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Abstract. This paper presents an approach to uncover and analyze
power side-channel leakages on a processor cycle level precision. By care-
fully designing and evaluating the measurement setup, accurate trace
timing is enabled, which is used to overlay the trace with the corre-
sponding assembly code. This methodology allows to expose the sources
of leakage on a processor cycle scale, which allows for evaluating new
implementations. It also exposes that the default ChipWhisperer config-
uration for STM32F4 targets used in prior work includes wait cycles that
are rarely used in real-world applications, but affect power side-channel
leakage.
As an application for our setup, we target the widely used Sign-Flip
function of Gaussian sampling code used in multiple Post-Quantum Key-
Exchange Mechanisms and Signature schemes. We propose new imple-
mentations for the Sign-Flip function based on our analysis on the orig-
inal implementation and further evaluate their leakage.
Our findings allow the conclusion that unmasked cryptographic imple-
mentations of schemes based on Gaussian random numbers for STM32F4
cannot be secure against power side-channel, and that masking just the
Gaussian sampler is not a viable option.
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1 Introduction

The US National Institute of Standards and Technology (NIST) started the
Post-Quantum Cryptography (PQC, [23]) process in November 2017 to select
quantum-resistant key-exchange mechanisms and signature schemes as a pre-
emptive response to the emergence of large-scale quantum computers. As part
of this process, NIST also considers the resistance to side-channel attacks an im-
portant criterion for algorithm selection; submitters are encouraged to provide
implementations of their schemes optimized for microcontrollers and FPGAs.
The ARM Cortex-M4 turned out as a baseline for many performance compar-
isons, because of projects like [15] and works based on it [16, 31]. Therefore, this
paper will also focus on this specific microcontroller.

The Round 3 finalist FALCON [11], Round 3 alternative candidate FrodoKEM
[2] and BLISS [8] (the constant-time GALACTICS implementation [9]), one of
the earliest post-quantum schemes, all make use of Gaussian sampling. In FAL-
CON and BLISS, Gaussian random numbers are required for signature genera-
tion; in FrodoKEM, they are required for key encapsulation and decapsulation.
All of their Gaussian sampler implementations are based on a Sign-Flip function.
Multiple attacks on BLISS implementations are based on side-channel leakage
that revealed information about the signs of the Gaussian samples used [33, 21].
In this paper, we turn our attention to leakage observable via the power side-
channel, which is a typical attack scenario against embedded and IoT devices.
The ChipWhisperer [29] provides a complete side-channel lab setup to enable
rapid analysis.

Contributions.

– We show that the Gaussian sampling routines of the GALACTICS imple-
mentation of BLISS as well as FALCON and FrodoKEM on the STM32F4
all leak information about the generated samples. We propose several new
variants of these implementations, and show that the leakage can be reduced.
However, based on our findings in this case study, we argue that the number
representation format of the STM32F4 results in side-channel leakage that
cannot be mitigated by modifications to the sampling routine.

– Using the ChipWhisperer, we present a novel approach for in-depth power
analysis on the processor cycle level. We demonstrate a detailed breakdown
of the required setup and condition to execute cycle level analysis on the
STM32F4. The core of this cycle level analysis is to accurately overlay the
traces with the corresponding assembly instructions.

– We demonstrate a flaw in the latest release version of the ChipWhisperer,
potentially affecting previous power analyses based on the ChipWhisperer
STM32F4 setup.

Organization of this paper. In Sec. 3, we describe our measurement and anal-
ysis setup in detail and argue for its validity. Furthermore, we argue that the
current default configuration of the ChipWhisperer STM32F4 target board does
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not reflect real-world scenarios, which may influence the validity of previous
power side-channel analyses based on the ChipWhisperer setup (Sec. 4). After-
wards, in Sec. 5, we apply our analysis setup to the Sign-Flip subroutines used
by GALACTICS, FALCON and FrodoKEM and demonstrate that information
about the sampled sign is leaked. This section also covers advancements of the
Sign-Flip implementation that are able to reduce the amount of leakage, but
cannot fully mitigate it. Finally, we argue that the number representation for-
mat of the STM32F4 makes it impossible to implement a side-channel resistant
Sign-Flip function. We discuss our findings in Sec. 6.

Related Work. Many works use the ChipWhisperer platform to evaluate imple-
mentation for their power side-channel resistance [30, 14, 21].

The implementation of the PQC candidate SIKE for the ARM Cortex-M4
was successfully attacked by Genêt and Kalu lterović using the ChipWhisperer
through single-trace power analysis [13]. A masked implementation of Saber for
the Cortex-M4 was also successfully attacked using the ChipWhisperer. The
leakage is thought to be related to the Hamming distance between the old and
new values of pipeline registers [28]. Askeland and Rønjom attack the NTRU
implementation with a ChipWhisperer. They identify the Hamming weight of
secrets as a major reason for power side-channel leakage in implementations [5].

Leakage simulation aims to construct the power trace for a given set of assem-
bly instruction. ELMO is a prominent leakage simulator for the Cortex-M0/M4
processor. Even though such simulators can give a good estimation of the power
leakage, only experiments on real hardware can confirm their accuracy [22].

Tibouchi and Wallet present a timing attack on the Sign-Flip in BLISS,
resulting in a full exposure of the signing key [33]. A power side-channel leakage
in the Sign-Flip is used for two attacks against the Gaussian sampler resulting
in full key recovery in Marzougui et al. [21].

2 Preliminaries

Notation. Binary strings are represented as a string with a bit symbol pre-
pended, e.g. b’1000 1010’ and hexadecimal numbers with a ’0x’ pre-pended, e.g.
0x1234. Numbering is in LSB0 scheme, meaning it starts at zero for the least
significant bit (LSB). The LSB is the right-most bit. The most significant bit
(MSB) is thus the highest-order bit, which is the left-most bit.

Negative number representation. In writing, negative numbers are usually repre-
sented by a minus sign. However, in digital circuits, different ways to represent
negative numbers in binary exist. First, the sign-magnitude represents nega-
tive numbers using a single sign bit, often the most-significant bit. Second, the
ones’ complement representation performs a bitwise NOT operation to get from
positive to negative numbers. Third, the two’s complement representation trans-
forms from positive to negative numbers by applying a bitwise NOT operation
and adding one afterwards. The preferred choice for modern processors is the
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two’s complement, as it allows for efficient arithmetic operations and has only
one representation of zero.

In Tab. 1, we give examples of 16-bit two’s complement number representa-
tion along with their Hamming weight. The Hamming weight is a metric for the
number of 1’s in a binary string. Especially the difference in Hamming weight
between positive and negative numbers should be noted.

Number 16-bit two’s complement Hamming weight

-4 b’11111111 11111100’ 14
-3 b’11111111 11111101’ 15
-2 b’11111111 11111110’ 15
-1 b’11111111 11111111’ 16
0 b’00000000 00000000’ 0
1 b’00000000 00000001’ 1
2 b’00000000 00000010’ 1
3 b’00000000 00000011’ 2
4 b’00000000 00000100’ 1

Table 1: Two’s complement numbers from -4 to 4 in 16-bit representation

Sign-Flip. Lattice-based cryptography such as FALCON [11], FrodoKEM [2],
and BLISS [8] requires random numbers X drawn from discrete Gaussian dis-
tribution with mean µ = 0 and variance σ2, i.e.

X ∼ ⌈N (µ, σ)⌉.

ρµ,σ(x) = e−
|x−µ|2

2σ2 (1)

DZ,µ,σ(x) =
ρµ,σ(x)∑
z∈Z ρµ,σ(z)

=
1√
2πσ

e−
|x−µ|2

2σ2 (2)

(Note that the definitions for the distributions vary slightly across the different
schemes.)

Several implementations for generation of random Gaussian numbers exist.
Implementations based on the cumulative distribution table (CDT) have been
shown to achieve the highest throughput and the smallest resource utilization
[17]. Such implementations contain a hard-coded, precomputed table of the cu-
mulative distribution table. Taking advantage of the symmetry of the distribu-
tion about the mean, the table size can be reduce by half to reduce resource
consumption by only storing values for positive x. In this case, a sample is first
drawn from distribution |⌈N (µ, σ)⌉|. In a second step, the Sign-Flip function

Sign-Flip(x, c) =

{
−x c = 0 mod 2,

x otherwise,
(3)



Cycle-Accurate Power Side-Channel Analysis of Gaussian Sampling 5

is applied to determine the sign, resulting in a sample from ⌈N (µ, σ)⌉. In Eq.
3 the sample from the distribution |⌈N (µ, σ)⌉| is x and c is a sample from a
uniformly random distribution. The side-channel security of CDT samples has
previously been studied [18].

The Sign-Flip function is used by GALACTICS [9], FrodoKEM [2] and FAL-
CON [11] as part of their discrete CDT Gaussian sampling procedure. Tab. 2
shows the output for a chosen set of example inputs, represented in two’s com-
plement.

Input x if c = 0( mod 2) if c = 1( mod 2)

0 b’00000000 00000000’ (0) b’00000000 00000000’ (0)
1 b’11111111 11111111’ (-1) b’00000000 00000001’ (1)
2 b’11111111 11111110’ (-2) b’00000000 00000010’ (2)
3 b’11111111 11111101’ (-3) b’00000000 00000011’ (3)

Table 2: Sign-Flip function value table. Output is shown in decimal and two’s
complement representation.

Side-channel analysis. Kocher et al. [19] have shown that power side-channel
attack can reveal information about the internal state of hardware that processes
cryptographic algorithms, including the secret key, by measuring and analyzing
the power consumed by the hardware over time (power trace). Subsequently,
Chari et al. [7] proposed template attacks, where the attacker has full control to
a device identical to the device under attack. This device can be used to build a
model of power-consumption behavior in dependence of the internal state, which
afterwards is deployed to deduce the internal state from the measured power
consumption. Lerman et al. [20] proposed to use machine learning techniques for
this modeling. This work also uses a machine learning based template attack;
for creating the model, we use a multilayer perceptron.

3 Measurement Setup

This section details how we collected power traces using the ChipWhisperer for
this work. It focuses on high temporal precision to enable matching of measured
power consumption of the hardware to the instructions executed at the given
time. Our complete analysis was conducted using the ChipWhisperer-Lite and
an UFO target board with an STM32F4 target mounted. In the standard Chip-
Whisperer configuration that we use, the power measurement is started using a
dedicated GPIO pin of the target board.
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3.1 Target: STM32F4

The STM32F4 target (CW308T-STM32F, [27]) was mounted on a ChipWhis-
perer CW308 UFO target board (NAE-CW308-04, [26]). The UFO board in-
cludes an oscillator, power supply and on-board LC low-pass filter for the con-
nected target board. A 7.3728 MHz crystal was used for all experiments and
set as default clock source. Therefore, each processor clock cycle takes approxi-
mately 135ns. Based on the STM32F4, the STM32F405RGT6 [32] target board
was designed to conform with the UFO target board requirements. The power
consumption of the STM32F4 target is measured via a voltage measurement on
a shunt resistor.

The STM32F4 is an ARM Cortex-M4 [3] architecture, implementing the 32-
bit Armv7E-M instruction set architecture (ISA). The Armv7E-M has 16 32-bit
registers named r0-r15. The Cortex-M4 has a 3-stage pipeline (fetch, decode,
execute).

GPIO Toggle Speed A GPIO pin from the STM32F4 is used to signal the
start and end of the power trace by inserting toggle commands using software.
Therefore, the toggle speed of the STM32F4 is of utmost importance as the
accuracy of the start and end of the power trace relies on it. If the toggle of a
GPIO pin takes longer than one clock cycle of the processor, this delay needs to
be considered when matching the power trace against the executed program.

The GPIO toggle speed of the STM32F4 depends on the OSPEEDRy hard-
ware register (b’10’), the capacitive load and the operation voltage (3.3V ) [32,
datasheet p.117]. Depending on the capacitative load, the rise/fall time lies be-
tween 4ns and 6ns and thus does certainly not exceed the cycle time of 135ns.
The GPIO toggle speed can thus be ignored for the purpose of matching power
consumption against executed instructions in our setup.

Memory Caching & ART Accelerator Memory caches are important to
speed up memory access of the processor, but highly stateful. Memory access
times can vary dramatically depending on the current state of the cache, with
cache hits being processed much faster than cache misses. To match the executed
instructions against the recorded power trace, we turned off all caching on our
target board.

We disable the cache as enabling the cache raises the question how to initialize
the cache state. As in practical attacks, the cache state depends on prior usage
of the device, there is no generally valid answer to this question. For real-time
applications, the cache may be turned off even in real-world scenarios.

The used STM32F405RGT does not include a flexible static memory con-
troller (FSMC) [32, datasheet p. 14]. There is also no cache in between the ARM
Cortex and the SRAM. All code will be placed on the Flash memory. The Flash
memory is accessed from the processor by the adaptive real-time memory (ART)
accelerator with a build in cache. Sec. 4 will discuss the ART in greater details.
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Compiler Instruction Re-Ordering For all experiments, the arm-none-eabi-
gcc compiler on version 9.2.1 has been used. It supports different compiler op-
timization flags to improve various performances like memory usage, code size
and program speed. Optimization level 3 (-O3 ) is the one which is most often
used for NIST PQC candidates [15], resulting in fast performance of the com-
piled binaries. However, due to instruction re-ordering by the compiler, this may
falsify side-channel leakages.

This is a particular problem when using the GPIO-triggering used by the
default ChipWhisperer [25] configuration, as instructions for triggering the start
and end of the trace could be moved to earlier or later locations in the program.

Using the ChipWhisperer, tracing a function might look like ”trigger high();
func under test(); trigger low();”. As trigger high() and trigger low() operate
on the same hardware registers, the compiler is aware that they depend on each
other. The same is not true for the function we are trying to trace. Therefore,
the compiler might re-order the func under test() before or after the triggers. In
some situations, the compiler might even inline a func under test() if the func-
tion is relatively short (depending on compiler flags and limits). After inlining
the function, the compiler can re-order the inlined instructions with the trigger
functions. As a result, the tracing might not capture some instructions of the
func under test(), not trace the function at all, or include leakage caused by code
originally intended to run before the start of the trigger or after the intended
end of the trigger.

If the compiler supports the function attributes no reorder or noinline then
these can be used to mitigate the issue. Unfortunately the used arm-none-eabi-
gcc compiler does not and therefore simply ignores these attributes. The only
way to reliably prevent the re-ordering is the optimize(2) function attribute
to set the optimization level lower for the code section of our func under test.
While instruction reordering is one of the fundamental concepts to enable most
optimizations, compilers do not have a model for time, but only for the result of
instructions. Thus, reordering only guarantees that the outcome of the program
is according to the code, but not intermediate steps [6].

3.2 Trace: ChipWhisperer

The ChipWhisperer-Lite (NPCB-CWLITECAP-01 CW1173 [24]) in our experi-
ments collects traces using a high-gain Low Noise Amplifier (LNA) with a 10-bit
Analog Digital Converter (ADC). In our setup, the tracing is triggered when the
ChipWhisperer detects a rising edge on it’s trigger input. I.e., the tracing starts
when signal goes from low to high and stops when switching back from high to
low.

Trigger Speed After examining the toggle speed of the GPIO in Sec. 3.1, we
will have a look at how accurate the ChipWhisperer-Lite notices the trigger and
therefore starts/stops the tracing. Any delay by one or more clock cycle needs
to be known to overlay the trace with the assembly code. To evaluate the delay
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at which the ChipWhisperer starts tracing after the rising edge on the trigger
signal, we ran the code shown in Listing 1.1 on the target board.

After preparation, it uses a single instruction (line 8) to output a rising edge
on the GPIO pin that we connected to the ChipWhisperer trigger input. In the
instruction immediately after, the GPIO is set to low again.

Listing 1.1: ARM assembly code to toggle the trigger GPIO

1 # r11 s t o r e s the MMIO address o f the t r i g g e r GPIO
2 # r10 s t o r e s the value to s e t the t r i g g e r GPIO to high
3 # r12 s t o r e s the value to s e t the t r i g g e r GPIO to low
4 l d r r11 , =0x40020000
5 l d r r10 , =0x1000
6 l d r r12 , =0x10000000
7 . a l i g n 4
8
9 # Using a s i n g l e ’STR’ i n s t r u c t i o n

10 # to s e t the t r i g g e r GPIO to high
11 s t r r10 , [ r11 , #24]
12
13 # Pre−c a l c u l a t e d address and value in r11 and r12
14 # to s e t the t r i g g e r GPIO to low in one i n s t r u c t i o n
15 s t r r12 , [ r11 , #24]

A single ‘STR’ instruction on an STM32F4 takes 2 cycles [4] to execute,
but every consecutive ‘STR’ instruction takes only 1 cycle. We thus expect that
the trigger GPIO is high for exactly 1 cycle. We call this assembly version of
toggling the trigger GPIO using fixed constants in specific registers fast trigger,
as opposed to the ChipWhisperer’s standard implementation, which is wrapped
in C functions and hence requires multiple cycles to execute.

Our experimental results show that the ChipWhisperer collects a power trace
of length 4. The default configuration of the ChipWhisperer collects 4 samples
each processor cycle. Therefore, the trigger GPIO is high for exactly 1 cycle
according to the ChipWhisperer-Lite trigger speed. In experiments that traced
the power consumption of a single instruction, we confirmed that the triggering
of the ChipWhisperer does not incur significant delay by comparing the power
traces of an instruction with high and low Hamming weight. Also the findings
presented in Sec. 5.2 show high correlation between Hamming distance of register
updates and power trace, providing evidence that there is no delay introduced
by the triggering. We therefore conclude that no extra offset or precaution needs
to be taken when working with the ChipWhisperer-Lite trigger mechanism.

3.3 Analyze: Overlaying the Trace With Corresponding Assembly
Code

To remove a side-channel vulnerability from an implementation, it is required to
determine the code location that caused the leakage of secret information. In this
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work, we locate leaking code locations by matching the collected power traces
against the assembly instructions executed at the time. After leakage locations
in the trace and program have been identified, this information can be used to
improve attack performance and accuracy (by restricting attention to affected
areas) or to harden the implementation against side-channel attacks (by avoid
using leaking instructions in the code).

After making sure that the start and end of the power trace is accurate
(see Sec. 3.1 and 3.2), no caches are activated (Sec. 3.1) and the instruction
order is preserved (Sec. 3.1) a simple mapping between clock cycle in the power
trace and instructions in the assembly code can be applied. Each instruction
takes a predefined amount of clock cycles according to the microcontroller’s
documentation [4].

For simplicity, we use this methodology only on branch free code. For code
containing loops, we collect the power-trace of a single iteration instead of the
full loop or unroll the loop. For code containing function calls, we trace the
function separately or inline it.

4 ChipWhisperer Firmware

The ChipWhisperer comes with an open-source software package [25] to assist
in side-channel analysis. At the time of writing, the latest release is version
5.5.2 from May 5, 2021. The ChipWhisperer firmware for the STM32F4 target
prepares the device for side-channel analysis, which includes configuring the ART
(adaptive real-time memory) accelerator, which handles memory accesses from
the processor to the flash memory. The memory is accessed upon execution of
load instructions (D-Code) and to read the next instructions of the program in
execution (I-Code).

To access data from flash memory, the address is sent to the ART accelerator,
which reads 128-bit of data from memory3 and caches it. For subsequent memory
access, if the requested data is present in the cache, it can be read out without
any delays. However, if not, a fixed number of cycles are needed for the ART
accelerator to read the Flash memory and provide the data.

The ChipWhisperer 5.2.2 firmware configures the ART with disabled data
cache, disabled instruction cache, disabled prefetching, and five wait states la-
tency. This means that after 128-bit of instructions, 5 cycles of waiting are
required to read the next 128-bit from memory. 128-bit of instructions can be
comprised of 4 instructions of 32-bit (in ARM mode), 8 instructions of 16-bit
(in thumb mode), or a mixture of both. We observed the presence of wait states
in the length of the power traces that we collected during our experiments.

However, the microcontroller can also be operated without wait states at the
voltage and frequency used by the ChipWhisperer platform [32, reference manual
p. 80]. Given the significant performance loss caused by the wait states, it is

3 To the best of our knowledge, the alignment of this process is not documented.
However, our experiments provide some evidence that a 4-word alignment is used
on our target device.
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unlikely that real-world applications would use a configuration with wait states.
Accordingly, on 21 September 2021, the ChipWhisperer development branch was
updated (commit 5863217) to configure STM32F4 target boards to not apply
wait states (0 WS).

However, at the time of writing, this change was not yet contained in any re-
leased ChipWhisperer software package; the ART configuration with wait states
is default since the introduction of STM32F4 support in ChipWhisperer in March
2017. Consequently, power traces of the STM32F4 target board collected using
the ChipWhisperer contain wait states unless the target board ART configu-
ration was changed manually or, after 21 September 2021, the ChipWhisperer
development code was used instead of installing the software as described in the
documentation [25].

The presence of wait cycles in the execution of the program influences the
internal state of the processor, which may influence the leakage of implementa-
tions in side-channel analysis. This casts some doubt on the validity of previous
side-channel analysis of the STM32F4 on the ChipWhisperer platform.

As a case study on the impact of wait states on side-channel leakage, we
compare template attacks on the Sign-Flip function running on the STM32F4
using five wait states (5 WS) and no wait states (0 WS). Marzougui et al. [21]
demonstrated that a generic MLP classifier could recover the sampled sign in
99.9% and 100.0% of cases, respectively, when using 5 WS. For direct comparison,
we re-ran this experiment with an identical setup (Sec. 3) and machine learning
attack (see Sec. 5.1 for details on the machine learning attack) for both the 5
WS and 0 WS configuration. The firmware version with 0 WS results in 98.0%
(Sec. 5.1) while the version with 5 WS reaches 99.9%. A detailed breakdown of
the classification performance depending on training set size can be seen in Fig.
1.
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Fig. 1: Classifier comparison for the firmware with 5 WS and 0 WS for different
training sizes. Validation set size is fixed at 1000. Each data point shown is based
on multiple runs of the attack. The darker colored lines show the mean value,
while the lighter areas show the range of accuracies. The accuracy for 5 WS with
a training set size of 8000 to 98000 is constant as it already reaches 0.999% at a
size of 8000.

While this reduced prediction accuracy, it is still very high and continues to
pose a security threat to GALACTICS on the STM32F4. Of the two attacks
presented by Marzougui et al. [21, Sec. 6.1, 6.3] that use leakage of the Sign-Flip
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function, one will need slightly more samples of the target under attack, and one
will remain largely unaffected as predictions are the result of majority voting
across a very large population.

5 Sign-Flip Analysis

In this section, we will first present three different implementations of the Sign-Flip
function as found in three different post-quantum cryptography schemes. Next,
we will show that all of them are vulnerable to profiling power analysis attacks
using machine learning (see Sec. 5.1).

Subsequently, in Sec. 5.2, we present advanced and modified implementations
of the Sign-Flip function and attack using the same profiling attack. We find that,
even though some implementations leak less under this attack, none of them is
immune to our attack.

Additionally, we present an implementation of a two-sided CDT Gaussian
sampler, which avoids the need for a Sign-Flip function at the cost of increasing
the CDT table size (Sec. 5.3). Our findings show that also this approach cannot
remove significant leakage on the sign of the sampled values.

5.1 Power Analysis of Different Implementations

We analyze the Sign-Flip implementations of GALACTICS [10] and of the ref-
erence implementations of FrodoKEM [1] and FALCON [12] by subjecting them
to identical attacks.

First, for each scheme, we located and isolated the code implementing the
Sign-Flip function. While similar, the schemes all use slightly different implemen-
tations of the same functionality, as shown below. (Variable names have been
changed to match the Sign-Flip(x, c) definition of Eq. 3.)

In GALACTICS, given uint32 inputs x and c, Sign-Flip returns int32 de-
fined by

(x & -(c & 1)) ^ (-x & ~(-(c & 1))).

In FrodoKEM, given uint32 inputs x and c, Sign-Flip returns int32 defined by

(x ^ -c) + c.

In FALCON, given uint16 inputs x and c, Sign-Flip returns int16 defined by

(-c ^ x) + c.

Note that the implementations of FrodoKEM and FALCON differ in the used
data types. Note that the - and ~ have higher operator precedence than &.

Second, to be able to run the identified code snippet independently from the
rest of the scheme, we determined the random distribution of values for x and c

in each scheme.
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Third, using the identified code and input random distributions, we ran each
snippet 10,000 times and recorded input, output, and power traces using the
setup described in Sec. 3.

Finally, to run an attack, the recorded data is randomly partitioned in a
training set of 9,000 examples and a test set of 1,000 samples. (Fig. 2 displays a
subset of collected traces for each scheme.) Using the training set, the sections
of the power trace showing large difference across the recorded output sign are
identified. Then, an neural network is trained given the identified sections and
output sign values. Our neural network uses the adam optimizer, a batch size of
200 and one hidden layer with 20 neurons. Using the test set, the prediction ac-
curacy of the trained network is evaluated. While other parameters for the neural
network may increase performance or prediction accuracy, we found that these
parameters already reach high accuracy and thus reveal sensitive information.
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Fig. 2: 1,000 power traces of Sign-Flip implementations. Red and blue lines indi-
cate negative and positive output, respectively. The section between the vertical
black lines is used for training the neural network.

We find that for all three schemes, our attack yields near-perfect prediction
accuracy of the sampled sign. The Sign-Flip implementation of GALACTICS
was previously under attack using a profiling power analysis attack [21]. For
GALACTICS, our experiment resulted in a prediction accuracy of 98.0%.
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In the case of FALCON and FrodoKEM we observed similar-looking power
traces, which is expected due to the similar implementations. We obtained pre-
diction accuracy of 99.7% and 100.0% for FALCON and FrodoKEM, respectively.

The Sign-Flip implementations in FALCON and FrodoKEM are originally
not encapsulated in a subroutine. To confirm that extracting the code snippet
and running it individually did not influence the leakage significantly, we re-ran
our experiment on the full FALCON and FrodoKEM Gaussian sampler. These
experiments confirm our findings, with prediction accuracy reaching 97.3% and
100.0%, respectively. We note that the Hamming distance for register updates in
FALCON is smaller than in FrodoKEM, as 16 bit values are used, which could
explain the difference in prediction accuracy [28].

5.2 Analyzing Various New Versions

To harden cryptographic schemes based on Gaussian random numbers against
power side-channel analysis, we explore candidate implementations of the Sign-Flip
function in this section. To understand the issue in the existing implementation,
we matched the power trace against the instruction executed at the given time
as described in Sec. 3.3.

As the implementation used by GALACTICS showed the least leakage in
above analysis, we chose it as a starting point. It’s assembly code is shown in
Tab. 3, together with example register values for the cases c = 0 and c = 1 (mod
2). The distribution for input value x is a half-normal distribution (positive
half) with mean zero and variance σ = 205

256 [9, p. 14], input value c is uniformly
distributed in {0, . . . , 255}.

instruction pseudo-code computed function assigned register values
if c = 0 mod 2 otherwise

1. and.w r1, r4, #1 r1 = r4 & 1 = c & 1 0x00000000 0x00000001
2. subs r4, r1, #1 r4 = r1 - 1 = (c & 1) - 1 0xFFFFFFFF 0x00000000
3. negs r5, r3 r5 = -r3 = −x −x −x
4. negs r1, r1 r1 = -r1 = -(c & 1 ) 0x00000000 0xFFFFFFFF
5. and.w r0, r1, r3 r0 = r1 & r3 = [-(c & 1)] & x 0x00000000 x
6. ands r5, r4 r5 = r5 & r3 = −x & [-(c & 1)] −x 0x00000000
7. eors r5, r0 r5 = r5 & r0 = — ⊕ ([-(c & 1) & x) −x x

Table 3: Assembly instruction of the GALACTICS Sign-Flip implementation,
displayed along with assigned register values for the cases of c = 0 and c = 1
(mod 2). The code expects x in r3 and c in r4 and stores the result in r5.

In Fig. 3, we display a number of power traces of the Sign-Flip implemen-
tation, colored by the sign of the return value. The power trace is labeled with
the instruction currently in the execution stage of the processor’s pipeline. As
this stage is responsible for executing the calculation on the arithmetic logic unit
(ALU), we assume that the leakage comes from there. However, we note that
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the fetch and decode stage of the pipeline might also leak information [22]. The
plot is shorter than the original trace (Fig. 2) as the fast trigger from Sec. 3.2
was used. This results in 0 cycles following the GPIO high instruction and only
1 cycle for the GPIO low instruction (denoted as “Trigger”).
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Fig. 3: GALACTICS Sign-Flip power trace annotated with the corresponding
assembly instructions in the execute stage of the pipeline. Traces shown in red
and blue had negative and positive return value, respectively.

Our power traces show that the instructions 1, 2, 4, 5, and 6 have visible
leakage. From Tab. 3, we know that instructions 1, 2, and 4 differ by 15 and 16
in Hamming weight, and instructions 5 and 6 are expected to differ by 8, when
comparing c = 0 and c = 1 (mod 2) cases. Applying the same methodology, we
found similar patterns of leakage in the Sign-Flip implementations of FALCON
and FrodoKEM.

To reduce leakage, we propose four ARM assembly implementations of the
Sign-Flip function aimed at avoiding large difference in Hamming weight when
comparing c = 0 and c = 1 (mod 2) cases. An implementation based on the MUL
instruction is shown in Tab. 4, an implementation based on shifting in Tab. 5.
Tab. 6 shows an implementation built on the XOR operation, and finally, Tab.
7 shows an implementation based on the SXTH instruction.

We base one alternative Sign-Flip implementation on the MUL instruction,
shown in Tab. 4. First, depending on c, the value 2 or 3 is generated. (Note the
similar Hamming weight.) Then, the value −2x is computed by negating x and
summation. Finally, x is multiplied with 1 or 3 (depending on c), and the result
is added to −2x.

While this reduces the precision of x by 2 bits, even in the case of FALCON,
only 5-bit precision are needed, as x only is in the range of [0, 18]. FrodoKEM
and GALACTICS use even less precision. While this avoids some of the large
Hamming weight differences seen in the GALACTICS implementation, instruc-
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instruction pseudo-code computed function assigned register values
if c = 0 mod 2 otherwise

1. lsl r4, r4, #1 r4 = r4 <<1 = c <<1 c <<1 c <<1
2. and.w r1, r4, #3 r1 = r4 & 0x3 = c & 0x3 0x00000000 0x00000002
3. orr r1, r1, #1 r1 = r1 | 0x1 = (c & 0x3) | 0x1 0x00000001 0x00000003
4. negs r5, r3 r5 = -r3 = −x −x −x
5. add r5, r5, r5 r5 = r5 + r5 = (-x) + (-x) −2x −2x
6. mul r6, r1, r3 r6 = r1 * r3 = ((c & 0x3) | 0x1) * x x 3x
7. add r5, r5, r6 r5 = r5 + r6 −x x

Table 4: Sign-Flip implementation based on the MUL instruction. The code
expects x in r3 and c in r4 and stores the result in r5.

tion 7 still shows Hamming weight significantly differing between the cases of
c = 0 and c = 1 (mod 2).

instruction pseudo-code computed function assigned register values
if c = 0 mod 2 otherwise

1. negs r5, r3 r5 = -r3 = -x -x -x
2. add r6, r5, r5 r6 = r5 + r5 = (-x) + (-x) -2x -2x
3. add r5, r6, r5 r5 = r6 + r5 = ((-x) + (-x)) + (-x) -3x -3x
4. and.w r1, r4, #1 r1 = r4 & 1 = c & 1 0x00000000 0x00000001
5. add r1, r1, 1 r1 = r1 + 1 = (c & 1) + 1 0x00000001 0x00000002
6. lsl r6, r3, r1 r6 = r3 <<r1 = x <<((c & 1) + 1) 2x 4x
7. add r5, r5, r6 r5 = r5 + r6 -x x

Table 5: Sign-Flip implementation based on the SHIFT instruction. The code
expects x in r3 and c in r4 and stores the result in r5.

Second, we propose an implementation of Sign-Flip based on the SHIFT
instruction, shown in Tab. 5. Like the implementation based on MUL above, it
avoids the computation of (c & 1) - 1 and hence does not show large Hamming
weight difference between the two cases. Also it requires a reduction in precision
of x by 3 bit as we need to compute 4x. After computing computing −3x in
instructions 1 - 3, the values 2x or 4x are generated in instructions 4 - 6 using
a left shift operation. Then, the result is calculated by adding these results in
instruction 7, which also results in the majority of leakage which we observed.
We remark that we also observed leakage of the left shift operation, even though
there is no difference in Hamming distance between c = 0 and c = 1 (mod 2).

Third, in Tab. 6, we propose an implementation based on the XOR-Operation.
In this implementation, the constants 0xAAAAAAAA and 0x55555555 are used
to “mask” the values x and −x. As both constants have Hamming weight 16,
this equalizes the Hamming distance for assigned register values across the cases
c = 0 and c = 1 (mod 2). On the downside, it uses twice the number of in-
structions that the MUL and SHIFT implementations require. Also, we found
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instruction pseudo-code assigned register values
if c = 0 mod 2 otherwise

1. mov r5, 0xAAAAAAAA r5 = 0xAAAAAAAA 0xAAAAAAAA 0xAAAAAAAA
2. and.w r1, r4, #1 r1 = r4 & 1 0x00000000 0x00000001
3. negs r4, r3 r4 = -r3 r4 = -x r4 = -x
4. lsr r6, r5, r1 r6 = r5 <<r1 0xAAAAAAAA 0x55555555
5. and.w r7, r5, r3 r7 = r5 & r3 b’x[31]0 ... x[1]0’ b’x[31]0 ... x[1]0’
6. and.w r8, r5, r4 r8 = r5 & r4 b’(-x)[31]0 ... (-x)[1]0’ b’(-x)[31]0 ... (-x)[1]0’
7. mov r5, #0x55555555 r5 = 0x55555555 0x55555555 0x55555555
8. and.w r9, r5, r4 r9 = r5 & r4 b’0x[30] ...0x[0]’ b’0x[30] ... 0x[0]’
9. and.w r10, r5, r3 r10 = r5 & r3 b’0(-x)[30] ... 0(-x)[0]’ b’0(-x)[30] ... 0(-x)[0]’
10. lsl r5, r5, r1 r5 = r5 <<r1 0x55555555 0xAAAAAAAA
11. eor r7, r7, r9 r7 = r7 ⊕ r9 b’x[31](-x)[30] ... x[1](-x)[0]’ b’x[31](-x)[30] ... x[1](-x)[0]’
12. eor r8, r8, r10 r8 = r8 ⊕ r10 b’(-x)[31]x[30] ... (-x)[1]x[0]’ b’(-x)[31]x[30] ... (-x)[1]x[0]’
13. and.w r5, r7, r5 r5 = r7 & r5 b’0(-x)[30] ... 0(-x)[0]’ b’x[31]0 ... x[1]0’
14. and.w r6, r8, r6 r6 = r8 & r6 b’(-x)[31]0 ... (-x)[1]0’ b’0x[30] ...0x[0]’
15. eor r5, r5, r6 r5 = r5 ⊕ r6 -x x

Table 6: Sign-Flip implementation based on the XOR instruction. The code
expects x in r3 and c in r4 and stores the result in r5.

significant leakage of the instructions 10 and 15. Instruction 10 is leaking even
though there is no difference in assigned Hamming weight, as it shifts depending
on the value of c. Instruction 15 is leaking as it has unavoidable Hamming weight
difference required by the Sign-Flip function’s definition.

Fourth and last, in Tab. 7, we propose an implementation based on the SXTH
instruction. While this implementation avoids the SHIFT instruction and thus
the leakage it caused in the SHIFT and MUL versions above, we can still observe
leakage of the ROR instruction. Again, we are also observing leakage of the
final SXTH instruction, as it extends the computed 16 bit value of x and −x,
respectively, having large Hamming weight difference across the cases c = 0 and
c = 1 (mod 2).

instruction pseudo-code assigned register values
if c = 0 mod 2 otherwise

1. negs r7, r3 r7 = -r3 -x -x
2. and.w r8, r4, #1 r8 = r4 & 1 0x00000000 0x00000001
3. lsl r8, r8, #4 r8 = r8 <<4 0x00000000 0x00000008
4. pkhbt r6, r7, r3, LSL #16 r6 = (r3<31:16>,r7<15:0>) (x<31:16>,-x<15:0>) (x<31:16>,-x<15:0>)
5. ror r5, r6, r8 r5 = r6 ROR r8 (x<31:16>,-x<15:0>) (-x<31:16>,x<15:0>)
6. sxth r5, r5 r5 = r5<15:0>→ r5 <31:0> r5 = -x r5 = x

Table 7: Sign-Flip implementation based on the SXTH instruction. The code
expects x in r3 and c in r4 and stores the result in r5.

We subjected all four implementation of the Sign-Flip function to the power
side-channel attack presented in Sec. 5.1. We find that while the four novel ver-
sions can reduce attack success to some extend, all proposed implementations are
still vulnerable to attacks with significant prediction accuracy. In our tests, the
the SXTH implementation achieved the best results by reducing the prediction
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accuracy of the attack to 91.6%. A detailed comparison of all presented Sign-Flip
implementations with respect to the predictive power of our attack can be found
in Tab. 8; for completeness, we also include the result of an implementation with
branching instructions. It is possible that different hyperparameters of the neu-
ral network, more measurements per clock cycle, and/or more examples in the
training set can further increase the predictive power of attacks on our proposed
implementations, but the presented finding are enough to argue that none of the
implementation is sufficiently secure.

Algorithm Branching Post-Quantum Crypto This Work
GALACTICS FALCON FrodoKEM MUL SHIFT XOR SXTH

Accuracy 99.8% 98.0% 99.7% 100.0% 95.2% 94.4% 93.2% 91.6%

Table 8: Comparison of all different Sign-Flip versions using an MLP classifier.
Trivial accuracy would be 50.0% as it is a coin flip.

5.3 Two-Sided CDT Gaussian Sampler

The Sign-Flip function used by the CDT Gaussian sampler in GALACTICS,
FALCON and FrodoKEM allows reducing the CDT size by half and thus in-
creases performance and decreases required randomness (Sec. 2).

To avoid leakage of the function, the Sign-Flip function can be avoided at the
cost of doubling the CDT table size by adding negative numbers. We modified
the FrodoKEM implementation of the Gaussian sampler [1] to operate as a two-
sided CDT sampler without a Sign-Flip function.4

Again using the attack shown in Sec. 5.1, we found that the resulting pre-
diction accuracy on the two-sided CDT sampler is 100.0%. The recorded power
traces are displayed in Fig. 4.

6 Conclusion

In this paper, we demonstrated that the implementations of the Sign-Flip func-
tion in GALACTICS, FALCON and FrodoKEM all leak information on the sign
of the produced Gaussian sample when attacked using power analysis with a
simple, generic neural network classifier. Novel implementations that avoid large
differences in Hamming weight during the execution of the Sign-Flip code could
only reduce the leakage under our attack to a small extent.

We draw the following conclusions:

4 While confirming that the random distribution did not change and is still according
to the specification of σ = 2.8, we found that, due to the 16-bit constraint on the
table entries, the original one-sided implementation has σ ≈ 2.8146 and our two-
sided adaptation has σ ≈ 2.8138.
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Fig. 4: 1,000 power traces of the FrodoKEM Gaussian sampler, modified to act
as a two-sided sampler. Runs resulting in a negative sample are drawn in red,
others in blue. The section marked by vertical lines shows the section used for
training the classifier.

1. The identified weakness in the original implementations is caused by the
Hamming weight distance between the register assignments in each instruc-
tion, compared for the cases of c = 0 and c = 1 (mod 2).

2. Every single assembly instruction needs to be analyzed to evaluate the power
side-channel resistance of a function; in our experiments, the Hamming
weight is a good indicator for leakage.

3. Even when carefully crafting an assembly version of the Sign-Flip or the
whole Gaussian sampler, leakage on the sign of the Gaussian sample cannot
be significantly reduced.

4. The two’s complement number representation has large difference in Ham-
ming weight for negative and non-negative numbers and thus plays a major
role in the leakage of the Sign-Flip function. This is specifically true for a
subset like [−12, 12] in FrodoKEM, because of the high Hamming weight
distance, as can be seen in Tab. 1.

From these findings, we conclude that, on the STM32F4, no secure implementa-
tion of the Sign-Flip function exists as long as the return value is the unmasked
sample value. However, as the sample value typically is added to other internal
values, this requires either unmasking the sample (which leaks information) or
masking the entire scheme.
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