
Round Optimal Blind Signatures:
Short Signatures with Post-Quantum Blindness

Shweta Agrawal1, Jung Hee Cheon2, Hyeongmin Choe2, Damien Stehlé3, and Anshu Yadav1

1 IIT Madras
shweta@cse.iitm.ac.in, anshu.yadav06@gmail.com

2 Seoul National University
{jhcheon, sixtail528}@snu.ac.kr

3 ENS de Lyon and Institut Universitaire de France
damien.stehle@ens-lyon.fr

Abstract. Blind signatures are a fascinating primitive which allow a user to obtain signatures from
a signer, while hiding the message. Tremendously useful, these have been studied extensively for
decades. Yet, to the best of our knowledge, all concretely practical blind signatures rely on non-standard
assumptions and/or achieve sub-optimal round complexity.

In this work, we provide an efficient, round-optimal (two-round) blind signature scheme from the
hardness of the discrete log (DL) problem and the learning with errors problem in the (non black-box)
random oracle model. Our construction enjoys post-quantum blindness and does not rely on idealizations
such as the algebraic group model or generic group model. We provide a concrete instantiation of our
construction. Specifically, our blind signature size and verification time is the same as base Schnorr
signature scheme which is used for a building block, making the signature extremely short and the
verification extremely fast.
To the best of our knowledge, ours is the first efficient candidate from standard assumptions which
simultaneously achieves (very) short signatures, fast verification time, post-quantum blindness and
round optimality.

Keywords: blind signature, round optimal, standard assumptions

1 Introduction

Blind signatures [Cha82] are a classic primitive which enable a user to interact with a signer to obtain a
signature on a given message so that the signer is unable to learn anything about the message. In more detail,
security requires blindness which means that an adversarial signer should not be able to associate any message-
signature pair with a particular execution of the signing protocol, and unforgeability, which means that an
adversarial user should be unable to forge “one more” signature even after receiving multiple message-signature
pairs. Blind signatures have numerous applications such as e-cash [Cha82], e-voting [IKSA03], anonymous
credentials [BCC+09, Bra93, CL01] and more recently, cryptocurrencies [YL19]. They have been researched
intensely (please see [PS97, PS00, Sch89, Oka92, Rüc10, ABB20b, ABB20a, BECE+20, LSK+19, PHVBS19,
HKLN20] and references therein), with dozens of constructions from different mathematical assumptions,
optimizing different parameters ranging from rounds to signature size to communication complexity, having
security proofs in different models. Despite so much attention, the state of the art in blind signatures is not
fully satisfactory.

1.1 Prior Work

At a high level, there are two broad directions that have emerged, typically bifurcating theory and practice: (i)
constructions based on standard assumptions which serve as feasibility results – for instance, the construction
by Garg et al. [GRS+11] uses (many layers of) complexity leveraging, the construction of Katsumata et al. uses

complexity leveraging based on quantum easiness and heavy technical machinery [KNYY21], the construction
of Fischlin [Fis06] uses general purpose zero-knowledge proofs, the construction of Hauck et al. [HKLN20]
suffers exponential loss which severely limits the number of signing queries (ii) practical constructions which
rely on non-standard assumptions such as the “one-more” family of assumptions [BNPS03, AKSY21, TZ22],
or other non-standard assumptions [FHS15, FHKS16, Bol03] including reliance on the generic group model
(GGM) [OA03] or the algebraic group model (AGM) [KLX20].

Aside from the underlying assumptions, another parameter of interest is the number of rounds. While
round-optimality is a desirable goal in itself, it is additionally important in the context of blind signatures since
it automatically implies security in the concurrent setting, i.e. where protocol executions may run in parallel.
Concurrency in the context of blind signatures is delicate and can result in huge losses in the security proof
which impacts efficiency [HKKL07, HKLN20, KLR21], and more tragically, has frequently led to errors in the
security proof [Rüc10, ABB20b, ABB20a, BECE+20, LSK+19, PHVBS19]. There are very few constructions
of round-optimal blind signatures in the literature [GRS+11, Fis06, GG14, KNYY21, AKSY21, LNP22].
Additionally, from standard assumptions, known constructions serve primarily as theoretical feasibility results.
Below we summarize the state of the art for practically motivated blind signatures.

Group Based. Schnorr based blind signatures [CP92, PS00, FPS20, KLX20] have been a favourite candidate
for practical instantiations since they can rely on standard libraries in implementations, produce very short
signatures, do not involve expensive pairing computations and can outperform RSA [TZ22]. Blind Schnorr
[CP92], Okamoto-Schnorr [Oka92, PS00], and other other generic constructions based on identification schemes
[HKL19] rely on the hardness of the ROS problem, for which a polynomial-time attack was recently found
[BLL+21]. The subsequent Clause Blind Schnorr signature [FPS20] relies on the mROS problem, which is not
secure against sub-exponential adversaries. Another candidate by Abe [Abe01] is concurrently secure, does
not rely on ROS or mROS, and admits proofs in the algebraic group model [KLX20] and the generic group
model [OA03].

Very recently, Tessaro and Zhu [TZ22] improved the above line of work by removing the necessity for
the problematic ROS/mROS assumption, yielding practical three-move blind signature schemes which are
concurrently secure. Their constructions are provably secure either in the generic group model (GGM) or in
the algebraic group model (AGM) under the discrete logarithm (DL) or the one-more discrete logarithm
(OMDL) assumption, in addition to the ROM. Moreover, their constructions achieve perfect blindness as
against the previous best candidate by Abe, which only achieved computational blindness under DDH.

While very attractive in practice, we note that the AGM and GGM are much stronger idealizations than
the ROM since they do not allow the adversary to access even the bit representation of the objects it receives
as part of the protocol. The relative strength of these idealized models was recently studied by Zhandry
and Zhang [ZZ21], where they claim that “the ROM is a strictly milder heuristic than the GGM”. Note
that relying on AGM or GGM is often stronger than a non-standard assumption – for instance, there are
several non-standard assumptions, (e.g. ℓ Expanded BDHE [Wat12]) that can be proven secure in the GGM.
Additionally, none of these constructions is round-optimal.

From Pairings. BLS signatures [BLS01, Bol03] can be used to obtain very simple pairing-based blind signatures
in the ROM but this uses a non-standard assumption, namely the “chosen target CDH” assumption. In
the standard model, Garg and Gupta [GG14] provided the first round-optimal candidate with reasonable
concrete efficiency from the sub-exponential hardness of the DLIN assumption and a non-standard variant of
the discrete log assumption.

Post-Quantum Security. Lattice-based blind signatures have been constructed by [Rüc10, ABB20b, ABB20a,
BECE+20, LSK+19, PHVBS19] but it is argued by [HKLN20] that all these constructions have flaws in
their security proofs. Other constructions from post-quantum assumptions are from codes [BGSS17] and
systems of algebraic equations [PSM17], which are not as well understood. The recent construction by Hauck
et al. [HKLN20] is primarily a theoretical result – using their provided parameters, the constructed blind
signature has size ≈ 7.73MB, for security against adversaries limited to getting 7 signatures. The very recent
work of Lyubashevsky et al. [LNP22] constructs a practical lattice based blind signature from the learning
with errors assumption, but their signing protocol depends linearly on the maximum number signatures

2

queried by the adversary. This makes their construction fall short of satisfying the standard definition of blind
signatures. Moreover, note that in the NIST competition, the upper bound for the number of signature queries
is 264. While this is a very conservative estimate, in practice, the number of signing queries is considered a
large enough parameter that such a dependence on the run time is a significant drawback for general purpose
applications. Another very recent work by Agrawal et al. [AKSY21] provides two constructions: an overall
efficient lattice based, round optimal blind signature based on a non-standard assumption, and a lattice
adaptation of Fischlin’s blind signature [Fis06], which uses general purpose zero knowledge proofs, making it
inefficient in practice.

1.2 Our Results

In this work we ask: can we have an efficient, round-optimal blind signature with very short signature size,
efficient verification and post-quantum security without relying on the AGM/GGM?

To the best of our knowledge, no scheme satisfying all the above desiderata is known in the literature. In
the present work, we provide a new protocol that achieves round optimality, very short signatures, efficient
verification and post-quantum blindness, the user is protected against a quantum malicious signer in the
blindness game. Our construction relies on the security of Schnorr signatures when the random oracle model is
instantiated by a particular hash function (such as SHA-3) and fully homomorphic encryption FHE, which in
turn can be built from the (circular secure) Learning With Errors assumption. We note that these assumptions
are considered fairly standard in practice. Concretely, our signature size is 6λ bits, and achieves extremely fast
verification time and user complexity. However, as discussed below, communication cost and signer complexity
are currently bottlenecks in our construction when instantiated with state of the art FHE implementations –
however, we believe that progress in FHE implementations will substantially reduce these costs. We discuss
this in detail in Section 1.4.

Unlike all prior constructions based on discrete log, we do not require the algebraic group model (AGM)
or the generic group model (GGM) for a proof of security, nor do we incur sub-optimal round complexity.
Please see Table 1 for a detailed comparison with practice oriented schemes from standard assumptions.

Work Rounds Assumption PQ-Blindness ROM/AGM/GGM Sign Queries

[TZ22] 3 DL Yes ROM,AGM,GGM Unlimited

[GG14] 2 DLIN and (variant of) DL No Standard Unlimited

[LNP22] 2 LWE Yes ROM Limited

This 2 DL and LWE Yes non-BB ROM Unlimited

Table 1 : State of the Art Practical Schemes from Standard Assumptions. Note that [LNP22] achieves a
non-standard definition of blind signatures. Non-blackbox ROM means that the hash function modeled as
the random oracle is required to be evaluated homomorphically within an FHE scheme.

Post-Quantum Blindness. Note that in practical applications, the signer is typically more powerful than the
user and blindness is typically a much longer term requirement than unforgeability. For instance, consider an
e-voting protocol. Here, blindness is used to hide the vote while unforgeability is used to protect against a
malicious user forging votes. Thus, it is very desirable that secrecy of votes be maintained even after quantum
computers are realized whereas unforgeability is no longer relevant once the voting process is completed. Due
to this, we believe that post quantum blindness is much more important than post quantum unforgeability.

Non Black Box ROM. Our proof is in the non black box random oracle model, where the hash function
modeled as the random oracle is required to be evaluated homomorphically within an FHE scheme. Since
the random oracle model (ROM) is only meaningful for the real world when instantiated by a concrete hash
function, we believe this non black-box usage of the ROM does not qualitatively change the assumption in
practice.

3

Concurrent Work. Independently and concurrently to our work, del Pino and Katsumata [dPK22] provided
a round optimal blind signature from standard lattice assumptions. They achieve a signature size of 100KB
compared to our signature of approximately 100B. Our construction relies on the usual Schnorr signature
scheme, and inherits signature compactness and verification efficiency from it. However, we currently cannot
accurately estimate our signer time complexity concretely due to limitations of FHE (as discussed in Section
1.4) while their signer time complexity is efficient. Moreover, they achieve lattice based unforgeability as
well as blindness whereas we only achieve the latter – this makes their construction fully (conjectured) post
quantum while ours is only (conjectured) post quantum for blindness. However, using discrete log based
unforgeability is also what allows our construction to achieve signatures that are shorter by a factor of 1000 –
this appears very hard to achieve with lattice techniques. Finally, their construction can also be shown secure
in the QROM while ours is secure only in the (non black-box) ROM.

1.3 Our Techniques

The starting point of our work is the round optimal standard model construction of Garg et al. [GRS+11].
The primary objective of this work was to provide a construction in the standard model, which led to heavy
technical machinery (such as witness indistinguishable ZAPs) as well as complexity leveraging [FS10, Pas11].
For these reasons, this protocol has remained largely in the domain of feasibility for over a decade. However,
upon re-examining it via the lens of practicality, we observe that several of the main sources of inefficiency,
such as complexity leveraging and witness indistinguishable ZAPs can be removed or mitigated, if we trade
the standard model for the random oracle model. Since, as discussed above, most practical constructions rely
anyway on idealized models (often multiple of these) as well as non-standard assumptions, using the random
oracle is a small price to pay if it can lead to a practical construction. While these initial simplifications do
not immediately yield a practical protocol, they do provide a promising starting point.

With the goal of post-quantum security in mind, and given the recent exciting advances in practical fully
homomorphic encryption (FHE) (e.g. [HS20, HS21, HS20, CGGI16, CGGI17]) and for other technical reasons
(outlined below) we use FHE as a building block and begin with the following simple protocol. The signing and
verification key of the blind signature is that of any UF-CMA signature scheme, together with the public key
of a standard PKE scheme (required for technical reasons). Now, to blind the message µ, the user U samples
the key pair for an FHE scheme, encrypts µ under FHE to obtain ctµ and the FHE secret key under PKE to
obtain ctsk. It sends the FHE public key, the ciphertexts ctµ and ctsk and a NIZK proof that the FHE key pair
and ciphertext ctsk were generated honestly to the signer S. Next, the signer S homomorphically evaluates
the signing circuit on the encrypted message, using its signing key and some fresh randomness and obtains
the ciphertext of the signature, which it sends to U . Upon receiving the encrypted signature, U decrypts
and verifies it. Intuitivey, blindness is achieved because of the semantic security of FHE while one-more
unforgeability is inherited from the unforgeability of the underlying signature and the soundness of the proofs.
A subtlety is that the challenger must extract all (say Q) messages being signed in the unforgeability proof
without rewinding Q times to avoid a large security loss – this is achieved by careful use of the PKE. Please
see Section 3 for details.

Dealing with a Malicious Signer. A significant issue that is brushed under the carpet in the description
above is the handling of a malicious signer. Evidently, the signer can deviate from the protocol to gain
advantage in the blindness game. Indeed, we can show that there is an actual attack that the malicious signer
can mount in order to break blindness – please see Section 3 for details.

A natural approach to protect against malicious signers is to force the signer to provide a NIZK that the
signature was generated correctly using the honest signing key. However, since the signer is performing a
complicated operation, such a proof system must handle a complex statement which does not currently admit
efficient instantiations. To overcome this hurdle, we design two new techniques:

Collaborative Generation of Randomness. To constrain the power of the cheating signer, our idea is to let
the user participate in the generation of the randomness used in the signature. In more detail, let us say
that the user samples some randomness ku, the signer samples randomness ks and the randomness used by

4

the signing algorithm is ku + ks. The user includes an FHE encryption of ku
4 in its message, and the signing

algorithm is modified to use ku + ks instead of just ks. The hope is that this may help to limit the effect
of bad randomness chosen by the signer. However, it is unclear whether it achieves anything – for instance,
what prevents the signer from discarding the user’s randomness altogether? If it needs to prove that it used
the randomness provided by the user, we are again stuck with an arbitrarily complex proof and may be back
to square one!

Using Algebraic Structure of Specific Schemes. To overcome this hurdle, we will leverage carefully chosen
algebraic structure of specific signature and encryption schemes. Appropriate algebraic structure of the
building blocks interleaved by carefully designed (inexpensive) checks in the protocol will enable us to replace
expensive general purpose zero knowledge proofs by efficient proofs for simple algebraic statements. We
emphasize that this step leads to many subtle complexities in the proof of blindness, handling which is
one of the primary technical contributions of this work. Additionally, by analyzing the structure of specific
schemes, we develop explicit algorithms for homomorphic evaluation of concrete circuits. This allows us to
obtain detailed cost estimates for the communication and computation incurred by the signer and user using
available FHE benchmarks from the literature.

Our Protocol. We consider the classic Schnorr signature scheme, based on the standard discrete log
assumption. Let us recap the scheme: consider a group G = ⟨g⟩ of prime order q and a hash function
H : {0, 1}∗ → Z∗

q modelled as a random oracle. The secret key is sampled as sk← Z∗
q , and the public key is

set as gsk. To sign a message µ, the signer samples a random k, computes r = gk, sets s = k + sk ·H(µ, r)

and outputs (r, s) as the signature. Given the verification key vk = gsk, one can check if gs = r · vkH(µ,r).

We are ready to provide a simplified version of our blind signature. The signing key and verification
key are simply those of the Schnorr blind signature described above. Now, the user samples the secret and
public key (hpk, hsk) for an FHE scheme, and constructs a proof πsk that these keys are well formed. Here
we rely on a key observation that the algebraic structure of FHE schemes allows to restrict the statements
being proven to linear relations with short unknowns, for which specific lattice-based techniques are known
(see [YAZ+19, BLS19, ENS20, LNS21], and references therein). These techniques result in shorter proof sizes
as well as efficient running times, allowing us to avoid general zero knowledge proofs as discussed above. Next,
the user encrypts its message µ to obtain ctµ, samples partial randomness ku ← Z∗

q , computes ru = gku and
encrypts it to obtain ctru . Additionally, it generates proofs πµ and πru that these ciphertexts are well-formed
– these proofs also entail linear statements with our choice of scheme and can be instantiated efficiently as
above. Finally, it sends the tuple (hpk, πsk, ctru , ctµ, πru , πµ) to the signer. We note that the user sends the
encryption of ru, not ku – this makes the signing process simpler, while maintaining the security in ROM.

The signer verifies the proofs πsk, πru and πµ (efficiently). It then samples partial randomness ks ← Zq

and computes rs = gks . It also generates a NIZK proof πks
that rs is well-formed – again, this proof is

for a simple algebraic statement and admits an efficient instantiation. It then homomorphically evaluates
the signing circuit on ctru , ctµ using its signing key and its own partial randomness ks to obtain cts. It
sends cts, rs, πks to the user. The careful reader may have noticed that the step of homomorphic evaluation
appears expensive and in particular, incurs evaluating a hash function – we will discuss below how this can
be done with reasonable efficiency, though it remains the most expensive part of the protocol. To proceed, the
user verifies πks

, computes r = ru · rs and s = ku + FHE.Dec(hsk, cts). It then runs the Schnorr verification
algorithm on (r, s).

Challenges in Security. We refer the reader to Section 4 for the detailed construction and proofs. Here, we
only touch upon a few subtleties. Let us first see why the scheme is secure against a malicious signer who
may not follow the protocol. Note that in the blindness game, the challenger can extract the witnesses ks
from the proof πks

and check whether this matches the received rs. Since the challenger knows ku, ks and sk5

4 In fact, for efficiency reasons, we will encrypt some function of ku.
5 If the signing key sk is also maliciously generated, the challenger must also extract the signing key from a proof. For
simplicity, here we assume that sk is honestly generated by the challenger.

5

it can itself compute the Schnorr signature. Due to uniqueness of the discrete log and correctness of FHE, one
can show that the computed signature has to be the same as the one generated by evaluating the signing
circuit homomorphically followed by decryption, if both passed verification. This lets the challenger produce
the signature without using the FHE decryption key, which in turn allows it to replace the FHE ciphertexts
seen by the signer by dummy ciphertexts. At this point the challenge bit is information theoretically hidden
to the adversary. A delicate issue that arises is that there are an exponential number of circuits that are
equivalent to the correct signing circuit (for instance, those with dummy gates) and evaluating these too will
result in correct decryption and signature verification. This “gap” between correctness of FHE and honest
circuit computation creates subtle challenges in the proof, which require care to handle. Please see Section 4
for details.

Conjectured Post-Quantum Blindness. Our scheme achieves post-quantum blindness, i.e. blindness holds even
against a quantum malicious signer. To see this, note that in the blindness game, the honest user is protected
using the semantic security of FHE and the zero knowledge property of lattice based proofs, which are all
conjectured post-quantum secure.

1.4 Challenges in Efficient Signing using FHE.

The efficiency of our protocol depends on the efficiency of the homomorphic evaluation of the Schnorr signing
algorithm. While we have adapted our protocol to make homomorphic evaluation efficient, there are still
some challenges that remain. Here, we provide a summary of our approach and outline some challenges for
future work on FHE machinery. Progress by the community in addressing these problems in FHE efficiency
will lead to further improvements in the concrete efficiency of our protocol.

Communication Cost. To use FHE as a building block of the blind signature, the size of the public key can
be a problem since it is large compared to other primitives. The reason for the large size is mainly because
the signer needs many rotation keys for the hash function evaluation and the bootstrapping. However, the
communication cost can be decreased by trading off with signing time, in particular by constructing the
rotation keys at the signer’s end as suggested by Lee et al. [LLKN22]. Then, it remains to reduce the signing
complexity incurred by homomorphic evaluation. We discuss this next.

Large Fields. Evaluating the signing protocol of Schnorr signatures on a finite field requires evaluation of
the modulo operation with 1000-3000 bit primes over FHE which are too large for FHE implementations. An
alternative is to use the Schnorr signature based on elliptic curve cryptography, which makes the modulus sizes
smaller, to about 256 bits. However, this is not compatible with the currently used (meaningful) parameters
for FHE [HS21, LLK+22, CLPX18, CLOT21]. Even in the EC Schnorr case, we need to instantiate FHE
with parameters that are not efficient, especially with regards to bootstrapping [HS21]. The main reason for
the inefficiency is that the current FHE machinery focuses only on much smaller moduli, or moduli of some
specific forms. Hence an interesting open question posed by our work is the development of FHE machinery
for large fields. We believe this is a natural direction for research which will have more applications.

Expensive Group Operations. Evaluating group operations on a large multiplicative group of prime order q
over 256 bits can be another challenge. In particular, exponentiation is one of the most challenging operations
since it requires a sequential multiplication with a huge-depth circuit, which becomes a dominant factor in
running time. To bypass this operation, we modify the blind signature scheme that enjoys the programmability
of ROM more actively. However, progress in efficient FHE evaluation of such operations would significantly
speed up the concrete running time of the protocol.

Conversion of the Plaintext Space. In our protocol, the hash function takes as input a message inM and a
group element in G where the group G is defined over a finite field Fp (or over an elliptic curve over a finite
field Fp), and outputs a finite field element in Zq. Therefore, there should be an evaluation of a mapping

6

between the spaces with different modulus p and q, which is very inefficient using current state of art in
FHE. For our protocol, FHE plaintext space conversion can be a core technique, since it makes the signing
process very efficient – just two constant multiplications and one addition, except for hashing and converting.
Theoretically, this is possible through recryption. However, an efficient evaluation of a circuit [[⋆]Q]p over FHE
with plaintext modulus q and ciphertext modulus Q′, in the recryption methodology, appears challenging
given current techniques. We leave this as an important direction for future work.

2 Preliminaries

In this section, we provide some preliminaries used in our work.

Notation. We write vectors with bold lower-case letters and matrices with bold upper-case letters. For any
vector v, we denote its ith element by v[i] or vi. Similarly, for any matrix M, M[i][j] or Mij represents the
element in the jth column of ith row. Let S be any set, then |S| represents the cardinality of S, while in case of
any x ∈ R, |x| represents absolute value of x. For any n ∈ N, we let the set {1, 2, . . . , n} be denoted by [n]. For
a distribution D over a countable set X , we let H∞(D) = −maxx∈X log2 D(x) denote the min-entropy of D.
The statistical distance between two distributions D0 and D1 over X is defined as 1

2

∑
x∈X |D0(x)−D1(x)|.

We use standard definitions for pseudo-random functions (PRF), public-key encryption (PKE), signatures
and commitments. We place ourselves in a setup that allows the attackers to run in time 2o(λ) and succeed
with probability 2−o(λ), but that forbids them to make more than poly(λ) interactions with honest users.
Compared to the setup of polynomially bounded attackers, this allows to better reflect practice and to better
differentiate between operations that the adversary can do on its own and are only limited by the adversary
runtime (such as hash queries) and operations that require interaction with a honest user and are much more
limited (such as signature queries). We note that if we limit ourselves to polynomially bounded adversaries,
then all our reductions of our security proofs involve polynomial-time reductions and would not require
subexponential hardness assumptions.

2.1 Blind Signatures

To begin, we introduce some notation for interactive executions between algorithms X and Y. By (a, b)←
⟨X (x),Y(y)⟩, we denote the joint execution of X and Y where X has private input x, Y has private input y
and X receives private output a while Y receives private output b.

Definition 1 (Blind Signature). A blind signature scheme BS consists of PPT algorithms Gen, Vrfy along
with interactive PPT algorithms S, U such that for any λ:

• Gen(1λ) generates a key pair (BS.sk,BS.vk).
• The joint execution of S(BS.sk) and U(BS.vk, µ), where µ ∈ {0, 1}∗, generates an output σ for the user
and no output for the signer; this is denoted as (⊥, σ)← ⟨S(BS.sk),U(BS.vk, µ)⟩.

• Algorithm Vrfy(BS.vk, µ, σ) outputs a bit b.

The scheme must satisfy completeness: for any (BS.sk,BS.vk)←Gen(1λ), µ ∈ {0, 1}∗ and σ output by U in the
joint execution of S(BS.sk) and U(BS.vk, µ), it holds that Vrfy(BS.vk, µ, σ) = 1 with probability 1− λ−ω(1).

Blind signatures must satisfy the following two security properties [JLO97]:

Definition 2 (One More Unforgeability). The blind signature BS = (Gen,S,U ,Vrfy) is one more
unforgeable if for any polynomial Q, and any U∗ with run-time 2o(λ), the success probability of U∗ in the
following game is 2−Ω(λ):

1. Gen(1λ) outputs (BS.sk,BS.vk), and U∗ is given BS.vk.

2. Algorithm U∗ interacts concurrently with Q instances S1BS.sk, . . . ,S
Q
BS.sk.

7

3. Algorithm U∗ outputs (µ1, σ1, . . . , µQ+1, σQ+1).

Algorithm U∗ succeeds if the µi’s are distinct and Vrfy(BS.vk, µi, σi) = 1 for all i ∈ [Q+ 1].

Definition 3 (Honest Signer Blindness). The blind signature BS = (Gen,S,U , Vrfy) satisfies honest
signer blindness if for any algorithm S∗ with run-time 2o(λ), the advantage of S∗ in the following game
is 2−Ω(λ):

1. Gen(1λ) outputs (BS.sk,BS.vk) and gives it to S∗; algorithm S∗ outputs two messages µ0, µ1 of its choice.
2. A random bit b is chosen and S∗ interacts concurrently with U0 := U(BS.vk, µb) and U1 := U(BS.vk, µb̄)

possibly maliciously; when U0 and U1 have completed their executions, the values σb, σb̄ are defined as
follows:
• If either U0 or U1 aborts, then (σb, σb̄) := (⊥,⊥).
• Otherwise, let σb (resp. σb̄) be the output of U0 (resp. U1).
Algorithm S∗ is given (σ0, σ1).

3. Algorithm S∗ outputs a bit b′.

Algorithm S∗ succeeds if b′ = b. If succ denotes the latter event, then the advantage of S∗ is defined as
|Pr[succ]− 1/2|.

Full-fledged blindness lets the adversary S∗ sample its own pair (BS.sk,BS.vk) at Step 1 (possibly
maliciously), and gives BS.vk to the challenger. We also consider the notion of very honest signer
blindness for which the signer S∗ follows the protocol honestly.

2.2 Homomorphic Encryption (FHE)

A homomorphic encryption scheme is an encryption scheme that allows computations on encrypted data.

Definition 4 (Homomorphic Encryption). A homomorphic encryption scheme FHE is a tuple of PPT
algorithms FHE = (FHE.KeyGen,FHE.Enc,FHE.Eval, FHE.Dec) defined as follows:

• FHE.KeyGen(1λ, 1d)→(pk, sk): On input the security parameter λ and a depth bound d, the KeyGen algorithm
outputs a key pair (pk, sk).

• FHE.Enc(pk, µ)→ct: On input a public key pk and a message µ ∈ {0, 1}, the encryption algorithm outputs
a ciphertext ct.

• FHE.Eval(pk, C, ct1, . . . , ctk)→ĉt: On input a public key pk, a circuit C : {0, 1}k→{0, 1} of depth at most d,
and a tuple of ciphertexts ct1, . . . , ctk, the evaluation algorithm outputs an evaluated ciphertext ĉt.

• FHE.Dec(pk, sk, ĉt)→µ̂: On input a public key pk, a secret key sk and a ciphertext ĉt, the decryption
algorithm outputs a message µ̂ ∈ {0, 1,⊥}.

The definition above can be adapted to handle plaintexts over larger sets than {0, 1}. Note that the
evaluation algorithm takes as input a (deterministic) circuit rather than a possibly randomized algorithm. An
FHE should satisfy the compactness, correctness and security properties defined below.

Definition 5 (Compactness). We say that an FHE scheme is compact if there exists a polynomial
function f(·, ·) such that for all λ, depth bound d, circuit C : {0, 1}k→{0, 1} of depth at most d, and
µi ∈ {0, 1} for i ∈ [k], the following holds: for (pk, sk)←FHE.KeyGen(1λ, 1d), cti←FHE.Enc(pk, µi) for i ∈ [k],
ĉt←FHE.Eval(pk, C, ct1, . . . , ctk), the bit-length of ĉt is at most f(λ, d).

Definition 6 (Correctness). We say that an FHE scheme is correct if for all λ, depth bound d,
circuit C : {0, 1}k→{0, 1} of depth at most d, and µi ∈ {0, 1} for i ∈ [k], the following holds: for
(pk, sk)←FHE.KeyGen(1λ, 1d), cti←FHE.Enc(pk, µi) for i ∈ [k], ĉt←FHE.Eval(pk, C, ct1, . . . , ctk), we have

Pr[FHE.Dec(pk, sk, ĉt) = C(µ1, . . . , µk)] = 1− λ−ω(1).

8

Definition 7 (Security). We say that an FHE scheme is secure if for all λ and depth bound d, the following
holds: for any adversary A with run-time 2o(λ), the following experiment outputs 1 with probability 2−Ω(λ):

1. On input the security parameter λ and a depth bound d, the challenger runs (pk, sk)←FHE.KeyGen(1λ, 1d)
and ct←FHE.Enc(pk, b) for b←{0, 1}; it provides (pk, ct) to A.

2. Adversary A outputs a guess b′; the challenger outputs 1 if b = b′.

In our application, we will also need the FHE scheme to support circuit privacy, as defined below.

Definition 8 (Circuit Privacy). We say that the homomorphic encryption scheme FHE is semi-honest
circuit private if for (pk, sk) ← FHE.KeyGen(1λ, 1d), any circuit C : {0, 1}k→{0, 1} of depth at most d,
µi ∈ {0, 1} for i ∈ [k], no 2o(λ)-time adversary can distinguish between the following distributions with 2−o(λ)

advantage: (
FHE.Eval(pk, C, {cti}i≤k), {cti}i≤k, pk, sk

)
and

(
FHE.Eval(pk, C0, {ct′i}i≤k), {cti}i≤k, pk, sk

)
,

where cti ← FHE.Enc(pk, µi) for i ∈ [k], ct′1 = FHE.Enc(pk, C(µ1, . . . , µk)), ct
′
i = FHE.Enc(pk, 0) for 1 < i ≤ k

and C0 : {0, 1}k→{0, 1} is the trivial circuit of depth d that outputs its first input and ignores the others.

We say that FHE is maliciously circuit private if the above holds even if the keys (pk, sk) and ciphertexts
cti for i ∈ [k] are not necessarily generated honestly. In this case, the µi’s are defined as µi = FHE.Dec(sk, cti)
for i ∈ [k], where we assume without loss of generality that decryption always outputs a bit (even when the
ciphertext is not well-formed).

2.3 Non-Interactive Zero Knowledge Arguments

Definition 9 (Non Interactive Zero Knowledge Argument). A non-interactive zero-knowledge (NIZK)
argument system Π for an NP relation R consists of three PPT algorithms (Gen,P,V) with the following
syntax:

• Gen(1λ)→crs : On input a security parameter λ, the Gen algorithm outputs a common reference string crs;
in the random oracle model, this algorithm may be skipped, since the crs can be generated by P and V by
querying the random oracle on some fixed value.

• P(crs, x, w)→π : On input the common reference string crs, a statement x ∈ {0, 1}poly(λ), a witness w such
that (x,w) ∈ R, the prover P outputs a proof π.

• V(crs, x, π)→accept/reject : On input a common reference string crs, a statement x ∈ {0, 1}poly(λ) and a
proof π, the verifier V outputs accept or reject.

The argument system Π should satisfy the following properties.

• Completeness: For any (x,w) ∈ R, we have

Pr[crs← Gen(1λ), π ← P(crs, x, w) : V(crs, x, π) = 1] ≥ 1− λ−ω(1).

• Soundness: For any x ∈ {0, 1}poly(λ) and any 2o(λ) time prover P∗, we have

Pr[crs← Gen(1λ), π ← P∗(crs, x) : V(crs, x, π) = 1] ≤ 2−Ω(λ).

• Honest Verifier Zero Knowledge: There is a PPT simulator Sim such that, for all statements x for
which there exists w with R(x,w) = 1, for any 2o(λ) time adversary A, we have:∣∣ Pr

[
1← A

(
(crs, x, π) : crs← Gen(1λ), π ← P(crs, x, w)

)]
−Pr

[
1← A

(
(crs, x, π) : (crs, π)← Sim(1λ, x)

)] ∣∣ ≤ 2−Ω(λ).

9

Definition 10 (Argument of Knowledge). The argument system (Gen,P,V) is called an argument of
knowledge for the relation R if it is complete and knowledge-sound as defined below.

• Knowledge Sound: For any 2o(λ) time prover P∗, there exists an extractor E with expected run-time
polynomial in λ and the run-time of P∗, such that for all PPT adversaries A

Pr

 crs← Gen(1λ), (x, s)← A(crs),
π∗ ← P∗(crs, x, s), b← V(crs, x, π∗),

w ← EP∗(crs,x,s)(crs, x, π∗, b)

∣∣∣∣∣∣(x,w) ̸∈ R ∧ b = accept

 ≤ 2−Ω(λ).

If an argument of knowledge is also non-interactive zero knowledge, it is termed as a non-interactive zero
knowledge argument of knowledge, abbreviated as NIZKAoK.

3 Warmup: Very Honest Blind Signature from FHE

In Figure 1, we describe a two-round construction of blind signatures based on FHE. Our construction uses
the following building blocks:

• A UF-CMA signature scheme Sig = (Sig.KeyGen,Sig.Sign, Sig.Verify). Let Sig.SignSig.sk,ρ denote the circuit
that takes µ as input and returns Sig.Sign(Sig.sk, µ; ρ) (i.e., with the key Sig.sk and the Sig.Sign randomness ρ
being hardwired).

• An IND-CPA secure public key encryption scheme PKE = (PKE.KeyGen, PKE.Enc, PKE.Dec) having the
property that the public key generated by PKE.KeyGen is indistinguishable from a uniformly sampled value
from its range. We observe that this is true for most lattice based PKE schemes e.g. [GPV08].

• A maliciously circuit private fully homomorphic encryption scheme (see Definition 8) FHE = (FHE.KeyGen,
FHE.Enc, FHE.Dec, FHE.Eval) that is capable of homomorphically evaluating circuits with depth up to the
depth of Sig.SignSig.sk,ρ.

• A NIZK argument system for the statements of the form as given in equation 3.1 (see Figure 1).
• A hash function H ′ : {0, 1}∗ → PK modeled as random oracle. Here, PK is the sapce of public keys of
PKE.

The construction is described in Figure 1.

Completeness: The completeness follows from the completeness of the underlying primitives, NIZK, FHE
and Sig. The completeness of the blind signature is argued as follows. From the completeness of NIZK, the
signer accepts πsk (and does not abort) if the user computed the FHE public key pk, encryption of sk, ctsk
and the proof πsk correctly. From the correctness of FHE, the element ctσ = FHE.Eval(Sig.SignBS.sk,ρ, ctµ)
decrypts to Sig.SignBS.sk,ρ(µ) = Sig.Sign(BS.sk, µ; ρ) = σ. Hence FHE.Dec(sk, ctσ) outputs a signature σ =
Sig.Sign(BS.sk, µ). It passes verification, by correctness of Sig.

We now argue that the FHE-based blind signature satisfies one more unforgeability.

Theorem 1 (One-More Unforgeability). Assume that the underlying signature scheme Sig satisfies
UF-CMA security, the fully homomorphic encryption scheme FHE satisfies malicious circuit privacy, NIZK is
sound and PKE is correct. Then the construction in Figure 1 satisfies one more unforgeability.

Proof. The argument proceeds via the following hybrids.

Hybrid0: This is the genuine one-more unforgeability experiment.
Hybrid1: In this hybrid, the challenger answers random oracle queries for H ′ differently. On any input a, it

first samples a random value from range of H ′ and then programs H ′(a) to be that value. In effect, the
challenger now samples ppk uniformly from its range and programs H ′(α) = ppk.

Hybrid2: In this hybrid, the challenger first samples (ppk, psk) ← PKE.KeyGen(1λ) and then programs
H ′(α) = ppk and stores psk.

10

Setup. Gen(1λ): Upon input the security parameter λ, do the following:
• Invoke (Sig.sk, Sig.vk)← Sig.KeyGen(1λ).
• Set ppk = H ′(α), where α is any arbitrary publicly known value (for e.g. α = 1λ).
• Output BS.sk = Sig.sk, BS.vk = {Sig.vk, α, ppk}.

Signing. ⟨S(BS.sk),U(BS.vk, µ)⟩:
1. User: Given the key BS.vk = {Sig.vk, α, ppk} and a message µ, user U first verifies if ppk = H ′(α) and continues

only if the verification passes. It then does the following:
• It first samples FHE.KeyGen randomness r and an FHE key-pair (pk, sk) = FHE.KeyGen(1λ; r).
• It computes ctµ = FHE.Enc(pk, µ).
• It samples a PKE.Enc randomness re and computes ctsk = PKE.Enc(ppk, sk; re).
• It then generates a NIZK proof πsk for the following statement:

Given pk, ppk, ctsk, there exists a tuple (sk, r, re) such that

(pk, sk) = FHE.KeyGen(1λ; r) ∧ ctsk = PKE.Enc(ppk, sk; re). (3.1)

• It sends (pk, πsk, ctµ, ctsk) to signer S.
2. Signer: Upon receiving (pk, πsk, ctµ, ctsk), signer S does the following:

• It verifies πsk and outputs ⊥ if it fails.
• It samples Sig.Sign randomness ρ and computes a ciphertext ctσ = FHE.Eval(pk, Sig.SignBS.sk,ρ, ctµ) that

decrypts to Sig.Sign(BS.sk, µ; ρ).
• It sends ctσ to user U .

3. User: Upon receiving ctσ, user U computes and outputs σ = FHE.Dec(sk, ctσ).

Verifying. The verifier computes Sig.Verify(BS.vk, µ, σ) and outputs the result.

Fig. 1 HE-based Round-Optimal Blind Signature.

Hybrid3: This hybrid differs from the previous one in that the challenger recovers ski by decrypting ctsk,i
using psk, and aborts if it fails to do so.

Hybrid4: In this hybrid, the challenger uses ski to compute µi = FHE.Dec(ski, ctµi) for all i ∈ [Q]. It then
changes the way the Q ciphertexts ctσ1

. . . , ctσQ
are generated. It first signs the messages µ1, . . . , µQ to

obtain signatures σ1, . . . , σQ (in the clear). Then, it encrypts σ1, . . . , σQ using FHE to obtain ct′σ1
, . . . , ct′σQ

.

It runs FHE.Eval(pki, C0, (ct′σi
, ⋆)) for all i ∈ [Q] to obtain ctσ1

. . . , ctσQ
. Here C0 is a dummy circuit that

has the same depth and number of inputs as the Sig.Sign signing circuit and outputs its first input, and ⋆
represents as many independent encryptions of 0 as required (see Definition 8).

Indistinguishability of hybrids: We show that consecutive hybrids are indistinguishable.

The only difference between Hybrid0 and Hybrid1 is that in Hybrid1, H
′(α) is set in the reverse order, i.e.

first a random value from the the range of H ′ is sampled uniformly and then H ′(α) is programmed to be
that value. The two hybrids are therefore indistinguishable in random oracle model.

The only difference between Hybrid1 and Hybrid2 is that ppk is a uniformly random value in Hybrid1, while in
Hybrid2, it is an output of PKE.KeyGen(1λ) algorithm. Since, ppk generated using PKE.KeyGen(1λ)
is computationally indistinguishable from a random value (by design), the two hybrids are also
computationally indistinguishable.

Claim 2 Assume that PKE is correct and NIZK is sound. Then Hybrid2 and Hybrid3 are indistinguishable.

Proof (Claim 2). The two hybrids differ only in that in Hybrid3, the challenger decrypts ctski to recover ski
and aborts if it fails to do so. From the soundness of NIZK, ctski must be a valid PKE ciphertext (otherwise
πski does not verify and the game is aborted in both the hybrids). Hence, from the correctness of PKE the
challenger successfully recovers ski and does not abort. Note that the extracted value is not used in any
computation and hence the adversary’s view does not change. ⊓⊔

11

Claim 3 Assume that NIZK is sound and FHE satisfies malicious circuit privacy. Then Hybrid3 and Hybrid4
are computationally indistinguishable.

Proof (Claim 3). For all i ∈ [Q], the adversary is given ctσi = FHE.Eval(pki,Sig.SignSig.sk,ρi
, ctµi) in

Hybrid3. In Hybrid4, the adversary is given ctσi = FHE.Eval(pki, C0, ct′σi
), where ct′σi

= FHE.Enc(pki, σi) and
σi = Sig.Sign(Sig.sk, µi; ρ).

From the soundness of NIZK, for all i ∈ [Q], ski recovered by the challenger indeed correspond to the
public key pki. Hence, from the correctness of FHE.Dec, the direct signature σi computed by the challenger
in Hybrid4 is indeed equal to Sig.SignSig.sk,ρ(µi), where µi is the message encrypted by cti, in Hybrid3. As a
result, the adversary’s views:

(FHE.Eval(pki,Sig.SignSig.sk,ρ, cti), cti, pki, ski) in Hybrid3

and (FHE.Eval(pki, C0, ct′σi
), cti, pki, ski) in Hybrid4

are indistinguishable due to malicious circuit privacy of FHE.

Note here that semi-honest circuit privacy would not suffice, as we are not certain that the ciphertexts are
properly generated (or even that ski is properly generated, as the NIZK only guarantees its well-formedness).

⊓⊔

The theorem statement follows from Lemma 1, which shows that if Sig satisfies UF-CMA security, then
the adversary can win in Hybrid4 only with negligible probability.

Lemma 1. Assume that Sig satisfies UF-CMA security. Then the advantage of the adversary in the one more
unforgeability game is negligible in Hybrid4.

Proof (Lemma 1). Assume there exists an adversary U∗ that wins the one more unforgeability game in
Hybrid4. Then we build an adversary B against the UF-CMA security of the underlying signature scheme Sig.
Adversary B does the following:

1. It obtains Sig.vk from the signature challenger, samples (ppk, psk)← PKE.KeyGen(1λ), programs H ′(α) =
ppk and defines BS.vk = {Sig.vk, α, ppk} and forwards it to U∗.

2. It runs the signing protocol with adversary U∗, simulating the BS signer as follows:
(a) Adversary U∗ outputs the FHE public keys pk1, . . . , pkQ, their PKE encryptions ctsk1 , . . . , ctskQ along

with proofs πsk1 , . . . , πskQ . Adversary B verifies the proofs and if all of them verifies, it proceeds
further and recovers ski = PKE.Dec(psk, ctski) for all i ∈ [Q].

(b) Adversary U∗ also outputs Q ciphertexts ctµ1
, . . . , ctµQ

. Adversary B uses ski to decrypt ctµi
to

obtain µi for all i ∈ [Q].
(c) Adversary B sends µ1, . . . , µQ to the UF-CMA signature challenger and obtains signatures σ1, . . . , σQ.
(d) It constructs ctσ1

. . . , ctσQ
from σ1, . . . , σQ as in the previous hybrid and returns these to U∗.

(e) When U∗ outputs Q+1 message-signature pairs (µi, σi) for i ∈ [Q+1] that pass verification and such
that the µi’s are distinct, it outputs any of these for which µi had not been queried to the UF-CMA
signature challenger.

The success of U∗ translates to the success of B in the UF-CMA game.
⊓⊔
⊓⊔

We now argue that the FHE-based blind signature satisfies very honest signer blindness.

Theorem 4 (Very Honest Signer Blindness). Assume that the NIZK is zero knowledge, FHE is correct
and secure and PKE is secure. Then the construction in Figure 1 satisfies very honest signer blindness.

Proof. The argument proceeds via a sequence of hybrids.

12

Hybrid0: This is the genuine very honest signer blindness experiment.
1. The challenger generates (BS.sk = Sig.sk,BS.vk = {Sig.vk, α, ppk}) and returns these to the adversary
S∗.

2. The signer S∗ outputs two messages µ0 and µ1. The challenger picks a uniform bit b.
3. The signer S∗ interacts concurrently with U0(BS.vk, µb) and U1(BS.vk, µb̄), played by the challenger

as follows:
(a) User U0 (resp. U1) generates the FHE public and secret keys (pk0, sk0) (resp. (pk1, sk1)) honestly,

computes ctsk0 = PKE.Enc(ppk, sk0) (resp. ctsk1 = PKE.Enc(ppk, sk1)) along with proof πsk0 (resp.
πsk1) for statement in equation (3.1).

(b) Additionally, users U0 and U1 provide their respective FHE ciphertexts ctµb
= FHE.Enc(pk0, µb)

and ctµb̄
= FHE.Enc(pk1, µb̄).

(c) The challenger evaluates the signing algorithm homomorphically on ciphertexts ctµb
and ctµb̄

to obtain ct′µb
and ct′µb̄

, respectively. (recall that this step is performed by the adversary in the
honest signer blindness experiment, but by the challenger in the very honest signer blindness
experiment) ; the challenger gives ct′µb

and ct′µb̄
to the signer S∗, as well as all the intermediate

values of their computation.
(d) After obtaining the evaluated FHE ciphertexts, ct′µb

and ct′µb̄
users U0 and U1 decrypt them using

the FHE secret keys sk0 and sk1 to obtain signatures σb and σb̄ respectively.
(e) The signer S∗ is given σ0, σ1.
(f) The signer S∗ outputs its guess bit b′.

Hybrid1: In this Hybrid, the challenger answers the oracle queries for H ′ differently - for any input a, it first
samples a random value from the range of H ′ and then programs H ′(a) to be that value. In effect, the
challenger now samples ppk uniformly from its range and programs H ′(α) = ppk.

Hybrid2: In this Hybrid, the challenger sets H ′(α) differently - it first runs (ppk, psk) ← PKE.KeyGen(1λ)
and then programs H ′(α) = ppk.

Hybrid3: In this hybrid, the proofs πsk0 and πsk1 are replaced with simulated proofs.
Hybrid4: In this hybrid, at Step 3(d), the signatures σb and σb̄ are generated by using Sig.Sign directly on µb

and µb̄, respectively.
Hybrid5: In this hybrid, ctsk0 and ctsk1 are replaced with encryptions of zero.
Hybrid6: In this hybrid, we replace FHE.Enc(pk0, µb) by FHE.Enc(pk0, 0) and FHE.Enc(pk1, µb̄) by

FHE.Enc(pk1, 0).

Indistinguishability of hybrids.

1. The only difference between Hybrid0 and Hybrid1 is that in the latter hybrid, H ′(a) on any input a is
programmed to be uniformly random value. Hence, the two hybrids are indistinguishable in ROM.

2. Hybrid1 and Hybrid2 differ only in the value of H ′(α). It is a random value in the former hybrid while a
PKE public key in the latter one. Hence, the two hybrids are indistinguishable by design, since we use a
PKE scheme in which the public key is computationally indistinguishable from a uniformly random value
in its range.

3. The indistinguishability between Hybrid2 and Hybrid3 follows from the zero-knowledge property of the
underlying NIZKAoK.

4. The only difference between Hybrid3 and Hybrid4 is that in the former, we have σb = FHE.Dec(sk0, ct
′
µb
)

(resp. σb̄ = FHE.Dec(sk1, ct
′
µb̄
)) while in the latter, the signatures σb and σb̄ are generated using Sig.Sign

directly. Indistinguishability follows from the correctness of FHE.
5. The only difference between Hybrid4 and Hybrid5 is that in the former, ctskβ is a PKE encryption of skβ

for β ∈ {0, 1}, while in the latter it encrypts zero. The indistinguishability follows from the CPA security
of PKE. That is, if S∗ can distinguish between the two hybrids with non-negligible advantage then there
exists an adversary B (playing the role of BS challenger) against CPA security of PKE.
Here, we show the reduction for an intermediate hybrid, Hybrid4.5 in which ctsk0 encrypts 0, while ctsk1
encrypts sk1. We can then go from Hybrid4.5 to Hybrid5 in the same way.
The reduction B is defined as follows:

13

(a) Upon receiving the public key ppk from the PKE challenger, the reduction B (BS challenger) samples
(Sig.sk,Sig.vk)← Sig.KeyGen(1λ), programs H ′(α) = ppk, sets BS.sk = Sig.sk, BS.vk = (Sig.vk, α, ppk)
and invokes S∗.

(b) The signer S∗ outputs two messages µ0 and µ1. B picks a uniform bit b.
(c) The signer S∗ interacts concurrently with U0(BS.vk, µb) and U1(BS.vk, µb̄), played by B as follows:

i. User U0 (resp. U1) generates the FHE public and secret keys (pk0, sk0) (resp. (pk1, sk1)). U1
computes ctsk1 = PKE.Enc(ppk, sk1). B sends sk0, 0 as challenge messages to the to PKE challenger
and sets the ciphertext returned by the PKE challenger to be ctsk0 . It then generates simulated
proofs πsk0 and πsk1 . S∗ is given (pk0, ctsk0 , πsk0) and (pk1, ctsk1 , πsk1).

ii. Additionally, users U0 and U1 provide their respective ciphertexts ctµb
= FHE.Enc(pk0, µb) and

ctµb̄
= FHE.Enc(pk1, µb̄).

iii. B evaluates the signing algorithm homomorphically on ciphertexts ctµb
and ctµb̄

to obtain ct′µb

and ct′µb̄
, respectively (recall that this step is performed by the adversary in the honest signer

blindness experiment, but by the challenger in the very honest signer blindness experiment); B
gives ct′0 and ct′1 to the signer S∗, as well as all intermediate values of their computation.

iv. B computes signatures σb and σb̄ on messages µb and µb̄ using Sig.sk.
v. The signer S∗ is given σ0, σ1.
vi. The signer S∗ outputs its guess bit b′.
vii. B returns b′ to the PKE challenger.

Clearly if the PKE challenger returns encryption of sk0, then the view of S∗ corresponds to Hybrid4 else,
Hybrid4.5. Hence, if S∗ wins then so does B against the PKE challenger.

6. The indistinguishability between Hybrid5 and Hybrid6 follows from the semantic security of FHE. The
proof is a standard reduction to the semantic security. Note that due to the previous hybrids, the blindness
challenger does not need the FHE secret key for any operations and can obtain the FHE public keys and
ciphertexts from the FHE challenger. The arguments πsk are simulated, and the signatures σb and σb̄ are
computed directly using the signing key Sig.sk.

To complete the proof of the theorem, it suffices to note that the advantage of the adversary in Hybrid6 is 0
since the bit b is information theoretically hidden. ⊓⊔

Attack for Honest Signer Blindness. Note that the scheme of Figure 1 may not satisfy the stronger
notion of honest signer blindness, which differs from very honest signer blindness in that the signer can
deviate from the protocol during the signing phase. For example, assume the signature scheme Sig is obtained
by derandomizing a probabilistic signature scheme Sig0, as follows: at key generation, one samples a PRF
key k and appends it to the signing key; when signing a message, one first creates a pseudo-random string
using k and the message to be signed, and then runs Sig0.Sign with this pseudo-random string. Then, to
break honest signer blindness, the signer could use two distinct PRF keys k0 and k1 for the two executions of
the signing protocol. At the end, it could compute the four possible signatures from (µ0, µ1) and (k0, k1) and
assess which PRF key has been used in which execution, by matching σ0 and σ1 with those four signatures.

4 Round-Optimal Schnorr based Blind Signature

In this section, we provide a round optimal blind signature based on the Schnorr signature and fully
homomorphic encryption FHE. We first recap the Schnorr signature scheme.

4.1 Schnorr Signature Scheme

We recap the Schnorr signature scheme Sch = (Sch.KeyGen,Sch.Sign, Sch.Verify) in Figure 2. The algorithm
Sch.Sign is divided into two subroutines, namely, (Sch.Signr,Sch.Signs).

Correctness follows from the equalities gs = gk+Sch.sk·H(µ,r) = r·Sch.vkH(µ,r). For security, please see [PS00].

14

Sch.KeyGen(1λ): Upon input the security parameter λ, set a cyclic group G = ⟨g⟩ of prime order q and a hash
function H : {0, 1}∗ → Z∗

q such that the scheme is secure; then do the following:
• sk← Z∗

q .
• Output Sch.vk = gsk ∈ G, Sch.sk = sk.

Sch.Sign(Sch.sk, µ). Upon input the signing key Sch.sk and a message µ, do the following:
• k ← Z∗

q .
• Sch.Signr(k): Output r = gk ∈ G.
• Sch.Signs(Sch.sk, µ; k): For r ← Sch.Signr(k), output s = k + Sch.sk ·H(µ, r).
• Output σ = (r, s).

Sch.Verify(Sch.vk, µ, σ = (r, s)). Upon input the verification key Sch.vk, a message µ and a signature σ = (r, s),
check gs = r · Sch.vkH(µ,r). If the check passes, then accept, else reject.

Fig. 2 Schnorr Signature Scheme.

4.2 Two-Round Blind Signature from Schnorr and FHE

Our construction uses the following building blocks:

• A UF-CMA Schnorr signature scheme Sch = (Sch.KeyGen, Sch.Sign=(Sch.Signr, Sch.Signs), Sch.Verify).

• An IND-CPA secure public key encryption scheme PKE = (PKE.KeyGen, PKE.Enc, PKE.Dec) having the
property that the public key generated by PKE.KeyGen is indistinguishable from a uniformly sampled value
from its range.

• A maliciously circuit private fully homomorphic encryption scheme (see Def. 8) FHE = (FHE.KeyGen,
FHE.Enc, FHE.Dec, FHE.Eval) that is capable of homomorphically evaluating circuits with depth up to the
depth of circuit CSch.sk,ks , which has Sch.sk, ks hardwired and takes a message µ and a group element ru as
inputs and returns ks + Sch.sk ·H(µ, ru · gks).

• A NIZK argument system NIZKFHE for the statements of the form given in equation 4.1.

• A NIZK argument system NIZKct for the well-formedness of FHE ciphertexts, i.e., for statements of the
form: Given ct, hpk, there exists µ, r such that FHE.Enc(hpk, µ; r) = ct.

• A NIZK argument of knowledge system NIZKAoKDL for the knowledge of discrete logarithm of an element
in a group, i.e., for statements of the form : Given a group G and generator g and r ∈ G, there exists k
such that r = gk ∈ G.

• A hash function H ′ : {0, 1}∗ → PK modeled as random oracle. Here, PK is the space of public keys of
PKE.

We provide our construction in Figure 3.

Correctness. The completeness follows from the completeness of the underlying primitives. In an honest
execution of the scheme, from the completeness of NIZKFHE, the signer accepts πsk (and does not abort).
Similarly, from the completeness of the NIZKct proof system, the proofs πru and πµ verify correctly
if they were computed correctly. From the correctness of FHE, the signing circuit evaluated on the
encryptions ctµ and ctru , of the message and the user side randomness respectively, yields a ciphertext
cts = FHE.Eval(hpk, CSch.sk,ks

, ctµ, ctru) which decrypts to s = ks + Sch.sk · H(µ, ru · gks) computed as
FHE.Dec(hsk, cts). Thus ku + s = ku + ks + Sch.sk · H(µ, ru · gks) = Sch.Sigs(Sch.sk, µ; ku + ks). As
r = Sch.Signr(ku+ks) as before, by correctness of the Schnorr signature scheme Sch, the signature σ = (r, ku+s)
passes verification.

One More Unforgeability. We now argue that the blind Schnorr signature scheme satisfies one more
unforgeability.

15

Setup. Gen(1λ): Upon input the security parameter λ, do the following:
• Invoke (Sch.sk, Sch.vk)← Sch.KeyGen(1λ).
• Set ppk = H ′(α), where α is any arbitrary publicly known value (for e.g. α = 1λ).
• Output BS.sk = Sch.sk, BS.vk = {Sch.vk, α, ppk}.

Signing. ⟨S(BS.sk),U(BS.vk, µ)⟩:
1. User: Given the key BS.vk and a message µ, user U first verifies if ppk = H ′(α) and continues only if the

verification passes. It then does the following:
• It first samples FHE.KeyGen randomness ρ and an FHE key-pair (hpk, hsk)=FHE.KeyGen(1λ; ρ).
• It then samples a PKE.Enc randomness re and computes ctsk = PKE.Enc(ppk, hsk; re).
• It then generates a NIZKFHE proof πsk for the following statement:

Given hpk, ppk, ctsk, there exists a tuple (hsk, ρ, re) such that

(hpk, hsk) = FHE.KeyGen(1λ; ρ) ∧ ctsk = PKE.Enc(ppk, hsk; re). (4.1)

• It samples Sch.Sign partial randomness ku ← Z∗
q and computes ru = gku , ctru = FHE.Enc(hpk, ru) and

ctµ = FHE.Enc(hpk, µ).
• It computes NIZK proofs πru and πµ that ctru and ctµ are well-formed, using NIZKct.
• It sends (hpk, ctsk, πsk, ctru , ctµ, πru , πµ) to signer S.

2. Signer: Upon receiving (hpk, ctsk, πsk, ctru , ctµ, πru , πµ), signer S does the following:
• It verifies πsk, πru and πµ and outputs ⊥ if any of these fails.
• It samples Sch.Sign partial randomness ks ← Zq and computes Sch.Signr(ks), i.e. rs = gks ; it then generates

a NIZKAoKDL proof πks that rs is well-formed with respect to ks, i.e., there exists ks such that rs = gks .
• It computes a ciphertext cts = FHE.Eval(hpk, CBS.sk,ks , ctµ, ctru), which returns the encryption of ks +BS.sk ·

H(µ, ru · gks).
• It sends cts, rs, πks to user U .

3. User: Upon receiving cts, rs, πks , user U does the following:
• It first verifies πks and outputs ⊥ if it fails.
• It computes r = gku · rs and s = FHE.Dec(hsk, cts).
• It computes Sch.Verify(BS.vk, µ, (r, ku + s)) and outputs ⊥ if it fails.
• It outputs σ = (r, ku + s).

Verifying. The verifier computes Sch.Verify(BS.vk, µ, σ = (r, ku + s)) and outputs the result.

Fig. 3 BSSch: HE-based Round-Optimal Blind Schnorr Signature.

Theorem 5. Assume that the underlying signature scheme Sch satisfies UF-CMA security, FHE and PKE
are correct and FHE satisfies malicious circuit privacy, NIZKFHE and NIZKct are sound and NIZKAoKDL is
zero knowledge. Then the construction in Figure 3 satisfies one more unforgeability.

Proof. The proof is argued via the following hybrids:

Hybrid0: This is the genuine one-more unforgeability experiment between the challenger (simulated signer S)
and the adversary (malicious user U∗).

1. BS.KeyGen(1λ) outputs (BS.sk,BS.vk), and U∗ is given BS.vk.
2. U∗ interacts concurrently with Q instances
S1BS.sk, . . . ,S

Q
BS.sk. Each instance i ∈ [Q] with SiBS.sk consists of transcripts (hpki, ctski , πski , ctru,i

, ctµi
,

πru,i
, πµi

) generated by U∗ itself, (cts,i, rs,i, πks,i
) sent by SiBS.sk, and σi = (ri, ku,i + si) computed

by U∗.
3. U∗ outputs (µ1, σ1, . . . , µQ+1, σQ+1).

Hybrid1: In this hybrid, the challenger answers random oracle queries for H ′ differently. On any input a, it
first samples a random value from range of H ′ and then programs H ′(a) to be that value. In effect, in
this hybrid the challenger samples ppk randomly from its range and then programs H ′(α) = ppk.

16

Hybrid2: In this hybrid, the challenger first samples (ppk, psk) ← PKE.KeyGen(1λ) and then programs
H ′(α) = ppk and stores psk.

Hybrid3: In this hybrid, the proof πks,i is now a simulated proof for all i ∈ [Q].

Hybrid4: In this hybrid, the ciphertexts cts,i are computed differently as follows: for all i ∈ [Q]. The
challenger extracts hski as PKE.Dec(psk, ctski). Then it computes rDec

u,i = FHE.Dec(hski, ctru,i
) and µDec

i =

FHE.Dec(hski, ctµi
). Then it computes sDec

i = ks,i + BS.sk ·H(µDec
i , rDec

u,i · gks,i) and replaces cts,i by the

encryptions of sDec
i computed as follows: it first computes ct′s,i = FHE.Enc(hpki, s

Dec
i) and then performs

homomorphic evaluation on ct′s,i as: cts,i = FHE.Eval(hpki, C0, (ct′s,i, ⋆)). Here, C0 is a dummy circuit
of the same depth and arity as that of CBS.sk,ks,i

which outputs its first input, ignoring the rest and ⋆
represents as many encryptions of 0’s as required.

Indistinguishability of hybrids: The argument for indistinguishability between Hybrid0, Hybrid1 and Hybrid2 is
same as that in the proof of Theorem 1. They are indistinguishable in random oracle model and from the
choice of a PKE scheme in which the public key ppk is indistinguishable from uniform. Indistinguishability
of Hybrid2 and Hybrid3 relies on NIZKAoKDL being zero knowledge, while indistinguishability of Hybrid3 and
Hybrid4 relies on soundness of NIZKct and NIZKFHE, correctness of PKE and FHE and malicious circuit privacy
of FHE. We argue indistinguishability between Hybrid2, Hybrid3 and Hybrid4 via the following claims.

Claim 6 Assume that NIZKAoKDL is zero knowledge. Then Hybrid2 and Hybrid3 are indistinguishable.

Proof (Claim 6). The only difference between Hybrid2 and Hybrid3 is that the proofs πks,i for i ∈ [Q] are
real in the former and simulated in the latter. Hence, by zero knowledge property of NIZKAoKDL, the claim
follows. ⊓⊔

Claim 7 Assume that NIZKct and NIZKFHE are sound and PKE and FHE are correct and FHE satisfies
malicious circuit privacy. Then Hybrid3 and Hybrid4 are indistinguishable.

Proof (Claim 7). The two hybrids differ in the computation of cts,i for i ∈ [Q]. In addition, in Hybrid4 the
continuation of the game is also conditioned on successful extraction of hski by the challenger. Firstly, we
note that for all i ∈ [Q], if the proof πski verifies (which should happen for the game to continue further),
then by the soundness of NIZKFHE, ctski must be a valid PKE encryption of a valid hski and hence from the
correctness of PKE, the challenger successfully recovers correct hski and does not abort.

Next we observe that in Hybrid3, cts,i = FHE.Eval(hpki, CBS.sk,ks , (ctµi , ctru,i)) and in Hybrid4, cts,i =

FHE.Eval(hpki, C0, (ct′s,i, ⋆)), where ct′s,i = FHE.Enc(hpki, s
Dec
i) and sDec

i = CBS.sk,ks,i(µ
Dec
i , rDec

u). The
soundness of NIZKct ensures that ctµi and ctru,i are a valid ciphertexts and correctness of FHE ensures

that underlying plaintexts are recovered correctly. This implies that sDec
i computed directly in Hybrid4

is indeed equal to CBS.sk,ks,i
(µi, ru,i), where µi and ru,i are the underlying plaintexts in ctµi

and ctru,i
,

respectively. As a result, the adversary’s views:

(FHE.Eval(hpki, CBS.sk,ks,i , (ctµi , ctru,i)), ctµi , ctru,i , hpki, hski) in Hybrid3

and (FHE.Eval(hpki, C
0, (ct′s,i, ⋆)), ctµi , ctru,i , hpki, hski) in Hybrid4

are indistinguishable due to malicious circuit privacy of FHE. ⊓⊔

The theorem statement follows from Lemma 2.

Lemma 2. Assume that Sch satisfies UF-CMA security. Then the advantage of the adversary in the one
more unforgeability game is negligible in Hybrid4.

Proof (Lemma 2). Assume there exists an adversary U∗ that wins the one more unforgeability game in
Hybrid4. Then we build an adversary B against the UF-CMA security of the Schnorr signature Sch:

1. B obtains Sch.vk from the Schnorr signature challenger C; it samples (ppk, psk) ← PKE.KeyGen(1λ),
programs H ′(α) = ppk and defines BS.vk = {Sch.vk, α, ppk} and forwards it to U∗.

17

2. It runs the signing protocol with adversary U∗ simulating the BS signer by reprogramming the random
oracle as follows:
(a) Adversary U∗ outputs FHE public keys {hpki}i∈[Q], ciphertexts {ctski}i∈[Q] and NIZKFHE proofs
{πski}i∈[Q]. Then B extracts {hski}i∈[Q] as PKE.Dec(psk, ctski) for i ∈ [Q].

(b) B reprograms the random oracle (denote the assigned hash values from the Schnorr signature challenger
by HC and the reprogrammed hash values by HB). When U∗ outputs a random oracle query HB on
(x, y) to B, then B assigns a hash value for HB(x, y) by itself, or by requesting a random oracle query
HC to the Schnorr signature challenger - if (x, y) = (mi, ri · ru,i) and the i th execution is already
done for some i ∈ [Q] then B assigns the value HC(mi, ri) to HB(x, y); else if the value HC(x, y) is
already assigned to HB then B assigns a uniform and fresh value to HB(x, y); else B assigns the value
HC(x, y) to HB(x, y).

(c) U∗ outputs Q signing queries consisting of the ciphertexts ctru,i
and ctµi

and their proofs πru,i
, πµi

for
i ∈ [Q]. Then B verifies the proofs and if valid, obtains ru,1, · · · , ru,Q and µ1, · · · , µQ by decrypting
the ciphertexts with hsk1, . . . , hskQ, respectively.

(d) B sends µ1, · · · , µQ to the Schnorr challenger C and obtains signatures σ1, · · · , σQ where σi = (ri, si).
B assigns the hash value HC(µi, ri) to HB(µi, ri · ru,i), and outputs ⊥ if the value HC(µi, ri) is already
assigned to HB.

(e) B sets rs,i = ri and simulates the proofs πks,i
for all i ∈ [Q]. Note that for this, the challenger does not

need the witness dlog(rs,i). To generate encryptions of si, B first computes ct′s,i = FHE.Enc(hpki, si)

and then cts,i = FHE.Eval(hpki, C0, (ct′s,i, ⋆)) for i ∈ [Q] and forwards them along with rs,1, · · · , rs,Q
and πks,1 , · · · , πks,Q

to U∗.
(f) U∗ outputs Q+ 1 message-signature pairs (µj , (rj , s

′
j))j∈J that pass verification with respect to HB

and such that the µj ’s are distinct, where |J | = Q+ 1.
3. B outputs any of these for which µj had not been queried to the Schnorr challenger.

Note that si = Sch.Signs(Sch.sk, µ; dlog(rs,i)) = dlog(rs,i) + Sch.sk · HC(µi, rs,i) = dlog(rs,i) + Sch.sk ·
HB(µi, ru,i ·rs,i) = CSch.sk,ks,i(µi, ru,i) with respect to HB. We also note that the last output message-signature

pair (µj , (rj , s
′
j)) by B satisfies gs

′
j = rj · BS.vkHB(µj ,rj) = rj · BS.vkHC(µj ,rj) since µj has not been queried to

the Schnorr challenger. Hence the message-signature pair output by B passes verification with respect to HC ,
which is a forgery of the Schnorr signature.

The aborting probability in 2.(d) can be bounded by considering all hash queries and all sign queries.
The probability that one of the sign queries with µi outputs ri such that ri · ru,i corresponds to one of the
hash/sign queries is bounded by

QS · (QS +QH + 1)/q,

where QS and QH are the number of sign/hash queries since ri is uniform independent of the rest.

The advantage of the adversary U∗ is translated to an advantage of the adversary B. ⊓⊔
⊓⊔

Blindness. We now argue that the FHE-based blind Schnorr signature scheme satisfies honest signer blindness.
This can be upgraded to malicious signer blindness by adding NIZKAoK proofs to show that the public are
honestly generated.

Theorem 8. Assume that FHE and PKE are secure and correct, NIZKct and NIZKFHE are zero knowledge
and NIZKAoKDL is knowledge sound. Then the construction in Figure 3 satisfies honest signer blindness.

Note that all assumptions can be conjectured to hold against a quantum adversary. In particular, note that
the NIZKAoKDL is trivially sound for a quantum adversary.

Proof. The argument proceeds via the following hybrids.

Hybrid0 : This is the genuine honest signer blindness experiment. The challenger (simulated user) and the
adversary (malicious signer) S∗ interacts in the following game.

18

1. The challenger samples BS.sk = Sch.sk, BS.vk = (Sch.vk, α, ppk) and sends BS.sk,BS.vk to the signer
S∗.

2. S∗ outputs messages µ0 and µ1. The challenger picks a bit b← {0, 1} uniformly randomly.
3. S∗ interacts concurrently with users U(BS.vk, µb) and U ′(BS.vk, µb̄), simulated by the challenger as

follows:
(a) U (resp. U ′) runs FHE.KeyGen(1λ) to generate (hsk, hpk) (resp. (hsk′, hpk′)), computes ctsk (resp.

ct′sk) and NIZKFHE proof πsk (resp. π′
sk) and sends hpk, ctsk, πsk (resp. hpk′, ct′sk, π

′
sk) to S∗.

(b) U (resp. U ′) randomly chooses ku ← Z∗
q and computes ru = gku (resp. k′u ← Z∗

q and computes

r′u = gk
′
u) and sends the encryptions ctru and ctµ along with proofs πru , πµ (resp. ct′ru , ct

′
µ,

π′
ru , π

′
µ) to S∗.

(c) U (resp. U ′) receives rs, πks
and cts (resp. r′s, π

′
ks

and ct′s) from S∗.

(d) U (resp. U ′) verifies the proof and aborts if it fails. Otherwise, U (resp. U ′) computes r = gkurs
(resp. r′ = gk

′
ur′s). Then U (resp. U ′) decrypts cts (resp. ct′s) and obtains s (resp. s′).

(e) U (resp. U ′) verifies signature (r, s) (resp. (r′, s′)) and aborts if the check fails.
4. If the game is aborted at any stage then the challenger sends (⊥,⊥), (⊥,⊥) to S∗. Otherwise, it sets

(rb, sb) = (r, s) and (rb̄, sb̄) = (r′, s′) and sends (r0, s0) and (r1, s1) to S∗.
5. The adversary S∗ outputs its guess for bit b.

Hybrid1 and Hybrid2 are same as in the unforgeability proof (Theorem 5).
Hybrid3 : In this hybrid, the NIZKFHE proofs πsk and π′

sk and NIZKct proofs πru , πµ, π
′
ru and π′

µ are replaced
with simulated proofs.

Hybrid4: In this hybrid, the PKE ciphertexts ctsk and ct′sk encrypt 0.

Now, consider any PPT adversary (signer) S∗. We show via the following arguments that the advantage
of S∗ in Hybrid0, i.e. in the real world is negligible.

Indistinguishability of Hybrids: Hybrid0, Hybrid1 and Hybrid2 are indistinguishable by the same argument
as that in the proof of unforgeability (Theorem 5). Hybrid2 and Hybrid3 are indistinguishable assuming
NIZKFHE and NIZKct are zero knowledge. Hybrid3 and Hybrid4 are indistinguishable from the security of PKE.
We argue indistinguishability between Hybrid2, Hybrid3 and Hybrid4 via the following claims.

Claim 9 Assume NIZKFHE and NIZKct are zero knowledge. Then Hybrid2 and Hybrid3 are indistinguishable.

Proof (Claim 9). The only difference between Hybrid2 and Hybrid3 is that the NIZKFHE proofs πsk, π
′
sk and

NIZKct proofs πru , πµ, π
′
ru , π

′
µ are real in the former and simulated in the latter. Hence indistinguishability

follows from the zero-knowledge property of NIZKFHE and NIZKct, respectively. ⊓⊔

Claim 10 Assume PKE is secure. Then Hybrid3 and Hybrid4 are indistinguishable.

Proof (Claim 10). The two hybrids differ only in PKE ciphertexts ctsk and ct′sk which encrypt FHE keys in
Hybrid3 and 0 in Hybrid4. Hence, the indistinguishability between the two hybrids can be shown via standard
reduction to PKE security. ⊓⊔

Next, we show that under the assumptions in Theorem 8, advantage of S∗ in Hybrid4 is negligible.

Lemma 3. Assume the conditions given in Theorem 8 are true. Then, the advantage of S∗ in Hybrid4 is
negligible.

Proof (Lemma 3). To prove the claim, we partition the set of all adversarial signers S∗, and prove the claim
for each part separately. Consider the following classification of (possibly malicious) signers:

– Typehon : the class of those adversaries who always perform homomorphic evaluation so that the ciphertexts
cts and ct′s decrypt to correct values, namely signatures that pass Schnorr verification.

– Typemal : the class of adversaries who always perform homomorphic evaluation of at least one of the two
sessions incorrectly, so that cts or ct′s decrypt to a value that fails Schnorr verification.

19

– Typemix : the class of those adversaries who are not in Typehon or Typemal. Thus, such adversaries
sometimes compute both ciphertexts correctly, and sometimes compute at least one of them incorrectly
depending on their own or the challenger’s random coins.

Claim 11 Assume FHE is secure. Then, if S∗ is of Typemal, it has a negligible advantage in Hybrid4.

Intuitively, if the signer S∗ computes (either of) the ciphertexts cts (resp. ct′s) incorrectly, then at least one of
them does not decrypt to the desired value, and signature verification fails. In this case the challenger outputs
⊥ for both the signatures. Thus, the only information that S∗ can learn is via the first round messages, which
contain simulated proofs, a PKE ciphertext in each session encrypting zero, and FHE ciphertexts. Hence, the
claim follows by FHE security.

Proof (Claim 11). We observe that such a S∗ receives hpk, ctsk, ctru , ctµb
and simulated proofs from U (resp.

hpk′, ct′sk, ct
′
ru , ctµb̄

and simulated proofs from U ′) in its first round of interaction with the challenger. Note
that of all the values returned to S∗, all the values other than ctµb

and ctµb̄
carry no information about the

challenge bit b. Also, ctµb
and ctµb̄

hide the bit b due to FHE security.

Thus, we can show that if S∗ has a non negligible advantage in Hybrid4, then there exists an adversary B
who breaks FHE security with non negligible advantage. The reduction B is defined as follows:
Upon receiving FHE public key, hpkch from the FHE challenger, B does the following:

1. Samples (BS.vk,BS.sk) as defined for Hybrid4, and invokes S∗ with (BS.vk,BS.sk).
2. S∗ outputs two messages µ0 and µ1.
3. B samples a pair of FHE keys, (hpkB, hskB)← FHE. KeyGen(1λ) and computes ctB = FHE.Enc(hpkB, µ0)

and samples a bit b← {0, 1}.
4. B sends µ0 and µ1 as challenge messages to the FHE challenger. The FHE challenger returns ctch =

FHE.Enc(hpkch, µβ), for β ← {0, 1}.
5. If b = 0, B sets hpk = hpkB, hpk

′ = hpkch, ctµ = ctB and ct′µ = ctch. Else, if b = 1, B sets hpk′ = hpkB,
hpk = hpkch, ct

′
µ = ctB and ctµ = ctch.

6. B computes ctru , ct
′
ru , ctsk = PKE.Enc(ppk,0), ct′sk = PKE.Enc(ppk,0) and simulated proofs πsk, π

′
sk, πµ,

π′
µ, πru , πr′u

.

7. B simulates U with hpk, ctsk, ctµ, ctru , πsk, πru , πµ and U ′ with hpk′, ct′sk, ct
′
µ, ct

′
ru , π

′
sk, π

′
ru , π

′
µ.

8. In the end, B returns signatures ⊥,⊥ to S∗.
9. S∗ outputs its guess bit b′.

10. If b′ = b, B returns 1, else 0 to the FHE challenger.

Analysis of B’s advantage: Observe that if β = 1, then B simulated Hybrid4 with S∗ with challenge bit b. On
the other hand, if β = 0, then both U and U ′ are simulated with µ0 (and its ciphertexts) only, thus hiding bit
b information theoretically. In this case S∗ can do no better than making a random guess.

Hence, we can analyze the advantage of B as

AdvB = Pr(B → 1|β = 1)− Pr(B → 1|β = 0)

= Pr(b′ = b|β = 1)− Pr(b′ = b|β = 0)

= 1/2 + ϵ− 1/2 = ϵ.

Lemma 4. Assume NIZKAoKDL is knowledge sound and FHE is correct and secure. Then, if S∗ is of Typehon,
i.e. always computes cts and ct′s correctly, then its advantage in Hybrid4 is negligible.

Proof (Lemma 4). The proof is argued via the following hybrids.

Hybrid5 : This is same as Hybrid4 except that in this hybrid, the decrypted signature components, s0, s1 are
replaced with the components that are generated by the challenger as follows:
1. The challenger extracts the witnesses kexts and k′ ext

s from the proofs πks and π′
ks

using NIZKAoKDL

extractor. Using these, it computes kext = ku + kexts , rexts = gk
ext
s and rext = gk

ext

. Similarly it computes
k′ ext = k′u + k′ ext

s , r′ ext
s = gk

′ ext
s and r′ ext = gk

′ ext

.

20

2. The challenger checks whether the randomnesses satisfy rs = rexts and r′s = r′ ext
s . If not, then it

aborts. Else, it computes r = gkurs, r
′ = gk

′
ur′s. Then it computes sext = kext + BS.sk · H(µb, r),

s′ ext = k′ ext + BS.sk ·H(µb̄, r
′), sets (rb, sb) = (r, sext), (rb̄, sb̄) = (r′, s′ ext) and returns the signatures

as (r0, s0), (r1, s1) to S∗.
Hybrid6 : In this hybrid, all the FHE encryptions (i.e., ctru , ctµ, ct

′
ru , ct

′
µ) are replaced with encryptions of zero.

We first show that for such an adversary, Hybrid4 and Hybrid5 are indistinguishable.

Claim 12 Assume the conditions in Lemma 4 hold. Then Hybrid4 and Hybrid5 are indistinguishable.

Proof (Claim 12). Observe that if the proofs πks and π′
ks

do not verify then the game aborts in both the
hybrids. On the other hand, if the proofs πks and π′

ks
verify, then the computation of sb and sb̄ in Hybrid5 is

further conditioned on the successful extraction of ks and k′s after which they are computed directly without
having to perform any decryption. In more detail, if the proofs πks

and π′
ks

verify, then the challenger does
not abort at this stage in Hybrid4 by definition. In Hybrid5, from the knowledge soundness of NIZKAoKDL,
the challenger succeeds in extracting the witnesses kexts and k′ ext

s with overwhelming probability and hence
does not abort at this stage.

Next we show that the signatures generated in both hybrids are identical. Since rb and rb̄ are computed
in the same way in both the hybrids, we focus on sb and sb̄. Here we give the argument to prove that sb
computed in Hybrid5 is same as that computed in Hybrid4. The same argument applies to sb̄.

In Hybrid4, from the correctness of FHE.Eval and the assumption that S∗ computes cts and ct′s honestly,
sb obtained by computing FHE.Dec(FHE.sk, cts) passes and Sch verification and the challenger does not abort.

From Sch.Verify, we have gsb = rb · BS.vkH(µb,rb). From the uniqueness of discrete log, we get that: given
rb,BS.vk and µb, sb is uniquely determined and must be equal to ku + ks + BS.sk ·H(µb, rb), where gks = rs.

In Hybrid5, since discrete log is unique, kexts = ks. Hence, s
ext
b = ku + kexts + BS.sk ·H(µb, rb) = ku + ks +

BS.sk ·H(µb, rb) = sb (returned in Hybrid4). This proves the claim. ⊓⊔

Claim 13 Assume FHE is secure. Then for any S∗ Hybrid5 and Hybrid6 are indistinguishable.

Proof (Claim 13). The two hybrids differ only in FHE ciphertexts ctru , ctµ, ct
′
ru and ct′µ which encrypt

genuine values in Hybrid5 and 0 in Hybrid6. Hence, the indistinguishability between the two hybrids can be
argued via standard reduction to FHE security. ⊓⊔

We note that in Hybrid6, the challenge bit b is information theoretically hidden. Hence the advantage of
the adversary in Hybrid4 is negligible, which concludes the proof of Lemma 4. ⊓⊔

Lemma 5. Assume NIZKAoKDL is knowledge sound and FHE is correct and secure. Then, if S∗ is of Typemix,
then its advantage in Hybrid4 is negligible.

Proof (Lemma 5). We define Hybrid5 and Hybrid6 as in the proof of Lemma 4. We prove in Claim 14, that if
advantage of S∗ in Hybrid4 is non-negligible, then there exists an adversary whose advantage in Hybrid5 is
non-negligible. But since, we have shown that Hybrid5 and Hybrid6 are indistinguishable and advantage of
all adversaries in Hybrid6 is zero, there cannot exist any adversary with non-negligible advantage in Hybrid5.
This proves that advantage of S∗ in Hybrid4 cannot be non-negligible.

Claim 14 Assume the conditions in Lemma 5 hold. Then, if S∗ is of Typemix and has non-negligible
advantage in Hybrid4, then there exists a PPT adversary (signer) who has non-negligible advantage in Hybrid5.

Proof (Claim 14). First, we make following observations:

1. Conditioned on the event that S∗ computes cts and ct′s correctly, Hybrid4 and Hybrid5 are indistinguishable.
(Proof is same as that of Claim 12).

2. Conditioned on the event that S∗ computes at least one of the two ciphertexts - cts and ct′s - incorrectly,
its advantage in Hybrid4 is negligible (Proof is same as that of Claim 11).

21

Now we analyze the overall advantage of S∗ in the two hybrids. Let Corr-ct be defined as the event that S∗

computes cts and ct′s correctly, i.e. they decrypt to values that pass Schnorr verification. Let Advi,S∗ be the
advantage of S∗ in Hybridi. Then

6,

Adv4,S∗ = (Adv4,S∗ |Corr-ct) Pr(Corr-ct) + (Adv4,S∗ |Corr-ct) Pr(Corr-ct)
(4.2)

From Observations 1 and 2 above, we have

(Adv4,S∗ |Corr-ct) = negl (4.3)

(Adv5,S∗ |Corr-ct) = (Adv4,S∗ |Corr-ct) + negl (4.4)

This gives us

Adv4,S∗ = (Adv4,S∗ |Corr-ct) Pr(Corr-ct) + negl (4.5)

Adv5,S∗ = (Adv4,S∗ |Corr-ct) Pr(Corr-ct) + δ∗ Pr(Corr-ct) + negl

(4.6)

where δ∗ := (Adv5,S∗ |Corr-ct).
Let us now define an adversary S∗∗ as follows: S∗∗ behaves exactly as S∗ except that in the event of

Corr-ct, it flips the bit b′ returned by S∗. Then,

(Adv5,S∗∗ |Corr-ct) = (Adv5,S∗ |Corr-ct),
(Adv5,S∗∗ |Corr-ct) = −(Adv5,S∗ |Corr-ct) (4.7)

Adv5,S∗∗ = (Adv5,S∗∗ |Corr-ct) Pr(Corr-ct) + (Adv5,S∗∗ |Corr-ct) Pr(Corr-ct)
= (Adv5,S∗ |Corr-ct) Pr(Corr-ct)− (Adv5,S∗ |Corr-ct) Pr(Corr-ct)
= (Adv4,S∗ |Corr-ct) Pr(Corr-ct)− δ∗ Pr(Corr-ct) + negl

(4.8)

If Sign(δ∗) = Sign((Adv4,S∗ |Corr-ct)), then

|Adv5,S∗ | = |(Adv4,S∗ |Corr-ct) Pr(Corr-ct) + δ∗ Pr(Corr-ct) + negl |
≥ |(Adv4,S∗ |Corr-ct) Pr(Corr-ct) + negl |
= |Adv4,S∗ | (4.9)

If Sign(δ∗) = −Sign((Adv4,S∗ |Corr-ct)), then

|Adv5,S∗∗ | = |(Adv4,S∗ |Corr-ct) Pr(Corr-ct)− δ∗ Pr(Corr-ct) + negl |
≥ |(Adv4,S∗ |Corr-ct) Pr(Corr-ct) + negl |
= |Adv4,S∗ | (4.10)

Thus, either S∗ or S∗∗ has absolute advantage at least as good as the absolute advantage of S∗ in
Hybrid4. This proves that if S

∗ has non-negligible advantage in Hybrid4, then there exists an adversary with
non-negligible advantage in Hybrid5, which in turn would imply an adversary with non-negligible advantage
in Hybrid6 – a contradiction. (Claim 14) ⊓⊔

(Lemma 5) ⊓⊔

(Lemma 3) ⊓⊔

Thus, from Lemma 3, we conclude that no PPT adversary can have non-negligible advantage in Hybrid0.
This concludes the proof of Theorem 8. ⊓⊔
6 for events A and B, we let Pr(A|B) = 1, if Pr(B) = 0

22

5 Instantiating Components for Blind Schnorr Signature

Next, we provide an instantiation of the HE-based blind Schnorr signature over an elliptic curve group
G ⊂ E(F2d) over a binary field. We choose to use this variant for two efficiency reasons: (i) the field size is
small compared to the finite field variants and (ii) the binary field with characteristic 2 is useful for the hash
and the following process. Further, we use the division-free variant binary EC-Scnorr signature [NSS04] to
detour a costly finite field division.

5.1 Underlying Building Blocks

In this section, we provide the underlying building blocks for our blind Schnorr signature. We define
R := Z[x]/(Φm(x)), where Φm(x) is the m th cyclotomic polynomial for an odd positive integer m, and denote
RN := R/NR for a positive integer N . We denote by Fpr a finite field of order pr with a prime characteristic
p.

BGV FHE and Packing Methods. Consider the BGV scheme FHE.Enc :M×K → C for plaintext space
M = R2, key space K and ciphertext space C = R2

Q. The ciphertext modulus Q is one of the positive integers
Q0 < Q1 < · · · < QL depending on the level of the ciphertext, which decreases over the computations from L
to 0. The bootstrapping restores the level of the ciphertext from Llow to Lhigh > Llow and enables further
homomorphic multiplications. The secret key hsk = (s, 1) is chosen from R2 with ternary coefficients.

The plaintext space can be decomposed into multiple slots by the Chinese Remainder Theorem: R2
∼=∏ℓ

i=1 Z2[x]/(fi(x)), where f1, · · · , fℓ s are the d0-degree distinct irreducible polynomial factors of Φm(x) in
Z2[x]. Each component Z2[x]/(fi) is isomorphic to a finite field F2d0 and is called a slot. Packing methods
in BGV make it possible to encrypt ℓ elements of F2d0 as a single ciphertext, using multiple plaintext slots.

Elliptic Curve Schnorr Signature. We consider the Schnorr signature with a group defined on an binary
elliptic curve. More concretely, let E be an elliptic curve over F2d , and consider a subgroup G ⊂ E(F2d) of
prime order q and a generator P ∈ G. We denote x[R], y[R] the x, y-coordinates of the EC point R in affine
coordinates and denote [k]P the EC point addition of k copies of the point P , i.e. P + P + · · ·+ P . We omit
[R] if there is no confusion. Let H be a hash function. Then the EC-Schnorr signature of a message µ under
a secret key sk ∈ Zq is

σ = (R, s = k +H(µ, x[R], y[R]) · sk),

where R = [k]P for some k ∈ Z∗
q . Since R is uniquely determined by the x-coordinate and one bit, so y[R]

can be compressed to the bit. This point compression is used when output a final blind signature, but not in
the signing protocol executions. For a verification key vk = Q = [sk]P and a signature (R, s) for the message
m, the verification algorithm will check whether [s]P = R+ [H(µ, x[R], y[R])]Q.

Division-Free Elliptic Curve Schnorr Signature. We will use the division-free variant of the EC-Schnorr
signature with the randomized projective coordinates [NSS04] over a group defined on a binary elliptic curve.
Division-free indicates that there is no finite field division, when computing the first element in the signature.
More concretely, let E be an elliptic curve over F2d , and consider a subgroup G ⊂ E(F2d) of prime order q and
a generator P ∈ G. We denote by [k]P the EC point addition of k copies of the point P , i.e. P + P + · · ·+ P .
Let H be a hash function. Note that the point R can be represented in two forms; affine coordinates (x, y),
or projective coordinates [X; Y ; Z] where x = X/Z and y = Y/Z, and x, y, X, Y , Z ∈ F2d . Then the
division-free EC-Schnorr signature of a message µ under a secret key sk ∈ Zq is

σ = (X, Y, Z, s = k +H(µ, X, Y, Z) · sk) ∈ (F2d)
3 × Zq,

where the coordinates are of the point R = [k]P for some k ∈ Z∗
q . For security, the coordinates X, Y, Z

have to be randomized with a random ϵ← F2d as ϵX, ϵY , ϵZ. For a verification key vk = Q = [sk]P and a
signature (X, Y, Z, s) for the message m, the verification algorithm will check whether R = (X/Z, Y/Z) ∈ G

23

and whether [s]P = R+ [H(µ,X, Y, Z)]Q. Since R is uniquely determined by the x-coordinate and one bit,
so y[R] can be compressed to this bit. This point compression is used when outputting a final blind signature,
but not in the signing protocol executions. The resulting signature size will be 6λ-bit for λ bit security7.
In our case, we will have k = ku + ks ∈ Zq and R = Ru + [ks]P ∈ G, and signing will be homomorphically
evaluated with encrypted Ru (with projective coordinates) and µ; and unencrypted ks, sk and P .

Edwards Curve. We select Edward curves to benefit from “complete addition”, i.e., addition which does
not depend on whether the summands are infinity points. In contrast, elliptic curves have a “conditional”
addition algorithm in general which depends on the summands, and necessitate adding an “if” statement in
homomorphic evaluation, impacting efficiency.

5.2 Parameter Selection

We explicit our choice of the parameters for components for homomorphic signing.

• FHE Parameters. Currently, the only available library for bootstrappable BGV is HElib [HHS+21, HS21].
We take parameters as follows: m = 42799 = 127 · 337, ϕ(m) = 42336 = 21 · 2016 and the largest modulus
QL is 946 bits which gives 127.6-bit security (as estimated by the HElib library). With this choice, we get
2016 slots isomorphic to F2d0 with d0 = 21.
• Elliptic Curve. We choose to use a binary Edwards curve E defined over F2d for d = 273 = 21 · 13, which

gives d/2 = 136.5-bit security for the base Schnorr signature8. We look for a cardinality q that is a prime in
[2d + 1− 2d/2+1, 2d + 1 + 2d/2+1], and we aim at minimizing its Hamming weight. Among the two primes
of Hamming weight 3 in the interval, we choose q = 2273 + 255 + 1. Then we can find an elliptic curve E
using the CM method, whose heuristic analysis in [BS07] shows that we can find it with fixed order q in
time polynomial in d.

• SHA-3 Hash Function. For the hash evaluation, we choose the standard SHA-3 hash function and
analyze it precisely for performance9. For a maximum 1086-bit input, consisting of three 273-bit projective
coordinates of an elliptic curve point and a 267-bit message, it outputs a 256-bit hash value. The inner
KECCAK-p function has a 1600-bit input with extra 2-bit suffix and a c = 512-bit capacity. Then its bit
security is 128 and the number of rounds is nr = 24.

5.3 Instantiating the Blind Signature Protocol

The resulting blind signature scheme BSDFSch based on the construction in Figure 3 and on division-free
Schnorr has the following differences:

• In Setup, the setup for the division-free Schnorr DFSch outputs a group G = ⟨P ⟩ with respect to a base
point P on an Edwards curve E(F2d).

• In Signing,
1. U computes (xu, yu) = Ru = [ku]P for a randomly chosen ku. U encrypts xu, yu and µ to ctxu

, ctyu

and ctµ and sends these with the proofs.

2. S computes the projective coordinates Xs, Ys and Zs such that [Xs;Ys;Zs] = Rs = [ks]P for a
randomly chosen ks and randomizes these by multiplying with ϵ ∈ F2d for a randomly chosen ϵ.
S generates the proof of the discrete log of Rs = (Xs/Zs, Ys/Zs). It computes (ctX , ctY , ctZ) ←
FHE.Eval(EC.AddXs,Ys,Zs

, (ctxu
, ctyu

))) and computes cts = FHE.Eval(CDFSch
BS.sk,ks

, (ctµ, ctX , ctY , ctZ)). S
sends Xs, Ys, Zs and its proof and cts.

7 In case of Schnorr signature with division, the signature size will be 4λ-bit (or 3λ-bit when using shorter hash) for
λ bit security.

8 There is no attack on the ECC parameter we choose, but there may be some more possibilities (or concern) than
other standardized parameters. However, due to the lack of the flexibility in choosing FHE parameters, it is not
easy to use the standardized ECC parameters for now.

9 We need our hash function to be modeled as a random oracle, for which SHA-3 is suitable (see for instance
[ABRB+19]).

24

3. U checks whether (Xs/Zs, Ys/Zs) ∈ G and verifies the proof. U computes (X,Y, Z) = EC.AddXs,Ys,Zs(xu, yu)
and s = FHE.Dec(hsk, cts). U verifies the signature σ = (X,Y, Z, ku + s).

• In Verification, it is just a division-free Schnorr verification.

The circuit EC.AddXs,Ys,Zs
is for the Edwards curve point addition with mixed representations [BLRF08].

With the components Xs, Ys, Zs hard-wired, for inputs xu, yu it outputs a deterministic projective coordinates
of a Edwards curve point (Xs/Zs, Ys/Zs) + (xu, yu) if the inputs are valid repesentations of Edwards curve
points. The circuit CDFSch

BS.sk,ks
, the division-free Schnorr signing with BS.sk, ks hardwired, takes inputs µ,X, Y, Z

and outputs ks +H(µ,X, Y, Z) · BS.sk mod q. As the division-free Schnorr signature, the Y -coordinate can
be omitted in the blind signature as σ′ = (X,Y0, Z, ku + s), where Y0 is a bit for the choice of Y . We here
give a full description of BSDFSch in Figure 4.

Setup. Gen(1λ): Upon input the security parameter λ, do the following:
• Invoke division-free Schnorr DFSch.sk Setup, resulting a group G = ⟨P ⟩ on an Edwards curve E(F2d).
• Invoke (DFSch.sk,DFSch.vk)← DFSch.KeyGen(1λ).
• Set ppk = H ′(α), where α ∈ {0, 1}λ is any arbitrary publicly known value (for e.g. α = 1λ).
• Output BS.sk = DFSch.sk, BS.vk = {DFSch.vk, α, ppk}.

Signing. ⟨S(BS.sk),U(BS.vk, µ)⟩:
1. User: Given the key BS.vk and a message µ, user U first verifies if ppk = H ′(α) and continues only if the

verification passes. It then does the following:
• It first samples FHE.KeyGen randomness ρ and an FHE key-pair (hpk, hsk)=FHE.KeyGen(1λ; ρ)
• It then samples a PKE.Enc randomness re and computes ctsk = PKE.Enc(ppk, hsk; re).
• It then generates a NIZKFHE proof πsk for the following statement:

Given pk, ppk, ctsk, there exists a tuple (hsk, ρ, re) such that

(hpk, hsk) = FHE.KeyGen(1λ; ρ) ∧ ctsk = PKE.Enc(ppk, hsk; re). (5.1)

• It randomly chooses ku ∈ Zq, computes (xu, yu) = Ru = [ku]P .
• It encrypts xu, yu and µ to ctxu , ctyu and ctµ with the proofs on the well-formedness of the ciphertexts.
• It sends hpk, ctsk with it’s proof and ciphertexts with the proofs to signer S.

2. Signer: Upon receiving (hpk, ctsk, πsk, ctxu , ctyu , ctµ, πxu , πyu , πµ), signer S does the following:
• It verifies πsk, πxu , πyu and πµ and outputs ⊥ if any of these fails.
• It samples a partial randomness ks ← Zq and computes the projective coordinate Xs, Ys and Zs such that

[Xs;Ys;Zs] = Rs = gks and randomize by multiplying ϵ← F2d . It generates a NIZKAoKDL proof πks that
it knows the discrete log of Rs = (Xs/Zs, Ys/Zs).

• It computes (ctX , ctY , ctZ) ← FHE.Eval(EC.AddXs,Ys,Zs , (ctxu , ctyu))) and computes cts = FHE.Eval
(CDFSch

BS.sk,ks
, (ctµ, ctX , ctY , ctZ)).

• It sends Xs, Ys, Zs with the proof and cts to user U .
3. User: Upon receiving cts, Xs, Ys, Zs, πks , user U does the following:

• It first verifies πks and outputs ⊥ if it fails.
• It verifies (Xs/Zs, Ys/Zs) ∈ G and outputs ⊥ if it fails.
• It computes (X,Y, Z) = EC.AddXs,Ys,Zs(xu, yu) and s = FHE.Dec(hsk, cts).
• It verifies the DFSch signature σ = (X,Y, Z, ku + s) and outputs ⊥ if it fails.
• It outputs σ.

Verifying. The verifier computes DFSch.Verify(BS.vk, µ, σ) and outputs the result.

Fig. 4 BSDFSch: HE-based Round-Optimal Blind Division-free Schnorr Signature.

We now instantiate the key components for the blind signing.

25

5.3.1 Instantiating Large Finite Field Operations with BGV The FHE scheme BGV with plaintext
space R2 naturally supports finite field operations on F2d0 . However, bootstrapping for BGV parameter with
large d0 ≥ 256 is not supported by HElib library, because of its inefficiency [HS21]. For efficiency reasons,
hence we could not use d0 = d for the elliptic curve base field F2d .

In order to handle the finite field operations in the large extension field, we use a field isomorphism
F2d0 [x]/(F (x)) ∼= F2d with d = nd0 for F (x) ∈ F2d0 [x] of degree n. Using the isomorphism, we can represent the
large finite field elements a, b ∈ F2d with elements in the small finite field F2d0 as a = a0+a1x+ · · ·+an−1x

n−1

and b = b0 + b1x+ · · ·+ bn−1x
n−1, where ai, bi ∈ F2d0 for 0 ≤ i ≤ n− 1.

We encode a(x) =
∑n−1

i=0 aix
i ∈ F2d as a vector a⃗ = (a0, · · · , an−1) ∈ (F2d0)

n. The finite field addition
of a, b ∈ F2d can be seen as an addition of two vectors. However, the finite field multiplication is more
complicated. When calculating a × b = c ∈ F2d with polynomial representations, we have

∑n−1
i=0 cix

i

= (
∑n−1

i=0 aix
i)(

∑n−1
i=0 bix

i) mod F (x). Letting di be the i th coefficient of the two polynomials a and b

without mod F (x), and xj+n−1 mod F (x) =
∑n−1

i=0 Mi,jx
i for 1 ≤ j ≤ n− 1, we can compute the coefficients

for c with the constant matrix M = (Mi,j) ∈ (F2d0)
n×(n−1) as (c0, c1, · · · , cn−1)

t = (d0, d1, · · · , dn−1)
t +M ·

(dn, dn+1, · · · , d2n−2)
t.

5.3.2 Instantiating Zero Knowledge Proofs We describe how to efficiently instantiate the proof
systems required for our protocol.

• NIZKFHE proof for the FHE key pairs. The FHE key pairs are basically ciphertexts with respect to
the secret key hsk. The user needs to generate FHE keys and proofs on the key pairs, once before the
execution starts. This will be included in the communication cost, however, in the scenario that multiple
blind signatures are issued to a single user, the key pairs can be delivered in the off-line phase.
The public key hpk consists of an encryption key enck, rotation keys rotki for i in an index set I, a recryption
key reck for bootstrapping and a relinearlization key rlk. The proof we require is for the following statement:

for given an FHE public key hpk = (enck, (rotki)i∈I , reck, rlk) ∈ R
2(|I|+3)
Q , a PKE public key ppk = (p0, p1),

a PKE ciphertext ctsk = (c0, c1) and an integer ∆, there exists a ternary secret s ∈ R, errors e, erotk,i,
ereck, erlk, e1, e2 ∈ R with small norms, and r ∈ R such that

enck1 = −enck0 · s+ 2e, rlk1 = −rlk0 · s+ s2 + 2erlk,

rotki,1 = −rotki,0 · s+ s(xi) + 2erotk,i, c0 = r · p0 + e1,

reck1 = −reck0 · s+ s+ 2ereck, c1 = r · p1 +∆s+ e2,

for each i ∈ I, in RQ. Since the vector representations of s(xi) can be obtained with linear transformations
on s⃗, we can rewrite the equations as Au⃗ = v⃗, where the vector u⃗ is a concatenation of the vectors for s, the
error terms and a message for rlk and the vector v⃗ is a concatenation of the vectors for second components
of the keys and the components of ctsk. The proof on the quadratic relation that rlk indeed encrypts s2 is
unnecessary, if the signer adds ρ ·FHE.Eval(hpk, C(x) = x2, reck) to cts at the end of the signer-side signing,
for a randomly chosen ρ← R.

On the unnecessity of the proof on the quadratic relation for rlk. The proof on the relation µrlk = s2

cannot be directly proven using the tools in the literature, where µrlk is a message included in rlk when
regarding it as a ciphertext. We instead introduce a technique to randomize the signer’s output ciphertext
if the rlk is not honestly generated. The signer adds ρ · ct where ct := ρ · FHE.Eval(hpk, C(x) = x2, reck) to
cts at last, for a random ρ← R, then if the rlk is honestly generated then the result is cts + FHE.Enc(0).
Otherwise, let reck0s+ reck1 = s+ 2ereck ∈ RQ and rlk0 · s+ rlk1 = s2 + t+ 2et ∈ RQ. Then ct0 · s+ ct1 =
(reck20 − 1)t+ 2((reck10 − 1)et + (reck0 + 1)sereck + reck1ereck) ∈ RQ. With the fact that the first components
of the public keys are given with a PRNG seed, the first component and the message is randomized when
adding ρ ·ct if t ̸= 0, ct0 ̸= 0 and reck20−1 ̸= 0. The latter two conditions can be checked by the signer and if
so the signer aborts. The error term will be randomized using the noise flooding technique in Section 5.3.3.
Then the NIZKFHE proof can be efficiently proven using the exact lattice proofs [ENS20, LNS21] based on
BDLOP commitment scheme.

26

• NIZKct proof for the FHE ciphertexts. The user needs to prove that the fresh ciphertexts ct are indeed
valid ciphertexts. More concretely, the user should generate a proof for the following statement: for given
ct = (c0, c1) ∈ R2

Q and enck = (enck0, enck1) ∈ R2
Q, there exists µ ∈ R with binary coefficients, e1, e2 ∈ R

with small norms and r ∈ R, such that (c0, c1) = (r · enck0 + e1, r · enck1 + µ+ 2e2). We can prove this
similarly to the above NIZKFHE, but with much smaller A and Q.

• NIZKAoKDL proof for the knowledge of a discrete log. The signer is required to add a NIZKAoKDL

when sending Xs, Ys, Zs. It is a proof on that for given G = ⟨P ⟩ of order q and R = (Xs/Zs, Ys/Zs) ∈ G,
there exists k ∈ Zq, such that [k]P = R. This can be proven with a Schnorr signature with a verification
key R and a secret key k, and the proof is π = (R′ = [k′]P, s′ = k′ +H(R′, R) · k), where k′ ← Z∗

q [CS97].

5.3.3 Malicious Circuit Private FHE For semi-honest circuit privacy, there are two techniques in
the literature that can be applied to BGV, the noise flooding of the ciphertext error term and the iterative
bootstrappings [DS16]. Since the iterative bootstrapping technique requires about λ bootstrappings, we
rather use the noise flooding technique. Recall that the BGV ciphertext ct = (c0, c1) ∈ RQ for a plaintext
message m(x) ∈ R2 satisfies ⟨ct, sk⟩ = m(x) + 2e(x) mod Q for the secret key sk and an error e(x) ∈ R.
If the coefficients of e are in the interval [−B,B], then we can add the ciphertext ct by an encryption of
zero with an error whose coefficients are uniformly randomly selected from the interval [−2λB, 2λB]. Then
the statistical distance between the distribution of the resulting error and the uniform distribution is 2−λ,
which gives the semi-honest circuit privacy with the security parameter λ. For this, the error bound B should
have bit-size less than log2Q− λ− 1 for a correct decryption. Concretely, we use B ≤ log2Q− λ− 4 for the
following modulus switching as described in Section 5.3.4. This can be obtained when the bit capacity of the
ciphertext is larger than λ+ 4, when Q is larger than 370 bit, heuristically.

We can then modify BGV scheme to achieve a malicious circuit privacy in the following way as in [AKSY21].
First, for the FHE public keys the first elements should be generated using a hash function. In the random
oracle model we can ensure that they are uniformly distributed. There also should be NIZKAoK proofs in the
public key that the second elements are well-formed. Second, before the FHE computations are performed,
each ciphertext needs to be bootstrapped. This can make every ciphertext in possibly malicious form into a
properly formed ciphertext as in [AGM21].

Using ROM does not require any signing/communication cost and as a matter of fact, we can use a PRNG
seed for a proper instantiation for the first components. Also, we already have a proof on the well-formedness
of the public key pairs for the unforgeability of blind signature. The ciphertext modulus size could be remain
small with the modulus switching technique at last. Hence, to make BGV maliciously circuit private, it
requires only one more extra bootstrapping with an encryption and an HE addition for the noise flooding.

5.3.4 Modulus Switching, Down to the Limit We use modulus switching [BGV12, HS20] to reduce the
signer-to-user communication cost. Recall that modulus switching converts a ciphertext with a large modulus
Q into a ciphertext with a smaller modulus Q′, such that correctness of decryption and the FHE operations are
maintained. We use this technique but want to make the modulus Q′ as small as possible, even smaller than
the lowest level modulus of BGV, while maintaining only the correctness of decryption. For ct = (c0, c1) ∈ RQ,
we define ai = ⌈Q′/Q · ci⌋ ∈ R, bi = Q′ci −Qai ∈ R, and di ∈ R as Qdi = bi mod 2 for i = 0, 1. Then the
coefficients of the bi are in [−Q/2, Q/2] and the coefficients of di’s can be chosen in {0,±1} with same sign with
the corresponding coefficients in bi. Then we can get the resulting ciphertext ct′ = (c′0 = a0 + d0, c

′
1 = a1 + d1)

which gives the following modular equation (c0 + c1s mod Q) = (c′0 + c′1s mod Q′). The ciphertext ct′

decrypts to the same message if and only if ∥Q′e/Q + (d0 − b0/Q) + (d1 − b1/Q)s∥can ≤ Q′/2Dm, where
Dm ≈ 2 and ∥di − bi/Q∥can ≤ 1.5. Recall that the resulting ciphertext from the previous Section 5.3.3 has
∥e∥can < Q/4 and ∥(d0 − b0/Q) + (d1 − b1/Q)s∥can < 28 for s with hamming weight 120. Hence we can choose
Q′ ≈ 211, and the resulting ciphertext size will be ≈ 116 KB.

27

5.4 Two Variants of BSSch

We also give two optional variants of our Blind Schnorr Signature to reduce the communication cost or
the signing time. The first variant uses a symmetric cipher such as AES-256. The second variant uses a
Zp-linear map as a hash function. This reduces the hash evaluation time, but its security is proven only in
the GGM [CLMQ21].

5.4.1 Variant Using AES To lower the user-to-signer communication cost, we can use a symmetric
block cipher which also maintains the conjectured quantum blindness. Typically, we can use AES. The user
encrypts with AES and then sends it to the signer. The signer can homomorphically decrypt it if it has an
FHE encryption of the AES symmetric keys. This procedure is very similar to the homomorphic evaluation of
AES circuit in [GHS12].

To lower the large communication cost due to the BGV ciphertext, we rather send AES encryptions of
the messages µ and ku and then convert it to BGV ciphertexts. This conversion is indeed an homomorphic
evaluation of AES decryption with homomorphically encrypted AES keys, and can be seen as a recryption.
When the AES keys are fixed, the AES encryption and the decryption functions are bijections from {0, 1}128
to {0, 1}128 and are inverse to each other. Hence the NIZK proofs for the BGV ciphertexts ctµ and ctku can be
replaced by the NIZK proofs for the BGV ciphertexts of the AES keys. In such scenario, the semantic security
of FHE and AES ensures the indistinguishability between (ctAES.sk = FHE.Enchpk(AES.sk),AESAES.sk(µ)) and
(ct0 = FHE.Enchpk(0), rand← {0, 1}128) and the soundness of the proofs guarantee the well-formedness of the
(possibly malicious) ctAES.sk. Note that the ciphertexts and the proofs can be given to the signer before the
executions start, i.e., during the off-line phase.

We can parallelize the decryption circuit by using the CBC mode. In more details, the ith ciphertext cti
can be decrypted as AES-256-CBC.Dec(ski, cti) = AES.Dec(ski, cti)⊕ cti−1 so the AES.Dec computation can
be parallelized using multiple slots, and the XOR operation can be applied after they are decrypted. Finally,
we note that choosing 256-bit long AES keys is conjectured to provide 128-bit quantum security.

5.4.2 Variant Using Zq-Linear Hash in GGM To bypass the costly SHA-3 hash evaluation we
introduce a variant of our blind Schnorr signature from FHE, using linear hash function. We recall that
from [CLMQ21], when assuming the GGM model, Schnorr signature is secure even with a Zq-linear hash
function. This could be one option to accelerate the homomorphic signing procedure.

Acknowledgments. We thank Sébastien Canard, Ilaria Chillotti, Léo Ducas and Adeline Roux-Langlois for
insightful discussions. This work was partly supported by the DST “Swarnajayanti” fellowship, an IndoFrench
CEFIPRA project, National Blockchain Project, the CCD Centre of Excellence, European Union Horizon
2020 Research and Innovation Program Grant 780701, BPI-France in the context of the national project
RISQ (P141580), and the ANR AMIRAL project (ANR-21-ASTR-0016). Part of the research corresponding
to this work was conducted while the first and last two authors were visiting the Simons Institute for the
Theory of Computing.

28

References

ABB20a. Nabil Alkeilani Alkadri, Rachid El Bansarkhani, and Johannes Buchmann. BLAZE: practical lattice-based
blind signatures for privacy-preserving applications. In Financial Crypto, 2020.

ABB20b. Nabil Alkeilani Alkadri, Rachid El Bansarkhani, and Johannes Buchmann. On lattice-based interactive
protocols: An approach with less or no aborts. In ACISP, 2020.

Abe01. Masayuki Abe. A secure three-move blind signature scheme for polynomially many signatures. In
EUROCRYPT, 2001.

ABRB+19. José Bacelar Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin
Grégoire, Vincent Laporte, Tiago Oliveira, Alley Stoughton, and Pierre-Yves Strub. Machine-checked
proofs for cryptographic standards: Indifferentiability of sponge and secure high-assurance implementations
of sha-3. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’19, page 1607–1622, New York, NY, USA, 2019. Association for Computing Machinery.

AGM21. Shweta Agrawal, Shafi Goldwasser, and Saleet Mossel. Deniable fully homomorphic encryption from
learning with errors. In CRYPTO, 2021.

AKSY21. Shweta Agrawal, Elena Kirshanova, Damien Stehlé, and Anshu Yadav. Can round-optimal lattice-based
blind signatures be practical? IACR ePrint Arch., 2021.

BCC+09. Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Hovav Shacham.
Randomizable proofs and delegatable anonymous credentials. In CRYPTO, 2009.

BECE+20. Samuel Bouaziz-Ermann, Sébastien Canard, Gautier Eberhart, Guillaume Kaim, Adeline Roux-Langlois,
and Jacques Traoré. Lattice-based (partially) blind signature without restart. IACR ePrint Arch., 2020.

BGSS17. Olivier Blazy, Philippe Gaborit, Julien Schrek, and Nicolas Sendrier. A code-based blind signature. In
ISIT, 2017.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption
without bootstrapping. In ITCS, 2012.

BLL+21. Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova. On the
(in)security of ROS. In EUROCRYPT, 2021.

BLRF08. Daniel J Bernstein, Tanja Lange, and Reza Rezaeian Farashahi. Binary edwards curves. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages 244–265. Springer, 2008.

BLS01. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In ASIACRYPT,
2001.

BLS19. Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic techniques for short(er) exact
lattice-based zero-knowledge proofs. In CRYPTO, 2019.

BNPS03. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol., 2003.

Bol03. Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-
Hellman-group signature scheme. In PKC, 2003.

Bra93. Stefan Brands. Untraceable off-line cash in wallet with observers. In CRYPTO, 1993.
BS07. Reinier Bröker and Peter Stevenhagen. Efficient CM-constructions of elliptic curves over finite fields.

Math. Comput., 2007.
CGGI16. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully homomorphic

encryption: Bootstrapping in less than 0.1 seconds. In ASIACRYPT, 2016.
CGGI17. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster packed homomorphic

operations and efficient circuit bootstrapping for TFHE. In ASIACRYPT, 2017.
Cha82. David Chaum. Blind signatures for untraceable payments. In CRYPTO, 1982.
CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous credentials

with optional anonymity revocation. In EUROCRYPT, 2001.
CLMQ21. Yilei Chen, Alex Lombardi, Fermi Ma, and Willy Quach. Does Fiat-Shamir require a cryptographic hash

function? In EUROCRYPT, 2021.
CLOT21. Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Improved programmable

bootstrapping with larger precision and efficient arithmetic circuits for tfhe. In Mehdi Tibouchi and
Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2021, pages 670–699, Cham, 2021.
Springer International Publishing.

CLPX18. Hao Chen, Kim Laine, Rachel Player, and Yuhou Xia. High-precision arithmetic in homomorphic
encryption. In Nigel P. Smart, editor, Topics in Cryptology – CT-RSA 2018, pages 116–136, Cham, 2018.
Springer International Publishing.

29

CP92. David Chaum and Torben Pryds Pedersen. Wallet databases with observers. In CRYPTO, 1992.
CS97. Jan Camenisch and Markus Stadler. Proof systems for general statements about discrete logarithms.

Technical Report/ETH Zurich, Dept. of Computer Science, 1997.
dPK22. Rafael del Pino and Shuichi Katsumata. A new framework for more efficient round-optimal lattice-based

(partially) blind signature via trapdoor sampling. In Crypto, 2022.
DS16. Léo Ducas and Damien Stehlé. Sanitization of FHE ciphertexts. In EUROCRYPT, 2016.
ENS20. Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical exact proofs from lattices: New

techniques to exploit fully-splitting rings. In ASIACRYPT, 2020.
FHKS16. Georg Fuchsbauer, Christian Hanser, Chethan Kamath, and Daniel Slamanig. Practical round-optimal

blind signatures in the standard model from weaker assumptions. In SCN, 2016.
FHS15. Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical round-optimal blind signatures in

the standard model. In CRYPTO, 2015.
Fis06. Marc Fischlin. Round-optimal composable blind signatures in the common reference string model. In

CRYPTO, 2006.
FPS20. Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind schnorr signatures and signed elgamal

encryption in the algebraic group model. In EUROCRYPT, pages 63–95. Springer, 2020.
FS10. Marc Fischlin and Dominique Schröder. On the impossibility of three-move blind signature schemes. In

EUROCRYPT, 2010.
GG14. Sanjam Garg and Divya Gupta. Efficient round optimal blind signatures. In EUROCRYPT, 2014.
GHS12. Craig Gentry, Shai Halevi, and Nigel P Smart. Homomorphic evaluation of the AES circuit. In CRYPTO,

2012.
GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic

constructions. In STOC, 2008.
GRS+11. Sanjam Garg, Vanishree Rao, Amit Sahai, Dominique Schröder, and Dominique Unruh. Round optimal

blind signatures. In CRYPTO, 2011.
HHS+21. Shai Halevi, Hamish Hunt, Victor Shoup, Oliver Masters, Flavio Bergamaschi, Jack Crawford, Fabian

Boemer, et al. Helib (version 2.2.1), October 2021. Available at https://github.com/homenc/HElib.
HKKL07. Carmit Hazay, Jonathan Katz, Chiu-Yuen Koo, and Yehuda Lindell. Concurrently-secure blind signatures

without random oracles or setup assumptions. In TCC, 2007.
HKL19. Eduard Hauck, Eike Kiltz, and Julian Loss. A modular treatment of blind signatures from identification

schemes. In EUROCRYPT, 2019.
HKLN20. Eduard Hauck, Eike Kiltz, Julian Loss, and Ngoc Khanh Nguyen. Lattice-based blind signatures, revisited.

In CRYPTO, 2020.
HS20. Shai Halevi and Victor Shoup. Design and implementation of HElib: a homomorphic encryption library.

IACR ePrint Arch., 2020.
HS21. Shai Halevi and Victor Shoup. Bootstrapping for HElib. J. Cryptol., 34(1):1–44, 2021.
IKSA03. Subariah Ibrahim, Maznah Kamat, Mazleena Salleh, and Sh.R. Abdul Aziz. Secure E-voting with blind

signature. In NCTT, 2003.
JLO97. Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures (extended abstract).

In CRYPTO, 1997.
KLR21. Jonathan Katz, Julian Loss, and Michael Rosenberg. Boosting the security of blind signature schemes. In

ASIACRYPT, 2021.
KLX20. Julia Kastner, Julian Loss, and Jiayu Xu. On pairing-free blind signature schemes in the algebraic group

model. IACR ePrint Arch., 2020.
KNYY21. Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Round-optimal blind

signatures in the plain model from classical and quantum standard assumptions. In EUROCRYPT, 2021.
LLK+22. Yongwoo Lee, Joon-Woo Lee, Young-Sik Kim, Yongjune Kim, Jong-Seon No, and HyungChul Kang.

High-precision bootstrapping for approximate homomorphic encryption by error variance minimization.
Springer-Verlag, 2022.

LLKN22. Joon-Woo Lee, Eunsang Lee, Young-Sik Kim, and Jong-Seon No. Hierarchical galois key management
systems for privacy preserving aiaas with homomorphic encryption. Cryptology ePrint Archive, 2022.

LNP22. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. Efficient lattice-based blind signatures
via gaussian one-time signatures. In PKC, 2022.

LNS21. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter lattice-based zero-knowledge
proofs via one-time commitments. In PKC, 2021.

LSK+19. Huy Quoc Le, Willy Susilo, Thanh Xuan Khuc, Minh Kim Bui, and Dung Hoang Duong. A blind signature
from module lattices. In DSC, 2019.

30

https://github.com/homenc/HElib

NSS04. David Naccache, Nigel P. Smart, and Jacques Stern. Projective coordinates leak. In Christian Cachin
and Jan L. Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, pages 257–267, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

OA03. Miyako Ohkubo and Masayuki Abe. Security of some three-move blind signature schemes reconsidered.
In SCIS, 2003.

Oka92. Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding signature
schemes. In CRYPTO, 1992.

Pas11. Rafael Pass. Limits of provable security from standard assumptions. In STOC, 2011.
PHVBS19. Dimitrios Papachristoudis, Dimitrios Hristu-Varsakelis, Foteini Baldimtsi, and George Stephanides.

Leakage-resilient lattice-based partially blind signatures. IET Information Security, 2019.
PS97. David Pointcheval and Jacques Stern. New blind signatures equivalent to factorization. In CCS, 1997.
PS00. David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures. J.

Cryptol., 2000.
PSM17. Albrecht Petzoldt, Alan Szepieniec, and Mohamed Saied Emam Mohamed. A practical multivariate blind

signature scheme. In Financial Crypto, 2017.
Rüc10. Markus Rückert. Lattice-based blind signatures. In ASIACRYPT, 2010.
Sch89. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In CRYPTO, 1989.
TZ22. Stefano Tessaro and Chenzhi Zhu. Short pairing-free blind signatures with exponential security. IACR

ePrint Arch., 2022.
Wat12. Brent Waters. Functional encryption for regular languages. In CRYPTO, 2012.
YAZ+19. Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, and William Whyte. Efficient

lattice-based zero-knowledge arguments with standard soundness: Construction and applications. In
CRYPTO, 2019.

YL19. Xun Yi and Kwok-Yan Lam. A new blind ECDSA scheme for bitcoin transaction anonymity. In Asia-CCS,
2019.

ZZ21. Mark Zhandry and Cong Zhang. The relationship between idealized models under computationally
bounded adversaries. IACR ePrint Arch., 2021.

31

	Round Optimal Blind Signatures: Short Signatures with Post-Quantum Blindness

