. Therefore, the adversary cannot prevent any of the calls to each NxtMsgi functionality
to be delayed. Furthermore, at any round of the protocol, the adversary sees at most (α+ ε/2)κ <
κ/8 shares from each PC. Thus, its view is comprised of only random messages sampled uniformly
at random and independently.

Malicious server. We next define the simulator SimA. To simplify the presentation, we do not
concern ourselves with the view of malicious users in honest PCs, similarly to the case where the
server was honest, they correspond to shares that reveal no information to A. Furthermore, we
assume the server does not block any message sent from one honest PC to another, as this will
immediately cause all honest users to abort. The simulator does as follows.

1. Simulate “the users agree on the number of alive users”:

(a) Query the adversary A for the number of alive users that it sends to the honest PCs.16

If two of them differ or the number is less than 7n/8, then send abort to the trusted
party T, output whatever A outputs, and halt.

(b) Otherwise, let n′ denote the number of alive users as was sent by the server.

(c) Query A for the messages that each malicious PC sends to its neighbors (recall that
messages sent to other PCs are considered DDoS attacks, and where handled in Sec-
tion 2.2). If any of the message differ from n′ during the simulation of Step 3, or differ
from alive during the simulation of Step 4, then send abort to T, output whatever A
outputs, and halt.

(d) Otherwise, send to T the set L of alive users as given by the event PCSG (note that it
could be the case that n′ 6= |L|), and the number of bins b = dn′/κe.

(e) The simulator obtains from the trusted party the bins that each alive honest user sam-
pled. That is, it receives {(i, xi)}i∈L∩H, where xi ∈ [b].

2. Simulate “the parties run a variant of Feige’s protocol”:

(a) Send the collection of choices {(i, xi)}i∈L∩H to A.

(b) The adversary replies with a set C and a bin-index x for every alive honest PC. If one
of the following occur, then send abort to T, output whatever A outputs, and halt.

• Two PCs received different messages.

16Formally it is given as shares, on for each party. However, it is clear that the simulator can reconstruct the
message.
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• |C| > κ.

• There exists i ∈ L ∩H such that either xi = x and i /∈ C, or xi 6= x and i ∈ C.
(c) Query the adversary for the message that the malicious PCs sends during Step 5. If any

of them is not alive, then send abort to T, output whatever A outputs, and halt.

(d) Otherwise, send C to T, output whatever A outputs, and halt.

We claim that real (hybrid) world is identically distributed as the ideal world. Clearly, the
messages the adversary sees in the real world are identically distributed as the messages it receives
from the simulator in the ideal world. In particular, it responds with the same messages. Moreover,
by the assumption that the event PCSG occurred, it follows that if any PC does not send the message
alive in the protocol at Steps 4 and 5, then all users abort. By the construction of the simulator, this
occurs in the real world with exactly the same probability as in the ideal world. Finally, observe
the committee C send by the simulator in the ideal world satisfy the constrains it must abide by,
namely, it is of size at most κ, and there exists j ∈ [b] for which it holds that Bj ⊆ C and C \Bj ⊆ I,
where Bj = {i ∈ L ∩H : xi = j} is the jth bin.

4.2 From a Single Committee to Many Committees

Recall that our final goal is to construct a secure protocol for computing an arbitrary function over
the users’ inputs. The first step towards constructing such a protocol, is to elect many committees,
where each will effectively act as an honest party, replacing one user. Once the committees are
elected, we let each of them hold an input of one party, and then run a secure protocol with
the server (see Sections 5 and 6). We show how to securely elect n + 1 committees so that each
committee contains sufficiently many honest users, and can thus be treated as an honest party.

We next formally describe the functionality, denoted fmany. Roughly, the first committee sam-
pled by the functionality, is sampled similarly to felect, while the other are sampled honestly regard-
less of whether the server is corrupted or not. The functionality then sends a different committee
to each user. Additionally, the users holds the committees in a “tree-like” structure, that is, all
users in one committee will hold all users in the corresponding children and parent committees.

Ideal world for electing many committees assuming an honest server. We next describe
the interaction in the ideal world of fmany assuming the server is honest. Let A be an adversary
corrupting a subset I ⊆ [n] of the users, and which does not corrupt the server.

Inputs: All parties hold the security parameter 1κ and the number of users (held in unary by the
server and in binary by the users). The adversary is given auxiliary input aux ∈ {0, 1}∗.

Adversary aborts some malicious users: The adversary sends to T a set L ⊆ [n] of alive users,
where H ⊆ L.

Trusted party samples committees: The trusted party does the following.

1. Set b = d|L|/κe to be the number of bins.

2. For every alive (possibly malicious) user i ∈ L, sample a bin xi ∈ [b] independently and
uniformly at random.

3. Set C0 to be the lightest bin (note that |C0| ≤ κ by the pigeonhole principle).
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4. For every i ∈ [n], sample a committee Ci ⊆ L of size κ uniformly at random.

5. Send {Ci}ni=0 to the server, and for every user i ∈ [n], send Ci to user i, and to all users
in C2i+1 and C2i+2 (assuming 2i+ 1, 2i+ 2 ∈ [n]) and vice versa.

Output: Each honest user and the server output whatever they received from the trusted party,
the corrupted parties output nothing, and the adversary outputs some function of its view.

Ideal world for electing many committees assuming a malicious server. We next describe
the interaction in the ideal world of fmany assuming the server is corrupted. Let A be an adversary
corrupting a subset I ⊆ [n] of the users, which also corrupts the server.

Inputs: All parties hold the security parameter 1κ and the number of users (held in unary by the
server and in binary by the users). The adversary is given auxiliary input aux ∈ {0, 1}∗.

Adversary aborts some users and choose number of bins: The adversary either sends abort
to T or sends it a set L ⊆ [n] of alive (possibly malicious) users of size at least |L| ≥ 7n/8,
and the number of bins b, where b ≥ d7n/8κe.

Trusted party splits users into bins: If T received abort, then it sends ⊥ to all parties and
halts. Otherwise, for every alive honest user i ∈ L∩H, the trusted party samples a bin xi ∈ [b]
independently and uniformly at random. It then sends {(i, xi)}i∈L∩H to the adversary.

The adversary chooses a bin and adds corrupted users: For every j ∈ [b], let Bj = {i ∈
L∩H : xi = j} denote the set of honest users that sampled the jth bin. The adversary sends
back either abort or a set C0 of size at most κ, such that there exists j ∈ [b] for which it holds
that Bj ⊆ C0 and C0 \ Bj ⊆ I (note that such a j always exists if the server is honest, hence,
when such a j does not exist then it implies the server must behaved maliciously).

Trusted party samples other committees and sends output: If T received abort it sends ⊥
to all parties and halts. Otherwise, it does the following.

1. For every i ∈ [n], sample a committee Ci ⊆ [n] of size κ uniformly at random.

2. Send {Ci}ni=1 to the server.

The adversary chooses whether to end to computation or not: The adversary replies with
either abort or a new set of alive L′ ⊆ [n] of users of size at least |L′| ≥ 7n/8. In the former
case, T send ⊥ to all parties and halt. In the latter case, for every alive user i ∈ L′, send Ci
to user i, and to all (alive) users in C2i+1 and C2i+2 (assuming 2i + 1, 2i + 2 ∈ [n]) and vice
versa.

Output: Each honest user outputs whatever it received from the trusted party, the corrupted
parties output nothing, and the adversary outputs some function of its view.

We prove the following result, asserting there exists a secure protocol for computing fmany

assuming the event PCSG occurred.

Lemma 4.4. Let α < 1/8 be a constant. Then there exists an n-user GMPC protocol computing
fmany, such that conditioned on the event PCSG, the protocol is αn-secure.
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We now briefly explain the idea for sampling many committees. First, the parties will generate
a global common committee C0 known to all parties, using Protocol 3. Then, C0 constructs a tree
of n+ 1 committees, with itself as the root. This is done by having each node (committee) sample
two children (i.e., two new committees). Doing this for log n iterations results in the foramtion
of n + 1 committees. By Lemma 4.2 and the union bound, with overwhelming probability, all of
these committees will have a vast majority of honest users. Hence, they can be effectively viewed
as honest parties. Moreover, it is highly unlikely that any user will appear in more then polylog(n)
committees, hence efficiency is maintained.

After the tree of (honest) committees is completed, each committee is assigned to one user, that
is, committee Ci will be assigned to user i. There are two main difficulties in doing so. The first
one is that the committee must prove to the user it was sampled honestly during the creation of
the tree. The second issue is that the committee cannot distinguish an aborting user from one that
is blocked by the server, hence the input could be lost.

To overcome to the first issue, we let C0 sample signature keys, and pass them to all committees
in the tree via its children. Thus, each committee can prove honesty by signing a random message.
For a user to be able to verify the signed message, C0 must deliver it the public key. To do so
efficiently, we use the assumption that the event PCSG occurred. Recall that the event asserts
that each user has an associated personal committees replacing it, and furthermore, the PCs agree
on a communication graph of diameter O(log n/ log κ), in the sense that each PC knows its set of
neighbors.

With this in mind, we let all users in C0 send the public key to their respective PCs, as well
as to the server. Each PC then compares the public key to the one sent to the server. If they are
the same, then it passes it to all other PCs along the communication graph. Otherwise, it sends
⊥ to all its neighbors (without aborting). If there is no value that appears more than (roughly)
3/4 of the time, then the users know the server is malicious. Finally, all PCs send the public key
to their associated user (assuming the user is still active). By the small diameter property of the
graph (assumed to hold by the PCSG event), it follows that in O(log n/ log κ) rounds all users, will
obtain the public key.

As for the second issue, we let the committees request a response from its assigned user, and
simply aggregate along the tree responds. If too many users did not respond, then they necessarily
know the server is corrupted and they all abort (note that this holds true regardless of how many
users aborted previously).

We next formally describe the above process. Similarly to protocols CommitteeSetup and
Committee, the protocol is described in a hybrid world, denoted NxtMsg, where the hybrid func-
tionalities compute the next-message function of each committee and each PC. The NxtMsg func-
tionalities that correspond to the committees, are defined similarly to those that correspond to
PCs, with the difference being the sharing threshold of the sharing scheme used for the inputs and
outputs of the participating users. Specifically, the shares are generated in a (1−β−ε/2)κ-out-of-κ
Shamir’s secret sharing scheme, where β = |L ∩ I|/|L| is the fraction of malicious users among the
alive users.17 In Section 6.1, we show how to implemented these functionalities.

If at any point during the computation, the server blocks the communication between two com-
mittees (i.e., the users in the receiving committee do not hold sufficiently many shares), then the

17Formally, the functionality cannot obtain L, and hence it cannot compute β. However, the fraction of alive users
can be estimated by sampling κ random users and requesting a response. To simplify the presentation, we assume
the functionality receives β. We stress that the implementation provided in Section 6.1, does not assume this.
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receiving committee aborts. If the parent (global) committee aborts, it sends this information to
κ random PCs who passes this information through the communication graph. To simplify the
presentation of the protocol, we will not concern ourselves with these issues. We are now ready to
describe the protocol. It is presented in the {NxtMsg, felect}-hybrid model.
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Protocol 4: ManyCommittees

Common inputs: All parties hold the security parameter 1κ and the number of users n (held in
binary by the users, and in unary by the server).
Event assumption: We assume that the event PCSG occurred. Recall that an honest server holds
the list L = {(i,Pi)}i of all alive users and their PCs. Additionally, it holds the graph G = (L, E)
induced by the neighbors of each alive user. The neighbors Ni of users i is held by user i and all
users in its personal committee Pi.
Sample first committee and send public verification key to all users:

1. The parties call felect. If they receive ⊥, the abort. Otherwise, let C0 denote the sampled
committee.

2. C0 prepares signature keys (pk, sk) ← Sig.Gen(1κ). It then sends pk to the server and to all
users i ∈ C0.

3. For every i ∈ C0, the server sends pk to PC Pi.

4. Each PC Pi sets pki to be an empty array of length |C0|, indexed with the users in C0. If Pi
received the same value pk from user i and from the server, it sets pki(i) = pk. Otherwise, it
sets pki(i) = ⊥. It then sends pki to all its neighbors Pj , i.e., where j ∈ Ni.

5. For d log(n/4)
log(κ/4)e + 1 iterations, each PC updates its array according to values it received from

its neighbors, and sends the updated array to its neighbors.

6. If there exists a value in pki that appears at least (3/4 − ε/2)κ times (where ε = 1/8 − α),
then Pi sets it to be the public key and sends this value to users i. Note that by Lemma 4.2,
with overwhelming probability, this value will be the public key pk that was sampled by C0.
To alleviate notations, we will use pk to denote this value.

Sample the rest of the committees:
1. For i = 0 to dlog ne − 1:

(a) Committee Ci samples two more committees C2i+1, C2i+2 ⊆ [n], each of size κ, indepen-
dently and uniformly at random, and sends them the secret signature key sk (held shared
among the users in the committee) and its identity Ci.

(b) For b ∈ {1, 2} such that 2i+ b ∈ [n]:

i. Committee C2i+b sends to user 2i+ b the pair (r2i+b, σ2i+b), where r2i+b ← {0, 1}κ
is a random string and σ2i+b ← Sig.Signsk(r2i+b) is its signature.

ii. If Sig.Verifypk(r2i+b, σ2i+b) = 1, then user 2i+ b responds to C2i+b with the message
alive. Otherwise, if it never received a signed message it aborts.

2. The committees aggregate the total number of alive message they received. Let ` denote the
final result, held by C0.

3. If ` < (1− α− ε/2)n then each committee notifies its user to abort.

4. Otherwise, an honest user i outputs Ci, and for every j ∈ {0, . . . , n}, where i ∈ Cj , the user
outputs C2j+1, C2j+2, and Cb(j−1)/2c as well (assuming the indexes are in {0, . . . , n}). An
honest server outputs {Ci}ni=0.
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By Fact 2.2, no user will be in more than 3κ committees except with negligible probability,
hence the protocol maintains efficiency. As for security, the intuition is that by Lemma 4.2 and the
union bound, all committees sampled during the execution of the protocol will contain a vast honest
majority with overwhelming probability. In particular, the number of honest users is sufficient so
that the calls to NxtMsg will be be executed honestly. Finally, since the adversary cannot forge
a signed random message, no user will appear in a maliciously fabricated committee. We next
formalize this intuition.

Lemma 4.5. Let α < 1/8 be a constant. Then protocol ManyCommittees computes fmany with
αn-security in the {NxtMsg, felect}-hybrid model, conditioned on the event PCSG.

Proof. Fix an adversary A corrupting a subset I ⊆ [n] of the users, of size at most |I| ≤ αn. The
case where the server is honest follows similar reasoning to the proof of Lemma 4.3 and is therefore
omitted.

We next assume the adversary corrupts the server. We assume without loss of generality that
the adversary did not send abort to the functionality felect, as this causes all users to abort. Let
L ⊆ [n] denote the set of alive users the adversary sent to the functionality felect at the start of the
protocol (where |L| ≥ 7n/8). Observe that by Lemma 4.2 and the union bound, it follows that

|Ci \ I| ≥ (β + ε/2)κ

for all i ∈ {0, . . . , n}, except with negligible probability, where β = |([n] \ L) ∪ I|/n is the fraction
of users that are either not alive or malicious, among the total number of users. In the rest of the
proof we condition on this event occurring.

We next define the simulator SimA. Similarly to the proof of Lemma 4.3, to simplify the
presentation, we do not concern ourselves with the view of malicious users in honest PCs or in
committees, as they correspond to random share. Furthermore, we assume the server does not
block any message sent from one honest PC to another, as this will immediately cause all honest
users to abort. The simulator does the following.

1. Simulate “Sample first committee and send public verification key to all users”:

(a) Simulate the interaction between A and the functionality felect:

i. Query A for the set L of alive users, and the number of bins b. Send these to the
trusted party, and obtain {(i, xi)}i∈L∩H.

ii. Send {(i, xi)}i∈L∩H to the adversary A, who responds with a set C0 of size at most κ,
such that Bj ⊆ C0 and C0 \Bj ⊆ I for some j ∈ [b], where Bj = {i ∈ L∩H : xi = j},
is the jth bin.

(b) Generate signature keys (pk, sk)← Sig.Gen(1κ) and send pk to the adversary.

(c) For every honest i ∈ C0, the adversary sends a value pk′i to the PC Pi.
(d) If less than (3/4 − ε/2)κ of them received pk from A, then send abort to the trusted

party T, output whatever A outputs, and halt (note that simulating the view of A during
Step 5 is redundant since the adversary can compute it by itself).

2. Simulate “Sample the rest of the committees”:

(a) Send C0 to the trusted party, who replies with committees {Ci}ni=1, where Ci ⊆ [n] is of
size κ for all i ∈ [n].
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(b) For i = 0 to dlog ne − 1:

i. Send C2i+1 and C2i+2 to A (and shares of sk).

ii. For b ∈ {1, 2} such that 2i + b ∈ I is corrupted, send to A the pair (r2i+b, σ2i+b),
where r2i+b ← {0, 1}κ is a random string and σ2i+b ← Sig.Signsk(r2i+b) is its signa-
ture.

iii. For b ∈ {1, 2} such that 2i + b ∈ H is honest, the adversary can either block the
message alive that user 2i+ b is suppose to send, or not.18

(c) If the server blocked at least 7n/8 users during Step 2(b)iii, then send abort to T, output
whatever A outputs, and halt.

(d) Otherwise send the set L′ ⊆ [n] of all users that are either malicious or honest that were
not blocked, to T, output whatever A outputs, and halt.

Clearly, the view of A in both worlds are identically distributed. In particular, the adversary’s
replies are identical. We next show that, conditioned on the view of A being the same in both
worlds, the output of the honest users in both worlds is statistically close.

Indeed, in the ideal world, the committees are sampled honestly by the trusted party. Con-
versely, in the real world, they are sampled honestly if and only if all of them contain sufficiently
many honest users, which holds due to Lemma 4.2 except with negligible probability. Additionally,
in the ideal world no honest user will output a committee fabricated by the adversary. In the real
world, such an event can occur if and only if the adversary forged a signature of a κ-length random
message. By the security of the signature scheme, the adversary will be able to do this with only
a negligible probability.

Remark 4.6. Recall that when we formally defined the GMPC model in Section 2.2, we noted
the adversary can perform a DDoS attack, even without corrupting the server. We proposed two
solutions to this issue, where one of them was a combinatorial solution, that in general could allow
the adversary to cause a small fraction of honest users to abort even when the server is honest.

Observe that given these committees, they parties can overcome this issue, and have the com-
mittees represent honest users that aborted during the election of the first committee. To do so, the
users that previously aborted, can obtain the public signature keys by requesting it from κ randomly
sampled PCs and comparing the information. Since the server is honest, the information will al-
ways be consistent (since all PC have more than 7/8 fraction honest users in them), hence the
users will not abort. Furthermore, the attacker cannot perform a DDoS attack at this stage, since
the server knows which users suppose to interact with each other, hence it can block the malicious
users in case they attack.

5 Server’s Proof of Correctness of Computation

We present a protocol allowing a server to compute an arbitrary function over the users’ inputs,
while proving to the users that the computation was done correctly. For the entire section, we
assume that all users are honest, while only the server might be corrupted. We further assume the
users are connected via a binary tree network, with the root of the tree known to all parties. These

18Observe that the simulator can obtain the set of blocked users from the malicious server, since at the beginning
of every round, the server expects to receive the set of pairs (i, j), where user i sends a message to user j.
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assumption are then removed in Section 6 by electing many committees using the protocol from
Section 4, and letting each committee replace a user.

Before presenting the protocol in Section 5.2, we present in Section 5.1 a protocol that allows
the users to verify a certain computation by the server was done properly.

5.1 Verifying the Computation

We present a protocol that allows a prover to prove a P statement19 to n + 1 (honest) verifiers,
so that a cheating prover is caught with overwhelming probability. The prover holds an input x
of length Õ(n), and each verifier holds a single polylog(n)-sized substring of x. We assume the
verifiers run in time that is polylogarithmic in the number of users and polynomial in the security
parameters. Furthermore, the verifiers are connected to each other via a binary tree network.

In the construction of the protocol we use probabilistically checkable proofs of proximity (PCPP)
[11, 32]. Roughly speaking, a PCPP allows a verifier to be convinced that the input is close to
being in a language L. In more details, the verifier has an explicit input x and an implicit input
y given as an oracle. The verifier accepts with high probability if y is close to some y′ such that
(x, y′) ∈ L.

We now present the protocol. We first describe its setting. There is a single verifier V, n helping
parties H1, . . . ,Hn, and a single prover P. The prover is connected to every other party via a secure
point-to-point channel, and the verifier and the helpers are connected via a binary tree network.
Specifically, the root of the tree is V whose identity is known to all parties, and is connected to both
H1 and H2. Additionally, for every i ∈ [n], helper Hi is connected to H2i+1 and H2i+2 (assuming
2i+ 1, 2i+ 2 ∈ [n]).

The goal of the prover is to prove some P statement (encoded as x ∈ L for some language
L ∈ P) to the verifier. Our setup assumption is that the string x is divided among the helpers and
the verifier (in addition to the prover knowing x in its entirety). The main difficulty is that the
verifier and the helpers are polylogarithmic in n, and hence, any one of them cannot even read the
entire statement. To overcome this, we let them work together as one verifying unit, where the
helpers assist the (designated) verifier in completing this process.

As a first step, the prover encodes x using a linear error-correcting code, partitions the codeword,
and sends to the verifier and each helper a single polylog(n)-sized substring of the codeword. The
verifier and the helpers then check that the encoding was done properly. Since the ECC is linear,
this can be done as follows. The verifier samples a random subset of size polylog(n) of the rows in
the generating matrix of the ECC. Each helper computes its part of the encoding of the input with
respect to this subset of rows.

To complete the verification of the encoding, the helpers sum up their computed values, and
send the sum to the verifier. This summation can be performed efficiently, by propagating the
summed values along the topology of the tree, where the helper at each node sums the values it
receives from its children and pass it on to its parent. In addition, the verifier gathers the encoding
values attributed with the selected subset of rows, directly from the helpers that were assigned this
values (by the server). The verifier then compares the two values for each selected row, and accepts
the encoding if they all match.

If the ECC verification is accepted, the prover generates a PCPP proof for the encoding of the

19Though we state and prove assuming the language belong to P, the same protocol works for any language in NP,
assuming the prover is given the witness to the input.
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language, which is then verified by the verifier. To implement the oracle access of the PCPP’s
verifier, the protocol’s verifier V will use the aid of the helpers. Specifically, since they hold the
encoding of the input, V can simply query them via the correct path on the tree topology.

Intuitively, if the ECC can tolerate more errors than the distance parameter δ of the PCPP
proof, then accepting the proof indicates that the codeword is close to a codeword in the encoding
of the language, thus the original input x is in the language.

In order to simplify the presentation, whenever we say the verifier sends a message to some
helper or vice versa, this is shorthand for having the helpers pass the message along the tree to its
correct destination. Additionally, we will assume that n + 2 is a power of 2, i.e., the binary tree
is full. Finally, we do not assume the prover can block message sent between two other (honest)
parties. This will be handled in Section 6.

In the following, we let L ⊆ {0, 1}∗ × {0, 1}∗ be a pair language in P, and let LECC be an
efficient [3(n + 1) logc n, (n + 1) logc n, 2(n + 1) logc +1] linear error-correcting code, where c ∈ N
is a constant (possibly 0). Additionally, we denote by G be the generator matrix of LECC and we
assume that any entry in G can be computed in time polylog(n).20 Define L′ = {(x, LECC.Enc(y)) :
(x, y) ∈ L}. We let δ(m) = m/ logdm, where d ∈ N is a constant, be the distance param-
eter of the PCPP proof for the pair language L′, as given by Corollary 2.19. Finally, we let
VC = (VC.Setup,VC.Com,VC.Open,VC.Verify) be a vector commitment scheme.

20Reed-Solomon encoding is an example of such encoding.
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Protocol 5: EfficientMutliverifierProof
Inputs: Each helper Hi holds an input xi ∈ {0, 1}logc n, where c ∈ N is some constant, the verifier
holds x0 ∈ {0, 1}logc n, and the prover P holds (x0, . . . , xn).
Common inputs: All parties hold the security parameter 1κ, the number of helpers n (held in
binary by the verifier and the helpers, and in unary by the prover), and a public input pub ∈
{0, 1}poly(κ).
Goal: P wishes to prove the statement (pub, (x0, . . . , xn)) ∈ L.

1. The prover P computes x̃ = LECC.Enc(x0, . . . , xn), where we view each xi as a field element.

2. P partitions x̃ into n+1 strings (x̃0, . . . , x̃n) = x̃, where x̃i ∈ {0, 1}3 logc n for all i ∈ {0, . . . , n}.
It then sends x̃0 to V and for all i ∈ [n] it sends x̃i to Hi.

3. The verifier and the helpers check that the encoding was done correctly:

(a) V samples a set S ⊆ {0, . . . , n} of size κ · logd 4n uniformly at random and sends S to
all helpers (recall that d is the exponent of the logarithm for the distance parameter δ of
the PCPP proof for L′).

(b) For every i ∈ [n] and every j ∈ S, helper Hi computes x̃j [i] := G(j, i) · xi.
(c) For every i ∈ S \ {0} helper Hi sends x̃i to V.

(d) For ` = 1 to log(n+ 2)− 1:

i. For every node i ∈ {(n+ 2)/2` − 1, . . . , (n+ 2)/2`−1 − 2} on the `th level and every
j ∈ S, helper Hi computes

s̃j [i] := s̃j [2i+ 1] + s̃j [2i+ 2] + x̃j [i],

where s̃j [2i+ 1] = s̃j [2i+ 2] = 0 if 2i+ 1, 2i+ 2 > n.

ii. Helper Hi sends s̃ to its parent Hb(i−1)/2c if i > 2, and to V otherwise.

(e) For every j ∈ S, V computes s̃j := s̃j [1] + s̃j [2] +G(j, 0) · x0.

(f) If there exists j ∈ S such that x̃j 6= s̃j , then V sends ⊥ to all parties and outputs reject.

4. The prover P generates a PCPP proof π for the assertion (pub, x̃) ∈ L′.21

5. V computes pp ← VC.Setup(1κ, T (κ, n), {0, 1}), where T (κ, n) is the time it takes for P to
generate π, and sends pp to P.

6. P sends to V a commitment to π.

7. The verifier V executes the PCPP’s verifier VPCPP for π, with the oracle access being imple-
mented as follows:

• Whenever V queries a bit from π, it sends the query to the prover who responds with
a decommitment of the bit.22 If the verification of the decommitment rejects, then the
verifier sends ⊥ to all parties and outputs reject.

• Whenever V queries a bit from the implicit input x̃i for some i ∈ [n], it asks from the
corresponding helper Hi to send the bit to it.

8. V outputs whatever VPCPP outputs.

21Observe that this step can be done in parallel to the verification of the LECC.
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Clearly, the verifier V and helpers H1, . . . ,Hn are all polynomial in log n and κ. The next lemma
states the correctness and soundness of the protocol.

Lemma 5.1. Assume position binding vector commitment scheme exists. If (pub, (x0, . . . , xn)) ∈ L
and the prover is honest, then V always outputs accept. If (pub, (x0, . . . , xn)) /∈ L, then for any
malicious ppt (in κ and n) prover P∗, it holds that V outputs accept with negligible probability.

Proof. Clearly, if (pub, (x0, . . . , xn)) ∈ L and the prover is honest, then by the completeness of the
PCPP proof, and the fact that for every j ∈ S it holds that

s̃j =

n∑
i=0

G(j, i) · xi,

it follows that V accepts the proof with probability 1.
Next, assume that (pub, (x0, . . . , xn)) /∈ L and fix a malicious ppt prover P∗. For simplicity we

assume that P∗ always decommits properly whenever it is required to do so. Let x̃∗ be the purported
encoding sent to the helpers and the verifier, and let D be the set of indexes i ∈ {0, . . . , n} such
that x̃∗i 6= x̃i. Recall that the encoding of any given input xi can be computed efficiently by V and
the helpers. Moreover, this is done for all inputs xi, where i ∈ S. Therefore, as

δ (|x̃|) =
|x̃|

logd |x̃|
=

3(n+ 1) logc n

logd (3(n+ 1) logc n)
≥ 3(n+ 1) logc n

logd 4n
,

for all sufficiently large n’s, it follows that if |D| ≥ δ then the probability that V accepts the
encoding is at most

Pr [V accepts encoding] ≤ Pr [S ∩ D = ∅] ≤
(

1− |D|
n+ 1

)|S|
≤ e−

3(n+1) logc n

logd 4n
·κ·logd 4n

n+1 = e−3κ·logc n.

We may now assume that |D| < δ(|x̃|), that is, ∆(x̃∗, x̃) < δ(|x̃|). Since the LECC can tolerate
(n+1) logc n ≥ δ(|x̃|) errors and by the assumption that (pub, x̃) /∈ L′, it follows that for any possible
codeword ỹ ∈ {0, 1}|x̃∗| where (pub, ỹ) ∈ L′, it holds that ∆(x̃∗, ỹ) ≥ δ(|x̃∗|). Thus, (pub, x̃∗) is such
that x̃∗ is δ-far from any codeword ỹ satisfying (pub, ỹ) ∈ L′, hence the soundness of the PCPP
implies that the verifier accepts with only negligible probability.

5.2 Computing Short Output Functionalities

We are now ready to present a protocol for computing any function with a short output, assuming
that all users are honest. Let us first describe the setting. Similarly to the previous section, there
are n + 1 users P̂0, . . . , P̂n connected via a binary tree network, and a server that is connected to
every party. The root of the tree is P̂0 whose identity is known to all parties. The parties wishe to
compute a function f : ({0, 1}m)n+1 7→ {0, 1}m·(n+1), where m = m(n, κ) = poly(log n, κ), over the
inputs of the users such that only the server obtains the output.

Given EfficientMutliverifierProof the idea is rather simple: The users first encrypt their
inputs using a fully homomorphic encryption scheme. Then, the server homomorphically eval-
uates the function over the encrypted inputs, and proves to the users it did so honestly using

22Observe that since the verifier is honest, it will never query π on an index larger than |π| ≤ T (κ, n), hence the
prover can always decommit.
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EfficientMutliverifierProof. If the proof is accepted, the users decrypt the output. Finally,
since we aim to handle the case where there are n users and the server has an input, we will assume
that P̂0 has no input and the server sends to it an input at the start of the protocol. Similarly to
Section 5.1, in order to simplify the presentation in this section, we do not assume the server can
block message sent between two other (honest) users. This will be handled in Section 6.

In the following, write the function f as f(x) = (f0(x), . . . , fn(x)), where fi(x) ∈ {0, 1}m is
the ith block of the output. Additionally, we let FHE = (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval) be
a fully homomorphic encryption scheme and let s = s(κ) be the number of random bits used in
FHE.Eval. Finally, let G : {0, 1}n+1 7→ {0, 1}s·(n+1) be a pseudorandom generator, and write it as
G(r) = (G0(r), . . . ,Gn(r)) where Gi : {0, 1}n+1 7→ {0, 1}s for every i ∈ {0, . . . , n}.

Protocol 6: GeneralProtocol

Inputs: Each user P̂i, where i ∈ [n], holds an input xi. The server holds x0.
Common inputs: All parties hold the security parameter 1κ and the number of users n+ 1 (held
in binary by the users and in unary by the server).

1. The server sends x0 to P̂0.

2. P̂0 generates FHE keys (pk, sk) ← FHE.Gen(1κ), sends (pk, sk) to all other users, and sends
the public key pk to the server.

3. Each user P̂i, where i ∈ {0, . . . , n}, encrypts its input xi to obtain x̂i ← FHE.Encpk(xi), sample
a uniform random bit ri ← {0, 1}, and sends x̂i and ri to the server.

4. The server homomorphically evaluates all functions fi, where i ∈ {0, . . . , n}, over the en-
crypted inputs using the randomness provided by the users, and obtains the encrypted outputs

ŷi = FHE.Evalpk(fi, x̂0, . . . , x̂n; Gi(r0, . . . , rn)).

5. The server sends ŷi to P̂i, for every i ∈ {0, . . . , n}.

6. The parties execute protocol EfficientMutliverifierProof, where the server takes the role
of the prover P, user P̂0 takes the role of the verifier V, and for every i ∈ [n] user P̂i takes the
role of the helper Hi, for the pair language L defined as follow:

L =

{
(pk, (z0, . . . , zn)) : ∀i ∈ {0, . . . , n}

zi = (ri, x̂i, ŷi) , where

ŷi = FHE.Evalpk (fi, x̂0, . . . , x̂n; Gi(r0, . . . , rn))

}

Observe that L ∈ P, hence the protocol can be executed efficiently.

7. P̂0 sends all parties the output it obtained from the computation.

8. If the output is reject then all users abort.

9. Otherwise, each user P̂i decrypts ŷi to obtain yi ← FHE.Decsk(ŷi), and sends the decrypted
values back to the server.

10. The server outputs (y0, . . . , yn).
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Lemma 5.2. Let m = m(κ, n) = poly(log n, κ) and let f : ({0, 1}m)n+1 7→ {0, 1}m·(n+1) be a GMPC
functionality. Assume the existence of pseudorandom generators, position binding vector commit-
ment schemes, and n-secure fully homomorphic encryption schemes. Then GeneralProtocol com-
putes f with security against any ppt adversary corrupting the server.

Proof. Correctness clearly holds. Assume that the server is corrupted by an adversary A. Its
simulator SimA works as follows.

1. Query A to obtain the input it sends to P̂0, and send it to the trusted party.

2. Receive an output (y0, . . . , yn) from the trusted party (recall that the server has no input and
all users are honest).

3. Generate FHE keys (pk, sk)← FHE.Gen(1κ).

4. Compute n+ 1 dummy encryptions, sample n+ 1 random bits r0, . . . , rn, and send them and
the public key pk to A.

5. The adversary A replies with purported encrypted values (ŷ0, . . . , ŷn).

6. Simulate EfficientMutliverifierProof:

(a) The adversary sends a purported codeword x̃i for each i ∈ {0, . . . , n}.
(b) Perform the same error correction verification as done in the real world. If the verification

fails send ⊥ to A, output whatever A outputs, and halt.

(c) Otherwise, execute the PCPP verifier VPCPP, while querying A whenever VPCPP queries
the proof.

(d) If VPCPP rejects the proof, send ⊥ to A, output whatever A outputs, and halt.

7. If there was no abort during the simulation of EfficientMutliverifierProof, send to A
the output (y0, . . . , yn) as given by the trusted party, output whatever A outputs, and halt.

By the semantic security of the FHE scheme, it follows that the adversary’s view in the real
world is indistinguishable from the view generated in the ideal world. In particular, A’s replies are
indistinguishable. Next, by Lemma 5.1, except with negligible probability, either all users abort
and A does not obtain the output in both worlds, or no user aborts and A receives an output in
both worlds. By the definition of the language L, the output in the real world are the decryptions
of

ŷi = FHE.Evalpk (fi, x̂0, . . . , x̂n; Gi(r0, . . . , rn)) .

Observe that if the distribution of the above (ŷ0, . . . , ŷn) can be distinguished from the encryptions

(FHE.Encpk (yi))
n
i=0

in the ideal world, then FHE.Eval can be used to break the security of the PRG G. Thus, the
outputs of A in both worlds are indistinguishable.
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6 Putting It All Together

In this section, we combine the committee-tree election protocol from Section 4 and the protocol
for proving correct computation from Section 5, and present a protocol for securely computing any
arbitrary short-output functionality assuming at most α-fraction of the users are corrupted, where
α < 1/8 is a constant. Formally, we assume the parties are given ideal access to the functionality
fmany for sampling the tree of committees. This assumption can be removed by implementing the
functionality using Protocol 4, however, this comes at the cost of conditioning on the event PCSG
defined in Section 3.3.

Theorem 6.1. Let α < 1/8, let m = m(κ, n) = poly(log n, κ), and let f : ({0, 1}m)n+1 7→
{0, 1}m·(n+1) be a GMPC functionality. Assume the existence of pseudorandom generators and
n-secure fully homomorphic encryption schemes. Then there exists an αn-secure n-user GMPC
protocol computing f in the fmany-hybrid model.

The idea is to have the parties generate the committees in a tree-like structure by calling fmany,

and let each committee Ci sampled by the functionality emulate a single user P̂i from protocol
Protocol 6. This result in a secure protocol computing any GMPC functionality in the hybrid
model. Similarly to the definitions used in Section 4.2, we formalize this by letting the parties have
access to the “next-message” function of each committee. In Section 6.1 we show to implement
these.

We first define the “next-message” hybrid functionality of the ith committee Ci, denoted NxtMsgi.
The inputs of the users to each call of NxtMsgi are a (1− β − ε/2)κ-out-of-κ Shamir’s secret shar-
ing scheme of the view of Ci, where β is the fraction of malicious users among the alive users. If
at least (1 − β − ε/2)κ inputs are provided to the functionality, then it proceeds to compute the
next-message as specified by the protocol, and sharing the output among the users in Ci. If less
then (1 − β − ε/2)κ inputs are provided (e.g., the user is corrupted or a corrupted server blocked
an honest user), the functionality sends ⊥ to all of its users. If a user obtain ⊥ as the output from
some NxtMsgi, then it aborts.

We abuse notions and describe the protocol as if each committee is a single party. Formally,
whenever we say that the server sends a message to Ci, it means that it (supposedly) shares it
among the users of Ci. Similarly, when we say that Ci sends a message to the server, it means that
every user in Ci sends its share of the message to the server. Finally, whenever a committee Ci
sends a message msg to another committee Cj , it means that each user in Ci shares its share of msg
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among the users in Cj . In the following, we let NxtMsg = {NxtMsgi}ni=0.

Protocol 7: MainProtocol

Inputs: Each user i ∈ [n] holds an input xi. The server holds x0.
Common inputs: All parties hold the security parameter 1κ and the number of users n (held in
binary by the users, and in unary by the server).

1. The parties call fmany to elect n + 1 committees {Ci}ni=0. Recall that each user i holds the
committee Ci, and all committee are held in a tree structure, i.e., the users in Ci holds Ci,
C2i+1, C2i+2, and Cb(i−1)/2c (assuming the indexes are in {0, . . . , n}).

2. Each user i sends its input xi to Ci (held shared). If user i was blocked, then xi is replaced
with a default value.23

3. The committees aggregate the total number of inputs they received. If it is less than (1−α)n,
then they abort (note that with overwhelming probability every user belong to at least one
committee, hence all users abort).

4. The parties emulate an execution of GeneralProtocol, with each committee Ci taking the
role of user P̂i. Specifically, whenever P̂i supposes to compute a message, the users in Ci call
NxtMsgi to obtain the shares of this message.

• If at any point during the emulation, the functionality NxtMsgi outputs ⊥ to the users
in Ci, then they all abort.

5. The server outputs whatever it receives from the emulation of GeneralProtocol.

The following lemma asserts the security of MainProtocol. Combined with the secure imple-
mentation of NxtMsg we will present later in Section 6.1 and the composition theorem, this proves
Theorem 6.1.

Lemma 6.2. Let α < 1/8, let m = m(κ, n) = poly(log n, κ), and let f : ({0, 1}m)n+1 7→
{0, 1}m·(n+1) be a GMPC functionality. Assume the existence of pseudorandom generators and n-
secure fully homomorphic encryption schemes. Then MainProtocol is an αn-secure n-user GMPC
protocol computing f in the {fmany,NxtMsg}-hybrid world.

Proof. Fix an adversary A corrupting a subset I ⊆ [n] of the users, of size at most |I| ≤ αn.
Observe that if the server is honest, then except with negligible probability, all committees will
contain sufficiently many honest users, so that the calls to NxtMsg will not output ⊥. Thus, no
honest user will ever abort, and the server obtains the output.

Assume that the server is corrupted. Intuitively, security holds, since the view of A when
emulating GeneralProtocol is, up to shares that reveal no information, exactly the same as in a
real execution of GeneralProtocol (with honest parties and no blocking of messages). We next
define the simulator SimA. To simplify the presentation, we will not concern ourselves with the
shares the adversary receives throughout the execution of the protocol.

1. Query A for its inputs to the functionality fmany. If it sent abort at any point, then all users
abort and the protocol halts. In this case, the adversary does no receive any more messages.
Output whatever A outputs, and halt.

23Formally, xi is held shared by the users in Ci, and is supposed to be reconstructed by NxtMsgi. If the functionality
cannot reconstruct the input, then instead of aborting, it replaces it with a default value.
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2. Otherwise, the server blocks a set of users B ⊆ [n] from sending their inputs to Ci.24

3. If the server blocks more than αn users from providing their inputs to their committees,
then the protocol halts and the adversary does no receive any more messages. The simulator
outputs whatever A outputs, and halt.

4. Otherwise, query A for the inputs of the malicious users that it sends to the committees
(formally, A sends it in the form of shares).

5. Execute the simulator Sim′A for Protocol 6 with the following modification.

• Suppose the adversary blocks too many users in some committee Ci from sending a
message to another committee Cj (hence NxtMsgj outputs ⊥), before the parties decrypt
the output for the server (see Step 9 of Protocol 6). In this case, MainProtocol aborts.
Then the adversary does no receive any more messages. and we let the simulator output
whatever A outputs, and halt.

6. Otherwise, send to the trusted party T whatever Sim′A sent alongside the set B of blocked
users. Then, send the output to A, output whatever it outputs, and halt (recall that this is
exactly what Sim′A does in case the adversary did not cause an abort).

Since the view of A when emulating Protocol 6 is the same as a real execution (up to shares),
it follows that the view generated by Sim′A is indistinguishable. Therefore, the probability the
adversary causes all honest users to abort in the real world, is indistinguishable from the ideal
world. Finally, conditioned on the protocol not aborting, the output received by the adversary
in the ideal world, is the same output it receives when simulating an execution of Protocol 6.
Therefore, as shown in Lemma 5.2, the output of simulator is indistinguishable from the output of
A in the real world.

6.1 Secure Implementation of The Next-Message Functions

We explain how to implement the next-message functionality NxtMsg used in our protocols to com-
pute the messages generated for each personal committee or each (global) committee. Specifically,
the implementation will be secure under parallel composition. The implementation for both cases
is done using the same protocol. Essentially, our protocol is a slight variation of the protocol given
in Goldwasser and Lindell [41, Corollary 2].

Remark 6.3. We view every committee as a different “computation unit”. In particular, if an
honest user aborts from one committee, it does not automatically abort from other committees it
participates in. This is important as otherwise a malicious user i might affect committees it does
not participate in, by causing an honest user j to abort from another committee which both i and j
participate in.

We first show how to implement a broadcast channel. Then, we will show how the parties can
securely compute any functionality, given the broadcast channel. We stress that these computations
are always performed by subsets of users that are of size that is poly-logarithmic in the number of
users. Hence, the protocols implementing these computations may be of polynomial complexities
in the number of participants. In the following we fix positive constants α < 1/8 and ε = 1/8−α.

24Observe that the simulator can obtain this set from the malicious server, since at the beginning of every round,
the server expects to receive the set of pairs (i, j), where user i sends a message to user j.
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Computing broadcast. We present a deterministic protocol for computing the broadcast func-
tionality. First, the sender sends its message to the server, which in turn passes it on to everyone
else. Second, all users exchange with each other what they received from the server. A user aborts
if less than 1−α− ε/2 of the messages it received are the same as what it received from the server.
In particular, the sender verifies that at least 1−α− ε/2 of the users sent it its input. Finally, the
users check that at most α+ ε/2 of them have aborted, and abort if this is not the case.

Observe that, although when the server is malicious there are roughly 2α corrupted users in the
(global) committees, when it is honest there are roughly α. Thus, any user seeing inconsistencies
with more than α users can abort. Now, clearly, if the server is honest then all honest users agree
on the output (even if the sender is corrupted). On the other hand, if the server is malicious, then
any user that disagrees with at least α + ε/2 of the users aborts. Moreover, if more than α + ε/2
of the users abort at the second step, then everyone will abort at the last step. Finally, as the
protocol admits perfect security, by the work of Kushilevitz, Lindell, and Rabin [50] it follows that
it is UC-secure and thus can be securely run in parallel.

Observe that in the above protocol, a malicious server can decide which users to block, depending
on the messages it received. Furthermore, it can change the message at the cost of having the sender
abort. As we show below, these two issues do not affect the security of the overall protocol.

Computing any functionality. We next explain how the user in each PC and committee can
securely compute any functionality. The security that the protocol admits is such that if more
than α + ε/2 honest users are blocked, then the protocol is secure-with-abort (i.e., the adversary
can abort the computation after obtaining the output). Otherwise, the protocol admits guaranteed
output delivery. Specifically, the computation will be secure under parallel composition. This will
allow the committees and PCs of honest users, to effectively be viewed as honest parties (recall
that unlike honest users, if the server blocks a PC or a committee then all users abort).

We let the users emulate an execution of the protocol of Rabin and Ben-Or [59]. The protocol
admits information theoretic security, assuming secure point-to-point channels between every pair
of users, an honest majority, and the availability of a broadcast channel. We show that the imple-
mentation of broadcast presented above is sufficient for the users to emulate the protocol of [59].
Consider the case a user broadcasted a message using the above protocol at some round. Then,
even though the server can block the users based on the value of the message to be sent, it could
have done so at the beginning of the next round. Moreover, the server can only block at most
(α + ε/2)-fraction of the honest users (viewed as aborting, malicious parties, with security guar-
anteed to hold by the adaptive security of [59]), in addition to having at most (2α+ ε/2)-fraction
corrupted users (with overwhelming probability). Furthermore, changing the sender’s message each
computation of broadcast causes it to abort, hence it can be viewed as one of the aborting malicious
parties. Thus, the security guarantees from the broadcast protocol suffices.

Next, observe that the users do not have secure channels, as a malicious server can block
messages between any pair of users. To overcome this, whenever a party does not receive a message
from another party, it uses the broadcast protocol to send an accusation as well as its identity.
Then, all other users label both users as malicious (even if one of them is honest). Note that a
malicious server can abort 2α + ε/2 honest users by sending false accusations, however, aborting
more will cause all users in the committee to abort with overwhelming probability.

Finally, in order to maintain an honest majority, recall that in every (global) committee, a
malicious server can have 2α+ ε/2 malicious users. Since it can abort an additional 2α+ ε/2, we
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require that 4α+ ε < 1/2, which indeed holds since α < 1/8.
We stress that even if the server blocks the communication with different users for each user,

the protocol is still secure due to the use of broadcast (recall that the users check that sufficiently
many users are active at the end of the broadcast protocol). Furthermore, even though the server
can block users adaptively, the protocol remains secure as the protocol of Rabin and Ben-Or [59] is
secure against adaptive adversaries.25 Finally, as shown by Canetti [23] and Kushilevitz el al. [50],
the protocol of Rabin and Ben-Or [59] is secure under concurrent general composition,26 thus the
parties can run it in parallel while maintaining overall security.

Remark 6.4. We observe that the constant 1/8 can be improved assuming an honest server is
allowed to block messages. This is because the server knows whether the sender of the message
actually sent it or not, and block it from every other user in case it did not send any message.
Therefore, unlike in the proposed solution, a corrupted server can only block α more honest users
(in addition to the 2α corrupted users there are in each committee). Thus, for honest majority it
is required to have α < 1/6.

6.2 Computing Shallow and Small Circuits

In this section we sketch a simple protocol for computing any circuit of size Õ(n), and polyloga-
rithmic depth, fan-in, and fan-out. Unlike the general protocol, here we do not need to assume
the existence of a fully homomorphic encryption scheme. Two important example of functionalities
computable by such circuits are summation and sorting.

The idea is the following: the parties will use protocol Protocol 4 to generate Õ committees in
a “tree-like manner”, where each committee corresponds to either a single gate, an input wire, or
an output wire in the circuit. Then, using the help of the server, each committee receives the list of
committees to which it should send the message according to the circuit. Since with overwhelming
probability, each input and output wire, and each gate, will have a committee associated with
it, where all committees contain sufficiently many honest users, the committees can perform this
computation securely.

To ensure the server doesn’t cheat, and connect committees to incorrect ones, or to fabricated
ones, we let each committee sign its identity as well as its associated wire/gate in the circuit
(recall that in Protocol 4, all committees obtain a secret signature key, while all parties obtain
the corresponding public key). Then, when the server sends a list of committees, each committee
verifies that the signature is valid, and that it is consistent with the circuit.

Finally, as the size of the circuit is Õ(n), it follows that each user appears in a polylogarithmic
number of committees, except with negligible probability. In addition, the complexity of each com-
mittee is polylogarithmic since the fan-in, fan-out, and the depth of the circuit are polylogarithmic.

For a fixed circuit C, we denote the functionality for sampling the committees by fmany,C .
Formally, we have the following result.

Lemma 6.5. Let α < 1/8 and let C be a circuit of size n · logc n, depth at most logc n, and fan-in
and fan-out at most logc n. Assume the existence of n-secure signature schemes and position binding

25Rabin and Ben-Or [59] referred to them as dynamic adversaries.
26Formally, for security with concurrent general composition to hold, when a user obtains its input to the protocol

it first broadcasts a message indicating it is ready. The actual protocol of Rabin and Ben-Or [59] starts after all users
broadcast the message.
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vector commitment schemes. Then there exists an n-user GMPC protocol computing fmany,C , such
that conditioned on the event PCSG, the protocol is αn-secure.

Theorem 6.6. Let α < 1/8, let m = m(κ, n) = poly(log n, κ) let c > 0, and let f : ({0, 1}m)n+1 7→
{0, 1}m be a GMPC functionality. Assume that f can be computed by a circuit C of size n · logc n,
depth at most logc n, and fan-in and fan-out at most logc n. Then there exists an αn-secure n-user
GMPC protocol computing f in the fmany,C-hybrid world.

6.2.1 Application to the Shuffle Model of Differential Privacy

Differential privacy [33] is a rigorous definition for privacy. It typically involves a server or a
data curator that aggregates the data of n individuals (or users) in a way that guarantees that
the outcome of the computation does not leak too much information on the data of any single
individual. Most of the work on differential privacy focuses on the case where the server is fully
trusted with the raw data, and privacy is only provided w.r.t. an observer that sees the outcome of
the computation. In recent years, however, there has been a growing interest in studying models
where the server is untrusted. The first model in this vein, called the local model [33, 46], requires
each user to randomize its input before sending it to the untrusted server, who aggregates all the
noisy reports. The amount of randomization needs to be sufficiently high such that the server
learns almost no information about the data of any single user, and hence, this model generally
suffers from significant loss of accuracy.27

The shuffle model of differential privacy [33, 44, 13, 34, 29, 4] aims to alleviate the loss of
accuracy of the local model while maintaining its trust guarantees. This is achieved by augmenting
the local model with a shuffle functionality that takes messages from the users and delivers them
to the server after randomly permuting them. The fruitful line of work on the shuffle model shows
that having access to such a shuffle functionality can lead to dramatic accuracy improvements
over the plain local model of differential privacy. This naturally raises the question of efficiently
implementing such a shuffle functionality. Recently, Bell at al. [9] presented a secure implementation
of the shuffle functionality with constant rounds of communication. However, the runtime and the
communication complexity of the users in their protocol is linear in n (the number of users), and
reducing users’ complexities to polylogarithmic in n was stated as an open question. As we next
explain, Theorem 6.6 resolves this question as an important special case.

Observe that in order to implement the shuffle functionality, it suffices to implement a sorting
functionality, in which the server obtains all the messages in an ascending order. (The reason is
that the server can then permute the messages on its own.) Recall that sorting can be done using
a sorting networks of depth O(log n) (and hence size O(n log n)) using the famed AKS network [1].
Instantiating Theorem 6.6 with the AKS network, denoted AKS, we obtain the following theorem.

Theorem 6.7. Let Shuffle : ({0, 1}m)n 7→ {0, 1}m·n be the shuffle GMPC functionality, whose
output is the input of the users in an order chosen uniformly at random. Then the following holds.
Let α < 1/8, let m = m(κ, n) = poly(log n, κ) let c > 0. Then there exists an αn-secure n-user
GMPC protocol computing Shuffle in the fAKS-hybrid world.

Theorem 6.7 shows that the shuffle functionality can be securely computed in the GMPC model
with polylogarithmic runtime and communication complexity for the users, which resolves an open
question of [9]. Note that this construction does not assume FHE.

27We stress that the server can still learn global statistics about the population.
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Alternatively, Theorem 6.7 can be proved using bitonic sorting [6] instead of the AKS sorting
network. While the AKS network has better asymptotics (O(log n) depth and O(n log n) size
vs O(log2 n) depth and O(n log2 n) size), it is far from being practical (see Goodrich [43] for an
estimation of the constants in various variants and alternatives and Goodrich [42] for a randomized
oblivious sort), and bitonic sorting is much more efficient for relevant sizes.

Remark 6.8. For simplicity, in Theorem 6.7 we considered a shuffle functionality that takes a
single input from each user. Our techniques also apply to a setting where every user submits
` = polylog(n) messages to the shuffle functionality, which then deliverers all n` messages to the
server in a random order.

7 Applications: Secure Protocols in the Star Topology

In this section, we explain how to compile a protocol in the GMPC model to the star network
assuming a special form of PKI. We first formally define the model in the star network and define
the PKI. We then show how to compile any protocol in the GMPC protocol to the star model. The
parties are connected via a star network with the server in the middle, i.e., each user is connected
only to the server. Thus, the server has full control over communication traffic and can block any
message it wants. All parties are given the security parameter 1κ, and the number of users n, held
in binary by the users and in unary by the server.

The Board Functionality

To emulate users wishing to securely send a message to another user, we assume the parties are
given a special form of PKI. Observe that since the users are assumed to be polylogarithmic in
the number of users n, we cannot simply give each of them the public keys of all other users.
Instead, the parties are given a special board functionality, denoted Board. This functionality holds
the public keys (for both encryption and signature schemes) of all users, and it allows any user to
request the public keys of any other user. This can be motivated by allowing the parties to access
a third-party forum, whereupon registration the keys are sampled by the website.

Intuitively, having access to the Board functionality allows any user to send a message to any
user of its choice via the server, such that it cannot learn the contents of the message nor modify
it. In the following, we let Sig = (Sig.Gen, Sig.Sign, Sig.Verify) be a signature scheme, and let
PKE = (PKE.Gen,PKE.Enc,PKE.Dec) be a non-malleable public key encryption scheme.28

Roughly, the Board functionality allows the following. Any user can register exactly once, and
obtain the public and secret keys for both the encryption scheme and the signature scheme. The
functionality then stores the public keys in its database. Additionally, every user can request the
functionality to send it the public keys of any other user that appears in the database.

We stress that the Board functionality never interacts with the server. In particular, this means
that it cannot invent new users or public keys, nor can it prevent any user from obtaining the public
keys of another user. We now formally describe the functionality.

Input: The functionality holds the security parameter 1κ and the number of users 1n.

28Roughly, in a non-malleable encryption scheme no computationally bounded adversary that is given an encryption
of some message m, can generate an encryption of a different correlated message m′.
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Initialize: Set up a new database D as an array of length n.

Register: Whenever user i wishes to register, it samples keys (pkiSig, skiSig) ← Sig.Gen(1κ) and

(pkiPKE, skiPKE) ← PKE.Gen(1κ). It then sends the message (register, pkiPKE, pkiSig, i) to the
functionality. Upon receiving this message, verify that i did not register previously. If this is
not the case, then ignore the message. Otherwise, add (pkiSig, pkiPKE) to D at position i.

Get Keys: Upon receiving a message (get: i, from: j), verify that i is in D. If not, then ignore the
message. Otherwise, send to user j the public keys (pkiSig, pkiPKE) of user i.

Compiling Secure GMPC Protocols to the Star Model

Given access to the Board functionality, the parties can emulate the full network with blocking
setting we considered throughout the paper. Whenever user i wishes to send some message to user
j, it will sign and encrypt its message using its secret signature key and j’s public encryption key.
It will send to the server a request to transfer the encrypted and signed message to user j.

Since the message is encrypted, the server cannot learn its contents. Moreover, as the message
was also signed, it follows that the server cannot forge a new message without j noticing.29 Thus,
the only attack a malicious server can do is to block the message from reaching j. Note that it
could still be the case that user i is malicious and purposely signed the message incorrectly, hence
j will not abort in this case and view it as if the message was blocked.

Observe that since the encryption scheme is assumed to be non-malleable, it follows that the
protocol maintains security even if the parties call the Board functionality concurrently. We conclude
that the above model is equivalent to the GMPC model considered throughout the paper, in the
sense that any attacker for a protocol in one model can be mapped to an attacker in the other
model. Thus, all of our results can be translated to this setting as well.
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A Ideal Worlds For Honest Server

Ideal world for full security with blocking assuming an honest server. We next describe
the interaction in the ideal world assuming the server is honest. Let A be an adversary corrupting
a subset I ⊆ [n] of the users, and which does not corrupt the server.

Inputs: Each party holds the security parameter 1κ and the number of users n (held in binary by
the users and in unary by the server). Additionally, the server holds input x0, user Pi holds
xi, and the adversary is given auxiliary input aux ∈ {0, 1}∗.

Parties send inputs to trusted party: The honest parties send their inputs to the trusted
party. For each corrupted user, the adversary A sends to the trusted party some value from
their domain as input. Denote by (x′1, . . . , x

′
n) the tuple of inputs received by the trusted

party.

Trusted party sends output to the server: The trusted party computes y ← f(x′1, . . . , x
′
n)

with uniformly random coins and sends the output y to the server.

Outputs: An honest server outputs the value sent by the trusted party, and a corrupted server
outputs nothing. Additionally, all users output nothing and A outputs a function of its view
(its inputs and the auxiliary input aux).
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