
Cryptanalyzing MEGA in Six Queries

Keegan Ryan and Nadia Heninger

University of California, San Diego
kryan@eng.ucsd.edu,nadiah@cs.ucsd.edu

Abstract. In recent work, Backendal, Haller, and Paterson identified several exploitable vulnerabilities
in the cloud storage provider MEGA. They demonstrated an RSA key recovery attack in which a
malicious server can recover the client’s RSA private key. Their attack uses binary search to recover
the private RSA key after 1023 client logins, and optionally could be combined with lattice methods
for factoring with partial knowledge to reduce the number of logins to 512 in theory, or 683 in the
published proof of concept.
In this note, we give an improved attack that requires only six client logins to recover the secret key.
Our optimized attack combines several techniques, including a modification of the extended hidden
number problem and the structure of RSA keys, to exploit additional information revealed by MEGA’s
protocol vulnerabilities. MEGA has emphasized that users who had logged in more than 512 times
could have been exposed; these improved attacks show that this bound was conservative, and that
unpatched clients should be considered vulnerable under a much more realistic attack scenario.

1 Introduction

MEGA is an encrypted cloud storage provider whose protocols are designed to protect a
client’s data and secret key against a malicious server or malicious entity in the backend
infrastructure. In a recent paper [1], Backendal, Haller, and Paterson detail multiple ex-
ploitable flaws in MEGA’s protocols including a full key recovery attack [1, Section III]. In
this attack, a malicious server sends mauled ciphertexts to a victim client as the client logs
in to a user’s account. The client processes this data using their own secret information and
leaks partial information about the user’s private key in their protocol response to the server.
Backendal, Haller, and Paterson detail how the malicious server can use binary search to
recover the private key after 1023 client logins, or use standard lattice methods to reduce
the number of logins to 512.

MEGA has patched the issue by adding additional payload validation and emphasized in
their blog post about the vulnerabilities [6] that only clients who have logged in more than
512 times are vulnerable.

We give an improved attack which operates under the exact same scenario but only
requires six login attempts from a victim client. Our attack exploits the interplay between the
symmetric and asymmetric cryptographic operations in MEGA’s design. The attack recovers
the data in several distinct stages, and it illustrates several techniques for recovering sensitive
key material in a real-world scenario.

The patches that MEGA developed to mitigate the original key recovery attack are
effective against our improved attack as well, so updated clients are not vulnerable to the
techniques presented in this work. However, our optimized cryptanalysis underscores the
ongoing risk to unpatched clients.

Overall, these attacks demonstrate how simple errors in cryptographic design can lead to
unexpectedly devastating attacks.

1.1 Attack Overview

We present two novel and overlapping attacks. The first (fast) attack requires only 17 login
attempts on average and is quite computationally inexpensive. The second (small) attack
requires only 6 login attempts to succeed with 98% probability, but it is more computationally
intensive. This latter attack can be performed in 4.5 hours on an 88-core machine, but
we include both because the former can be easily verified and includes some interesting
additional analysis steps. Both of these attacks proceed in roughly the same series of stages
with only minor variations in how the stage is completed in both the fast attack and the
small attack.

In MEGA’s login protocol, the server sends the client an RSA private key that is encrypted
using AES in ECB mode. The client decrypts the RSA private key, uses this RSA private
key to decrypt a session ID that the server has encrypted to the RSA public key, and sends
the result to the server.

The attack of Backendal, Haller, and Paterson modifies the ECB-encrypted ciphertext of
the RSA private key and the encrypted session ID to obtain one bit of information about the
secret key per login. However, the client is using the modified secret key to send 43 contiguous
bytes of information from the result of the RSA decryption to the server. In our attack, the
adversary swaps blocks in the ECB-encrypted wrapped RSA key before sending it to the
client and then analyzes the resulting message from the client to obtain more information
about the RSA secret key per victim client login attempt.

In the first stage of analysis, the attacker represents the 43-byte leakage from the client in
terms of the unknown AES plaintext blocks. Second, these algebraic representations are ma-
nipulated so that the attacker learns information about the most significant bytes (MSBs) of
an unknown value, not just about a contiguous subsequence of bytes. In the fast attack, this
is done using an approach from solutions to the Extended Hidden Number Problem [4], and
in the small attack, this is done by brute forcing unknown most significant bytes. Third, in
the fast attack, these approximations of the MSBs are refined by combining approximations
together so more MSBs are known. This is why the fast attack requires more samples than
the small attack. Fourth, the (refined) approximations are used to solve for the value of mul-
tipliers in the algebraic representation. These unknown multipliers correspond to differences
between plaintext blocks in the encoded RSA private key. Fifth, we use the RSA equations
to brute force a block of plaintext bytes of the RSA private exponent in the encoded key,
and the plaintext differences reveal the values of other plaintext blocks. Finally, the plain-
text blocks containing the MSBs of one of the RSA factors are analyzed in a Coppersmith
attack [2] to recover the full factorization and private key.

Section 2 recalls the full details of the attack context and the original cryptanalysis. Sec-
tions 3 through 8 discuss each of the stages in turn. Section 9 analyzes the overall complexity
of the attack, and Section 10 describes experiments.

2

2 Background

2.1 Notation

Our notation essentially follows the notation used in [1]. Lists and arrays are 1-indexed, and
pti (and cti) refer to the ith 16-byte block of plaintext (ciphertext) in the AES-encrypted
encoding of the RSA private key. EAES and DAES are AES encryption and decryption using
a user’s master AES key. Concatenation is denoted by ‖. Reduction modulo N may be used
to define a congruence, the operation of taking an equivalent value in {0, . . . , N − 1}, or the
operation of taking an equivalent value in {−b(N−1)/2c, . . . , bN/2c}, depending on context.

2.2 Attack Context

When a MEGA user attempts to log in for the first time on a new client, the client is only
in possession of an AES secret key derived from the user’s password. To function properly,
the client requires a copy of the user’s RSA private key. The server possesses the user’s RSA
public key and a copy of the user’s RSA private key encrypted using the AES key in ECB
mode, so in theory the private key is hidden from the server, but the client can obtain the
private key by decrypting the encrypted private key from the server with the AES secret
key. It is the malicious server’s goal is to recover the user’s private key.

During the login process, the server creates a 43-byte session identifier (SID), which it
encrypts using the RSA public key and sends to the client alongside the wrapped private
key. The client uses the AES key to unwrap the RSA private key, then uses the parameters
in the unwrapped key to decrypt the RSA ciphertext and retrieve the SID. The client then
sends the retrieved SID to the server. The malicious server wishes to use the SID value sent
from the client to infer information about the parameters in the unwrapped private key.

Several of the exact implementation details are relevant for our improved attack, so we
recount them here. The remaining details can be found in Backendal, Haller, and Paterson’s
paper [1, Section II]. We denote the RSA public key by (N, e), where the factors of modulus
N are p and q. The public RSA exponent is e and the private exponent is d. The public
RSA exponent is set by the client; the web client1 uses e = 257, and the SDK2 uses e = 17.
MEGA clients use RSA-CRT for decryption, so let u ← q−1 mod p be the coefficient used
during CRT operations.

The private key is encoded as

skencodedshare ← l(q) ‖ q ‖ l(p) ‖ p ‖ l(d) ‖ d ‖ l(u) ‖ u ‖ P.

l encodes the bit length of different values as a 2-byte integer, all integers are stored in
big-endian format, and P is an 8-byte padding value unknown to the adversary. We wish to
highlight that q is 1024 bits in length, so l(q) is 0x0400, and since the secret values are of

1 https://github.com/meganz/webclient/blob/9fca1d0b7d8a65b9d483a10e798f1f67d1fb8f1e/js/crypto.js#

L207
2 https://github.com/meganz/sdk/blob/849aea4d49e2bf24e06d1a3451823e02abd76f39/src/crypto/cryptopp.

cpp#L798

3

https://github.com/meganz/webclient/blob/9fca1d0b7d8a65b9d483a10e798f1f67d1fb8f1e/js/crypto.js#L207
https://github.com/meganz/webclient/blob/9fca1d0b7d8a65b9d483a10e798f1f67d1fb8f1e/js/crypto.js#L207
https://github.com/meganz/sdk/blob/849aea4d49e2bf24e06d1a3451823e02abd76f39/src/crypto/cryptopp.cpp#L798
https://github.com/meganz/sdk/blob/849aea4d49e2bf24e06d1a3451823e02abd76f39/src/crypto/cryptopp.cpp#L798

predictable size, they appear at predictable offsets within the plaintext. We also highlight
that the private key encodes the full private exponent d and does not include the private
exponents dp, dq that are frequently stored for use in RSA-CRT decryption. Finally, we note
that due to the length fields, the 1024-bit u value spans 9 AES plaintext blocks, and the
first and last of those contain the length and padding fields respectively. As in the original
attack, we constrain our attacker to not alter these length and padding fields.

This encoding of the private key is 656 bytes, or 41 AES blocks. The encoded private
key is encrypted using AES in ECB mode, which means that each 16-byte plaintext block is
encrypted independently. That is,

ct1 ‖ ct2 ‖ · · · ‖ ct41 = EAES(pt1) ‖ EAES(pt2) ‖ · · · ‖ EAES(pt41).

Decryption of the encrypted private key also processes 16-byte blocks independently, enabling
malleability attacks where the malicious server alters individual blocks of ciphertext to alter
the corresponding blocks of plaintext in the private key encoding.

When the server constructs the RSA plaintext with the 43-byte SID, it typically places
the SID in bytes 3-45 of the 256-byte RSA plaintext m. Prior to patching, clients extract
these bytes from the RSA decryption output without checking the validity of the remainder
of the decryption output. However, there is special behavior in the extraction function that
checks if byte 2 is nonzero, and if this is the case it extracts bytes 2-44. This detail has no
consequence for the RSA key extraction attack in [1], but it is a necessary aspect of our
small attack. If we assume the output bytes of the RSA decryption function are uniformly
distributed, clients have probability 255/256 of returning SID ← m[2 : 44]. We temporarily
set this detail aside and assume that all SIDs returned by the client are composed of these
bytes, and we revisit it in Section 9.

MEGA clients use Garner’s formula [3] to perform RSA-CRT decryption, the process of
decrypting an RSA ciphertext c to message m. These equations, as well as the SID extraction
step, are detailed below.

mp ← cd mod (p−1) mod p

mq ← cd mod (q−1) mod q

m← ((mp −mq)u mod p)q +mq

SID ← m[2 : 44]

2.3 Original Attack of Backendal, Haller, and Paterson

In the original attack, the adversary alters ciphertext block ct40, which is the last ciphertext
block corresponding to only bytes of u, and no length fields or padding bytes. The attacker
sends this altered wrapped key and RSA ciphertext qeguess mod N to the client. The client
decrypts and decodes the wrapped key to obtain private key (q, p, d, u′, P) where u′ 6= u is
not the correct value of q−1 mod p to use during RSA-CRT decryption.

If qguess < q, then mp ≡ mq (mod p), so h = 0 and m = mq < q. Thus all SID bytes
are 0. If qguess >= q, then mp 6≡ mq (mod p), so h 6= 0 and m > q. Thus the SID bytes are

4

nonzero with high probability. The attack therefore uses whether SID is zero or nonzero as
an oracle for whether the attacker-chosen qguess is smaller or larger than the secret q. The
adversary performs a binary search on the value of q until sufficiently many most significant
bits of q are known.

The attacker then uses a cryptanalytic technique by Coppersmith [2] to recover the
least significant bits of q, and thus obtain the full factorization of N . Asymptotically, this
attack recovers the factorization of N in polynomial time once the attacker knows the most
significant half of bits of q. In the context of MEGA, that is 512 bits, which requires 512
login attempts to obtain. In practice, this attack can be prohibitively slow at the asymptotic
limit, and implementations of Coppersmith’s method often use additional most significant
bits, which makes the implementation faster and more understandable. The proof-of-concept
code associated with the original attack uses 683 most significant bits and therefore requires
683 login attempts.

We observe that although the client provides the adversary with 344 bits of SID per login
attempt, this original attack only uses this data to refine the knowledge of the private key
by a single bit. It is therefore natural to wonder if the client’s responses can be exploited in
a more sample-efficient way, recovering the same private key with fewer login attempts. This
is what our new attacks accomplish.

3 Expressing Leakage Algebraically

We begin our cryptanalysis by demonstrating how to use the information returned during a
login attempt to create some algebraic expression. As in the original attack, the adversary
alters ciphertext blocks corresponding to the value of u, and therefore the client uses the
altered u′ value when performing decryption, but the remaining private key values are un-
altered. In our attack, the adversary also picks an RSA ciphertext c at random, and reuses
the same c for each login attempt. Both the (modified) wrapped key and RSA ciphertext are
sent to the client during a login attempt.

By combining Garner’s formula for RSA decryption with the extraction of the SID s′

with altered value u′, this gives the congruence

(mp −mq)u
′q +mq ≡ e′12

b1 + s′2b2 + 2b2−1 + e′2 (mod N).

The left hand side expresses the output of the decryption function in terms of its input, and
the right hand side expresses the output in terms of the known SID bytes s′ = m′[2 : 44] and
the other unknown bytes e′1 = m′[1] and e′2 = m′[45 : 256]− 2b2−1. The 2b2−1 term is present
so that unknown e′2 may be positive or negative and so |e′2| is minimized.

We can construct a similar equation using altered value u′′ and SID s′′.

(mp −mq)u
′′q +mq ≡ e′′12b1 + s′′2b2 + 2b2−1 + e′′2 (mod N).

Subtracting these two congruences, we have

(u′ − u′′)(mp −mq)q ≡ (e′1 − e′′1)2b1 + (s′ − s′′)2b2 + (e′2 − e′′2) (mod N).

5

The adversary can give extra structure to (u′ − u′′) by carefully manipulating the AES-
encrypted key. The value u used by the client during RSA decryption is decoded from the 9
plaintext blocks DAES(ct33 ‖ ct34 ‖ · · · ‖ ct41). Plaintext blocks pt33 and pt41 also include some
bytes of d, the encoding of l(u), and padding P . Now observe that if the attacker swaps out
some of these ciphertext blocks encrypting u with ciphertext blocks cti, ctj of their choosing,
the decrypted and decoded value of u used by the client will contain bits from pti and ptj.
Consider what happens when the client decodes u′ and u′′ from the following two ciphertexts:

u′ = Decode[DAES(ct33) ‖ DAES(cti) ‖ · · · ‖ DAES(cti) ‖ DAES(cti) ‖ DAES(ct41)]

u′′ = Decode[DAES(ct33) ‖ DAES(cti) ‖ · · · ‖ DAES(cti) ‖ DAES(ctj) ‖ DAES(ct41)],

After decryption, all of the plaintext blocks that contain only bits of u are replaced with pti,
except for one in the second plaintext which is replaced with ptj. The plaintext blocks which
contain length encoding data or padding are not modified, so validation of the plaintext
succeeds. With this construction, (u′− u′′) has special structure, because the only difference
between the two is in block 40, which corresponds to bytes 105 through 120 of the encoded
u. Therefore, we have

u′ − u′′ = (pti − ptj)264.

For simplicity, in the future we will denote δi,j = pti − ptj, and observe that |δi,j| < 2128.
We will also consider u′ − u′′′ when u′′′ was decoded from the ciphertext

u′′′ = Decode[DAES(ct33) ‖ DAES(cti) ‖ · · · ‖ DAES(ctj) ‖ DAES(cti) ‖ DAES(ct41)]

that differs only in block 38. By the same logic as before,

u′ − u′′′ = (pti − ptj)2196 = 2128δi,j2
64.

This generalizes so that the adversary can construct values of u with difference δi,j2
128t+64

for t ∈ {0, 1, . . . , 5}.

4 Obtaining Most Significant Bytes

For any AES ciphertext block indices i and j, Section 3 gives us the capability to construct an
equation involving the differences of the corresponding plaintexts δi,j = pti−ptj. Specifically,
we have

δi,j2
128t+64(mp −mq)q ≡ (e′1 − e′′1)2b1 + (s′ − s′′)2b2 + (e′2 − e′′2) (mod N).

In this equation, the adversary knows (s′−s′′) because it is the difference of two SIDs, and the
adversary also knows t, b1, b2, and N . The adversary does not know 264(mp −mq)q mod N ,
but this value is constant throughout the attack. The adversary does not know (e′1 − e′′1) or
(e′2 − e′′2), but knows they are bounded by |e′1 − e′′1| ≤ E1 = 28 and |e′2 − e′′2| ≤ E2 = 2b2 .

The goal of this phase is to learn the most significant bytes of some algebraic expression.
This is a generally useful goal because it allows us to represent the error in the approximation

6

as some bounded variable, and it is frequently possible to efficiently solve the problem of
recovering bounded variables using lattice methods.

We now detail two approaches for obtaining the most significant bytes of this represen-
tation.

4.1 Brute Force

Because e′1 and e′′1 are both single-byte values, e′1−e′′1 takes on one of 511 values. We can brute
force these values and expect to eventually guess the correct value. Therefore, assuming we
have guessed correctly, we can compute a = (e′1 − e′′1)2b1 + (s′ − s′′)2b2 and write

2128tδi,jx ≡ a+ ε (mod N)

where x = 264(mp −mq)q mod N is unknown but constant throughout the attack. 2128tδi,j
is an unknown multiplier. ε is unknown and bounded by |ε| ≤ 2b2 = 21696.

4.2 Extended Hidden Number Problem

We observe that the problem of converting a sample with a known block of contiguous bytes
into a sample with known most significant bytes (MSBs) resembles the Extended Hidden
Number Problem (EHNP) [4], specifically the Hidden Number Problem with two holes (HNP-
2H). To obtain the MSBs, we search for a known multiplier C which simultaneously makes the
unknown terms (e′1−e′′1)C2b1 mod N and (e′2−e′′2)C mod N small. If we assume |e′1−e′′1| < E1

and |e′2 − e′′2| < E2, such a value of C can be found by reducing the lattice defined by the
rows of the basis matrix B = [

E1N 0
E12

b1 E2

]
.

Lattice reduction finds the shortest vector v = (E1(C2b
1 mod N), E2C) with ‖v‖2 ≤

2√
3
det B1/2 = 2√

3

√
E1E2N . Thus

|(e′1 − e′′1)C2b1 + (e′2 − e′′2)C mod N |
≤|e′1 − e′′1||C2b1 mod N |+ |e′2 − e′′2||C|
≤E1|C2b1 mod N |+ E2|C|
≤‖v‖2 + ‖v‖2

≤ 4√
3

√
E1E2N.

We set C = v2/E2 and note that C does not depend on information leaked from the client,
and thus can be reused for every sample.

We therefore let x = C(mp −mq)q mod N , a = C(s′ − s′′)2b2 , and ε = (e′1 − e′′1)C2b1 +
(e′2 − e′′2)C mod N . This yields

2128tδi,jx ≡ a+ ε (mod N).

7

2128tδi,j is an unknown multiplier. x is unknown, but constant throughout the attack. a is
known. ε is unknown and bounded by |ε| ≤ 4√

3

√
E1E2N ≤ 21878.

The approach using the EHNP technique therefore produces a similar equation as the
brute force approach, but the bound on the unknown ε is greater. In fact, this approach
loses about half of the information exposed by the client; instead of knowing 43 MSBs, this
transformation gives information about only 21.25 MSBs.

5 Refining Approximations

For later stages in the attack, it is necessary to improve the EHNP approximations. Specif-
ically, for any AES block indices i, j and choice of t ∈ {0, 1, . . . , 5}, the adversary uses
Section 4 to learn at satisfying

2128tδi,jx ≡ at + εt (mod N).

δi,j = pti − ptj is the difference of two plaintexts and is bounded |δi,j| ≤ 2128. We also have
bound |εt| < E. The goal of the adversary is to refine the approximation by computing ã
satisfying

δi,jx ≡ ã+ ε̃ (mod N)

where |ε̃| ≤ Ẽ ≤ E.
Since the new bound on the error is smaller, this is equivalent to learning additional

MSBs of δi,jx.
We simplify the problem to a single refinement step using two approximations. Once we

show that this is possible, it is clear that this can be repeated multiple times to refine the
approximation further. We state the problem generically.

Approximation Refinement Problem Assume the adversary is given a1, a2, r 6=
0, N,E1 and E2 satisfying

y ≡ a1 + ε1 (mod N)

ry ≡ a2 + ε2 (mod N)

|ε1| ≤ E1

|ε2| ≤ E2

2|r|E1 + 1 ≤ N − 2E2.

If min((2E2 + 1)/|r|, 2E1 + 1) < 2Ẽ, then the attacker’s goal is to return ã such that there
exists ε̃ satisfying |ε̃| ≤ Ẽ and

y ≡ ã+ ε̃ (mod N).

To solve this problem, observe that there exists y satisfying y ∈ [a1−E1, a1+E1]. Without
loss of generality, assume r > 0. so therefore ry ∈ S1 = [r(a1−E1), r(a1 +E1)]. Also observe
that

ry ∈ S2 =
∞⋃

k=−∞

[a2 − E2 + kN, a2 + E2 + kN],

8

so we wish to find the intersection of S1 and S2. Because S2 consists of the union of intervals
of size 2E2 +1, repeated at multiples of N , the gaps between these intervals are N−2E2−1.
Since the size of S1 is 2rE1 + 1 ≤ N − 2E2 − 1 + 1, S1 intersects with at most one interval
and we know there exists ry, the intersection of S1 and S2 is a single interval. Therefore

k∗ =

⌈
r(a1 − E1)− (a2 + E2)

N

⌉
low = max(r(a1 − E1), a2 − E2 + k∗N)

high = min(r(a1 + E1), a2 + E2 + k∗N)

ry ∈ S1 ∩ S2 = [low, high]

⇒ y ∈
[⌈
low

r

⌉
,

⌊
high

r

⌋]
.

The size of this interval is at most min((2E2 + 1)/r, 2E1 + 1) < 2Ẽ, so we let ã be its
midpoint (or as close as possible if there are an even number of elements) and we have solved
the problem.

To apply this to our specific problem, observe that this means that we can refine the
EHNP sample δi, jx ≡ a0+ε0 (mod N) with 2128δi,jx ≡ a1+ε1 (mod N) to quality Ẽ = 21750

because r = 2128, E1 = E2 = 21878, N ≈ 22048. Similar logic shows that we can use a2 to
refine even further, achieving a refined sample of the form

δi,jx ≡ ã+ ε̃ (mod N) with |ε̃| ≤ 21622.

This increases the number of MSBs known from about 21 to 53.

6 Recovering Unknown Multipliers

We now turn to the goal of recovering unknown and small multipliers. For arbitrarily many
(i, j) pairs, the attacker knows ai,j such that

δi,jx ≡ ai,j + ei,j (mod N)

where |δi,j| ≤ 2128 and |ei,j| < E. The value of E depends on if the adversary initially used
the brute force strategy (giving E = 21696) in Section 4.1 or the EHNP strategy (4.2) plus
refinement (5) (giving E = 21622).

Once again, we consider a generic form of this problem. A similar, although not identical,
problem appears in [5], and our approach and lattice constructions are similar, although not
identical.

Hidden Number Problem with Small Unknown Multipliers Given N, ai, T , and
E such that, ∀1 ≤ i ≤ d,

tix ≡ ai + ei (mod N)

|ti| ≤ T

|ei| ≤ E,

9

the goal of the adversary is to recover all values of ti.
Consider the case where d = 2. We show the following linear equation is small modulo

N .

t2a1 − t1a2
≡t2(t1x− e1)− t1(t2x− e2) (mod N)

≡− t2e1 + t1e2 (mod N)

Thus we have a linear system ya2+za1 (mod N) which takes on a small value t1e2−t2e1 when
evaluated at a small point (t2,−t1). This lends itself well to a small vector in a particular
lattice, spanned by the rows of the following basis:

B =

2E 0 a1
0 2E a2
0 0 N


The vector v = (2Et2,−2Et1, t1e2− t2e1) is small and in this lattice, so we hope that lattice
reduction finds such a short vector. However, note that if t1 and t2 share a common factor
g, then (2Et2/g,−2Et1/g, t1e2/g − t2e1/g) is also in the lattice, but it is even smaller. This
complicates the analysis, but in practice lattice reduction finds this small vector (up to sign
and division by a small factor) when 2ET ≈ ‖v‖2 . det(B)1/3 = (4E2N)1/3, or T . (N

2E
)1/3.

Therefore, when this condition is satisfied, we learn ±t1/gcd(t1, t2) and ∓t2/gcd(t1, t2).
For the case d > 2, repeating this approach with ti, i ≥ 2 gives±t1/gcd(t1, ti) and∓ti/gcd(t1, ti).
In practice, computing the least common multiple of±t1/gcd(t1, t2),±t1/gcd(t1, t3), . . . ,±t1/gcd(t1, td)
gives t1 up to sign. This reveals the values of all other ti up to the same sign. We omit a
more fine grained analysis of the success probability. In practice, this suffices to solve the
Hidden Number Problem with Small Unknown Multipliers.

We also briefly consider a generalized slightly larger lattice for the case d = 3. Consider
the lattice spanned by the rows of basis

B′ =


2E 0 0 a1
0 2E 0 a2
0 0 2E a3
0 0 0 N

 .
The vectors v1 = (2Et2,−2Et1, 0, t1e2−t2e1) and v2 = (2Et3, 0,−2Et1, t1e3−t3e1) are small,
linearly independent, and in the lattice, so we hope the two short linearly independent vectors
found by lattice reduction span the same sublattice as v1 and v2, and we can recover v1 and
v2 by finding small points in the sublattice where coordinates 3 and 2 respectively are 0.
This can be accomplished with a lattice attack. This larger lattice gives slightly improved
bounds, but we omit a more detailed analysis.

7 Recovering Plaintexts

By combining the capabilities of Sections 3 through 6, the adversary can learn δi,j = pti−ptj
for any pair (i, j) of plaintext blocks (up to sign). It suffices that recovering any single

10

plaintext pti therefore reveals any other plaintext ptj = pti − δi,j. To accomplish this, we
make use of the fact that l(q) is 2 bytes of known plaintext and a property of the RSA
equations.

When the public modulus e is small, it is easy to compute the most significant bits of
the private modulus d. The least significant bits of d are not easy to compute, so this does
not impact the security of RSA. To see why this is the case, observe that the RSA equation
implies

d ≡ e−1 (mod (p− 1)(q − 1))

⇒ ed− 1 ≡ 0 (mod (p− 1)(q − 1))

⇒ ed− 1 = k(p− 1)(q − 1)

⇒ k = e
d

(p− 1)(q − 1)
− 1

(p− 1)(q − 1)

⇒ k ≤ e.

Thus if e is small, all possible values of k can be brute forced. A typical choice of e is
65537, which leads to an easy brute force attack. MEGA’s web client uses e = 257, and the
SDK uses e = 17, so brute forcing k is even easier in this scenario.

If k is known, then

d = (k(p− 1)(q − 1) + 1)/e

= (k(pq − (p+ q) + 1) + 1)/e

=
kN + k + 1

e
− p+ q

e
.

The second term is unknown, but it is about as small as p and q, which are about half the
size of d. The first term is known and with high probability reveals the most significant bits
of d.

To use this in the attack, we first recover δ18,1 = pt18 − pt1. pt18 contains 16 significant
bytes of d and pt1 contains the length encoding l(q). We guess all possible values of k from
1 to e, and for each guess, we determine what the significant bytes of d would be if that
guess of k were correct. This gives a candidate value for pt18, which we can use to compute
a candidate pt1. If the candidate pt1 has valid length padding, the candidate pt18 may be
correct. The odds of a false positive are acceptably small, around e/216, so for small e this
is likely to reveal the true value of pt18. Once pt18 is known, this reveals ptj for every known
δ18,j.

8 Recovering the Factorization

Section 7 demonstrates how to recover arbitrary plaintext blocks in the encoded RSA private
key. This could be used to recover every plaintext block in the encoded key, but as in the
attack of Backendal, Haller, and Paterson there is a more efficient solution to learning the

11

factorization. We can recover every plaintext block corresponding to the most significant
bytes of prime factor q, then use Coppersmith’s method [2] to recover the full factorization.

For the 2048-bit modulus N with 1024-bit prime factors p and q, this requires at least
512 of the most significant bits. However, there is a trade-off between how many of the most
significant bits are known, how complex the implementation is, and how long it takes the
implementation to run. The proof-of-concept code for the original attack requires 683 bits.
We improve the implementation to be able to recover the factorization with only 624 most
significant bits. This corresponds to the most significant bits of q encoded in the first 5 plain-
text blocks pt1, pt2, . . . , pt5 of the encoded private key. With the improved implementation,
recovering these 5 plaintext values suffices to recover the full factorization.

9 Complexity

In this section, we analyze the overall complexity of both the fast attack requiring an expected
17 login attempts and the small attack requiring an expected 6.1 login attempts. Because
both of our attacks share many steps, we begin by describing the overlap.

Both approaches assume that the 43 bytes returned by the client are at a fixed location in
the output of the RSA decryption function, but this is optimistic. As described in Section 2.2,
the client returns bytes 2-44 when byte 2 is nonzero, and bytes 3-45 otherwise. This can be
modeled as the attacker querying an oracle which has some small probability of returning an
incorrect answer. For both of our approaches, we assume that all s responses from the oracle
are correct. Empirically, the analysis steps succeed when this is true and fails otherwise. If
the analysis fails, the RSA ciphertext is re-randomized and the entire attack is repeated,
collecting s fresh oracle responses. Under the simplifying assumption that the probability
the oracle returns a correct response for a particular input is independently distributed
and equal to 255/256 (byte 2 is nonzero), the probability that all s responses are correct
is (255/256)s. Therefore the expected number of oracle queries before the full attack is
successful is s(256/255)s.

Both approaches also overlap in the final stages of the attack, so much of the complexity
analysis is repeated. For the Coppersmith attack in Section 8 to succeed, we assume the
attack has successfully recovered 5 plaintext blocks pt1, . . . , pt5. To acquire these 5 plain-
texts, Section 7 processes differences between these plaintexts and a plaintext pt18 involving
MSBs of RSA private exponent d. That is, this part of the attack requires knowledge of
δ18,1, . . . , δ18,5. These 5 values are obtained using the technique of Section 6 from 5 high-
quality approximations.

The way the two approaches differ is how these 5 high-quality approximations are ob-
tained.

9.1 Fast Attack

In the fast attack, the 5 high-quality approximations are obtained by using Section 5 to
refine 15 lower-quality approximations. For each high-quality approximation involving δ18,j,

12

we assume we have lower-quality approximations of δ18,jx, 2128δ18,jx, and 2256δ18,jx for a
fixed and unknown x.

These lower-quality approximations are obtained using the EHNP technique in Sec-
tion 4.2. The advantage of this approach is that there is minimal guesswork involved, and
it would still work if the 43 contiguous bytes were present at a different fixed offset. The
disadvantage is that the EHNP transformation causes error bounds to grow, so more samples
are needed to compensate. As input to the EHNP transformation, we require 15 algebraic
relationships involving 2128tδ18,j for t ∈ {0, 1, 2} and j ∈ {1, 2, . . . , 5}.

As described in Section 3, each algebraic relationship involves taking the difference be-
tween two client responses involving different manipulations of the wrapped RSA private
key. This naively means that the attack could be performed with 30 client interactions, but
because each δ18,j involves the same plaintext block pt18, one single client response can be
reused in all 15 client response pairs. In particular, the shared ciphertext leads to the client
decoding the u value as

Decode[DAES(ct33) ‖ DAES(ct18) ‖ · · · ‖ DAES(ct18) ‖ DAES(ct18) ‖ DAES(ct41)].

This results in a total of s = 16 error-free oracle responses sufficing to recover the RSA
private key, or 16(256/255)16 ≈ 17.03 login attempts on average. None of the steps in this
approach are particularly expensive, so the overall private key recovery is fast.

9.2 Small Attack

In the small attack, the 5 high-quality approximations are obtained by using the brute force
technique described in Section 4.1. The input to the brute force technique are 5 algebraic
relationships from Section 3, and brute force attempts to recover the unknown term e′1− e′′1,
which can take on one of 511 values. Instead of trying all of the approximately 245 possibilities,
we improve the complexity by focusing on 3 algebraic relationships at a time. This gives a
more tractable brute force cost of around 227.

For each possible combination of prefixes for the 3 algebraic relationships, we can attempt
to use lattice basisB′ in Section 6 to recover the unknown multipliers. If this attempt succeeds
and yields valid multipliers, the guessed prefixes may be correct. If the attempt fails, the
guessed prefixes are probably incorrect. In practice, this approach works to reliably return
the correct prefixes for the 3 samples.

Next, we take 2 samples with recovered prefixes and 1 sample with an unknown prefix
and repeat the brute force process to recover the unknown prefix. This is significantly faster
than brute forcing prefixes for 3 samples simultaneously, and the technique is repeated until
all unknown prefixes have been recovered. This results in 5 high-quality approximations from
5 algebraic relationships.

Using the same argument as in the fast attack, the 5 algebraic relationships can be
obtained using 6 correct oracle responses, which happens with probability (255/256)6 ≈
98%. The expected number of oracle responses needed for a successful attack would be
6(256/255)6 ≈ 6.14. The most expensive step is brute forcing the triple of unknown prefixes,
but this step is easily parallelized.

13

Approach Sample Size Exp. Logins Avg. Logins Avg. Time (s)

Original [1] 10000 683 683 ± 0 9.46 ± 0.02
Fast Attack 10000 17.03 17.06 ± 0.08 5.59 ± 0.66

Small Attack 100 6.14 6.18 ± 0.20 16214 ± 522
Table 1. Average number of logins and average wall time required for each attack. The reported ranges represent a
95% confidence interval for the measured value.

10 Experiments

We benchmarked both of our new attacks 3 against the abstract proof-of-concept code of the
attack in [1]. We ran all our attacks on an 88-core Intel Xeon E5-2699A processor running at
2.4 GHz. The original attack and our fast attack are single threaded, and our small attack
implementation is multithreaded. We report a 95% confidence interval for each measurement
in Table 1.

As expected, there is good agreement between the measurements and the expected com-
plexity calculated in Section 9. The measured time includes the time to simulate the client-
server interactions, explaining why the original attack, which includes more login attempts
but fewer analysis steps, takes longer on average to perform. The small attack takes an av-
erage of 4 hours 30 minutes of wall-clock time to complete the analysis parallelized across 88
cores. Although this computational effort is not small, it is eminently tractable. We therefore
conclude that the risk of these vulnerabilities was not limited to users who attempted to log
in over 500 times, and instead show that users who attempted to log in at least 6 times
may potentially be at risk. This illustrates the importance of updating clients to the latest
patched version.

11 Acknowledgments

We thank Miro Haller for helpful discussions and providing further context.

12 Bibliography

References

1. Matilda Backendal, Miro Haller, and Kenneth G Paterson. MEGA: Malleable encryption goes awry. Preprint at
https://mega-awry.io/pdf/mega-malleable-encryption-goes-awry.pdf, June 2022.

2. Don Coppersmith. Finding a small root of a bivariate integer equation; factoring with high bits known. In Ueli M.
Maurer, editor, Advances in Cryptology – EUROCRYPT’96, volume 1070 of Lecture Notes in Computer Science,
pages 178–189, Saragossa, Spain, May 12–16, 1996. Springer, Heidelberg, Germany.

3. Harvey L. Garner. The residue number system. In Papers Presented at the the March 3-5, 1959, Western Joint
Computer Conference, IRE-AIEE-ACM ’59 (Western), page 146–153, New York, NY, USA, 1959. Association for
Computing Machinery.

4. Martin Hlavác and Tomás Rosa. Extended hidden number problem and its cryptanalytic applications. In Eli Biham
and Amr M. Youssef, editors, SAC 2006: 13th Annual International Workshop on Selected Areas in Cryptography,
volume 4356 of Lecture Notes in Computer Science, pages 114–133, Montreal, Canada, August 17–18, 2007.
Springer, Heidelberg, Germany.

3 Our updated implementation is available at https://github.com/keeganryan/attacks-poc

14

https://mega-awry.io/pdf/mega-malleable-encryption-goes-awry.pdf
https://github.com/keeganryan/attacks-poc

5. Nick A. Howgrave-Graham, Phong Q. Nguyen, and Igor E. Shparlinski. Hidden number problem with hidden
multipliers, timed-release crypto, and noisy exponentiation. Mathematics of Computation, 72(243):1473–1485,
2003.

6. Mathias Ortmann. MEGA security update, Jun 2022. https://blog.mega.io/mega-security-update/.

15

https://blog.mega.io/mega-security-update/

	Cryptanalyzing MEGA in Six Queries

